HomeMy WebLinkAboutSWP272711 (11)c�Py
CITY OF RENTON
KING COUNTY WASHINGTON
1
RENTON
' AHEAD OF THE CURVE
RENTON VILLAGE HYDROLOGIC/HYDRAULIC
ANALYSIS
Ll
G&O #05731
' JANUARY 2007
Gray � Osborn.e, Inc.
' CONSULTING ENGINEERS
701 DEXTER AVENUE NORTH SUITE 200
SEATTLE, WASHINGTON 98109 • (206) 284-0860
CITY OF RENTON
DING COUNTY WASHINGTON
RENTON
AHEAD OF THE CURVE
' RENTON VILLAGE HYDROLOGIC/HYDRAULIC
ANALYSIS
1
. I
'
G&O #05731
JAWARY 2007
1
Gray � Osborne, Tn�c.
'
CONSULTING ENGINEERS
701 DEXTER AVENUE NORTH SUITE 200
SEATTLE, WASHINGTON 98109 •(206) 284-0860
1
H
fl
TABLE OF CONTENTS
INTRODUCTION....................................................................................................................1
HYDROLOGICMODELING...................................................................................................I
Hydrologic Modeling Components......................................................................... I
BasinDelineation........................................................................................ I
Hydrologic Modeling Assumptions.............................................................2
Hydrologic Modeling Results..................................................................................5
HYDRAULICMODELING.....................................................................................................8
Hydraulic Modeling Components........................................................................... 8
Hydraulic Modeling Scenarios................................................................................9
HydraulicModeling Results....................................................................................9
Existing Drainage System...........................................................................9
Alternative Storm System Designs............................................................13
Alternative Storm System Modeling Results............................................14
COSTESTIMATES...............................................................................................................17
RECOMMENDATIONS.........................................................................................................18
LIST OF TABLES
No. Table
Page
1
Basin Land Use Coverages......................................................................................3
2
Model Area Inputs Based Upon Land Use Coverage..............................................4
3
Backwater Elevations in Branch 42.........................................................................5
4
Peak Flows for the 2- through 100-Year Storms .....................................................
6
5
6
Model Flow Comparisons.......................................................................................7
Recommended Flows
7
..............................................................................................8
Modeling Results for Existing Pipes Under Existing Land Use Conditions .........
11
8
Modeling Results for Existing Pipes Under Future Land Use Conditions ............
12
9
Flooded Volumes in the Existing System..............................................................13
10
Modeling Results for Future Pipes Under Future Land Use Conditions
Alternative 1 - 4' x 6' Box Culvert ...................................................................15
11
Modeling Results for Future Pipes Under Future Land Use conditions
Alternative 2 — Parallel 48- and 54-Inch Pipes ... ...............:.............................
16
12
Flooded Volumes for Alternatives 1 and 2............................................................17
n
1
1
LIST OF FIGURES
No.
Figure Follows Page
1
1
Vicinity Map............................................................................................................2
2
Basin Map................................................................................................................2
3
Model Input Map.....................................................................................................
4
1
4
XP-SWMM Model Schematic.................................................................................8
5
25-Year Current Land Use Model Results for the Existing System......................10
6
100-Year Current Land Use Model Results for the Existing System....................10
1
7
Proposed Stormwater Conveyance Alternatives...................................................10
8
XP-SWMM Model Schematic for Alternative 1...................................................10
1
9
XP-SWMM Model Schematic for Alternative 2...................................................10
LIST OF APPENDICES
1 Appendix A — Excerpts from the East Side Green River Watershed Hydrologic Anal sis
Y
Appendix B — Excerpts from the Hydraulic Analysis of Springbrook Creek FEMA
1 Remapping Study
Appendix C — Backwater Elevations Set from "Channel 42"
Appendix D — XP-SWMM Modeling Output for the Recommended Alternative 1
1 Appendix E — Digital XP-SWMM Modeling Files
Appendix F — Cost Estimates
1
n
I1
1 ii
' INTRODUCTION
The project is located is in the Renton Village Shopping center, between South Grady
' Way and I-405 (see Figure 1). The major storm drainage system in the Renton Village
area consists of a 42-inch pipe and a 72-inch pipe that carry runoff from the east through
the site. The two pipes meet at a junction where the 72-inch pipe ends, and the 42-inch
pipe continues to the southwest to a catch basin in the parking lot, and transitions to a
48-inch corrugated metal pipe (CMP). No flow control structures are present within the
system. The 48-inch CMP discharges to an open channel section of Rolling Hills Creek,
' located along the south side of the shopping center, north of I-405, and east of SR 167.
The open channel travels to the west where it discharges to a 48-inch culvert and a
132-inch culvert, which carry the flow south under I-405 and discharge to a channel
' designated as "Channel 42" on the east side of SR 167 (See Figure 1).
Flooding in the Renton Village area, and the collapse of the existing 48-inch CMP pipe
' where it discharges to the open channel, has resulted in the need to upgrade the existing
42-inch/48-inch storm drain pipe system in the area. In May 2005, the 48-inch CMP
collapsed at the outlet to the open channel. The City of Renton made emergency repairs
' to remove the collapsed section of pipe and install a new temporary outfall. In
November 2005, the City executed a contract with Gray & Osborne to analyze and design
a new storm system to replace approximately 530 lineal feet of the 42-inch/48-inch storm
drain pipe in the Renton Village parking lot.
This analysis of the Renton Village drainage system includes the hydrologic and
' hydraulic modeling of the existing and future land use scenarios and preliminary design
of the optimum pipe alignment.
HYDROLOGIC MODELING
HYDROLOGIC MODELING COMPONENTS
' Basin Delineation
' The first step in hydrologic modeling involves delineation of the drainage basins for the
project area. The Renton Village area was previously delineated in the March 1996 NHC
report titled "East Side Green River Watershed Hydraulic Analysis" (see Appendix A).
eIn that report, the Renton Village Area was noted as "Rolling Hills (sub -basin P5)" in
Table 10 and the figure for the HSPF model. The City requested this drainage basin be
used as the basis for the Renton Village modeling. Land use for the basin area was
obtained from Table 3 and Appendix C of the November 2004 R.W. Beck Draft Report
entitled "Hydraulic Analysis of Sprmgbrook Creek FEMA Re -Mapping Study" (See
Appendix B).
The Rolling Hills drainage basin encompasses approximately 925 acres and is located
' mostly to the south of Renton Village and Interstate 405 (Figure 2). The basin boundary
City of Renton
Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
was verified with topographical information provided by the City. Only minor changes
were made to a few of the subbasins due to the existence of certain topographical lines
and existing drainage structures shown on a 2001 aerial photograph provided by the City,
and the survey conducted by Gray & Osborne. The subbasins were relabeled as Rolling
Hills 1, 2, and 3 (RH 1, RH2, RH3) and commercial subbasins (C1-05). Figure 2 depicts
the location of these subbasins.
Hydrologic Modeling Assumptions
The King County Runoff Time Series (KCRTS) model was used to determine peak flows
in the basin for existing and future land use conditions. The input parameters used in the
KCRTS model include soil information, a rainfall scale factor based upon project
location, and the amount of pervious and impervious area located within the basin. The
KCRTS software program then takes these parameters and combines them with over
40 years of rainfall data to produce hydrographs displaying flow rates represented for a
number of storm events ranging from the 6-month storm to the 100-year storm event for
each particular basin.
The input parameters used in the KCRTS modeling analysis are as follows:
Soils
Till, Outwash, Wetlands (from previous HSPF model)
Rainfall
Sea-Tac Region with scale factor = 1.0 (King County Manual)
• Pervious/Impervious Areas
The pervious and impervious areas for subbasins RH 1, RH2, and RH3 were derived from
Table 3 of the November 2004 R.W. Beck Draft Report (Appendix B). Since the land
uses seemed equally similar in each subbasin, impervious areas for each of the subbasins
were determined by taking the whole Rolling Hills Basin in the 2004 Report and
proportioning the individual land uses to each of the smaller subbasin sizes (i.e.,
19 percent of the residential portion of the Rolling Hills Basin is impervious area so
19 percent of the RH 1 subbasin was calculated to be impervious.) The commercial
subbasins (C 1 to C5) were taken to be 95 percent impervious with an estimated 5 percent
pervious coverage for both the current and future conditions. Table 1 presents the land
use coverage used for each basin.
City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
'Channel 42'
I
Renton Village
Region
I *.
Scale: 1' = 150
CITY OF RENTON
FIGURE 2
BASIN MAP
Cwrmy 8c (3shmm e, Im
CONSULTING ENGINEERS
Scate: 1" = 400 m
Gray & Osborne, Inc., Consulting Engineers
TABLE 1
Basin Land Use Coverages
}^a .. n�'i e-4'43Y°#i''
i'°x." �^'' .�
r a= ,Effective
�� : a�
�Ba�
x
Impervious
Area F
ac�
47.M
Tilly
Forest
ac.�
TillerOutwash'
,Grass
-Grass '
acF
zk....-n��"�,
WetlanaI
Alluvaal
Forest
rt
Alluvial
Grass a
Basin
Total
dtyJi
`
e F,
c44 {'S .,ty
,...•
p
Xlmx5�.0
F2=Y� J�
i"�uW
RH 1
12
7
40
1
2
62
RH2
48
30
162
3
1
8
252
R113
86
53
292
5
1
1
14
452
Cl
48
3
51
C2
24
1
25
C3
45
2
47
C4
23
1
24
C5
6
1
7
Land Use Total:
292
90
502
9
1
2
24
920
T �^v':-}kL'xF
Future
w..0
x62V
RH1
25
3
32
14
0
1
R112
103
10
131
2
0
0
6
252
RH3
184
19
234
4
1
0
10
452
Cl
48
3
51
C2
24
1
25
C3
45
2
47
C4
23
1
24
C5
6
1
7
Land Use Total:
458
32
405
7
1
0
17
920
The nodes selected for hydrologic and hydraulic modeling are shown in Figure 3.
Table 2 shows the drainage basins flowing to each node, and summarizes the land use
and areas for each node. Node 1 consists of Subbasins C1, RH2, and RH3. Node 2
contains Subbasin C2, Node 3 contains C3 and RH1, Node 4 consists of Subbasin C4 and
Node 5 consists of Subbasin C5.
City of Renton 3
Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
TABLE 2
Model Area Inputs Based Upon Land Use Coverage
. f "
# Effective
4"A
.�`
F
,
Impervious
r
a 4
Till
a 7.
Till
` -a,
Outwagh
is r
.rat, c'.
t °Area �
tEf�
Forest a
ass
Grass
Wetlands
r•�Total
}..
s _` _,AfNodei,*�x�
sac,
act.
_ac
a,,c
c aci
ace
s a kTr�r ,,,Y. �c � � �z- �iT
ndilse...ErL
y s�s�4�"
:Current�L .,..,,.�.ry.
Node 1 (C1, RH2, RH3)
182.5
83.9
479.8
7.5
0.9
754.6
Node 2 (C2)
24.4
1.3
25.7
Node 3 (C3, RH1)
57.2
7.4
44.6
0.6
0.1
109.9
Node 4 (C4)
22.7
1.2
23.9
Node 5 (C5)
6.0
0.3
6.3
Total:
292.8
91.3
527.2
8.1
1.0
920.4
� :�' .T.��.t9,� d ..xf A �v�� r 41�-✓`� 'mil
j� `fib t ��Sc7S.'7e �i
�4r �"'3� �.
l lws.� $ pl'ry�iF
�S�vYi � �iy`. 7
'*Y'c "YS"' 3i§ �''`$�`d'
��'� �L '�y.,:3�'
Node 1 (C1, RH2, R143)
334.6
29.2
383.5
6.4
0.9
754.6
Node 2 (C2)
24.4
1.3
25.7
Node 3 (C3, RHI)
70.6
2.6
36.0
0.6
0.1
109.9
Node 4 (C4)
22.7
1.2
23.9
Node 5 (C5)
6.0
0.3
6.3
Total:
458.3
31.8 1
422.3
7.1
1.0
920.4
Downstream Backwater Condition
All hydraulic scenarios were modeled using the backwater conditions in an open channel
south of I-405. This channel collects runoff from the Renton Village drainage system
and the Rolling Hills Creek area.
Backwater elevations for the hydraulic modeling were obtained from the November 2004
R.W. Beck Draft Report entitled "Hydraulic Analysis of Springbrook Creek FEMA
Re -Mapping Study." The backwater location selected was the FEQ Model Channel
Branch 42 (see Figure 1), located at the south end of the 132-inch and 42-inch culverts
that cross under I-405. The backwater elevations were obtained from data for modeled
"Branch 42" from the storm output files entitled "404C_x.out" where x denotes the storm
event modeled (see Appendix Q. Elevations noted in the output files are in NGVD29.
These elevations were converted to the NAVD88 datum and are listed in Table 3.
4 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
Gray & Osborne, Inc., Consulting Engineers
2%- L%/l/2a>r7 Lr� i3ix�✓�%llz3G GG � �� f�Yo�a /�ro-� .
TABLE 10
Modeling Results for Future Pipes Under Future Land Use Conditions
Alternative 1 - West 4' x 6' Box Culvert
r: .'b.,�; `-.
$.- �, ... �5
.,•�; . „ �
...�, .t•
i , , :• < �,
�.,
..r_.• +.,.. _J.
.+S
Jnstream
r .C.;..,, Y': .,
+�'•*•••-.. 5r! ,'.9.
r.�3;Node,;,c
, :, .. ,
'!'",:�i�`�'''i.•�'n.' '�
W 7.
e.�'�sa • ;fir .
3•ti..,-
C,v ;...y..
<U stream ..
P, . ....._.
Y,-
:',�. . - .
;• •,Rtm Ev '
�+F , : ✓ `. :
; .^:.� e_ ..
�?�.,�ft,�.�
t' , i4' 'i'n,,. ,„y {
.r,� .;. 1l
,� � �. �
,t^� �, .s: '-�
x.: :;.t.'?•:. .
Tx=�;._t:,
?,
.,.
•r.r,•-°�s: r
,• ,[�:nn.�-. ,..,.Fu.y,l
^c..
n.ownstreamw
r,,a-� c y., .. k
_n: 4. ,$.
��::„Node;���,�;�^.Eleyattonft
; ... ARs, y ,.p- .�_- :=
'.� ny ,. aG. �+. fiSL;•
�w ,a^F : �,a
u. ;c...: .,b4.,.�c
Downstreamv
.�.K
�1.:^2". N ...e`�•...... W.t
S,* 4 a�
:�. �a�Rtm ���
. ..._ A� t. anti. "�i
.: .Y+. ,,.n. .r.....
.. } t•p
.: � .... _ .
'- ,
`�� ,r.
rc,n....1� ..,L
. a�,, ?,
+� a , ,: ,,%
:«.: r.
tCondutt .
� :, . ,.. ..,'
:¢..i.,. ,
�s.��NameYwa,..�.�.>t�n:��,w,
,; �
t es ."�� .ri�
�. ,;'`"�.>
;xr,,.
:,, �n
,vP e 9,,
q��
FYS ..'iS:'iu;i
FA
!+Diameter
"• ,r<.s:::
!..
.�.�AiftNZ�':r<n��I�E;h",
. 'i"+:�
`;
=���,a' -''..
trr k�.g..t
;.Ptpe r;;
..k �•
l
t Len th
g
4•R o
' �? �
'k-. ,i"=�*. 4.�.
c �:+t
, ko.•w .Y
aa�•��� �� �`
k,..
� U."stream ;
= n _i� y t
„,,;vw.a.rir r
!ww r�<a•
..3!'4::F ,,,,vv;
�,�r'x ;, '�-
�
y
r. ,r
�� ..k :.J4, k,"
�tirpownstream '~i
P Y
h ""F"4¢ � •) s e i
�.�.,, IE„;•:.?��*`.�:.,,�Slo
�'a sr;
. r3t�F . �
a.;
" �.',:
} * �';
� ; ''Y.'�i' a`.,. �
y.
e..��,�;,cfs.
�.t;, ya
�?^ .G1Yr
Pi e.„,, ,
Des nF,uture
Ye.,d A•`y. rfi
?�,Ca ac)�v"�
-ji P „, •J 4�+
+•i"$ Y
�
r t u.n•.�
sr.
a25 Year .
P.':t _,y f y
a�Elow z.
fi d'i..'. .�
�,� �
�_ _ ;.Rx;c
l 100=Year.
Future ;
...�$'
",Flow t Z�'
, qt €):n^
'c . �'. ,^
�,
A
35
NI
32.66
A-N 1
60
74
24.46
23.3
1.29%
70
0
0
B
33.35
NI
32.66
B-NI
36
90
23.39
23.3
0.12%
99
0
-1
N1
32.66
C
35.22
NI-C
72
395
22.3
21.66
0.16%
158
194
242
C
35.22
D
28.67
C-D
72
336
21.57
20.92
0.19%
173
194
242
N2
30.3
D
28.67
N2-D
42
306
20.92
20.84
0.66%
76
-12
=12
D
28.67
Box cb A
30.25
Box 1
4' x 6'
70
20.84
20.68
0.22%
135
208
Box cb A
30.25
Box cb B
28.5
Box 2
4' x 6'
162
20.68
20.33
0.22%
135
207
251
Box cb B
28.5
Box cb C
26.6
Box 3
4' x 6'
114
20.33
20.08
0.22%
135
207
251
Box cb C
26.6
N3
28
Box 4
4' x 6'
257
20.08
19.4
0.27%
149
206
234
N3
28
F
28.51
N3-F
Channel
171
19.39
18.94
0.26%
728
242
274
F
28.51
G
30.01
F-G
Channel
162
18.94
18.53
0.25%
769
242
274
G
30.01
H
30.01
G-H
Channel
167
18.53
18.12
0.25%
2217
242
274
H
30.01
I
30
H-I
Channel
70
18.12
17.94
0.25%
879
242
274
I
30
N4
25
I-N4
48
375
17.94
16
0.59%
96
1 43
50
N4
25
NS outfall
28
N4-N5
48
100
15.56
15
1 0.56%
100
54
61
I
30
NS otitfall
28
I-NS
132
500
17.94
15
1 0.52%
1518
199
224
(1) r lows exceeding pipe design capacity represent surcharged conditions. 'T boded manhole" conditions represent water flooding out of the manhole and
into the parking lot.
(2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may
also indicate flow in a negative direction occurring at some time during the model due to backwater conditions.
(3) Source: Tables El, E9, E10, E16 of XP-SVIMM output files (Altl_25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E.
- = Flooded Manhole Upstream
City of Renton 15
Renton Village Hydrologic/Hydraulic Analysis January 2007
= s m a a a a a a a a a a� a m a M m
PA r. d E, rd K
w 00-� _ �I ;a)naS
SM33N[9N3 7NILlnSNO3
dVNI NISV9
z Sdf1oIaq
NOINKI 40 AID
a --,",', «t. a' "�s 9. s:L t.-� jk 4j !.,
a � ice. .�. ,y g#a . i3, � .,K`-t�;-7:
ti��•�.- -� .�$� a, � � i�� . •3ar.5t �°��+:�`�����--j r N r1Y ,,
i -1� �- � ip_ r�•�?:`''S'* �`. �Y jj a, �'alle;v uyj�t I <•T'a sua t ���
�rr.y`i�
1 - yfik o- fi Y 'ter v 1' �°
r,�.y{'� ''k"`i'3. �■p�:Yii, )C�' � V �f � -1� A .a ^ �•• . j • e` �E �+�
�
�5 na�'.
$J"+�,% ,z' . 1 , �'?` ^.a 9 , �7�h rt �'f� 8 ��x,,-�'rn v• �� �y , 4e. � t f� r i� „i'
,`«" ,cs .T J {7tYh a '�-'R,y.7 a,.x `� +"t!k rta2. t,5is�' 1. i .i�',R;g ,i\.��' y Y� '� r k '•c r4�a$ � - �Cti ��
a
;.-o�.Jr
't a xs .3« s teq v r 'a r•t' ci •if- 7 ..,�il'z••z,2,T•„�.
♦��i t.,:.;c�`rf' 1�a ^`I -c -) �^J r r+? '? st r•s7}/�Yyp�`�r(i" ,w^rs ��S�i{. �f
t� � - ,:fay �i C•v NJ, �r � � �•�l'��{�
+" ''y 1 �-,. s�j. a fta�• ;;. � T-:r; +�F�.1 !
t:, FM—N-V-
Tow-0:, .�1 ''LK.r?k>yi° aw'
9'.i't� +: ni' k. t gyp].• a
;;j�•�''e'r� _, ? Mtp`.,i x,�...� -' +�, a, �i 'k •..;dray}, -�" ;�4 ,�.a°ti. t '" 17r '�'"'" �',a'r�'r w`<
TS
,sf�y'
'.r-r4.. �k. ; n ] '•�vSr, txsi :}, 'ts.+.n+ T Yy�4'tY`
a"o f fahtxf x� xk ri�aw.'Ic"� t Sy�C7Pl-t
.l�ypi�s' ri
F cr•l{ E E�
t
" ' � �1; � 'r `d��o- �-{�'Y� f� ; ', �l ^&t �����♦�� rAy�s 3'y � w + * .�. t
b.
'?s 4r'•s r. 5e f� a_�T�E...�S1i� i �' ..t"� Yi s,.s...! ./ $ i3 -xt,,may ti{as�'.
