Loading...
HomeMy WebLinkAboutSWP272711 (11)c�Py CITY OF RENTON KING COUNTY WASHINGTON 1 RENTON ' AHEAD OF THE CURVE RENTON VILLAGE HYDROLOGIC/HYDRAULIC ANALYSIS Ll G&O #05731 ' JANUARY 2007 Gray � Osborn.e, Inc. ' CONSULTING ENGINEERS 701 DEXTER AVENUE NORTH SUITE 200 SEATTLE, WASHINGTON 98109 • (206) 284-0860 CITY OF RENTON DING COUNTY WASHINGTON RENTON AHEAD OF THE CURVE ' RENTON VILLAGE HYDROLOGIC/HYDRAULIC ANALYSIS 1 . I ' G&O #05731 JAWARY 2007 1 Gray � Osborne, Tn�c. ' CONSULTING ENGINEERS 701 DEXTER AVENUE NORTH SUITE 200 SEATTLE, WASHINGTON 98109 •(206) 284-0860 1 H fl TABLE OF CONTENTS INTRODUCTION....................................................................................................................1 HYDROLOGICMODELING...................................................................................................I Hydrologic Modeling Components......................................................................... I BasinDelineation........................................................................................ I Hydrologic Modeling Assumptions.............................................................2 Hydrologic Modeling Results..................................................................................5 HYDRAULICMODELING.....................................................................................................8 Hydraulic Modeling Components........................................................................... 8 Hydraulic Modeling Scenarios................................................................................9 HydraulicModeling Results....................................................................................9 Existing Drainage System...........................................................................9 Alternative Storm System Designs............................................................13 Alternative Storm System Modeling Results............................................14 COSTESTIMATES...............................................................................................................17 RECOMMENDATIONS.........................................................................................................18 LIST OF TABLES No. Table Page 1 Basin Land Use Coverages......................................................................................3 2 Model Area Inputs Based Upon Land Use Coverage..............................................4 3 Backwater Elevations in Branch 42.........................................................................5 4 Peak Flows for the 2- through 100-Year Storms ..................................................... 6 5 6 Model Flow Comparisons.......................................................................................7 Recommended Flows 7 ..............................................................................................8 Modeling Results for Existing Pipes Under Existing Land Use Conditions ......... 11 8 Modeling Results for Existing Pipes Under Future Land Use Conditions ............ 12 9 Flooded Volumes in the Existing System..............................................................13 10 Modeling Results for Future Pipes Under Future Land Use Conditions Alternative 1 - 4' x 6' Box Culvert ...................................................................15 11 Modeling Results for Future Pipes Under Future Land Use conditions Alternative 2 — Parallel 48- and 54-Inch Pipes ... ...............:............................. 16 12 Flooded Volumes for Alternatives 1 and 2............................................................17 n 1 1 LIST OF FIGURES No. Figure Follows Page 1 1 Vicinity Map............................................................................................................2 2 Basin Map................................................................................................................2 3 Model Input Map..................................................................................................... 4 1 4 XP-SWMM Model Schematic.................................................................................8 5 25-Year Current Land Use Model Results for the Existing System......................10 6 100-Year Current Land Use Model Results for the Existing System....................10 1 7 Proposed Stormwater Conveyance Alternatives...................................................10 8 XP-SWMM Model Schematic for Alternative 1...................................................10 1 9 XP-SWMM Model Schematic for Alternative 2...................................................10 LIST OF APPENDICES 1 Appendix A — Excerpts from the East Side Green River Watershed Hydrologic Anal sis Y Appendix B — Excerpts from the Hydraulic Analysis of Springbrook Creek FEMA 1 Remapping Study Appendix C — Backwater Elevations Set from "Channel 42" Appendix D — XP-SWMM Modeling Output for the Recommended Alternative 1 1 Appendix E — Digital XP-SWMM Modeling Files Appendix F — Cost Estimates 1 n I1 1 ii ' INTRODUCTION The project is located is in the Renton Village Shopping center, between South Grady ' Way and I-405 (see Figure 1). The major storm drainage system in the Renton Village area consists of a 42-inch pipe and a 72-inch pipe that carry runoff from the east through the site. The two pipes meet at a junction where the 72-inch pipe ends, and the 42-inch pipe continues to the southwest to a catch basin in the parking lot, and transitions to a 48-inch corrugated metal pipe (CMP). No flow control structures are present within the system. The 48-inch CMP discharges to an open channel section of Rolling Hills Creek, ' located along the south side of the shopping center, north of I-405, and east of SR 167. The open channel travels to the west where it discharges to a 48-inch culvert and a 132-inch culvert, which carry the flow south under I-405 and discharge to a channel ' designated as "Channel 42" on the east side of SR 167 (See Figure 1). Flooding in the Renton Village area, and the collapse of the existing 48-inch CMP pipe ' where it discharges to the open channel, has resulted in the need to upgrade the existing 42-inch/48-inch storm drain pipe system in the area. In May 2005, the 48-inch CMP collapsed at the outlet to the open channel. The City of Renton made emergency repairs ' to remove the collapsed section of pipe and install a new temporary outfall. In November 2005, the City executed a contract with Gray & Osborne to analyze and design a new storm system to replace approximately 530 lineal feet of the 42-inch/48-inch storm drain pipe in the Renton Village parking lot. This analysis of the Renton Village drainage system includes the hydrologic and ' hydraulic modeling of the existing and future land use scenarios and preliminary design of the optimum pipe alignment. HYDROLOGIC MODELING HYDROLOGIC MODELING COMPONENTS ' Basin Delineation ' The first step in hydrologic modeling involves delineation of the drainage basins for the project area. The Renton Village area was previously delineated in the March 1996 NHC report titled "East Side Green River Watershed Hydraulic Analysis" (see Appendix A). eIn that report, the Renton Village Area was noted as "Rolling Hills (sub -basin P5)" in Table 10 and the figure for the HSPF model. The City requested this drainage basin be used as the basis for the Renton Village modeling. Land use for the basin area was obtained from Table 3 and Appendix C of the November 2004 R.W. Beck Draft Report entitled "Hydraulic Analysis of Sprmgbrook Creek FEMA Re -Mapping Study" (See Appendix B). The Rolling Hills drainage basin encompasses approximately 925 acres and is located ' mostly to the south of Renton Village and Interstate 405 (Figure 2). The basin boundary City of Renton Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers was verified with topographical information provided by the City. Only minor changes were made to a few of the subbasins due to the existence of certain topographical lines and existing drainage structures shown on a 2001 aerial photograph provided by the City, and the survey conducted by Gray & Osborne. The subbasins were relabeled as Rolling Hills 1, 2, and 3 (RH 1, RH2, RH3) and commercial subbasins (C1-05). Figure 2 depicts the location of these subbasins. Hydrologic Modeling Assumptions The King County Runoff Time Series (KCRTS) model was used to determine peak flows in the basin for existing and future land use conditions. The input parameters used in the KCRTS model include soil information, a rainfall scale factor based upon project location, and the amount of pervious and impervious area located within the basin. The KCRTS software program then takes these parameters and combines them with over 40 years of rainfall data to produce hydrographs displaying flow rates represented for a number of storm events ranging from the 6-month storm to the 100-year storm event for each particular basin. The input parameters used in the KCRTS modeling analysis are as follows: Soils Till, Outwash, Wetlands (from previous HSPF model) Rainfall Sea-Tac Region with scale factor = 1.0 (King County Manual) • Pervious/Impervious Areas The pervious and impervious areas for subbasins RH 1, RH2, and RH3 were derived from Table 3 of the November 2004 R.W. Beck Draft Report (Appendix B). Since the land uses seemed equally similar in each subbasin, impervious areas for each of the subbasins were determined by taking the whole Rolling Hills Basin in the 2004 Report and proportioning the individual land uses to each of the smaller subbasin sizes (i.e., 19 percent of the residential portion of the Rolling Hills Basin is impervious area so 19 percent of the RH 1 subbasin was calculated to be impervious.) The commercial subbasins (C 1 to C5) were taken to be 95 percent impervious with an estimated 5 percent pervious coverage for both the current and future conditions. Table 1 presents the land use coverage used for each basin. City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis 'Channel 42' I Renton Village Region I *. Scale: 1' = 150 CITY OF RENTON FIGURE 2 BASIN MAP Cwrmy 8c (3shmm e, Im CONSULTING ENGINEERS Scate: 1" = 400 m Gray & Osborne, Inc., Consulting Engineers TABLE 1 Basin Land Use Coverages }^a .. n�'i e-4'43Y°#i'' i'°x." �^'' .� r a= ,Effective �� : a� �Ba� x Impervious Area F ac� 47.M Tilly Forest ac.� TillerOutwash' ,Grass -Grass ' acF zk....-n��"�, WetlanaI Alluvaal Forest rt Alluvial Grass a Basin Total dtyJi ` e F, c44 {'S .,ty ,...• p Xlmx5�.0 F2=Y� J� i"�uW RH 1 12 7 40 1 2 62 RH2 48 30 162 3 1 8 252 R113 86 53 292 5 1 1 14 452 Cl 48 3 51 C2 24 1 25 C3 45 2 47 C4 23 1 24 C5 6 1 7 Land Use Total: 292 90 502 9 1 2 24 920 T �^v':-}kL'xF Future w..0 x62V RH1 25 3 32 14 0 1 R112 103 10 131 2 0 0 6 252 RH3 184 19 234 4 1 0 10 452 Cl 48 3 51 C2 24 1 25 C3 45 2 47 C4 23 1 24 C5 6 1 7 Land Use Total: 458 32 405 7 1 0 17 920 The nodes selected for hydrologic and hydraulic modeling are shown in Figure 3. Table 2 shows the drainage basins flowing to each node, and summarizes the land use and areas for each node. Node 1 consists of Subbasins C1, RH2, and RH3. Node 2 contains Subbasin C2, Node 3 contains C3 and RH1, Node 4 consists of Subbasin C4 and Node 5 consists of Subbasin C5. City of Renton 3 Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers TABLE 2 Model Area Inputs Based Upon Land Use Coverage . f " # Effective 4"A .�` F , Impervious r a 4 Till a 7. Till ` -a, Outwagh is r .rat, c'. t °Area � tEf� Forest a ass Grass Wetlands r•�Total }.. s _` _,AfNodei,*�x� sac, act. _ac a,,c c aci ace s a kTr�r ,,,Y. �c � � �z- �iT ndilse...ErL y s�s�4�" :Current�L .,..,,.�.ry. Node 1 (C1, RH2, RH3) 182.5 83.9 479.8 7.5 0.9 754.6 Node 2 (C2) 24.4 1.3 25.7 Node 3 (C3, RH1) 57.2 7.4 44.6 0.6 0.1 109.9 Node 4 (C4) 22.7 1.2 23.9 Node 5 (C5) 6.0 0.3 6.3 Total: 292.8 91.3 527.2 8.1 1.0 920.4 � :�' .T.��.t9,� d ..xf A �v�� r 41�-✓`� 'mil j� `fib t ��Sc7S.'7e �i �4r �"'3� �. l lws.� $ pl'ry�iF �S�vYi � �iy`. 7 '*Y'c "YS"' 3i§ �''`$�`d' ��'� �L '�y.,:3�' Node 1 (C1, RH2, R143) 334.6 29.2 383.5 6.4 0.9 754.6 Node 2 (C2) 24.4 1.3 25.7 Node 3 (C3, RHI) 70.6 2.6 36.0 0.6 0.1 109.9 Node 4 (C4) 22.7 1.2 23.9 Node 5 (C5) 6.0 0.3 6.3 Total: 458.3 31.8 1 422.3 7.1 1.0 920.4 Downstream Backwater Condition All hydraulic scenarios were modeled using the backwater conditions in an open channel south of I-405. This channel collects runoff from the Renton Village drainage system and the Rolling Hills Creek area. Backwater elevations for the hydraulic modeling were obtained from the November 2004 R.W. Beck Draft Report entitled "Hydraulic Analysis of Springbrook Creek FEMA Re -Mapping Study." The backwater location selected was the FEQ Model Channel Branch 42 (see Figure 1), located at the south end of the 132-inch and 42-inch culverts that cross under I-405. The backwater elevations were obtained from data for modeled "Branch 42" from the storm output files entitled "404C_x.out" where x denotes the storm event modeled (see Appendix Q. Elevations noted in the output files are in NGVD29. These elevations were converted to the NAVD88 datum and are listed in Table 3. 4 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis Gray & Osborne, Inc., Consulting Engineers 2%- L%/l/2a>r7 Lr� i3ix�✓�%llz3G GG � �� f�Yo�a /�ro-� . TABLE 10 Modeling Results for Future Pipes Under Future Land Use Conditions Alternative 1 - West 4' x 6' Box Culvert r: .'b.,�; `-. $.- �, ... �5 .,•�; . „ � ...�, .t• i , , :• < �, �., ..r_.• +.,.. _J. .+S Jnstream r .C.;..,, Y': ., +�'•*•••-.. 5r! ,'.9. r.�3;Node,;,c , :, .. , '!'",:�i�`�'''i.•�'n.' '� W 7. e.�'�sa • ;fir . 3•ti..,- C,v ;...y.. <U stream .. P, . ....._. Y,- :',�. . - . ;• •,Rtm Ev ' �+F , : ✓ `. : ; .^:.� e_ .. �?�.,�ft,�.� t' , i4' 'i'n,,. ,„y { .r,� .;. 1l ,� � �. � ,t^� �, .s: '-� x.: :;.t.'?•:. . Tx=�;._t:, ?, .,. •r.r,•-°�s: r ,• ,[�:nn.�-. ,..,.Fu.y,l ^c.. n.ownstreamw r,,a-� c y., .. k _n: 4. ,$. ��::„Node;���,�;�^.Eleyattonft ; ... ARs, y ,.p- .�_- := '.� ny ,. aG. �+. fiSL;• �w ,a^F : �,a u. ;c...: .,b4.,.�c Downstreamv .�.K �1.:^2". N ...e`�•...... W.t S,* 4 a� :�. �a�Rtm ��� . ..._ A� t. anti. "�i .: .Y+. ,,.n. .r..... .. } t•p .: � .... _ . '- , `�� ,r. rc,n....1� ..,L . a�,, ?, +� a , ,: ,,% :«.: r. tCondutt . � :, . ,.. ..,' :¢..i.,. , �s.��NameYwa,..�.�.>t�n:��,w, ,; � t es ."�� .ri� �. ,;'`"�.> ;xr,,. :,, �n ,vP e 9,, q�� FYS ..'iS:'iu;i FA !+Diameter "• ,r<.s::: !.. .�.�AiftNZ�':r<n��I�E;h", . 'i"+:� `; =���,a' -''.. trr k�.g..t ;.Ptpe r;; ..k �• l t Len th g 4•R o ' �? � 'k-. ,i"=�*. 4.�. c �:+t , ko.•w .Y aa�•��� �� �` k,.. � U."stream ; = n _i� y t „,,;vw.a.rir r !ww r�<a• ..3!'4::F ,,,,vv; �,�r'x ;, '�- � y r. ,r �� ..k :.J4, k," �tirpownstream '~i P Y h ""F"4¢ � •) s e i �.�.,, IE„;•:.?��*`.�:.,,�Slo �'a sr; . r3t�F . � a.; " �.',: } * �'; � ; ''Y.'�i' a`.,. � y. e..��,�;,cfs. �.t;, ya �?^ .G1Yr Pi e.„,, , Des nF,uture Ye.,d A•`y. rfi ?�,Ca ac)�v"� -ji P „, •J 4�+ +•i"$ Y � r t u.n•.� sr. a25 Year . P.':t _,y f y a�Elow z. fi d'i..'. .� �,� � �_ _ ;.Rx;c l 100=Year. Future ; ...�$' ",Flow t Z�' , qt €):n^ 'c . �'. ,^ �, A 35 NI 32.66 A-N 1 60 74 24.46 23.3 1.29% 70 0 0 B 33.35 NI 32.66 B-NI 36 90 23.39 23.3 0.12% 99 0 -1 N1 32.66 C 35.22 NI-C 72 395 22.3 21.66 0.16% 158 194 242 C 35.22 D 28.67 C-D 72 336 21.57 20.92 0.19% 173 194 242 N2 30.3 D 28.67 N2-D 42 306 20.92 20.84 0.66% 76 -12 =12 D 28.67 Box cb A 30.25 Box 1 4' x 6' 70 20.84 20.68 0.22% 135 208 Box cb A 30.25 Box cb B 28.5 Box 2 4' x 6' 162 20.68 20.33 0.22% 135 207 251 Box cb B 28.5 Box cb C 26.6 Box 3 4' x 6' 114 20.33 20.08 0.22% 135 207 251 Box cb C 26.6 N3 28 Box 4 4' x 6' 257 20.08 19.4 0.27% 149 206 234 N3 28 F 28.51 N3-F Channel 171 19.39 18.94 0.26% 728 242 274 F 28.51 G 30.01 F-G Channel 162 18.94 18.53 0.25% 769 242 274 G 30.01 H 30.01 G-H Channel 167 18.53 18.12 0.25% 2217 242 274 H 30.01 I 30 H-I Channel 70 18.12 17.94 0.25% 879 242 274 I 30 N4 25 I-N4 48 375 17.94 16 0.59% 96 1 43 50 N4 25 NS outfall 28 N4-N5 48 100 15.56 15 1 0.56% 100 54 61 I 30 NS otitfall 28 I-NS 132 500 17.94 15 1 0.52% 1518 199 224 (1) r lows exceeding pipe design capacity represent surcharged conditions. 'T boded manhole" conditions represent water flooding out of the manhole and into the parking lot. (2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a negative direction occurring at some time during the model due to backwater conditions. (3) Source: Tables El, E9, E10, E16 of XP-SVIMM output files (Altl_25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E. - = Flooded Manhole Upstream City of Renton 15 Renton Village Hydrologic/Hydraulic Analysis January 2007 = s m a a a a a a a a a a� a m a M m PA r. d E, rd K w 00-� _ �I ;a)naS SM33N[9N3 7NILlnSNO3 dVNI NISV9 z Sdf1oIaq NOINKI 40 AID a --,",', «t. a' "�s 9. s:L t.-� jk 4j !., a � ice. .�. ,y g#a . i3, � .,K`-t�;-7: ti��•�.- -� .�$� a, � � i�� . •3ar.5t �°��+:�`�����--j r N r1Y ,, i -1� �- � ip_ r�•�?:`''S'* �`. �Y jj a, �'alle;v uyj�t I <•T'a sua t ��� �rr.y`i� 1 - yfik o- fi Y 'ter v 1' �° r,�.y{'� ''k"`i'3. �■p�:Yii, )C�' � V �f � -1� A .a ^ �•• . j • e` �E �+� � �5 na�'. $J"+�,% ,z' . 1 , �'?` ^.a 9 , �7�h rt �'f� 8 ��x,,-�'rn v• �� �y , 4e. � t f� r i� „i' ,`«" ,cs .T J {7tYh a '�-'R,y.7 a,.x `� +"t!k rta2. t,5is�' 1. i .i�',R;g ,i\.��' y Y� '� r k '•c r4�a$ � - �Cti �� a ;.-o�.Jr 't a xs .3« s teq v r 'a r•t' ci •if- 7 ..,�il'z••z,2,T•„�. ♦��i t.,:.;c�`rf' 1�a ^`I -c -) �^J r r+? '? st r•s7}/�Yyp�`�r(i" ,w^rs ��S�i{. �f t� � - ,:fay �i C•v NJ, �r � � �•�l'��{� +" ''y 1 �-,. s�j. a fta�• ;;. � T-:r; +�F�.1 ! t:, FM—N-V- Tow-0:, .�1 ''LK.r?k>yi° aw' 9'.i't� +: ni' k. t gyp].• a ;;j�•�''e'r� _, ? Mtp`.,i x,�...� -' +�, a, �i 'k •..;dray}, -�" ;�4 ,�.a°ti. t '" 17r '�'"'" �',a'r�'r w`< TS ,sf�y' '.r-r4.. �k. ; n ] '•�vSr, txsi :}, 'ts.+.n+ T Yy�4'tY` a"o f fahtxf x� xk ri�aw.'Ic"� t Sy�C7Pl-t .l�ypi�s' ri F cr•l{ E E� t " ' � �1; � 'r `d��o- �-{�'Y� f� ; ', �l ^&t �����♦�� rAy�s 3'y � w + * .�. t b. '?s 4r'•s r. 5e f� a_�T�E...�S1i� i �' ..t"� Yi s,.s...! ./ $ i3 -xt,,may ti{as�'. {c >�1. ��t: +� r� ;y� �,��.�ni FR'o- S y Y �a 3'! R's >.•-if j�T :,a� "�'•`.. �.�,, iy``-iYr ti �a � -�y�xf �++'a. rvr'aea,1,F � � ^'�.aga. � s�T+'s �S .I �� ��s y; ��'.. S� }�y �?, � t �•, aCu{s _'. i�.yt ?4. u . 'r a'.,.'gc 'rN�'v:r'Y 'k_ ti x N4 S ,.�:I i aa_•" Z e�*' iAl -f' i r' a tt - j P'+- a� �y - cY -a k 4�i W� : 'S;, r � r;: j fC.� bF .' h }�•�i� � ��Ja. ti`� ���c, � ��"•���f �a { � � a a"�5 i''t` m �T �t � ,. t F �� '£.•-n �.. h �*°"` 't �g1?�4��+'�..f�'s �r•n44�4 '+Y � •i."" .[ � T i a1(�.f, r, 6"-•„z S` tg'` ie-�'3s r � i r... T• 4a1 f: ,� yr r }�u � F �b �.1�� •'f�T�,�y '�" r`f ! � `�i*�,t�'. �s'a°p'�S �df. a+ t � - L�-.i.•.rYA''s �y�s3:� � ��r ram= 7}' 4 t J�': 1 F'S h.{.,( E'�r'1 +Y. ar F"Ft :.e%,�1, ,1 �'^��,a,.`•,, �dc'r" ¢ T ��n •�' k t� r-.' f s 'f114}' Ya' .,,�a�:' ,Y -�;$t. sfl t''RV�%D 'F•''' t^rY .r<rar �, 2 �� Q"Sw „'rr U a _ #- �t.. eL�e ar�,d� ! "hw, 3Z.'�- - a•�f t TY f' .� > `, a �i ACT X• f 4� 3i �' 4�rt•. ems. �� "3 )2 tt a v+"tc'x�L."h•.§�] x,,- x rsi.,�..��"#�t�r�' - Syr y •`L.iw �'s a iitt�`� i r'f �� �f� �mcr. eR- ), �.n. Lc`;+= '�'�t�-;° •aby=�ji-�i4 �^'�Nr"F �P a.. l •'K-� 5� 'f 't t ti �i•ig X[it i. la •- 1 T M1L^ �"}i ,FIX '�,a, h�':i �C�,+•f" $a' jq s4• t_'°"„1y�.,N� Yn Ki ,xa,�,�:: ,1'x�: s"f`y k�,` fu n t -t"• .i ^L eS1 ,C'.� } k « t a r}; �is� �r �i' .^•>4 .�� �•'� -�i` 1v3"4Zy.' jayS,Y.EI C, +�.f �` '.;�`�Y'� �,.`,,c's'; •]. T7 .: et `K 1 lu x'.. - ^°'e . '�,�`'+,.: r�.e: �jy- 1„t-;j-r,.,r'.. "u: i '+`., •(y ``{� r ) vFzr^r '' �r : ' �."" ' xT }`sW 4 �(t' 2 9 t ,it.E ♦ W +' f Y''�i. C w-n Ac'i� - ;1T {t - " .sr� 3 i� a •�.c r' 'a+-r, r� s a; '•+.t.. >t"f 3, a` •y, S ,r - bra 7 'J!'.. � �k�$.,. i t 4a 't �. '. '{',k �-' 7,W4w�6 a h•�` ,�fi,.� a a.. Ya}•�}l-`t.,s• s)�K+�.T 1�t�sa eti�a'..- _ i� ��'.a:. ....� 3f Y=.• 's' __ !` i !,, C { s a }'`s�`5., -'•.§� yy rFea r V t; •d' y �i'' d ``,J^`' � ".", s� _s'�f 7 � ti• �,'' � ?k$ i 4<a'9a+-� �. 1� _ :i;PWot ��`+`; � ,� -.� +s^ r'4• � tkx i.' C` $ h1F n- .* '.•• , > '�, a .o.T rt. Y tT �r' c �. i_ Rr a�}� e. sg: ,._.rF ray }rkFJ e,rvs _�.\ •.-�t,T!„ �'' i� _ss '.�.A` tl:, z5ti. Oil, ,_*_.S:tx^a.y.'r -.i�i`'Y"("'1'"t`• tz" .tu,,ia •Y1f„r���gi"t�,.urr�f`t:��'`Fy.,.T��rix-�.ti-,,�ri'`r`.�.$fbar" 8^. rn,44a<F`a�q_uSr<y,!raT'^''J'S.�t�ka,.,,5,s,t . �_?. i�t�rjYy.-�}„ yM.- cn~`-.-�eT-dAT¢I�,�v .`}"'� .t �d ']Lc°i3fi•. r.o - aekM``e1`- a C '';yyt'torTf S '"v' firtt i^ �'�s-��• t zfri�- •,, !-ay�a•• r*s T��t�i?�J �' :�t�r's• fi [. J9`" i�,T���}',�' ¢'k��'S• sM t f'a� .y-xvj��rt ttyE L '^R`flSa`" F.�.i1yj_ }�5�r.aw?c�,�" +*`.'","+'�.`���y J n-a,'r^�`-"f kY�. 1k�2'.. AJYr iSV ^1z'j • )""arid J-''•a ca.. �4' {,ar °ti.^:.* "�`--'•-'E-.',,,,-- .Y-,� f +v'ft"�•4'L. �ry'�-�..+' -.r ;.t`-„�rr_,i�y �� a. •r� !J j "1���5k`; yy�� :. r.Y` r ,-� aqt ro t �'` f .Z-} t 1.. °��' 'Ti t. •• - sass -. '�*f "'r..� -4. ♦ 3L.a a r.f" Ulmxe cGz t - v, t` � >: �• ''�`'qq > � s" ii: s .Y;�' K w.,�:. ;y ,-.-a-., n t4} y! ,`<i. ti 5,( ':!; "g��r 'Y ? ♦s y ,-�aler 2r; 12S' 2 i2Yx arY y rr y� r1 4t?'1 SC o i ' LsF v= l i R 1 yj>j ��k yam,f 9 f S#r q as a �s c -5�`tjr'F' a ��� �,� 3r,iaa3 �j p) � f� � r��; / < G�i� .t �Trt sro �', x �-•, Yt; y�' z. ^o. + •�' � � � {. 3; T+�' ���� 9'" }{�^i S F! 'c-y- tiit v lt'�, .g r3-;' a,�''�'':. t" .-✓ 4La3 �•.� .�W.��'r,�•�,y��y �t .W 4� f1 �6` Y ii'T7•'t'- An��� } !" �'r '9c.*Y r�i+1 err , ,ram' \,r5•'!'''rJ '1'.a.`r' r•`"�^S' -.+ \, i- t S' � ! r� J rf`i �_e•,d -1 .Z'�'e+i 'fir' iai l t ;l r, -r¢S` ln.:E ^...K'°n'az'-- r rt `"f�•a�["['r-,r•�'i F: � �;' p�t� 'tfr L 2L� <��`5;�'F'`�� �Fi <�<'i,�2s-i. �,y� �'3�� t i :�,{' T�'�.:=7 it z`�'h i'f:�'. •(� Jq5 .'�x jo ty r•r t�? Z. !`-E j•s+�d•}. f'E'�Se- L..if-t �.s2t 5. (tP IIX �sC '•55, s• �C`itl awl "Wt� .�n�.i 5• e ' L �'1 r \� ti •fig tom,[.... 3 wF .i, \\ a apv -i )ra Y N -cs'n'�ri,•s GY" r,- .� vk. tJ•++' ''' ti C l '�..:..-.y1•S. i. _' �'Pi 1� :. .'=""'�'.••rs v,. $Y - � "';.{`'�'y.a�r`: r Ktb6�'`t`6 �' ..�••rs R),' � -s�� 1`� t } '.a_r.a .... � 1r_ .t 1, - i,,x..:..cx 'n•,, �,rt' r rt'_1 l`� Ss ^`,.,... >yf.:1�`.3 t i �ir�v�a r�,U'£.�'Ysr ' •t5r ^bYE� ���� ,�.^ . FJ� t�%��1� 1 li a 7"' •� 7H''��; ��,,,,�tc�'' vS �-a' '�yr��� z�f''4 w i+sf t, f .ts, # Cy i �"_ � +��!� kri � �'-�*'.` i"s{. •.•x,�rr }�5� .,: ���t>` � �' w ..�'a,.! .rc ,� 7, �l ' Y .,,K' 1• ti � ��`>� ��c'� �. t i. � r,� �,p�t� � � ,.,r ♦ 7". x —r ^ d Q � r .,I A y.n•-' �a.�J:•a,.. sa ::,5;-a.. ,.�x.�c. .:,�. ar.,a•-_�.'z�'ai�4._..:�.a .r-�!T'n3�;f�' ...;�.�'S-its.�t�i�=,si.xn7.ta;�<._..��..-,1,�•.��-.�.e:san�;. ,._.r]a'v"�.-`-ems+". 01-� j N2 N1 �~ N3 N4 oil N5 = Node Input CITY OF RENTON FIGURE 3 MODEL INPUT MAP Scale: 1" - 100 m C y�� a� CONSULTING ENGINEERS Gray & Osborne, Inc., Consulting Engineers TABLE 3 Backwater Elevations in Branch 42 !,1fu 4NAVD88Elevat�on�gm x `q Storm Ev nt � � ft 4i 2-Year 19.19 10-Year 19.69 25-Year 20.16 100-Year 20.98 HYDROLOGIC MODELING RESULTS The KCRTS model was run with 1-hour time steps for each of the five input nodes under both existing and future land use conditions based on input parameters stated earlier. From these modeling runs, hydrographs were extracted for a 24-hour time period surrounding the peak flow for each basin corresponding to the 2-year, 10-year, 25-year and 100-year storm events. Table 4 shows the peak flows for each of these storm events under both the existing and future land use conditions. The data from these hydrographs were inserted as "gauged inflow" tables within designated nodes in the XP-SWMM hydraulic modeling program. As noted earlier, for modeling purposes, a number of basins were combined and inserted into one node (i.e., manhole). City of Renton 5 ' Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers TABLE 4 KCRTS Model Results Peak Flows for the 2- through 100-Year Storms MAI 'MW2 Year cfsAi �10 Years s25 Year 10J0 Year Current Land Vse���: ,._ _ `"'��. N1 (Cl, RH2, RH3) 68 95 111 194 N2 (C2) 6 7 9 12 N3 (C3, RH1) 18 21 22 37 N4 (C4) 6 7 8 11 N5 (C5) 1 1 2 3 Total: 99 131 152 257 `. �S'1 }f -fru'� � Ye tt _,-� 4 F +'i5 b ] `'r4+..� SY i'� C �" 1 5--- "�•���*-�h4 t. N 1 (C 1, RH2, RH3) 110 131 141 241 N2 (C2) 6 7 9 12 N3 (C3, RH 1) 21 25 27 41 N4 (C4) 6 7 8 11 N5 (C5) 2 2 2 3 Total: 145 172 187 308 The flows shown in Table 4 are higher than the HSPF derived flows in the March 1996 NHC report (Appendix A) for the same drainage basin and land use (Rolling Hills subbasin P5). Due to this discrepancy, the KCRTS derived flows were compared to extracted flows from the November 2004 R.W. Beck report (Hydraulic Analysis of Springbrook Creek FEMA Re -Mapping Study, Appendix B). A comparison of the three models is shown in Table 5. 6 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis Gray & Osborne, Inc., Consulting Engineers 11 TABLE 5 Model Flow Comparisons .E.fi-. }}sue'.*' * dy .F k�, .ao"e15w'" ,•'s^ S Sri' .l 3 Current r r v 1 r""�P'" '-G. 4'A, Conditions � t,f��§}, gee n �rT'�'. ,3. 'T'tfi .