Loading...
HomeMy WebLinkAboutSWP271862 (2)STORM DRAINAGE CALCULATIONS FOR STRADA DA VALLE AT THE EAST SIDE OF EAST VALLEY ROAD BETWEEN 27TH STREET & 23RD STREET BY BUSH, ROED & HITCHINGS, INC. 2009 MINOR AVENUE EAST SEATTLE, WASHINGTON 98102 (206) 323-4144 MARCH 17, 1989 e-'J'se& Z-Zi- 90 Reutse& 3-H -10 D Q�1� .... c4,c d Q roF wggy�• �``� • • Iti "� yp::� r r - r 00.'5/OHAL E�'�: •aasaao ev44p67J s �� ���QQIG �a Valle. bSB. - �-7-30 pra w.. c� e. - -----CYv nn - -'�`� e ---5 �. �...- _ . w � �.l _.. � � s_ c..�a..-Cvl� 0 C a p pr'O x \' vlixcklreJ 0 ..+0 4e.?-9 (-kqr\r\el, The CkO-kLy\.A4 -,r vA . tivs, —tows, -4v -a _.. -- -- ��r-eLar� ._ c� fdx ���i�t 1-600 -- -b -_ _S p6r� ---- ��-ee� �SePt 29, 198R>.. Since --opt_ o���_ _tovJ e'e.�a'Tt�r� is -- --- --_---_. --1�i.10.�e.e{ _.-we...sha�1�-__h�� ..�QUe _..4,n-- �hnpac�.--�o�+n_-S�%e4w� -ok qe- P.QP-4 TABLE 2-3J Gtound Cover Coefficients Tvae of Cover Forest with heavy ground cover Minimum tillage cultivation Short pasture grass or lawn Nearly bare ground Grassed waterway or small roadside ditch Paved area Gutter flow 0.23 feet deep 0.30 feet deep 0.73 feet deep Storm Sewers (Concrete) 12 inch diameter 18 inch diameter 24 inch diameter Open Channel Flow (n a 0.040) 2-3.4 Rainfall Intensity A. Rainfall Intensity Charts l foot deep 2 feet deep 4 feet deep K (Around cover coefficient) 130 280 420 600 900 1,200 1,300 2,400 3,100 Concrete CHP n - 0.012) n Q 0.024) 3,000 1,300 3,900 1,950 4,700 2,330 Narrow W� Medium W D%2 Wide VID-9 1,100 1,300 2,000 1,800 2,300 3,100 2,360 3,700 3,000 When the time of concentration and storm frequency are known; the rainfall intensity is obtained from the rainfall Intensity charts at the end of this chapter (Appendix 24). Each chart shows the intensity of the rainfall for 100-, 30-, 23-, 10-, and 3-year storm frequencies for a duration of S to 100 minutes. It is the practice of the WSOOT Headquarters Hydraulics Section to use a minimum time of concentration of five minutes. It should be noted that the rainfall intensity at any given time is the average from zero minutes to the time considered and is not the Instantaneous rainfall. B. Rainfall Intensity Equation In addition to the rainfall intensity charts, the designer also has the option of determining rainfall data by use of a mathematical equation. This equation has the form: I m— Tn where: m and n = dimensionless coefficients T a the rainfall duration (minutes) I a the average rainfall intensity (inches per hour) MRI : mean recurrence interval 17 t1 t tl 1 f l tl i1 tt treat= - ...