{c
>�1. ��t: +� r� ;y� �,��.�ni FR'o- S y Y �a 3'! R's >.•-if j�T
:,a� "�'•`.. �.�,, iy``-iYr ti �a � -�y�xf �++'a. rvr'aea,1,F � � ^'�.aga. � s�T+'s �S .I �� ��s y; ��'.. S� }�y �?, � t
�•, aCu{s _'. i�.yt ?4. u . 'r a'.,.'gc 'rN�'v:r'Y 'k_ ti x N4 S ,.�:I i aa_•" Z e�*' iAl -f' i r' a tt - j P'+- a� �y -
cY -a k 4�i W� : 'S;, r � r;: j fC.� bF .' h }�•�i� � ��Ja. ti`� ���c, � ��"•���f �a { � � a a"�5 i''t` m �T �t � ,. t F ��
'£.•-n �.. h �*°"` 't �g1?�4��+'�..f�'s �r•n44�4 '+Y � •i."" .[ � T i a1(�.f, r, 6"-•„z S` tg'` ie-�'3s r � i r... T• 4a1 f: ,� yr r
}�u � F �b �.1�� •'f�T�,�y '�" r`f ! � `�i*�,t�'. �s'a°p'�S �df. a+ t � - L�-.i.•.rYA''s �y�s3:� � ��r ram= 7}' 4 t J�': 1 F'S h.{.,(
E'�r'1 +Y. ar F"Ft :.e%,�1, ,1 �'^��,a,.`•,, �dc'r" ¢ T ��n •�' k t� r-.' f
s
'f114}' Ya' .,,�a�:' ,Y -�;$t. sfl
t''RV�%D 'F•''' t^rY .r<rar �, 2 �� Q"Sw „'rr U a _ #- �t.. eL�e ar�,d� !
"hw, 3Z.'�- - a•�f t TY f' .� > `, a �i ACT X• f 4� 3i
�' 4�rt•. ems. �� "3 )2 tt a v+"tc'x�L."h•.§�]
x,,- x rsi.,�..��"#�t�r�' - Syr y •`L.iw �'s a iitt�`� i r'f �� �f� �mcr. eR- ), �.n. Lc`;+= '�'�t�-;°
•aby=�ji-�i4
�^'�Nr"F �P a.. l •'K-� 5� 'f 't t ti �i•ig X[it i. la •- 1 T M1L^ �"}i ,FIX '�,a, h�':i �C�,+•f" $a'
jq s4• t_'°"„1y�.,N� Yn Ki ,xa,�,�:: ,1'x�: s"f`y k�,` fu n t -t"• .i ^L eS1 ,C'.� } k « t a
r}; �is� �r
�i' .^•>4 .�� �•'� -�i` 1v3"4Zy.' jayS,Y.EI C, +�.f �` '.;�`�Y'� �,.`,,c's'; •]. T7 .: et `K
1 lu
x'.. - ^°'e . '�,�`'+,.: r�.e: �jy- 1„t-;j-r,.,r'.. "u: i '+`., •(y ``{� r ) vFzr^r '' �r : ' �."" ' xT }`sW
4
�(t' 2 9 t ,it.E ♦ W +' f Y''�i. C w-n Ac'i� - ;1T {t - " .sr� 3 i� a •�.c r' 'a+-r, r� s a; '•+.t.. >t"f 3, a`
•y, S ,r - bra 7 'J!'.. � �k�$.,. i t 4a 't �. '. '{',k �-'
7,W4w�6 a h•�` ,�fi,.� a a.. Ya}•�}l-`t.,s• s)�K+�.T 1�t�sa eti�a'..- _ i� ��'.a:. ....� 3f Y=.• 's' __
!` i !,, C
{
s a }'`s�`5., -'•.§� yy rFea
r V t; •d' y �i'' d ``,J^`' � ".", s� _s'�f 7 � ti• �,'' � ?k$ i 4<a'9a+-� �. 1� _ :i;PWot
��`+`; � ,� -.� +s^ r'4• � tkx
i.'
C` $ h1F n- .* '.•• , > '�, a .o.T rt. Y tT �r' c �. i_
Rr a�}� e. sg: ,._.rF ray }rkFJ e,rvs _�.\ •.-�t,T!„ �'' i� _ss
'.�.A` tl:,
z5ti. Oil,
,_*_.S:tx^a.y.'r -.i�i`'Y"("'1'"t`• tz" .tu,,ia •Y1f„r���gi"t�,.urr�f`t:��'`Fy.,.T��rix-�.ti-,,�ri'`r`.�.$fbar" 8^. rn,44a<F`a�q_uSr<y,!raT'^''J'S.�t�ka,.,,5,s,t . �_?. i�t�rjYy.-�}„ yM.- cn~`-.-�eT-dAT¢I�,�v .`}"'� .t �d ']Lc°i3fi•. r.o - aekM``e1`- a C '';yyt'torTf S '"v'
firtt
i^
�'�s-��• t zfri�- •,, !-ay�a•• r*s T��t�i?�J �' :�t�r's• fi
[. J9`" i�,T���}',�'
¢'k��'S• sM t f'a� .y-xvj��rt ttyE L '^R`flSa`" F.�.i1yj_ }�5�r.aw?c�,�" +*`.'","+'�.`���y
J n-a,'r^�`-"f kY�. 1k�2'.. AJYr iSV ^1z'j • )""arid J-''•a ca.. �4' {,ar °ti.^:.* "�`--'•-'E-.',,,,--
.Y-,�
f +v'ft"�•4'L. �ry'�-�..+' -.r ;.t`-„�rr_,i�y �� a. •r� !J j "1���5k`; yy�� :. r.Y` r ,-� aqt ro t �'` f .Z-} t 1.. °��' 'Ti t. •• - sass -. '�*f "'r..� -4. ♦ 3L.a a r.f"
Ulmxe
cGz t - v, t` � >: �• ''�`'qq > � s" ii: s .Y;�' K w.,�:. ;y ,-.-a-., n t4} y! ,`<i. ti 5,( ':!;
"g��r 'Y ? ♦s y ,-�aler 2r; 12S' 2 i2Yx arY y rr y� r1 4t?'1 SC o i ' LsF v= l i R 1 yj>j
��k yam,f 9 f S#r q as a �s c
-5�`tjr'F' a ��� �,� 3r,iaa3 �j p) � f� � r��; / < G�i� .t �Trt sro �', x �-•, Yt;
y�' z. ^o. + •�' � � � {. 3; T+�' ���� 9'" }{�^i S F! 'c-y- tiit v lt'�, .g r3-;' a,�''�'':.
t" .-✓ 4La3 �•.� .�W.��'r,�•�,y��y �t .W 4� f1 �6` Y ii'T7•'t'- An��� } !" �'r '9c.*Y r�i+1
err , ,ram' \,r5•'!'''rJ '1'.a.`r' r•`"�^S' -.+ \, i- t S' � ! r� J rf`i �_e•,d -1 .Z'�'e+i 'fir' iai l t ;l r, -r¢S` ln.:E ^...K'°n'az'-- r rt
`"f�•a�["['r-,r•�'i F: � �;' p�t� 'tfr L 2L� <��`5;�'F'`�� �Fi <�<'i,�2s-i. �,y� �'3�� t i :�,{' T�'�.:=7 it z`�'h i'f:�'.
•(� Jq5
.'�x jo ty r•r t�? Z. !`-E j•s+�d•}. f'E'�Se- L..if-t
�.s2t 5. (tP IIX
�sC
'•55, s• �C`itl
awl "Wt� .�n�.i 5• e ' L �'1 r \� ti •fig tom,[.... 3 wF .i,
\\ a apv -i )ra Y N -cs'n'�ri,•s GY" r,- .� vk. tJ•++'
''' ti C l '�..:..-.y1•S. i. _' �'Pi 1� :. .'=""'�'.••rs v,. $Y - � "';.{`'�'y.a�r`: r Ktb6�'`t`6
�' ..�••rs R),' � -s�� 1`� t } '.a_r.a .... � 1r_
.t 1, - i,,x..:..cx 'n•,, �,rt' r rt'_1 l`� Ss ^`,.,... >yf.:1�`.3 t
i �ir�v�a r�,U'£.�'Ysr ' •t5r ^bYE� ���� ,�.^ . FJ� t�%��1� 1 li a 7"' •� 7H''��;
��,,,,�tc�'' vS �-a' '�yr��� z�f''4 w i+sf t, f .ts, # Cy i �"_ � +��!� kri � �'-�*'.` i"s{. •.•x,�rr }�5� .,:
���t>` � �' w ..�'a,.! .rc ,� 7, �l ' Y .,,K' 1• ti � ��`>� ��c'� �. t i. � r,� �,p�t� � � ,.,r ♦ 7". x —r ^ d Q � r .,I A y.n•-'
�a.�J:•a,.. sa ::,5;-a.. ,.�x.�c. .:,�. ar.,a•-_�.'z�'ai�4._..:�.a .r-�!T'n3�;f�' ...;�.�'S-its.�t�i�=,si.xn7.ta;�<._..��..-,1,�•.��-.�.e:san�;. ,._.r]a'v"�.-`-ems+".
01-�
j
N2
N1
�~
N3
N4
oil
N5
= Node Input
CITY OF RENTON
FIGURE 3
MODEL INPUT MAP
Scale: 1" - 100 m
C y�� a�
CONSULTING ENGINEERS
Gray & Osborne, Inc., Consulting Engineers
TABLE 3
Backwater Elevations in Branch 42
!,1fu 4NAVD88Elevat�on�gm
x `q
Storm Ev nt
� � ft
4i
2-Year
19.19
10-Year
19.69
25-Year
20.16
100-Year
20.98
HYDROLOGIC MODELING RESULTS
The KCRTS model was run with 1-hour time steps for each of the five input nodes under
both existing and future land use conditions based on input parameters stated earlier.
From these modeling runs, hydrographs were extracted for a 24-hour time period
surrounding the peak flow for each basin corresponding to the 2-year, 10-year, 25-year
and 100-year storm events.
Table 4 shows the peak flows for each of these storm events under both the existing and
future land use conditions. The data from these hydrographs were inserted as "gauged
inflow" tables within designated nodes in the XP-SWMM hydraulic modeling program.
As noted earlier, for modeling purposes, a number of basins were combined and inserted
into one node (i.e., manhole).
City of Renton 5
' Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
TABLE 4
KCRTS Model Results
Peak Flows for the 2- through 100-Year Storms
MAI
'MW2 Year
cfsAi
�10 Years s25
Year
10J0 Year
Current Land Vse���:
,._
_
`"'��.
N1 (Cl, RH2, RH3)
68
95
111
194
N2 (C2)
6
7
9
12
N3 (C3, RH1)
18
21
22
37
N4 (C4)
6
7
8
11
N5 (C5)
1
1
2
3
Total:
99
131
152
257
`. �S'1 }f -fru'� � Ye tt _,-�
4 F +'i5 b ] `'r4+..�
SY i'� C �" 1 5---
"�•���*-�h4 t.
N 1 (C 1, RH2, RH3)
110
131
141
241
N2 (C2)
6
7
9
12
N3 (C3, RH 1)
21
25
27
41
N4 (C4)
6
7
8
11
N5 (C5)
2
2
2
3
Total:
145
172
187
308
The flows shown in Table 4 are higher than the HSPF derived flows in the March 1996
NHC report (Appendix A) for the same drainage basin and land use (Rolling Hills
subbasin P5). Due to this discrepancy, the KCRTS derived flows were compared to
extracted flows from the November 2004 R.W. Beck report (Hydraulic Analysis of
Springbrook Creek FEMA Re -Mapping Study, Appendix B). A comparison of the three
models is shown in Table 5.
6 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
Gray & Osborne, Inc., Consulting Engineers
11
TABLE 5
Model Flow Comparisons
.E.fi-. }}sue'.*' *
dy .F
k�, .ao"e15w'"
,•'s^ S Sri' .l 3
Current
r r v
1 r""�P'" '-G.
4'A,
Conditions � t,f��§},
gee n
�rT'�'. ,3. 'T'tfi .+t
F,uture=�Condihuns3�,��
"- 42x• }t`b^r,`�..,,�,,
A 3
f�
4Mode1lOYYY„
25
Year
ears
��
ZSYear100Y,ea"r�1°OYear
Years
�ModelingReport
;
`cfs�f'K,
cfs
cfs'
zTYP<e
March 1996
East Side Green
HSPF
107
117
130
140
163
198
River (NHC)
November 2004
Extraction from
Hydraulic Analysis of
199
261
HSPF
148
197
330
Springbrook Creek
FEMA Re -mapping
Study (NHC)
October 2006
Renton Village
Hydrologic and
KCRTS
133
152
172
187
308
Hydraulic Analysis
(Gray & Osborne)
Table 5 shows that the 2006 KCRTS model flows are more comparable with the flows in
' the 2004 FEMA Study than the March 1996 flows. The 2006 Gray & Osborne KCRTS
modeled 100-year current flow (257 cfs) is approximately equal to the 25-year future
flow in the 2004 FEMA Study (261 cfs). We chose to use the 2006 Gray & Osborne
' KCRTS model hydrograph for the 100-year current land use scenario as the hydrograph
for the future 25-year event flow. Likewise, the 2006 KCRTS 25-year future flows
(187 cfs) is approximately equal to the 2004 FEMA flow under the 25-year current
' condition (199 cfs) and therefore, was chosen to represent the current 25-year storm
event.
The reason for using these selected hydrographs is that the XP_SWMM hydraulic model
requires a complete hydrograph for the unsteady flow. The 2006 Gray & Osborne
' KCRTS hydrologic modeling generated complete hydrographs for use in the XP-SWMM
Model. Table 6 summarizes the hydrologic flows selected for use in the hydraulic model.
City of Renton 7
' Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
TABLE 6
Selected Flows for the XP-SWMM Model
.x rf� `4,I t
g!,�Model10
°`
� s-
r k Curer=ent�
�'.J �"' a `,r-'2"id
"�' ¢ t�s��`
aFuture�
f c1� ,l #
"vu
,�
i•, y`-�'.#
tear 25-Years
41.00 Year,1OYear
�" T �'I
�25Year100z
� _
fear
1Vlodeling Report;
aType
°cfsj �,
�sMIN
A
bcfs
YET.-
November 2004
Extraction from
Hydraulic Analysis of
HSPF
148
199
261
197
261
330
Springbrook Creek
FEMA Re -mapping
Study (NHC)
October 2006
Renton Village
Hydrologic and
KCRTS
133
152
257
172
187
308
Hydraulic Analysis
(Gray & Osborne)
Selected Flows:
KCRTS
133
187
257
172
257
308
HYDRAULIC MODELING
HYDRAULIC MODELING COMPONENTS
Once the hydrologic flows were determined with the KCRTS model, the flows were
routed through a hydraulic model. The hydraulic model provides flow and water
elevation at representative nodes, and is used to determine when the storm flows are
contained in the pipe system, and when and where any overflow occurs.
Gray & Osborne surveyed the existing storm system in the Renton Village area to obtain
accurate elevation and location information to use in the hydraulic model. The surveyed
information includes pipe lengths, pipe diameter, rim elevations and invert elevations and
is shown in Tables 7 and 8. The survey information was then input into the XP-SWMM
hydraulic routing software program.
With pipe information placed into the modeling program, XP-SWMM was then used to
route the current and future storm flows obtained from the KCRTS model shown in
Table 6. Figure 4 depicts a schematic of the hydraulic model for the existing system.
Each "node" represents a manhole or open channel junction. Only five of the manholes
were chosen as "input nodes." These nodes are depicted in Figure 4 as "N1" through
"N5." Hydrographs were extracted from the KCRTS program, converted to a
recognizable file format, and were then attached to each input node in XP-SWMM.
8 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
m m m m m m m m m m m m m m m m m m m
,t42
A
N2-1) (42') /A -NI (60')
D C-D (72') c Nl-C (72')
NI
B-NI (36')
D-E (42')
E B
E-N3 48'
N4 H-1 (ch) G-H ch) r L ch) N3-F (ch)
I -N4( 48' H G F —'N3
d5
vim- 2
N5 CITY OF RENTON
FIGURE 4
XP—SWMM MODEL SCHEMATIC
CONSULTING ENGINEERS
Gray & Osborne, Inc., Consulting Engineers
0 HYDRAULIC MODELING SCENARIOS
' The XP-SWMM program was run to route the flows from the hydrographs through the
surveyed storm system to determine where pipes surcharge under various storm events.
The model was run for existing and future conditions as described below.
1. The existing pipe system was modeled using existing land use conditions
in Renton Village and the Rolling Hills Basin. This scenario was modeled
with the 2-year, 10-year, 25-year, and 100-year storm events using flows
generated in KCRTS.
2. The existing pipe system was modeled using future land use conditions.
This run was done for the 2-year, 10-year, 25-year, and 100-year storm
events using flows generated in KCRTS.
3. Based on results of the future land use, alternative designs for a new storm
system from the junction of the existing 42- and 72-inch pipes (Node "D"
in Figure 4) to the outfall at the open channel (Node "N3") were analyzed.
The alternative designs consist of new pipes and/or a box culvert of
various sizes. These designs are discussed in greater detail later in this
Report. The 25-year storm event was modeled for the future land use
scenario to ensure that the proposed storm system would not surcharge
and cause flooding on the surface. The 100-year storm event was modeled
to determine if sufficient capacity exists in the nearby parking lot to
contain any surface flooding that occurs under this event because portions
of the project area are within the FEMA 100-year flood plain (parking lot
adjacent to Rolling Hills Creek). Flooding in these areas is due to the
elevation of the ground and is independent of the size of the conveyance
system installed.
HYDRAULIC MODELING RESULTS
Existing Drainage System
Modeling results for Scenarios 1 and 2 (the existing pipe system with existing and future
land use) can be found in the summaries provided in Tables 7 and 8.
Peak modeled flows for the existing land use condition 100-year storm varied between 18
cubic feet per second (cfs) in the downstream 48-inch pipe (Nodes N4 to N5) to 183 cfs
at the upstream 72-inch pipe (Node N1). Likewise, peak flows for future conditions
varied between 19 cfs in the downstream 48-inch pipe (Nodes N4 to N5) to 214 cfs in the
upstream 72-inch pipe.
City of Renton 9
' Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
Negative flows for some pipes are shown in the results displayed in Tables 7 and 8. In
the XP-SWMM output for the Existing Conditions 25-year storm (Renton Village
Existing 25.out) there is the following Warning after Table E1 Conduit Data:
Warning !! The upstream and downstream junctions for the following conduits
have been reversed to correspond to the positive flow and decreasing
slope convention. A negative flow in the output thus means
the flow was from your original upstream junction to your original
downstream junction. Any initial flow has been multiplied by -1.
1. Conduit # .. N3-F has been changed.
2. Conduit # .. E-N3 has been changed:
3. Conduit # .. N2-D has been changed.
4. Conduit # .. F-G has been changed.
For the Conduits noted it appears that the negative sign indicates the flow is opposite the
reversed elevations, so the flow in that pipe or channel is actually in the downstream
direction, as would be expected. A negative slope may also indicate that water has
backed up in the pipe at some point in the model due to backwater conditions.
10 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
m
143
N2: 20
D:117 489
M 10,228 N1i
1-405
f
'omit
A
1
CITY OF RENTON
FIGURE 5
El
= Flooded Volume for Current Land Use (cf)
25-YEAR CURRENT LAND
USE MODEL RESULTS
FOR THE EXISTING SYSTEM
Flooded Volume for Future Land Use (cf)
Scales 1° =
100 m
Cney��.borne,I»
CONSULTING ENGINEERS
Noa.j. = Flooded Volume for Current Land Use (cf)
El= Flooded Volume for Future Land Use (cf)
Scale; 1" = 100 m
CITY OF RENTON
FIGURE 6
100- YEAR CURRENT LAND
USE MODEL RESULTS
4EX, y sr Oeborria, Lv--
CONSULTING ENGINEERS
\
WVC N IE=25.5T W-7-
4-1 VC E E-_24.0•
8" S IE=23.4j,�
� 4
I
CATCH BASIN a0�' /
1B- E$W IL=15.45 TB t.&W IL=7t1.8B GAS METER �A ,
12" S IE=16.95 8' NE IE=17.44 WITH BOLLAR " �A
-- -----------------------------------
6" NE IE-17.75 X" N IE- /
6' NW IE=17.75
/
RIMS _ -29
w /
9 / /
18" /
\ \\ RIM EL-27.19
\ \ ?b\ 8" N IE=21.94
\ CATCH SA IN 8' S IE-21.94
RIM\EL=24.95
\ 12"CC1N IE-23.15
.1
22.28
t2.23
12-
,\ U
NW
SE IE=22.16\
I
C CH ASIN
RIM EIL=Z4.21\ ` �
- CATCH RASIN
M EL=25.51
\ \ OF WATER-22.06
T, M=17.81 v
N' v '/ A
o I
Tra 10 e \ oyA
o �
\ ry T
\ OyQ \ \ 1
CMP
CMP S.
\ \ \
ST R1.t GRAIN OUTLET
2
OB +STO AIN OUTLET "CMP SE IE=2011
V
\ J
\
ZOO
outfNi 0111.