+t F,uture=�Condihuns3�,�� "- 42x• }t`b^r,`�..,,�,, A 3 f� 4Mode1lOYYY„ 25 Year ears �� ZSYear100Y,ea"r�1°OYear Years �ModelingReport ; `cfs�f'K, cfs cfs' zTYP<e March 1996 East Side Green HSPF 107 117 130 140 163 198 River (NHC) November 2004 Extraction from Hydraulic Analysis of 199 261 HSPF 148 197 330 Springbrook Creek FEMA Re -mapping Study (NHC) October 2006 Renton Village Hydrologic and KCRTS 133 152 172 187 308 Hydraulic Analysis (Gray & Osborne) Table 5 shows that the 2006 KCRTS model flows are more comparable with the flows in ' the 2004 FEMA Study than the March 1996 flows. The 2006 Gray & Osborne KCRTS modeled 100-year current flow (257 cfs) is approximately equal to the 25-year future flow in the 2004 FEMA Study (261 cfs). We chose to use the 2006 Gray & Osborne ' KCRTS model hydrograph for the 100-year current land use scenario as the hydrograph for the future 25-year event flow. Likewise, the 2006 KCRTS 25-year future flows (187 cfs) is approximately equal to the 2004 FEMA flow under the 25-year current ' condition (199 cfs) and therefore, was chosen to represent the current 25-year storm event. The reason for using these selected hydrographs is that the XP_SWMM hydraulic model requires a complete hydrograph for the unsteady flow. The 2006 Gray & Osborne ' KCRTS hydrologic modeling generated complete hydrographs for use in the XP-SWMM Model. Table 6 summarizes the hydrologic flows selected for use in the hydraulic model. City of Renton 7 ' Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers TABLE 6 Selected Flows for the XP-SWMM Model .x rf� `4,I t g!,�Model10 °` � s- r k Curer=ent� �'.J �"' a `,r-'2"id "�' ¢ t�s��` aFuture� f c1� ,l # "vu ,� i•, y`-�'.# tear 25-Years 41.00 Year,1OYear �" T �'I �25Year100z � _ fear 1Vlodeling Report; aType °cfsj �, �sMIN A bcfs YET.- November 2004 Extraction from Hydraulic Analysis of HSPF 148 199 261 197 261 330 Springbrook Creek FEMA Re -mapping Study (NHC) October 2006 Renton Village Hydrologic and KCRTS 133 152 257 172 187 308 Hydraulic Analysis (Gray & Osborne) Selected Flows: KCRTS 133 187 257 172 257 308 HYDRAULIC MODELING HYDRAULIC MODELING COMPONENTS Once the hydrologic flows were determined with the KCRTS model, the flows were routed through a hydraulic model. The hydraulic model provides flow and water elevation at representative nodes, and is used to determine when the storm flows are contained in the pipe system, and when and where any overflow occurs. Gray & Osborne surveyed the existing storm system in the Renton Village area to obtain accurate elevation and location information to use in the hydraulic model. The surveyed information includes pipe lengths, pipe diameter, rim elevations and invert elevations and is shown in Tables 7 and 8. The survey information was then input into the XP-SWMM hydraulic routing software program. With pipe information placed into the modeling program, XP-SWMM was then used to route the current and future storm flows obtained from the KCRTS model shown in Table 6. Figure 4 depicts a schematic of the hydraulic model for the existing system. Each "node" represents a manhole or open channel junction. Only five of the manholes were chosen as "input nodes." These nodes are depicted in Figure 4 as "N1" through "N5." Hydrographs were extracted from the KCRTS program, converted to a recognizable file format, and were then attached to each input node in XP-SWMM. 8 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis m m m m m m m m m m m m m m m m m m m ,t42 A N2-1) (42') /A -NI (60') D C-D (72') c Nl-C (72') NI B-NI (36') D-E (42') E B E-N3 48' N4 H-1 (ch) G-H ch) r L ch) N3-F (ch) I -N4( 48' H G F —'N3 d5 vim- 2 N5 CITY OF RENTON FIGURE 4 XP—SWMM MODEL SCHEMATIC CONSULTING ENGINEERS Gray & Osborne, Inc., Consulting Engineers 0 HYDRAULIC MODELING SCENARIOS ' The XP-SWMM program was run to route the flows from the hydrographs through the surveyed storm system to determine where pipes surcharge under various storm events. The model was run for existing and future conditions as described below. 1. The existing pipe system was modeled using existing land use conditions in Renton Village and the Rolling Hills Basin. This scenario was modeled with the 2-year, 10-year, 25-year, and 100-year storm events using flows generated in KCRTS. 2. The existing pipe system was modeled using future land use conditions. This run was done for the 2-year, 10-year, 25-year, and 100-year storm events using flows generated in KCRTS. 3. Based on results of the future land use, alternative designs for a new storm system from the junction of the existing 42- and 72-inch pipes (Node "D" in Figure 4) to the outfall at the open channel (Node "N3") were analyzed. The alternative designs consist of new pipes and/or a box culvert of various sizes. These designs are discussed in greater detail later in this Report. The 25-year storm event was modeled for the future land use scenario to ensure that the proposed storm system would not surcharge and cause flooding on the surface. The 100-year storm event was modeled to determine if sufficient capacity exists in the nearby parking lot to contain any surface flooding that occurs under this event because portions of the project area are within the FEMA 100-year flood plain (parking lot adjacent to Rolling Hills Creek). Flooding in these areas is due to the elevation of the ground and is independent of the size of the conveyance system installed. HYDRAULIC MODELING RESULTS Existing Drainage System Modeling results for Scenarios 1 and 2 (the existing pipe system with existing and future land use) can be found in the summaries provided in Tables 7 and 8. Peak modeled flows for the existing land use condition 100-year storm varied between 18 cubic feet per second (cfs) in the downstream 48-inch pipe (Nodes N4 to N5) to 183 cfs at the upstream 72-inch pipe (Node N1). Likewise, peak flows for future conditions varied between 19 cfs in the downstream 48-inch pipe (Nodes N4 to N5) to 214 cfs in the upstream 72-inch pipe. City of Renton 9 ' Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers Negative flows for some pipes are shown in the results displayed in Tables 7 and 8. In the XP-SWMM output for the Existing Conditions 25-year storm (Renton Village Existing 25.out) there is the following Warning after Table E1 Conduit Data: Warning !! The upstream and downstream junctions for the following conduits have been reversed to correspond to the positive flow and decreasing slope convention. A negative flow in the output thus means the flow was from your original upstream junction to your original downstream junction. Any initial flow has been multiplied by -1. 1. Conduit # .. N3-F has been changed. 2. Conduit # .. E-N3 has been changed: 3. Conduit # .. N2-D has been changed. 4. Conduit # .. F-G has been changed. For the Conduits noted it appears that the negative sign indicates the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction, as would be expected. A negative slope may also indicate that water has backed up in the pipe at some point in the model due to backwater conditions. 10 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis m 143 N2: 20 D:117 489 M 10,228 N1i 1-405 f 'omit A 1 CITY OF RENTON FIGURE 5 El = Flooded Volume for Current Land Use (cf) 25-YEAR CURRENT LAND USE MODEL RESULTS FOR THE EXISTING SYSTEM Flooded Volume for Future Land Use (cf) Scales 1° = 100 m Cney��.borne,I» CONSULTING ENGINEERS Noa.j. = Flooded Volume for Current Land Use (cf) El= Flooded Volume for Future Land Use (cf) Scale; 1" = 100 m CITY OF RENTON FIGURE 6 100- YEAR CURRENT LAND USE MODEL RESULTS 4EX, y sr Oeborria, Lv-- CONSULTING ENGINEERS \ WVC N IE=25.5T W-7- 4-1 VC E E-_24.0• 8" S IE=23.4j,� � 4 I CATCH BASIN a0�' / 1B- E$W IL=15.45 TB t.&W IL=7t1.8B GAS METER �A , 12" S IE=16.95 8' NE IE=17.44 WITH BOLLAR " �A -- ----------------------------------- 6" NE IE-17.75 X" N IE- / 6' NW IE=17.75 / RIMS _ -29 w / 9 / / 18" / \ \\ RIM EL-27.19 \ \ ?b\ 8" N IE=21.94 \ CATCH SA IN 8' S IE-21.94 RIM\EL=24.95 \ 12"CC1N IE-23.15 .1 22.28 t2.23 12- ,\ U NW SE IE=22.16\ I C CH ASIN RIM EIL=Z4.21\ ` � - CATCH RASIN M EL=25.51 \ \ OF WATER-22.06 T, M=17.81 v N' v '/ A o I Tra 10 e \ oyA o � \ ry T \ OyQ \ \ 1 CMP CMP S. \ \ \ ST R1.t GRAIN OUTLET 2 OB +STO AIN OUTLET "CMP SE IE=2011 V \ J \ ZOO outfNi 0111. ,zy ii 04 I I {.' s2B34 ALIGNMENT ALTERNATIVES ALTERNATIVE 1: WEST 4' . 6' BOX CULVERT ALTERNATIVE 2: EAST 4' . 6' BOX CULVERT zis- /I - "-1- 18" a� SSMH 40' 20' 0 40' 80, RIM EL=31.62 ' 18' E&W IE=19.57 SCALE, V = 40' TV C C TV 8"PVC S IE= _ G ---TV I ATE t � d - ��• I ►a f e %AMA - " ' A CITY OF As Noted PAVEMENT CRACKS (MAY WOIGATE POOR SUBSURFACE SOILS) owc -� RENTON DWC ' � d I DATUM 'A' Planning/Building/Public Works Dept. wrTa NO. REVISION BY DATE APPR �^� "0�� Rr FIGURE 7 - PROPOSED STORMWATER 10/25/04 CONVEYANCE ALTERNATIVES RENTON VILLAGE STORM SYSTEM PROJECT �.... �1 1 :. v N5 so•) CITY OF RENTON FIGURE 8 XP—SWMM MODEL SCHEMATIC FOR ALTERNATIVE 1 (West Box Culvert) Grey 8z Osborrie, Inc. CONSULTING ENGINEERS I N5 MM CITY OF RENTON FIGURE 9 XP-SWMM MODEL SCHEMATIC FOR ALTERNATIVE 2 (East Culvert) G-gy 8z Osborne, Lnc- Cl)NSULTING ENGINEERS Gray & Osborne, Inc., Consulting Engineers TABLE 7 Modeling Results for Existing Pipes Under Existing Land Use Conditions a: , $:, ..- »: x,,,.. �% f.a,:: W �. .,-...�.�.Downstream, . , ., ,. .,.... fiJ?. ... ,,, n:::. 'i... Lt stream .,<p :. 3Node.,.,�, ,!». R►m Elegy- ....... T .,,. ft �.,... ,,���• e...: .,. c._ .... . ,j'„�r, ' Downstream Y ,., i.. ,� ,.::. ...Node � ».:3'� "+✓�6' - � , :.. .... i ,,,., , .. `t. ..,,, a. J,.. ,,.. 3,,. >3.. ' ._ -,. Rim „ J w , ,.. ,.... .. Elevation ft �� »_ .. . � nr �,. w.. ,. .. ..w, ..,... as 9,.. ,.. a._ .,: ,. ,, Conduit: .,4:..:.> 'Name ,,,,» z. , � 3 � ,rF. ,, v<,.. ,�: :.�,a ,,,u s,_, �.z Dame rM:• _ to ., "9= ,�3 ii...„. m . _....:,. �,»,,. � .,.,,�, ,,..,-, „':4:w..q- , en th .... g r ft •� �,. , .� "s.. � „:<�� : , U stream . � .:.... ...... � ,IE„ »..,�- . .,a,., -.. Downstream c , ,., .. "- � � ,.. ��IE-���;Slo a. , .,,, e� � . , • fs e �<,.:, Ca ace ,. .� .. �, �•• cfs .,,,�, : �, Existm low ,, 3 w:. �• ;>» cfs ,,,k >i �W. Existin low m ,x: cfs ,Existin .. Flow„ .;•"�' cfs .& ,1,00.-Y.,ear , xis m �.a bzq.,�.. 'e �FIowWW cfs A 35 Ni 32.66 A-N1 60 74 24.46 23.30 1.57% 70 -1 1 3 B 33.35 N1 32.66 B-NI 36 90 23.39 23.30 0.10% 99 0 2 -3 N1 32.66 C 35.22 NI-C 72 395 22.30 21.66 0.16% 158 65 95 141 C 35.22 D 28.67 C-D 72 336 21.57 20.92 0.19% 173 64 95 141 183 N2 30.3 D 28.67 N2-D 42 306 18.90 20.92 0.66% 76 -6 -7 D 28.67 E 25.51 D-E 42 357 20.84 17.64 0.90% 88 68 E 25.51 N3 28 E-N3 48 159 17.64 19.39 1.10% 89 -68 N3 28 F 28.51 N3-F Channel 171 19.39 20.13 0.43% 931 -85 -118 -131 -155 F 28.51 G 30.01 F-G Channel 162 18.91 19.27 0.22% 725 -85 -118 -131 -155 G 30.01 H 30.01 G-H Channel 167 19.27 18.86 0.25% 2197 85 118 131 155 H 30.01 I 30 H-I Channel 70 19.27 16.38 4.13% 3573 85 118 131 155 1 30 N4 25 I-N4 48 375 17.94 16.00 0.52% 96 27 23 -14 -19 N4 25 NS outfall 28 f N4-N5 48 100 15.56 15.00 0.56% 100 30 30 -11 -18 I 30 NS outfall 28 1-N5 132 500 17.94 15.00 0.59% 1518 58 95 135 1 173 ki) r V W5 cxcccuuig pipe uesiyn capacuy represem surcnargea commons. --riooaea mannoie- conditions represent water tloodmg out of the manhole and into the parking lot. (2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a negative direction occurring at some time during the model due to backwater conditions. (3) Source: Tables E1, E9, E10, and E16 of XP-SWMM output files ("Renton Village Existing 2.out," "Renton Village Existing 10.out," etc.) located in digital files in Appendix E. - = Flooded Manhole Upstream 11 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis Gray & Osborne, Inc., Consulting Engineers TABLE 8 Modeling Results for Existing Pipes Under Future Land Use Conditions k ;,'. `ram,, �i" >1., ....: is U stream.. ', ':.,�k� ta'nb tr a U s e mx A ... M,✓ ,, ., -t Rim Elev ve.• { 'S: '., u3.. `N,,',..,.,..; .....,,-a;.»....,... , . e .,.,....., a ...v"!,'..i - Downstreamu ., Downstream:' .,Elevation ,..,..: `��,. , ,Condu�t� ,i.:,.�i !„p?.: ,;•b x ,,.. , ;,,.,,-Pie ,:=Diameter,.,-- x ...m... m. a , . ...Len h q c.. �:, ,::,..Y,: � .: ft � ."« r � Y,U stream.�:.� fp . ,�1x�: , : W.�. IE « - �n .k -... , .-. h .T.x a. > i Y, u � ., i _ •Y'. �'= IE� 3. Yu -:ate .��,:,,,,. - .- r.._. _.. :�.Slo e; - ,.. ,.....,.ttwk+a' +pTM�a A . �., De n s _.. � s A ty� L� Y.t F�, # � cf$ . �� z>,',, , 'MIA 2_Year G`a. 'ice r :'., Futu ,e � Flow F a >- cfs ,� .=`ri ^r:: �1.ar a ;� � ...,30-Year 3 i3' k Future t,':' .,.iE'»`�, , , .x :Flow:: cfs �' > .. , . � , 25- .ear � r �.- k'utu 5 Flowr_. h �'i. u4'c; � =,, cf v_�.. " u3r Future. A 35 N1 32.66 A-N1 60 74 24.46 23.30 1.57% 99 3 5 4 B 33.35 N1 32.66 B-NI 36 90 23.39 23.30 0.10% 70 1 -15 -9 1 6 N1 32.66 C 35.22 NI-C 72 395 22.30 21.66 0.16% 158 1 112 131 C 35.22 D 28.67 C-D 72 336 21.57 20.92 0.19% 173 1 131 137 141 214 N2 30.3 D 28.67 N2-D 42 306 18.90 20.92 -0.66% 76 D 28.67 E 25.51 D-E 42 357 20.84 17.64 0.90% 88 E 25.51 N3 28 E-N3 48 159 17.64 19.39 -1.10% 89 N3 28 F 28.51 N3-F Channel 171 19.39 20.13 -0.43% 931 -124 -131 -136 -161 F 28.51 G 30.01 F-G Channel 162 18.91 19.27 -0.22% 725 -124 -131 -136 -161 G 30.01 H 30.01 G-H Channel 167 19.27 18.86 0.25% 2197 124 131 136 161 H 30.01 I 30 H-I Channel 70 19.27 16.38 4.13% 3573 124 131 136 161 I 30 N4 25 I-N4 48 375 17.94 16.00 0.52% 96 39 29 -16 -20 N4 25 NS outfall 28 N4-N5 48 100 15.56 15.00 0.56% 100 43 35 -12 -19 I 30 NS outfall 28 I-NS 1 132 500 17.94 15.00 0.59% 1 1518 86 102 136 179 (1) Flows exceeding pipe design capacity represent surchareed conditions. "Flooded manhole" conditions represent water flnnrlino not nftha mnnhnla nnrl intn tha nnrl- lot. r (2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a negative direction occurring at some time during the model due to backwater conditions. (3) Source: Tables El, E9, E10, E16 of XP-SWMM output files ("RV fut 2.out," "RV fut 10.out," etc.) located in digital files in Appendix E. - = Flooded Manhole Upstream 12 January 2007 City of Renton Renton Village Hydrologic/Hydraulic Analysis IGray & Osborne, Inc., Consulting Engineers 1 The increase in peak flow between the existing and future land use scenarios is due to the ' increase in effective impervious area from 32 percent (292 ac/920 ac) under current conditions to 50 percent (458 ac/920 ac) under future conditions. 0 As depicted in Tables 7 and 8 and in Figure 5, under the existing conditions 25-year storm event, the model showed flooding at three nodes (D, E, and N2). Under the future land use flooding was seen in the upstream Node N1 (on the 72-inch pipe) in addition to the three nodes that were flooded under the existing conditions (D, E, and N2). Table 9 lists the volumes of water resulting at each flooded node under both the existing and future conditions. Under the 100-year storm event, the model showed that all nodes upstream of Node E flooded for both the current and future land use scenarios with the exception of Node C (See Figure 6). Node E is located in the Renton Village parking lot and is a critical point within the model as it is low in grade and cannot handle the surcharge seen in the other pipes. Node E is approximately 2 to 2.5 feet lower than the rims located upstream and downstream. It should also be noted that flooding is highly correlated to the backwater condition set downstream by Channel Branch 42. Under a free outfall condition with no backwater to contend with, a reduction in flooding is seen throughout the system. TABLE 9 Flooded Volumes in the Existing System a Currentk��� �25 Years f `.+"nos" c+•' 1;00-Year��ZS S J Year�1�00 Year* A -- 18,569 -- 55,266 B -- 1 -- 5,522 NI -- 50,470 2 106,548 N2 143 143,233 20,234 255,303 D 26,645 735,658 117,489 1,309,900 E 7,805 28,731 10,228 36,558 Alternative Storm System Designs The design criteria for the new storm system in Renton Village included having sufficient capacity to convey the future condition 25-year storm event without flooding, and conveying the future condition 100-year storm event with any flooding confined to the parking lot area. Using these two criteria, two alternative designs were modeled. For each design, a positive slope was modeled between pipe sections to eliminate the negative pipe slopes that are currently in place today. The design alternatives are as follows. City of Renton 13 Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers Alternative 1- West Box Culvert: Install approximately 605 lineal feet of 4' x 6' concrete box culvert from the 72-inch pipe (Node D) to the outfall (Node N3). The preliminary alignment consists of placing the box culvert in the roadway and then diverting it south through the parking lot (see Figure 7). Figure 8 presents a schematic of the model for Alternative 1. Alternative 2 — East Box Culvert: This alternative entails the installation of 495 lineal feet of 4' x 6' box culvert between the same nodes as Alternative 1 (Node D to Node N3). The alignment of this alternative is located towards the eastern end of the parking lot (see Figure 7). Under both alternatives, catch basins would need to be installed ih the parking lot to collect local drainage. To simplify the modeling, these catch basins were not modeled. However, the runoff from this area was input into the appropriate upstream node and was accounted for in the model. Early in the design process an alternative incorporating the existing 42-inch pipe and installing a parallel 54-inch pipe was reviewed. This alternative had the highest uncertainty because the condition of the existing 42-inch pipe is unknown. In addition, bedding of pipe over the known poor soils is difficult using traditional construction methods. To prevent point loading, the pipe would essentially need to be bedded/encased in concrete. For these two reasons the alternative of parallel pipes was not pursued. Alternative Storm System Modeling Results The model results for both Alternative 1 (west box culvert) and Alternative 2 (east box culvert) may be found in Tables 10 and 11. The complete XP-SWMM output for Alternative 1 is located in Appendix D. To clarify the data within this output, Table E9 of the XP-SWMM output displays hydraulic grade line elevations within each node ("Maximum Junction Elevation') along with flooded volume ("Maximum Junction Area"), Table E10 displays flow rates ("Maximum Computed Flow") and pipe capacities ("Design Flow"), and Table E16 of the XP-SWMM output presents the elevation of the hydraulic grade line within the pipes ("WS Up," "WS Dn"). As seen in Table 10, the west box culvert (Alternative 1) shows no flooding during the future 25-year storm event, and some flooding at the upstream end of the box culvert (Node D) during a 100-year storm event. The model shows that Node D experiences 8,701 cubic feet of flooding during the 100-year storm event (Table E9, Appendix D). Likewise, the east box culvert scenario (Alternative 2), shows no flooding during the future 25-year storm event, and some flooding during the 100-year storm at the downstream end of the 72-inch pipe (Node D). The modeling results reveal that 5,922 cubic feet of flooded volume is produced at Node D. Flow rates in each of the pipes for Alternative 2 may be found in Table 11 and total flooded volumes are presented in Table 12. 14 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis mmmm M Gray & Osborne, Inc., Consulting Engineers TABLE 10 Modeling Results for Future Pipes Under Future Land Use Conditions Alternative 1- West 4' x 6' Box Culvert t�1d4V� Tdi�.. .'.•.'`w,��:." -': yt ^'.U. ,P;:w;.`N...s... t,o�_.«r4:Fd,,: .ue,e3a.. ,m y,..�'...',N: ;. rt,,�.rr ' 5,3b ✓^..rere . �,....�. �' . �3z,^%n..'y�<«),U ',.R�,.. P �-.{�ym s,. rYt�ftr<omWt Eek.,:.•�la.�.e..,'._:,Smw ..v. ..^ ..{•. i�2 ,s-..�r'_. z:.a...„,:.'�� ,.. ..r...d.x:T-,�:. Y+. 1. .D•^,:Frit Y.,o.:.'',.:. .w' ,�N�<..ni; 4 om.>s.. �,dt. .rreY�ief .,�.a."..:.m„€h.-trvrrs .r.',y;, .N �...,,+...:�»:__ - x.�:.:a, r 'ri�:a._...®�-?'a. ',�..y a',om.:�t.'t E.D-�l:o�.e:...w.v+ r..✓Rant.Fti` ,si•"m.to�ruYn.,.e„a ,...r;wu,a..;�^,��.f:.° mt;t^`s ;«.�.,,� . .s .f .x + 't n'.•... k�. ..-.5 �P �Cx,ya,>.� . �r d� m,�.�1 tr x_., .�.i'.^ nm :.ga ...Y^ ':.'.... v ',}:•• ?'yr�f:r.ir.tD;.t1.aP, �-.miI:r.Pw.^,,.e�. �et'. � �e, r, . ``. m-fix isr..n, .,,:.. L';,P,e. e: ini' .P ,g .- e5t5.«'h.'° -.I'�i : .t:.�:: >U_ � «P,�s`1.t'�t .rw,..._esak.,.;�a3...'4M, m ....?- 3�,.�,.��..,.. .,,,;Dti., �.o�#�wi ..'gnrw;f sM t.r.4.,,,ex. .=;,a,4�. �mt�:.-t.�... , �'..�a;aK... s��. .+�,r.. 1, .,n^t,}:' Y-x+s.�R�. i{.,a`.r,u,. �;-,'�,.waC1�Dya.x+.eesac�g.eT ,,�d•�FF],'lu.o- twut�rhezrl�;. '. ' rear- '^'��, r„Pu;'..,,S* "�.".rh.".cez�`).'�.�,.,.•. A 35 N1 32.66 A-N1 60 74 24.46 23.3 1.29% 70 0 0 B 33.35 N1 32.66 B-NI 36 90 23.39 23.3 0.12% 99 0 -1 N1 32.66 C 35.22 NI-C 72 395 22.3 21.66 0.16% 158 194 242 C 35.22 D 28.67 C-D 72 336 21.57 20.92 0.19% 173 194 242 N2 30.3 D 28.67 N2-D 42 306 20.92 20.84 0.66% 76 -12 -12 D 28.67 Box cb A 30.25 Box 1 4' x 6' 70 20.84 20.68 0.22% 135 208 Box cb A 30.25 Box cb B 28.5 Box 2 4' x 6' 162 20.68 20.33 0.22% 135 207 251 Box cb B 28.5 Box cb C 26.6 Box 3 4' x 6' 114 20.33 20.08 0.22% 135 207 251 Box cb C 26.6 N3 28 Box 4 4' x 6' 257 20.08 19.4 0.27% 149 206 234 N3 28 F 28.51 N3-F Channel 171 19.39 18.94 0.26% 728 242 274 F 28.51 G 30.01 F-G Channel 162 18.94 18.53 0.25% 769 242 274 G 30.01 H 30.01 G-H Channel 167 18.53 18.12 0.25% 2217 242 274 H 30.01 I 30 H-I Channel 70 18.12 17.94 0.25% 879 242 274 I 30 N4 25 I-N4 48 375 17.94 16 0.59% 1 96 1 43 50 N4 25 NS outfall 28 N4-N5 48 100 15.56 15 0.56% 100 54 61 �F-i 30 NS outfall 28 I-N5 132 500 17.94 15 0.52% 1518 1 199 224 (1) Plows exceeding pipe design capacity represent surcharged conditions. "Flooded manhole" conditions represent water flooding out ofthe manhole and into the parking lot. (2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a negative direction occurring at some time during the model due to backwater conditions. (3) Source: Tables El, E9, E10, E16 of XP-SVIMM output files (Altl 25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E. - = Flooded Manhole Upstream City of Renton 15 Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers TABLE 11 Modeling Results for Future Pipes Under Future Land Use conditions Alternative 2 -East 4' x 6' Box Culvert :.� :.�. ar...�! t.. ;' r :.. ,., ,,...:k J i : •.:.�: rilpstream Nodez,..•,"s�fts_,,..,YNoder.•:� c-w1 •,',. s "t.. . , .r P :.,.. R�mElev F ' •t(, b. :7sG;:.. ,..t.fr x,,r= F•t,�, �: .:. s ,. sx. :,u . .'3„t �. �.h., w...C.., , .e-.n,. �.! ,'4�..� h"•�,,..;.,.;, ,.. xDownstream1R�m_ ,...yElevat�on,ft;,�Name;:r,,,,W, „r .y+€ c.,vS" ,.. , r. x !.. .' ) •.� :, - b, i . `x.. 1 •' , Sr -r; S Y! .; F' _k .. :. ,.z• �' ., . ,. t3• ;i' ,.1 �-.. �•R ='S .u...... •YzV. ..; C ondmt y_. >f tt,:; .., 'r"*- ,�,•..a�- fi • . ;,4. „ .. v ._'�. Ui' ,a:..... s X° 'k�, . S vi �'.., , P k a� ....Y. {..Y.., 1. yr. Dtameteryz »-:•C'sr.:3ti4. ht..F y �o: 4*+^v -and" ,:' S"L.x. , �a}+i � _...;., , , „..: , s,ti: k °•h :�•P e, �, �1.y .,.C- y. : , o- tLengtFi, ,E F...,� eft ,,, � . .rtA. w �{••�h �`L. � , ..4.:..:e� sa , 7 "�.� Y {,,w � s .P-, ..n1' .s...[ , Upstream; �., ,� . LE'y �1, "L'.' tv:..t= ,,yr,,,4,s.„-� F. n. r.,"' }tE} •1 _ _a t a ,>- ,.•t . �. r d: 7,.s C{, i" M , � rr ,��:�;�,. g k" 'iwf i i ;Y'.'" ,v.- r Downstream ._ nx a �IE:;Slo ...r • � .... £`m``�°' y-:.�,+ ,.. A:.+•.. .<,^^.�r Y' '�4 �' t _ q :�� e� .�`°Y r-..."`y�'" �? P� e � �. P �, Des n � ;3i ..�i'nl!,'9�1R"° Ca acrt .a p y •t •'c^c.: �ticfs� ..r,,.. „��. ,2'S Year x° •,k'. r`s',r4:.1 : tFi'uture•;. ".,r... .:.[ ,... (�a) ,. Flow,: =.;r r _ cfs �` 100=Year qff. :;,Future p� s a I - r,F ow . -- SFr A 35 N1 32.66 A -NI 60 74 24.46 23.3 1.29% 70 0 0 B 33.35 N1 32.66 B-NI 36 90 23.39 23.3 0.12% 99 0 -1 N1 32.66 C 35.22 NI-C 72 395 22.3 21.66 0.16% 158 194 242 C 35.22 D 28.67 C-D 72 336 21.57 20.92 0.19% 173 194 242 N2 30.3 D 28.67 N2-D 42 306 20.92 20.84 0.66% 76 -12 -12 D 28.67 Box cb A 29 Box 1 4' x 6' 210 20.84 20.27 0.27% 149 206 Box cb A 29 Box cb B 27.4 Box 2 Tx 6' 110 20.27 19.98 0.27% 149 207 251 Box cb B 27.4 N3 28 Box 3 Tx 6' 175 19.98 19.39 0.33% 166 207 251 N3 28 F 28.51 N3-F Channel 171 19.39 18.94 0.26% 728 242 274 F 28.51 G 30.01 F-G Channel 162 18.94 18.53 0.25% 769 242 274 G 30.01 H 30.01 G-H Channel 167 18.53 18.12 0.25% 2217 242 274 H 30.01 I 30 H-I Channel 70 18.12 17.94 0.25% 879 242 274 I 30 N4 25 I-N4 48 375 17.94 16 0.59% 96 43 50 N4 25 NS outfall 28 N4-N5 1 48 100 15.56 15 1 0.56% 1 100 1 54 61 1 30 N5 (outfall) 28 I-NS 1 132 500 17.94 15 0.52% 1518 199 224 (1) Flows exceeding pipe design capacity represent surcharged conditions. "Flooded manhole" conditions represent water flooding out of the manhole and into the parking lot. (2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a negative direction occurring at some time during the model due to backwater conditions. (3) Source: Tables E1, E9, E10, E16 ofXP-SWMM output files (Altl_25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E. - = Flooded Manhole Upstream 16 January 2007 City of Renton Renton Village Hydrologic/Hydraulic Analysis Gray & Osborne, Inc., Consulting Engineers TABLE 12 Flooded Volumes for Alternatives 1 and 2 IN ��s100 54 fi Rs 6 a C Yea D -- 8,701 Alternative�2� ��� ,t ��i� �� -ram �t ���' F.