�._ Table 2-3.48 index to Rainfall Coefficients l t0 ear MRI 23 ear MRI 50 year MRI 100 ear MRI RI S ear MRI Chart m n m n m n m n Location Number m n m n 7.06 0.497 8.17 0.487 9.02 0.487 9.86 0.487 0.488 Aberdeen & Hoqulam 1 3.10 0.488 6.22 0.559 7.90 0.562 8.89 0.563 9.88 0.565 Bellingham 16 4.29 0.549 3.59 0.555 6.59 6.68 0.494 7.47 0.496 9.26 0.498 Bremerton 6 3.79 0.480 4.84 0.487 3.63 0.490 7.00 0.530 7.92 0.533 9.96 0.537 Centralia & Chehalis 15 3.63 0.506 4.83 0.518 5.76 0.524 0.639 11.45 0.639 12.81 0.639 Clarkston & Colfax 29 5.02 0.628 6.84 0.633 8.24 0.633 10.07 0.642 0.626 10.65 0.635 12.26 Colville 30 3.48 0.559 5.44 0.593 6.99 0.610 9.07 0.664 11.30 0.672 13.18 0.678 Ellensburg 24 2.89 0.590 5.18 0.631 7.00 0.649 9.43 0.582 8.96 0.0 5 10.07 0.586 Everett 18 3.69 0.356 5.20 0.570 6.31 0.575 7.83 7.47 0.415 8.18 0.416 4 4.19 0.410 5.12 0.412 5.84 0.413 6.76 0.414 Forks Cr. (SR 304) 3.96 0.449 3.21 0.462 6.16 0.469 7.44 0.476 9.41 • 0.480 9.38 0.484 Hoffstadt 3.44 0.429 6.17 0.427 7.15 0.428 7.88 0.428 9.62 0.428 Hoodsport 4.47 0.428 0.515 6.43 0.519 7.74 0.524 8.70 0.526 ' 9.67 O.S29 Kelso & Longview 17 4.25 0.507 5.50 0.575 7.94 O.S94 9.75 0.606 11.. 0.6 11 Leavenworth 30 3.04 0.530 4.12 0.542 5.62 . 0.671 11.61 0.691 1.63 0. 89 Moses Lake 26 2.61 0.583 5.05 0.634 6.99 0.655 9.58 0.561 9.60 0.564 9 .6) 67 0.567 Mt. Vernon 16 3.92 0.542 5.23 0.552 6.26 0.357 7.59 0.443 8.05 0.440 8.91 0.436 Naselle 4.57 0.432 5.67 0.441 6.14 0.432 7.47 0.477 0.479 8.17 0.480 Olympia 7 3.82 0.466 4.86 0.472. 5.62 0.474 6.63 0.647 •7.40 10.35 0.654 11.97 0.660 Omak 29 3.04 0.583 3.06 0.618 6.,63 0.633 8.74 Pasco, Richland 0.590 3.18 0.631 7.00 0.649 9.43 0.664 11.30 0.672 13.18 0.678 do Kennewick 24 2.89 5.42 0.331 6.25 0.531 7.37 0.532 9.19 0.532 9.03 0.532 Port Angeles 8 .31 0.530 0.313 5.85 0.516 7.00 0.519 7. 0.21 8..2 Poulsbo 3.83 0.506 4.98 0.423 5.87 0.423 6.79 0.423 7.48 0.4423 8.18 0.424 Queets 4.26 0.422 sll 3.18 4.83 0.531 5.62 0.530 6.89 O.S39 7.83 0.543 8.75 0.543 Seattle L �A'C' ::i; }ei!