Loading...
HomeMy WebLinkAboutSWP271810 (2)Dw/°'�7�/�/0 c� OL` L. t CITY OF PXWON RE C E I V ED jAN - 6 1994 Et_I!>,D!NG DIVISION VALLEY MEDICAL CENTER SOUTH CAMPUS PARKING STORM DRAINAGE REPORT LOT NO'S. 2 THROUGH 8 OF ONE VALLEY PLACE FOR VALLEY MEDICAL CENTER BY: TOUMA ENGINEERS 15668 W. VALLEY HWY. SEATTLE WA. 98188 �ftucc�c TABLE OF CONTENTS I. PROJECT OVERVIEW II. PRELIMINARY CONDITIONS SUMMARY III. OFF -SITE ANALYSIS IV. RETENTION/DETENTION ANALYSIS AND DESIGN V. CONVEYANCE SYSTEM ANALYSIS AND DESIGN VI. SPECIAL REPORTS AND STUDIES VII. BASIN AND COMMUNITY PLANNING AREAS VIII. OTHER PERMITS IX. EROSION/SEDIMENTATION CONTROL DESIGN X. MAINTENANCE AND OPERATIONS MANUAL I. PROJECT OVERVIEW This project involves about 2.28 acres in south Renton in Section 31, Township 23 N., Range 5 E., W.M. The developer wants to improve an existing asphalt and gravel parking lot by paving the over the existing gravel portions. The site is bounded on the north by south 43rd st. and the hospital, on the east by Davis Ave. S., on the south by apartments, and on the west by Highway 167 and the offramp to S 43rd street. The construction of approximately 185 permanent parking spaces will be used by the hospital staff and visitors. The project area has been used for the past 2-3 years as a temporary parking area, with asphalt driveways and gravelled parking stalls. It is intended under this application to convert the existing usage to permanent facilities. There will be no significant grading employed to convert these facilities to permanent status. The existing soils for the site as depicted by the soil conservation soil survey are AgC an Alderwood series soil with moderate to high runoff potential. See the attached map copy. - I Ilr PU �q�i vJl ` _ : •�JU�, _'�k—.-1 ��... N ,:Longacrey':-i-1 i Pu .. I� �. • o•'� ;: 515` Rp� "mm Fly I eD iii• !,BeC ri€:z �.. I Wo .n `JL_ I[iiM� Ur ti� I u' �ii :, 1• AgD T r: a. , i• - `^' - i Track I. •°hit s it.. r `t 76 - R 5 rvoir - = Py So Tu i j Pu Wo u 1 Y tr4 f ti( <.! l •li, '.Amc C 0 1 �9M a a` 9 >25 ti 169 � 203, A8� 1 � Of Fly '; � � • ` PY 1 y ' > �•�t+P+ .Q • �} K ' a . 1(r a 451 a , Sk ••�•' '�) J r "k^ t �.. �}�+5r 6 IA6a . r `� a ' LJIJ Ur I {. <,, .. r r;,.: �R • a ,� ;` ti. r" Woir . ,: •' �" r�� .�v�ft',' i t . 4 Irt To •{• : � tlr. ,,gtf'. � } r � _tl �`a•�•' !, i� A ,a' O ,y.5 } \\1• ` . r a% 'n 1,� • . t , •` � ••al •ry I )M1 ^t� ''=j M � .1'rN •��`•.l :7� llt ftQK !• B '' lt 'U . �' ' t,, jy �y.c � ! tit Y: i � !► � p a'A .I" : : S €, d. a •.` y TFK^R•�.' , r, Wo' tl � r �• �M 194 � ,� 'tnn i ' � '• ' /i' � " e ., i , a x�"' ,�sAm�-• 1. :: ••t :•;.����_ri,a :?�a >� 11 II + 'Ur I' F� nYrf 1• TI op�} , n E- '•'j•' •,:. nt • ,`1r/ �'. PY I dial. �,t , tire, y./ "t,. ••n�u Ng $ I x * • a;' r to ::' M� �4ja AgC • • w.`K'i ti.,n. ' 3+ �trklSSt I�::... a 1'ai. f'3 � trt'�r r . < N �1 aa.�S yy .r..I :� n .}• • � rN y-£tir ,�r-..t' 9t1 •• �.y e,• • • •'.� !F• '��"•Rr .'v •' ,• ` 'yigg1r {L • w 0, ¢ ��` Y� ,I ' ti i i • T,�`�p.�tl : •t,' • 1 ���'\. "T ��r l Ng I t LL�Y y 7 •r� • _ ry wafer. ,�: �. k" •• , :.. • 2 � a ' • I •• Br Reis dq } j�d �.� IT n rr' "� = a Tank s •' ia, j �' , . r�: :i ..Yvi,•, ,j:} �i Hr• • . ;iino�s��}i� m� Ur 0513 , . �o c r\ rC ` "�.��/,yc' • h'�. K .�., . ; ; •_YuF �t !,.1 .. , r(: �1 i • 1 6T a .� 1 ii ---IIUIB : i ,'. ,•, , 'r'y� : �. `B11 ,; , „A YF9_ , N ,' S 'i �'Fff 1 N g '!1.4t -• � tJ 1'� f t , � �,�� •� •� `� -y, �AgC. ••`0 da y ,'. Pu9. I AmC wi li . { . kF ABC ABB • ,t> Sk rtf % A C 77 Ur ' Drlve r ' d • 7 •: �t �, � v ai •» In�� AjdB� ;• t OS `•` . t • G, j, i1 -. 1F,Ag8 B .x. : ., - T ♦ m k Ng Pc • i rr •h •� Agd Vx n- ABC , u e ' ti • Ur l '!••.: dl , 5. 