•� � x_ � _ D -- 5,922 54-inch Node -- Surface From these two models, it is apparent that a box culvert meets the City's criteria of preventing flooding during the future conditions 25-year storm event. The future conditions 100-year event results in limited flooding for both alternatives, however, with a total of 8,701 cubic feet flooded with the west box culvert alternative and 5,922 cubic feet flooded with the east box culvert alternative, it is apparent that the Thriftway parking lot can handle this excess stormwater during a 100-year storm event. This analysis assumes an available storage area surrounding "Node D" with a depth of 6 inches throughout the parking lot located east of Thriftway. At a 6-inch depth (i.e., curb height), 17,360 square feet of parking area would be necessary for storing the flooded volume under Alternative 1 and 12,690 square feet would be necessary under Alternative 2. The parking lot provides approximately 27,800 square feet just to the east of Thriftway. Flooded water would also drain towards the northern parking lot in front of Thriftway where additional storage would be provided as well. COST ESTIMATES Cost estimates were prepared for the two alternatives described earlier. Both cost estimates include the installation of a 4' x 6' box culvert, shoring, excavation of unsuitable material, backfill material as recommended by the geotechnical engineer, and related work such as traffic control, bypass pumping, erosion control, and landscaping. The estimates also include a $10,000 force account for unforeseen issues that may arise during construction. In addition to the force account, a 10 percent contingency has been added as well. A higher cost estimate was calculated for Alternative 1 due to the anticipation of greater. depths of peat and due to its longer alignment. Alternative 1 is estimated to cost $1,287,000 whereas Alternative 2 has an estimated construction cost of $1,160,000. Both construction cost estimates include sales tax and can be viewed in greater detail in Appendix F. City of Renton 17 Renton Village Hydrologic/Hydraulic Analysis January 2007 Gray & Osborne, Inc., Consulting Engineers RECOMMENDATIONS From a hydraulic perspective, both Alternative 1 (4' x 6' west box culvert) and Alternative 2 (4' x 6' east box culvert) would meet the City's criteria of preventing flooding during a 25-year storm event under future land use conditions while containing flooding during a future conditions 100-year storm event. However, it is recommended that the City select Alternative 1 for reasons that are not associated with hydraulics. Installation of the box culvert with the proposed alignment located in the western portion of the parking lot allows for less parking disturbance during construction and is the chosen alignment for the property owner. Alternative 1 is anticipated to have a shorter crossing of the poor soils and will be able to cross over the existing 12-inch sanitary sewer line but has a greater over all length of culvert. The box culvert will be placed in an area where geotechnical investigations show a layer of peat to an approximate depth of 25 feet. The alignment of Alternative 2 show shallower depth of peat at the boring locations but has a longer traverse over the poor soil. Alternative 2 will also require the existing sanitary sewer to be encased and cross through the box culvert since the invert of the sanitary sewer is higher than the invert of the storm drain at this point. The extent and difficulty of the sewer crossing will not be known until the excavation occurs and therefore presents a higher level of uncertainty than Alternative 1. This installation will require additional width of the box culvert to provide adequate hydraulic capacity. Although these issues are not strictly hydraulically related, it is recommended that a 4' x 6' box culvert be installed in the location shown for Alternative 1 for the reasons listed. 18 City of Renton January 2007 Renton Village Hydrologic/Hydraulic Analysis APPENDIX A EXCERPTS FROM THE EAST SIDE GREEN RIVER WATERSHED HYDROLOGIC ANALYSIS NORTHWEST HYDRAULICS CONSULTANTS, INC. MARCH 1996 1 1 1 1 East Side Green River Watershed Hydrologic Analysis Report prepared for: R.W. Beck and City of Renton, Department of Planning/BuildinWPublic Works Prepared by Northwest Hydraulic Consultants Inc. 16300 Christensen Road Suite 350 Tukwila, WA 98188-3418 206-241-6000 March 1996 r] Table 10 Flood (cfs) and Storage (ac-ft) Quantiles Current Conditions C/ Return Period (yrs) Flood Ouantile (cfsl Stream/Sub-Basin Site 2 10 25 100 From ESGRWP Hydrologic Analysis: Panther Creek (SB PZ P3) Flow upstream SR 167 80 l I9".. _ 139 170 Rolling ITills (Sub -basin P5) Flow upstream SR 167 83 . 107 . 117 130 Sub -basins PI--P5 Total flow upstream SR 167 146 .224 .... 270 347 Rolling IOSIPCW SR-167 North crossing 39 69 84 106 Panther Creek SR 167 South crossing 25 ..<2-7 . 28 28 Sub -basin S-6 At Outfall 58 A 65 66 Springbrook Creek U/S Oakcsdale Avenue 332 : 522 632 814. Springbrook Creek U/S P-9 channel 449 687 824 1049 Springbrook Creek BRPS inflow . 492 743 8M 1111 Reqaired storage at BRPS (ac-ft) 45 53 70 140 Water Surface Elevation U/S of Grady Way Box 5.6 6.4 6.8 7.3 From City of Kent Modeling: GarrisonCreek, SR 167 crossing 104 155 179 213 Upper Springbrook Credo U/S of Springbrook Creek 39 43 43 44 Upper Springbrook Creek Overflows to SB S-6 6 20 28 43 Springbrook Creek . U/S junction Mill Creek 157 255 307 387 Mill Creek .:U/S of Springbrook Creek 176 274 336 442 or Alternative Current Conditions Scenario: MM Creek U/S of Springbrook Creek 275 435 526 673 Springbrook Creek BRPS inflow 552 832 989 1243 ' Notes: (1) Flood quantiles are Log Pearson III (2) Storage quantiles follow an empirical fit (3) PCW = Panther Creels Wetland ' (4) U/S = Upstream (5) BRPS = Black River Pump Station ' (6) Alternative Current Conditions Scenario for Mill Creek without lagoons project (see Report Section 3.4.1) 11 Table 11 Flood (cfs) and-Storage-(ac-ft) Quandles Future Conditions Return Period (yrs) Flood Ouantile (cfs) or % Change From Current Conditions Stream., Site 2 10 _ . _. �... _ _ �.. , .. 100 From FSGRWP Hydrologic Analysis: Panther Creels (SB PI-P3) Flow upstream SR-167 90 13% 131 100/ 150 M. 179 5% Rolling Hills (Siph-basin PS) Flow upstream SR 167 95 14% .140 31% 163 39e/ 198 52% Sub -basins Pl P5 Total flow upstream SR-167 165 13% 253 13% 307 14% 399 15% Rolling MU&(PCW SR 167 North crossing 42 8-/ 73. 6% 88 5% _111 5% Panther Creek SR-167 South crossing (66) 4% 28 4% 28 M. 4% Sub -basin S-6 At Outfall 62 7% 65 2% , 66 20/a 67 r/e Spiingbrock.Creek U/S Oakesdale Avenue 539 62% 767 47% 875 39% 1030 27% Springbrook Creek U/S P-9 channel 653 45% 911 33% 1043 27% 1243 19% Springbrook Creek BRPS inflow 723 476/a 998 34% 1133 Mo ..1332 20% Required storage at BRPS (ac-ft) 49 901a 59 11% 92 31% 221 5Me Water Surface Elevation U/S of Grady way Box 6.2 11% 72 13% 7.8 15% 8.7 190/a From City of Sent Modeling: Garrisam Creek 'SR- 167 crossing 127 22% 173 12% 191 7% 215 1% Upper Springbrook Creek U/S of Springbrook Creek 66 690% 88 105% 101 135% 122 177% Upper Springbrook Creek Overflows to SB S-6 0 na 0 n.a. 0 n.a. 0 n a. Springbrook Creek U/S jumaioat Ivflll Creek 236 50% 355 39% 42(1 37% SZl 35% Mill Creek U/S of Springbrook Creek 1 311 77% 446 63 % 510 52% ( : 600 36% Notes: (1) Flood quantiles are Log Pearsoa III (2) Storage gnantites follow an empirical fit (3) PCW = Panther Creek Wetland (4)U/S = Upstream (5) BRPS = Black River Pump Station Black River — Pump Station S6 0 not included in the HSPF model was subsequently found to drain to sub —basin S7o. HSPF sub —basin boundary Sub —basin number River reach number SCALE Miles 1 1/2 0 1 northwest hydraulic consultants Panther Lake Figure 2 '' \1 ' F - - EXCERPTS FROM THE HYDRAULIC ANALYSIS OF SPRINGBROOK CREEK FEMA RE -MAPPING STUDY R.W. BECK NOVEMBER 2004 ,.'i' t• 1 Hydraulic Analysis of Springbrook Creek FEMA Re -Mapping Study City. of Renton n NovembuM 6 LLJ CENTEP R HiLl CRE C ( SHA ll AlTUAll7UU 54 1 tiJ j ( ' :-.t: c t 1 sr. � � j rn!! fir— � •� t c j( �• W11a Wi1b " to i � •ice—..J . N; E VALLEY RD 1 / S 40 •�I i—iS^c — IN�j flr3 LitT1 r� 4: "Sit "C , Ii .".,,.g-�-� ?/� - �?��� AV S� ! t l � 1E '' t I-�4 37 14 i5 1 S�1=f f 0 i Oii,`7 16 RV S t 7 yip 10 q, W12 1 aQ' ow wa`, RIVER t� "U S16 �i� LEGEND . t�. P �P' STATION �! E6 s WER PUMP STATION i TO GREEN-DUWAMISH 1 RIVER -.. a11 \vnn\vnA02536 :h -�-�� A,e dcC P4 ov.ow j t `,tAI LEA .'� TALBOT US�R o � �ll,k, / � � x 1 S- � P AN11►E! �� _... -- -- Wi 1 w ....,�. Hc,.,P! ►,t. ; � P1 P2 P3 52 36" : 51 S10 F VAU F'r 1RED �� 47 W3 S8.:S7b{ S6 46 48-t7 AV S - 45 VI'M A= i v; (( s � I cr ( a} j .� zi 5Q9b 25a(? ti tz t , 15 kj t N f vsj f, hr c 17 19 21 23 24 �s 18 0 0 �� 28 r- 28 ti CV W7b � 27 '' !Tt on, i J t 30 I W7c S9c r° E �' A i� 0 slow€ nttA€N 2 fEc PEE ewWCN Nos HYDROGPAPS17 SUMM€ si7 (sWoK) cE OWMEL MANCN No I O F°a rrEnANo No P5 FFrRRo ' k r�s (�h7M cREDC) .b�.33O TUKWlLA Nix O atc RENTON CITY Um TS € HYDRAULIC ANALYSIS FOR FLOOD PLAIN RR tfECf Cv DAPPING STUDY OF"SPRINGBROOK CREEK FIGURE 2 FEO MODEL SCHEMATIC Now . 1 F 11 Cl ice.. Ae Memorandum To: Allen Quynn and Ron Straka, City of Renton From: David M. Hartley and Derek L. Stuart, northwest hydraulic consultants, inc. Date: Revised October 25, 2005 Re: HYDROLOGIC ANALYSIS FOR FLOODPLAIN MAPPING STUDY OF SPRINGBROOK CREEK, KING COUNTY, WASHINGTON cc: Michael Giseburt, R.W. Beck 1 Executive Summary This memorandum documents the hydrologic methods and results associated with a floodplain re -mapping study of the lower 3.1 miles of Springbrook Creek between the Black River Pump Station (BRPS) and SW 43`d Street (also called South 180d' Street), which is the approximate boundary line between the Cities of Renton and Kent, Washington. The study reach is shown on FIRM numbers 53033C0976 F and 53033CO978 F revised May 16, 1995. On these maps, the BRPS is labeled "P-1 Pumping Station". Hydrologic analyses for this project were conducted following the approach described in an earlier nhc memorandum. This approach was reviewed and approved by the FEMA Map Coordination Contractor in a letter to the City of Renton, dated September 25th 2002. Continuous hydrologic simulation modeling for a 53 year period of record (October 1, 1948 through September 30'', 2002) were used to identify and adjust storm inflow hydrographs to Springbrook Creek that correspond to recurrence intervals required for unsteady flow hydraulic modeling and subsequent floodplain mapping. Two types of potential flood generating peak events were identified for hydraulic analysis: storage events that produce very high water surface elevations at the Black River Pump Station where flood waters from Springbrook Creek are pumped to the Green River and conveyance events that exhibit maximum peak flows into the pump station forebay. Results of the frequency analysis are summarized in the following tables. Peak Inflow to Forebay for Con ve ance Limited Storm Events, Current Conditions Return Period Flood Frequency I Analysis(cfs) Simulated (cfs) 2 Multiplier Date of Simulated Event 2 710 707 1.00 12/3/1968 10 977 941 1.04 2/7/1955 _ 25 y 1100 1125 0.98 �T 2/8/1996 50 1209 1153 _ 1.05 1/9/1990 100 1307 1153 1.13 1/9/1990 'Flood Frequency quantiles estimated from the simulated peak flow data using Bulletin 17B procedures Z. tiplier to scale simulated hydrogaph to match estimated flood frequency quantile The resultant combinations of soil and cover make up an inventory of acreages for each subbasin in which all land is categorized as one of eight HRUs_ These units are: 1. Effective Impervious Area (EIA) 2. Till Forest (TF) 3. Till Grass (TG) 4. Outwash Forest (OF) 5. Outwash Grass (OG) 6. Wetland (W) 7. Alluvium Forest (AF) 8. Alluvium Grass (AG) A summary of the acreages of each HRU by major subbasin is provided in Table 3. Basin -wide, over 42% of the basin is EIA. or impervious area that is directly connected to the drainage system. Impervious area is heavily concentrated in the commercial and industrial areas of the flat Green River valley within the Springbrook, Middle, and Lower Mill Creek subbasins. HRU acreages for individual catchments within the major subbasins are shown in the schematic block of the HSPF input files in the digital appendix. Table 3: Summary of HRU Acreages by Major Subbasin- Current Land Use Subbasin EIA TF TG OF OG W AF AG Water Total Area (ac) (ac) (ac) (ac) (ac) (ac) (ac) (ac) (ac) (ac) Springbrook 2152 296 437 1 3 487 153 703 4232.5 Rolling Hills 293 90 507 0 8 1 2 24 925.7 Panther 372 294 835 1 1 156 4 4 33 1700.2 Upper Springbrook 86 123 250 51 12 48 3 0 573.8 Garrison 539 383 1294 0 0 118 2 2 2338.2 Lower Mill 2200 0 0 0 0 361 83 838 3481.8 Middle Mill 756 16 93 0 0 53 19 248 1184.9 Upper Mill I 431 237 761 0 0 90 8 5 1531.8 Basin Sum 6795 1439 4176 53 24 1315 274 1826 33 15968.5 Basin % 1 42.9% 9.0% 26.2% 0.3% 0.1% 8.2% 1.7% 1 11.5% 0.2% 100.0% 6 rl 8 Appendix C: Future Land Use Analysis and Modeling A model based on future build -out conditions was also constructed as part of this project, ' but was not referenced in the hydrology memorandum submitted to FEMA. In this future conditions model, the drainage system of Springbrook Creek is assumed to be the same as under current conditions. Only land use has been changed to reflect build -out conditions. Build -out conditions were based on zoning map information provided by the cities of Renton and Kent and by King County. A future land -cover GIS coverage Iwas generated by combining parks, wetlands, zoning, and current land -cover GIS data and applied to the model using the following four rules: 1) all jurisdictionally designated wetland areas are modeled as wetland regardless of any underlying zoning, 2) wetland soil areas indicated by surficial geology coverages are assumed to be developed based on zoning if the area is not in a jurisdictionally designated wetland, 3) all parks area (and publicly owned area in Renton) is modeled with its current land cover, and 4) future land- 11 Table BE Summary of HRU Acreages by Major Subbasin- Future Land Use Subbasin EIA TF (ac) (ac) TG (ae) OF (ac) OG (ac) W (ac) AF (ac) AG (ac) Water (ac) Total Area (ac) S rin brook 2717 62 496 0 3 443 55 457 4232.5 Rolling Hills 460 32 409 0 4�_7 _ 1 0 17 _ [ - 92.5.7 Panther 621 85 837 0 1 117 1 6 33 1700.3 Upper S rin brook 132 58 279 26 29 48 0 2 573.8 III Garrison 694 144 1381 0 0 116 0 3 2338.2 Lower Mill 2418 0 0 0 0 361 42 661 3481.8 Middle Mill 818 7 94 0 0 53 90 10 2 203 9 �M� 1184.9 1531.8 Upper Mill 602 75 755 0 0 Basin Sum _8461 462 4284 27 1228 110 1359 33 15968.5 Basin % 53.0% 2.9% 26.&% 0.2% _38 0.2% 7.7% 0.7% 9% _ 0.2% 100.0% cover is always at least as intensive as existing land cover. The methodology for determining HRU acreages for each subbasin was similar to that of the current -conditions model with one exception; the areas that experienced a change in landuse were routed to a separate storage area from those that did not. This was added so the model could be used in future projects to add storage with new development. A summary of the acreages of each HRU by major subbasin is provided in the table below. rThe future conditions model was applied in the same manner as the current conditions model to determine conveyance and storage controlled events under future conditions. The results of the future conditions analysis are shown in Tables B2 and B3 as follows: 21 APPENDIX C BACKWATER ELEVATIONS SET FROM "CHANNEL 42" (FROM THE HYDRAULIC ANALYSIS OF SPRINGBROOK CREEK FEMA RE -MAPPING STUDY R.W. BECK NOVEMBER 2004) M M M M M M M M i M M M M M M r M r M From R.W. Beck November 2004 Draft Report "Hydraulic Analysis of Springbrook Creek FEMA Re -Mapping Study", "404C x.out" files where "x" denotes storm event modeled. The bold, boxed numbers below are the backwater elevations used. The elevations shown below were converted from the NGVD29 datum to the NAVD 88 datum for the Renton Village modeling analysis by adding 3.6 feet. 2-Year BRANCH NUMBER = 42 PONDING VOLUME= 0.0 AC -FT NODE NODEID STATION MAX DEPTH MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF MAX Q TIME OF MIN Q GIS Id String 4201 SR167-BU 0.7090 3.609 15.609 3.305 1.0347E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/28:15.000 4202 0.7035 3.571 15.54 3.354 1.0340E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500 4203 0.6979 3.530 15.479 3.409 1.0334E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500 4204 0.6924 3.485 15.409 3.471 1.0328E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500 4205 0.6868 3.435 15.333 3.542 1.0323E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500 4206 0.6813 3.380 15.252 3.624 1.0317E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500 4207 0.6757 3.317 15.164 3.721 1.0312E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000 4208 0.6702 3.245 15.067 3.837 1.0306E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000 4209 0.6646 3.159 14.956 3.983 1.0302E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000 4210 0.6591 3.055 14.826 4.175 1.0297E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000 4211 0.6535 2.919 14.665 4.446 1.0294E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000 4212 SR167-BD 0.6480 2.721 14.441 4.896 1.0292E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/28:14.000 10-Year BRANCH NUMBER = 42 PONDING VOLUME= 0.0 AC -FT NODE NODEID STATION MAX DEPTH MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF MAX Q TIME OF MIN Q GIS Id String 4201 SR167-BU 0.7090 4.109 16.109 3.745 1.4200E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 55/ 1/19: 8.000 4202 0.7035 4.065 16.039 3.808 1.4198E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4203 0.6979 4.017 15.966 3.878 1.4196E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4204 0.6924 3.965 15.888 3.958 1.4195E+02 1.0000E+00 55/ 2/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4205 0.6868 3.907 15.805 4.049 1.4193E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4206 0.6813 3.842 15.715 4.156 1.4191E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4207 0.6757 3.769 15.616 4.283 1.4189E+02 1.0000E+00 5512/ 7:19.078 55/ 2/ 7:17.094 551 1/19: 8.000 4208 0.6702 3.685 15.507 4.438 1.4187E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4209 0.6646 3.586 15.382 4.636 1.4184E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 55/ 1/19: 8.000 4210 0.6591 3.464 15.235 4.905 1.4182E+02 1.0000E+00 55/ 2/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4211 0.6535 3.305 15.050 5.315 1.4179E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000 4212 SR167-BD 0.6480 3.142 14.862 6.229 1.4174E+02 1.0000E+00 5512/ 7:19.500 5512/ 7:17.094 551 1/19: 8.000 r r m r m m m m m m r m m m m m m i m 25-Year BRANCH NUMBER = 42 PONDING VOLUME= 0.0 AC -FT NODE NODEID STATION MAX DEPTH MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF MAX Q TIME OF MIN Q GIS Id String 4201 SR167-BU 0.7090 4.584 16.584 4.053 1.8139E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:16.500 4202 0.7035 4.534 16.509 4.121 1.8141E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1131:16.500 4203 0.6979 4.481 16.430 4.197 1.8142E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000 4204 0.6924 4.422 16.346 4.282 1.8144E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000 4205 0.6868 4.357 16.255 4.380 1.8145E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000 4206 0.6813 4.285 16.157 4.493 1.8146E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000 4207 0.6757 4.203 16.050 4.626 1.8147E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500 4208 0.6702 4.108 15.930 4.787 1.8147E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500 4209 0.6646 3.996 15.792 4.989 1.8147E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500 4210 0.6591 3.858 15.629 5.272 1.8146E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500 4211 0.6535 3.674 15.419 5.703 1.8145E+02 1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500 4212 SR167-BD 0.6480 3.470 15.190 6.621 1.8140E+02 1.0000E+00 96/ 2/ 8:11.500 96/ 2/ 8:11.145 96/ 1/31:15.500 100-Year BRANCH NUMBER = 42 PONDING VOLUME= 0.0 AC -FT NODE NODEID STATION MAX DEPTH MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF MAX Q TIME OF MIN Q GIS Id String 4201 SR167-BU 0.7090 5.404 17.404 4.433 2.5568E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4202 0.7035 5.354 17.329 4.498 2.5569E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4203 0.6979 5.300 17.249 4.569 2.5571E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4204 0.6924 5.242 17.166 4.649 2.5571E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4205 0.6868 5.179 17.077 4.738 2.5572E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4206 0.6813 5.109 16.982 4.838 2.5572E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4207 0.6757 5.033 16.880 4.954 2.5572E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4208 0.6702 4.947 16.768 5.089 2.5571E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4209 0.6646 4.849 16.645 5.250 2.5569E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4210 0.6591 4.736 16.507 5.448 2.5567E+02 1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000 4211 0.6535 4.607 16.352 5.794 2.5564E+02 1.0000E+00 90/ 1/ 9:10.109 90/ 1/ 9:10.063 89/12/26:10.000 4212 SR167-BD 0.6480 4.491 16.211 6.650 2.5559E+02 1.0000E+00 90/ 1/ 9:10.328 90/ 1/ 9:10.063 89/12/26:10.000 r m m m i ■ram m m m m m m m m m== m m 1 1 1 1 1 1 1 1 rl APPENDIX D XP-SWMM MODELING OUTPUT FOR THE RECOMMENDED ALTERNATIVE 1 (4' X 6' WEST BOX CULVERT) 25-YEAR FUTURE LAND USE CONDITIONS AND 100-YEAR FUTURE LAND USE CONDITIONS M XP-SWMM MODELING OUTPUT - Alternative 1 (West -4' x 6' Box Culvert) 25-Year Storm Current Directory: C:\XPS\XP-SWMM Engine Name: C:\XPS\XP-SWMM\swmmengw.exe Read 1 line(s) and found 1 items(s) from your cfg file. Input File: g\Design\Design Future\Alternatives\Dec 06 Alt\Alt 125 dec 06.XP XP-SWMM Storm and Wastewater Management Model Interface Version: 9.52 Engine Version: 9.28 Developed by XP Software XP Software November, 2004 Data File Version ---> 11.7 Serial Number: 42-xxx-0000 XP Software (Evaluation) Engine Name: C:\XPS\XP-SWMM\swmmengw.exe Input and Output file names by Layer Input File to Layer # 1 JOT.US Output File to Layer # 1 JOT.US Special command line arguments in XP-SWMM2000. This now includes program defaults. $Keywords are the program) defaults. Other Keywords are from the SWMMCOM.CFG file.1 or the command line or any cfg file on the command line.1 Examples include these in the file xpswm.bat under the section :solve or in the windows version XPSWMM32 in the) file solve.bat Note: the cfg file should be in the subdirectory swmxp or defined by the set variable in the xpswm.bat file. Some examples of the command lines possible) are shown below: swmmd swmmcom.cfg swmmd my.cfg swmmd nokeys nconv5 pery extranwq $powerstation 0.0000 1 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 11 $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 Mood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage2 0.0000 3 62 $oldhotl 0.0000 1 63 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 $exout 0.0000 0 97 � M M M M M M M M M w i M w M M M M M M M M M M M SPATIAL=0.55 0.5500 5 124 $djref = -1.0-0.1000 3 143 $weirlen = 50 50.0000 1 153 $oldbnd 0.0000 1 154 $nogrelev 0.0000 1 161 $ncmid 0.0000 0 164 $new n1 97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 $q_tol = 0.1 0.0010 1 316 $new storage 0.0000 1 322 $old iteration 0.0000 1 333 $minlen=30.0 30.0000 1 346 $review_ elevation 0.0000 1 383 $use half volume 0.0000 1 385 $min is = 0.5 0.5000 1 407 $design_restart = on 0.0000 1 412 $zero value=l.e-05 0.0000 1 415 $relax_depth = on 0.0000 1 427 Parameter Values on the Tapes Common B1ock.These are the values read from the data file and dynamically allocated by the model for this simulation. Number of Subcatchments in the Runoff Block (NW).... 0 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 0 Runoff Land Uses per Subcatchment (NLU)............. 0 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 17 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 17 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 1 Number of Extran Weirs (NEW) ........................ 0 Number of scs hydrograph points ..................... 1 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. 1 Number of Natural channels (NNC).................... 