,zy ii
04
I I
{.' s2B34
ALIGNMENT ALTERNATIVES
ALTERNATIVE 1:
WEST 4' . 6' BOX CULVERT
ALTERNATIVE 2:
EAST 4' . 6' BOX CULVERT
zis- /I - "-1- 18" a�
SSMH 40' 20' 0 40' 80,
RIM EL=31.62
' 18' E&W IE=19.57 SCALE, V = 40'
TV C C TV 8"PVC S IE= _ G ---TV
I
ATE t � d - ��•
I
►a
f e
%AMA
- " ' A CITY OF
As Noted
PAVEMENT CRACKS (MAY WOIGATE POOR SUBSURFACE SOILS) owc -� RENTON
DWC ' � d I DATUM
'A' Planning/Building/Public Works Dept.
wrTa
NO. REVISION BY DATE APPR �^� "0��
Rr
FIGURE 7 - PROPOSED STORMWATER 10/25/04
CONVEYANCE ALTERNATIVES
RENTON VILLAGE STORM SYSTEM PROJECT �.... �1
1 :. v
N5
so•)
CITY OF RENTON
FIGURE 8
XP—SWMM MODEL SCHEMATIC
FOR ALTERNATIVE 1 (West Box Culvert)
Grey 8z Osborrie, Inc.
CONSULTING ENGINEERS
I
N5
MM
CITY OF RENTON
FIGURE 9
XP-SWMM MODEL SCHEMATIC
FOR ALTERNATIVE 2 (East Culvert)
G-gy 8z Osborne, Lnc-
Cl)NSULTING ENGINEERS
Gray & Osborne, Inc., Consulting Engineers
TABLE 7
Modeling Results for Existing Pipes Under Existing Land Use Conditions
a: , $:,
..-
»:
x,,,.. �%
f.a,:: W �.
.,-...�.�.Downstream,
. , .,
,. .,....
fiJ?. ... ,,,
n:::. 'i...
Lt stream
.,<p
:.
3Node.,.,�,
,!».
R►m Elegy-
....... T .,,.
ft
�.,... ,,���•
e...: .,. c._
.... . ,j'„�r,
'
Downstream
Y ,.,
i.. ,� ,.::.
...Node � ».:3'�
"+✓�6' - �
, :..
.... i
,,,., , .. `t. ..,,, a. J,..
,,.. 3,,. >3.. '
._ -,. Rim „ J
w ,
,.. ,.... ..
Elevation ft ��
»_ .. .
�
nr
�,.
w.. ,.
..
..w, ..,... as
9,.. ,.. a._ .,:
,. ,,
Conduit:
.,4:..:.>
'Name
,,,,» z. ,
�
3
� ,rF.
,, v<,..
,�: :.�,a ,,,u s,_, �.z
Dame rM:•
_ to .,
"9= ,�3 ii...„.
m
. _....:,. �,»,,.
� .,.,,�,
,,..,-, „':4:w..q-
, en th
....
g r
ft •�
�,.
,
.� "s..
� „:<��
: , U stream .
�
.:.... ......
� ,IE„
»..,�- .
.,a,., -..
Downstream
c , ,.,
.. "-
� � ,.. ��IE-���;Slo
a. , .,,,
e� �
. , •
fs e
�<,.:,
Ca ace ,.
.� .. �,
�•• cfs
.,,,�, : �,
Existm
low ,, 3
w:.
�• ;>»
cfs ,,,k
>i �W.
Existin
low m
,x: cfs
,Existin
..
Flow„
.;•"�'
cfs
.&
,1,00.-Y.,ear ,
xis m
�.a bzq.,�.. 'e
�FIowWW cfs
A
35
Ni
32.66
A-N1
60
74
24.46
23.30
1.57%
70
-1
1
3
B
33.35
N1
32.66
B-NI
36
90
23.39
23.30
0.10%
99
0
2
-3
N1
32.66
C
35.22
NI-C
72
395
22.30
21.66
0.16%
158
65
95
141
C
35.22
D
28.67
C-D
72
336
21.57
20.92
0.19%
173
64
95
141
183
N2
30.3
D
28.67
N2-D
42
306
18.90
20.92
0.66%
76
-6
-7
D
28.67
E
25.51
D-E
42
357
20.84
17.64
0.90%
88
68
E
25.51
N3
28
E-N3
48
159
17.64
19.39
1.10%
89
-68
N3
28
F
28.51
N3-F
Channel
171
19.39
20.13
0.43%
931
-85
-118
-131
-155
F
28.51
G
30.01
F-G
Channel
162
18.91
19.27
0.22%
725
-85
-118
-131
-155
G
30.01
H
30.01
G-H
Channel
167
19.27
18.86
0.25%
2197
85
118
131
155
H
30.01
I
30
H-I
Channel
70
19.27
16.38
4.13%
3573
85
118
131
155
1
30
N4
25
I-N4
48
375
17.94
16.00
0.52%
96
27
23
-14
-19
N4
25
NS outfall
28
f N4-N5
48
100
15.56
15.00
0.56%
100
30
30
-11
-18
I
30
NS outfall
28
1-N5
132
500
17.94
15.00
0.59%
1518
58
95
135 1
173
ki) r V W5 cxcccuuig pipe uesiyn capacuy represem surcnargea commons. --riooaea mannoie- conditions represent water tloodmg out of the manhole and into the parking lot.
(2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow in a
negative direction occurring at some time during the model due to backwater conditions.
(3) Source: Tables E1, E9, E10, and E16 of XP-SWMM output files ("Renton Village Existing 2.out," "Renton Village Existing 10.out," etc.) located in digital files in
Appendix E.
- = Flooded Manhole Upstream
11 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
Gray & Osborne, Inc., Consulting Engineers
TABLE 8
Modeling Results for Existing Pipes Under Future Land Use Conditions
k ;,'. `ram,, �i"
>1., ....: is
U stream..
', ':.,�k� ta'nb
tr a U s e mx
A
... M,✓ ,, .,
-t
Rim Elev
ve.• { 'S:
'.,
u3..
`N,,',..,.,..;
.....,,-a;.»....,...
, . e .,.,....., a ...v"!,'..i
-
Downstreamu
.,
Downstream:'
.,Elevation
,..,..:
`��,.
, ,Condu�t�
,i.:,.�i
!„p?.: ,;•b
x ,,.. , ;,,.,,-Pie
,:=Diameter,.,--
x ...m...
m.
a
, .
...Len h
q c.. �:, ,::,..Y,:
� .: ft �
."«
r
�
Y,U stream.�:.�
fp .
,�1x�: ,
:
W.�. IE « - �n
.k -... ,
.-. h
.T.x a.
> i Y, u
� ., i
_
•Y'.
�'= IE�
3. Yu -:ate
.��,:,,,,. -
.- r.._. _..
:�.Slo e; -
,.. ,.....,.ttwk+a'
+pTM�a
A
.
�.,
De n
s
_.. �
s A ty�
L� Y.t
F�, #
� cf$ . ��
z>,',,
, 'MIA
2_Year
G`a. 'ice
r :'.,
Futu ,e
� Flow
F a
>- cfs
,�
.=`ri ^r::
�1.ar
a
;� �
...,30-Year
3
i3' k
Future
t,':' .,.iE'»`�, , ,
.x
:Flow:: cfs �'
> .. , . �
, 25- .ear
� r
�.- k'utu
5 Flowr_.
h �'i.
u4'c;
� =,, cf
v_�..
"
u3r
Future.
A
35
N1
32.66
A-N1
60
74
24.46
23.30
1.57%
99
3
5
4
B
33.35
N1
32.66
B-NI
36
90
23.39
23.30
0.10%
70
1 -15
-9
1 6
N1
32.66
C
35.22
NI-C
72
395
22.30
21.66
0.16%
158
1 112
131
C
35.22
D
28.67
C-D
72
336
21.57
20.92
0.19%
173
1 131
137
141
214
N2
30.3
D
28.67
N2-D
42
306
18.90
20.92
-0.66%
76
D
28.67
E
25.51
D-E
42
357
20.84
17.64
0.90%
88
E
25.51
N3
28
E-N3
48
159
17.64
19.39
-1.10%
89
N3
28
F
28.51
N3-F
Channel
171
19.39
20.13
-0.43%
931
-124
-131
-136
-161
F
28.51
G
30.01
F-G
Channel
162
18.91
19.27
-0.22%
725
-124
-131
-136
-161
G
30.01
H
30.01
G-H
Channel
167
19.27
18.86
0.25%
2197
124
131
136
161
H
30.01
I
30
H-I
Channel
70
19.27
16.38
4.13%
3573
124
131
136
161
I
30
N4
25
I-N4
48
375
17.94
16.00
0.52%
96
39
29
-16
-20
N4
25
NS outfall
28
N4-N5
48
100
15.56
15.00
0.56%
100
43
35
-12
-19
I
30
NS outfall
28
I-NS
1 132
500
17.94
15.00
0.59%
1 1518
86
102
136
179
(1) Flows
exceeding pipe design capacity represent surchareed conditions.
"Flooded manhole" conditions represent water flnnrlino
not nftha mnnhnla nnrl intn tha nnrl-
lot. r
(2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may also indicate flow
in a negative direction occurring at some time during the model due to backwater conditions.
(3) Source: Tables El, E9, E10, E16 of XP-SWMM output files ("RV fut 2.out," "RV fut 10.out," etc.) located in digital files in Appendix E.
- = Flooded Manhole Upstream
12
January 2007
City of Renton
Renton Village Hydrologic/Hydraulic Analysis
IGray & Osborne, Inc., Consulting Engineers
1
The increase in peak flow between the existing and future land use scenarios is due to the
' increase in effective impervious area from 32 percent (292 ac/920 ac) under current
conditions to 50 percent (458 ac/920 ac) under future conditions.
0
As depicted in Tables 7 and 8 and in Figure 5, under the existing conditions 25-year
storm event, the model showed flooding at three nodes (D, E, and N2). Under the future
land use flooding was seen in the upstream Node N1 (on the 72-inch pipe) in addition to
the three nodes that were flooded under the existing conditions (D, E, and N2). Table 9
lists the volumes of water resulting at each flooded node under both the existing and
future conditions.
Under the 100-year storm event, the model showed that all nodes upstream of Node E
flooded for both the current and future land use scenarios with the exception of Node C
(See Figure 6). Node E is located in the Renton Village parking lot and is a critical point
within the model as it is low in grade and cannot handle the surcharge seen in the other
pipes. Node E is approximately 2 to 2.5 feet lower than the rims located upstream and
downstream. It should also be noted that flooding is highly correlated to the backwater
condition set downstream by Channel Branch 42. Under a free outfall condition with no
backwater to contend with, a reduction in flooding is seen throughout the system.
TABLE 9
Flooded Volumes in the Existing System
a
Currentk���
�25 Years f
`.+"nos" c+•'
1;00-Year��ZS
S J
Year�1�00
Year*
A
--
18,569
--
55,266
B
--
1
--
5,522
NI
--
50,470
2
106,548
N2
143
143,233
20,234
255,303
D
26,645
735,658
117,489
1,309,900
E
7,805
28,731
10,228
36,558
Alternative Storm System Designs
The design criteria for the new storm system in Renton Village included having sufficient
capacity to convey the future condition 25-year storm event without flooding, and
conveying the future condition 100-year storm event with any flooding confined to the
parking lot area. Using these two criteria, two alternative designs were modeled. For
each design, a positive slope was modeled between pipe sections to eliminate the
negative pipe slopes that are currently in place today. The design alternatives are as
follows.
City of Renton 13
Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
Alternative 1- West Box Culvert: Install approximately 605 lineal feet of 4' x 6' concrete
box culvert from the 72-inch pipe (Node D) to the outfall (Node N3). The preliminary
alignment consists of placing the box culvert in the roadway and then diverting it south
through the parking lot (see Figure 7). Figure 8 presents a schematic of the model for
Alternative 1.
Alternative 2 — East Box Culvert: This alternative entails the installation of 495 lineal
feet of 4' x 6' box culvert between the same nodes as Alternative 1 (Node D to Node N3).
The alignment of this alternative is located towards the eastern end of the parking lot (see
Figure 7).
Under both alternatives, catch basins would need to be installed ih the parking lot to
collect local drainage. To simplify the modeling, these catch basins were not modeled.
However, the runoff from this area was input into the appropriate upstream node and was
accounted for in the model.
Early in the design process an alternative incorporating the existing 42-inch pipe and
installing a parallel 54-inch pipe was reviewed. This alternative had the highest
uncertainty because the condition of the existing 42-inch pipe is unknown. In addition,
bedding of pipe over the known poor soils is difficult using traditional construction
methods. To prevent point loading, the pipe would essentially need to be bedded/encased
in concrete. For these two reasons the alternative of parallel pipes was not pursued.
Alternative Storm System Modeling Results
The model results for both Alternative 1 (west box culvert) and Alternative 2 (east box
culvert) may be found in Tables 10 and 11. The complete XP-SWMM output for
Alternative 1 is located in Appendix D. To clarify the data within this output, Table E9
of the XP-SWMM output displays hydraulic grade line elevations within each node
("Maximum Junction Elevation') along with flooded volume ("Maximum Junction
Area"), Table E10 displays flow rates ("Maximum Computed Flow") and pipe capacities
("Design Flow"), and Table E16 of the XP-SWMM output presents the elevation of the
hydraulic grade line within the pipes ("WS Up," "WS Dn").
As seen in Table 10, the west box culvert (Alternative 1) shows no flooding during the
future 25-year storm event, and some flooding at the upstream end of the box culvert
(Node D) during a 100-year storm event. The model shows that Node D experiences
8,701 cubic feet of flooding during the 100-year storm event (Table E9, Appendix D).
Likewise, the east box culvert scenario (Alternative 2), shows no flooding during the
future 25-year storm event, and some flooding during the 100-year storm at the
downstream end of the 72-inch pipe (Node D). The modeling results reveal that 5,922
cubic feet of flooded volume is produced at Node D. Flow rates in each of the pipes for
Alternative 2 may be found in Table 11 and total flooded volumes are presented in
Table 12.
14 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
mmmm M
Gray & Osborne, Inc., Consulting Engineers
TABLE 10
Modeling Results for Future Pipes Under Future Land Use Conditions
Alternative 1- West 4' x 6' Box Culvert
t�1d4V� Tdi�.. .'.•.'`w,��:." -':
yt ^'.U. ,P;:w;.`N...s... t,o�_.«r4:Fd,,: .ue,e3a.. ,m y,..�'...',N: ;.
rt,,�.rr ' 5,3b ✓^..rere . �,....�. �'
.
�3z,^%n..'y�<«),U ',.R�,.. P �-.{�ym s,. rYt�ftr<omWt Eek.,:.•�la.�.e..,'._:,Smw ..v. ..^ ..{•.
i�2 ,s-..�r'_. z:.a...„,:.'�� ,.. ..r...d.x:T-,�:. Y+.
1. .D•^,:Frit Y.,o.:.'',.:. .w' ,�N�<..ni; 4 om.>s.. �,dt. .rreY�ief .,�.a."..:.m„€h.-trvrrs .r.',y;,
.N �...,,+...:�»:__ - x.�:.:a, r 'ri�:a._...®�-?'a. ',�..y
a',om.:�t.'t E.D-�l:o�.e:...w.v+ r..✓Rant.Fti` ,si•"m.to�ruYn.,.e„a ,...r;wu,a..;�^,��.f:.° mt;t^`s ;«.�.,,� . .s
.f .x + 't n'.•... k�. ..-.5
�P �Cx,ya,>.� . �r d� m,�.�1 tr x_., .�.i'.^
nm
:.ga ...Y^ ':.'.... v ',}:••
?'yr�f:r.ir.tD;.t1.aP, �-.miI:r.Pw.^,,.e�. �et'. � �e, r, . ``.
m-fix
isr..n,
.,,:.. L';,P,e. e: ini' .P ,g .- e5t5.«'h.'° -.I'�i :
.t:.�:: >U_ � «P,�s`1.t'�t .rw,..._esak.,.;�a3...'4M, m ....?-
3�,.�,.��..,.. .,,,;Dti., �.o�#�wi ..'gnrw;f sM t.r.4.,,,ex. .=;,a,4�. �mt�:.-t.�... ,
�'..�a;aK... s��. .+�,r.. 1,
.,n^t,}:' Y-x+s.�R�. i{.,a`.r,u,.
�;-,'�,.waC1�Dya.x+.eesac�g.eT
,,�d•�FF],'lu.o- twut�rhezrl�;. '. '
rear-
'^'��,
r„Pu;'..,,S* "�.".rh.".cez�`).'�.�,.,.•.
A
35
N1
32.66
A-N1
60
74
24.46
23.3
1.29%
70
0
0
B
33.35
N1
32.66
B-NI
36
90
23.39
23.3
0.12%
99
0
-1
N1
32.66
C
35.22
NI-C
72
395
22.3
21.66
0.16%
158
194
242
C
35.22
D
28.67
C-D
72
336
21.57
20.92
0.19%
173
194
242
N2
30.3
D
28.67
N2-D
42
306
20.92
20.84
0.66%
76
-12
-12
D
28.67
Box cb A
30.25
Box 1
4' x 6'
70
20.84
20.68
0.22%
135
208
Box cb A
30.25
Box cb B
28.5
Box 2
4' x 6'
162
20.68
20.33
0.22%
135
207
251
Box cb B
28.5
Box cb C
26.6
Box 3
4' x 6'
114
20.33
20.08
0.22%
135
207
251
Box cb C
26.6
N3
28
Box 4
4' x 6'
257
20.08
19.4
0.27%
149
206
234
N3
28
F
28.51
N3-F
Channel
171
19.39
18.94
0.26%
728
242
274
F
28.51
G
30.01
F-G
Channel
162
18.94
18.53
0.25%
769
242
274
G
30.01
H
30.01
G-H
Channel
167
18.53
18.12
0.25%
2217
242
274
H
30.01
I
30
H-I
Channel
70
18.12
17.94
0.25%
879
242
274
I
30
N4
25
I-N4
48
375
17.94
16
0.59% 1
96 1
43
50
N4
25
NS outfall
28
N4-N5
48
100
15.56
15
0.56%
100
54
61
�F-i
30
NS outfall
28
I-N5
132
500
17.94
15
0.52%
1518 1
199
224
(1) Plows exceeding pipe design capacity represent surcharged conditions. "Flooded manhole" conditions represent water flooding out ofthe manhole and
into the parking lot.
(2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may
also indicate flow in a negative direction occurring at some time during the model due to backwater conditions.
(3) Source: Tables El, E9, E10, E16 of XP-SVIMM output files (Altl 25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E.
- = Flooded Manhole Upstream
City of Renton 15
Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
TABLE 11
Modeling Results for Future Pipes Under Future Land Use conditions
Alternative 2 -East 4' x 6' Box Culvert
:.� :.�.
ar...�! t..
;' r :..
,., ,,...:k J i
: •.:.�:
rilpstream
Nodez,..•,"s�fts_,,..,YNoder.•:�
c-w1 •,',.
s "t.. .
, .r
P :.,..
R�mElev
F ' •t(, b.
:7sG;:.. ,..t.fr x,,r=
F•t,�, �: .:. s ,.
sx. :,u . .'3„t �. �.h.,
w...C.., , .e-.n,. �.!
,'4�..� h"•�,,..;.,.;, ,..
xDownstream1R�m_
,...yElevat�on,ft;,�Name;:r,,,,W,
„r .y+€
c.,vS" ,.. , r. x
!.. .' ) •.� :, - b, i .
`x.. 1 •'
,
Sr -r; S Y!
.; F' _k
.. :. ,.z• �'
.,
. ,. t3• ;i' ,.1
�-.. �•R
='S .u...... •YzV. ..;
C ondmt
y_.
>f tt,:; .., 'r"*-
,�,•..a�- fi • . ;,4. „
.. v ._'�. Ui'
,a:.....
s
X° 'k�, . S vi
�'.., , P k
a� ....Y. {..Y.., 1.
yr. Dtameteryz
»-:•C'sr.:3ti4.
ht..F y
�o:
4*+^v
-and" ,:'
S"L.x. , �a}+i �
_...;., , , „..: ,
s,ti: k °•h
:�•P e, �,
�1.y .,.C- y.
: , o-
tLengtFi,
,E F...,�
eft
,,, � .
.rtA. w
�{••�h
�`L. �
, ..4.:..:e� sa ,
7 "�.� Y
{,,w � s
.P-, ..n1' .s...[
,
Upstream;
�., ,� . LE'y
�1,
"L'.' tv:..t= ,,yr,,,4,s.„-�
F. n.
r.,"' }tE} •1
_ _a t
a ,>- ,.•t . �.
r d: 7,.s
C{, i" M
, � rr
,��:�;�,. g
k" 'iwf i i ;Y'.'" ,v.-
r Downstream ._
nx
a �IE:;Slo
...r • � ....
£`m``�°' y-:.�,+
,.. A:.+•..
.<,^^.�r
Y' '�4
�' t
_ q
:��
e�
.�`°Y r-..."`y�'"
�? P� e
� �. P �,
Des n �
;3i ..�i'nl!,'9�1R"°
Ca acrt .a
p y
•t •'c^c.:
�ticfs�
..r,,..
„��.
,2'S Year x°
•,k'. r`s',r4:.1
:
tFi'uture•;.
".,r... .:.[ ,...
(�a)
,. Flow,:
=.;r r _
cfs �`
100=Year
qff.
:;,Future
p� s
a I
- r,F ow .