1, AmC • i i r -Re 1 O�*vo a'` A C• • _ 4ftN+� 4x �(9 1 0 ! f Pu 1 Ur,� 1. :-Agd .� ••5 ro� t :AgC' I T' • 1� tr �.F AmC mc lUr 5• Ia`,,' a'. aKAmC, � t :,e, �. .AgB�� r 21+ Sk •t• o S Ur m Alp i; AgC ttdta;a N v A�,1 ' :.:� ' t . vi 1 >�rAg� . v ..; •,,ti, ;. AmC+{,. yi sS{ N'e PY Wo` II gr. a 4 • i r OS, ,. • • . A 4!Q'1' ,� a � P. 1. �ri b+ y 1Z Pk'n AMCr o; 31 a O a s. 2 AMC. �1. =—,: •r- � •1�.. Agll• �. ,?i Diu`, ___-___- _;` . .. Ur n L� Traile •InC _ n II. PRELIMINARY CONDITIONS SUMMARY Pre -developed 2.28 acres The existing parking drains as sheet flow westerly and northwesterly toward an existing swale situated at the western boundary of the subject site. No offsite drainage enters the site because the offsite drainage is intercepted by the existing drainage system in Davis Ave. S. and bypasses the site. Please note that when the original plat was developed, a detention pond was provided and situated to the west of the parking area. This open detention pond for the plat and is currently functioning. Post -developed 2.28 acres The graveled areas of the existing parking lot are proposed to be paved with asphalt concrete, and additional curbings to be constructed. An underground pipe conveyance system and catch basins will be installed to carry the runoff to a regraded bio- filtration swale. The new storm drain system will be connected to the existing drain pipes to carry the runoff to the existing open detention pond and controlled outlet. The proposed improvements to the parking area are not expected to increase the peak runoff rate significantly. According to Core requirement #3, if the peak rate of runoff for the 100 years storm event does not increase by more than 0.50 cfs between the pre -developed condition and the post-developded, detention is exempted. III. OFF -SITE ANALYSIS DOWNSTREAM ANALYSIS Runoff from the proposed site with no off -site tributary area is directed into an existing underground,storm pipe system to the west and south sides of the site. The existing westerly storm drain system consists of an 18" inch storm pipe running from north to south at an average slope of 0.6%. On the south side of the site is a 12" diameter storm pipe that carries runoff directly from Davis Ave S. to the 18" at a slope of 4.36%. The proposed permanent parking lot site has been draining to the west as sheet flow across the gravel parking areas and asphalt driveway areas. The drainage has been entering a bio-swale that was constructed to directed runoff to a 12" stub from a type 2- 48" catch basin along the west margin of the site. From this catch basin the runoff flows to the southwest corner of the site about 434 feet at an average slope of 0.6%. From the southwest corner of the site the runoff flows in a 24" diameter pipe southwesterly some 516 feet at an average slope of 12.35% to the existing detention pond. The existing detention pond was designed and as -built to have 50,450 cubic feet of storage per drawings on record with the City of Renton Public Works Dept. Access to the pond and restrictor are via the Crestwood Apartments to the south of our project. From the restrictor the runoff outfalls in a 12 pipe about 34' to a riprapped outfall. The runoff flows about 60 feet to a 30 inch culvert under SR-167. This leads to an excavated channel which joins the Springbrook Creek drainage and then the "P" channel system and eventually to the Black River Pump Station. There were no restrictions observed during the field investigation of the downstream facilities. The existing detention pond is overgrown with brush and blackberry bushes. No specific flooding problem was noted in the field nor noted during discussions about the storm system condition with