4 Number of Storage junctions in Extran (NYSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 5 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 17 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for R1 lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 17 Number of Plugs in a Storage Treatment Unit......... 1 # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # Renton Village Existing HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of 8 pt. and margins of 0.75 i i Table E1 - Basic Conduit Data Table E2 - Conduit Factor Data Table E3a - Junction Data Table E3b - Junction Data Table E4 - Conduit Connectivity Data Table E4a - Dry Weather Flow Data Table E4b - Real Time Control Data Table E5 - Junction Time Step Limitation Summary Table E5a - Conduit Explicit Condition Summary Table E6 - Final Model Condition Table E7 - Iteration Summary Table E8 - Junction Time Step Limitation Summary Table E9 - Junction Summary Statistics Table E10 - Conduit Summary Statistics Table El 1 - Area assumptions used in the analysis Table E12 - Mean conduit information Table E13 - Channel losses(H) and culvert info Table E13a - Culvert Analysis Classification Table E14 - Natural Channel Overbank Flow Information Table E14a -Natural Channel Encroachment Information Table E14b - Floodplain Mapping Table El -Spreadsheet Info List Table E15a - Spreadsheet Reach List Table E16 - New Conduit Output Section Table E17 - Pump Operation Table E18 - Junction Continuity Error Table E19 - Junction Inflow Sources Table E20 - Junction Flooding and Volume List Table E21 - Continuity balance at simulation end Table E22 - Model Judgement Section Time Control from Hydraulics Job Control Year......... 2008 Month....... 1 Day.......... 8 Hour........ 18 Minute....... 0 Second...... 0 Control information for simulation Integration cycles ................. 5760 Length of integration step is...... 15.00 seconds Simulation length .................. 24.00 hours Do not create equiv. pipes(NEQUAL). 0 Use U.S. customary units for I/0... 0 Printing starts in cycle........... 1 Intermediate printout intervals of. 500 cycles Intermediate printout intervals of. 125.00 minutes Summary printout intervals of...... 500 cycles Summary printout time interval of.. 125.00 minutes Hot start file parameter (REDO).... 0 Initial time ....................... 18.00 hours Iteration variables: Flow Tolerance. 0.00010 Head Tolerance. 0.00050 Minimum depth (m or ft)......... 0.00001 Underrelaxation parameter....... 0.85000 Time weighting parameter........ 0.85000 Conduit roughness factor........ 1.00000 Flow adjustment factor.......... 1.00000 Initial Condition Smoothing..... 0 Courant Time Step Factor........ 1.00000 Default Expansion/Contraction K. 0.00000 Default Entrance/Exit K......... 0.00000 Routing Method .................. Dynamic Wave Default surface area of junctions... 12.57 square feet. Minimum Junction/Conduit Depth...... 0.00001 feet. Ponding Area Coefficient............ 5000.00 Ponding Area Exponent ............... 1.0000 Minimum Orifice Length .............. 300.00 feet. NJSW input hydrograph junctions..... 5 or user defined hydrographs.... M M M M M mmmm Natural Cross -Section information for Channel N3-F Cross -Section ID (from X1 card) : 1.0 Channel sequence number: 1 Left Overbank Length 171.0 ft Maximum Elevation 28.39 ft. Main Channel Length 171.0 ft Maximum depth 8.26 ft. Right Overbank Length 171.0 ft Maximum Section Area : 105.3132 ft^2 Maximum hydraulic radius : 3.40 ft. Manning N : 0.050 to Station -2.7 Max topwidth : 23.24 ft. It it : 0.025 in main Channel Maximum Wetted Perimeter : 3.10E+01 ft " : 0.050 Beyond station 7.6 Max left bank area : 22.69 ft^2 Max right bank area . 11.34 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 71.2900 ft^2 Natural Cross -Section information for Channel F-G Cross -Section ID (from X1 card) : 2.0 Channel sequence number: 2 Left Overbank Length 162.0 ft Maximum Elevation 26.50 ft. Main Channel Length 162.0 ft Maximum depth 7.59 ft. Right Overbank Length 162.0 ft Maximum Section Area : 114.9073 ft^2 Maximum hydraulic radius: 3.38 ft. - Manning N : 0.050 to Station -5.3 Max topwidth : 28.20 ft. " " 0.025 in main Channel Maximum Wetted Perimeter: 3.40E+01 ft " : 0.050 Beyond station 4.5 Max left bank area . 17.87 ft^2 Max right bank area : 31.77 ft^2 Allowable Encroachment Depth : 0.00 ft Max center channel area : 65.2666 ft^2 Natural Cross -Section information for Channel G-H Cross -Section ID (from X1 card) : 3.0 Channel sequence number: 3 Left Overbank Length 167.0 ft Maximum Elevation 30.01 ft. Main Channel Length 167.0 ft Maximum depth 10.74 ft. Right Overbank Length : 167.0 ft Maximum Section Area : 231.7196 ft^2 Maximum hydraulic radius : 5.78 ft. Manning N : 0.050 to Station -1.9 Max topwidth : 33.96 ft. " " : 0.025 in main Channel Maximum Wetted Perimeter : 4.01E+01 ft " : 0.050 Beyond station 8.7 Max left bank area : 56.23 ft^2 Max right bank area : 66.77 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 108,7145 ft^2 Natural Cross -Section information for Channel H-I Cross -Section ID (from X1 card) : 4.0 Channel sequence number: 4 Left Overbank Length 70.0 ft Maximum Elevation 25.23 ft. Main Channel Length 70.0 ft Maximum depth 6.37 ft. Right Overbank Length 70.0 ft Maximum Section Area : 130.4888 ft^2 Maximum hydraulic radius: 3.41 ft. Manning N : 0.050 to Station -8.9 Max topwidth : 36.34 ft. " It : 0.025 in main Channel Maximum Wetted Perimeter: 3.82E+01 ft to " 0.050 Beyond station 9.9 Max left bank area 10.53 ft^2 Max right bank area : 25.86 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 94.0951 ft^2 i M M M M M M m m m m M M M Table E1 - Conduit Data Inp Conduit Area Num -------------------- Class (ft-2) 1 B-NI ---------- 74 ---------- Circular ------- 19.635 2N1-C 395 Circular 28.2743 3 C-D 336 Circular 28.2743 4N3-F 171 Natural 105.3132 5 A-N1 90 Circular 7.0686 6N2-D 306 Circular 9.6211 7I-N4 375 Circular 12.5664 8 N4-N5 100 Circular 12.5664 9I-N5 500 Circular 95.0332 10 F-G 162 Natural 114.9073 11 G-H 167 Natural 231.7196 12 H-I 70 Natural 130.4888 13 Box 1 70 Rectangle 24 14 Box 3 114 Rectangle 24 15 Box 4 257 Rectangle 24 16 Box 2 162 Rectangle 24 Total length of all conduits .... 3349.0000 feet Conduit Name Length (ft) If there are messages about (sqrt(g*d)*dt/dx), or the sqrt(wave celerity)*time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the Manning Max Width Depth Coef (ft) (ft) 0.012 5 5 0.014 6 6 0.014 6 6 0.025 23.2405 8.26 0.014 3 3 0.014 3.5 3.5 0.014 4 4 0.014 4 4 0.014 11 11 0.025 28.2 7.59 0.025 33.96 10.74 0.025 36.34 6.37 0.014 6 4 0.014 6 4 0.014 6 4 0.014 6 4 Trapezoid Side Slopes HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control. Conduit Courant Name Ratio B-NI 2.57 => Warning ! (sgrt(wave celerity)*time step/conduit length) N1-C 0.53 C-D 0.62 N3-F 1.06 => Warning ! (sgrt(wave celerity)*time step/conduit length) A-N1 1.64 => Warning ! (sgrt(wave celerity)*time step/conduit length) N2-D 0.52 I-N4 0.45 N4-N5 1.70 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) I-N5 0.56 F-G 1.06 => Warning ! (sgrt(wave celerity)*time step/conduit length) G-H 1.33 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) H-I 2.30 => Warning ! (sgrt(wave celerity)*time step/conduit length) Box 1 2.43 => Warning ! (sgrt(wave celerity)*time step/conduit length) Box 3 1.49 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) Box 4 0.66 Box 2 1.05 => Warning ! (sgrt(wave celerity)*time step/conduit length) Conduit Volume Full pipe or full open conduit volume Input full depth volume............ 1.7811E+05 cubic feet _> Warning ! ! The upstream and downstream junctions for the following conduits have been reversed to correspond to the positive flow and decreasing M M = = = M M M i = M M slope convention. A negative flow in the output thus means the flow was from your original upstream junction to your original downstream junction. Any initial flow has been multiplied by -1. 1. Conduit #...N2-D has been changed. Table E3a - Junction Data Inp Junction Ground Crown Invert Qinst Initial Interface Num ------------------ Name Elevation Elevation ------------------ Elevation cfs Depth-ft Flow (%) 1 --------- B 35.0000 35.0000 -------- 23.0000 ----------------- 0.0000 0.0000 100.0000 2 N1 32.6600 32.6600 22.0000 0.0000 0.0000 100.0000 3 C 35.2200 35.2200 21.5700 0.0000 0.0000 100.0000 4 D 28.6700 28.6700 20.8400 0.0000 0.0000 100.0000 5 N3 28.0000 28.0000 19.3900 0.0000 0.0000 100.0000 6 I 30.0000 30.0000 17.9400 0.0000 0.0000 100.0000 7 A 33.3500 33.3500 24.4000 0.0000 0.0000 100.0000 8 N2 30.3000 30.3000 18.9000 0.0000 0.0000 100.0000 9 N5 28.0000 26.0000 15.0000 0.0000 0.0000 100.0000 10 N4 25.0000 25.0000 15.5000 0.0000 0.0000 100.0000 11 F 28.5100 28.5100 18.9375 0.0000 0.0000 100.0000 12 G 30.0100 30.0100 18.5325 0.0000 0.0000 100.0000 13 H 30.0100 30.0100 18.1150 0.0000 0.0000 100.0000 14 Box cb B 28.5000 24.3296 20.3296 0.0000 0.0000 100.0000 15 Box cb C 26.6000 24.0788 20.0788 0.0000 0.0000 100.0000 16 Box cb A 30.2500 24.6860 20.6860 0.0000 0.0000 100.0000 Table E3b - Junction Data Inp Junction X Y Type of Type of Maximum Pavement Num ------------------ Name Coord. Coord. Manhole -------------------------------- Inlet Capacity Shape Slope 1 B 152.5521 ------------ 446.4433 Flooded ---------------- Normal ------- 0 0.0000 2 N1 145.5257 436.6950 Flooded Normal 0 0.0000 3 C 123.4209 437.1191 Flooded Normal 0 0.0000 4 D 106.3969 437.5303 Flooded Normal 0 0.0000 5 N3 95.8286 416.8616 Flooded Normal 0 0.0000 6 I 67.4830 416.7636 Flooded Normal 0 0.0000 7 A 146.0405 428.7429 Flooded Normal 0 0.0000 8 N2 126.9908 454.2198 Flooded Normal 0 0.0000 9 N5 66.0831 409.8093 No Ponding Normal 0 0.0000 10 N4 62.2778 416.4918 Flooded Normal 0 0.0000 11 F 89.1392 416.9094 Flooded Normal 0 0.0000 12 G 81.4822 417.0487 Flooded Normal 0 0.0000 13 H 74.6604 416.9094 Flooded Normal 0 0.0000 14 Box cb B 96.8341 435.2930 No Ponding Normal 0 0.0000 15 Box cb C 92.3030 432.6534 No Ponding Normal 0 0.0000 16 Box cb A 103.4470 434.9879 No Ponding Normal 0 0.0000 Table E4 - Conduit Connectivity Input Conduit Upstream Downstream Upstream Downstream Number Name Node Node Elevation Elevation 1 B-N1 B N1 23.3920 23.3000 No Design 2 NI-C N1 C 22.3000 21.6600 No Design 3 C-D C D 21.5700 20.9200 No Design 4 N3-F N3 F 19.3900 18.9375 No Design 5 A-N1 A N1 24.4600 23.3000 No Design 6 N2-D D N2 20.9200 18.9000 No Design 7 'I-N4 I N4 17.9400 16.0000 No Design 8 N4-N5 N4 N5 15.5600 15.0000 No Design 9 I-N5 I N5 17.9400 15.0000 No Design 10 F-G F G 18.9375 18.5325 No Design M M M M M M M M M M M i M M M M M M M 11 G-H G H 18.5325 18.1150 No Design 12 H-I H I 18.1150 17.9400 No Design 13 Box 1 D Box cb A 20.8400 20.6860 No Design 14 Box 3 Box cb B Box cb C 20.3296 20.0788 No Design 15 Box 4 Box cb C N3 20.0788 19.3900 No Design 16 Box 2 Box cb A Box cb B 20.6860 20.3296 No Design FREE OUTFALL DATA (DATA GROUP I1) BOUNDARY CONDITION ON DATA GROUP J1 Outfall at Junction .... N5 has boundary condition number... 1 > Warning H Outfall Junction N5 has two or more connecting conduits. INTERNAL CONNECTIVITY INFORMATION CONDUIT JUNCTION JUNCTION ---------------- ---------------- ---------------- FREE # 1 N5 BOUNDARY Boundary Condition Information Data Groups J1-J4 BC NUMBER.. 1 Control water surface elevation is.. 20.16 feet. XP Note Field Summary Conduit Convergence Criteria Conduit Full Conduit Name Flow ----------------- Slope -------------------- B-N1 99.4838 0.0012 N1-C 158.2956 0.0016 C-D 172.9674 0.0019 N3-F 728.0530 0.0026 A-N1 70.3134 0.0129 N2-D 75.9050 0.0066 I-N4 95.9369 0.0052 N4-N5 99.8147 0.0056 I-N5 1518.2495 0.0059 F-G 769.4335 0.0025 G-H 2216.8183 0.0025 H-I 879.2816 0.0025 Box 1 134.9276 0.0022 Box 3 134.9276 0.0022 Box 4 148.9257 0.0027 Box 2 134.9276 0.0022 Initial Model Condition Initial Time = 18.00 hours Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 0.00 / 23.00 N1/ 0.00 / 22.00 C/ 0.00 / 21.57 D/ 0.00 / 20.84 N3/ 0.77 / 20.16 V 2.22 / 20.16 A/ 0.00 / 24.40 N2/ 1.26 / 20.16 N5/ 5.16 / 20.16 M M M M M M M M M N4/ 4.66 / 20.16 F/ 1.22 / 20.16 G/ 1.63 / 20.16 H/ 2.05 / 20.16 Box cb B/ 0.00 / 20.33 Box cb Cl 0.08 / 20.16 Box cb A/ 0.00 / 20.69 Conduit/ FLOW =_> ""Conduit uses the normal flow option. B-N 1/ 0.00 N 1-C/ 0.00 C-D/ 0.00 N3-F/ 0.00 A-N1/ 0.00 N2-D/ 0.00 I-N4/ 0.00 N4-N5/ 0.00 I-N5/ 0.00 F-G/ 0.00 G-H/ 0.00 H-I/ 0.00 Box l/ 0.00 Box 3/ 0.00 Box 4/ 0.00 Box 2/ 0.00 FREE # 1/ 0.00 Conduit/ Velocity B-N1/ 0.00 NI-C/ 0.00 C-D/ 0.00 N3-F/ 0.00 A-N1/ 0.00 N2-D/ 0.00 I-N4/ 0.00 N4-N5/ 0.00 I-N51 0.00 F-G/ 0.00 G-H/ 0.00 H-I/ 0.00 Box 1/ 0.00 Box 3/ 0.00 Box 4/ 0.00 Box 2/ 0.00 Conduit/ Cross Sectional Area B-N 1/ 0.00 N 1-C/ 0.00 C-D/ 0.00 N3-F/ 3.09 A-N1/ 0.00 N2-D/ 1.40 I-N4/ 9.70 N4-N5/ 12.91 I-N5/ 27.24 F-G/ 7.81 G-H/ 14.77 H-I/ 18.62 Box 1/ 0.00 Box 3/ 0.22 Box 4/ 2.35 Box 2/ 0.00 Conduit/ Hydraulic Radius B-N1/ 0.00 N1-C/ 0.00 C-D/ 0.00 N3-F/ 0.42 A-N1/ 0.00 N2-D/ 0.32 I-N4/ 1.04 N4-N5/ 1.00 I-N5/ 1.92 F-G/ 0.93 G-H/ 1.27 H-I/ 1.28 Box 1/ 0.00 Box 3/ 0.04 Box 4/ 0.32 Box 2/ 0.00 Conduit/ Upstream/ Downstream Elevation B-N1/ 22.00/ 22.00 N3-F/ 20.16/ 20.16 I-N4/ 20.16/ 20.16 F-G/ 20.16/ 20.16 Box l/ 20.69/ 20.69 Box 2/ 20.33/ 20.33 N1-C/ 21.57/ 21.57 A-N1/ 22.00/ 22.00 N4-N5/ 20.16/ 20.16 G-H/ 20.16/ 20.16 Box 3/ 20.33/ 20.16 ######## Important Information ######## Start time of user hydrographs was... 18.000000000000000 Start time of the simulation was..... 18.000000000000000 Found a match between user hydrograph and simulation start time. Will move ahead 1.561251128379126E-017 hours C-D/ 20.84/ 20.84 N2-D/ 20.84/ 20.16 I-N51 20.16/ 20.16 H-I/ 20.16/ 20.16 Box 4/ 20.16/ 20.16 System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs ) N1 / 8.19E+00 N3 / 7.78E-01 N2 / 2.00E-02 N5 / 5.00E-03 N4 / 2.00E-02 ######################################## _> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs ) N1 / 9.50E+00 N3 / 1.25E+00 N2 / 2.05E-01 N5 / 5.40E-02 N4 / 2.05E-01 ######################################## ######################################## ===> System inflows (data group K3) at 19.00 hours ( Junction / Inflow,cfs ) N1 / 1.28E+01 N3 / 2.21E+00 N2 / 6.14E-01 N5 / 1.56E-01 N4 / 5.94E-01 ######################################## ######################################## => System inflows (data group K3) at 20.00 hours ( Junction / Inflow,cfs ) N1 / 1.34E+01 N3 / 2.42E+00 N2 / 6.96E-01 N5 / 1.77E-01 N4 / 6.76E-01 ######################################## Cycle 500 Time 20 Hrs - 5.00 Min Junction / Depth / Elevation => ""Junction is Surcharged. B/ 0.47 / 23.47 N 1 / 1.47 / 23.47 C/ 1.15 / 22.72 D/ 0.67 / 21.51 N3/ 1.56 / 20.95 V 2.22 / 20.16 A/ 0.00 / 24.40 N2/ 2.61 / 21.51 N51 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.39 / 20.33 G/ 1.66 / 20.19 H/ 2.05 / 20.16 Box cb B/ 0.77 / 21.10 Box cb C/ 0.92 / 21.00 Box cb A/ 0.68 / 21.36 Conduit/ FLOW => ""Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 12.83 C-D/ 12.80 N3-F/ 15.50 A-N1/ 0.00 N2-D/ -0.61 I-N4/ -2.71 N4-N5/ -2.11 I-N5/ 18.19 F-G/ 15.48 G-H/ 15.47 H-U 15.48 Box 1/ 13.41 Box 3/ 13.37 Box 4/ 13.32 Box 2/ 13.40 FREE # 1/ 16.24 ######################################## => System inflows (data group K3) at 21.00 hours( Junction / Inflow,cfs ) N1 / 1.28E+01 N3 / 2.23E+00 N2 / 6.35E-01 N5 / 1.61E-01 N4 / 6.14E-01 ######################################## ######################################## _=> System inflows (data group K3) at 22.00 hours ( Junction / Inflow,cfs ) NI / 1.51E+01 N3 / 2.91 E+00 N2 / 9.22E-01 N5 / 2.30E-01 N4 / 8.81E-01 ######################################## Cycle 1000 Time 22 Hrs - 10.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 0.49 / 23.49 Nl/ 1.49 / 23.49 C/ 1.16 / 22.73 D/ 0.68 / 21.52 N3/ 1.58 / 20.97 I/ 2.21 / 20.15 A/ 0.00 / 24.40 N2/ 2.62 / 21.52 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.40 / 20.33 G/ 1.66 / 20.19 H/ 2.05 / 20.16 Box cb B/ 0.78 / 21.11 Box cb C/ 0.94 / 21.02 Box cb A/ 0.69 / 21.38 Conduit/ FLOW => ""Conduit uses the normal flow option. B-N1/ -0.01 NI-C/ 13.13 C-D/ 13.05 N3-F/ 15.89 A-Nl/ 0.00 N2-D/ -0.67 I-N4/ -3.37 N4-N5/ -2.71 I-N51 19.23 F-G/ 15.87 G-H/ 15.86 H-I/ 15.86 Box 1/ 13.70 Box 3/ 13.65 Box 4/ 13.60 Box 2/ 13.68 FREE # l/ 16.69 ######################################## _> System inflows (data group K3) at 23.00 hours ( Junction / Inflow,cfs ) N1 / 3.18E+01 N3 / 7.47E+00 N2 / 2.70E+00 N5 / 6.78E-01 N4 / 2.60E+00 ######################################## ######################################## _> System inflows (data group K3) at 24.00 hours ( Junction / Inflow,cfs ) N1 / 3.34E+01 N3 / 7.86E+00 N2 / 2.87E+00 N5 / 7.19E-01 N4 / 2.74E+00 ######################################## Cycle 1500 Time 24 Hrs - 15.00 Min Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 1.14 / 24.14 N I 1 2.14 / 24.14 C/ 1.77 / 23.34 D/ 1.37 / 22.21 N3/ 2.37 / 21.76 1/ 2.18 / 20.12 A/ 0.00 / 24.40 N2/ 3.32 / 22.22 N51 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.96 / 20.90 G/ 1.85 / 20.38 H/ 2.07 / 20.19 Box cb B/ 1.60 / 21.93 Box cb C/ 1.76 / 21.84 Box cb A/ 1.42 / 22.11 Conduit/ FLOW =_> "*" Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 32.17 C-D/ 32.13 N3-F/ 42.36 A-N1/ 0.00 N2-D/ -2.74 I-N4/ -7.95 N4-N5/ -5.31 I-N5/ 50.28 F-G/ 42.34 G-H/ 42.33 H-I/ 42.33 Box l/ 34.86 Box 3/ 34.83 Box 4/ 34.81 Box 2/ 34.84 FREE # 1/ 45.65 ######################################## => System inflows (data group K3) at 25.00 hours ( Junction / Inflow,cfs ) N1 / 3.24E+01 N3 / 7.47E+00 N2 / 2.68E+00 N5 / 6.71E-01 N4 / 2.56E+00 ######################################## ######################################## ___> System inflows (data group K3) at 26.00 hours ( Junction / Inflow,cfs ) M M M M M M M M M s M M M M M r M M M M N1 / 4.06E+01 N3 / 9.42E+00 N2 / 3.40E+00 N5 / 8.47E-01 N4 / 3.26E+00 ######################################## Cycle 2000 Time 26 Hrs - 20.00 Min Junction / Depth / Elevation ==> "*" Junction is Surcharged. B/ 1.22 / 24.22 N1/ 2.22 / 24.22 C/ 1.85 / 23.42 D/ 1.45 / 22.29 N3/ 2.44 / 21.83 I/ 2.18 / 20.12 A/ 0.00 / 24.40 N2/ 3.40 / 22.30 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.03 / 20.97 G/ 1.89 / 20.42 H/ 2.08 / 20.20 Box cb B/ 1.68 / 22.01 Box cb C/ 1.84 / 21.92 Box cb A/ 1.501 22.19 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ -0.01 NI-C/ 35.07 C-D/ 34.87 N3-F/ 45.49 A-Nl/ 0.00 N2-D/ -2.89 I-N4/ -8.21 N4-N5/ -5.42 I-N5/ 53.56 F-G/ 45.40 G-H/ 45.34 H-V 45.34 Box l/ 37.70 Box 3/ 37.57 Box 4/ 37.48 Box 2/ 37.65 FREE # 1/ 48.86 ######################################## __> System inflows (data group K3) at 27.00 hours ( Junction / Inflow,cfs ) NI / 7.67E+01 N3 / 1.70E+01 N2 / 5.98E+00 N5 / 1.50E+00 N4 / 5.73E+00 ######################################## ######################################## _=> System inflows (data group K3) at 28.00 hours ( Junction / Inflow,cfs ) N1 / 1.22E+02 N3 / 2.54E+01 N2 / 8.54E+00 N5 / 2.13E+00 N4 / 8.17E+00 ######################################## Cycle 2500 Time 28 Hrs - 25.00 Min Junction / Depth / Elevation =--> " * " Junction is Surcharged. B/ 2.55 / 25.55 N1/ 3.55 / 25.55 C/ 3.10 / 24.67 D/ 2.97 / 23.81 N3/ 3.72 / 23.11 I/ 2.17 / 20.11 A/ 1.15 / 25.55 N2/ 4.93 / 23.83 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 3.28 / 22.21 G/ 2.82 / 21.35 H/ 2.50 / 20.61 Box cb B/ 3.15 / 23.48 Box cb C/ 3.27 / 23.35 Box cb A/ 3.02 / 23.70 Conduit/ FLOW �> ""Conduit uses the normal flow option. B-N1/ -0.05 N1-C/ 95.19 C-D/ 94.55 N3-F/ 120.26 A-N1/ -0.04 N2-D/ -7.01 I-N4/ -10.37 N4-N5/ -3.62 I-N5/ 129.21 * F-G/ 119.86 G-H/ 119.39 H-I/ 119.17 Box 1/ 101.05 Box 3/ 100.53 Box 4/ 100.14 Box 2/ 100.80 FREE # 1/ 127.34 ######################################## __> System inflows (data group K3) at 29.00 hours ( Junction / Inflow,cfs ) N1 / 1.94E+02 N3 / 3.70E+01 N2 / 1.16E+01 N5 / 2.90E+00 N4 / 1.11E+01 ######################################## ___> System inflows (data group K3) at 30.00 hours ( Junction / Inflow,cfs ) N1 / 1.74E+02 N3 / 3.36E+01 N2 / 1.07E+01 N5 / 2.66E+00 N4 / 1.02E+01 ######################################## Cycle 3000 Time 30 Hrs - 30.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 5.81 / 28.81 N1/ 6.81 / 28.81 C/ 6.42 / 27.99 D/ 6.45 / 27.29 N3/ 5.14 / 24.53 1/ 2.63 / 20.57 A/ 4.41 / 28.81 N2/ 8.43 / 27.33 N51 5.16 / 20.16 N4/ 4.82 / 20.32 F/ 4.70 / 23.63 G/ 3.94 / 22.47 H/ 3.28 / 21.40 Box cb B/ 5.95*/ 26.28 Box cb C/ 5.70*/ 25.78 Box cb A/ 6.32*/ 27.01 Conduit/ FLOW => ""Conduit uses the normal flow option. B-N1/ 0.03 N1-C/ 184.01 C-D/ 184.03 N3-F/ 230.88 A-N1/ 0.00 N2-D/ -11.15 I-N4/ 40.56 N4-N5/ 51.25 I-N5/ 190.85* F-G/ 231.09 G-H/ 231.17 H-I/ 231.22 Box 1/ 195.39 I3ox 3/ 195.37 Box 4/ 195.45 Box 2/ 195.66 FREE # 1/ 244.89 ######################################## =_> System inflows (data group K3) at 31.00 hours ( Junction / Inflow,cfs ) N1 / 1.68E+02 N3 / 3.24E+01 N2 / 1.03E+01 N5 / 2.56E+00 N4 / 9.83E+00 ######################################## ######################################## _> System inflows (data group K3) at 32.00 hours ( Junction / Inflow,cfs ) N1 / 1.54E+02 N3 / 3.00E+01 N2 / 9.52E+00 N5 / 2.38E+00 N4 / 9.11E+00 ######################################## Cycle 3500 Time 32 Hrs - 35.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 4.32 / 27.32 N1/ 5.32 / 27.32 C/ 5.12 / 26.69 D/ 5.35 / 26.19 N3/ 4.83 / 24.22 V 2.48 / 20.42 A/ 2.92 / 27.32 N2/ 7.31 / 26.21 N51 5.16 / 20.16 N4/ 4.77 / 20.27 F/ 4.43 / 23.37 G/ 3.71 / 22.25 H/ 3.09 / 21.21 Box cb B/ 5.08*/ 25.41 Box cb C/ 4.97*/ 25.05 Box cb A/ 5.25*/ 25.93 Conduit/ FLOW =_> "*" Conduit uses the normal flow option. B-N1/ 0.03 N1-C/ 160.18 C-D/ 160.90 N3-F/ 201.49 A-N1/ 0.01 N2-D/ -9.80 I-N4/ 32.54 N4-N5/ 41.95 I-N5/ 169.54* F-G/ 201.87 G-H/ 201.95 H-I/ 201.98 Box 1/ 169.76 Box 3/ 169.85 Box 4/ 170.75 Box 2/ 169.79 FREE # 1/ 213.95 ######################################## _> System inflows (data group K3) at 33.00 hours ( Junction / Inflow,cfs ) N1 / 7.05E+01 N3 / 1.36E+01 N2 / 4.30E+00 N5 / 1.07E+00 N4 / 4.12E+00 ######################################## ######################################## ___> System inflows (data group K3) at 34.00 hours ( Junction / Inflow,cfs ) N1 / 5.28E+01 N3 / 8.68E+00 N2 / 2.33E+00 N5 / 5.84E-01 N4 / 2.23E+00 ######################################## Cycle 4000 Time 34 Hrs - 40.