-.1 6.16 0.577 7.69 0.585 8.88 0.590 10.04 0.593 Sequlm 11 3.50 O.SSI 3.01 0.369 0.435 6.56 O.g59 7.72 0.459 8.78 0.461 12.21 0.476 Snoqualmie Pass 3.61 0.417 4.81 6.98 0.669 9.09 0.626 10.68 0.635 12.37 643 0.513 Spokane 34 3.47 0.556 5.43 0.591 8.19 0.500 8.53 0.484 10.61 0.499 12.45 0.513 Stevens Pass 31 4.73 0.462 6.09 0.470 0.533 6.93 0.539 7.86 0.542 8.79 0.545 Tacoma 12 3.57 0.516 4.78 0.527 5.70 4.92 0.506 6.06 0.515 6.95 0.520 7.82 0.525 Vancouver 14 2.92 0.477 4.05 0.496 7.30•- 0.627 9.67 0.645 11.45 0.653 13.29 0.660 Walla Walla 35 3.33 0.569 5.54 0.609 6.19 0.579 7.94 0.592 9.32 0.600 10.68 0.605 Wenatchee 29 3.15 0.535 4.88 0.566 7.37 0.644 9.40 0.654 10.93 0.659 12.47 0.66) Yakima 36 3.86 0.608 5.86 0.633 &TOR1-1 D Rb 14 ACT GA1.-,�,. 2Er.1ToIJ GAMPU'5 EAST VAS-L-EY ROAD e,cT�„ e6F 1 LIT" Z3 �� Q�r.ITOrl �.IASN � �! CeTo � Joe, zii- 6bs*S . 02 RE�tlsto �-"1-59 RE�Ih>;p 10-2c.-�1 51-t-"G AQE A = (A) 5 (oo(. A<, ��IsrllJco RUr-IOFF GOEI:FItr�1.1T Cc-E) Fog. Bo.2E crzovr,iv SLOPES) _ .'Lc, �tJTURE KutjoFl✓ �aEFFiLE+JT �GF) = d.7� ARS A - 4A045 res, PERvtov's ARE = 0.go Acres TIME o� GorJGEti1TRa,T1o►J (Tc� = Soo1+ -Loo - a.�3 MIr� + to MI►.1. �lrJtT�dI_ TlrlE) = 18.3'� NtIr.1. V-A 11-I FALL- WTI✓t4SIT-y (-J2) FQoM T^Sc C7 2-3.4 g ( �c s►�EE�' �6 �ilg r'1+ S.St. 4 - o.Slr, r - T „ ,i9ts I sus {2U#,loFF ALLO-JBO (Q4) - LE Iz A I) (7U) STO�t� DETEPITIotii KL'QviRED Y-,./ Fog. ,CA-rT-L-e (T►+arsE 2 YI;, Z Zi-eA<ve— Qa bet15 o A �,� .1o4i G F (S. -) 8) = _ 60 -oo = too. 9'1 mw.1 T) '3410 (�oo.�'►)-(?.I..�}�.2o�F1) C�o.9'i� - Uni. 7-1 T + 2 S wo •9'1 . ZS \i = (V5)�'4)�CF� _ (2a1� ��r"'•c'}�;1b�= = °Is°11 G,F eEQ0iS2eo fl(Z I FI C &- FOR--rvAZ.E$ O¢.IFICE) QA = .,Lo41 l" 14-.10 - 9.25 - Q-. 8S 2t. QA = 12 JT-- �2 �,� 00co 2. 1Z 4 o.00�t> = 4.pe } U Mtt?DLE G1= 0.0c.4s0 = .007L �2 L 4.4 r -5.t2 � d= 12nj, Tor a. o.oc�ao 0,01016 11 ,� 4 C.o log 1.40 �� VOLUME PROVIDED 1031 LF 31b" + P I Ps 2 10-1 GF / F•T 4- 5 1 -1 c.F 131 LF - 46 + P I PE � i'L •S I-F/FT 4 — 48' .:Ac. DEEP ►�•di G� IZ'sG/�= 2 1- S of ToT4L� PIPE (o $ 61 GF h'iaRACAC U to !✓ - SbJAI_E o►.1 Sot.1TN PRo P EQT`( W+.l E Len1c.TN Top w l o-r l ► = I'b� 4 ToP 9 I 0 51< AZ bcTTot...1 44'I o 'iF ` (Al t &Lt 41 AZ C1_ ) - . to iii•jo (�� .. . VT 9 E E 22.66 1-F �_._..._ :..... _.... .. -- _._ . _ - _ .. . - - - _ 5y 18 �J /-\c,C— :51-1-12G f7crA►t, 4s 1:a3 M Ax . De,P-r a .S� M►�-J. oEP1 N C 1 VEO Z.