the Cities staff. Vm_jOXTREI x - cl � , X; //. � � it � � �/-' I I r'� ❑ ; _ i II 1 x x 55 x— I x TREES- x 142 _ x X x X x 18 ;'� I ❑ - - - RU / x I �I QI I I i 1_ p l I X R � D �Eol D F 51 6' I r6l . x x r ❑I \\ CULT. FIELD I I ! I 1 X I / ! cil _ I .K X >f xLd '- x 1 \ I I I -�X - -+ \\ ` X \ I 1 El i h � Ki XX, X _ El _ 146 IW � 3 Ic-- � a IV. RETENTION/ DETENTION ANALYSIS AND DESIGN Please note as mentioned in the analysis above that a storm water detention system was designed and constructed for this plat. This detentin pond was visited and appears to be functioning properly. There should be no further need to provide for detention as the plat and detention were constructed in about 1982-83 under the City of Renton's number 3-1-151. As a precaution the following calculations are provided only to show that the anticipated peak runoff rate will not increase appreciably. The detention calculations on the following pages indicate that the runoff from the site is below the threshold of Q.5cfs increase for a 100 years storm event between the existing condition runoff and the post developed runoff. With this determination in mind, under Core requirement number 3 the proposed improvements would be exempt from detention. The other requirements for the site improvements, such as bio-filtration, conveyance, etc. are discussed later in this report. REFERENCE DATA SHEET FOR SOUTH CAMPUS PARKING PRE -DEVELOPED CONDITIIONS TOTAL AREA........ PERVIOUS -ASPHALT GRAVEL LANDSCAP POST -DEVELOPED CONDITIONS TOTAL AREA........ PERVIOUS -LAWN IMPERVIOUS -ROOFS 2.28 ACRES 0.82 ACRES CN= 98_.00 0.76 ACRES CN= 89.00 0.70 ACRES CN= '90.00 2.28 ACRES 0.70 ACRES CN= 90.00 1.58 ACRES CN= 98.00 -F W 1OOY ,as kl L 9470 �EXF'IRES 6/22/23 TIME OF CONCENTRATION - PRE-DEVELOPED- T3. = 40/((7)(.0251,'2)(60)) = 0.60 min. T2 = 210/((20)(.0381'2)(60)) = 0.90 min. T3 = 380/((15)(.0141/2)(60)) = 3.57 min. TOTAL = 5.07 min. TIME OF CONCENTRATION - POST -DEVELOPED T3_ = 35/((7)(.0251/2)(60)) _ .53 min. T2 = 125/((20)(.0561/2)(60)) _ .44 min. T3 = 34/((20)(.02971'2)(60)) _ .16 min. T4 = 187/((20)(.005X/2)(60)) = 2.20 min. T, = 10/((20)(.011,2)(60)) _ .08 min. Ts = 235/((15)(.0051Z2)(60)) = 3.69 min TOTAL 7.08 min. `j!- �TI ►4GHr 0 (=TFN7-1UN C_!4LC'CfL6 rl0/�� S ILA- i-C H l_ uou) im 6, CRLLvI 1_Li-170M 0 r N`1 u2v G1✓A-PH- . SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 — S.C.S. TYPE —IA •••- 7—DAY DESIGN STORM -- STORM I:1ATA FILE: SPECIFY STORM OPTION: I S.C.S. TYPE —IA RAINFALL DISTRIBUTION ENTER: FREG? (YEAR) , DURAT I ON C HOUR) , PREC I P (INCHES ) 2,24f2 S.C.S. TYPE —IA DISTRIBUTIOPJ #.. .... ;_-...YEAR 24—HOUR STORM 2. i 0" TOTAL_. PRECIP. -------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. I 1 . 4S, S9, . S2, 9S, J. 07 DATA PRINT—OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.3 1.5 89.0 .8 98.0 5.1 PEAK—Q,(CF S ).. T--PEAK (HRS) VOL (CU—FT ) . 80 !} 7.67 1072 ENTER C d: 1 C path 3 f i 1 ename E- . e x t 1 FOR STORAGE OF COMPUTED HYDROGRAPH: lE2YR SPECIFY: C — CONTINUE, N -... NEWSTORM, P — PRINT, S — STOP is ---------------------------------------------------------------------- ENTER : A ( DERV) , CN ( DERV) , A (I MPERV) , CN (I MPERV) , TC FOR BASIN NO. 2 . 7, 'fit,, I.. 58, 'a8, 7. 