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 1.79 / 24.79 N1/ 2.79 / 24.79 C/ 2.39 / 23.96 D/ 2.08 / 22.92 N3/ 2.98 / 22.37 I/ 2.14 / 20.08 A/ 0.39 / 24.79 N2/ 4.03 / 22.93 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.56 / 21.49 G/ 2.21 / 20.74 H/ 2.18 / 20.30 Box cb B/ 2.30 / 22.63 Box cb C/ 2.44 / 22.52 Box cb A/ 2.14 / 22.82 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.02 N1-C/ 58.85 C-D/ 59.22 N3-F/ 73.28 A-N1/ 0.01 N2-D/ -3.03 I-N4/ -11.86 N4-N5/ -9.00 I-N5/ 85.51 F-G/ 73.47 G-H/ 73.62 H-V 73.68 Box l/ 62.34 Box 3/ 62.58 Box 4/ 62.75 Box 2/ 62.46 FREE # l/ 77.27 ######################################## _> System inflows (data group K3) at 35.00 hours ( Junction / Inflow,cfs ) N1 / 4.85E+01 N3 / 7.43E+00 N2 / 1.84E+00 N5 / 4.58E-01 N4 / 1.76E+00 ######################################## ######################################## __> System inflows (data group K3) at 36.00 hours ( Junction / Inflow,cfs ) N 1 / 4.65E+01 N3 / 6.92E+00 N2 / 1.64E+00 N5 / 4.07E-01 N4 / 1.56E+00 ######################################## Cycle 4500 Time 36 Hrs - 45.00 Min Junction / Depth / Elevation =_> " * " Junction is Surcharged. B/ 1.52 / 24.52 N1/ 2.52 / 24.52 C/ 2.14 / 23.71 D/ 1.73 / 22.57 N3/ 2.66 / 22.05 1/ 2.16 / 20.10 A/ 0.12 / 24.52 N2/ 3.68 / 22.58 N51 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.24 / 21.18 G/ 2.00 / 20.53 H/ 2.11 / 20.22 Box cb B/ 1.94 / 22.27 Box cb C/ 2.09 / 22.17 Box cb A/ 1.78 / 22.47 M M M M o M M M M M M M M M M M r M M Conduit/ FLOW =_> ""Conduit uses the normal flow option. B-N1/ 0.00 Nl-C/ 47.05 C-D/ 47.09 N3-F/ 55.92 A-N1/ 0.00 N2-D/ -1.70 I-N4/ -9.85 N4-N5/ -8.25 I-N5/ 65.81 F-G/ 55.95 G-H/ 55.96 H-1/ 55.96 Box 1/ 48.80 Box 3/ 48.83 Box 4/ 48.85 Box 2/ 48.81 FREE # l/ 57.99 ######################################## _> System inflows (data group K3) at 37.00 hours ( Junction / Inflow,cfs ) N1 / 4.39E+01 N3 / 6.29E+00 N2 / 1.39E+00 N5 / 3.46E-01 N4 / 1.33E+00 ######################################## ######################################## __> System inflows (data group K3) at 38.00 hours( Junction / Inflow,cfs ) N1 / 4.26E+01 N3 / 5.98E+00 N2 / 1.29E+00 N5 / 3.20E-01 N4 / 1.23E+00 ######################################## Cycle 5000 Time 38 Hrs - 50.00 Min Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 1.42 / 24.42 N1/ 2.42 / 24.42 C/ 2.04 / 23.61 D/ 1.61 / 22.45 N3/ 2.54 / 21.93 1/ 2.17 / 20.11 A/ 0.06 / 24.46 N2/ 3.55 / 22.45 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.13 / 21.06 G/ 1.94 / 20.47 H/ 2.09 / 20.20 Box cb B/ 1.82 / 22.15 Box cb C/ 1.97 / 22.04 Box cb A/ 1.66 / 22.34 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.00 Nl-C/ 42.83 C-D/ 42.86 N3-F/ 50.26 A-Nl/ 0.00* N2-D/ -1.31 I-N4/ -9.13 N4-N5/ -7.88 I-N51 59.41 F-G/ 50.28 G-H/ 50.29 H-I/ 50.29 Box 1/ 44.18 Box 3/ 44.20 Box 4/ 44.22 Box 2/ 44.19 FREE # 1/ 51.86 ######################################## _> System inflows (data group K3) at 39.00 hours ( Junction / Inflow,cfs ) N1 / 3.93E+01 N3 / 5.10E+00 N2 / 9.42E-01 N5 / 2.33E-01 N4 / 9.01E-01 ######################################## ######################################## _> System inflows (data group K3) at 40.00 hours ( Junction / Inflow,cfs ) NI / 3.51E+01 N3 / 4.01 E+00 N2 / 5.12E-01 N5 / 1.31E-01 N4 ######################################## Cycle 5500 Time 40 Hrs - 55.00 Min Junction / Depth / Elevation => " * " Junction is Surcharged. / 4.92E-01 B/ 1.23 / 24.23 N1/ 2.23 / 24.23 C/ 1.86 / 23.43 D/ 1.38 / 22.22 N3/ 2.32 / 21.71 I/ 2.18 / 20.12 A/ 0.06 / 24.46 N2/ 3.32 / 22.22 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.92 / 20.86 G/ 1.83 / 20.37 H/ 2.07 / 20.18 Box cb B/ 1.58 / 21.91 Box cb C/ 1.73 / 21.81 Box cb A/ 1.42 / 22.11 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 35.47 C-D/ 35.57 N3-F/ 40.46 A-N1/ 0.00* N2-D/ -0.56 I-N4/ -7.86 N4-N5/ -7.33 I-N5/ 48.39 F-G/ 40.51 G-H/ 40.54 H-I/ 40.54 Box l/ 36.17 Box 3/ 36.24 Box 4/ 36.29 Box 2/ 36.20 FREE # 1/ 41.20 ######################################## => System inflows (data group K3) at 41.00 hours( Junction / Inflow,cfs ) N1 / 3.28E+01 N3 / 3.48E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01 #################t####################### Table E5 - Junction Time Limitation Summary (0.10 or 0.25)* Depth * Area Timestep = ------------------------------ Sum of Flow The time this junction was the limiting junction M M M M M M M M M M M M M M M r is listed in the third column. Junction Time(.10) Time(.25) Time(sec) B 38.8767 97.1918 41430.0000 NI 56.8356 142.0890 0.0000 C 84.2758 150.0000 0.0000 D 6.6822 16.7055 0.0000 N3 68.6864 150.0000 0.0000 I 150.0000 150.0000 0.0000 A 28.8947 72.2367 0.0000 N2 5.8373 14.5933 45.0000 N5 150.0000 150.0000 0.0000 N4 150.0000 150.0000 0.0000 F 150.0000 150.0000 0.0000 G 150.0000 150.0000 0.0000 H 150.0000 150.0000 0.0000 Box cb B 0.8465 2.1163 3690.0000 Box cb C 0.6407 1.6017 2430.0000 Box cb A 0.2581 0.6452 38805.0000 The junction requiring the smallest time step was ... B Table E5a - Conduit Explicit Condition Summary Courant = Conduit Length Timestep = -------------------------------- Velocity + sgrt(g*depth) Conduit Implicit Condition Summary Courant = Conduit Length Timestep = -------------------------------- Velocity The 3rd column is the Explicit time step times the minimum courant time step factor Minimum Conduit Time Step in seconds in the 4th column in the list. Maximum possible is 10 * maximum time step The 5th column is the maximum change at any time step during the simulation. The 6th column is the wobble value which is an indicator of the flow stability. You should use this section to find those conduits that are slowing your model down. Use modify conduits to alter the length of the slow conduits to make your simulation faster, or change the conduit name to "CHME?????" where ????? are any characters, this will lengthen the conduit based on the model time step, not the value listed in modify conduits. Conduit Time(exp) Expl*Cmin Time(imp) Time(min) Max Qchange Wobble Type of Soln B-N1 5.3136 5.3136 150.0000 0.2500 0.1074 0.2987 Normal Soln NI-C 18.3015 18.3015 59.3487 0.0000 0.4980 2.4716 Normal Soln C-D 15.6861 15.6861 49.3781 0.0000 -0.7733 2.8139 Normal Soln N3-F 11.0098 11.0098 28.3293 0.0000 0.2795 0.7134 Normal Soln A-N1 6.4631 6.4631 150.0000 0.0000 0.0290 0.1391 Normal Soln N2-D 16.8880 16.8880 150.0000 0.0000 -0.2286 1.7754 Normal Soln I-N4 23.7242 23.7242 94.2353 0.0000 -0.1370 1.4750 Normal Soln N4-N5 5.8475 5.8475 23.7450 316.0000 -0.2106 1.5251 Normal Soln I-N5 25.4818 25.4818 74.2736 0.0000 0.3536 0.2499 Normal Soln F-G 11.1659 11.1659 26.8321 0.0000 0.2897 0.6061 Normal Soln G-H 11.4960 11.4960 27.8167 0.0000 0.3092 0.2103 Normal Soln H-I 4.7650 4.7650 9.7893 0.0000 0.3184 0.5442 Normal Soln Box 1 2.9875 2.9875 8.1342 1123.7500 -3.5446 25.4743 Normal Soln Box 3 5.0137 5.0137 13.2745 0.0000 1.9138 15.9792 Normal Soln Box 4 11.4964 11.4964 30.0577 0.0000 -0.8491 8.1638 Normal Soln Box 2 6.9450 6.9450 18.9202 0.0000 -1.7920 14.4332 Normal Soln The conduit with the smallest time step limitation was..Box 1 The conduit with the largest wobble was.................Box 1 M = M r = = = = = M M M = M The conduit with the largest flow change in any consecutive time step...................................Box 1 Table E6. Final Model Condition This table is used for steady state flow comparison and is the information] saved to the hot -restart file. Final Time = 42.004 hours Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 1.151 24.15/ NI/ 2.15 / 24.15/ C/ 1.79 / 23.36/ D/ 1.29 / 22.13/ N3/ 2.23 / 21.62/ I/ 2.19 / 20.13/ A/ 0.06 / 24.46/ N2/ 3.23 / 22.13/ N51 5.16 / 20.16/ N4/ 4.66 / 20.16/ F/ 1.84 / 20.78/ G/ 1.80 / 20.33/ H/ 2.06 / 20.18/ Box cb B/ 1.48 / 21.81/ Box cb C/ 1.64 / 21.72/ Box cb A/ 1.33 / 22.02/ Conduit/ Flow =_> ""Conduit uses the normal flow option. B-N1/ 0.00 / NI-C/ 32.80 / C-D/ 32.85 / N3-F/ 36.79 / A-N1/ 0.00*/ N2-D/ -0.34 / I-N4/ -7.20 / N4-N5/ -6.89 / I-N5/ 44.02 / F-G/ 36.82 / G-H/ 36.83 / H-V 36.83 / Box 1/ 33.21 / Box 3/ 33.25 / Box 4/ 33.28 / Box 2/ 33.23 / FREE # 1/ 37.22 / Conduit/ Velocity B-N1/ 0.00 / NI-C/ 4.64 / C-D/ 5.12 / N3-F/ 3.62 / A-N1/ 0.00 / N2-D/ -0.05 / I-N4/ -0.70 / N4-N5/ -0.54 / I-N5/ 1.62 / F-G/ 3.40 / G-H/ 2.34 / H-I/ 1.98 / Box 1/ 4.22 / Box 3/ 3.57 / Box 4/ 2.91 / Box 2/ 3.95 / Conduit/ Width B-N1/ 3.66 / N1-C/ 5.48 / C-D/ 5.36 / N3-F/ 7.67 / A-N1/ 1.86 / N2-D/ 2.51 / I-N4/ 2.63 / N4-N5/ 0.47 / I-N51 9.77 / F-G/ 7.52 / G-H/ 9.70 / H-I/ 13.61 / Box 1/ 6.00 / Box 3/ 6.00 / Box 4/ 6.00 / Box 2/ 6.00 / Junction/ EGL B/ 1.151 N1/ 2.15 / C/ 2.13 / D/ 2.00 / N3/ 2.36 / I/ 2.25 / A/ 0.06 / N2/ 3.23 / N5/ 5.20 / N4/ 4.67 / F/ 2.05 / G/ 1.98 / H/ 2.15 / Box cb B/ 1.73 / Box cb C/ 1.84 / Box cb A/ 1.61 / Junction/ Freeboard B/ 10.85 / N1/ 8.51 / C/ 11.86 / D/ 6.54 / N3/ 6.38 / I/ 9.87 / A/ 8.89 / N2/ 8.17 / N5/ 7.84 / N4/ 4.84 / F/ 7.73 / G/ 9.68 / H/ 9.83 / Box cb B/ 6.69 / Box cb C/ 4.88 / Box cb A/ 8.23 / Junction/ Max Volume B/ 79.47 / N1/ 92.03 / C/ 86.45 / D/ 86.60 / N3/ 65.97 / 1/ 33.83 / A/ 61.88 / N2/ 111.90 / N5/ 64.84 / N4/ 60.88 / F/ 60.10 / G/ 50.54 / H/ 42.20 / Box cb B/ 79.48 / Box cb C/ 75.44 / Box cb A/ 86.32 / Junction/Total Fldng B/ 0.00 / N1/ 0.00 / C/ 0.00 / D/ 0.00 / N3/ 0.00 / 1/ 0.00 / A/ 0.00 / N2/ 0.00 / N51 0.00 / N4/ 0.00 / F/ 0.00 / G/ 0.00 / H/ 0.00 / Box cb B/ 0.00 / Box cb C/ 0.00 / Box cb A/ 0.00 / M = M M = = M = = r M M = = M M M M M M r M M M M M M M M M M Conduit/ Cross Sectional Area B-N1/ 2.05 / N1-C/ 7.06 / C-D/ 6.42 / N3-F/ 10.17 / A-N1/ 0.75 / N2-D/ 6.44 / I-N4/ 10.21 / N4-N5/ 12.85 / I-N51 27.09 / F-G/ 10.82 / G-H/ 15.73 / H-I/ 18.56 / Box l/ 7.87 / Box 3/ 9.32 / Box 4/ 11.43 / Box 2/ 8.41 / Conduit/ Final Volume B-N1/ 151.59 / N1-C/ 2790.19 / C-D/ 2155.90 / N3-F/ 1739.52 / A-N1/ 67.16 / N2-D/ 1971.64 / I-N4/ 3830.33 / N4-N5/ 1285.20 / I-N51 13546.52 / F-G/ 1752.44 / G-H/ 2626.57 / H-I/ 1299.11 / Box l/ 551.21 / Box 3/ 1062.94 / Box 4/ 2938.55 / Box 2/ 1362.64 / Conduit/ Hydraulic Radius B-N1/ 0.49 / N1-C/ 1.02 / C-D/ 0.96 / N3-F/ 0.88 / A-N1/ 0.22 / N2-D/ 0.87 / I-N4/ 1.03 / N4-N5/ 1.00 / I-N5/ 1.91 / F-G/ 1.151 G-H/ 1.33 / H-I/ 1.27 / Box 1/ 0.91 / Box 3/ 1.02 / Box 4/ 1.16 / Box 2/ 0.95 / Conduit/ Upstream/ Downstream Elevation B-N1/ 24.15/ 24.15 N1-C/ 24.15/ 23.36 C-D/ 23.36/ 22.43/ N3-F/ 21.62/ 20.78 A-N1/ 24.46/ 24.15 N2-D/ 22.13/ 22.13/ I-N4/ 20.13/ 20.16 N4-N5/ 20.16/ 20.16 I-N51 20.13/ 20.16/ F-G/ 20.78/ 20.33 G-H/ 20.33/ 20.18 H-U 20.18/ 20.13/ Box 1/ 22.13/ 22.02 Box 3/ 21.81/ 21.72 Box 4/ 21.72/ 21.62/ Box 2/ 22.02/ 21.81 Table E7 - Iteration Summary * Total number of time steps simulated ............ 5760 Total number of passes in the simulation........ 61986 Total number of time steps during simulation.... 20232 Ratio of actual # of time steps / NTCYC......... 3.513 Average number of iterations per time step...... 3.064 Average time step size(seconds)................ 4.270 Smallest time step size(seconds)................ 0.500 Largest time step size(seconds)................ 7.500 Average minimum Conduit Courant time step (sec). 5.703 Average minimum implicit time step (sec)........ 4.866 Average minimum junction time step (sec)........ 4.866 Average Courant Factor Tf....................... 4.866 Number of times omega reduced ................... 0 Table E8 - Junction Time Step Limitation Summary Not Convr = Number of times this junction did not converge during the simulation. Avg Convr = Average junction iterations. Conv err = Mean convergence error. Omega Cng = Change of omega during iterations Max Item = Maximum number of iterations Junction Not Convr Avg Convr Total Itt Omega Cng Max Item Ittm > 10 Ittm >25 Ittm >40 B 0 3.84 77768 0 19 132 0 0 N1 0 3.93 79601 0 35 584 9 0 C 0 1.04 20977 0 8 0 0 0 D 0 1.36 27558 0 19 1 0 0 N3 0 1.09 22016 0 17 1 0 0 I 0 1.16 23567 0 18 1 0 0 A 0 2.71 54755 0 62 235 1 1 N2 0 1.18 23931 0 21 3 0 0 N5 0 1.19 24108 0 20 1 0 0 r = r = " M r = M = = M M M = = = = = s=== W M M M M = = = = r W= M M N4 0 1.15 23349 0 17 2 0 0 F 0 1.08 21933 0 7 0 0 0 G 0 1.09 22099 0 7 0 0 0 H 0 1.08 21779 0 10 1 0 0 Box cb B 0 2.49 50363 0 33 897 888 0 Box cb C 0 1.42 28762 0 15 421 0 0 Box cb A 0 4.40 89020 0 58 1328 1276 1118 Total number of iterations for all junctions.. 611586 Minimum number of possible iterations......... 323712 Efficiency of the simulation .................. 1.89 Excellent Efficiency Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower thel efficiency generally the faster your model will run. If your efficiency is less than 1.5 then you may try increasing your time step so that your overall simulation] is faster. Ideal efficiency would be around 2.0 Good Efficiency < 1.5 mean iterations Excellent Efficiency < 2.5 and > 1.5 mean iterations Good Efficiency < 4.0 and > 2.5 mean iterations Fair Efficiency < 7.5 and > 4.0 mean iterations Poor Efficiency > 7.5 mean iterations Table E9 - JUNCTION SUMMARY STATISTICS The Maximum area is only the area of the node, it does not include the area of the surrounding conduits) Uppermost Maximum Time Feet of Maximum Maximum Maximum Maximum Ground PipeCrown Junction of Surcharge Freeboard Junction Gutter Gutter Gutter Junction Elevation Elevation Elevation Occurence at Max of node Area Depth Width Velocity Name --------------- feet feet feet Hr. Min. Elevation feet ft^2 feet feet fvs B --------- 35 -------- 28.392 -------- 29.3245 --------- 30 1 --------- 0.9325 -------- 5.6755 -------- 12.566 --------- 0 --------- 0 --------- 0 N1 32.66 28.3 29.3239 30 1 1.0239 3.3361 12.566 0 0 0 C 35.22 27.66 28.4496 30 0 0.7896 6.7704 12.566 0 0 0 D 28.67 26.92 27.7325 30 0 0.8125 0.9375 12.566 0 0 0 N3 28 27.65 24.6399 30 2 0 3.3601 12.566 0 0 0 I 30 28.94 20.6318 30 3 0 9.3682 12.566 0 0 0 A 33.35 27.46 29.3247 30 1 1.8647 4.0253 12.566 0 0 0 N2 30.3 22.4 27.8049 30 0 5.4049 2.4951 12.566 0 0 0 N5 28 26 20.16 18 0 0 7.84 12.566 0 0 0 N4 25 20 20.3446 30 3 0.3446 4.6554 12.566 0 0 0 F 28.51 27.1975 23.72 30 2 0 4.79 12.566 0 0 0 G 30.01 29.2725 22.5547 30 2 0 7.4553 12.566 0 0 0 H 30.01 28.855 21.473 30 3 0 8.537 12.566 0 0 0 Box cb B 28.5 24.3296 26.6517 30 0 2.3221 1.8483 12.566 0 0 0 Box cb C 26.6 24.0788 26.0805 30 0 2.0017 0.5195 12.566 0 0 0 Box cb A 30.25 24.686 27.5561 30 0 2.8701 2.6939 12.566 0 0 0 M = = o r= r s M = = M= M M M M M = = = = M = = = ! r = M = = M Table E10 - CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions. * denotes an open conduit that has been overtopped this is a potential source of severe errors Conduit Maximum Maximum Time Maximum Time Ratio of Maximum Depth Ratio Ratio Design Design Vertical Computed of Computed of Max. to at Pipe Ends d/D d/D Conduit Flow Velocity Depth Flow Occurence Velocity Occurence Design Upstream Dwnstrm US DS Name --------------- (cfs) ------- (ft/s) -------- (in) -------- (cfs) ------- Hr. Min. (ft/s) Hr. Min. Flow (ft) (ft) B-N1 99.4838 5.0667 60 0.3718 ----------- 30 5 ------- -0.2257 ---------- 19 37 ------- 0.0037 -------- 29.3245 -------- 29.3239 ----- 1.186 ----- 1.204 N1-C 158.2956 5.5986 72 193.892 30 1 6.6556 29 20 1.2249 29.3239 28.4495 1.17 1.131 C-D 172.9674 6.1175 72 194.001 30 1 6.8046 28 45 1.1216 28.4496 27.7325 1.146 1.135 N3-F 728.053 6.9132 99.12 242.452 30 2 6.0396 30 1 0.333 24.64 23.72 0.6356 0.579 A-N1 70.3134 9.9473 36 0.0898 33 32 -0.031 27 9 0.0013 29.3247 29.3239 1.621 2.008 N2-D 75.905 7.8894 42 -11.841 30 0 -1.221 30 0 -0.156 27.8049 27.7314 1.967 2.523 I-N4 95.9369 7.6344 48 43.021 30 4 3.9795 30 4 0.4484 20.6318 20.3446 0.6729 1.086 N4-N5 99.8147 7.943 48 54.0913 30 4 4.2131 30 4 0.5419 20.3446 20.16 1.196 1.29 I-N5 1518.25 15.976 132 199.3846 30 3 6.7319 30 3 0.1313 20.6318 20.16 0.2447 0.4691 F-G 769.4335 6.6961 91.08 242.3859 30 2 6.0376 30 1 0.315 23.72 22.5547 0.6301 0.5299 G-H 2216.818 9.5668 128.88 242.305 30 3 6.0056 30 3 0.1093 22.5547 21.473 0.3745 0.3127 H-I 879.2816 6.7384 76.44 242.3471 30 3 7.1535 30 3 0.2756 21.473 20.6318 0.5272 0.4226 Box 1 134.9276 5.622 48 208.0356 30 2 8.6399 30 2 1.5418 27.7314 27.5499 1.722 1.716 Box 3 134.9276 5.622 48 206.6663 30 0 8.5908 30 0 1.5317 26.6517 26.0805 1.58 1.5 Box 4 148.9257 6.2052 48 205.9513 30 1 8.564 30 1 1.3829 26.0805 24.64 1.5 1.312 Box 2 134.9276 5.622 48 206.7757 30 2 8.5906 30 2 1.5325 27.5499 26.6517 1.716 1.58 FREE # 1 Undefnd Undefnd Undefn 256.3057 30 3 Table El 1. Area assumptions used in the analysis) Subcritical and Critical flow assumptions from Subroutine Head. See Figure 17-1 in the manual for further information. *_=---_ Duration Duration Durat. of Durat. of of of Sub- Upstream Downstream Maximum Maximum Maximum Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D Name Flow(min) Flow(min) Flow(min) Flow(min) Radius-m Area(ft^2) (ft^2/s) B-N1 87.2500 1342.1250 10.6250 0.0000 1.5207 20.5785 0.0622 NI-C 0.1875 1434.7500 0.0000 5.0625 1.8254 29.6100 45.1745 C-D 0.1875 415.0000 0.0000 1024.8125 1.8248 29.6364 44.6692 N3-F 0.0000 1440.0000 0.0000 0.0000 1.9191 40.1800 30.2655 A-N1 773.5000 664.8333 1.6667 0.0000 0.8395 7.2672 0.0421 N2-13 3.1250 1436.8750 0.0000 0.0000 0.9604 9.8550 9.5425 I-N4 0.0000 1440.0000 0.0000 0.0000 1.0928 10.8152 13.9946 N4-N5 0.0000 1440.0000 0.0000 0.0000 1.0000 12.9107 20.9397 I-N5 0.0000 1440.0000 0.0000 0.0000 2.0567 29.6179 26.4286 F-G 0.0000 1440.0000 0.0000 0.0000 1.7776 40.1516 26.5755 G-H 0.0000 1440.0000 0.0000 0.0000 1.8640 40.3613 22.1525 H-1 0.0000 1440.0000 0.0000 0.0000 1.6416 33.8905 21.6286 Box 1 0.3750 1439.6250 0.0000 0.0000 1.6298 26.3150 57.8259 Box 3 3.2500 1436.7500 0.0000 0.0000 1.6233 26.3139 51.8803 Box 4 0.0000 1440.0000 0.0000 0.0000 1.5767 26.3055 47.7148 Box 2 1.8750 1438.1250 0.0000 0.0000 1.6200 26.3134 55.6875 M M= M o M M M M M M r M M M M M M M w� w w w w sw w w� w w w w ww wi w ww w w� w Table E12. Mean Conduit Flow Information Mean Total Mean Low Mean Mean Mean Mean Conduit Flow Flow Percent Flow Froude Hydraulic Cross Conduit Name --------------- (cfs) (ft^3) Change Weightng -------- -------- Number Radius Area Roughness B-N1 -------- -0.0011-95.9550 -------- 0.0018 ------ 0.9654 --------------- 0.0002 --------- 0.8648 8.3080 0.0120 NI-C 62.06115362080.7 0.0334 0.9998 0.5760 1.2890 14.6348 0.0140 C-D 62.0190 5358438.5 0.0388 0.9998 0.6378 1.2461 14.2927 0.0140 N3-F 77.1082 6662149.0 0.0445 1.0000 0.4715 1.3011 20.7742 0.0251 A-N1 0.0000-0.1598 0.0006 0.6045 0.0004 0.4719 3.2849 0.0140 N2-D -3.5594-307535.1 0.0086 0.9986 0.0006 0.8573 7.8521 0.0140 I-N4 0.6577 56822.627 0.0125 1.0000 0.1289 1.0422 10.2586 0.0140 N4-N5 4.0787 352400.39 0.0129 1.0000 0.0998 1.0000 12.8633 0.0140 I-N5 76.4380 6604240.1 0.0363 1.0000 0.4091 1.9452 27.6615 0.0140 F-G 77.0975 6661227.5 0.0408 1.0000 0.4901 1.4101 20.8632 0.0254 G-H 77.0932 6660849.5 0.0414 1.0000 0.4315 1.5197 23.9552 0.0255 H-I 77.0928 6660816.4 0.0424 1.0000 0.4793 1.3967 23.0679 0.0250 Box 1 65.5641 5664739.2 0.1771 0.9997 0.6057 1.0713 14.7190 0.0140 Box 3 65.5366 5662361.2 0.1122 0.9986 0.5315 1.1298 15.6640 0.0140 Box 4 65.5136 5660377.0 0.0706 1.0000 0.4627 1.2045 17.0603 0.0140 Box 2 65.5535 5663821.7 0.1063 0.9991 0.5826 1.0931 15.0717 0.0140 FREE # 1 81.4083 7033679.6 Table E13. Channel losses(H), headwater depth (HW), tailwater depth (TW), critical and normal depth (Yc and Yn). Use this section for culvert comparisons Conduit Maximum Head Friction Critical Normal HW TW Name Flow Loss Loss Depth Depth Elevat Elevat --------------------------- B-N1 0.1580 --------- 0.0000 --------- 0.0000 --------- 0.0577 --------- 0.1066 --------- 26.7606 26.7609 Max Flow N1-C 193.8907 0.0000 0.8761 3.8026 6.0000 29.3114 28.4407 Max Flow C-D 193.9331 0.0000 0.7440 3.8030 6.0000 28.4397 27.7003 Max Flow N3-F 242.4520 0.0000 0.7735 3.8851 5.6716 24.6400 23.7192 Max Flow A-N1 0.0881 0.0000 0.0000 0.0693 0.0505 25.8553 25.8552 Max Flow N2-D-0.3378 0.0000 -0.0001 0.1639 0.1605 22.1348 22.1349 Max Flow I-N4 43.0174 0.0000 0.4682 1.9595 1.8771 20.6302 20.3445 Max Flow N4-N5 54.0847 0.0000 0.1574 2.2092 2.0985 20.3443 20.1600 Max Flow I-N5 199.3838 0.0000 0.7689 3.2085 2.6892 20.6318 20.1600 Max Flow F-G 242.3852 0.0000 0.8871 3.8811 5.1329 23.7198 22.5547 Max Flow G-H 242.3050 0.0000 0.8553 3.1646 4.3555 22.5544 21.4728 Max Flow H-1 242.3025 0.0000 0.5296 3.0021 3.9304 21.4726 20.6318 Max Flow Box 1 207.2076 0.0000 0.3607 3.3331 4.0000 27.6659 27.2564 Max Flow Box 3 206.6012 0.0000 0.5850 3.3265 4.0000 26.5370 25.9537 Max Flow Box 4 205.6248 0.0000 1.3079 3.3160 4.0000 25.9673 24.6335 Max Flow Box 2 206.1120 0.0000 0.8264 3.3213 4.0000 27.4553 26.5680 Max Flow = M M M M M = M = M = = = M M M r M Table E13a. CULVERT ANALYSIS CLASSIFICATION, and the time the culvert was in a particular classification during the simulation. The time is in minutes. The Dynamic Wave Equation is used for all conduit analysis but the culvert flow classification condition is based on the HW and TW depths. Mild Mild Steep Mild Mild Slope Slope TW Slope TW Slug Flow Slope Slope Critical D Control Insignf Outlet/ TW > D TW <= D Conduit Outlet Outlet Entrance Entrance Outlet Outlet Outlet Inlet Inlet Name Control Control Control Control Control Control Control Control Configuration B-NI 0.00001279.0000 87.2500 0.0000 NI-C 0.50001375.0000 0.0000 0.0000 C-D 444.2500 924.5000 0.0000 0.0000 N3-F 0.00001440.0000 0.0000 0.0000 A-N1 0.0000 0.0000 798.2500 474.7500 N2-D 0.0000 0.0000 10.00001150.0000 I-N4 0.0000 0.0000 0.00001384.5000 N4-N5 0.0000 0.0000 0.0000 0.0000 I-N5 0.0000 0.0000 0.00001052.5000 F-G 0.00001440.0000 0.0000 0.0000 G-H 0.00001440.0000 0.0000 0.0000 H-I 296.25001143.7500 0.0000 0.0000 Box 1 4.2500 1176.0000 0.2500 0.0000 Box 3 1.2500 1173.0000 3.2500 0.0000 Box 4 0.0000 1150.0000 0.0000 0.0000 Box 2 4.7500 1172.2500 1.7500 0.0000 Kinematic Wave Approximations Time in Minutes for Each Condition 73.7500 0.0000 0.0000 0.0000 None 64.5000 0.0000 0.0000 0.0000 None 71.2500 0.0000 0.0000 0.0000 None 0.0000 0.0000 0.0000 0.0000 None 0.0000 166.5000 0.5000 0.0000 None 0.0000 277.7500 2.2500 0.0000 None 55.5000 0.0000 0.0000 0.0000 None 33.7500 1406.2500 0.0000 0.0000 None 0.0000 0.0000 387.5000 0.0000 None 0.0000 0.0000 0.0000 . 0.0000 None 0.0000 0.0000 0.0000 0.0000 None 0.0000 0.0000 0.0000 0.0000 None 259.5000 0.0000 0.0000 0.0000 None 262.5000 0.0000 0.0000 0.0000 None 290.0000 0.0000 0.0000 0.0000 None 261.2500 0.0000 0.0000 0.0000 None Conduit Duration of Slope Super- Roll Name Normal Flow Criteria Critical Waves B-N 1 0.0000 794.9204 0.0000 0.0000 NI-C 0.5500 61.8475 0.0000 0.0000 C-D 0.4473 194.1637 1.1250 0.0000 N3-F 0.0000 304.3125 0.0000 0.0000 A-N1 255.0833 536.4167 0.0000 0.0000 N2-D 9.0000 11.8750 0.0000 0.0000 I-N4 0.0000 364.8750 0.0000 0.0000 N4-N5 0.0000 0.0000 0.0000 0.0000 I-N5 326.12501440.0000 0.0000 0.0000 F-G 0.0000 589.1875 0.0000 0.0000 G-H 0.0000 589.0000 0.0000 0.0000 H-I 0.0000 588.6250 0.0000 0.0000 Box 1 0.8750 1089.0625 2.7500 0.0000 Box 3 2.8750 1163.8500 0.0000 0.0000 Box 4 0.0000 1164.7750 0.0000 0.0000 Box 2 66.8750 1159.6375 2.8750 0.0000 Table E14 - Natural Channel Overbank Flow Information <---- Maximum Velocity -----> <------ Maximum Flow -------> <------ Maximum Area ------> <--- Max. Storage Volume ---> Conduit Left Center Right Left Center Right Left Center Right Left Center Right Maximum Name Velocity Velocity Velocity Flow Flow --------------------------------------------------------------------- Flow Area Area Area Area Area Area Depth N3-F 1.0431 6.2922 0.9158 1.4036 240.5366 --------- 0.5118 ------------------ 1.3457 ------------------ 38.2276 0.5589 ------------------ 230.1094 6536.9261 95,5674 5.0469 F-G 1.0279 6.7845 1.4586 0.9847 234.7622 6.6390 0.9580 34.6028 4.5517 155.1912 5605.6473 737.3695 4.4553 G-H 1.1308 6.7608 1.5726 1.2514 233.8153 7.2384 1.1067 34.5838 4.6028 184.8157 5775.4881 768.6756 3.7333 H-I 0.0000 7.2561 0.8208 0.0000 241.9166 0.4305 0.0000 33.3400 0.5246 0.0000 2333.7970 36.7187 3.0840 Table E14a - Natural Channel Encroachment Information <------- Existing Conveyance Condition -------> <----- Encroachment Conveyance Condition -----> <- % Volume --> <-- Encroachment Data --> Conduit Left Centre Right Total Left Right Left Centre Right Total Left Right Reduction Depth Name Bank Channel Bank Station Station Bank Channel Bank Station Station Left Right Incr. Method N3-F 23.324 3997.1 8.5046 4028.9-5.5725 8.8090 23.324 3997.1 8.5046 4028.9-5.5725 8.8090 0.0000 0.0000 0.0000 None F-G 15.950 3802.5 107.53 3926.0-7.4033 10.669 15.950 3802.5 107.53 3926.0-7.4033 10.669 0.0000 0.0000 0.0000 None G-H 2O.504 3831.1 118.60 3970.2-3.8159 14.109 20.504 3831.1 118.60 3970.2-3.8159 14.109 0.0000 0.0000 0.0000 None H-I 0.0000 2991.7 5.3243 2997.0-6.8184 12.477 0.0000 2991.7 5.3243 2997.0-6.8184 12.477 0.0000 0.0000 0.0000 None Table E 14b - Floodplain Mapping Conduit Upstream Downstream Channel Center <----- Left Offsets ------> <----- Right Offsets ------> <- Channel Widths-> Name WS Elev. WS Elev. Length Station Natural Encroach Bank Natural Encroach Bank Total Encroach. N3-F 24.6400 23.7200 171.0000 2.4000 7.9725 7.9725 5.1000 6.4090 6.4090 5.1900 14.3815 14.3815 F-G 23.7200 22.5547 162.0000 0.0000 7.4033 7.4033 5.3100 10.6693 10.6693 4.4720 18.0726 18.0726 G-H 22.5547 21.4730 167.0000 0.0000 3.8159 3.8159 1.8800 14.1088 14.1088 8.7000 17.9247 17.9247 H-I 21.4730 20.6318 70.0000 0.0000 6.8184 6.8184 8.9100 12.4770 12.4770 9.8800 19.2954 19.2954 Table E15 -SPREADSHEET INFO LIST Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. Conduit Maximum Total Maximum Maximum ## Junction Invert Maximum Name Flow Flow Velocity Volume ## Name Elevation Elevation (cfs) (ft^3) (ft/s) (ft^3) ## (ft) (ft) --------------- B-N 1 NI-C C-D N3-F A-N 1 N2-D I-N4 N4-N5 I-N5 F-G G-H H-I Box 1 Box 3 Box 4 Box 2 FREE # 0.3718-95.9550 193.8920 5362080.728 194.0010 5358438.480 242.4520 6662148.971 0.0898-0.1598 -11.8410-307535.088 43.0210 56822.6268 54.0913 352400.3922 199.3846 6604240.138 242.3859 6661227.537 242.3050 6660849.518 242.3471 6660816.447 208.0356 5664739.230 206.6663 5662361.218 205.9513 5660377.009 206.7757 5663821.721 1 256.3057 7033679.58 --------------- ##------------- -0.2257 1523.2005 ## 6.6556 11700.9300 ## 6.8046 9954.8555 ## 6.0396 6806.3271 ## -0.0310 640.2530 ## -1.2210 2972.8176 ## 3.9795 4247.2409 ## 4.2131 1288.0010 ## 6.7319 14984.5372 ## 6.0376 6362.6754 ## 6.0056 6616.7849 ## 7.1535 2314.6189 ## 8.6399 1842.0619 ## 8.5908 2999.9282 ## 8.5640 6761.8546 ## 8.5906 4263.0519 ## 0 0.0000 0.0000 ## B 23.0000 29.3245 N1 22.0000 29,3239 C 21.5700 28.4496 D 20.8400 27.7325 N3 19.3900 24.6399 I 17,9400 20.6318 A 24.4000 29.3247 N2 18.9000 27.8049 N5 15.0000 20.1600 N4 15.5000 20.3446 F 18.9375 23.7200 G 18.5325 22.5547 H 18.1150 21.4730 Box cb B 20.3296 26.6517 Box cb C 20.0788 26.0805 Box cb A 20.6860 27.5561 Table E15a - SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. Upstream Downstream Maximum Total Node Node Flow Flow -------------------------- (cfs) (ft^3) B ------------------- N1 0.3718-95.9550 N1 C 193.8920 5362080.73 C D 194.0010 5358438.48 N3 F 242.4520 6662148.97 A N1 0.0898-0.1598 D N2 11.8410 307535.088 I N4 43.0210 56822.6268 N4 N5 54.0913 352400.392 I N5 199.3846 6604240.14 F G 242.3859 6661227.54 G H 242.3050 6660849.52 H 1 242.3471 6660816.45 D Box cb A 208.0356 5664739.23 Box cb B Box cb C 206.6663 5662361.22 Box cb C N3 205.9513 5660377.01 Box cb A Box cb B 206.7757 5663821.72 # Table E16. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS) Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type B-N1 B N1 23.3920 23.3000 29.3245 29.3239 Circular N1-C N1 C 22.3000 21.6600 29.3239 28.4495 Circular C-D C D 21.5700 20.9200 28.4496 27.7325 Circular N3-F N3 F 19.3900 18.9375 24.6400 23.7200 Natural A-N1 A N1 24.4600 23.3000 29.3247 29.3239 Circular N2-D D N2 20.9200 18.9000 27.7314 27.8049 Circular I-N4 I N4 17.9400 16.0000 20.6318 20.3446 Circular N4-N5 N4 N5 15.5600 15.0000 20.3446 20.1600 Circular I-N5 I N5 17.9400 15.0000 20.6318 20.1600 Circular F-G F G 18.9375 18.5325 23.7200 22.5547 Natural G-H G H 18.5325 18.1150 22.5547 21.4730 Natural H-I H 1 18.1150 17.9400 21.4730 20.6318 Natural Box 1 D Box cb A 20.8400 20.6860 27.7314 27.5499 Rectangle Box 3 Box cb B Box cb C 20.3296 20.0788 26.6517 26.0805 Rectangle Box 4 Box cb C N3 20.0788 19.3900 26.0805 24.6400 Rectangle Box 2 Box cb A Box cb B 20.6860 20.3296 27.5499 26.6517 Rectangle Table E18 - Junction Continuity Error. Division by Volume added 11/96 Continuity Error = Net Flow + Beginning Volume - Ending Volume ------------------------------------------------- Total Flow + (Beginning Volume + Ending Volume)/2 Net Flow = Node Inflow - Node Outflow Total Flow = absolute (Inflow + Outflow) Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Great 1 to 2 percent Good 2 to 5 percent M M M M 0 No M M M M M M M Fair 5 to 10 percent Poor 10 to 25 percent Bad 25 to 50 percent Terrible > 50 percent Junction <------ Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Name Volume % of Node % of Inflow Volume Volume --------------------------------------------------- Thm Node Thru Node Converge B-5.2698 -3.7276 --------------------------------------- 0.0001 90.8343 0.0000 85.5645 95.9550 0 N1 761.4298 0.0071 0.0108 1514.4294 0.0000 2275.859210726710.90 0 C 1091.9197 0.0102 0.0155 2471.1880 0.0000 3563.107710720519.21 0 D-1096.8109 -0.0097 0.0156 2247.6267 0.0000 1150.8158 11330712.80 0 N3 360.3037 0.0027 0.0051 2368.2383 560.1840 2168.357913326490.36 0 I-64.6877 -0.0005 0.0009 9304.1994 9361.6093 -122.097513321879.21 0 A-28.9509 -222.6177 0.0004 25.6899 0.0000 -3.2609 0.1598 0 N2 207.8949 0.0337 0.0029 933.4377 15.8332 1125.4994 616195.9545 0 N5 91.2214 0.0006 0.0013 7498.6882 7540.2257 49.683814067420.53 0 N4 10.2509 0.0014 0.0001 2536.9494 2549.5502 -2.3500 704799.5028 0 F-5.2714 0.0000 0.0001 1751.8699 923.8147 822.783813323376.51 0 G-34.7104 -0.0003 0.0005 2219.9180 1907.4362 277.771513322077.06 0 H-49.4470 -0.0004 0.0007 2000.8521 1927.0530 24.352113321665.97 0 Box cb B 173.6725 0.0015 0.0025 1237.1994 0.0000 1410.8719 11326182.94 0 Box cb C 221.0021 0.0020 0.0031 2040.7485 284.0411 1977.7096 11322738.23 0 Box cb A 48.6575 0.0004 0.0007 977.4264 0.0000 1026.0838 11328560.95 0 The total continuity error was 1681.2 cubic feet The remaining total volume was 39219. cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Excellent Table E19 - Junction Inflow Sources Units are either ft^3 or m^3 depending on the units in your model.1 Constant User Interface DWF Inflow RNF Layer Inflow Junction Inflow Inflow Inflow Inlow through Inflow Outflow Evaporation from Name ---------- to Node ---------- to Node ---------------------- to Node ----------- to Node ----------- Outfall to Node from Node from Node 2D Layer N1 0.0000 5.3646E+06 0.0000 0.0000 ----------- 0.0000 ----------- 0.0000 ----------- 0.0000 ----------- 0.0000 0.0000 N3 0.0000 1.0040E+06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N2 0.0000 308659.1100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N5 0.0000 77099.9775 0.0000 0.0000 0.4388 0.0000 7.0337E+06 0.0000 0.0000 N4 0.0000 295574.7525 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Table E20 - Junction Flooding and Volume Listing. The maximum volume is the total volume in the node including the volume in the flooded storage area. This is the max volume at any time. The volume in the flooded storage area is the total volume) above the ground elevation, where the flooded pond storage area starts. The fourth column is instantaneous, the fifth is the) sum of the flooded volume over the entire simulation] Units are either ft^3 or m^3 depending on the units. Out of System Stored in System Junction Surcharged Flooded Flooded Maximum Ponding Allowed Name Time (min) Time(min) Volume Volume Flood Pond Volume B 68.7000 0.0000 0.0000 79.4738 0.0000 N 1 73.8026 0.0000 0.0000 92.0317 0.0000 C 64.6875 0.0000 0.0000 86.4485 0.0000 D 71.0139 0.0000 0.0000 86.6001 0.0000 N3 0.0000 0.0000 0.0000 65.9713 0.0000 I 0.0000 0.0000 0.0000 33.8257 0.0000 A 166.5833 0.0000 0.0000 61.8845 0.0000 N2 763.8333 0.0000 0.0000 111.8996 0.0000 N5 0.0000 0.0000 0.0000 64.8406 0.0000 N4 1440.0000 0.0000 0.0000 60.8769 0.0000 F 0.0000 0.0000 0.0000 60.0964 0.0000 G 0.0000 0.0000 0.0000 50.5424 0.0000 H 0.0000 0.0000 0.0000 42.1971 0.0000 Box cb B 261.0625 0.0000 0.0000 79.4776 0.0000 Box cb C 262.5000 0.0000 0.0000 75.4423 0.0000 Box cb A 259.6875 0.0000 0.0000 86.3169 0.0000 Simulation Specific Information Number of Input Conduits.......... 16 Number of Simulated Conduits...... 17 Number of Natural Channels........ 4 Number of Junctions ............... 16 Number of Storage Junctions....... 0 Number of Weirs ................... 0 Number of Orifices ................ 0 Number of Pumps................... 0 Number of Free Outfalls........... 1 Number of Tide Gate Outfalls...... 0 Average % Change in Junction or Conduit is defined as: Conduit % Change => 100.0 ( Q(n+1) - Q(n)) / Qfull Junction % Change => 100.0 (Y(n+l) - Y(n)) / Yfull The Conduit with the largest average change was..Box 1 with 0.177 percent The Junction with the largest average change was.Box cb A with 0.645 percent The Conduit with the largest sinuosity was ....... Box 1 with 25.474 Table E21. Continuity balance at the end of the simulation Junction Inflow, Outflow or Street Flooding Error = Inflow + Initial Volume - Outflow - Final Volume Inflow Inflow Average Junction Volume,ft^3 Inflow, cfs N1 5.36453E+06 62.0895 N3 1.00396E+06 11.6200 N2 308660.8665 3.5725 N5 77100.4173 0.8924 N4 295576.4838 3.4210 N5 -7.034E+06 -81.4083 Outflow Outflow Average r Junction Volume, ft^3 Outflow, cfs N5 7.03368E+06 81.4083 Initial system volume = 25069.7474 Cu Ft Total system inflow volume = 7.049939E+06 Cu Ft Inflow + Initial volume = 7.075009E+06 Cu Ft Total system outflow = 7.033680E+06 Cu Ft Volume left in system = 39219.2956 Cu Ft Evaporation = 0.0000 Cu Ft Outflow + Final Volume = 7.072899E+06 Cu Ft Total Model Continuity Error Error in Continuity, Percent = 0.02381 Error in Continuity, ft^3 = 1681.2041 + Error means a continuity loss, - a gain ######### # # Table E22. Numerical Model judgement section # ########### ###### Your overall error was 0.0238 percent Worst nodal error was in node D with-0.0097 percent Of the total inflow this loss was 0.0156 percent Your overall continuity error was Excellent Excellent Efficiency Efficiency of the simulation 1.89 Most Number of Non Convergences at one Node 0. Total Number Non Convergences at all Nodes 0. Total Number of Nodes with Non Convergences 0. _> Hydraulic model simulation ended normally. => XP-SWMM Simulation ended normally. => Your input file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 25 dec 06.DAT —_> Your output file was named: M:\RENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 25 dec 06.out SWMM Simulation Date and Time Summary Starting Date... December 22, 2006 Time... 7:38:24:93 Ending Date... December 22, 2006 Time... 7:39:51: 6 Elapsed Time... 1.43550 minutes or 86.13000 seconds M M M M M M M M M M M M M M r XP-SWMM MODELING OUTPUT - Alternative 1 (West -4' x 6' Box Culvert) —100-Year Storm Current Directory: C:\XPS\XP-SWMM Engine Name: C:\XPS\XP-SWMM\swmmengw.exe Read 1 line(s) and found 1 items(s) from your cfg file. Input File : \Design\Design Future\Altematives\Dec 06 Alt\Alt 1 100 dec 06.XP XP-SWMM Storm and Wastewater Management Model Interface Version: 9.52 Engine Version: 9.28 Developed by i I XP Software � I XP Software November, 2004 Data File Version ---> 11.7 Serial Number: 42-xxx-0000 XP Software (Evaluation) Engine Name: C:\XPS\XP-SWMM\swmmengw.exe Input and Output file names by Layer Input File to Layer # 1 JOT.US Output File to Layer # 1 JOT.US Special command line arguments in XP-SWMM2000. This now includes program defaults. $Keywords are the program) defaults. Other Keywords are from the SWMMCOM.CFG file.1 or the command line or any cfg file on the command line.1 Examples include these in the file xpswm.bat under the section :solve or in the windows version XPSWMM32 in they file solve.bat Note: the cfg file should be in the subdirectory swmxp or defined by the set variable in the xpswm.bat file. Some examples of the command lines possible) are shown below: swmmd swmmcom.cfg swmmd my.cfg swmmd nokeys nconv5 pery extranwq $powerstation 0.0000 1 2 $pery 0.0000 0 4 $oldegg 0.0000 0 7 $as 0.0000 0 11 $noflat 0.0000 0 21 $oldomega 0.0000 0 24 $oldvol 0.0000 1 28 $implicit 0.0000 1 29 $oldhot 0.0000 1 31 $oldscs 0.0000 0 33 $flood 0.0000 1 40 $nokeys 0.0000 0 42 $pzero 0.0000 0 55 $oldvol2 0.0000 2 59 $storage2 0.0000 3 62 $oldhotl 0.0000 1 63 $pumpwt 0.0000 1 70 $ecloss 0.0000 1 77 $exout 0.0000 0 97 M M M M o M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M SPATIAL=0.55 0.5500 5 124 $djref = -1.0-0.1000 3 143 $weirlen = 50 50.0000 1 153 $oldbnd 0.0000 1 154 $nogrelev 0.0000 1 161 $ncmid 0.0000 0 164 $new n1 97 0.0000 2 290 $best97 0.0000 1 294 $newbound 0.0000 1 295 $q_tol = 0.1 0.0010 1 316 $new storage 0.0000 1 322 $old iteration 0.0000 1 333 $minlen=30.0 30.0000 1 346 $review_ elevation 0.0000 1 383 $use_ half_ volume 0.0000 1 385 $min is = 0.5 0.5000 1 407 $design —restart = on 0.0000 1 412 $zero—value=l.e-05 0.0000 1 415 $relax depth = on 0.0000 1 427 Parameter Values on the Tapes Common B1ock.These are the values read from the data file and dynamically allocated by the model for this simulation. Number of Subcatchments in the Runoff Block (NW).... 0 Number of Channel/Pipes in the Runoff Block (NG).... 0 Runoff Water quality constituents (NRQ)............. 0 Runoff Land Uses per Subcatchment (NLU)............. 0 Number of Elements in the Transport Block (NET)..... 0 Number of Storage Junctions in Transport (NTSE)..... 0 Number of Input Hydrographs in Transport (NTH)...... 0 Number of Elements in the Extran Block (NEE)........ 17 Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 17 Number of Pumps in Extran (NEP)..................... 0 Number of Orifices in Extran (NEO).................. 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 1 Number of Extran Weirs (NEW) ........................ 0 Number of scs hydrograph points ..................... 1 Number of Extran printout locations (NPO)........... 0 Number of Tide elements in Extran (NTE)............. I Number of Natural channels (NNC).................... 4 Number of Storage junctions in Extran (NYSE)........ 0 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 0 Number of Input Hydrographs in Extran (NEH)......... 5 Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW)............... 17 Number of Connecting conduits in Extran (NECC)...... 20 Number of Upstream elements in Transport (NTCC)..... 10 Number of Storage/treatment plants (NSTU)........... 0 Number of Values for Rl lines in Transport (NR1).... 0 Number of Nodes to be allowed for (NNOD)............ 17 Number of Plugs in a Storage Treatment Unit......... 1 ################################################## # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # Renton Village Existing HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of 8 pt. and margins of 0.75 M M M M M M M M M M M M M M M M M M r W I I Table E1 - Basic Conduit Data Table E2 - Conduit Factor Data Table E3a - Junction Data Table E3b - Junction Data I Table E4 - Conduit Connectivity Data Table E4a - Dry Weather Flow Data Table E4b - Real Time Control Data Table E5 - Junction Time Step Limitation Summary Table E5a - Conduit Explicit Condition Summary Table E6 - Final Model Condition Table E7 - Iteration Summary Table E8 - Junction Time Step Limitation Summary Table E9 - Junction Summary Statistics Table E10 - Conduit Summary Statistics I Table El l -Area assumptions used in the analysis I Table E12 - Mean conduit information I Table E13 - Channel losses(H) and culvert info I Table E13a - Culvert Analysis Classification I Table E14 - Natural Channel Overbank Flow Information Table E14a - Natural Channel Encroachment Information Table E14b - Floodplain Mapping Table E15 -Spreadsheet Info List Table E15a - Spreadsheet Reach List Table E16 - New Conduit Output Section Table E17 - Pump Operation Table E18 - Junction Continuity Error Table E19 - Junction Inflow Sources Table E20 - Junction Flooding and Volume List Table E21 - Continuity balance at simulation end Table E22 - Model Judgement Section Time Control from Hydraulics Job Control Year......... 2008 Month....... 1 Day.......... 8 Hour........ 18 Minute....... 0 Second...... 0 Control information for simulation Integration cycles ................. 5760 Length of integration step is...... 15.00 seconds Simulation length .................. 24.00 hours Do not create equiv. pipes(NEQUAL). 0 Use U.S. customary units for VO... 0 Printing starts in cycle........... 1 Intermediate printout intervals of. 500 cycles Intermediate printout intervals of. 125.00 minutes Summary printout intervals of..... 500 cycles Summary printout time interval of.. 125.00 minutes Hot start file parameter (REDO).... 0 Initial time ....................... 18.00 hours Iteration variables: Flow Tolerance. 0.00010 Head Tolerance. 0.00050 Minimum depth (m or ft)......... 0.00001 Underrelaxation parameter....... 0.85000 Time weighting parameter........ 0.85000 Conduit roughness factor........ 1.00000 Flow adjustment factor.......... 1.00000 Initial Condition Smoothing..... 0 Courant Time Step Factor........ 1.00000 Default Expansion/Contraction K. 0.00000 Default Entrance/Exit K......... 0.00000 Routing Method .................. Dynamic Wave Default surface area of junctions... 12.57 square feet. Minimum Junction/Conduit Depth...... 0.00001 feet. Ponding Area Coefficient............ 5000.00 Ponding Area Exponent ............... 1.0000 Minimum Orifice Length .............. 300.00 feet. NJSW input hydrograph junctions..... 5 or user defined hydrographs.... M M r = = M M = = = = = M = = M M M M M M M M M M r M M M M= M r i r Natural Cross -Section information for Channel N3-F Cross -Section ID (from X1 card) : 1.0 Channel sequence number: 1 Left Overbank Length 171.0 ft Maximum Elevation 28.39 ft. Main Channel Length 171.0 ft Maximum depth 8.26 ft. Right Overbank Length : 171.0 ft Maximum Section Area : 105.3132 ft^2 Maximum hydraulic radius : 3.40 ft. Manning N : 0.050 to Station -2.7 Max topwidth : 23.24 ft. of " : 0.025 in main Channel Maximum Wetted Perimeter: 3.10E+01 ft It " : 0.050 Beyond station 7.6 Max left bank area : 22.69 ftA2 Max right bank area . 11.34 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 71.2900 ft^2 Natural Cross -Section information for Channel F-G Cross -Section ID (from X1 card) : 2.0 Channel sequence number: 2 Left Overbank Length 162.0 ft Maximum Elevation 26.50 ft. Main Channel Length 162.0 ft Maximum depth 7.59 ft. Right Overbank Length 162.0 ft Maximum Section Area : 114.9073 ft^2 Maximum hydraulic radius: 3.38 ft. Manning N : 0.050 to Station -5.3 Max topwidth : 28.20 ft. it It : 0.025 in main Channel Maximum Wetted Perimeter : 3.40E+01 ft " : 0.050 Beyond station 4.5 Max left bank area . 17.87 ft^2 Max right bank area : 31.77 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 65.2666 ft^2 Natural Cross -Section information for Channel G-H Cross -Section ID (from X1 card) : 3.0 Channel sequence number: 3 Left Overbank Length 167.0 ft Maximum Elevation 30.01 ft. Main Channel Length 167.0 ft Maximum depth 10.74 ft. Right Overbank Length : 167.0 ft Maximum Section Area : 231.7196 ft^2 Maximum hydraulic radius: 5.78 ft. Manning N : 0.050 to Station -1.9 Max topwidth : 33.96 ft. It to 0.025 in main Channel Maximum Wetted Perimeter : 4.01E+01 ft It " 0.050 Beyond station 8.7 Max left bank area 56.23 ft^2 Max right bank area : 66.77 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 108.7145 ft^2 Natural Cross -Section information for Channel H-I Cross -Section ID (from X1 card) : 4.0 Channel sequence number: 4 Left Overbank Length 70.0 ft Maximum Elevation 25.23 ft. Main Channel Length 70.0 ft Maximum depth 6.37 ft. Right Overbank Length 70.0 ft Maximum Section Area : 130.4888 ft^2 Maximum hydraulic radius: 3.41 ft. Manning N : 0.050 to Station -8.9 Max topwidth : 36.34 ft. " 0.025 in main Channel Maximum Wetted Perimeter: 3.82E+01 ft " 0.050 Beyond station 9.9 Max left bank area . 10.53 ft^2 Max right bank area : 25.86 ft^2 Allowable Encroachment Depth: 0.00 ft Max center channel area : 94.0951 ft^2 M M = r M i = i = = = = M = = r = M M M = = = r = = = = M M = = M Table E1 - Conduit Data Inp Conduit Length Conduit Area Manning Max Width Depth Side Num. -------------------- Name (ft) ---------- Class (ft-2) Coef. (ft) (ft) Slopes 1 B-NI 74 ---------- Circular ------- 19.635 ------- 0.012 --------- 5 ------------ 5 2 NI-C 395 Circular 28.2743 0.014 6 6 3 C-D 336 Circular 28.2743 0.014 6 6 4 N3-17 171 Natural 105.3132 0.025 23.2405 8.26 5 A-N1 90 Circular 7.0686 0.014 3 3 6 N2-D 306 Circular 9.6211 0.014 3.5 3.5 7 I-N4 375 Circular 12.5664 0.014 4 4 8 N4-N5 100 Circular 12.5664 0.014 4 4 9 I-N5 500 Circular 95.0332 0.014 11 11 10 F-G 162 Natural 114.9073 0.025 28.2 7.59 11 G-H 167 Natural 231.7196 0.025 33.96 10.74 12 H-I 70 Natural 130.4888 0.025 36.34 6.37 13 Box 1 70 Rectangle 24 0.014 6 4 14 Box 3 114 Rectangle 24 0.014 6 4 15 Box 4 257 Rectangle 24 0.014 6 4 16 Box 2 162 Rectangle 24 0.014 6 4 Total length of all conduits .... 3349.0000 feet If there are messages about (sqrt(g*d)*dt/dx), or the sgrt(wave celerity)*time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control. Conduit Courant Name Ratio B-NI 2.57 => Warning ! (sgrt(wave celerity) *time step/conduit length) NI-C 0.53 C-D 0.62 N3-F 1.06 => Warning ! (sgrt(wave celerity)*time step/conduit length) A-N1 1.64 =__> Warning ! (sgrt(wave celerity)*time step/conduit length) N2-D 0.52 I-N4 0.45 N4-N5 1.70 => Warning ! (sgrt(wave celerity)*time step/conduit length) I-N5 0.56 F-G 1.06 => Warning ! (sgrt(wave celerity)*time step/conduit length) G-H 1.33 => Warning ! (sgrt(wave celerity)*rime step/conduit length) H-I 2.30 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) Box 1 2.43 => Warning ! (sgrt(wave celerity)*rime step/conduit length) Box 3 1.49 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) Box 4 0.66 Box 2 1.05 =_> Warning ! (sgrt(wave celerity)*time step/conduit length) Conduit Volume Full pipe or full open conduit volume Input full depth volume............ 1.7811E+05 cubic feet _> Warning !! The upstream and downstream junctions for the following conduits have been reversed to correspond to the positive flow and decreasing slope convention. A negative flow in the output thus means the flow was from your original upstream junction to your original M M M M M M M M M r M r M M M r M M M M M M M M M M M r M M M M M M M M M M downstream junction. Any initial flow has been multiplied by -1. 1. Conduit #...N2-D has been changed. Table E3a - Junction Data Inp Junction Ground Crown Invert Qinst Initial Interface Num ------------------ Name Elevation Elevation Elevation cfs Depth-ft Flow (%) ------------------ 1 --------- B 35.0000 35.0000 -------- 23.0000 ----------------- 0.0000 0.0000 100.0000 2 N1 32.6600 32.6600 22.0000 0.0000 0.0000 100.0000 3 C 35.2200 35.2200 21.5700 0.0000 0.0000 100.0000 4 D 28.6700 28.6700 20.8400 0.0000 0.0000 100.0000 5 N3 28.0000 28.0000 19.3900 0.0000 0.0000 100.0000 6 I 30.0000 30.0000 17.9400 0.0000 0.0000 100.0000 7 A 33.3500 33.3500 24.4000 0.0000 0.0000 100.0000 8 N2 30.3000 30.3000 18.9000 0.0000 0.0000 100.0000 9 N5 28.0000 26.0000 15.0000 0.0000 0.0000 100.0000 10 N4 25.0000 25.0000 15.5000 0.0000 0.0000 100.0000 11 F 28.5100 28.5100 18.9375 0.0000 0.0000 100.0000 12 G 30.0100 30.0100 18.5325 0.0000 0.0000 100.0000 13 H 30.0100 30.0100 18.1150 0.0000 0.0000 100.0000 14 Box cb B 28.5000 24.3296 20.3296 0.0000 0.0000 100.0000 15 Box cb C 26.6000 24.0788 20.0788 0.0000 0.0000 100.0000 16 Box cb A 30.2500 24.6860 20.6860 0.0000 0.0000 100.0000 Table E3b - Junction Data Inp Junction X Y Type of Type of Maximum Pavement Num ------------------ Name Coord. Coord. Manhole Inlet Capacity ---------------------- Shape Slope 1 B 152.5521 -------------------------------------- 446.4433 Flooded Normal ------- 0 0.0000 2 N1 145.5257 436.6950 Flooded Normal 0 0.0000 3 C 123.4209 437.1191 Flooded Normal 0 0.0000 4 D 106.3969 437.5303 Flooded Normal 0 0.0000 5 N3 95.8286 416.8616 Flooded Normal 0 0.0000 6 I 67.4830 416.7636 Flooded Normal 0 0.0000 7 A 146.0405 428.7429 Flooded Normal 0 0.0000 8 N2 126.9908 454.2198 Flooded Normal 0 0.0000 9 N5 66.0831 409.8093 No Ponding Normal 0 0.0000 10 N4 62.2778 416.4918 Flooded Normal 0 0.0000 11 F 89.1392 416.9094 Flooded Normal 0 0.0000 12 G 81.4822 417.0487 Flooded Normal 0 0.0000 13 H 74.6604 416.9094 Flooded Normal 0 0.0000 14 Box cb B 96.8341 435.2930 No Ponding Normal 0 0.0000 15 Box cb C 92.3030 432.6534 No Ponding Normal 0 0.0000 16 Box cb A 103.4470 434.9879 No Ponding Normal 0 0.0000 M M M = = r= M = = = M= M r M M M M M M M M= M= M M M s= M Table E4 - Conduit Connectivity Input Conduit Upstream Downstream Upstream Downstream Number Name Node Node Elevation Elevation 1 B-NI B -------- ------ N1 23.3920 23.3000 No Design 2 N1-C N1 C 22.3000 21.6600 No Design 3 C-D C D 21.5700 20.9200 No Design 4 N3-F N3 F 19.3900 18.9375 No Design 5 A -NI A N1 24.4600 23.3000 No Design 6 N2-D D N2 20.9200 18.9000 No Design 7 I-N4 I N4 17.9400 16.0000 No Design 8 N4-N5 N4 N5 15.5600 15.0000 No Design 9 I-N5 I N5 17.9400 15.0000 No Design 10 F-G F G 18.9375 18.5325 No Design 11 G-H G H 18.5325 18.1150 No Design 12 H-I H I 18.1150 17.9400 No Design 13 Box 1 D Box cb A 20.8400 20.6860 No Design 14 Box 3 Box cb B Box cb C 20.3296 20.0788 No Design 15 Box 4 Box cb C N3 20.0788 19.3900 No Design 16 Box 2 Box cb A Box cb B 20.6860 20.3296 No Design FREE OUTFALL DATA (DATA GROUP I 1) BOUNDARY CONDITION ON DATA GROUP J1 Outfall at Junction .... N5 has boundary condition number... I __> Warning H Outfall Junction N5 has two or more connecting conduits. INTERNAL CONNECTIVITY INFORMATION CONDUIT JUNCTION JUNCTION ---------------- ---------------- ---------------- FREE # 1 N5 BOUNDARY Boundary Condition Information Data Groups J1-J4 *---_-------__--------- __---------- BC NUMBER.. 1 Control water surface elevation is.. 20.16 feet. XP Note Field Summary Conduit Convergence Criteria Conduit Full Conduit Name ---------------- Flow ---------- Slope B-N1 ---------- 99.4838 0.0012 NI-C 158.2956 0.0016 C-D 172.9674 0.0019 N3-F 728.0530 0.0026 A -NI 70.3134 0.0129 N2-D 75.9050 0.0066 I-N4 95.9369 0.0052 N4-N5 99.8147 0.0056 I-N5 1518.2495 0.0059 r M M M M = M M M = M = = M M M M M M M M M F-G 769.4335 0.0025 G-H 2216.8183 0.0025 H-I 879.2816 0.0025 Box 1 134.9276 0.0022 Box 3 134.9276 0.0022 Box 4 148.9257 0.0027 Box 2 134.9276 0.0022 Initial Model Condition Initial Time = 18.00 hours Junction / Depth / Elevation -_> "*" Junction is Surcharged. B/ 0.00 / 23.00 N1/ 0.00 / 22.00 C/ 0.00 / 21.57 D/ 0.00 / 20.84 N3/ 0.77 / 20.16 F 2.22 / 20.16 A/ 0.00 / 24.40 N2/ 1.26 / 20.16 N51 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.22 / 20.16 G/ 1.63 / 20.16 H/ 2.05 / 20.16 Box cb B/ 0.00 / 20.33 Box cb C/ 0.08 / 20.16 Box cb A/ 0.00 / 20.69 Conduit/ FLOW =_> ""Conduit uses the normal flow option. B-N1/ 0.00 N1-C/ 0.00 C-D/ 0.00 N3-F/ 0.00 A-N1/ 0.00 N2-D/ 0.00 I-N4/ 0.00 N4-N5/ 0.00 I-N51 0.00 F-G/ 0.00 G-H/ 0.00 H-F 0.00 Box 1/ 0.00 Box 3/ 0.00 Box 4/ 0.00 Box 2/ 0.00 FREE # 1/ 0.00 Conduit/ Velocity B-N1/ 0.00 NI-C/ 0.00 C-D/ 0.00 N3-F/ 0.00 A-N1/ 0.00 N2-D/ 0.00 I-N4/ 0.00 N4-N5/ 0.00 I-N51 0.00 F-G/ 0.00 G-H/ 0.00 H-I/ 0.00 Box 1/ 0.00 Box 3/ 0.00 Box 4/ 0.00 Box 2/ 0.00 Conduit/ Cross Sectional Area B-N1/ 0.00 NI-C/ 0.00 N3-F/ 3.09 A-N I / 0.00 I-N4/ 9.70 N4-N5/ 12.91 F-G/ 7.81 G-H/ 14.77 Box 1/ 0.00 Box 3/ 0.22 Box 2/ 0.00 Conduit/ Hydraulic Radius B-N1/ 0.00 N1-C/ N3-F/ 0.42 A-N1/ I-N4/ 1.04 N4-N5/ F-G/ 0.93 G-H/ Box l/ 0.00 Box 3/ Box 2/ 0.00 C-D/ 0.00 N2-D/ 1.40 I-N5/ 27.24 H-I/ 18.62 Box 4/ 2.35 0.00 C-D/ 0.00 0.00 N2-D/ 0.32 1.00 I-N5/ 1.92 1.27 H-I/ 1.28 0.04 Box 4/ 0.32 Conduit/ Upstream/ Downstream Elevation B-Nl/ 22.00/ 22.00 N1-C/ 21.57/ 21.57 N3-F/ 20.16/ 20.16 A-N1/ 22.00/ 22.00 I-N4/ 20.16/ 20.16 N4-N5/ 20.16/ 20.16 F-G/ 20.16/ 20.16 G-H/ 20.16/ 20.16 Box 1/ 20.69/ 20.69 Box 3/ 20.33/ 20.16 Box 2/ 20.33/ 20.33 ######## Important Information ######## Start time of user hydrographs was... 18.000000000000000 Start time of the simulation was..... 18.000000000000000 Found a match between user hydrograph and simulation start time. Will move ahead 1.561251128379126E-017 hours C-D/ 20.84/ 20.84 N2-D/ 20.84/ 20.16 I-N51 20.16/ 20.16 H-I/ 20.16/ 20.16 Box 4/ 20.16/ 20.16 ---------------------- _> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs ) N1 / 6.23E+00 N3 / 6.14E-01 N2 / 2.00E-02 N5 / 5.00E-03 N4 / 2.00E-02 ######################################## ===> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs ) MMMMM M M M M M M M N1 / 8.85E+00 N3 / 1.17E+00 N2 / 2.05E-01 N5 / 5.40E-02 N4 / 2.05E-01 ######################################## ######################################## -=> System inflows (data group K3) at 19.00 hours ( Junction / Inflow,cfs ) N1 / 1.47E+01 N3 / 2.38E+00 N2 / 6.14E-01 N5 / 1.56E-01 N4 / 5.94E-01 ######################################## ######################################## __> System inflows (data group K3) at 20.00 hours ( Junction / Inflow,cfs ) N1 / 1.57E+01 N3 / 2.60E+00 N2 / 6.96E-01 N5 / 1.77E-01 N4 / 6.76E-01 ######################################## Cycle 500 Time 20 Hrs - 5.