—WA -e vF�►v > S . 25 % Q = .0.4-73.1 G k5 v _ 0.s3 � < A A Aezpt- At1 r AZ + "k = .I4Ac.- 4-.Ito Ac. t . 28 Q ,S$� Te : 10 1.Irra.L►AE Ob Q = �$� (t. 03� sb) = 0, 0 SWA SIZ-I.Cv 12,6TA►L. - 41 I �} 41 I .S' MIA. oErry G I VE � : S�A�.e Dent lmr.l Go►.1Tcz �Q,uT��l � ae� A afeQ, = 6,,4 " As = .2.� f-- , 4 � ,-14 at �TL = 10 Mla Iv1iTAL-TIMC t I,1`bM�nL 1�.1$M11J SC-e TA4LC 2 z L? = Ca� (I.03� C7 4) - , (do �1 °o C�S 0.6z6 S5 Pei Ao A Iz c Ar A ► ED(,E P+G P � •® L_ —7 E7 2' M & )< ,S M13. cot,\ 3' Q o .438. cis A0-E of Sz _ '3,S6 I Z. 1.00 LsEE TAG -LE S-2�.3 SH I,/ IS t I.ev,StS 0,43�c.A5 0 o le, A RaA S� z. �,.1 co O�rA ►� c,2 2� MAX, C,�VEn� Svi4�� OCSi�r.J 42 o. 35 70 Z = o, 3.11 cis v - o, a l- e5 GotJTrt� 6JT�i i fo AV_er* Tc� to SEc TA bLE 2. _'12.27 Q A u Aa- e--, 17- 1), A.(,, 6' VA !, in ('-'T 14 VETA GII/F-1-1 Iv4ALC- OEP TIA- 2!1 001170 0 1 (0 C.., C> bj �arj )J P-er A% S (00 6 ck5 e-05; I O N ,'S► z- I Q C- e-, A L.G 5 . EAST �R���-C ?,aAO 13 TvJ�►J 23 ra\ S, , � 27-�L. ST, Lc►JivPJ k.,Aj,A arc.. A2i5r A 5 . (0 0 �0 to Ac, a I-44, VZ5-,2°I s F Soit� T`(Pc L oo-:6c -ro MEp liE�c SILTS P2o�/►�d 8Y T"E?,2A AsS, INIc, ntl Ex Go,Jp�T�t7� tQ 240' A\Ac _P-REGi P %TATio ►-3 Ryi.1 oF-C- 2'' soo Ax �,1� Sfco) riicr`}T Uo�..JMc NpNIp t�2AP�-a- 2 l SNT, 13 / I� x S.(PO6' Ac,)ZYR = 0-72. oo A�/Yz TOTAL- 126QO lee 0 VoL,or-A E �41,�5 �� ��• 25 13530 � �4U 35 35 N L 30 25 40'/ 4520 35 -YEAR - 24-HR. PRECIPITATIO 'RECIPITATION IN TENTHS OF A NCH ANNUAL n EVERETT 15 20 7-- 25 �L 30r 35 SEATTLE Q 35. 20 �• bU40 r 65 TACOMA 45 30 40 35 so f� _.4 45 225 ci 35� � • 0 30 30 ss s � 35 .25 35 40 so40'� � /5� 45 45 45 C 50 0 35 (' L.S 4s 45 t/� j'�35 40 30� U 30 50 v �/`j 430- SO 45 -35 � ��--� 40 20 �8 TEMPOFUIRY SEDIMENT PONDS - NOMOGRAPH 2 (SEDIMENT VOLUME FOR DETENTION STORAGE) 10.0 4.0 y . / --" f Li .o •0 ..10 1 It Qu y• AX 3 �00 f 600 Jl 11J00 K•° �01 Slope Length in Fast �I ' U 0. M 4� ., 0 -P /00 Z N U) -, 200 * BARE GROUND (C P = 1.2, & R = 10) Q) rn ro 1/ 60 P.C.F. per Ft.3 ; 300 a 44. EROD/B1L fT fTl #2 /0 20 30 EROSION TONS PER ACRE (E = RKLSCP) 3 EROD/B1L fT fTl #2 /0 20 30 EROSION TONS PER ACRE (E = RKLSCP) 3 ,• TEMPORARY S::DILMENT PONDS - NOMOGRAPH 1 (RUNOFF VOLUME) TYPE lA STORM AREA A._ pq -r- 90 -80 rr- D e' A .5 /•0 /•5 2.0 2.5 3.0 HYDROLOGIC SOILS GROUP RUNOFF - INCHES * BASED UPON A TIT,lE OF CONCENTRATION OF .25 HR. ,s s MERLINO INIT Tc = 5.00 min INIT !AC = 0.00 STORM WATER HYDROLOGY Runoff by Rational Method OVERLAND FLOW: STEEL EQUATION COEFFICIENTS: TYPE LENGTH %SLOPE VEL TIME K = 31.01 b 145.00 1.10 2.10 1.15 b = 9.1 RUNOFF: WATERCOURSE TYPES: 1 FOREST w/ HEAV'•r GROUND LITTER 2 MINIMUM TILLAGE CULTIVATION ---------- 3 SHORT GRASS PASTURE & LAWNS POINT C61 TO C62 4 NEARLY BARE GROUND 5 GRASSED WATERWAY Tc = 6.15 min b PAVED AREA AREA = 0.36 acres 7 OTHER 0 = 0.50 EAC = 0.32 I = 2.03 inihr O DESIGN = 0.66 cis DESIGN = 2.8E It/sec MERLINO PIPE: INIT Tc = 8.13 min INVERT IN = 13.'10 f t I INIT AC = 0.86 INVERT OUT = 12.89 it LENGTH = 203.00 it OVERLAND FLOW: n = 0.012 DIAM = 12.00 in SLOPE = 0.50 : RUNOFF: Q FULL = 2.73 cis V FULL = 3.48 ft/sec FLOW TIME = 1.18 min ---------- POINT SDMH1 TO Si4ALE ---------- Tc = 8.13 min POINT C62 TO SDMhl AREA = 0.00 acres C = 0.90 Tc = 7.34 min 2AC = 0.86 AREA = 0.28 acre: I = 1.80 in,-hr C = 0.90 0 DESIGN = 1.5.5 cis 2AC = 0.58 V DESIGN = 3.58 ft/sec I = 1.81 in hr 0 DESIGN = 1.09 cts PIPE: V GESIGN = 3.28 it/sec Irl',;ERT IN = a.-A1 f 2 . t £t it INVERT OUT = I),()5!1 .98- it P I FE : LENGTH = t{S' ;-25-. *o. it IN'::ERT IN = 12.89 t t n = 0.012 INVERT OUT = 12. 1 1- it D I AM = 12.00 in LENGTH = 122.z6-_:'_ f t SLOPE = 0 .50 % n = 0.C112 Q FULL = 2.73 c t s DIAM = 12.00 in V FULL = 3.48 ft/sec SLOPE = 0.50 ': FLOW TIME = 0.12 min Q FULL = 2.73 cis V FULL = 3.48 ft/sec FLOW TIME = 0.71 min * * ----------------- STORM WATER HYDROLOGY **:. Runoff by Rational Method STEEL EQUATION COEFFICIENT:: K = 31.01 b = 9.1 WATERCOURSE TYPES 1 FOREST air HEAVY GROUND LITTER 2 MINIMUM TILLAGE CULTIVATION 3 SHORT GRASS PASTURE & LAWNS 4 NEARLY BARE GROUND 5 GRASSED WATERWAY 6 PAVED AREA 7 OTHER MERLINO INIT Tc = 5.00 miry INiT LAC = 0.00 OVERLAND FLOW: TYPE LENGTH %SLOPE VEL TIME 6 130.00 0.65 1.61 1.34 RUNOFF: POiNT C63 TO SDMh1 Tr_ = 6.34 min AREA = 0.31 acres C = 0.90 I = 2.01 in!hr Q DESIGN = 0.56 cis V DESIGN = 2.73 it/ c PIFE: INVERT IN = 14.00 it INVERT OUT = 13,40-1— 3. - it LENGTH = x�. -i-►+, f t n = 0.012 DIMM = 12.00 in SLOPE = 0.50 Q FULL = 