08 DATA PRINT—OUT: AREA t: ACRES) PERVIOUS IMPERVIOUS TC (M I NUTE-.S ) A CN A CN 2.3 .7 90.0 16. PEAK—U(CFS) T—PEAK(HRS) VOL(CU—FT) 93 7.83 12955 Q ENTER Cd:7CpathlfilenameC.e t1 FOR STORAGE OF COMPUTED HYDROGRAPH: i D'2 YR SPECIFY: C — CONTINUE, N — NEWSTORM, P -- PRINT, S —. STOP N STORM OPTIONS: 1 - S.C.S. TYPE -IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE -IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 10,24,2.9 ______________________________________________________________________ ******************** S.C.S. TYPE -IA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ______________________________________________________________________ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 1.46,89,.82,98,5.07 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.3 1.5 89.0 .8 98.0 5.1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.34 7.67 17534 - ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDRO6RAPH: 1E10YR SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP C ____________________________________________________________________ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 .7,90,1.58,98,7'08 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A UN 2.3 .7 90.0 1.6 98.0 7.1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.45 7.83 20112 ' �J ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROQRAPH: 1D10YR SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP WAR r / / -` / --__- L STORM OPTIONS: 1 - S.C.S. TYPE -IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. N ALL DISTRIBUTION ENT YEAR), lDURATION(HOUR), PRECIP(INCHES) 10{� __________________________________________________________________ ******************** S.C.S. TYPE -IA DISTRIBUTION ******************** ********* 100 YE 24-HOUR STORM **** 3.90^`TOTAL PRECIP. ********* ' ______________________________________________________________________ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 1.46,89,.82,98,5.07 ' - DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.3- 1.5 89.0 .8 98.0 5.1 ENTER Ed:1EpathJfz1enameL.ext1 FOR STORAGE OF COMPUTEDI HYDROGRAPH: 1E100YR SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - ST P C ______________________________________________________ _______________ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 .7,90,1.58,98,7.08 ( DATA PRINT-OUT: AREA(ACRES) 2.3 PEAK-Q(CFS) , on PERVIOUS A CN .7 90.0 T-PEAK(HRS) IMPERVIOUS A CN 1.6 98.0 VOL(CU-FT) TC(MINUTES) 7.1 ' I))FF, LV_SSTHAO P'S_c- r-- s. ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDRO8RAPH: 1D100YR SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP _�_ DA05, AVE. S. i . r ,. . r9 spaces if is c r---T- -�---1--T----T --- j - - --r -1--T--r----� c I -All X I f►,_,-t.__1_---1___ I � i — -i15 sp ce8 � � �� l i II X I 30 I sp lip" �� _ ••••• _- —_ .ia I II 20I spaces I I I i I --- -- -- r- - --- --- - 1- J--t- t- - r--T-- 77 II 11 90 N k � PEE - DEY DETEN T'ON CALCULATIONS 80 DA VI SI A V'E . S. Lz 7.7 19 spaces Illp spgco --f if . l i✓"� _ \ - - `_l-_-1----�-- ! � ! � �..._..� �____1_� I _� 15 specs1 I � i I _ r x �� m --- --- c II --- 1— 77-7 ;-�-� it spec I I I I I up I 201 spgce9 I I \ I if \ ---;- -- r_ _ x I ��. _ _ -- 90 1- s ? 1 r _ II PD%T c _ i DETENTION CALCULATIONS 8o I CONCLUSION The difference between the pre -developed and post -developed runoffs during a 100-year storm is less than 0.50 cfs. In accordance with Core Requirements #3, Rentention/Detention facilities are not required. V. CONVEYANCE SYSTEMS ANALYSIS AND DESIGN The conveyance system will be composed of six catch basins, 12 inch and 15 inch storm drain pipe. The bio-filtration swale will be regraded, with the pipe to the storm system being reinstalled at a slightly higher grade. The calculations that follow Indicate that this configuration is more than adequate to handle the 100 year storm. A map is enclosed which shows the areas and the drainage patterns. 1C)/'26/93 Enclenicus Systems, Inc_ page ]. Vo l_I.