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 0.56 / 23.56 N1/ 1.56 / 23.56 C/ 1.23 / 22.80 D/ 0.74 / 21.58 N3/ 1.65 / 21.04 1/ 2.21 / 20.15 A/ 0.00 / 24.40 N2/ 2.68 / 21.58 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.43 / 20.37 G/ 1.67 / 20.20 H/ 2.05 / 20.16 Box cb B/ 0.86 / 21.19 Box cb C/ 1.01 / 21.09 Box cb A/ 0.75 / 21.44 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 14.82 C-D/ 14.78 N3-F/ 17.56 A-N1/ 0.00 N2-D/ -0.61 I-N4/ -2.64 N4-N5/ -2.04 I-N5/ 20.17 F-G/ 17.52 G-H/ 17.52 H-1/ 17.52 Box 1/ 15.38 Box 3/ 15.32 Box 4/ 15.25 Box 2/ 15.36 FREE # 1/ 18.29 ######################################## _> System inflows (data group K3) at 21.00 hours( Junction / Inflow,cfs ) N1 / 1.47E+01 N3 / 2.42E+00 N2 / 6.35E-01 N5 / 1.61E-01 N4 / 6.14E-01 ######################################## ######################################## _> System inflows (data group K3) at 22.00 hours ( Junction / Inflow,cfs ) Ni / 1.87E+01 N3 / 3.24E+00 N2 / 9.22E-01 N5 / 2.30E-01 N4 / 8.81E-01 ######################################## Cycle 1000 Time 22 Hrs - 10.00 Min Junction / Depth / Elevation = _> "*" Junction is Surcharged. B/ 0.58 / 23.58 N1/ 1.58 / 23.58 C/ 1.25 / 22.82 D/ 0.76 / 21.60 N3/ 1.67 / 21.06 I/ 2.21 / 20.15 A/ 0.00 / 24.40 N2/ 2.70 / 21.60 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.44 / 20.38 G/ 1.67 / 20.20 H/ 2.05 / 20.16 Box cb B/ 0.88 / 21.21 Box cb C/ 1.04 / 21.12 Box cb A/ 0.77 / 21.45 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 15.35 C-D/ 15.22 N3-F/ 18.18 A-N1/ 0.00 N2-D/ -0.66 I-N4/ -3.77 N4-N5/ -3.11 I-N5/ 21.90 F-G/ 18.14 G-H/ 18.13 H-I/ 18.13 Box 1/ 15.85 Box 3/ 15.77 Box 4/ 15.70 Box 2/ 15.82 FREE # 1/ 18.95 ######################################## ___> System inflows (data group K3) at 23.00 hours ( Junction / Inflow,cfs ) N1 / 4.62E+01 N3 / 8.72E+00 N2 / 2.70E+00 N5 / 6.78E-01 N4 / 2.60E+00 ######################################## ######################################## __> System inflows (data group K3) at 24.00 hours ( Junction / Inflow,cfs ) N1 / 4.85E+01 N3 / 9.22E+00 N2 / 2.87E+00 N5 / 7.19E-01 N4 ######################################## Cycle 1500 Time 24 Hrs - 15.00 Min Junction / Depth / Elevation ==> "*" Junction is Surcharged. B/ 1.52 / 24.52 N1/ 2.52 / 24.52 C/ 2.13 / 23.70 D/ 1.76 / 22.60 N3/ 2.70 / 22.09 1/ 2.16 / 20.10 A/ 0.12 / 24.52 N2/ 3.71 / 22.61 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.28 / 21.22 G/ 2.03 / 20.56 / 2.74E+00 H/ 2.12 / 20.23 Box cb B/ 1.98 / 22.31 Box cb C/ 2.13 / 22.21 Box cb A/ 1.81 / 22.50 Conduit/ FLOW =_> ""Conduit uses the normal flow option. B-N1/ -0.01 NI-C/ 46.75 C-D/ 46.70 N3-F/ 58.19 A-N1/ 0.00 N2-D/ -2.74 I-N4/ -10.02 N4-N5/ -7.38 I-N51 68.13 F-G/ 58.16 G-H/ 58.14 H-V 58.13 Box l/ 49.42 Box 3/ 49.39 Box 4/ 49.37 Box 2/ 49.41 FREE # 1/ 61.43 ######################################## ___> System inflows (data group K3) at 25.00 hours ( Junction / Inflow,cfs ) N1 / 4.62E+01 N3 / 8.70E+00 N2 / 2.68E+00 N5 / 6.71E-01 N4 / 2.56E+00 ######################################## ######################################## _> System inflows (data group K3) at 26.00 hours ( Junction / Inflow,cfs ) N1 / 5.83E+01 N3 / 1.10E+01 N2 / 3.40E+00 N5 / 8.47E-01 N4 / 3.26E+00 ######################################## Cycle 2000 Time 26 Hrs - 20.00 Min Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 1.60 / 24.60 N1/ 2.60 / 24.60 C/ 2.20 / 23.77 D/ 1.85 / 22.69 N3/ 2.77 / 22.16 1/ 2.16 / 20.10 A/ 0.20 / 24.60 N2/ 3.79 / 22.69 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.35 / 21.28 G/ 2.07 / 20.60 H/ 2.13 / 20.25 Box cb B/ 2.06 / 22.39 Box cb C/ 2.21 / 22.29 Box cb A/ 1.90 / 22.58 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ -0.01 N1-C/ 50.11 C-D/ 49.84 N3-F/ 61.70 A-N1/ -0.01 N2-D/ -2.89 I-N4/ -10.14 N4-N5/ -7.35 I-N51 71.64 F-G/ 61.58 G-H/ 61.49 H-I/ 61.47 Box 1/ 52.65 Box 3/ 52.49 Box 4/ 52.38 Box 2/ 52.58 FREE # 1/ 65.00 ######################################## _> System inflows (data group K3) at 27.00 hours ( Junction / Inflow,cfs ) N1 / 1.07E+02 N3 / 1.97E+01 N2 / 5.98E+00 N5 / 1.50E+00 N4 / 5.73E+00 ######################################## ######################################## _> System inflows (data group K3) at 28.00 hours ( Junction / Inflow,cfs ) Nl / 1.62E+02 N3 / 2.89E+01 N2 / 8.54E+00 N5 / 2.13E+00 N4 / 8.17E+00 ######################################## Cycle 2500 Time 28 Hrs - 25.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 3.26 / 26.26 Nl/ 4.26 / 26.26 C/ 3.89 / 25.46 D/ 4.01 / 24.85 N3/ 4.23 / 23.62 1/ 2.27 / 20.21 A/ 1.86 / 26.26 N2/ 5.97 / 24.87 N5/ 5.16 / 20.16 N4/ 4.68 / 20.18 F/ 3.86 / 22.80 G/ 3.25 / 21.79 H/ 2.75 / 20.87 Box cb B/ 4.02*/ 24.35 Box cb C/ 4.03*/ 24.11 Box cb A/ 4.02*/ 24.70 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ -0.09 NI-C/ 129.13 C-D/ 127.70 N3-F/ 155.34 A-N1/ -0.06 N2-D/ -7.04 I-N4/ 11.61 N4-N5/ 18.34 I-N5/ 141.96* F-G/ 154.60 G-H/ 154.05 H-I/ 153.80 Box 1/ 133.96 Box 3/ 132.99 Box 4/ 132.43 Box 2/ 133.52 FREE # 1/ 162.06 ######################################## _> System inflows (data group K3) at 29.00 hours ( Junction / Inflow,cfs ) Nl / 2.42E+02 N3 / 4.12E+01 N2 / 1.16E+O1 N5 / 2.90E+00 N4 / 1.11E+01 ######################################## ######################################## -=> System inflows (data group K3) at 30.00 hours ( Junction / Inflow,cfs ) Nl / 2.18E+02 N3 / 3.75E+01 N2 / 1.07E+01 N5 / 2.66E+00 N4 / 1.02E+01 ######################################## M M M Cycle 3000 Time 30 Hrs - 30.00 Min Junction / Depth / Elevation => ""Junction is Surcharged. B/ 8.51 / 31.51 N1/ 9.51 / 31.51 C/ 8.60 / 30.17 D/ 8.19*/ 29.03 N3/ 5.52 / 24.91 I/ 2.85 / 20.79 A/ 7.11 / 31.51 N2/ 10.18 / 29.08 N5/ 5.16 / 20.16 N4/ 4.89 / 20.39 F/ 5.01 / 23.94 G/ 4.24 / 22.77 H/ 3.54 / 21.66 Box cb B/ 7.07*/ 27.40 Box cb C/ 6.52*/ 26.60 Box cb A/ 7.86*/ 28.54 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 229.88 C-D/ 229.89 N3-F/ 272.82 A-N1/ 0.00 N2-D/ -11.14 I-N4/ 49.88 N4-N5/ 60.55 I-N5/ 222.99* F-G/ 272.83 G-H/ 272.85 H-U 272.86 Box l/ 242.21 Box 3/ 242.21 Box 4/ 233.45 Box 2/ 242.21 FREE # 1/ 286.33 ######################################## _> System inflows (data group K3) at 31.00 hours ( Junction / Inflow,cfs ) N1 / 2.10E+02 N3 / 3.61E+01 N2 / 1.03E+01 N5 / 2.56E+00 N4 / 9.83E+00 ######################################## ######################################## =_> System inflows (data group K3) at 32.00 hours ( Junction / Inflow,cfs ) N1 / 1.94E+02 N3 / 3.34E+01 N2 / 9.52E+00 N5 / 2.38E+00 N4 / 9.11E+00 ######################################## Cycle 3500 Time 32 Hrs - 35.00 Min Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 6.63 / 29.63 N1/ 7.63 / 29.63 C/ 7.10 / 28.67 D/ 7.05 / 27.89 N3/ 5.28 / 24.67 1/ 2.71 / 20.65 A/ 5.23 / 29.63 N2/ 9.00 / 27.90 N5/ 5.16 / 20.16 N4/ 4.84 / 20.34 F/ 4.81 / 23.74 G/ 4.05 / 22.58 H/ 3.38 / 21.49 Box cb B/ 6.32*/ 26.65 Box cb C/ 5.94*/ 26.02 Box cb A/ 6.82*/ 27.50 Conduit/ FLOW = _> "*" Conduit uses the normal flow option. B-N1/ -0.02 N1-C/ 200.29 C-D/ 200.55 N3-F/ 245.47 A-N1/ -0.02 N2-D/ -9.86 I-N4/ 44.26 N4-N5/ 53.67 I-N51 201.39* F-G/ 245.45 G-H/ 245.58 H-I/ 245.63 Box 1/ 209.71 Box 3/ 210.79 Box 4/ 211.23 Box 2/ 210.56 FREE # 1/ 257.52 ######################################## ___> System inflows (data group K3) at 33.00 hours ( Junction / Inflow,cfs ) N1 / 8.72E+01 N3 / 1.51E+01 N2 / 4.30E+00 N5 / 1.07E+00 N4 / 4.12E+00 ######################################## ######################################## _> System inflows (data group K3) at 34.00 hours ( Junction / Inflow,cfs ) N1 / 5.77E+01 N3 / 9.11E+00 N2 / 2.33E+00 N5 / 5.84E-01 N4 / 2.23E+00 ######################################## Cycle 4000 Time 34 Hrs - 40.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 1.99 / 24.99 N1/ 2.99 / 24.99 C/ 2.57 / 24.14 D/ 2.30 / 23.14 N3/ 3.16 / 22.55 V 2.13 / 20.07 A/ 0.59 / 24.99 N2/ 4.24 / 23.14 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.73 / 21.66 G/ 2.34 / 20.87 H/ 2.24 / 20.36 Box cb B/ 2.50 / 22.83 Box cb C/ 2.63 / 22.71 Box cb A/ 2.35 / 23.03 Conduit/ FLOW =_> ""Conduit uses the normal flow option. B-N1/ 0.04 N1-C/ 67.82 C-D/ 68.23 N3-F/ 83.58 A-N 1 / 0.02 N2-D/ -3.03 I-N4/ -12.48 N4-N5/ -9.62 I-N5/ 96.62 F-G/ 83.85 G-H/ 84.08 H-I/ 84.18 Box l/ 71.61 Box 3/ 71.95 Box 4/ 72.20 Box 2/ 71.78 FREE # 1/ 87.75 ######################################## _ _> System inflows (data group K3) at 35.00 hours ( Junction / Inflow,cfs ) N1 / 5.01E+01 N3 / 7.60E+00 N2 / 1.84E+00 N5 / 4.58E-01 N4 / 1.76E+00 M M= M = = = M i M= B M= M M = = M M M = = M ######################################## ######################################## __> System inflows (data group K3) at 36.00 hours ( Junction / Inflow,cfs ) N1 / 4.72E+01 N3 / 6.96E+00 N2 / 1.64E+00 N5 / 4.07E-01 N4 / 1.56E+00 ######################################## Cycle 4500 Time 36 Hrs - 45.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 1.551 24.55 N1/ 2.55 / 24.55 C/ 2.16 / 23.73 D/ 1.76 / 22.60 N3/ 2.68 / 22.07 U 2.16 / 20.10 A/ 0.151 24.55 N2/ 3.70 / 22.60 N51 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 2.26 / 21.20 G/ 2.01 / 20.54 H/ 2.11 / 20.23 Box cb B/ 1.97 / 22.30 Box cb C/ 2.11 / 22.19 Box cb A/ 1.81 / 22.49 Conduit/ FLOW => ""Conduit uses the normal flow option. B-N1/ 0.00 N1-C/ 47.96 C-D/ 48.02 N3-F/ 56.97 A-N1/ 0.00 N2-D/ -1.70 I-N4/ -10.00 N4-N5/ -8.39 I-N5/ 67.01 F-G/ 57.00 G-H/ 57.02 H-I/ 57.02 Box 1/ 49.74 Box 3/ 49.78 Box 4/ 49.81 Box 2/ 49.76 FREE # 1/ 59.05 ######################################## _=> System inflows (data group K3) at 37.00 hours ( Junction / Inflow,cfs ) N1 / 4.33E+01 N3 / 6.21E+00 N2 / 1.39E+00 N5 / 3.46E-01 N4 / 1.33E+00 ######################################## ######################################## _> System inflows (data group K3) at 38.00 hours( Junction / Inflow,cfs ) N1 / 4.13E+01 N3 / 5.86E+00 N2 / 1.29E+00 N5 / 3.20E-01 N4 / 1.23E+00 ######################################## Cycle 5000 Time 38 Hrs - 50.00 Min Junction / Depth / Elevation => "*" Junction is Surcharged. B/ 1.39 / 24.39 D/ 1.58 / 22.42 A/ 0.06 / 24.46 N4/ 4.66 / 20.16 H/ 2.09 / 20.20 Box cb A/ 1.63 / 22.31 N1/ 2.39 / 24.39 N3/ 2.51 / 21.90 N2/ 3.52 / 22.42 F/ 2.10 / 21.04 Box cb B/ 1.78 / 22.11 C/ 2.01 / 23.58 I/ 2.17 / 20.11 N51 5.16 / 20.16 G/ 1.92 / 20.45 Box cb C/ 1.94 / 22.01 Conduit/ FLOW - > ""Conduit uses the normal flow option. B-N1/ 0.00 NI-C/ 41.64 C-D/ 41.68 N3-F/ 49.00 A-N1/ 0.00* N2-D/ -1.31 I-N4/ -8.98 N4-N5/ -7.74 I-N5/ 58.01 F-G/ 49.02 G-H/ 49.03 H-I/ 49.03 Box 1/ 43.01 Box 3/ 43.04 Box 4/ 43.06 Box 2/ 43.02 FREE # 1/ 50.60 ######################################## __> System inflows (data group K3) at 39.00 hours ( Junction / Inflow,cfs ) N1 / 3.60E+01 N3 / 4.79E+00 N2 / 9.42E-01 N5 / 2.33E-01 N4 / 9.01E-01 ######################################## ######################################## _> System inflows (data group K3) at 40.00 hours ( Junction / Inflow,cfs ) N1 / 2.95E+01 N3 / 3.52E+00 N2 / 5.12E-01 N5 / 1.31E-01 N4 / 4.92E-01 ######################################## Cycle 5500 Time 40 Hrs - 55.00 Min Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 1.08 / 24.08 N1/ 2.08 / 24.08 C/ 1.72 / 23.29 D/ 1.23 / 22.07 N3/ 2.18 / 21.57 I/ 2.19 / 20.13 A/ 0.06 / 24.46 N2/ 3.17 / 22.07 N5/ 5.16 / 20.16 N4/ 4.66 / 20.16 F/ 1.80 / 20.74 G/ 1.78 / 20.31 H/ 2.06 / 20.17 Box cb B/ 1.42 / 21.75 Box cb C/ 1.58 / 21.66 Box cb A/ 1.27 / 21.96 Conduit/ FLOW => "*" Conduit uses the normal flow option. B-N1/ 0.01 NI-C/ 30.12 C-D/ 30.29 N3-F/ 34.82 A-N1/ 0.00* N2-D/ -0.58 I-N4/ -7.11 N4-N5/ -6.58 M M M M M M M M M M M I-N5/ 42.03 F-G/ 34.90 G-H/ 34.93 H-I/ 34.93 Box 1/ 30.91 Box 3/ 31.02 Box 4/ 31.10 Box 2/ 30.96 FREE # 1/ 35.59 ######################################## _=> System inflows (data group K3) at 41.00 hours( Junction / Inflow,cfs ) N1 / 2.62E+01 N3 / 2.91E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01 ######################################## ######################################## _> System inflows (data group K3) at 42.00 hours ( Junction / Inflow,cfs ) N1 / 2.62E+01 N3 / 2.91E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01 ######################################## Table E5 - Junction Time Limitation Summary (0.10 or 0.25)* Depth * Area Time step = ------------------------------ Sum of Flow The time this junction was the limiting junction is listed in the third column. Junction Time(.10) Time(.25) Time(sec) ------------------------------------------- B 3.0363 7.5907 39585.0000 N 1 5.7325 14.3312 105.0000 C 6.0502 15.1254 90.0000 D 3.4898 8.7244 120.0000 N3 111.4043 150.0000 0.0000 I 150.0000 150.0000 0.0000 A 4.4383 11.0959 30.0000 N2 5.2084 13.0211 195.0000 N5 150.0000 150.0000 0.0000 N4 150.0000 150.0000 0.0000 F 142.3458 150.0000 0.0000 G 150.0000 150.0000 0.0000 H 150.0000 150.0000 0.0000 Box cb B 0.6556 1.6390 4320.0000 Box cb C 0.0979 0.2448 5670.0000 Box cb A 0.2451 0.6127 36285.0000 The junction requiring the smallest time step was ... B — ---- -------* Table E5a - Conduit Explicit Condition Summary Courant = Conduit Length Timestep = -------------------------------- Velocity + sgrt(g*depth) Conduit Implicit Condition Summary Courant = Conduit Length Time step = -------------------------------- Velocity The 3rd column is the Explicit time step times the minimum courant time step factor Minimum Conduit Time Step in seconds in the 4th column in the list. Maximum possible is 10 * maximum time step The 5th column is the maximum change at any time step during the simulation. The 6th column is the wobble value which is an indicator of the flow stability. You should use this section to find those conduits that are slowing your model down. Use modify conduits to alter the length of the slow conduits to make your simulation faster, or change the conduit name to "CHME?????" where ????? are any characters, this will lengthen the conduit based on the model time step, not the value listed in modify conduits. r M M M M ■t M M M M M M r M a M M M M M Conduit Time(exp) Expl*Cmin Time(imp) Time(min) Max Qchange Wobble Type of Soln B-NI 4.4365 4.4365 150.0000 0.2500 0.5360 1.5493 Normal Soln NI-C 15.1176 15.1176 46.4024 0.0000 0.4510 4.1610 Normal Soln C-D 13.2154 13.2154 39.4414 0.0000 0.7954 4.2719 Normal Soln N3-F 10.8318 10.8318 27.5211 0.0000 0.2080 0.7835 Normal Soln A -NI 5.3953 5.3953 150.0000 0.0000 0.2349 1.0395 Normal Soln N2-1) 15.7241 15.7241 150.0000 0.0000 -0.2753 2.7535 Normal Soln I-N4 22.9002 22.9002 83.7291 0.0000 -0.1824 1.5828 Normal Soln N4-N5 5.6617 5.6617 20.9530 304.5000 -0.2493 1.6482 Normal Soln I-N5 24.7058 24.7058 68.0444 0.0000 0.2764 0.2831 Normal Soln F-G 10.8936 10.8936 26.2230 0.0000 0.2181 0.7028 Normal Soln G-H 11.1755 11.1755 26.9353 0.0000 0.2361 0.2425 Normal Soln H-I 4.6787 4.6787 9.5734 0.0000 0.2491 0.6224 Normal Soln Box 1 2.6071 2.6071 6.7183 1135.2500 -4.7444 24.8563 Normal Soln Box 3 4.4539 4.4539 10.9227 0.0000 -1.9217 16.5926 Normal Soln Box 4 10.6150 10.6150 26.4398 0.0000 -0.9440 8.1639 Normal Soln Box 2 6.1167 6.1167 15.5364 0.0000 2.3464 14.7769 Normal Soln The conduit with the smallest time step limitation was..Box 1 The conduit with the largest wobble was.................Box 1 The conduit with the largest flow change in any consecutive time step...................................Box 1 Table E6. Final Model Condition This table is used for steady state flow comparison and is the information] saved to the hot -restart file. Final Time = 42.004 hours Junction / Depth / Elevation =_> "*" Junction is Surcharged. B/ 0.96 / 23.96/ N1/ 1.96 / 23.96/ C/ 1.61 / 23.18/ D/ 1.10 / 21.94/ N3/ 2.05 / 21.44/ U 2.20 / 20.14/ A/ 0.06 / 24.46/ N2/ 3.04 / 21.94/ N5/ 5.16 / 20.16/ N4/ 4.66 / 20.16/ F/ 1.69 / 20.63/ G/ 1.74 / 20.27/ H/ 2.05 / 20.17/ Box cb B/ 1.28 / 21.61/ Box cb C/ 1.44 / 21.52/ Box cb A/ 1.14 / 21.82/ Conduit/ Flow => "*" Conduit uses the normal flow option. B-N1/ 0.00 / N1-C/ 26.26 / C-D/ 26.34 / N3-F/ 29.77 / A-N1/ 0.00*/ N2-D/ -0.34 / I-N4/ -6.12 / N4-N5/ -5.81 / I-N5/ 35.93 / F-G/ 29.80 / G-H/ 29.82 / H-I/ 29.82 / Box l/ 26.71 / Box 3/ 26.77 / Box 4/ 26.81 / Box 2/ 26.74 / FREE # 1/ 30.20 / Conduit/ Velocity B-N1/ 0.00 / NI-C/ 4.34 / C-D/ 4.78 / N3-F/ 3.36 / A-N1/ 0.00 / N2-D/ -0.06 / I-N4/ -0.60 / N4-N5/ -0.45 / I-N5/ 1.32 / F-G/ 2.98 / G-H/ 1.94 / H-I/ 1.61 / Box 1/ 3.98 / Box 3/ 3.30 / Box 4/ 2.61 / Box 2/ 3.71 / Conduit/ Width B-Nl/ 3.26 / N1-C/ 5.30 / C-D/ 5.17 / N3-F/ 7.41 / A-N1/ 1.76 / N2-D/ 2.72 / I-N4/ 2.63 / N4-N5/ 0.47 / I-N5/ 9.78 / F-G/ 7.37 / G-H/ 9.66 / H-I/ 13.61 / Box 1/ 6.00 / Box 3/ 6.00 / Box 4/ 6.00 / Box 2/ 6.00 / Junction/ EGL B/ 0.96 / N1/ 1.96 / C/ 1.91 / D/ 1.78 / N3/ 2.15 / 1/ 2.24 / A/ 0.06 / N2/ 3.04 / N5/ 5.19 / N4/ 4.66 / F/ 1.86 / G/ 1.88 / H/ 2.11 / Box cb B/ 1.501 Box cb C/ 1.61 / Box cb A/ 1.38 / Junction/ Freeboard M M M M M = = w B/ 11.04 / N1/ 8.70 / C/ 12.04 / D/ 6.73 / N3/ 6.56 / I/ 9.86 / A/ 8.89 / N2/ 8.36 / N5/ 7.84 / N4/ 4.84 / F/ 7.88 / G/ 9.74 / H/ 9.84 / Box cb B/ 6.89 / Box cb C/ 5.08 / Box cb A/ 8.43 / Junction/ Max Volume B/ 112.35 / N1/ 124.90 / C/ 111.82 / D/ 3799.50 / N3/ 69.54 / 1/ 35.86 / A/ 94.77 / N2/ 130.31 / N5/ 64.84 / N4/ 61.52 / F/ 63.00 / G/ 53.35 / H/ 44.62 / Box cb B/ 89.67 / Box cb C/ 81.95 / Box cb A/ 100.63 / Junction/Total Fldng B/ 0.00 / N1/ 0.00 / C/ 0.00 / D/ 4285.68 / N3/ 0.00 / I/ 0.00 / A/ 0.00 / N2/ 0.00 / N51 0.00 / N4/ 0.00 / F/ 0.00 / G/ 0.00 / H/ 0.00 / Box cb B/ 0.00 / Box cb C/ 0.00 / Box cb A/ 0.00 / Conduit/ Cross Sectional Area B-N1/ 1.38 / NI-C/ 6.05 / C-D/ 5.511 N3-F/ 8.87 / A-N1/ 0.52 / N2-D/ 5.94 / I-N4/ 10.23 / N4-N5/ 12.85 / I-N5/ 27.13 / F-G/ 9.99 / G-H/ 15.38 / H-I/ 18.55 / Box 1/ 6.70 / Box 3/ 8.12 / Box 4/ 10.28 / Box 2/ 7.21 / Conduit/ Final Volume B-N1/ 101.76 / NI-C/ 2389.47 / C-D/ 1850.03 / N3-F/ 1516.61 / A-N1/ 46.75 / N2-D/ 1816.41 / I-N4/ 3836.23 / N4-N5/ 1285.20 / I-N5/ 13566.16 / F-G/ 1618.88 / G-H/ 2567.79 / H-I/ 1298.25 / Box 1/ 469.34 / Box 3/ 925.55 / Box 4/ 2642.97 / Box 2/ 1167.87 / Conduit/ Hydraulic Radius B-N1/ 0.38 / N1-C/ 0.93 / C-D/ 0.87 / N3-F/ 0.80 / A-N1/ 0.18 / N2-D/ 0.84 / I-N4/ 1.03 / N4-N5/ 1.00 / I-N5/ 1.92 / F-G/ 1.09 / G-H/ 1.31 / H-I/ 1.27 / Box 1/ 0.81 / Box 3/ 0.93 / Box 4/ 1.08 / Box 2/ 0.86 / Conduit/ Upstream/ Downstream Elevation B-N1/ 23.96/ 23.96 N1-C/ 23.96/ 23.18 C-D/ 23.18/ 22.27/ N3-F/ 21.44/ 20.63 A-N1/ 24.46/ 23.96 N2-D/ 21.94/ 21.94/ I-N4/ 20.14/ 20.16 N4-N5/ 20.16/ 20.16 I-N5/ 20.14/ 20.16/ F-G/ 20.63/ 20.27 G-H/ 20.27/ 20.17 H-V 20.17/ 20.14/ Box l/ 21.94/ 21.82 Box 3/ 21.61/ 21.52 Box 4/ 21.52/ 21.44/ Box 2/ 21.82/ 21.61 Table E7 - Iteration Summary Total number of time steps simulated ............ 5760 Total number of passes in the simulation........ 73364 Total number of time steps during simulation.... 25860 Ratio of actual # of time steps / NTCYC......... 4.490 Average number of iterations per time step...... 2.837 Average time step size(seconds)................ 3.341 Smallest time step size(seconds)................ 0.500 Largest time step size(seconds)................ 7.500 Average minimum Conduit Courant time step (sec). 5.419 Average minimum implicit time step (sec)........ 3.703 Average minimum junction time step (sec)........ 3.703 Average Courant Factor Tf....................... 3.703 Number of times omega reduced ................... 0 M M M M i M M M M M M M M M i M M M M M Table E8 - Junction Time Step Limitation Summary Not Convr = Number of times this junction did not converge during the simulation. Avg Convr = Average junction iterations. Conv err = Mean convergence error. Omega Cng = Change of omega during iterations Max Item = Maximum number of iterations Junction Not Convr Avg Convr Total Itt Omega Cng Max Item Ittm >10 Ittm >25 Ittrn >40 ------------------------------------------------------------------- B 0 4.24 109739 0 46 1990 ------------------ 23 4 N1 0 4.82 124742 0 55 2118 545 59 C 0 1.03 26683 0 8 0 0 0 D 0 1.45 37431 0 16 70 0 0 N3 0 1.06 27347 0 15 1 0 0 I 0 1.11 28773 0 12 1 0 0 A 0 2.80 72397 0 48 690 16 1 N2 0 1.22 31577 0 20 2 0 0 N5 0 1.16 29938 0 23 1 0 0 N4 0 1.10 28529 0 17 3 0 0 F 0 1.05 27224 0 7 0 0 0 G 0 1.06 27307 0 13 1 0 0 H 0 1.04 26944 0 9 0 0 0 Box cb B 0 1.50 38702 0 32 217 217 0 Box cb C 0 1.22 31518 0 20 108 0 0 Box cb A 0 2.88 74475 0 58 1357 1317 297 Total number of iterations for all junctions.. 743326 Minimum number of possible iterations......... 413760 Efficiency of the simulation .................. 1.80 Excellent Efficiency Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower thel efficiency generally the faster your model will run. If your efficiency is less than 1.5 then you may try increasing your time step so that your overall simulation] is faster. Ideal efficiency would be around 2.0 Good Efficiency < 1.5 mean iterations Excellent Efficiency < 2.5 and > 1.5 mean iterations Good Efficiency < 4.0 and > 2.5 mean iterations Fair Efficiency < 7.5 and > 4.0 mean iterations Poor Efficiency > 7.5 mean iterations M M M M M M S S M M M M M M M M M M M M M M M M M M M M M M M r M Table E9 - JUNCTION SUMMARY STATISTICS The Maximum area is only the area of the node, it does not include the area of the surrounding conduits) Uppermost Maximum Time Feet of Maximum Maximum Maximum Maximum Ground PipeCrown Junction of Surcharge Freeboar d Junction Gutter Gutter Gutter Junction Elevation Elevation Elevation Occurence at Max of node Area Depth Width Velocity Name feet feet feet Hr. Min. Elevation feet ft^2 feet feet ft/s --------------- B --------- 35 -------- 28.392 -------- 31.9408 --------- 30 0 --------- 3.5488 -------- 3.0592 -------- 12.566 --------- 0 --------- 0 --------- 0 N1 32.66 28.3 31.9398 30 0 3.6398 0.7202 12.566 0 0 0 C 35.22 27.66 30.4688 30 2 2.8088 4.7512 12.566 0 0 0 D 28.67 26.92 29.224 30 4 2.304 0 8701.1107 0 0 0 N3 28 27.65 24.9242 30 0 0 3.0758 12.566 0 0 0 I 30 28.94 20.794 30 1 0 9.206 12.566 0 0 0 A 33.35 27.46 31.9415 30 0 4.4815 1.4085 12.566 0 0 0 N2 30.3 22.4 29.2699 30 4 6.8699 1.0301 12.566 0 0 0 N5 28 26 20.16 18 0 0 7.84 12.566 0 0 0 N4 25 20 20.3956 30 1 0.3956 4.6044 12.566 0 0 0 F 28.51 27.1975 23.9509 30 0 0 4.5591 12.566 0 0 0 G 30.01 29.2725 22.778 30 0 0 7.232 12.566 0 0 0 H 30.01 28.855 21.6656 30 1 0 8.3444 12.566 0 0 0 Box cb B 28.5 24.3296 27.4659 30 4 3.1363 1.0341 12.566 0 0 0 Box cb C 26.6 24.0788 26.6 29 42 2.5212 0 12.566 0 0 0 Box cb A 30.25 24.686 28.6941 30 4 4.0081 1.5559 12.566 0 0 0 Table E10 - CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions. * denotes an open conduit that has been overtopped this is a potential source of severe errors Conduit Maximum Maximum Time Maximum Time Ratio of Maximum Depth Ratio Ratio Design Design Vertical Computed of Computed of Max. to at Pipe Ends d/D d/D Conduit Flow Velocity Depth Flow Occurence Velocity Occurence Design Upstream Dwnstrm US DS Name --------------- (cfs) ------- (ft/s) -------- (in) -------- (cfs) ------- Hr. Min. (ft/s) Hr. Min. Flow (ft) (ft) B-N1 99.4838 5.0667 60 -0.5808 ----------- 29 30 ------- -0.2982 ---------- 19 30 ------- -0.0058 -------- 31.9408 -------- ----- 31.9398 1.709 ----- 1.728 NI-C 158.2956 5.5986 72 241.5501 30 0 8.5137 30 0 1.5259 31.9398 30.4688 1.606 1.468 C-D 172.9674 6.1175 72 241.5851 30 0 8.5208 30 0 1.3967 30.4688 29.224 1.483 1.384 N3-17 728.053 6.9132 99.12 273.9896 30 0 6.2134 30 0 0.3763 24.9242 23.9509 0.67 0.6069 A -NI 70.3134 9.9473 36 0.3367 31 17 0.0473 31 17 0.0048 31.9415 31.9398 2.493 2.879 N2-D 75.905 7.8894 42 -11.607 30 0 -1.1936 30 0 -0.1529 29.2699 29.224 2.385 2.949 I-N4 95.9369 7.6344 48 50.005 30 2 4.4787 30 3 0.5212 20.794 20.3956 0.7135 1.098 N4-N5 99.8147 7.943 48 61.0924 30 2 4.7726 30 2 0.6121 20.3956 20.16 1.208 1.29 I-N5 1518.25 15.976 132 223.9672 30 1 7.3482 30 1 0.1475 20.794 20.16 0.2595 0.4691 F-G 769.4335 6.6961 91.08 273.9776 30 0 6.1778 30 0 0.3561 23.9509 22.778 0.6605 0.5593 G-H 2216.818 9.5668 128.88 273.9714 30 1 6.2001 30 1 0.1236 22.778 21.6656 0.3953 0.3306 H-1 879.2816 6.7384 76.44 273.9691 30 1 7.3119 30 1 0.3116 21.6656 20.794 0.5574 0.448 Box 1 134.9276 5.622 48 251.3819 30 4 10.4194 30 4 1.8631 29.224 28.6941 2.096 2.002 Box 3 134.9276 5.622 48 251.3823 30 4 10.437 30 4 1.8631 27.4659 26.6 1.784 1.63 Box 4 148.9257 6.2052 48 233.9234 30 47 9.7225 30 47 1.5707 26.6 24.9242 1.63 1.383 Box 2 134.9276 5.622 48 251.3822 30 4 10.4271 30 4 1.8631 28.6941 27.4659 2.002 1.784 FREE # 1 Undefnd Undefnd Undefn 287.9489 30 1 = = = = M = M r = = = M = = = M = r M Table El 1. Area assumptions used in the analysis) Subcritical and Critical flow assumptions from Subroutine Head. See Figure 17-1 in the manual for further information. Duration Duration Durat. of Durat. of of of Sub- Upstream Downstream Maximum Maximum Maximum Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D Name Flow(min) Flow(min) Flow(min) Flow(min) Radius-m Area(ft^2) (ft^2/s) --------------- B-N1 ----------------------------------------------- 81.7500 1349.8750 8.3750 0.0000 --------- 1.5207 -------- 20.5788 0.1964 NI-C 0.1875 1434.3750 0.0000 5.4375 1.8255 29.6049 78.4187 C-D 0.1875 453.7500 0.0000 986.0625 1.8249 29.6340 73.0143 N3-F 0.0000 1440.0000 0.0000 0.0000 1.9843 44.0965 32.7678 A-N1 587.8333 850.5833 1.5833 0.0000 0.8395 7.2673 0.2882 N2-D 3.6250 1436.3750 0.0000 0.0000 0.9604 9.8549 