--
SFr
A
35
N1
32.66
A -NI
60
74
24.46
23.3
1.29%
70
0
0
B
33.35
N1
32.66
B-NI
36
90
23.39
23.3
0.12%
99
0
-1
N1
32.66
C
35.22
NI-C
72
395
22.3
21.66
0.16%
158
194
242
C
35.22
D
28.67
C-D
72
336
21.57
20.92
0.19%
173
194
242
N2
30.3
D
28.67
N2-D
42
306
20.92
20.84
0.66%
76
-12
-12
D
28.67
Box cb A
29
Box 1
4' x 6'
210
20.84
20.27
0.27%
149
206
Box cb A
29
Box cb B
27.4
Box 2
Tx 6'
110
20.27
19.98
0.27%
149
207
251
Box cb B
27.4
N3
28
Box 3
Tx 6'
175
19.98
19.39
0.33%
166
207
251
N3
28
F
28.51
N3-F
Channel
171
19.39
18.94
0.26%
728
242
274
F
28.51
G
30.01
F-G
Channel
162
18.94
18.53
0.25%
769
242
274
G
30.01
H
30.01
G-H
Channel
167
18.53
18.12
0.25%
2217
242
274
H
30.01
I
30
H-I
Channel
70
18.12
17.94
0.25%
879
242
274
I
30
N4
25
I-N4
48
375
17.94
16
0.59%
96
43
50
N4
25
NS outfall
28
N4-N5
1 48
100
15.56
15
1 0.56%
1 100
1 54
61
1
30
N5 (outfall)
28
I-NS
1 132
500
17.94
15
0.52%
1518
199
224
(1) Flows exceeding pipe design capacity represent surcharged conditions. "Flooded manhole" conditions represent water flooding out of the manhole and
into the parking lot.
(2) Negative flows indicate the flow is opposite the reversed elevations, so the flow in that pipe or channel is actually in the downstream direction. It may
also indicate flow in a negative direction occurring at some time during the model due to backwater conditions.
(3) Source: Tables E1, E9, E10, E16 ofXP-SWMM output files (Altl_25 dec 06.out and Altl_100 dec 06.out) located in digital files in Appendix E.
- = Flooded Manhole Upstream
16
January 2007
City of Renton
Renton Village Hydrologic/Hydraulic Analysis
Gray & Osborne, Inc., Consulting Engineers
TABLE 12
Flooded Volumes for Alternatives 1 and 2
IN
��s100
54 fi Rs 6 a
C
Yea
D
--
8,701
Alternative�2� ��� ,t ��i�
��
-ram �t ���'
F.•�
� x_
� _
D
--
5,922
54-inch Node
--
Surface
From these two models, it is apparent that a box culvert meets the City's criteria of
preventing flooding during the future conditions 25-year storm event. The future
conditions 100-year event results in limited flooding for both alternatives, however, with
a total of 8,701 cubic feet flooded with the west box culvert alternative and 5,922 cubic
feet flooded with the east box culvert alternative, it is apparent that the Thriftway parking
lot can handle this excess stormwater during a 100-year storm event. This analysis
assumes an available storage area surrounding "Node D" with a depth of 6 inches
throughout the parking lot located east of Thriftway. At a 6-inch depth (i.e., curb height),
17,360 square feet of parking area would be necessary for storing the flooded volume
under Alternative 1 and 12,690 square feet would be necessary under Alternative 2. The
parking lot provides approximately 27,800 square feet just to the east of Thriftway.
Flooded water would also drain towards the northern parking lot in front of Thriftway
where additional storage would be provided as well.
COST ESTIMATES
Cost estimates were prepared for the two alternatives described earlier. Both cost
estimates include the installation of a 4' x 6' box culvert, shoring, excavation of
unsuitable material, backfill material as recommended by the geotechnical engineer, and
related work such as traffic control, bypass pumping, erosion control, and landscaping.
The estimates also include a $10,000 force account for unforeseen issues that may arise
during construction. In addition to the force account, a 10 percent contingency has been
added as well.
A higher cost estimate was calculated for Alternative 1 due to the anticipation of greater.
depths of peat and due to its longer alignment. Alternative 1 is estimated to cost
$1,287,000 whereas Alternative 2 has an estimated construction cost of $1,160,000. Both
construction cost estimates include sales tax and can be viewed in greater detail in
Appendix F.
City of Renton 17
Renton Village Hydrologic/Hydraulic Analysis January 2007
Gray & Osborne, Inc., Consulting Engineers
RECOMMENDATIONS
From a hydraulic perspective, both Alternative 1 (4' x 6' west box culvert) and
Alternative 2 (4' x 6' east box culvert) would meet the City's criteria of preventing
flooding during a 25-year storm event under future land use conditions while containing
flooding during a future conditions 100-year storm event.
However, it is recommended that the City select Alternative 1 for reasons that are not
associated with hydraulics. Installation of the box culvert with the proposed alignment
located in the western portion of the parking lot allows for less parking disturbance
during construction and is the chosen alignment for the property owner.
Alternative 1 is anticipated to have a shorter crossing of the poor soils and will be able to
cross over the existing 12-inch sanitary sewer line but has a greater over all length of
culvert. The box culvert will be placed in an area where geotechnical investigations
show a layer of peat to an approximate depth of 25 feet.
The alignment of Alternative 2 show shallower depth of peat at the boring locations but
has a longer traverse over the poor soil. Alternative 2 will also require the existing
sanitary sewer to be encased and cross through the box culvert since the invert of the
sanitary sewer is higher than the invert of the storm drain at this point. The extent and
difficulty of the sewer crossing will not be known until the excavation occurs and
therefore presents a higher level of uncertainty than Alternative 1. This installation will
require additional width of the box culvert to provide adequate hydraulic capacity.
Although these issues are not strictly hydraulically related, it is recommended that a 4' x
6' box culvert be installed in the location shown for Alternative 1 for the reasons listed.
18 City of Renton
January 2007 Renton Village Hydrologic/Hydraulic Analysis
APPENDIX A
EXCERPTS FROM THE
EAST SIDE GREEN RIVER WATERSHED
HYDROLOGIC ANALYSIS
NORTHWEST HYDRAULICS
CONSULTANTS, INC.
MARCH 1996
1
1
1
1
East Side Green River Watershed
Hydrologic Analysis
Report prepared for:
R.W. Beck
and
City of Renton, Department of Planning/BuildinWPublic Works
Prepared by
Northwest Hydraulic Consultants Inc.
16300 Christensen Road Suite 350
Tukwila, WA 98188-3418
206-241-6000
March 1996
r]
Table 10
Flood (cfs) and Storage (ac-ft) Quantiles
Current Conditions
C/
Return Period (yrs)
Flood Ouantile (cfsl
Stream/Sub-Basin Site
2
10
25
100
From ESGRWP Hydrologic Analysis:
Panther Creek (SB PZ P3) Flow upstream SR 167
80
l I9".. _
139
170
Rolling ITills (Sub -basin P5) Flow upstream SR 167
83
. 107 .
117
130
Sub -basins PI--P5 Total flow upstream SR 167
146
.224 ....
270
347
Rolling IOSIPCW SR-167 North crossing
39
69
84
106
Panther Creek SR 167 South crossing
25
..<2-7 .
28
28
Sub -basin S-6 At Outfall
58
A
65
66
Springbrook Creek U/S Oakcsdale Avenue
332
: 522
632
814.
Springbrook Creek U/S P-9 channel
449
687
824
1049
Springbrook Creek BRPS inflow .
492
743
8M
1111
Reqaired storage at BRPS (ac-ft)
45
53
70
140
Water Surface Elevation U/S of Grady Way Box
5.6
6.4
6.8
7.3
From City of Kent Modeling:
GarrisonCreek, SR 167 crossing
104
155
179
213
Upper Springbrook Credo U/S of Springbrook Creek
39
43
43
44
Upper Springbrook Creek Overflows to SB S-6
6
20
28
43
Springbrook Creek . U/S junction Mill Creek
157
255
307
387
Mill Creek .:U/S of Springbrook Creek
176
274
336
442
or Alternative Current Conditions Scenario:
MM Creek U/S of Springbrook Creek
275
435
526
673
Springbrook Creek BRPS inflow
552
832
989
1243
' Notes: (1) Flood quantiles are Log Pearson III
(2) Storage quantiles follow an empirical fit
(3) PCW = Panther Creels Wetland
' (4) U/S = Upstream
(5) BRPS = Black River Pump Station
' (6) Alternative Current Conditions Scenario for Mill Creek without lagoons project
(see Report Section 3.4.1)
11
Table 11
Flood (cfs) and-Storage-(ac-ft) Quandles
Future Conditions
Return Period (yrs)
Flood Ouantile (cfs) or % Change From Current Conditions
Stream., Site
2
10
_ . _.
�... _ _
�.. , .. 100
From FSGRWP Hydrologic Analysis:
Panther Creels (SB PI-P3) Flow upstream SR-167
90
13%
131
100/
150
M.
179
5%
Rolling Hills (Siph-basin PS) Flow upstream SR 167
95
14%
.140
31%
163
39e/
198
52%
Sub -basins Pl P5 Total flow upstream SR-167
165
13%
253
13%
307
14%
399
15%
Rolling MU&(PCW SR 167 North crossing
42
8-/
73.
6%
88
5%
_111
5%
Panther Creek SR-167 South crossing
(66)
4%
28
4%
28
M.
4%
Sub -basin S-6 At Outfall
62
7%
65
2%
, 66
20/a
67
r/e
Spiingbrock.Creek U/S Oakesdale Avenue
539
62%
767
47%
875
39%
1030
27%
Springbrook Creek U/S P-9 channel
653
45%
911
33%
1043
27%
1243
19%
Springbrook Creek BRPS inflow
723
476/a
998
34%
1133
Mo
..1332
20%
Required storage at BRPS (ac-ft)
49
901a
59
11%
92
31%
221
5Me
Water Surface Elevation U/S of Grady way Box
6.2
11%
72
13%
7.8
15%
8.7
190/a
From City of Sent Modeling:
Garrisam Creek 'SR- 167 crossing
127
22%
173
12%
191
7%
215
1%
Upper Springbrook Creek U/S of Springbrook Creek
66
690%
88
105%
101
135%
122
177%
Upper Springbrook Creek Overflows to SB S-6
0
na
0
n.a.
0
n.a.
0
n a.
Springbrook Creek U/S jumaioat Ivflll Creek
236
50%
355
39%
42(1
37%
SZl
35%
Mill Creek U/S of Springbrook Creek 1
311
77%
446
63 %
510
52% (
: 600
36%
Notes: (1) Flood quantiles are Log Pearsoa III
(2) Storage gnantites follow an empirical fit
(3) PCW = Panther Creek Wetland
(4)U/S = Upstream
(5) BRPS = Black River Pump Station
Black River —
Pump Station
S6
0
not included in the HSPF
model was subsequently
found to drain to sub —basin
S7o.
HSPF sub —basin boundary
Sub —basin number
River reach number
SCALE Miles
1 1/2 0 1
northwest hydraulic consultants
Panther
Lake
Figure 2
'' \1 '
F - -
EXCERPTS FROM THE
HYDRAULIC ANALYSIS OF SPRINGBROOK
CREEK FEMA RE -MAPPING STUDY
R.W. BECK
NOVEMBER 2004
,.'i' t• 1
Hydraulic Analysis of
Springbrook Creek
FEMA Re -Mapping Study
City. of Renton
n
NovembuM
6
LLJ
CENTEP
R HiLl CRE C ( SHA
ll AlTUAll7UU 54 1 tiJ j (
' :-.t: c t 1 sr. � � j rn!! fir— � •�
t
c j(
�• W11a Wi1b "
to i � •ice—..J .
N; E VALLEY RD
1 / S
40
•�I i—iS^c —
IN�j flr3 LitT1 r� 4:
"Sit
"C , Ii
.".,,.g-�-� ?/� - �?��� AV S� ! t l � 1E '' t I-�4 37 14 i5 1
S�1=f f 0
i Oii,`7 16
RV S t
7
yip
10 q, W12
1 aQ'
ow wa`,
RIVER t� "U S16 �i�
LEGEND
. t�. P �P' STATION �!
E6
s
WER
PUMP
STATION
i TO GREEN-DUWAMISH 1
RIVER -..
a11 \vnn\vnA02536
:h
-�-�� A,e dcC P4 ov.ow j t `,tAI LEA
.'� TALBOT US�R o � �ll,k, / � � x 1
S- � P AN11►E! �� _... -- -- Wi 1 w ....,�. Hc,.,P! ►,t. ; �
P1 P2 P3
52
36" : 51
S10 F VAU F'r 1RED
��
47 W3
S8.:S7b{ S6
46
48-t7
AV S - 45 VI'M A= i v;
(( s
� I cr ( a} j .�
zi
5Q9b 25a(? ti tz t ,
15 kj t N f vsj f, hr c
17 19 21 23 24
�s 18 0 0 �� 28 r- 28
ti CV
W7b � 27 '' !Tt on, i
J t
30
I W7c S9c r° E �' A i�
0 slow€ nttA€N 2 fEc PEE ewWCN Nos HYDROGPAPS17 SUMM€ si7 (sWoK)
cE OWMEL
MANCN No I O F°a rrEnANo No P5 FFrRRo ' k r�s (�h7M cREDC) .b�.33O
TUKWlLA Nix O atc
RENTON CITY Um TS €
HYDRAULIC ANALYSIS FOR FLOOD PLAIN
RR tfECf Cv DAPPING STUDY OF"SPRINGBROOK CREEK
FIGURE 2
FEO MODEL SCHEMATIC
Now
. 1
F
11
Cl
ice..
Ae
Memorandum
To: Allen Quynn and Ron Straka, City of Renton
From: David M. Hartley and Derek L. Stuart, northwest hydraulic consultants, inc.
Date: Revised October 25, 2005
Re: HYDROLOGIC ANALYSIS FOR FLOODPLAIN MAPPING STUDY OF
SPRINGBROOK CREEK, KING COUNTY, WASHINGTON
cc: Michael Giseburt, R.W. Beck
1 Executive Summary
This memorandum documents the hydrologic methods and results associated with a
floodplain re -mapping study of the lower 3.1 miles of Springbrook Creek between the
Black River Pump Station (BRPS) and SW 43`d Street (also called South 180d' Street),
which is the approximate boundary line between the Cities of Renton and Kent,
Washington. The study reach is shown on FIRM numbers 53033C0976 F and
53033CO978 F revised May 16, 1995. On these maps, the BRPS is labeled "P-1 Pumping
Station".
Hydrologic analyses for this project were conducted following the approach described in an
earlier nhc memorandum. This approach was reviewed and approved by the FEMA Map
Coordination Contractor in a letter to the City of Renton, dated September 25th 2002.
Continuous hydrologic simulation modeling for a 53 year period of record (October 1,
1948 through September 30'', 2002) were used to identify and adjust storm inflow
hydrographs to Springbrook Creek that correspond to recurrence intervals required for
unsteady flow hydraulic modeling and subsequent floodplain mapping. Two types of
potential flood generating peak events were identified for hydraulic analysis: storage events
that produce very high water surface elevations at the Black River Pump Station where
flood waters from Springbrook Creek are pumped to the Green River and conveyance
events that exhibit maximum peak flows into the pump station forebay. Results of the
frequency analysis are summarized in the following tables.
Peak Inflow to Forebay for Con ve ance Limited Storm Events, Current Conditions
Return Period
Flood Frequency
I
Analysis(cfs)
Simulated (cfs)
2
Multiplier
Date of Simulated
Event
2
710
707
1.00
12/3/1968
10
977
941
1.04
2/7/1955
_
25
y 1100
1125
0.98
�T 2/8/1996
50
1209
1153
_
1.05
1/9/1990
100
1307
1153
1.13
1/9/1990
'Flood Frequency quantiles estimated from the simulated peak flow data using Bulletin 17B procedures
Z. tiplier to scale simulated hydrogaph to match estimated flood frequency quantile
The resultant combinations of soil and cover make up an inventory of acreages for each
subbasin in which all land is categorized as one of eight HRUs_ These units are:
1. Effective Impervious Area (EIA)
2. Till Forest (TF)
3. Till Grass (TG)
4. Outwash Forest (OF)
5. Outwash Grass (OG)
6. Wetland (W)
7. Alluvium Forest (AF)
8. Alluvium Grass (AG)
A summary of the acreages of each HRU by major subbasin is provided in Table 3.
Basin -wide, over 42% of the basin is EIA. or impervious area that is directly connected to
the drainage system. Impervious area is heavily concentrated in the commercial and
industrial areas of the flat Green River valley within the Springbrook, Middle, and Lower
Mill Creek subbasins. HRU acreages for individual catchments within the major
subbasins are shown in the schematic block of the HSPF input files in the digital appendix.
Table 3: Summary of HRU Acreages by Major Subbasin- Current Land Use
Subbasin
EIA
TF
TG
OF
OG
W
AF
AG
Water
Total
Area
(ac)
(ac)
(ac)
(ac)
(ac)
(ac)
(ac)
(ac)
(ac)
(ac)
Springbrook
2152
296
437
1
3
487
153
703
4232.5
Rolling
Hills
293
90
507
0
8
1
2
24
925.7
Panther
372
294
835
1
1
156
4
4
33
1700.2
Upper
Springbrook
86
123
250
51
12
48
3
0
573.8
Garrison
539
383
1294
0
0
118
2
2
2338.2
Lower Mill
2200
0
0
0
0
361
83
838
3481.8
Middle Mill
756
16
93
0
0
53
19
248
1184.9
Upper Mill
I
431
237
761
0
0
90
8
5
1531.8
Basin Sum
6795
1439
4176
53
24
1315
274
1826
33
15968.5
Basin %
1
42.9%
9.0%
26.2%
0.3%
0.1%
8.2%
1.7% 1
11.5%
0.2%
100.0%
6
rl
8 Appendix C: Future Land Use Analysis and Modeling
A model based on future build -out conditions was also constructed as part of this project,
'
but was not referenced in the hydrology memorandum submitted to FEMA. In this
future conditions model, the drainage system of Springbrook Creek is assumed to be the
same as under current conditions. Only land use has been changed to reflect build -out
conditions. Build -out conditions were based on zoning map information provided by the
cities of Renton and Kent and by King County. A future land -cover GIS coverage Iwas
generated by combining parks, wetlands, zoning, and current land -cover GIS data and
applied to the model using the following four rules: 1) all jurisdictionally designated
wetland areas are modeled as wetland regardless of any underlying zoning, 2) wetland
soil areas indicated by surficial geology coverages are assumed to be developed based on
zoning if the area is not in a jurisdictionally designated wetland, 3) all parks area (and
publicly owned area in Renton) is modeled with its current land cover, and 4) future land-
11
Table BE Summary of HRU Acreages by Major Subbasin-
Future Land Use
Subbasin
EIA TF
(ac) (ac)
TG
(ae)
OF
(ac)
OG
(ac)
W
(ac)
AF
(ac)
AG
(ac)
Water
(ac)
Total
Area
(ac)
S rin brook
2717 62
496
0
3
443
55
457
4232.5
Rolling Hills
460 32
409
0
4�_7
_
1
0
17
_
[ -
92.5.7
Panther
621 85
837
0
1
117
1
6
33
1700.3
Upper
S rin brook
132 58
279
26
29
48
0
2
573.8
III
Garrison
694 144
1381
0
0
116
0
3
2338.2
Lower Mill
2418 0
0
0
0
361
42
661
3481.8
Middle Mill
818 7
94
0
0
53
90
10
2
203
9
�M�
1184.9
1531.8
Upper Mill
602 75
755
0
0
Basin Sum
_8461 462
4284
27
1228
110
1359
33
15968.5
Basin %
53.0% 2.9%
26.&%
0.2%
_38
0.2%
7.7%
0.7%
9%
_
0.2%
100.0%
cover is always at least as intensive as existing land cover. The methodology for
determining HRU acreages for each subbasin was similar to that of the current -conditions
model with one exception; the areas that experienced a change in landuse were routed to a
separate storage area from those that did not. This was added so the model could be used
in future projects to add storage with new development. A summary of the acreages of
each HRU by major subbasin is provided in the table below.
rThe future conditions model was applied in the same manner as the current conditions
model to determine conveyance and storage controlled events under future conditions.
The results of the future conditions analysis are shown in Tables B2 and B3 as follows:
21
APPENDIX C
BACKWATER ELEVATIONS SET FROM
"CHANNEL 42"
(FROM THE HYDRAULIC ANALYSIS OF
SPRINGBROOK CREEK
FEMA RE -MAPPING STUDY
R.W. BECK
NOVEMBER 2004)
M M M M M M M M i M M M M M M r M r M
From R.W. Beck November 2004 Draft Report "Hydraulic Analysis of Springbrook Creek FEMA Re -Mapping Study", "404C x.out"
files where "x" denotes storm event modeled. The bold, boxed numbers below are the backwater elevations used. The elevations
shown below were converted from the NGVD29 datum to the NAVD 88 datum for the Renton Village modeling analysis by adding
3.6 feet.