-EY MELD I i- r*)L [--:ENTER Sf]U-fl-f ' AMF'US LOT CONVEYANCE F' I F'E. SYSTEM F:E0C- A SUMMO RY F:Out i. nq based c:-n Seattle family @ 'X-:,5 yr f r eq - �•t�ly Foe pt=Sl �aN Net wr- Ir- k. 1 in e*2" J_ F'--/4G/G Pipe Reach Basin Area --c- --c*A- --Sum- ---Tc- --i-- --AAct Dia -Man -Slope -AFull Vfull -Vact -Length --tt-- ---------- Id ac --c*A- - min in/hr cfs in --n - ft/ft cfs fps fps ft min p6 a6 0.11 0.94 0.09 0.09 6.30 2.70 0.25 12 0.014 0.0100 3.32 4.22 2.48 60.00 0.40 p5 a5 0.28 0.75 0.21 0.30 6.70 2.62 0.79 12 0.014 0.0138 3.90 4.96 3.89 150.00 0.64 Net w-_-rk: 1 ineI Pipe Reach Basin Area --c- --cfA- --Sum- ---Tc- --i-- --AAct Dia -Mann -Slope -DFull Vfull -Vact -Length --tt-- ---------- Id ac --cfA- - min in/hr cfs in --n-- ft/ft cfs fps fps ft min pl al 0.45 0.79 0.36 0.36 6.30 2.70 0.96 12 0.014 0.0297 5.72 7.28 5.41 34.00 0.10 p2 a2 0.25 0.90 0.23 0.58 6.40 2.6B 1.56 12 0.014 0.0050 2.35 2.99 3.19 127.00 0.66 p3 a3 0.31 0.79 0.24 0.83 7.07 2.55 2.11 12 0.014 0.0050 2.35 2.99 3.38 60.00 0.30 p4 a4 0.51 0.86 0.44 1.57 7.36 2.50 3.91 15 0.014 0.0100 6.01 4.90 5.22 10.00 0.03 SEE TI-I c (3ASIN M Y1 P l4-T T/-1E I�AC.le 1) 7"rl /�.r -7 riclF'ri i. c:-r_i5.� �iit: F?fn�. � T r-i I_) cICIF? 1 vt._I.._EY MEU T i :F1I- i_::I -N T F=T 5 0 U H I I'_:FaMP1.Jf:, F'AF-'k:: T N".-i I_OT F' r..rtJ.ncj bE),I > ri t;t;1.F' farn:i.Iy @ 1yY. fY'(-.cC1 Nc:t,...-,)'I: 1 inc Pipe Reach Basin Area --c- --c*A- --Sum- ---Tc- --i-- --QAct Dia -Mann -Slope -OFull Vfull -Vast -Length --tt-- ---------- Id aC --c*A- - min in/hr cfs in --n-- ft/ft cfs fps fps ft min p6 36 0.11 0.84 0.09 0.09 6.30 3.40 0.31 12 0.014 0.0100 3.32 4.22 2.65 60.00 0.38 p5 a5 0.28 0.75 0.21 0.30 6.60 3.32 1.00 12 0.014 0.0130 3.90 4.96 4.16 150.00 0.60 Ner tw---- i-1:: 1 inc--1 Pipe Reach Basin Area --c- --c*A- --Sum- ---Tc- --i-- --9Act Dia -Mann -Slope -AFull Vfull -Vact -Lenqth --tt-- ---------- Id ac --c*A- - min in/hr cis in -------------- --n-- ft/ft cfs fps fps ft min pl at 0.45 0.79 0.36 0.36 6.30 3.40 1.21 12 0.014 0.0297 5.72 7.28 5.79 34.00 0.10 p2 a2 0.25 0.90 0.23 0.59 6.40 3.39 1.96 12 0.014 0.0050 2.35 2.99 3.34 127.00 0.63 p3 a3 0.31 0.79 0.24 0.03 7.03 3.24 2.67 12 0.014 0.0050 2.35 2.93 3.41 60.00 0.29 p4 a4 0.51 0.86 0.44 1.57 7.32 3.10 4.97 15 0.014 0.0100 6.01 4.90 5.40 10.00 0.03 MIND12 f3VlG►LCtP I -o/d 100'jfo l nI2_.W►. WDbIL17 FLOU" (� V VI. SPECIAL REPORTS AND STUDIES Bio-filtration calculations are included in this section of the report. The 2 year devoloped peak runoff will be used to determine the required width of the bottom of the swale. The actual slope and roughness will be used to determine the actual depth of flow in the swale for the 2 year runoff and to show that the flow velocity is less than 1.5 fps. Next a one foot freeboard will be added and the 100 year flow will be checked to see that there will be no overtopping of the swale. Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: VMC SO. CAMPUS Comment: BIO-FILTRATION ALONG WEST BOUNDARY Solve For Bottom Width Given Input Data: Left Side Slope.. Right Side Slope. Manning's n...... Channel Slope.... Depth............ Discharge........ Computed Results: Bottom Width.... Velocity......... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope.'. Froude Number.... 3.00:1 (H:V) 3.00:1 (H:V) 0.350 -- 0.0200 ft/ft 0.50 ft 0.93 cfs F0 Q I-) MI-Y 4.31 ft 0.32 fps 2.91 sf 7.31 ft 7.48 ft 0.11 ft 3.8502 ft/ft 0.09 (flow is Subcritical) V.S' m C V-+L Uj}x[[F s Open Channel Flow Module, Version 3.4 (c) 1991 Haestad Methods' Tnc * 37 9rnnksiHe PH * W=+p~h'- Of 06700 Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: VMC SO. CAMPUS Comment: BIO-FILTRATION ALONG WEST BOUNDARY Solve For Depth Given Input Data: Bottom Width..... Left Side Slope.. Right Side Slope. Manning's n...... Channel Slope'... Discharge........ Computed Results: Depth............ Velocity...'..... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 4.31 ft 3.00:1 (H:V) 3.00:1 (H:V) 0.027------- 0.0050 ft/ft 0.93 cfs _ 0.17 ft Gronss KontwNr/aw f)LJQNL-S L, 0Fz�� __� �l /~ 1.12 fps T/yM/4 >-�SF"` 0.83 sf 5.34 ft 5.40 ft 0.11 ft 0.0229 ft/ft 0.50 (flow is Subcritical) � FeFF- 7300,60 h0 0 -- / PT-Pl L_ --- , | � '-7 1 Open Channel Flow Module, Version 3.4 (c) 1991 Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: VMC SO. CAMPUS Comment: BIO-FILTRATION ALONG WEST BOUNDARY Solve For Depth Given Input Data: Bottom Width..... 4.31 ft Left Side Slope.. 3.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.027 Channel Slope.... 0.0050 ft/ft Discharge........ 2.02 cfs Computed Results: Depth..........'. 0.27 ft puDu/ L>[n PTyl Velocity......... 1.46 fps -----------LE�s�S, -[-TV-1y) 1-4 Flow Area..''.... 1.38 sf Flow Top Width... 5.93 ft Wetted Perimeter. 6.02 ft Critical Depth... 0.18 ft Critical Slope... 0.0197 ft/ft Froude Number.... 0.53 (flow is Subcritical) 130VIP-1�, tqT 0/00 T-0TA L- /-7 �L��� 0 '`7D 00 N\LL -6 F:�- C- 0 1--1T0/t-1 G�� Open Channel Flow Module, Version 3'4 (c) 1991 KING COUNTY, W ASHINGTON, SURFACE WATER DESIGN MANUAL c "Q1 V N 2-YEAR 24-HOUR PRECIPITATION 3.4 -'" ISOPLUVIALS OF 2-YEAR 24-HOUR TOTAL PRECIPITATION IN INCHES 0 1 2 3 4 5 6 7 8 Mlles 1: 300.000 3.5.1-8 IV ' - 1 /90 VII. BASIN AND COMMUNITY PLANNING AREAS No community plans are included for this project. VIII. OTHER PERMITS The other permits that are a part of this submittal are: Building Permit Landscaping Permit Filling and Grading Permit IX. EROSION/SEDIMENTATION CONTROL DESIGN The Temporary Erosion calculations are included in this section of the report. TEMPORARY EROSION The total area of this project is 2.28 with .82 acres of existing asphalt to remain intact. The gravel areas and the landscape area have 1.46 acres which could be disturbed, and subject to erosion runoff. The soils per the King County Soil Survey are AgC which have a medium to high runoff potential. With less than 3 acres of tributary exposed soils subject to runoff a sediment trap will be employed. The sedimaent trap required volume is based on the volume of sediment plus the volume resulting from providing a 2 foot deep settlement zone above the sediment storage. From chapter 5.4.4.1-2 of the KIng County Surface Water Design Manual use equation: A..,, = (R) (K) (LS) (CV) (PR) P2 = 2.0 inches R = 2.22(P2)2.2 = 3.04 K = 0.15 LS = L = 2201, S = 5% LS = 0.80 CV = 1.0 PR = 1.3 A..d = (3.04)(0.15)(0.80)(1.0)(1.3) = 0.474 Cleared = 1.46(0.474) = 0.692 tons Vol = 0.692/.05 T/ft3 = 13.85 ft3 Determine the configuration dimensions. Try to have about a 3:1 length to width ratio. I oV6eT=- Zvi -QE Prr-4 3 2 SEMI-ING ZDFIF 1.2' 5r--bI F_r�7 `T01-A r- Try a 2' x 6' bottom = 12sq ft 13.85/12 = 1.15' deep bottom 2' x 6' = 12 sq ft 1.2' deep 9.2' x 13.2' = 121 sq ft Vol = (12 = 121)/2 x 1.2' = 80 cu ft OK 13.85 cu ft regd. dimensions at 3.2' deep top 21.2' x 25.2' overflow 4.2' deep 27.2' x 31.2' The overflow will be directed to the realigned and regraded bio- filtration swale. KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL o The temporary sediment trap volume is the volume of sediment storage computed (not to exceed 1.5' in depth) plus the volume resulting from providing a 2' deep settlement zone above the sediment storage, while not exceeding trap side slopes of 3:1. o Computing the sediment storage volume - The sediment storage volume required is the volume required to contain the annual sediment yield to the trap and can be estimated by using the Universal Soil Loss Equation (USLE) developed by the United States Department of Agriculture. ABED = R*K*LS*CV*PR Where ASED = annual sediment yield