11.1075 I-N4 0.0000 1440.0000 0.0000 0.0000 1.1049 11.1657 16.2332 N4-N5 0.0000 1440.0000 0.0000 0.0000 1.0000 12.9108 23.8522 I-N5 0.0000 1440.0000 0.0000 0.0000 2.1009 30.4793 29.4440 F-G 0.0000 1440.0000 0.0000 0.0000 1.8816 44.3487 28.5993 G-H 0.0000 1440.0000 0.0000 0.0000 1.9656 44.1886 24.1677 H-I 0.0000 1440.0000 0.0000 0.0000 1.6930 37.4688 23.4147 Box 1 0.3750 1439.6250 0.0000 0.0000 1.6298 26.3149 85.3956 Box 3 3.6250 1436.3750 0.0000 0.0000 1.6239 26.3134 71.2707 Box 4 0.0000 1440.0000 0.0000 0.0000 1.5781 26.3092 58.5138 Box 2 2.1250 1437.8750 0.0000 0.0000 1.6208 26.3131 78.9546 Table E12. Mean Conduit Flow Information Mean Total Mean Low Mean Mean Mean Mean Conduit Flow Flow Percent Flow Froude Hydraulic Cross Conduit Name (cfs) (ft^3) Change Weightng Number Radius Area Roughness B-NI -0.0007-58.2268 0.0066 0.9746 0.0002 0.9525 11.4536 0.0120 NI-C 75.5146 6524465.1 0.0367 0.9998 0.5579 1.3262 18.4316 0.0140 C-D 75.4778 6521278.5 0.0397 0.9998 0.6107 1.2969 18.1135 0.0140 N3-F 91.3318 7891067.6 0.0340 1.0000 0.4773 1.4932 27.5362 0.0254 A-N1 0.0000-2.3095 0.0028 0.7746 0.0003 0.5506 4.3062 0.0140 N2-D -3.5608-307656.3 0.0099 0.9988 0.0005 0.8633 8.3775 0.0140 I-N4 3.7105 320585.88 0.0097 1.0000 0.2242 1.0607 10.5488 0.0140 N4-N5 7.1315 616160.90 0.0103 1.0000 0.1782 1.0000 12.8422 0.0140 I-N5 87.6128 7569745.0 0.0255 1.0000 0.5121 1.9923 28.5199 0.0140 F-G 91.3247 7890453.0 0.0319 1.0000 0.5023 1.5525 27.6955 0.0260 G-H 91.3223 7890245.4 0.0321 1.0000 0.4736 1.6568 29.8364 0.0260 H-I 91.3220 7890221.1 0.0377 1.0000 0.5557 1.4820 27.3608 0.0251 Box 1 79.0306 6828248.0 0.1378 0.9998 0.6205 1.1140 17.2376 0.0140 Box 3 79.0082 6826306.1 0.0947 0.9988 0.5875 1.1564 17.9016 0.0140 Box 4 78.5556 6787206.8 0.0599 1.0000 0.5491 1.2114 18.8913 0.0140 Box 2 79.0215 6827461.9 0.0924 0.9992 0.6149 1.1298 17.4869 0.0140 FREE # 1 95.6361 8262959.9 M Table E13. Channel losses(H), headwater depth (HW), tailwater depth (TW), critical and normal depth (Yc and Yn). Use this section for culvert comparisons Conduit Maximum Head Friction Critical Normal HW TW Name Flow Loss Loss Depth Depth Elevat Elevat --------------------------------- B-N1 0.5360 --------- 0.0000 --------- 0.0000 --------- 0.1959 --------- 0.2480 --------- 30.5751 30.5543 Max Flow Nl-C 241.5127 0.0000 1.4796 4.2548 6.0000 31.9162 30.4417 Max Flow C-D 241.5315 0.0000 1.2605 4.2550 6.0000 30.4414 29.1867 Max Flow N3-F 273.9894 0.0000 0.8029 4.1661 6.0238 24.9242 23.9508 Max Flow A -NI 0.2983 0.0000 0.0000 0.1587 0.1351 30.7570 30.7714 Max Flow N2-D-0.3439 0.0000 -0.0001 0.1652 0.1617 21.9427 21.9428 Max Flow I-N4 50.0048 0.0000 0.5845 2.1201 2.0501 20.7937 20.3954 Max Flow N4-N5 61.0924 0.0000 0.2022 2.3547 2.2614 20.3955 20.1600 Max Flow I-N5 223.9662 0.0000 0.8906 3.4078 2.8479 20.7940 20.1600 Max Flow F-G 273.9758 0.0000 0.8918 4.0926 5.4016 23.9508 22.7779 Max Flow G-H 273.9705 0.0000 0.8727 3.3558 4.6178 22.7780 21.6655 Max Flow H-I 273.9682 0.0000 0.5383 3.1957 4.1284 21.6656 20.7939 Max Flow Box 1 251.3819 0.0000 0.5290 3.7914 4.0000 29.2238 28.6939 Max Flow Box 3 251.3823 0.0000 0.8644 3.7914 4.0000 27.4658 26.6000 Max Flow Box 4 233.8887 0.0000 1.6902 3.6133 4.0000 26.6000 24.9077 Max Flow Box 2 251.3822 0.0000 1.2260 3.7914 4.0000 28.6939 27.4658 Max Flow Table E13a. CULVERT ANALYSIS CLASSIFICATION, and the time the culvert was in a particular classification during the simulation. The time is in minutes. The Dynamic Wave Equation is used for all conduit analysis but the culvert flow, classification condition is based on the HW and TW depths. Mild Mild Steep Mild Mild Slope Slope TW Slope TW Slug Flow Slope Slope Critical D Control Insignf Outlet/ TW > D TW <= D Conduit Outlet Outlet Entrance Entrance Outlet Outlet Outlet Inlet Inlet Name Control Control Control Control Control Control Control Control Configuration B-N1 0.0000 1120.2500 81.7500 0.0000 238.0000 0.0000 0.0000 0.0000 None NI-C 0.2500 1204.7500 0.0000 0.0000 235.0000 0.0000 0.0000 0.0000 None C-D 416.2500 787.0000 0.0000 0.0000 236.7500 0.0000 0.0000 0.0000 None N3-F 0.0000 1440.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 None A-N1 0.0000 0.0000 614.0000 572.0000 0.0000 253.5000 0.5000 0.0000 None N2-D 0.0000 0.0000 12.5000 1094.0000 0.0000 331.0000 2.5000 0.0000 None I-N4 0.0000 0.0000 0.0000 1378.2500 61.7500 0.0000 0.0000 0.0000 None N4-N5 0.0000 0.0000 0.0000 0.0000 29.2500 1410.7500 0.0000 0.0000 None I-N5 0.0000 0.0000 0.0000 997.7500 0.0000 0.0000 442.2500 0.0000 None F-G 0.0000 1440.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 None G-H 0.0000 1440.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 None H-I 345.2500 1094.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 None Box 1 4.7500 1119.2500 0.2500 0.0000 315.7500 0.0000 0.0000 0.0000 None Box 3 1.0000 1117.7500 3.5000 0.0000 317.7500 0.0000 0.0000 0.0000 None Box 4 0.0000 1100.2500 0.0000 0.0000 339.7500 0.0000 0.0000 0.0000 None Box 2 4.7500 1116.7500 2.0000 0.0000 316.5000 0.0000 0.0000 0.0000 None Kinematic Wave Approximations Time in Minutes for Each Condition M M M M M M M M M M m m m m r M M M m m m M M Conduit Duration of Slope Super- Roll Name Normal Flow Criteria Critical Waves B-NI 0.0000 634.8917 0.0000 0.0000 NI-C 0.0500 6.1316 0.0000 0.0000 C-D 0.2375 83.9821 1.3750 0.0000 N3-F 0.0000 68.3125 0.0000 0.0000 A -NI 261.1667 575.8000 0.0000 0.0000 N2-D 11.2500 14.0000 0.0000 0.0000 I-N4 0.0000 431.5625 0.0000 0.0000 N4-N5 0.0000 0.0000 0.0000 0.0000 I-N5 371.00001440.0000 0.0000 0.0000 F-G 0.0000 323.4375 0.0000 0.0000 G-H 0.0000 556.7500 0.0000 0.0000 H-I 0.0000 556.3750 0.0000 0.0000 Box 1 0.5000 1036.0000 3.2500 0.0000 Box 3 6.6250 1142.4250 0.0000 0.0000 Box 4 0.0000 1140.8125 0.0000 0.0000 Box 2 14.3750 1136.1000 3.0000 0.0000 Table E 14 - Natural Channel Overbank Flow Information <---- Maximum Velocity -----> <------ Maximum Flow -------> <------ Maximum Area ------> <--- Max. Storage Volume ---> Conduit Left Center Right Left Center Right Left Center Right Left Center Right Maximum Name Velocity Velocity Velocity Flow Flow ------------------------------------------------------ Flow Area Area Area Area Area Area Depth N3-F 1.2333 6.6008 1.0863 --------- 2.7261 270.2567 ------------------ 1.0068 --------- 2.2104 --------- 40.9429 --------------------------- 0.9268 377.9747 7001.2386 158.4862 5.3108 F-G 1.1990 7.1175 1.6906 1.7874 262.0535 10.1367 1.4908 36.8184 5.9960 241.5048 5964.5802 971.3589 4.6818 G-H 1.2772 7.1125 1.7607 1.9816 261.8131 10.1767 1.5516 36.8102 5.7799 259.1100 6147.2972 965.2451 3.9437 H-I 0.0000 7.5085 1.0385 0.0000 272.8408 1.1283 0.0000 36.3374 1.0865 0.0000 2543.6205 76.0548 3.2614 Table E14a - Natural Channel Encroachment Information <------- Existing Conveyance Condition -------> <----- Encroachment Conveyance Condition -----> <- % Volume --> <-- Encroachment Data --> Conduit Left Centre Right Total Left Right Left Centre Right Total Left Right Reduction Depth Name Bank Channel Bank Station Station Bank Channel Bank Station Station Left Right Incr. Method N3-F 45.204 4481.4 16.694 4543.3-6.3815 9.1598 45.204 4481.4 16.694 4543.3-6.3815 9.1598 0.0000 0.0000 0.0000 None F-G 28.763 4216.9 163.12 4408.8-7.9213 11.028 28.763 4216.9 163.12 4408.8-7.9213 11.028 0.0000 0.0000 0.0000 None G-H 32.174 4250.9 165.23 4448.3-4.1722 14.478 32.174 4250.9 165.23 4448.3-4.1722 14.478 0.0000 0.0000 0.0000 None H-I 0.0000 3399.2 14.058 3413.3-7.2107 13.618 0.0000 3399.2 14.058 3413.3-7.2107 13.618 0.0000 0.0000 0.0000 None Table E14b - Floodplain Mapping Conduit Upstream Downstream Channel Center <----- Left Offsets ------> <----- Right Offsets ------> <- Channel Widths-> Name WS Elev. WS Elev. Length Station Natural Encroach Bank Natural Encroach Bank Total Encroach. N3-F 24.9242 23.9509 171.0000 2.4000 8.7815 8.7815 5.1000 6.7598 6.7598 5.1900 15.5412 15.5412 F-G 23.9509 22.7780 162.0000 0.0000 7.9213 7.9213 5.3100 11.0285 11.0285 4.4720 18.9498 18.9498 G-H 22.7780 21.6656 167.0000 0.0000 4.1722 4.1722 1.8800 14.4781 14.4781 8.7000 18.6504 18.6504 H-I 21.6656 20.7940 70.0000 0.0000 7.2107 7.2107 8.9100 13.6175 13.6175 9.8800 20.8282 20.8282 mmmmm MM M MM M Table E15 -SPREADSHEET INFO LIST Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. Conduit Maximum Total Maximum Maximum ## Junction Invert Maximum Name Flow Flow Velocity Volume ## Name Elevation Elevation (cfs) (ft^3) (ft/s) (ft^3) ## (ft) (ft) ----------- ---------------------------------------- ##---------------- ------------------ B-N1 -0.5808-58.2268 -0.2982 1523.1881 ## B 23.0000 31.9408 N1-C 241.55016524465.142 8.5137 11708.0598 ## N1 22.0000 31.9398 C-D 241.58516521278.461 8.5208 9959.2578 ## C 21.5700 30.4688 N3-F 273.9896 7891067.632 6.2134 7461.3985 ## D 20.8400 29.2240 A-N1 0.3367-2.3095 0.0473 643.7861 ## N3 19.3900 24.9242 N2-D -11.6070-307656.279 -1.1936 2980.8529 ## I 17.9400 20.7940 I-N4 50.0050 320585.8797 4.4787 4373.0399 ## A 24.4000 31.9415 N4-N5 61.0924 616160.9012 4.7726 1288.0010 ## N2 18.9000 29.2699 I-N5 223,9672 7569745.012 7.3482 15444.6755 ## N5 15.0000 20.1600 F-G 273.9776 7890453.018 6.1778 7035.0445 ## N4 15.5000 20.3956 G-H 273.9714 7890245.447 6.2001 7246.0089 ## F 18.9375 23.9509 H-I 273.96917890221.080 7.3119 2557.4028 ## G 18.5325 22.7780 Box 1 251.3819 6828247.978 10.4194 1842.0594 ## H 18.1150 21.6656 Box 3 251.3823 6826306.057 10.4370 2999.9281 ## Box cb B 20.3296 27.4659 Box 4 233.9234 6787206.834 9.7225 6762.3276 ## Box cb C 20.0788 26.6000 Box 2 251.3822 6827461.875 10.4271 4263.0570 ## Box cb A 20.6860 28,6941 FREE # 1 287.9489 8262959.867 0.0000 0.0000 ## Table E15a -SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. Upstream Downstream Maximum Total Node Node Flow Flow -------------------------- (cfs) (ft^3) B ------------------- NI-0.5808-58.2268 N1 C 241.5501 6524465.14 C D 241.5851 6521278.46 N3 F 273.9896 7891067.63 A N1 0.3367-2.3095 D N2 11.6070 307656.279 I N4 50.0050 320585.880 N4 N5 61.0924 616160.901 I N5 223.9672 7569745.01 F G 273.9776 7890453.02 G H 273.9714 7890245.45 H I 273.9691 7890221.08 D Box cb A 251.3819 6828247.98 Box cb B Box cb C 251.3823 6826306.06 Box cb C N3 233.9234 6787206.83 Box cb A Box cb B 251.3822 6827461.88 ################# ################## # Table E16. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS) Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type ------------------------------------------------------------------------------------------------ B-NI B N1 23.3920 23.3000 31.9408 31.9398 Circular NI-C N1 C 22.3000 21.6600 31.9398 30.4688 Circular C-D C D 21.5700 20.9200 30.4688 29.2240 Circular N3-F N3 F 19.3900 18.9375 24.9242 23.9509 Natural A-Nl A N1 24.4600 23.3000 31.9415 31.9398 Circular N2-D D N2 20.9200 18.9000 29.2240 29.2699 Circular I-N4 I N4 17.9400 16.0000 20.7940 20.3956 Circular N4-N5 N4 N5 15.5600 15.0000 20.3956 20.1600 Circular I-N5 I N5 17.9400 15.0000 20.7940 20.1600 Circular F-G F G 18.9375 18.5325 23.9509 22.7780 Natural G-H G H 18.5325 18.1150 22.7780 21.6656 Natural H-I H I 18.1150 17,9400 21.6656 20.7940 Natural Box 1 D Box cb A 20.8400 20.6860 29.2240 28.6941 Rectangle Box 3 Box cb B Box cb C 20.3296 20.0788 27.4659 26.6000 Rectangle Box 4 Box cb C N3 20.0788 19.3900 26.6000 24.9242 Rectangle Box 2 Box cb A Box cb B 20.6860 20.3296 28.6941 27.4659 Rectangle ----------------------- Table E18 -Junction Continuity Error. Division by Volume added 11/96 1 Continuity Error = Net Flow + Beginning Volume - Ending Volume ------------------------------------------------- Total Flow + (Beginning Volume + Ending Volume)/2 Net Flow = Node Inflow - Node Outflow Total Flow = absolute (Inflow + Outflow) Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Great 1 to 2 percent Good 2 to 5 percent Fair 5 to 10 percent Poor 10 to 25 percent Bad 25 to 50 percent Terrible > 50 percent Junction < ------ Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to Name Volume % of Node % of Inflow Volume Volume Thru Node Thru Node Converge B-2.3750-2.6410 0.0000 63.4002 0.0000 61.0252 58.2268 0 N1 627.5315 0.0048 0.0075 1280.2302 0.0000 1907.761813051021.14 0 C 1034.1769 0.0079 0.0124 2118.1390 0.0000 3152.315813045743.60 0 D-1296.8127-0.0095 0.0156 1964.5190 0.0000 667.7063 13657182.72 0 N3 297.2792 0.0019 0.0036 2107.7284 560.1840 1844.823615783984.55 0 I-9.2941-0.0001 0.0001 9319.1477 9361.6093 -51.755615780551.97 0 A-21.5711-189.7151 0.0003 18.1215 0.0000 -3.4495 2.3095 0 N2 179.1494 0.0290 0.0022 842.9150 15.8332 1006.2312 616316.6837 0 N5 67.8837 0.0004 0.0008 7509.9991 7540.2257 37.657116525966.08 0 N4 8.4495 0.0007 0.0001 2540.5729 2549.5502 -0.52791232322.813 0 F-69.5591-0.0004 0.0008 1576.0257 923.8147 582.651915781520.65 0 G-44.9372-0.0003 0.0005 2127.2966 1907.4362 174.923215780698.47 0 H-32.7243-0.0002 0.0004 1972.6617 1927.0530 12.884415780466.53 0 Box cb B 122.6144 0.0009 0.0015 1068.4580 0.0000 1191.0725 13653767.93 0 Box cb C 128.9322 0.0009 0.0016 1821.3869 284.0411 39081.4405 13613512.89 0 Box cb A 77.6157 0.0006 0.0009 836.4096 0.0000 914.0252 13655709.85 0 The total continuity error was 1066.4 cubic feet The remaining total volume was 37167. cubic feet Your mean node continuity error was Excellent Your worst node continuity error was Excellent M Table E19 - Junction Inflow Sources Units are either ft^3 or m13 depending on the units in your model. Constant User Interface DWF Inflow RNF Layer Inflow Junction Inflow Inflow Inflow Inlow through Inflow Outflow Evaporation from Name to Node to Node to Node to Node --------------------------------------------------------- Outfall to Node from Node from Node 2D Layer ----------- N1 0.0000 6.5266E+06 0.0000 0.0000 -------------------------------------------- 0.0000 0.0000 0.0000 0.0000 0.0000 N3 0.0000 1.1057E+06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N2 0.0000 308659.1100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N5 0.0000 77099.9775 0.0000 0.0000 0.3220 0.0000 8.2630E+06 0.0000 0.0000 N4 0.0000 295574.7525 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Box cb C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 37415.1625 0.0000 0.0000 Table E20 - Junction Flooding and Volume Listing. The maximum volume is the total volume in the node including the volume in the flooded storage area. This is the max volume at any time. The volume in the flooded storage area is the total volume) above the ground elevation, where the flooded pond storage area starts. The fourth column is instantaneous, the fifth is the) sum of the flooded volume over the entire simulation] Units are either ft^3 or m^3 depending on the units. Out of System Junction Surcharged Flooded Name Time (min) Time(min) Stored in System Flooded Maximum Ponding Allowed Volume Volume Flood Pond Volume B 236.3500 0.0000 0.0000 112.3501 0.0000 N1 238.0000 0.0000 0.0000 124.9041 0.0000 C 234.9182 0.0000 0.0000 111.8223 0.0000 D 236.5000 83.1189 0.0000 3799.5024 4285.6765 N3 0.0000 0.0000 0.0000 69.5429 0.0000 I 0.0000 0.0000 0.0000 35.8635 0.0000 A 253.5500 0.0000 0.0000 94.7670 0.0000 N2 917.3333 0.0000 0.0000 130.3080 0.0000 N5 0.0000 0.0000 0.0000 64.8406 0.0000 N4 1440.0000 0.0000 0.0000 61.5187 0.0000 F 0.0000 0.0000 0.0000 62.9981 0.0000 G 0.0000 0.0000 0.0000 53.3484 0.0000 H 0.0000 0.0000 0.0000 44.6165 0.0000 Box cb B 316.6875 0.0000 0.0000 89.6742 0.0000 Box cb C 317.6875 64.8575 37415.1625 81.9454 0.0000 Box cb A 315.7500 0.0000 0.0000 100.6293 0.0000 Simulation Specific Information Number of Input Conduits.......... 16 Number of Simulated Conduits...... Number of Natural Channels........ 4 Number of Junctions ............... 16 Number of Storage Junctions....... 0 Number of Weirs ................... 0 Number of Orifices ................ 0 Number of Pumps................... 0 Number of Free Outfalls........... 1 Number of Tide Gate Outfalls...... 0 Average % Change in Junction or Conduit is defined as: Conduit % Change => 100.0 ( Q(n+1) - Q(n) ) / Qfull Junction % Change => 100.0 (Y(n+l) - Y(n)) / Yfull 17 M M M M M M i M M M M M M M M M M M The Conduit with the largest average change was..Box 1 with 0.138 percent The Junction with the largest average change was.Box cb A with 0.563 percent The Conduit with the largest sinuosity was ....... Box 1 with 24.856 Table E21. Continuity balance at the end of the simulation Junction Inflow, Outflow or Street Flooding Error = Inflow + Initial Volume - Outflow - Final Volume Inflow Inflow Average Junction Volume,ft^3 Inflow, cfs ---------------------------------------- N1 6.52650E+06 75.5381 N3 1.10571E+06 12.7976 N2 308660.4044 3.5725 N5 77100.3006 0.8924 N4 295576.0319 3.4210 N5 -8.263E+06 -95.6361 Box cb C-37415.1625 -0.4330 Outflow Outflow Average Junction Volume,ft^3 --------------- Outflow, cfs ------------------------ N5 8.26296E+06 95.6361 Box cb C 37415.1625 0.4330 Initial system volume = 25069.7474 Cu Ft Total system inflow volume = 8.313613E+06 Cu Ft Inflow + Initial volume = 8.338683E+06 Cu Ft Total system outflow = 8.300375E+06 Cu Ft Volume left in system = 37167.0115 Cu Ft Evaporation = 0.0000 Cu Ft Outflow + Final Volume = 8.337542E+06 Cu Ft Total Model Continuity Error Error in Continuity, Percent = 0.01281 Error in Continuity, ft^3 = 1066.3591 + Error means a continuity loss, - a gain # Table E22. Numerical Model judgement section # ############################# Your overall error was 0.0128 percent Worst nodal error was in node D with-0.0095 percent Of the total inflow this loss was 0.0156 percent Your overall continuity error was Excellent Excellent Efficiency Efficiency of the simulation 1.80 Most Number of Non Convergences at one Node 0. Total Number Non Convergences at all Nodes 0. Total Number of Nodes with Non Convergences 0. =--> Hydraulic model simulation ended normally. XP-SWMM Simulation ended normally. _> Your input file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Altematives\Dec 06 Alt\Alt 1 100 dec 06.DAT Your output file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 100 dec 06.out SWMM Simulation Date and Time Summary Starting Date... December 22, 2006 Time... 7:45:26:45 Ending Date... December 22, 2006 Time... 7:46:55:28 Elapsed Time... 1.48050 minutes or 88.83000 seconds I APPENDIX E ' DIGITAL XP-SWMM MODELING FILES Modeling Files: {Designed Alternatives}: • {Alternative 1 } o Alt 1_25 dec 06.xp [25-year storm under future conditions for Alt. 1] o Alt 1 100 dec 06.xp [100-year storm under future conditions for Alt. 1 ] • {Alternative 2} o Alt 2_25 dec 06.xp [25-year storm under future conditions for Alt. 2] o Alt 2 100 dec 06.xp [100-year storm under future conditions for Alt. 2] {Alternative Output} o Alt 1_25 dec 06.out [25-year storm, Alt. 1 output file; Opens in Notebook or WordPad programs] o Alt 1_100 dec 06.out [100-year storm, Alt. 1 output file; Opens in Notebook or WordPad programs] o Alt 2_25 dec 06.out [25-year storm, Alt. 2 output file; Opens in Notebook or WordPad programs] o Alt 2_100 dec 06.out [100-year storm, Alt. 2 output file; Opens in Notebook or WordPad programs] {Existing Flows in Existing System}: • Renton Village Existing 2.xp • Renton Village Existing 10.xp • Renton Village Existing 25.xp • Renton Village Existing 100.xp [2-Year Storm, Existing System with Existing Land Use] [10-YearStorm, Existing System with Existing Land Use] [25-Year Storm, Existing System with Existing Land Use] [100-Year Storm, Existing System with Existing Land Use] • {Existing Output} o Renton Village Existing 2.out [2-Year storm, Existing Land Use, Existing System, Output file] o Renton Village Existing 10.out [10-Yearstorm, Existing Land Use, Existing System, Output file] o Renton Village Existing 25.out [25-Year storm, Existing Land Use, Existing System, Output file] o Renton Village Existing 100.out [100-Year storm, Existing Land Use, Existing System, Output file] {Future Flows in Existing System): • RV fut 2.xp [2-Year Storm, Existing System with future Land Use] • RV fut 10.xp [10-Year Storm, Existing System with future Land Use] • RV fut 25.xp [25-Year Storm, Existing System with future Land Use] • RV fut 100.xp [100-Year Storm, Existing System with future Land Use] ' • {Future Output} o RV fut 2.out [2-Year storm, Future Land Use, Existing System, Output file] o RV fut 10.out [10-Year storm, Future Land Use, Existing System, RV fut 2.out o RV fut 25.out [25-Year storm, Future Land Use, Existing System, , Output file] o RV fut 100.out [100-Year storm, Future Land Use, Existing System, Output file] r APPENDIX F CONSTRUCTION COST ESTIMATES Alt 1 (west box) 1 fl 1 DESCRIPTION QUANTITY UNIT AMOUNT No. Spec No. PRICE 1 1-04.12 Mobilization, Cleanup & Demobilization 1 LS $98,000.00 $98,000.00 2 1-05.4(2) Construction Surveying, Staking, and As -built Drawings 1 LS $2,000.00 $2,000.00 3 1-09.14(1) Traffic Control 1 LS $5,000.00 $5,000.00 4 8-01 Temporary Water Pollution / Erosion Control 1 LS $5,000.00 $5,000.00 5 7-08.3(1)D Dewatering 1 LS $8,000.00 $8,000.00 6 1-04.12 Temporary Bypass Pumping 1 LS $3,000.00 $3,000.00 7 1-04.12 Trench Shoring and Excavation Safety Systems 1 LS $10,000.00 $10,000.00 8 1-07.16(5) Locate and Protect Existing Utilities 1 LS $5,000.00 $5,000.00 9 2-02 Removal of Structure and Obstruction 1 LS $8,000.00 $8,000.00 10 1-09.14(1) Remove / Relocate Existing Signing 1 LS $500.00 $500.00 11 4'x6' Pre Cast Box Culvert (incl. bedding) 605 LF $1,140.00 $689,700.00 12 7-17.3(3) Bank Run Gravel for Trench Backfill 9700 TN $15.00 $145,500.00 13 1-09.14(1) Unsuitable Foundation Excavation, Incl. Haul 150 CY $20.00 $3,000.00 14 9-03.17 Gravel Backfill for Foundation Class B 270 TN $20.00 $5,400.00 15 9-03.22 Controlled Density Fill 150 CY $100.00 $15,000.00 16 Sanitary Sewer Crossing/Encasement 1 LS $5,000.00 $5,000.00 17 Relocate 12-inch Water Main 1 LS $20,000.00 $20,000.00 18 8-04 Cement Concrete Curb and Gutter 30 LF $12.00 $360.00 19 Cement Concrete Sidewalk 0 SY $50.00 $0.00 20 4-04 Crushed Surfacing Top Course 320 TN $20.00 $6,400.00 21 2-02.3(4) Sawcutting 1220 LF $3.00 $3,660.00 22 5-04.3 Temporary Hot Mix Asphalt Concrete Patch 220 TN $75.00 $16,500.00 23 5-04.3(9) Asphalt Concrete Pavement Cl. "B" 120 TN $60.00 $7,200.00 24 8-22 Restore Pavement Markings 1 LS $500.00 $500.00 25 1-07.16(1) Remove / Restore Existing Landscaping 1 LS $1,000.00 $1,000.00 26 8-01.3(2)A Topsoil Type A 1 CY $25.00 $25.00 27 8-01.3(4)A Seeding, Fertilizing, and Mulching 10 SY $2.00 $20.00 28 7-04.6 Television Inspection 605 LF $1.25 $800.00 29 7-08.3(1)C Compaction Testing 12 EA $60.00 $800.00 30 1-04.4(1) Force Account 1 LS $10,000.00 $10,000.00 Subtotal (Items 1-38) Sales Tax (8.8%) TOTAL ESTIMATED CONSTRUCTION COST Construction Contingencies (10%) SUBTOTAL FINAL CONSTRUCTION COST ESTIMATE $1,075,365.00 $94,632.12 $1,169,997.12 $116,999.71 $1,286,996.83 $1,287,000.00 ' 1/16/2007 Renton Village Cost Est 1-12-2007.xls Alt 2 (East box) DESCRIPTION QUANTITY UNIT AMOUNT No. Spec No. PRICE 1 1-04.12 Mobilization, Cleanup & Demobilization 1 LS $89,000.00 $89,000.00 2 1-05.4(2) Construction Surveying, Staking, and As -built Drawings 1 LS $2,000.00 $2,000.00 3 1-09.14(1) Traffic Control 1 LS $5,000.00 $5,000.00 4 8-01 Temporary Water Pollution / Erosion Control 1 LS $5,000.00 $5,000.00 5 7-08.3(1)D Dewatering 1 LS $8,000.00 $8,000.00 6 1-04.12 Temporary Bypass Pumping 1 LS $1,000.00 $1,000.00 7 1-04.12 Trench Shoring and Excavation Safety Systems 1 LS $8,000.00 $8,000.00 8 1-07.16(5) Locate and Protect Existing Utilities I LS $7,000.00 $7,000.00 9 2-02 Removal of Structure and Obstruction 1, LS $5,000.00 $5,000.00 10 1-09.14(1) Remove / Relocate Existing Signing 1 LS $500.00 $500.00 11 4 x6' Pre Cast Box Culvert (incl. bedding) 497 LF $1,140.00 $566,580.00 12 7-17.3(3) Bank Run Gravel for Trench Backfill 8000 TN $15.00 $120,000.00 13 1=09.14(1) Unsuitable Foundation Excavation, Incl. Haul 230 CY $20.00 $4,600.00 14 9-03.17 Gravel Backfill for Foundation Class B 403 TN $20.00 $8,050.00 15 9-03.22 Controlled Density Fill 230 CY $100.00 $23,000.00 16 Sanitary Sewer Crossing/Encasement 1 LS $50,000.00 $50,000.00 17 Relocate 12-inch Water Main 1 LS $20,000.00 $20,000.00 18 8-04 Cement Concrete Curb and Gutter 65 LF $12.00 $780.00 19 Cement Concrete Sidewalk 40 SY $50.00 $2,000.00 20 4-04 Crushed Surfacing Top Course 260 TN $20.00 $5,200.00 21 2-02.3(4) Sawcutting 1004 LF $3.00 $3,012.00 22 5-04.3 Temporary Hot Mix Asphalt Concrete Patch 220 TN $75.00 $16,500.00 23 5-04.3(9) Asphalt Concrete Pavement Cl. "B" 100 TN $60.00 $6,000.00 24 8-22 Restore Pavement Markings 1 LS $500.00 $500.00 25 1-07.16(1) Remove / Restore Existing Landscaping 1 LS $1,000.00 $1,000.00 26 8-01.3(2)A Topsoil Type A 1 CY $25.00 $25.00 27 8-01.3(4)A Seeding, Fertilizing, and Mulching 10 SY $2.00 $20.00 28 7-04.6 Television Inspection 497 LF $1.25 $700.00 29 7-08.3(1)C Compaction Testing 10 EA $60.00 $600.00 30 1-04.4(1) Force Account 1 LS $10,000.00 $10,000.00 Subtotal (Items 1-38) Sales Tax (8.8%) TOTAL ESTIMATED CONSTRUCTION COST Construction Contingencies (10%) SUBTOTAL FINAL CONSTRUCTION COST ESTIMATE $969,067.00 $85,277.90 $1,054,344.90 $105,434.49 $1,159,779.39 $1,160,000.00 1/16/2007 Renton Village Cost Est 1-12-2007.xls