2-Year
BRANCH NUMBER
= 42 PONDING VOLUME= 0.0 AC -FT
NODE
NODEID STATION
MAX DEPTH
MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF
MAX Q
TIME OF MIN
Q
GIS Id String
4201 SR167-BU 0.7090
3.609 15.609
3.305 1.0347E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/28:15.000
4202
0.7035
3.571
15.54
3.354
1.0340E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500
4203
0.6979
3.530
15.479
3.409
1.0334E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500
4204
0.6924
3.485
15.409
3.471
1.0328E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500
4205
0.6868
3.435
15.333
3.542
1.0323E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500
4206
0.6813
3.380
15.252
3.624
1.0317E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/27:23.500
4207
0.6757
3.317
15.164
3.721
1.0312E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000
4208
0.6702
3.245
15.067
3.837
1.0306E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000
4209
0.6646
3.159
14.956
3.983
1.0302E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000
4210
0.6591
3.055
14.826
4.175
1.0297E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000
4211
0.6535
2.919
14.665
4.446
1.0294E+02
1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/21:21.000
4212 SR167-BD 0.6480 2.721 14.441 4.896 1.0292E+02 1.0000E+00 68/12/15:16.078 68/12/15:16.078 68/12/28:14.000
10-Year
BRANCH NUMBER
= 42 PONDING VOLUME= 0.0 AC -FT
NODE
NODEID STATION
MAX DEPTH
MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF
MAX Q
TIME OF MIN Q
GIS Id String
4201 SR167-BU 0.7090
4.109 16.109
3.745 1.4200E+02 1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 55/ 1/19: 8.000
4202
0.7035
4.065
16.039
3.808
1.4198E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4203
0.6979
4.017
15.966
3.878
1.4196E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4204
0.6924
3.965
15.888
3.958
1.4195E+02
1.0000E+00 55/ 2/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4205
0.6868
3.907
15.805
4.049
1.4193E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4206
0.6813
3.842
15.715
4.156
1.4191E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4207
0.6757
3.769
15.616
4.283
1.4189E+02
1.0000E+00 5512/ 7:19.078 55/ 2/ 7:17.094 551 1/19: 8.000
4208
0.6702
3.685
15.507
4.438
1.4187E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4209
0.6646
3.586
15.382
4.636
1.4184E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 55/ 1/19: 8.000
4210
0.6591
3.464
15.235
4.905
1.4182E+02
1.0000E+00 55/ 2/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4211
0.6535
3.305
15.050
5.315
1.4179E+02
1.0000E+00 5512/ 7:19.078 5512/ 7:17.094 551 1/19: 8.000
4212 SR167-BD 0.6480 3.142 14.862 6.229 1.4174E+02 1.0000E+00 5512/ 7:19.500 5512/ 7:17.094 551 1/19: 8.000
r r m r m m m m m m r m m m m m m i m
25-Year
BRANCH NUMBER
= 42 PONDING VOLUME= 0.0 AC -FT
NODE
NODEID STATION
MAX DEPTH
MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF
MAX Q
TIME OF MIN
Q
GIS Id String
4201 SR167-BU 0.7090
4.584 16.584
4.053 1.8139E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:16.500
4202
0.7035
4.534
16.509
4.121
1.8141E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1131:16.500
4203
0.6979
4.481
16.430
4.197
1.8142E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000
4204
0.6924
4.422
16.346
4.282
1.8144E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000
4205
0.6868
4.357
16.255
4.380
1.8145E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000
4206
0.6813
4.285
16.157
4.493
1.8146E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 2/15: 3.000
4207
0.6757
4.203
16.050
4.626
1.8147E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500
4208
0.6702
4.108
15.930
4.787
1.8147E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500
4209
0.6646
3.996
15.792
4.989
1.8147E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500
4210
0.6591
3.858
15.629
5.272
1.8146E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500
4211
0.6535
3.674
15.419
5.703
1.8145E+02
1.0000E+00 96/ 2/ 8:11.145 96/ 2/ 8:11.145 96/ 1/31:15.500
4212 SR167-BD 0.6480 3.470 15.190 6.621 1.8140E+02 1.0000E+00 96/ 2/ 8:11.500 96/ 2/ 8:11.145 96/ 1/31:15.500
100-Year
BRANCH NUMBER
= 42 PONDING VOLUME= 0.0 AC -FT
NODE
NODEID STATION MAX DEPTH
MAX ELEV MAX VELOC QMAX QMIN TIME OF MAX Z TIME OF
MAX Q
TIME OF MIN Q
GIS Id String
4201 SR167-BU 0.7090
5.404 17.404
4.433 2.5568E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4202
0.7035
5.354
17.329
4.498
2.5569E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4203
0.6979
5.300
17.249
4.569
2.5571E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4204
0.6924
5.242
17.166
4.649
2.5571E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4205
0.6868
5.179
17.077
4.738
2.5572E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4206
0.6813
5.109
16.982
4.838
2.5572E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4207
0.6757
5.033
16.880
4.954
2.5572E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4208
0.6702
4.947
16.768
5.089
2.5571E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4209
0.6646
4.849
16.645
5.250
2.5569E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4210
0.6591
4.736
16.507
5.448
2.5567E+02
1.0000E+00 90/ 1/ 9:10.063 90/ 1/ 9:10.063 89/12/26:10.000
4211
0.6535
4.607
16.352
5.794
2.5564E+02
1.0000E+00 90/ 1/ 9:10.109 90/ 1/ 9:10.063 89/12/26:10.000
4212 SR167-BD 0.6480 4.491 16.211 6.650 2.5559E+02 1.0000E+00 90/ 1/ 9:10.328 90/ 1/ 9:10.063 89/12/26:10.000
r m m m i ■ram m m m m m m m m m== m m
1
1
1
1
1
1
1
1
rl
APPENDIX D
XP-SWMM MODELING OUTPUT FOR THE
RECOMMENDED ALTERNATIVE 1
(4' X 6' WEST BOX CULVERT)
25-YEAR FUTURE LAND USE CONDITIONS AND
100-YEAR FUTURE LAND USE CONDITIONS
M
XP-SWMM MODELING OUTPUT - Alternative 1 (West -4' x 6' Box Culvert) 25-Year Storm
Current Directory: C:\XPS\XP-SWMM
Engine Name: C:\XPS\XP-SWMM\swmmengw.exe
Read 1 line(s) and found 1 items(s) from your cfg file.
Input File: g\Design\Design Future\Alternatives\Dec 06 Alt\Alt 125 dec 06.XP
XP-SWMM
Storm and Wastewater Management Model
Interface Version: 9.52
Engine Version: 9.28
Developed by
XP Software
XP Software November, 2004
Data File Version ---> 11.7
Serial Number: 42-xxx-0000
XP Software (Evaluation)
Engine Name: C:\XPS\XP-SWMM\swmmengw.exe
Input and Output file names by Layer
Input File to Layer # 1 JOT.US
Output File to Layer # 1 JOT.US
Special command line arguments in XP-SWMM2000. This
now includes program defaults. $Keywords are the program)
defaults. Other Keywords are from the SWMMCOM.CFG file.1
or the command line or any cfg file on the command line.1
Examples include these in the file xpswm.bat under the
section :solve or in the windows version XPSWMM32 in the)
file solve.bat
Note: the cfg file should be in the subdirectory swmxp
or defined by the set variable in the xpswm.bat
file. Some examples of the command lines possible)
are shown below:
swmmd swmmcom.cfg
swmmd my.cfg
swmmd nokeys nconv5 pery extranwq
$powerstation
0.0000
1
2
$pery
0.0000
0
4
$oldegg
0.0000
0
7
$as
0.0000
0
11
$noflat
0.0000
0
21
$oldomega
0.0000
0
24
$oldvol
0.0000
1
28
$implicit
0.0000
1
29
$oldhot
0.0000
1
31
$oldscs
0.0000
0
33
Mood
0.0000
1
40
$nokeys
0.0000
0
42
$pzero
0.0000
0
55
$oldvol2
0.0000
2
59
$storage2
0.0000
3
62
$oldhotl
0.0000
1
63
$pumpwt
0.0000
1
70
$ecloss
0.0000
1
77
$exout
0.0000
0
97
� M M M M M
M M M M w i M w M M M M M M M M M M M
SPATIAL=0.55 0.5500 5 124
$djref = -1.0-0.1000 3 143
$weirlen = 50 50.0000 1 153
$oldbnd 0.0000 1 154
$nogrelev 0.0000 1 161
$ncmid 0.0000 0 164
$new n1 97 0.0000 2 290
$best97 0.0000 1 294
$newbound 0.0000 1 295
$q_tol = 0.1 0.0010 1 316
$new storage 0.0000 1 322
$old iteration 0.0000 1 333
$minlen=30.0 30.0000 1 346
$review_ elevation 0.0000 1 383
$use half volume 0.0000 1 385
$min is = 0.5 0.5000 1 407
$design_restart = on 0.0000 1 412
$zero value=l.e-05 0.0000 1 415
$relax_depth = on 0.0000 1 427
Parameter Values on the Tapes Common B1ock.These are the
values read from the data file and dynamically allocated
by the model for this simulation.
Number of Subcatchments in the Runoff Block (NW).... 0
Number of Channel/Pipes in the Runoff Block (NG).... 0
Runoff Water quality constituents (NRQ)............. 0
Runoff Land Uses per Subcatchment (NLU)............. 0
Number of Elements in the Transport Block (NET)..... 0
Number of Storage Junctions in Transport (NTSE)..... 0
Number of Input Hydrographs in Transport (NTH)...... 0
Number of Elements in the Extran Block (NEE)........ 17
Number of Groundwater Subcatchments in Runoff (NGW). 0
Number of Interface locations for all Blocks (NIE).. 17
Number of Pumps in Extran (NEP)..................... 0
Number of Orifices in Extran (NEO).................. 0
Number of Tide Gates/Free Outfalls in Extran (NTG).. 1
Number of Extran Weirs (NEW) ........................ 0
Number of scs hydrograph points ..................... 1
Number of Extran printout locations (NPO)........... 0
Number of Tide elements in Extran (NTE)............. 1
Number of Natural channels (NNC).................... 4
Number of Storage junctions in Extran (NYSE)........ 0
Number of Time history data points in Extran(NTVAL). 0
Number of Variable storage elements in Extran (NVST) 0
Number of Input Hydrographs in Extran (NEH)......... 5
Number of Particle sizes in Transport Block (NPS)... 0
Number of User defined conduits (NHW)............... 17
Number of Connecting conduits in Extran (NECC)...... 20
Number of Upstream elements in Transport (NTCC)..... 10
Number of Storage/treatment plants (NSTU)........... 0
Number of Values for R1 lines in Transport (NR1).... 0
Number of Nodes to be allowed for (NNOD)............ 17
Number of Plugs in a Storage Treatment Unit......... 1
# Entry made to the HYDRAULIC Layer(Block) of SWMM #
# Last Updated October,2000 by XP Software #
Renton Village Existing
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of 8 pt. and margins of 0.75
i i
Table E1 - Basic Conduit Data
Table E2 - Conduit Factor Data
Table E3a - Junction Data
Table E3b - Junction Data
Table E4 - Conduit Connectivity Data
Table E4a - Dry Weather Flow Data
Table E4b - Real Time Control Data
Table E5 - Junction Time Step Limitation Summary
Table E5a - Conduit Explicit Condition Summary
Table E6 - Final Model Condition
Table E7 - Iteration Summary
Table E8 - Junction Time Step Limitation Summary
Table E9 - Junction Summary Statistics
Table E10 - Conduit Summary Statistics
Table El 1 - Area assumptions used in the analysis
Table E12 - Mean conduit information
Table E13 - Channel losses(H) and culvert info
Table E13a - Culvert Analysis Classification
Table E14 - Natural Channel Overbank Flow Information
Table E14a -Natural Channel Encroachment Information
Table E14b - Floodplain Mapping
Table El -Spreadsheet Info List
Table E15a - Spreadsheet Reach List
Table E16 - New Conduit Output Section
Table E17 - Pump Operation
Table E18 - Junction Continuity Error
Table E19 - Junction Inflow Sources
Table E20 - Junction Flooding and Volume List
Table E21 - Continuity balance at simulation end
Table E22 - Model Judgement Section
Time Control from Hydraulics Job Control
Year......... 2008 Month....... 1
Day.......... 8 Hour........ 18
Minute....... 0 Second...... 0
Control information for simulation
Integration cycles ................. 5760
Length of integration step is...... 15.00 seconds
Simulation length .................. 24.00 hours
Do not create equiv. pipes(NEQUAL). 0
Use U.S. customary units for I/0... 0
Printing starts in cycle........... 1
Intermediate printout intervals of. 500 cycles
Intermediate printout intervals of. 125.00 minutes
Summary printout intervals of...... 500 cycles
Summary printout time interval of.. 125.00 minutes
Hot start file parameter (REDO).... 0
Initial time ....................... 18.00 hours
Iteration variables: Flow Tolerance. 0.00010
Head Tolerance. 0.00050
Minimum depth (m or ft)......... 0.00001
Underrelaxation parameter....... 0.85000
Time weighting parameter........ 0.85000
Conduit roughness factor........ 1.00000
Flow adjustment factor.......... 1.00000
Initial Condition Smoothing..... 0
Courant Time Step Factor........ 1.00000
Default Expansion/Contraction K. 0.00000
Default Entrance/Exit K......... 0.00000
Routing Method .................. Dynamic Wave
Default surface area of junctions... 12.57 square feet.
Minimum Junction/Conduit Depth...... 0.00001 feet.
Ponding Area Coefficient............ 5000.00
Ponding Area Exponent ............... 1.0000
Minimum Orifice Length .............. 300.00 feet.
NJSW input hydrograph junctions..... 5
or user defined hydrographs....
M M M M M mmmm
Natural Cross -Section information for Channel N3-F
Cross -Section ID (from X1 card) : 1.0 Channel sequence number: 1
Left Overbank Length 171.0 ft Maximum Elevation 28.39 ft.
Main Channel Length 171.0 ft Maximum depth 8.26 ft.
Right Overbank Length 171.0 ft Maximum Section Area : 105.3132 ft^2
Maximum hydraulic radius : 3.40 ft.
Manning N : 0.050 to Station -2.7 Max topwidth : 23.24 ft.
It
it : 0.025 in main Channel Maximum Wetted Perimeter : 3.10E+01 ft
" : 0.050 Beyond station 7.6 Max left bank area : 22.69 ft^2
Max right bank area . 11.34 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 71.2900 ft^2
Natural Cross -Section information for Channel F-G
Cross -Section ID (from X1 card) : 2.0 Channel sequence number: 2
Left Overbank Length 162.0 ft Maximum Elevation 26.50 ft.
Main Channel Length 162.0 ft Maximum depth 7.59 ft.
Right Overbank Length 162.0 ft Maximum Section Area : 114.9073 ft^2
Maximum hydraulic radius: 3.38 ft. -
Manning N : 0.050 to Station -5.3 Max topwidth : 28.20 ft.
" " 0.025 in main Channel Maximum Wetted Perimeter: 3.40E+01 ft
" : 0.050 Beyond station 4.5 Max left bank area . 17.87 ft^2
Max right bank area : 31.77 ft^2
Allowable Encroachment Depth : 0.00 ft Max center channel area : 65.2666 ft^2
Natural Cross -Section information for Channel G-H
Cross -Section ID (from X1 card) : 3.0 Channel sequence number: 3
Left Overbank Length 167.0 ft Maximum Elevation 30.01 ft.
Main Channel Length 167.0 ft Maximum depth 10.74 ft.
Right Overbank Length : 167.0 ft Maximum Section Area : 231.7196 ft^2
Maximum hydraulic radius : 5.78 ft.
Manning N : 0.050 to Station -1.9 Max topwidth : 33.96 ft.
" " : 0.025 in main Channel Maximum Wetted Perimeter : 4.01E+01 ft
" : 0.050 Beyond station 8.7 Max left bank area : 56.23 ft^2
Max right bank area : 66.77 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 108,7145 ft^2
Natural Cross -Section information for Channel H-I
Cross -Section ID (from X1 card) : 4.0 Channel sequence number: 4
Left Overbank Length 70.0 ft Maximum Elevation 25.23 ft.
Main Channel Length 70.0 ft Maximum depth 6.37 ft.
Right Overbank Length 70.0 ft Maximum Section Area : 130.4888 ft^2
Maximum hydraulic radius: 3.41 ft.
Manning N : 0.050 to Station -8.9 Max topwidth : 36.34 ft.
" It
: 0.025 in main Channel Maximum Wetted Perimeter: 3.82E+01 ft
to
" 0.050 Beyond station 9.9 Max left bank area 10.53 ft^2
Max right bank area : 25.86 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 94.0951 ft^2
i M M M M M M m m m m M M M
Table E1 - Conduit Data
Inp
Conduit
Area
Num
--------------------
Class
(ft-2)
1 B-NI
----------
74
----------
Circular
-------
19.635
2N1-C
395
Circular
28.2743
3 C-D
336
Circular
28.2743
4N3-F
171
Natural
105.3132
5 A-N1
90
Circular
7.0686
6N2-D
306
Circular
9.6211
7I-N4
375
Circular
12.5664
8 N4-N5
100
Circular
12.5664
9I-N5
500
Circular
95.0332
10 F-G
162
Natural
114.9073
11 G-H
167
Natural
231.7196
12 H-I
70
Natural
130.4888
13 Box 1
70
Rectangle
24
14 Box 3
114
Rectangle
24
15 Box 4
257
Rectangle
24
16 Box 2
162
Rectangle
24
Total length of all conduits ....
3349.0000 feet
Conduit
Name
Length
(ft)
If there are messages about (sqrt(g*d)*dt/dx), or
the sqrt(wave celerity)*time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant time step factor in the
Manning Max Width Depth
Coef (ft) (ft)
0.012
5
5
0.014
6
6
0.014
6
6
0.025
23.2405
8.26
0.014
3
3
0.014
3.5
3.5
0.014
4
4
0.014
4
4
0.014
11
11
0.025
28.2
7.59
0.025
33.96
10.74
0.025
36.34
6.37
0.014
6
4
0.014
6
4
0.014
6
4
0.014
6
4
Trapezoid
Side
Slopes
HYDRAULICS job control. The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control.
Conduit Courant
Name Ratio
B-NI
2.57
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
N1-C
0.53
C-D
0.62
N3-F
1.06
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
A-N1
1.64
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
N2-D
0.52
I-N4
0.45
N4-N5
1.70 =_> Warning ! (sgrt(wave celerity)*time step/conduit length)
I-N5
0.56
F-G
1.06
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
G-H
1.33
=_> Warning ! (sgrt(wave celerity)*time step/conduit length)
H-I
2.30 => Warning ! (sgrt(wave celerity)*time step/conduit length)
Box 1
2.43
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
Box 3
1.49
=_> Warning ! (sgrt(wave celerity)*time step/conduit length)
Box 4
0.66
Box 2
1.05
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
Conduit Volume
Full pipe or full open conduit volume
Input full depth volume............ 1.7811E+05 cubic feet
_> Warning ! ! The upstream and downstream junctions for the following conduits
have been reversed to correspond to the positive flow and decreasing
M M = = = M M M i = M M
slope convention. A negative flow in the output thus means
the flow was from your original upstream junction to your original
downstream junction. Any initial flow has been multiplied by -1.
1. Conduit #...N2-D has been changed.
Table E3a - Junction Data
Inp
Junction Ground Crown Invert
Qinst Initial Interface
Num
------------------
Name Elevation Elevation
------------------
Elevation cfs Depth-ft Flow (%)
1
---------
B 35.0000 35.0000
--------
23.0000
-----------------
0.0000 0.0000 100.0000
2
N1 32.6600 32.6600
22.0000
0.0000 0.0000 100.0000
3
C 35.2200 35.2200
21.5700
0.0000 0.0000 100.0000
4
D 28.6700 28.6700
20.8400
0.0000 0.0000 100.0000
5
N3 28.0000 28.0000
19.3900
0.0000 0.0000 100.0000
6
I 30.0000 30.0000
17.9400 0.0000 0.0000 100.0000
7
A 33.3500 33.3500
24.4000
0.0000 0.0000 100.0000
8
N2 30.3000 30.3000
18.9000
0.0000 0.0000 100.0000
9
N5 28.0000 26.0000
15.0000
0.0000 0.0000 100.0000
10
N4 25.0000 25.0000
15.5000
0.0000 0.0000 100.0000
11
F 28.5100 28.5100
18.9375
0.0000 0.0000 100.0000
12
G 30.0100 30.0100
18.5325
0.0000 0.0000 100.0000
13
H 30.0100 30.0100
18.1150
0.0000 0.0000 100.0000
14
Box cb B 28.5000 24.3296
20.3296 0.0000 0.0000 100.0000
15
Box cb C 26.6000 24.0788
20.0788 0.0000 0.0000 100.0000
16
Box cb A 30.2500 24.6860
20.6860 0.0000 0.0000 100.0000
Table E3b - Junction Data
Inp Junction X Y Type of Type of Maximum Pavement
Num
------------------
Name Coord. Coord. Manhole
--------------------------------
Inlet Capacity
Shape Slope
1
B
152.5521
------------
446.4433 Flooded
----------------
Normal
-------
0
0.0000
2
N1
145.5257
436.6950 Flooded
Normal
0
0.0000
3
C
123.4209
437.1191 Flooded
Normal
0
0.0000
4
D
106.3969
437.5303 Flooded
Normal
0
0.0000
5
N3
95.8286
416.8616 Flooded
Normal
0
0.0000
6
I
67.4830
416.7636 Flooded Normal
0 0.0000
7
A
146.0405
428.7429 Flooded
Normal
0
0.0000
8
N2
126.9908
454.2198 Flooded
Normal
0
0.0000
9
N5
66.0831
409.8093 No Ponding
Normal
0 0.0000
10
N4
62.2778
416.4918 Flooded
Normal
0
0.0000
11
F
89.1392
416.9094 Flooded
Normal
0
0.0000
12
G
81.4822
417.0487 Flooded
Normal
0
0.0000
13
H
74.6604
416.9094 Flooded
Normal
0
0.0000
14
Box cb B
96.8341 435.2930 No Ponding Normal
0 0.0000
15
Box cb C
92.3030 432.6534 No Ponding Normal
0 0.0000
16
Box cb A
103.4470 434.9879 No Ponding
Normal
0 0.0000
Table E4 - Conduit Connectivity
Input
Conduit
Upstream
Downstream
Upstream Downstream
Number
Name
Node
Node Elevation Elevation
1
B-N1
B
N1
23.3920
23.3000 No Design
2
NI-C
N1
C
22.3000
21.6600 No Design
3
C-D
C
D
21.5700
20.9200 No Design
4
N3-F
N3
F
19.3900
18.9375 No Design
5
A-N1
A
N1
24.4600
23.3000 No Design
6
N2-D
D
N2
20.9200
18.9000 No Design
7
'I-N4
I
N4
17.9400
16.0000 No Design
8
N4-N5
N4
N5
15.5600
15.0000 No Design
9
I-N5
I
N5
17.9400
15.0000 No Design
10
F-G
F
G
18.9375
18.5325 No Design
M M M M M M M M M M M i M M M M M M M
11
G-H
G
H 18.5325 18.1150 No Design
12
H-I
H
I 18.1150 17.9400 No Design
13
Box 1
D
Box cb A 20.8400 20.6860 No Design
14
Box 3
Box cb B
Box cb C 20.3296 20.0788 No Design
15
Box 4
Box cb C
N3 20.0788 19.3900 No Design
16
Box 2
Box cb A
Box cb B 20.6860 20.3296 No Design
FREE OUTFALL DATA (DATA GROUP I1)
BOUNDARY CONDITION ON DATA GROUP J1
Outfall at Junction .... N5 has boundary condition number... 1
> Warning H Outfall Junction N5 has two or more connecting conduits.