in tons per acre R = rainfall erosion Index; use R'=2.22(P2)2.2; where P2 is the 2 year/24 hour precipitation in Inches (See 2 year - 24 hour Isopluvial Map In Figure 3.5.1 C) K = soil erodibility factor, from Table 5.4.4A or -as determined by field and laboratory testing by a geologist, soil scientist, or geotechnical engineer. LS = length -slope factor; from Table 5.4.46 (note, lengths measured are horizontal distance from a plan view) CV = cover factor, use 1.0 which represents no ground cover during the construction process. PR = erosion control practice factor; use 1.3 which represents compacted and smooth slopes. Note, the USLE rainfall erosion index equation for the SCS Type 1 A storm region is R =10.2 (P2)2,2, where P2 is the total precipitation for the 2 year, 6 hour duration design storm. Since the total precipitation for the 2 year, 6 hour duration design storm is equal to exactly one-half of the total precipitation for the 2 year, 24 hour duration design storm, the equation can be rearranged as shown. o Annual sediment yield calculation, step-by-step procedure: a. Compute the R value by obtaining the P2 value from the 2-year/24-hour Isopluvial Map in Figure 3.5.1 C. b. Divide the site into areas of homogeneous SCS. soil type and of uniform slope and length. C. Note the K value from the SCS soils chart (Table 5.4.4A) for each soil type. d. Determine the LS value for each uniform area (See Table 5.4.46). e. Compute the annual sediment yield (A4ed) In tons per acre for each homogeneous/uniform area by multiplying R times the K and LS values for each area. Multiply the annual sediment yield (ASed) for each area by the acreage to be exposed (only that area to be cleared) of each area. Sum the results to compute the total annual sediment load (in tons) to the trap (Lsed). o The sediment storage volume 1"sed) is then determined by dividing the total annual sediment load In tons (L3ed) by an average density for the sediment deposited (�eV9). UsePv9= 0.05 ton per cubic foot. Vsed = Lsed/Pavg• 5.4.4.1-2 1/90 Slope IS values for following slope lengths 1, ft (m) 1S values for following slope lengths 1, ft (m) Slope gnuiienl 10 20 30 .10 50 60 70 80 90 100 150 200 250 300 350 400 450 500 600 700 800 900 1000 ratio (3.0) (6.1) (9.1) (12.2) (15.2) (18.3) (21.3) (24.4) (27.4) (30.5) (.Ifi) (61) (76) (91) (107) (122) (137) (152) (183) (213) (214) (274) (305) 0.5 0.01; 0.07 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 IIN):I 1 0.08 0.09 0.10 0.10 0.11 ().11 0.12 0.12 0.12 0.1? 0,1.1 0.1.1 0.1.5 O.lfi 0.16 0.16 0.17 0.17 0.18 0.18 0.19 0.19 0.20 2 O.10 n.12 0.11 0.15 0.16 0.17 0.18 0.19 0.19 0.20. 0.23 0.25 0.26 0.28 0.29 0.30 0.32 0.33 - 0.34 0.36 0.37 0.39 0.40 3 0.11 0.18 0.20 0.22 0.23 025 0.26 0.27 0.28 0.29 0.32 0.35 0.38 0.40 0.42 0.43 0.45 0.46 0.49 0.51 0.54 0.55 0.57 4 0.16 0.21 0.25 0.28 010 0.33 0.35 0.37 0.38 OAO 0.47 0.53 0.58 0.62 0.66 0.70 0.73 0.76 0.82 0.87 0.92 0.96 1.00 20:1 5 0.17 0.24 0.29 0.34 0.38 0.41 0.45 0.48 0.51 0.53 0.66 0.76 0.85 0.93 1,00• 1.07 1.13 1.20 1,31 1.42 1.51 1.60 1.69 6 0.21 0.30 0.37 0.43 0.48 0.52 0.56 0.60 0.64 0.67 0.82 0.95 1.06 1.16 1.26 1.34 1.43 1.50 1.65 1.78 1.90 2.02 2.13 7 0.26 0.37 0.45 0.52 0.58 O.G4 0.69 0.7.1 0.78 0.82 1.01 1.17 1.30 1.43 1.54 1.65 1.75 1.84 - 2.02 2.18 2.33 2.47 2.61 12'!,:1 8 0.31 0.44 0.54 0,63 0.70 0.77 0.83 0.89 0.9.1 0.99 1.21 1.40 1.57 1.72 1.85 1.98 2.10 2.22 2.43 2.62 2,80 2.97 3.13 9 0.37 0.52 0.64 0.74 0.83 0.91 0.98 1.05 1.11 1.17 1.44 1.66 1.85 2.03 2.19 2.35 2.49 2.62 2.87• 3.10 3.32 3.52 3.71 111:1 10 0.43 0.61 0.75 0.87 0.97 1.06 1.15 122 1.30 1.37 1.68 1.94 2.16 .2.37 2.56 2.74 2.90 3.06 3.35 3.62 3.87 4.11 4.33 11 0.50 0.71 0.86 1.00 1.12 1.22 1.32 