2.73 cis tit' FULL = 3.48 f t /sec FLOW TIME = 0.6. min i POINT cDMH2 TO SDMH3 Tr_ = 16.11 min � AREA = 0.00 acres ! C = 0.90 ZAC = 0.09 I = 1.23 in:'hr 0 DESIGN = 0.11 cis V DESIGN = 0.74 ft/sec PIPE: INVERT IN = 11.10 it INVERT OUT = 10.34 it LENGTH = 255.00 it n = 0.024 DIAM = 36.00 in SLOPE = 0.30 % Q FULL = 19.78 cis V FULL = 2.80 ft/sec FLOW TIME = 5.77 min POINT SDMH3 TO SOMH4 Tc = 21.88 min FIRER = 1.64 acres C = 0.90 ZAC = 1.57 I = 1.00 in/hr Q DESIGN = 1.57 cis V DESIGN = 1.66 ft/sec PIPE: INVERT IN = 10.34 it INVERT OUT = 9.77 it LENGTH = 190.00 It n = 0.024 DIAM = 36.00 in SLOPE = 0.30 % Q FULL = 19.78 cis V FULL = 2.80 ft/sec FLOW TIME = 1.90 min POINT SDMH4 TO SDMHS Tc = 23.78 min AREA = 0.00 acres C = 0.90 ZRC = 1.57 I = 0.94 in/hr Q DESIGN = 1.48 cis V DESIGN = 1.63 ft/sec PIFE: INVERT IN = 9.77 it INVERT OUT = 9.20 it LENGTH = 190.00 It n = 0.024 DIAM = 36.00 in SLOPE = 0.30 % O FULL = 19.78 cis V FULL = 2.80 ft/sec FLOW TIME = 1.94 min 0 :#:*** STORM WATER HYDROLOGY **** Runoff by Rational Method ���* STORM WATER HYDROLOGY��:�::#: P,unoff by Rational Method STEEL EQUATION COEFFICIENTS K = 31.�31 STEEL EQUATION COEFFICIENTS b = 9.1 K = 31.01 b = 9.1 WATERCOURSE TYPES: 1 FOREST Oar HEAVY GROUND LITTER WATERCOURSE TYPES: MINIMUM TILLAGE CULTIVATION i FOREST ��r HEAVY GROUND LITTER 3 SHORT GRASS PASTURE & LAWNS � MINIMUM TILLAGE CULTIVATION 4 NEARLY BARE GROUND 3 SHORT GRASS PASTURE & LAWNS 5 GRASSED WATERWAY GRASSED 4 NEARLY BARE GROUND 6 AREA 6 5 GRASSED WATERWAY OTHER 6 PAVED AREA OTHER MERLINO MERLINO INIT Tc = 5.00 rain INIT LAC = 0.00 INIT Tc = 5.00 min INIT LAC = 2.98 OVERLAND FLOW: OVERLAND FLOW: RUNOFF RUNOFF: ---------- POiNT SGMH6 TO SOMH5 i ---------- POINT SDMH5 TO CGNMH Tc AREA = 5.00 = 1.57 min acres Tc = 5 .00 rn i r� C = 0 90 AREA = 0.00 acres ::AC = 1.41 C = 0.90 I = 2.20 i nrh r 2.AC = 2.98 Q DESIGN = 3.11 cis 1 = 2.20 inrhr :? DESIGN = 1.97 ft%sec Q DESIGN = 6.56 cis U DESIGN = 5.08 ftrsec PIPE: INVERT IN - 9.60 it PIPE= INVERT OUT = 9.20 it INVERT IN = 9.20 it LENGTH = 135.00 f t INVERT OUT = 9. 1 1 it n = 0.024 LENGTH = 18.00 it DIAM = 48.00 in n = 0.012 SLOPE = 0.30 ;: DIAM = 18.00 in Q FULL = 42.60 c f s SLOPE 0.50 l: FULL = 3.39 ftrsec Q FULL = 8.04 cis FLOW TIME = 1.14 min V FULL = 4.56 ftrsec FLOW TIME _ 0.06 min