INTERNAL CONNECTIVITY INFORMATION
CONDUIT JUNCTION JUNCTION
---------------- ---------------- ----------------
FREE # 1 N5 BOUNDARY
Boundary Condition Information
Data Groups J1-J4
BC NUMBER.. 1 Control water surface elevation is.. 20.16 feet.
XP Note Field Summary
Conduit Convergence Criteria
Conduit Full Conduit
Name Flow
-----------------
Slope
--------------------
B-N1 99.4838
0.0012
N1-C 158.2956
0.0016
C-D 172.9674
0.0019
N3-F 728.0530
0.0026
A-N1 70.3134
0.0129
N2-D 75.9050
0.0066
I-N4 95.9369
0.0052
N4-N5 99.8147
0.0056
I-N5 1518.2495
0.0059
F-G 769.4335
0.0025
G-H 2216.8183
0.0025
H-I 879.2816
0.0025
Box 1 134.9276
0.0022
Box 3 134.9276
0.0022
Box 4 148.9257
0.0027
Box 2 134.9276
0.0022
Initial Model Condition
Initial Time = 18.00 hours
Junction / Depth / Elevation
=>
"*" Junction is Surcharged.
B/ 0.00 / 23.00
N1/
0.00 / 22.00 C/ 0.00 / 21.57
D/ 0.00 / 20.84
N3/
0.77 / 20.16 V 2.22 / 20.16
A/ 0.00 / 24.40
N2/
1.26 / 20.16 N5/ 5.16 / 20.16
M M M M M M M M M
N4/ 4.66 / 20.16
F/ 1.22 / 20.16
G/ 1.63 / 20.16
H/ 2.05
/ 20.16
Box
cb B/ 0.00 /
20.33
Box cb Cl 0.08 / 20.16
Box cb A/
0.00 / 20.69
Conduit/
FLOW
=_> ""Conduit
uses the normal flow option.
B-N 1/
0.00
N 1-C/
0.00
C-D/
0.00
N3-F/
0.00
A-N1/
0.00
N2-D/
0.00
I-N4/
0.00
N4-N5/
0.00
I-N5/
0.00
F-G/
0.00
G-H/
0.00
H-I/
0.00
Box l/
0.00
Box 3/
0.00
Box 4/
0.00
Box 2/
0.00
FREE # 1/
0.00
Conduit/
Velocity
B-N1/
0.00
NI-C/
0.00
C-D/
0.00
N3-F/
0.00
A-N1/
0.00
N2-D/
0.00
I-N4/
0.00
N4-N5/
0.00
I-N51
0.00
F-G/
0.00
G-H/
0.00
H-I/
0.00
Box 1/
0.00
Box 3/
0.00
Box 4/
0.00
Box 2/
0.00
Conduit/ Cross Sectional Area
B-N 1/
0.00
N 1-C/
0.00
C-D/
0.00
N3-F/
3.09
A-N1/
0.00
N2-D/
1.40
I-N4/
9.70
N4-N5/
12.91
I-N5/
27.24
F-G/
7.81
G-H/
14.77
H-I/
18.62
Box 1/
0.00
Box 3/
0.22
Box 4/
2.35
Box 2/
0.00
Conduit/ Hydraulic Radius
B-N1/
0.00
N1-C/
0.00
C-D/
0.00
N3-F/
0.42
A-N1/
0.00
N2-D/
0.32
I-N4/
1.04
N4-N5/
1.00
I-N5/
1.92
F-G/
0.93
G-H/
1.27
H-I/
1.28
Box 1/
0.00
Box 3/
0.04
Box 4/
0.32
Box 2/
0.00
Conduit/ Upstream/ Downstream Elevation
B-N1/
22.00/
22.00
N3-F/
20.16/
20.16
I-N4/
20.16/
20.16
F-G/
20.16/
20.16
Box l/
20.69/
20.69
Box 2/
20.33/
20.33
N1-C/
21.57/
21.57
A-N1/
22.00/
22.00
N4-N5/
20.16/
20.16
G-H/
20.16/
20.16
Box 3/
20.33/
20.16
######## Important Information ########
Start time of user hydrographs was... 18.000000000000000
Start time of the simulation was..... 18.000000000000000
Found a match between user hydrograph and simulation start time.
Will move ahead 1.561251128379126E-017 hours
C-D/
20.84/
20.84
N2-D/
20.84/
20.16
I-N51
20.16/
20.16
H-I/ 20.16/
20.16
Box 4/
20.16/
20.16
System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs )
N1 / 8.19E+00 N3 / 7.78E-01 N2 / 2.00E-02 N5 / 5.00E-03 N4 / 2.00E-02
########################################
_> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs )
N1 / 9.50E+00 N3 / 1.25E+00 N2 / 2.05E-01 N5 / 5.40E-02 N4 / 2.05E-01
########################################
########################################
===> System inflows (data group K3) at 19.00 hours ( Junction / Inflow,cfs )
N1 / 1.28E+01 N3 / 2.21E+00 N2 / 6.14E-01 N5 / 1.56E-01 N4 / 5.94E-01
########################################
########################################
=> System inflows (data group K3) at 20.00 hours ( Junction / Inflow,cfs )
N1 / 1.34E+01 N3 / 2.42E+00 N2 / 6.96E-01 N5 / 1.77E-01 N4 / 6.76E-01
########################################
Cycle 500 Time 20 Hrs - 5.00 Min
Junction / Depth / Elevation => ""Junction is Surcharged.
B/ 0.47 / 23.47 N 1 / 1.47 / 23.47 C/ 1.15 / 22.72
D/ 0.67 / 21.51 N3/ 1.56 / 20.95 V 2.22 / 20.16
A/ 0.00 / 24.40 N2/ 2.61 / 21.51 N51 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 1.39 / 20.33 G/ 1.66 / 20.19
H/ 2.05 / 20.16 Box cb B/ 0.77 / 21.10 Box cb C/ 0.92 /
21.00
Box cb A/ 0.68 / 21.36
Conduit/ FLOW => ""Conduit uses the normal flow option.
B-N1/ 0.00 NI-C/ 12.83 C-D/ 12.80 N3-F/
15.50
A-N1/ 0.00 N2-D/ -0.61 I-N4/ -2.71 N4-N5/
-2.11
I-N5/ 18.19 F-G/ 15.48 G-H/ 15.47 H-U
15.48
Box 1/ 13.41 Box 3/ 13.37 Box 4/ 13.32 Box 2/
13.40
FREE # 1/ 16.24
########################################
=> System inflows (data group K3) at 21.00 hours( Junction / Inflow,cfs )
N1 / 1.28E+01 N3 / 2.23E+00 N2 / 6.35E-01 N5 / 1.61E-01 N4
/ 6.14E-01
########################################
########################################
_=> System inflows (data group K3) at 22.00 hours ( Junction / Inflow,cfs )
NI / 1.51E+01 N3 / 2.91 E+00 N2 / 9.22E-01 N5 / 2.30E-01 N4
/ 8.81E-01
########################################
Cycle 1000 Time 22 Hrs - 10.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 0.49 / 23.49 Nl/ 1.49 / 23.49 C/ 1.16 / 22.73
D/ 0.68 / 21.52 N3/ 1.58 / 20.97 I/ 2.21 / 20.15
A/ 0.00 / 24.40 N2/ 2.62 / 21.52 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 1.40 / 20.33 G/ 1.66 / 20.19
H/ 2.05 / 20.16 Box cb B/ 0.78 / 21.11 Box cb C/ 0.94 /
21.02
Box cb A/ 0.69 / 21.38
Conduit/ FLOW => ""Conduit uses the normal flow option.
B-N1/ -0.01 NI-C/ 13.13 C-D/ 13.05 N3-F/
15.89
A-Nl/ 0.00 N2-D/ -0.67 I-N4/ -3.37 N4-N5/
-2.71
I-N51 19.23 F-G/ 15.87 G-H/ 15.86 H-I/
15.86
Box 1/ 13.70 Box 3/ 13.65 Box 4/ 13.60 Box 2/ 13.68
FREE # l/ 16.69
########################################
_> System inflows (data group K3) at 23.00 hours ( Junction / Inflow,cfs )
N1 / 3.18E+01 N3 / 7.47E+00 N2 / 2.70E+00 N5 / 6.78E-01 N4 / 2.60E+00
########################################
########################################
_> System inflows (data group K3) at 24.00 hours ( Junction / Inflow,cfs )
N1 / 3.34E+01 N3 / 7.86E+00 N2 / 2.87E+00 N5 / 7.19E-01 N4 / 2.74E+00
########################################
Cycle 1500 Time 24 Hrs - 15.00 Min
Junction / Depth / Elevation =_> "*" Junction is Surcharged.
B/ 1.14 / 24.14
N I 1 2.14 / 24.14
C/ 1.77 / 23.34
D/ 1.37 / 22.21
N3/ 2.37 / 21.76
1/ 2.18 / 20.12
A/ 0.00 / 24.40
N2/ 3.32 / 22.22
N51 5.16 / 20.16
N4/ 4.66 / 20.16
F/ 1.96 / 20.90
G/ 1.85 / 20.38
H/ 2.07 / 20.19
Box cb B/ 1.60 / 21.93
Box cb C/ 1.76 /
21.84
Box cb A/ 1.42 / 22.11
Conduit/ FLOW =_>
"*" Conduit uses the normal flow option.
B-N1/ 0.00
NI-C/ 32.17 C-D/
32.13 N3-F/
42.36
A-N1/ 0.00
N2-D/ -2.74 I-N4/
-7.95 N4-N5/
-5.31
I-N5/ 50.28
F-G/ 42.34 G-H/
42.33 H-I/
42.33
Box l/ 34.86
Box 3/ 34.83 Box 4/
34.81 Box 2/
34.84
FREE # 1/ 45.65
########################################
=> System inflows (data group K3) at 25.00 hours ( Junction / Inflow,cfs )
N1 / 3.24E+01 N3 / 7.47E+00 N2 / 2.68E+00 N5 / 6.71E-01 N4 / 2.56E+00
########################################
########################################
___> System inflows (data group K3) at 26.00 hours ( Junction / Inflow,cfs )
M
M M M M M M M M s M M M M M r M M M M
N1 / 4.06E+01 N3 / 9.42E+00 N2 / 3.40E+00 N5 / 8.47E-01 N4
/ 3.26E+00
########################################
Cycle 2000 Time 26 Hrs - 20.00 Min
Junction / Depth / Elevation ==> "*" Junction is Surcharged.
B/ 1.22 / 24.22 N1/ 2.22 / 24.22 C/ 1.85 / 23.42
D/ 1.45 / 22.29 N3/ 2.44 / 21.83 I/ 2.18 / 20.12
A/ 0.00 / 24.40 N2/ 3.40 / 22.30 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 2.03 / 20.97 G/ 1.89 / 20.42
H/ 2.08 / 20.20 Box cb B/ 1.68 / 22.01 Box cb C/ 1.84 / 21.92
Box cb A/ 1.501 22.19
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ -0.01 NI-C/ 35.07 C-D/ 34.87 N3-F/
45.49
A-Nl/ 0.00 N2-D/ -2.89 I-N4/ -8.21 N4-N5/
-5.42
I-N5/ 53.56 F-G/ 45.40 G-H/ 45.34 H-V 45.34
Box l/ 37.70 Box 3/ 37.57 Box 4/ 37.48 Box 2/
37.65
FREE # 1/ 48.86
########################################
__> System inflows (data group K3) at 27.00 hours ( Junction / Inflow,cfs )
NI / 7.67E+01 N3 / 1.70E+01 N2 / 5.98E+00 N5 / 1.50E+00 N4
/ 5.73E+00
########################################
########################################
_=> System inflows (data group K3) at 28.00 hours ( Junction / Inflow,cfs )
N1 / 1.22E+02 N3 / 2.54E+01 N2 / 8.54E+00 N5 / 2.13E+00 N4
/ 8.17E+00
########################################
Cycle 2500 Time 28 Hrs - 25.00 Min
Junction / Depth / Elevation =--> " * " Junction is Surcharged.
B/ 2.55 / 25.55 N1/ 3.55 / 25.55 C/ 3.10 / 24.67
D/ 2.97 / 23.81 N3/ 3.72 / 23.11 I/ 2.17 / 20.11
A/ 1.15 / 25.55 N2/ 4.93 / 23.83 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 3.28 / 22.21 G/ 2.82 / 21.35
H/ 2.50 / 20.61 Box cb B/ 3.15 / 23.48 Box cb C/ 3.27 / 23.35
Box cb A/ 3.02 / 23.70
Conduit/
FLOW
�> ""Conduit uses the normal flow option.
B-N1/
-0.05
N1-C/ 95.19 C-D/ 94.55 N3-F/
120.26
A-N1/
-0.04
N2-D/ -7.01 I-N4/ -10.37 N4-N5/
-3.62
I-N5/
129.21 *
F-G/ 119.86 G-H/ 119.39 H-I/
119.17
Box 1/
101.05
Box 3/ 100.53 Box 4/ 100.14 Box 2/
100.80
FREE # 1/
127.34
########################################
__> System inflows (data
group K3) at 29.00 hours ( Junction / Inflow,cfs )
N1 / 1.94E+02 N3 / 3.70E+01 N2 / 1.16E+01 N5 / 2.90E+00 N4 / 1.11E+01
########################################
___> System inflows (data group K3) at 30.00 hours ( Junction / Inflow,cfs )
N1 / 1.74E+02 N3 / 3.36E+01 N2 / 1.07E+01 N5 / 2.66E+00 N4 / 1.02E+01
########################################
Cycle 3000 Time 30 Hrs - 30.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 5.81 / 28.81
N1/ 6.81 / 28.81
C/ 6.42 /
27.99
D/ 6.45 / 27.29
N3/ 5.14 / 24.53
1/ 2.63 /
20.57
A/ 4.41 / 28.81
N2/ 8.43 / 27.33
N51 5.16 / 20.16
N4/ 4.82 / 20.32
F/ 4.70 / 23.63
G/ 3.94 /
22.47
H/ 3.28 / 21.40
Box cb B/ 5.95*/ 26.28
Box cb C/
5.70*/ 25.78
Box cb A/ 6.32*/ 27.01
Conduit/ FLOW
=> ""Conduit uses the normal
flow option.
B-N1/ 0.03
N1-C/ 184.01 C-D/
184.03
N3-F/
230.88
A-N1/ 0.00
N2-D/ -11.15 I-N4/
40.56
N4-N5/
51.25
I-N5/ 190.85*
F-G/ 231.09 G-H/
231.17
H-I/
231.22
Box 1/ 195.39
I3ox 3/ 195.37 Box 4/
195.45
Box 2/
195.66
FREE # 1/ 244.89
########################################
=_> System inflows (data group K3) at 31.00 hours ( Junction / Inflow,cfs )
N1 / 1.68E+02 N3 / 3.24E+01 N2 / 1.03E+01 N5 / 2.56E+00 N4
/ 9.83E+00
########################################
########################################
_> System inflows (data group K3) at 32.00 hours ( Junction / Inflow,cfs )
N1 / 1.54E+02 N3 / 3.00E+01 N2 / 9.52E+00 N5 / 2.38E+00 N4
/ 9.11E+00
########################################
Cycle 3500 Time 32 Hrs - 35.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 4.32 / 27.32 N1/ 5.32 / 27.32 C/ 5.12 / 26.69
D/ 5.35 / 26.19 N3/ 4.83 / 24.22 V 2.48 / 20.42
A/ 2.92 / 27.32 N2/ 7.31 / 26.21 N51 5.16 / 20.16
N4/ 4.77 / 20.27 F/ 4.43 / 23.37 G/ 3.71 / 22.25
H/ 3.09 / 21.21 Box cb B/ 5.08*/ 25.41 Box cb C/ 4.97*/
25.05
Box cb A/ 5.25*/ 25.93
Conduit/ FLOW =_> "*" Conduit uses the normal flow option.
B-N1/ 0.03 N1-C/ 160.18 C-D/ 160.90 N3-F/
201.49
A-N1/ 0.01 N2-D/ -9.80 I-N4/ 32.54 N4-N5/
41.95
I-N5/ 169.54* F-G/ 201.87 G-H/ 201.95 H-I/
201.98
Box 1/ 169.76 Box 3/ 169.85 Box 4/ 170.75 Box 2/ 169.79
FREE # 1/ 213.95
########################################
_> System inflows (data group K3) at 33.00 hours ( Junction / Inflow,cfs )
N1 / 7.05E+01 N3 / 1.36E+01 N2 / 4.30E+00 N5 / 1.07E+00 N4
/ 4.12E+00
########################################
########################################
___> System inflows (data group K3) at 34.00 hours ( Junction / Inflow,cfs )
N1 / 5.28E+01 N3 / 8.68E+00 N2 / 2.33E+00 N5 / 5.84E-01 N4
/ 2.23E+00
########################################
Cycle 4000 Time 34 Hrs - 40.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 1.79 / 24.79 N1/ 2.79 / 24.79 C/ 2.39 / 23.96
D/ 2.08 / 22.92 N3/ 2.98 / 22.37 I/ 2.14 / 20.08
A/ 0.39 / 24.79 N2/ 4.03 / 22.93 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 2.56 / 21.49 G/ 2.21 / 20.74
H/ 2.18 / 20.30 Box cb B/ 2.30 / 22.63 Box cb C/ 2.44 / 22.52
Box cb A/ 2.14 / 22.82
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ 0.02 N1-C/ 58.85 C-D/ 59.22 N3-F/
73.28
A-N1/ 0.01 N2-D/ -3.03 I-N4/ -11.86 N4-N5/
-9.00
I-N5/ 85.51 F-G/ 73.47 G-H/ 73.62 H-V 73.68
Box l/ 62.34 Box 3/ 62.58 Box 4/ 62.75 Box 2/
62.46
FREE # l/ 77.27
########################################
_> System inflows (data group K3) at 35.00 hours ( Junction / Inflow,cfs )
N1 / 4.85E+01 N3 / 7.43E+00 N2 / 1.84E+00 N5 / 4.58E-01 N4
/ 1.76E+00
########################################
########################################
__> System inflows (data group K3) at 36.00 hours ( Junction / Inflow,cfs )
N 1 / 4.65E+01 N3 / 6.92E+00 N2 / 1.64E+00 N5 / 4.07E-01 N4
/ 1.56E+00
########################################
Cycle 4500 Time 36 Hrs - 45.00 Min
Junction / Depth / Elevation =_> " * " Junction is Surcharged.
B/
1.52 /
24.52
N1/
2.52 /
24.52
C/
2.14 /
23.71
D/
1.73 /
22.57
N3/
2.66 /
22.05
1/
2.16 /
20.10
A/
0.12 /
24.52
N2/
3.68 /
22.58
N51
5.16 /
20.16
N4/
4.66 /
20.16
F/
2.24 /
21.18
G/
2.00 /
20.53
H/
2.11 /
20.22
Box cb B/ 1.94
/ 22.27
Box cb C/ 2.09 / 22.17
Box cb A/ 1.78 / 22.47
M M M M o M M M M M M M M M M M r M M
Conduit/ FLOW =_> ""Conduit uses the normal flow option.
B-N1/ 0.00 Nl-C/ 47.05 C-D/ 47.09 N3-F/
55.92
A-N1/ 0.00 N2-D/ -1.70 I-N4/ -9.85 N4-N5/
-8.25
I-N5/ 65.81 F-G/ 55.95 G-H/ 55.96 H-1/
55.96
Box 1/ 48.80 Box 3/ 48.83 Box 4/ 48.85 Box 2/
48.81
FREE # l/ 57.99
########################################
_> System inflows (data group K3) at 37.00 hours ( Junction / Inflow,cfs )
N1 / 4.39E+01 N3 / 6.29E+00 N2 / 1.39E+00 N5 / 3.46E-01 N4
/ 1.33E+00
########################################
########################################
__> System inflows (data group K3) at 38.00 hours( Junction / Inflow,cfs )
N1 / 4.26E+01 N3 / 5.98E+00 N2 / 1.29E+00 N5 / 3.20E-01 N4
/ 1.23E+00
########################################
Cycle 5000 Time 38 Hrs - 50.00 Min
Junction / Depth / Elevation =_> "*" Junction is Surcharged.