1.41 1.50 1.58 1.93 2.23 2.50 2.74 2.95 3.16 3.35 3.53 3.87 4.18 4.47 4.74 4.99 8:1 12.5 0.61 0.86 1.05 1.22 1.36 1.49 1.61 1.72 1.82 1.92 2.35 2.72 3.04 3.33 3.59 3.84 4.08 4.30 4.71 5.08 5.43 5.76 6.08 1.5 0.81 1.14 1.40 1.62 1.81 1.98 2.14 2.29 2.43 2.56 3.13 3.62 4.05 4.43 4.79 5.12 5.43 5.72 6.27 6.77 7.24 7.68 8.09 6:1 16.7 0.96 1.36 1.67 1.92 2.15 2.:16 2.54 2.72 2.88 3.04 3.72 4.30 4.81 5.27 5.69 6.08 6.45 6.80 7.45 8.04 8.60 9.12 9.62 5:1 20 1.29 1.82 2.23 2.58 2.88 3.16 3.41 3.65 3.87 4.08 5.00 5.77 6.45 7.06 7.63 8.16 8.65 9.12 9.99 10.79 11.54 12.24 12.90 1a 4h:1 22 1.51 2.13 2.61 3.02 3.37 3.69 3.99 4.27 4.53 4.77 5.84 6.75 7.54 8.26 8.92 9.54 10.12 10.67 11.68 12.62 13.49 14.31 15.08 A 4:1 25 1.86 2.63 3.23 3.73 4.16 4.56 4.93 5.27 5.59 5.89 7.21 8.33 9.31 10.20 11.02 11.78 12.49 13.17 14.43 15.58 16.66 17.67 18.63 A 30 2.51 3.56 4.36 5.03 5.62 6.16 6.65 7.11 7.54 7.95 9.74 11.25 12.57 13.77 14.88 15.91 16.87 17.78 19.48 21.04 22.49 23.86 25.15 3:1 33.3 2.98 4.22 5.17 5.96 6.67 7.30 7.89 8.43 8.95 9.43 11.55 13.34 14.91 16.33 17.64 18.86 20.00 21.09 23.10 24.95 26.67 28.29 29.82 35 3.23 4.57 5.60 6.46 7.23 7.92 8.55 9.14 9.70 10.22 12.52 1.1.46 16.16 17.70 19.12 20.44 21.68 22.86 25.04 27.04 28.91 30.67 32.32 2%:1 40 4.00 5.66 6.93 8.00 8.95 9.80 10.59 11.32 12.00 12.65 15.50 17.89 20.01 21.91 23.67 25.30 20.84 28.29 30.99 33.48 35.79 37.96 40.01 45 4.81 6.80 8.33 9.61 10.75 11.77 12.72 13.60 14.42 15.20 18.62 21.50 24.03 26.33 28.44 30.40 32.24 33.99 37.23 40.22 42.99 45.60 48.07 2:1 50 5.64 7.97 9.76 11.27 12.60 13.81 14.91 15.94 16.91 17.82 21.83 2521 28.18 30.87 33.34 35.65 37.81 39.85 43.66 47.16 50.41 53.47 56.36 55 6.48 9.16 11.22 12.96 14.48 15.87 17.14 18.32 19.43 20.48 25.09 28.97 32.39 35.48 38.32 40.97 43.45 45.80 50.18 54.20 57.94 61.45 64.78 1Y:1 57 6.82 9.64 11.80 13.63 15.24 16.69 18.03 19.28 20.45 21.55 26.40 30.48 34.08 37.33 40.32 43.10 45.72 48.19 52.79 57.02 60.96 64.66 68.15 60 7.32 10.35 12.68 14.64 16.37 17.93 19.37 20.71 21.96 23.15 28.35 32.74 36.60 40.10 43.31 46.30 49.11 51.77 56.71 61.25 65.48 69.45 73.21 114:1 66.7 8.44 11.93 14.61 16.88 18.87 20.67 22.32 23.87 25.31 26.68 32.68 37.74 42.19 46.22 49.92 53.37 56.60 59.66 65.36 70.60 75.47 80.05 84.38 70 8.98 12.70 15.55 17.96 20.08 21.99 2:1.75 25.39 26.93 28.39 34.77 40.15 44.89 49.17 53.11 56.78 60.23 63.48 69.54 75.12 80.30 85.17 89.78 75 9.78 13.83 16.94 19.56 21.87 23.95 25.87 27.66 29.34 30.92 37.87 43.73 48.89 53.56 57.85 61.85 65.60 69.15 75.75 81.82 87.46 92.77 97.79 1 %: 1 8O 10.55 14.93 18.28 21.11 2:1.60 25.85 27.93 29.85 31.66 33.38 40.88 47.20 52.77 57.81 62.44 66.75 70.80 74.63 81.76 88.31 94.41 100.13 105.55 85 11.30 15.98 19.58 22.61 25.27 27.69 29.90 :11.97 33.91 35.74 43.78 50.55 56.51 61.91 66.87 71.48 75.82 79.92 87.55 94.57 101.09 107.23 113.03 90 12.02 17.00 20.82 24.04 26.88 29.44 31_80 34.00 36.06 38.01 46.55 53.76 GO. 10 65.84 71.11 76.02 80.63 84.99 93.11 100.57 107.51 114.03 120.20 95 12.71 17.97 22.01 25.41 28.41 31.12 3:1.62 35.94 38.12 40.18 4921 56.82 63.53 69.59 75.17 80.36 85.23 89.84 98.42 106.30 113.64 120.54 127.06 1:1 100 13.36 18.89 23.14 26.72 29.87 32.72 35.34 37.78 40.08 42.24 51.74 59.74 66.79 73.17 79.03 84.49 89.61 94.46 103.48 111.77 11.9.48 126.73 133.59 'Calculated from '. (65.41 X s 1.ti 4.56Xa + + 0.()fi5 ` l 1 I (72.5/ I - factor \at + 10,000 x + 10.000 / 1 slope ltopogrength, 1 � slope length, ft Im X 0.30481 s - slope steepness, m a exponent dependent upon slope steepness (0.2 for slopes < I %. 0.3 for slopes I to 3%. 0.4 for slopes 3.5 to 4.5 i,, and 0.5 for slopes > 5'S ) m XI. MAINTENANCE AND OPERATIONS MANUAL No Maintenance and operations instructions or manual are included with this report.