B/ 1.42 / 24.42 N1/ 2.42 / 24.42 C/ 2.04 / 23.61
D/ 1.61 / 22.45 N3/ 2.54 / 21.93 1/ 2.17 / 20.11
A/ 0.06 / 24.46 N2/ 3.55 / 22.45 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 2.13 / 21.06 G/ 1.94 / 20.47
H/ 2.09 / 20.20 Box cb B/ 1.82 / 22.15 Box cb C/ 1.97 /
22.04
Box cb A/ 1.66 / 22.34
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ 0.00 Nl-C/ 42.83 C-D/ 42.86 N3-F/
50.26
A-Nl/ 0.00* N2-D/ -1.31 I-N4/ -9.13 N4-N5/
-7.88
I-N51 59.41 F-G/ 50.28 G-H/ 50.29 H-I/
50.29
Box 1/ 44.18 Box 3/ 44.20 Box 4/ 44.22 Box 2/
44.19
FREE # 1/ 51.86
########################################
_> System inflows (data group K3) at 39.00 hours ( Junction / Inflow,cfs )
N1 / 3.93E+01 N3 / 5.10E+00 N2 / 9.42E-01 N5 / 2.33E-01 N4
/ 9.01E-01
########################################
########################################
_> System inflows (data group K3) at 40.00 hours ( Junction / Inflow,cfs )
NI / 3.51E+01 N3 / 4.01 E+00 N2 / 5.12E-01 N5 / 1.31E-01 N4
########################################
Cycle 5500 Time 40 Hrs - 55.00 Min
Junction / Depth / Elevation => " * " Junction is Surcharged.
/ 4.92E-01
B/ 1.23 / 24.23
N1/ 2.23 / 24.23
C/ 1.86 /
23.43
D/ 1.38 / 22.22
N3/ 2.32 / 21.71
I/ 2.18 /
20.12
A/ 0.06 / 24.46
N2/ 3.32 / 22.22
N5/ 5.16
/ 20.16
N4/ 4.66 / 20.16
F/ 1.92 / 20.86
G/ 1.83 /
20.37
H/ 2.07 / 20.18
Box cb B/ 1.58 / 21.91
Box cb C/
1.73 / 21.81
Box cb A/ 1.42 / 22.11
Conduit/ FLOW
=> "*" Conduit uses the normal flow option.
B-N1/ 0.00
NI-C/ 35.47 C-D/
35.57
N3-F/ 40.46
A-N1/ 0.00*
N2-D/ -0.56 I-N4/
-7.86
N4-N5/ -7.33
I-N5/ 48.39
F-G/ 40.51 G-H/
40.54
H-I/ 40.54
Box l/ 36.17
Box 3/ 36.24 Box 4/
36.29
Box 2/ 36.20
FREE # 1/ 41.20
########################################
=> System inflows (data group K3) at 41.00 hours( Junction / Inflow,cfs
)
N1 / 3.28E+01 N3 / 3.48E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01
#################t#######################
Table E5 - Junction Time Limitation Summary
(0.10 or 0.25)* Depth * Area
Timestep = ------------------------------
Sum of Flow
The time this junction was the limiting junction
M M M M M M M M M M M M M M M r
is listed in the third column.
Junction Time(.10) Time(.25) Time(sec)
B
38.8767
97.1918 41430.0000
NI
56.8356
142.0890
0.0000
C
84.2758
150.0000
0.0000
D
6.6822
16.7055
0.0000
N3
68.6864
150.0000
0.0000
I 150.0000
150.0000
0.0000
A
28.8947
72.2367
0.0000
N2
5.8373
14.5933
45.0000
N5
150.0000
150.0000
0.0000
N4
150.0000
150.0000
0.0000
F
150.0000
150.0000
0.0000
G
150.0000
150.0000
0.0000
H
150.0000
150.0000
0.0000
Box cb B
0.8465
2.1163
3690.0000
Box cb C
0.6407 1.6017
2430.0000
Box cb A
0.2581
0.6452
38805.0000
The junction requiring the smallest time
step was ... B
Table E5a - Conduit Explicit Condition Summary
Courant = Conduit Length
Timestep = --------------------------------
Velocity + sgrt(g*depth)
Conduit Implicit Condition Summary
Courant = Conduit Length
Timestep = --------------------------------
Velocity
The 3rd column is the Explicit time step times the
minimum courant time step factor
Minimum Conduit Time Step in seconds in the 4th column
in the list. Maximum possible is 10 * maximum time step
The 5th column is the maximum change at any time step
during the simulation. The 6th column is the wobble
value which is an indicator of the flow stability.
You should use this section to find those conduits that
are slowing your model down. Use modify conduits to
alter the length of the slow conduits to make your
simulation faster, or change the conduit name to
"CHME?????" where ????? are any characters, this will
lengthen the conduit based on the model time step,
not the value listed in modify conduits.
Conduit Time(exp) Expl*Cmin Time(imp) Time(min) Max Qchange Wobble Type of Soln
B-N1
5.3136
5.3136
150.0000
0.2500
0.1074
0.2987 Normal Soln
NI-C
18.3015
18.3015
59.3487
0.0000
0.4980
2.4716 Normal Soln
C-D
15.6861
15.6861
49.3781
0.0000
-0.7733
2.8139 Normal Soln
N3-F
11.0098
11.0098
28.3293
0.0000
0.2795
0.7134 Normal Soln
A-N1
6.4631
6.4631
150.0000
0.0000
0.0290
0.1391 Normal Soln
N2-D
16.8880
16.8880
150.0000
0.0000
-0.2286 1.7754 Normal Soln
I-N4
23.7242
23.7242
94.2353
0.0000
-0.1370
1.4750 Normal Soln
N4-N5
5.8475
5.8475
23.7450
316.0000
-0.2106 1.5251 Normal Soln
I-N5
25.4818
25.4818
74.2736
0.0000
0.3536
0.2499 Normal Soln
F-G
11.1659
11.1659
26.8321
0.0000
0.2897
0.6061 Normal Soln
G-H
11.4960
11.4960
27.8167
0.0000
0.3092
0.2103 Normal Soln
H-I
4.7650
4.7650
9.7893 0.0000
0.3184 0.5442 Normal Soln
Box 1
2.9875
2.9875
8.1342 1123.7500
-3.5446
25.4743 Normal Soln
Box 3
5.0137
5.0137
13.2745
0.0000
1.9138
15.9792 Normal Soln
Box 4
11.4964
11.4964
30.0577
0.0000
-0.8491
8.1638 Normal Soln
Box 2
6.9450
6.9450
18.9202
0.0000
-1.7920
14.4332 Normal Soln
The conduit with the smallest time
step limitation was..Box 1
The conduit with the largest wobble was.................Box
1
M = M r = = = = = M M M = M
The conduit with the largest flow change in any
consecutive time step...................................Box 1
Table E6. Final Model Condition
This table is used for steady state
flow comparison and is the information]
saved to the hot -restart file.
Final Time = 42.004 hours
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 1.151 24.15/ NI/ 2.15 /
24.15/
C/ 1.79 /
23.36/
D/ 1.29 / 22.13/ N3/ 2.23 /
21.62/
I/ 2.19 /
20.13/
A/ 0.06 / 24.46/ N2/ 3.23 /
22.13/
N51 5.16 /
20.16/
N4/ 4.66 / 20.16/ F/ 1.84 /
20.78/
G/ 1.80 /
20.33/
H/ 2.06 / 20.18/ Box cb B/ 1.48 / 21.81/
Box cb C/ 1.64
/ 21.72/
Box cb A/ 1.33 / 22.02/
Conduit/ Flow =_> ""Conduit uses the normal
flow option.
B-N1/ 0.00 / NI-C/ 32.80 /
C-D/
32.85 /
N3-F/ 36.79 / A-N1/ 0.00*/
N2-D/
-0.34 /
I-N4/ -7.20 / N4-N5/ -6.89 /
I-N5/
44.02 /
F-G/ 36.82 / G-H/ 36.83 /
H-V
36.83 /
Box 1/ 33.21 / Box 3/ 33.25 /
Box 4/
33.28 /
Box 2/ 33.23 / FREE # 1/ 37.22 /
Conduit/ Velocity
B-N1/ 0.00 / NI-C/ 4.64 /
C-D/
5.12 /
N3-F/ 3.62 / A-N1/ 0.00 /
N2-D/
-0.05 /
I-N4/ -0.70 / N4-N5/ -0.54 /
I-N5/
1.62 /
F-G/ 3.40 / G-H/ 2.34 /
H-I/
1.98 /
Box 1/ 4.22 / Box 3/ 3.57 /
Box 4/
2.91 /
Box 2/ 3.95 /
Conduit/ Width
B-N1/ 3.66 / N1-C/ 5.48 /
C-D/
5.36 /
N3-F/
7.67 /
A-N1/
1.86 /
N2-D/ 2.51 /
I-N4/
2.63 /
N4-N5/
0.47 /
I-N51 9.77 /
F-G/
7.52 /
G-H/
9.70 /
H-I/ 13.61 /
Box 1/
6.00 /
Box 3/
6.00 /
Box 4/ 6.00 /
Box 2/
6.00 /
Junction/
EGL
B/
1.151
N1/
2.15 /
C/ 2.13 /
D/
2.00 /
N3/
2.36 /
I/ 2.25 /
A/
0.06 /
N2/
3.23 /
N5/ 5.20 /
N4/
4.67 /
F/
2.05 /
G/ 1.98 /
H/
2.15 /
Box cb B/
1.73 /
Box cb C/ 1.84 /
Box cb A/
1.61 /
Junction/
Freeboard
B/
10.85 /
N1/
8.51 /
C/ 11.86 /
D/
6.54 /
N3/
6.38 /
I/ 9.87 /
A/
8.89 /
N2/
8.17 /
N5/ 7.84 /
N4/
4.84 /
F/
7.73 /
G/ 9.68 /
H/
9.83 /
Box cb B/
6.69 /
Box cb C/ 4.88 /
Box cb A/
8.23 /
Junction/ Max Volume
B/
79.47 /
N1/
92.03 /
C/ 86.45 /
D/
86.60 /
N3/
65.97 /
1/ 33.83 /
A/
61.88 /
N2/
111.90 /
N5/ 64.84 /
N4/
60.88 /
F/
60.10 /
G/ 50.54 /
H/
42.20 /
Box cb B/
79.48 /
Box cb C/ 75.44 /
Box cb A/
86.32 /
Junction/Total Fldng
B/
0.00 /
N1/
0.00 /
C/ 0.00 /
D/
0.00 /
N3/
0.00 /
1/ 0.00 /
A/
0.00 /
N2/
0.00 /
N51 0.00 /
N4/
0.00 /
F/
0.00 /
G/ 0.00 /
H/
0.00 /
Box cb B/
0.00 /
Box cb C/ 0.00 /
Box cb A/
0.00 /
M = M M = = M = = r M M = = M
M M M M M r M M M M M M M M M M
Conduit/ Cross Sectional Area
B-N1/
2.05 /
N1-C/ 7.06 /
C-D/
6.42 /
N3-F/
10.17 /
A-N1/ 0.75 /
N2-D/
6.44 /
I-N4/
10.21 /
N4-N5/ 12.85 /
I-N51
27.09 /
F-G/
10.82 /
G-H/ 15.73 /
H-I/ 18.56
/
Box l/
7.87 /
Box 3/ 9.32 /
Box 4/
11.43 /
Box 2/
8.41 /
Conduit/
Final Volume
B-N1/
151.59 /
N1-C/ 2790.19 /
C-D/
2155.90 /
N3-F/
1739.52 /
A-N1/ 67.16 /
N2-D/
1971.64 /
I-N4/
3830.33 /
N4-N5/ 1285.20 /
I-N51
13546.52 /
F-G/
1752.44 /
G-H/ 2626.57 /
H-I/
1299.11 /
Box l/
551.21 /
Box 3/ 1062.94 /
Box 4/
2938.55 /
Box 2/
1362.64 /
Conduit/
Hydraulic Radius
B-N1/
0.49 /
N1-C/ 1.02 /
C-D/
0.96 /
N3-F/
0.88 /
A-N1/ 0.22 /
N2-D/
0.87 /
I-N4/
1.03 / N4-N5/ 1.00 /
I-N5/
1.91 /
F-G/
1.151
G-H/ 1.33 /
H-I/ 1.27
/
Box 1/
0.91 /
Box 3/ 1.02 /
Box 4/
1.16 /
Box 2/
0.95 /
Conduit/
Upstream/ Downstream Elevation
B-N1/
24.15/ 24.15
N1-C/ 24.15/
23.36
C-D/ 23.36/
22.43/
N3-F/
21.62/ 20.78
A-N1/ 24.46/
24.15
N2-D/ 22.13/
22.13/
I-N4/
20.13/ 20.16
N4-N5/ 20.16/
20.16
I-N51 20.13/
20.16/
F-G/
20.78/ 20.33
G-H/ 20.33/
20.18
H-U 20.18/ 20.13/
Box 1/
22.13/ 22.02
Box 3/ 21.81/
21.72
Box 4/ 21.72/
21.62/
Box 2/
22.02/ 21.81
Table E7 - Iteration Summary
*
Total number of time steps simulated ............ 5760
Total number of passes in the simulation........ 61986
Total number of time steps during simulation.... 20232
Ratio of actual # of time steps / NTCYC......... 3.513
Average number of iterations per time step...... 3.064
Average time step size(seconds)................ 4.270
Smallest time step size(seconds)................ 0.500
Largest time step size(seconds)................ 7.500
Average minimum Conduit Courant time step (sec). 5.703
Average minimum implicit time step (sec)........ 4.866
Average minimum junction time step (sec)........ 4.866
Average Courant Factor Tf....................... 4.866
Number of times omega reduced ................... 0
Table E8 - Junction Time Step Limitation Summary
Not Convr = Number of times this junction did not
converge during the simulation.
Avg Convr = Average junction iterations.
Conv err = Mean convergence error.
Omega Cng = Change of omega during iterations
Max Item = Maximum number of iterations
Junction Not Convr Avg Convr Total Itt Omega Cng Max Item Ittm > 10 Ittm >25 Ittm >40
B
0
3.84
77768
0
19
132
0
0
N1
0
3.93
79601
0
35
584
9
0
C
0
1.04
20977
0
8
0
0
0
D
0
1.36
27558
0
19
1
0
0
N3
0
1.09
22016
0
17
1
0
0
I
0
1.16
23567
0
18
1
0
0
A
0
2.71
54755
0
62
235
1
1
N2
0
1.18
23931
0
21
3
0
0
N5
0
1.19
24108
0
20
1
0
0
r = r = " M r = M = = M M M = = = = =
s=== W M M M M = = = = r W= M M
N4 0 1.15 23349 0 17 2 0 0
F 0 1.08 21933 0 7 0 0 0
G 0 1.09 22099 0 7 0 0 0
H 0 1.08 21779 0 10 1 0 0
Box cb B 0 2.49 50363 0 33 897 888 0
Box cb C 0 1.42 28762 0 15 421 0 0
Box cb A 0 4.40 89020 0 58 1328 1276 1118
Total number of iterations for all junctions.. 611586
Minimum number of possible iterations......... 323712
Efficiency of the simulation .................. 1.89
Excellent Efficiency
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iteration per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower thel
efficiency generally the faster your model will run.
If your efficiency is less than 1.5 then you may try
increasing your time step so that your overall simulation]
is faster. Ideal efficiency would be around 2.0
Good Efficiency < 1.5 mean iterations
Excellent Efficiency < 2.5 and > 1.5 mean iterations
Good Efficiency < 4.0 and > 2.5 mean iterations
Fair Efficiency < 7.5 and > 4.0 mean iterations
Poor Efficiency > 7.5 mean iterations
Table E9 - JUNCTION SUMMARY STATISTICS
The Maximum area is only the area of the node, it
does not include the area of the surrounding conduits)
Uppermost Maximum
Time
Feet of
Maximum
Maximum
Maximum
Maximum
Ground
PipeCrown
Junction
of
Surcharge
Freeboard
Junction
Gutter
Gutter
Gutter
Junction
Elevation
Elevation
Elevation
Occurence
at Max
of node
Area
Depth
Width
Velocity
Name
---------------
feet
feet
feet
Hr. Min.
Elevation
feet
ft^2
feet
feet
fvs
B
---------
35
--------
28.392
--------
29.3245
---------
30
1
---------
0.9325
--------
5.6755
--------
12.566
---------
0
---------
0
---------
0
N1
32.66
28.3
29.3239
30
1
1.0239
3.3361
12.566
0
0
0
C
35.22
27.66
28.4496
30
0
0.7896
6.7704
12.566
0
0
0
D
28.67
26.92
27.7325
30
0
0.8125
0.9375
12.566
0
0
0
N3
28
27.65
24.6399
30
2
0
3.3601
12.566
0
0
0
I
30
28.94
20.6318
30
3
0
9.3682
12.566
0
0
0
A
33.35
27.46
29.3247
30
1
1.8647
4.0253
12.566
0
0
0
N2
30.3
22.4
27.8049
30
0
5.4049
2.4951
12.566
0
0
0
N5
28
26
20.16
18
0
0
7.84
12.566
0
0
0
N4
25
20
20.3446
30
3
0.3446
4.6554
12.566
0
0
0
F
28.51
27.1975
23.72
30
2
0
4.79
12.566
0
0
0
G
30.01
29.2725
22.5547
30
2
0
7.4553
12.566
0
0
0
H
30.01
28.855
21.473
30
3
0
8.537
12.566
0
0
0
Box cb B
28.5
24.3296
26.6517
30
0
2.3221
1.8483
12.566
0
0
0
Box cb C
26.6
24.0788
26.0805
30
0
2.0017
0.5195
12.566
0
0
0
Box cb A
30.25
24.686
27.5561
30
0
2.8701
2.6939
12.566
0
0
0
M = = o r= r s M = = M= M M M
M M = = = = M = = = ! r = M = = M
Table E10 - CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of
the
downstream boundary
conditions.
* denotes
an open conduit that has
been overtopped
this is a potential source of severe errors
Conduit
Maximum
Maximum
Time
Maximum
Time
Ratio of
Maximum
Depth
Ratio
Ratio
Design
Design
Vertical
Computed
of
Computed
of
Max. to
at Pipe
Ends
d/D
d/D
Conduit
Flow
Velocity
Depth
Flow
Occurence
Velocity
Occurence
Design
Upstream
Dwnstrm
US
DS
Name
---------------
(cfs)
-------
(ft/s)
--------
(in)
--------
(cfs)
-------
Hr. Min.
(ft/s)
Hr.
Min.
Flow
(ft)
(ft)
B-N1
99.4838
5.0667
60
0.3718
-----------
30
5
-------
-0.2257
----------
19
37
-------
0.0037
--------
29.3245
--------
29.3239
-----
1.186
-----
1.204
N1-C
158.2956
5.5986
72
193.892
30
1
6.6556
29
20
1.2249
29.3239
28.4495
1.17
1.131
C-D
172.9674
6.1175
72
194.001
30
1
6.8046
28
45
1.1216
28.4496
27.7325
1.146
1.135
N3-F
728.053
6.9132
99.12
242.452
30
2
6.0396
30
1
0.333
24.64
23.72
0.6356
0.579
A-N1
70.3134
9.9473
36
0.0898
33
32
-0.031
27
9
0.0013
29.3247
29.3239
1.621
2.008
N2-D
75.905
7.8894
42
-11.841
30
0
-1.221
30
0
-0.156
27.8049
27.7314
1.967
2.523
I-N4
95.9369
7.6344
48
43.021
30
4
3.9795
30
4
0.4484
20.6318
20.3446
0.6729
1.086
N4-N5
99.8147
7.943
48
54.0913
30
4
4.2131
30
4
0.5419
20.3446
20.16
1.196
1.29
I-N5
1518.25
15.976
132
199.3846
30
3
6.7319
30
3
0.1313
20.6318
20.16
0.2447
0.4691
F-G
769.4335
6.6961
91.08
242.3859
30
2
6.0376
30
1
0.315
23.72
22.5547
0.6301
0.5299
G-H
2216.818
9.5668
128.88
242.305
30
3
6.0056
30
3
0.1093
22.5547
21.473
0.3745
0.3127
H-I
879.2816
6.7384
76.44
242.3471
30
3
7.1535
30
3
0.2756
21.473
20.6318
0.5272
0.4226
Box 1
134.9276
5.622
48
208.0356
30
2
8.6399
30
2
1.5418
27.7314
27.5499
1.722
1.716
Box 3
134.9276
5.622
48
206.6663
30
0
8.5908
30
0
1.5317
26.6517
26.0805
1.58
1.5
Box 4
148.9257
6.2052
48
205.9513
30
1
8.564
30
1
1.3829
26.0805
24.64
1.5
1.312
Box 2
134.9276
5.622
48
206.7757
30
2
8.5906
30
2
1.5325
27.5499
26.6517
1.716
1.58
FREE # 1
Undefnd
Undefnd
Undefn
256.3057
30
3
Table El 1. Area assumptions used in the analysis)
Subcritical and Critical flow assumptions from
Subroutine Head. See Figure 17-1 in the
manual for further information.
*_=---_
Duration Duration Durat. of Durat. of
of of Sub- Upstream Downstream Maximum Maximum Maximum
Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D
Name Flow(min) Flow(min) Flow(min) Flow(min) Radius-m Area(ft^2) (ft^2/s)
B-N1
87.2500
1342.1250
10.6250
0.0000
1.5207
20.5785 0.0622
NI-C
0.1875
1434.7500
0.0000
5.0625
1.8254
29.6100 45.1745
C-D
0.1875
415.0000
0.0000 1024.8125
1.8248
29.6364 44.6692
N3-F
0.0000
1440.0000
0.0000
0.0000
1.9191
40.1800 30.2655
A-N1
773.5000 664.8333
1.6667
0.0000
0.8395
7.2672 0.0421
N2-13
3.1250
1436.8750
0.0000
0.0000
0.9604
9.8550 9.5425
I-N4
0.0000
1440.0000
0.0000
0.0000
1.0928
10.8152 13.9946
N4-N5
0.0000
1440.0000
0.0000
0.0000
1.0000
12.9107 20.9397
I-N5
0.0000
1440.0000
0.0000
0.0000
2.0567
29.6179 26.4286
F-G
0.0000
1440.0000
0.0000
0.0000
1.7776
40.1516 26.5755
G-H
0.0000
1440.0000
0.0000
0.0000
1.8640
40.3613 22.1525
H-1
0.0000 1440.0000
0.0000
0.0000
1.6416
33.8905 21.6286
Box 1
0.3750
1439.6250
0.0000
0.0000
1.6298
26.3150 57.8259
Box 3
3.2500
1436.7500
0.0000
0.0000
1.6233
26.3139 51.8803
Box 4
0.0000
1440.0000
0.0000
0.0000
1.5767
26.3055 47.7148
Box 2
1.8750
1438.1250
0.0000
0.0000
1.6200
26.3134 55.6875
M M= M o M M M M M M r M M M M M M M
w� w w w w sw w w� w w w w ww wi w ww w w� w
Table E12. Mean Conduit Flow Information
Mean Total Mean Low Mean
Mean Mean Mean
Conduit
Flow Flow Percent
Flow Froude Hydraulic
Cross Conduit
Name
---------------
(cfs) (ft^3) Change Weightng
-------- --------
Number
Radius
Area Roughness
B-N1
--------
-0.0011-95.9550
--------
0.0018
------
0.9654
---------------
0.0002
---------
0.8648
8.3080
0.0120
NI-C
62.06115362080.7
0.0334
0.9998
0.5760
1.2890
14.6348
0.0140
C-D
62.0190 5358438.5
0.0388
0.9998
0.6378
1.2461
14.2927
0.0140
N3-F
77.1082 6662149.0
0.0445
1.0000
0.4715
1.3011
20.7742
0.0251
A-N1
0.0000-0.1598
0.0006
0.6045
0.0004
0.4719
3.2849 0.0140
N2-D
-3.5594-307535.1
0.0086
0.9986
0.0006
0.8573
7.8521
0.0140
I-N4
0.6577 56822.627
0.0125
1.0000
0.1289
1.0422
10.2586
0.0140
N4-N5
4.0787 352400.39
0.0129
1.0000
0.0998
1.0000
12.8633
0.0140
I-N5
76.4380 6604240.1
0.0363
1.0000
0.4091
1.9452
27.6615
0.0140
F-G
77.0975 6661227.5
0.0408
1.0000
0.4901
1.4101
20.8632
0.0254
G-H
77.0932 6660849.5
0.0414
1.0000
0.4315
1.5197
23.9552
0.0255
H-I 77.0928 6660816.4
0.0424
1.0000
0.4793
1.3967
23.0679
0.0250
Box 1
65.5641 5664739.2
0.1771
0.9997
0.6057
1.0713
14.7190
0.0140
Box 3
65.5366 5662361.2
0.1122
0.9986
0.5315
1.1298
15.6640
0.0140
Box 4
65.5136 5660377.0
0.0706
1.0000
0.4627
1.2045
17.0603
0.0140
Box 2
65.5535 5663821.7
0.1063
0.9991
0.5826
1.0931
15.0717
0.0140
FREE #
1 81.4083 7033679.6
Table E13. Channel losses(H), headwater depth (HW), tailwater
depth (TW), critical and normal depth (Yc and Yn).
Use this section for culvert comparisons
Conduit Maximum Head Friction Critical Normal HW TW
Name Flow
Loss
Loss
Depth Depth Elevat Elevat
---------------------------
B-N1 0.1580
---------
0.0000
---------
0.0000
---------
0.0577
---------
0.1066
---------
26.7606
26.7609
Max Flow
N1-C 193.8907
0.0000
0.8761
3.8026
6.0000
29.3114
28.4407
Max Flow
C-D 193.9331
0.0000
0.7440
3.8030
6.0000
28.4397
27.7003
Max Flow
N3-F 242.4520
0.0000
0.7735
3.8851
5.6716
24.6400
23.7192
Max Flow
A-N1 0.0881
0.0000
0.0000
0.0693
0.0505
25.8553
25.8552
Max Flow
N2-D-0.3378
0.0000
-0.0001
0.1639
0.1605
22.1348
22.1349
Max Flow
I-N4 43.0174
0.0000
0.4682
1.9595
1.8771
20.6302
20.3445
Max Flow
N4-N5 54.0847
0.0000
0.1574
2.2092
2.0985
20.3443
20.1600
Max Flow
I-N5 199.3838
0.0000
0.7689
3.2085
2.6892
20.6318
20.1600
Max Flow
F-G 242.3852
0.0000
0.8871
3.8811
5.1329
23.7198
22.5547
Max Flow
G-H 242.3050
0.0000
0.8553
3.1646
4.3555
22.5544
21.4728
Max Flow
H-1 242.3025
0.0000
0.5296
3.0021
3.9304
21.4726
20.6318
Max Flow
Box 1 207.2076
0.0000
0.3607
3.3331
4.0000
27.6659
27.2564
Max Flow
Box 3 206.6012
0.0000
0.5850
3.3265
4.0000
26.5370
25.9537
Max Flow
Box 4 205.6248
0.0000
1.3079
3.3160
4.0000
25.9673
24.6335
Max Flow
Box 2 206.1120
0.0000
0.8264
3.3213
4.0000
27.4553
26.5680
Max Flow
= M M M M M = M = M = = = M M M r M
Table E13a. CULVERT ANALYSIS CLASSIFICATION,
and the time the culvert was in a particular
classification during the simulation. The time is
in minutes. The Dynamic Wave Equation is used for
all conduit analysis but the culvert flow classification
condition is based on the HW and TW depths.
Mild Mild Steep Mild Mild
Slope Slope TW Slope TW Slug Flow Slope Slope
Critical D Control Insignf Outlet/ TW > D TW <= D
Conduit Outlet Outlet Entrance Entrance Outlet Outlet Outlet Inlet Inlet
Name Control Control Control Control Control Control Control Control Configuration
B-NI
0.00001279.0000
87.2500
0.0000
NI-C
0.50001375.0000
0.0000
0.0000
C-D 444.2500 924.5000
0.0000
0.0000
N3-F
0.00001440.0000
0.0000
0.0000
A-N1
0.0000 0.0000 798.2500 474.7500
N2-D
0.0000 0.0000
10.00001150.0000
I-N4
0.0000 0.0000 0.00001384.5000
N4-N5
0.0000 0.0000
0.0000
0.0000
I-N5
0.0000 0.0000 0.00001052.5000
F-G
0.00001440.0000
0.0000
0.0000
G-H
0.00001440.0000
0.0000
0.0000
H-I 296.25001143.7500
0.0000
0.0000
Box 1
4.2500 1176.0000
0.2500
0.0000
Box 3
1.2500 1173.0000
3.2500
0.0000
Box 4
0.0000 1150.0000
0.0000
0.0000
Box 2
4.7500 1172.2500
1.7500
0.0000
Kinematic Wave Approximations
Time in Minutes for Each Condition
73.7500 0.0000 0.0000 0.0000 None
64.5000 0.0000 0.0000 0.0000 None
71.2500 0.0000 0.0000 0.0000 None
0.0000 0.0000 0.0000 0.0000 None
0.0000 166.5000 0.5000 0.0000 None
0.0000 277.7500 2.2500 0.0000 None
55.5000 0.0000 0.0000 0.0000 None
33.7500 1406.2500 0.0000 0.0000 None
0.0000 0.0000 387.5000 0.0000 None
0.0000 0.0000 0.0000 . 0.0000 None
0.0000 0.0000 0.0000 0.0000 None
0.0000 0.0000 0.0000 0.0000 None
259.5000 0.0000 0.0000 0.0000 None
262.5000 0.0000 0.0000 0.0000 None
290.0000 0.0000 0.0000 0.0000 None
261.2500 0.0000 0.0000 0.0000 None
Conduit Duration of Slope Super- Roll
Name Normal Flow Criteria Critical Waves
B-N 1
0.0000 794.9204
0.0000
0.0000
NI-C
0.5500 61.8475
0.0000
0.0000
C-D
0.4473 194.1637
1.1250
0.0000
N3-F
0.0000 304.3125
0.0000
0.0000
A-N1
255.0833 536.4167
0.0000
0.0000
N2-D
9.0000 11.8750
0.0000
0.0000
I-N4
0.0000 364.8750
0.0000
0.0000
N4-N5
0.0000 0.0000
0.0000
0.0000
I-N5
326.12501440.0000
0.0000
0.0000
F-G
0.0000 589.1875
0.0000
0.0000
G-H
0.0000 589.0000
0.0000
0.0000
H-I
0.0000 588.6250
0.0000 0.0000
Box 1
0.8750 1089.0625
2.7500
0.0000
Box 3
2.8750 1163.8500
0.0000
0.0000
Box 4
0.0000 1164.7750
0.0000
0.0000
Box 2
66.8750 1159.6375
2.8750
0.0000
Table E14 - Natural Channel Overbank Flow Information
<---- Maximum Velocity -----> <------ Maximum Flow -------> <------ Maximum Area ------> <--- Max. Storage Volume
--->
Conduit
Left Center Right
Left Center Right Left Center Right Left
Center Right Maximum
Name Velocity Velocity Velocity Flow Flow
---------------------------------------------------------------------
Flow
Area
Area Area
Area Area Area Depth
N3-F
1.0431 6.2922 0.9158
1.4036 240.5366
---------
0.5118
------------------
1.3457
------------------
38.2276 0.5589
------------------
230.1094 6536.9261 95,5674
5.0469
F-G
1.0279 6.7845 1.4586
0.9847 234.7622
6.6390
0.9580
34.6028 4.5517
155.1912 5605.6473 737.3695
4.4553
G-H
1.1308 6.7608 1.5726
1.2514 233.8153
7.2384
1.1067
34.5838 4.6028
184.8157 5775.4881 768.6756
3.7333
H-I
0.0000 7.2561 0.8208
0.0000 241.9166
0.4305
0.0000
33.3400 0.5246
0.0000 2333.7970 36.7187 3.0840
Table E14a - Natural Channel Encroachment Information
<------- Existing Conveyance Condition -------> <----- Encroachment Conveyance Condition -----> <- % Volume --> <-- Encroachment Data -->
Conduit Left Centre Right Total Left Right Left Centre Right Total Left Right Reduction Depth
Name Bank Channel Bank Station Station Bank Channel Bank Station Station Left Right Incr. Method
N3-F 23.324 3997.1 8.5046 4028.9-5.5725 8.8090 23.324 3997.1 8.5046 4028.9-5.5725 8.8090 0.0000 0.0000 0.0000 None
F-G 15.950 3802.5 107.53 3926.0-7.4033 10.669 15.950 3802.5 107.53 3926.0-7.4033 10.669 0.0000 0.0000 0.0000 None
G-H 2O.504 3831.1 118.60 3970.2-3.8159 14.109 20.504 3831.1 118.60 3970.2-3.8159 14.109 0.0000 0.0000 0.0000 None
H-I 0.0000 2991.7 5.3243 2997.0-6.8184 12.477 0.0000 2991.7 5.3243 2997.0-6.8184 12.477 0.0000 0.0000 0.0000 None
Table E 14b - Floodplain Mapping
Conduit Upstream Downstream Channel Center <----- Left Offsets ------> <----- Right Offsets ------> <- Channel Widths->
Name WS Elev. WS Elev. Length Station Natural Encroach Bank Natural Encroach Bank Total Encroach.
N3-F 24.6400 23.7200 171.0000 2.4000 7.9725 7.9725 5.1000 6.4090 6.4090 5.1900 14.3815 14.3815
F-G 23.7200 22.5547 162.0000 0.0000 7.4033 7.4033 5.3100 10.6693 10.6693 4.4720 18.0726 18.0726
G-H 22.5547 21.4730 167.0000 0.0000 3.8159 3.8159 1.8800 14.1088 14.1088 8.7000 17.9247 17.9247
H-I 21.4730 20.6318 70.0000 0.0000 6.8184 6.8184 8.9100 12.4770 12.4770 9.8800 19.2954 19.2954
Table E15 -SPREADSHEET INFO LIST
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
Conduit Maximum Total Maximum Maximum ## Junction Invert Maximum
Name Flow Flow Velocity Volume ## Name Elevation Elevation
(cfs) (ft^3) (ft/s) (ft^3) ## (ft) (ft)
---------------
B-N 1
NI-C
C-D
N3-F
A-N 1
N2-D
I-N4
N4-N5
I-N5
F-G
G-H
H-I
Box 1
Box 3
Box 4
Box 2
FREE #
0.3718-95.9550
193.8920 5362080.728
194.0010 5358438.480
242.4520 6662148.971
0.0898-0.1598
-11.8410-307535.088
43.0210 56822.6268
54.0913 352400.3922
199.3846 6604240.138
242.3859 6661227.537
242.3050 6660849.518
242.3471 6660816.447
208.0356 5664739.230
206.6663 5662361.218
205.9513 5660377.009
206.7757 5663821.721
1 256.3057 7033679.58
--------------- ##-------------
-0.2257
1523.2005 ##
6.6556
11700.9300 ##
6.8046
9954.8555
##
6.0396
6806.3271
##
-0.0310
640.2530 ##
-1.2210
2972.8176
##
3.9795
4247.2409 ##
4.2131
1288.0010
##
6.7319
14984.5372
##
6.0376
6362.6754
##
6.0056
6616.7849
##
7.1535
2314.6189
##
8.6399
1842.0619
##
8.5908
2999.9282
##
8.5640
6761.8546
##
8.5906
4263.0519
##
0 0.0000
0.0000
##
B 23.0000 29.3245
N1 22.0000 29,3239
C 21.5700 28.4496
D 20.8400 27.7325
N3 19.3900 24.6399
I 17,9400 20.6318
A 24.4000 29.3247
N2 18.9000 27.8049
N5 15.0000 20.1600
N4 15.5000 20.3446
F 18.9375 23.7200
G 18.5325 22.5547
H 18.1150 21.4730
Box cb B 20.3296 26.6517
Box cb C 20.0788 26.0805
Box cb A 20.6860 27.5561
Table E15a - SPREADSHEET REACH LIST
Peak flow and Total Flow listed by Reach or those
conduits or diversions having the same
upstream and downstream nodes.
Upstream
Downstream Maximum Total
Node
Node Flow Flow
--------------------------
(cfs) (ft^3)
B
-------------------
N1 0.3718-95.9550
N1
C 193.8920 5362080.73
C
D 194.0010 5358438.48
N3
F 242.4520 6662148.97
A
N1 0.0898-0.1598
D
N2 11.8410 307535.088
I
N4 43.0210 56822.6268
N4
N5 54.0913 352400.392
I
N5 199.3846 6604240.14
F
G 242.3859 6661227.54
G
H 242.3050 6660849.52
H
1 242.3471 6660816.45
D
Box cb A 208.0356 5664739.23
Box cb B
Box cb C 206.6663 5662361.22
Box cb C
N3 205.9513 5660377.01
Box cb A
Box cb B 206.7757 5663821.72
# Table E16. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS) Elevations #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type
B-N1
B
N1 23.3920 23.3000 29.3245 29.3239 Circular
N1-C
N1
C 22.3000 21.6600 29.3239 28.4495 Circular
C-D
C
D 21.5700 20.9200 28.4496 27.7325 Circular
N3-F
N3
F 19.3900 18.9375 24.6400 23.7200 Natural
A-N1
A
N1 24.4600 23.3000 29.3247 29.3239 Circular
N2-D
D
N2 20.9200 18.9000 27.7314 27.8049 Circular
I-N4
I
N4 17.9400 16.0000 20.6318 20.3446 Circular
N4-N5
N4
N5 15.5600 15.0000 20.3446 20.1600 Circular
I-N5
I
N5 17.9400 15.0000 20.6318 20.1600 Circular
F-G
F
G 18.9375 18.5325 23.7200 22.5547 Natural
G-H
G
H 18.5325 18.1150 22.5547 21.4730 Natural
H-I
H
1 18.1150 17.9400 21.4730 20.6318 Natural
Box 1
D
Box cb A 20.8400 20.6860 27.7314 27.5499 Rectangle
Box 3
Box cb B
Box cb C 20.3296 20.0788 26.6517 26.0805 Rectangle
Box 4
Box cb C
N3 20.0788 19.3900 26.0805 24.6400 Rectangle
Box 2
Box cb A
Box cb B 20.6860 20.3296 27.5499 26.6517 Rectangle
Table E18 - Junction Continuity Error. Division by Volume added 11/96
Continuity Error = Net Flow + Beginning Volume - Ending Volume
-------------------------------------------------
Total Flow + (Beginning Volume + Ending Volume)/2
Net Flow = Node Inflow - Node Outflow
Total Flow = absolute (Inflow + Outflow)
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent Great 1 to 2 percent Good 2 to 5 percent
M M M M 0 No M M M M M M M
Fair 5 to 10 percent Poor 10 to 25 percent Bad 25 to 50 percent
Terrible > 50 percent
Junction <------ Continuity
Error -------> Remaining Beginning
Net Flow Total Flow Failed to
Name Volume % of Node % of Inflow Volume Volume
---------------------------------------------------
Thm Node Thru Node Converge
B-5.2698
-3.7276
---------------------------------------
0.0001 90.8343 0.0000 85.5645 95.9550 0
N1 761.4298
0.0071
0.0108 1514.4294 0.0000
2275.859210726710.90
0
C 1091.9197
0.0102
0.0155 2471.1880 0.0000
3563.107710720519.21
0
D-1096.8109
-0.0097
0.0156 2247.6267 0.0000
1150.8158 11330712.80
0
N3 360.3037
0.0027
0.0051 2368.2383 560.1840
2168.357913326490.36
0
I-64.6877
-0.0005
0.0009 9304.1994 9361.6093
-122.097513321879.21
0
A-28.9509
-222.6177
0.0004 25.6899 0.0000
-3.2609 0.1598 0
N2 207.8949
0.0337
0.0029 933.4377 15.8332
1125.4994 616195.9545
0
N5 91.2214
0.0006
0.0013 7498.6882 7540.2257
49.683814067420.53
0
N4 10.2509
0.0014
0.0001 2536.9494 2549.5502
-2.3500 704799.5028
0
F-5.2714
0.0000
0.0001 1751.8699 923.8147
822.783813323376.51
0
G-34.7104
-0.0003
0.0005 2219.9180 1907.4362
277.771513322077.06
0
H-49.4470
-0.0004
0.0007 2000.8521 1927.0530
24.352113321665.97
0
Box cb B 173.6725 0.0015
0.0025 1237.1994 0.0000
1410.8719 11326182.94
0
Box cb C 221.0021 0.0020 0.0031 2040.7485 284.0411
1977.7096 11322738.23
0
Box cb A 48.6575
0.0004 0.0007 977.4264 0.0000
1026.0838 11328560.95
0
The total continuity error was 1681.2 cubic feet
The remaining total volume was 39219. cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Excellent
Table E19 - Junction Inflow Sources
Units are either ft^3 or m^3
depending on the units in your model.1
Constant
User Interface DWF Inflow RNF Layer
Inflow
Junction
Inflow
Inflow
Inflow
Inlow
through
Inflow
Outflow Evaporation
from
Name
----------
to Node
----------
to Node
----------------------
to Node
-----------
to Node
-----------
Outfall
to Node
from Node
from Node 2D Layer
N1
0.0000
5.3646E+06
0.0000
0.0000
-----------
0.0000
-----------
0.0000
-----------
0.0000
-----------
0.0000
0.0000
N3
0.0000
1.0040E+06
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
N2
0.0000 308659.1100
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
N5
0.0000
77099.9775
0.0000
0.0000
0.4388
0.0000
7.0337E+06
0.0000
0.0000
N4
0.0000 295574.7525
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
Table E20 - Junction Flooding and Volume Listing.
The maximum volume is the total volume
in the node including the volume in the
flooded storage area. This is the max
volume at any time. The volume in the
flooded storage area is the total volume)
above the ground elevation, where the
flooded pond storage area starts.
The fourth column is instantaneous, the fifth is the)
sum of the flooded volume over the entire simulation]
Units are either ft^3 or m^3 depending on the units.
Out of
System Stored in System
Junction Surcharged Flooded Flooded Maximum Ponding Allowed
Name Time (min) Time(min) Volume Volume Flood Pond Volume
B
68.7000
0.0000
0.0000
79.4738
0.0000
N 1
73.8026
0.0000
0.0000
92.0317
0.0000
C
64.6875
0.0000
0.0000
86.4485
0.0000
D
71.0139
0.0000
0.0000
86.6001
0.0000
N3
0.0000
0.0000
0.0000
65.9713
0.0000
I
0.0000
0.0000
0.0000
33.8257
0.0000
A
166.5833
0.0000
0.0000
61.8845
0.0000
N2
763.8333
0.0000
0.0000
111.8996
0.0000
N5
0.0000
0.0000
0.0000
64.8406
0.0000
N4
1440.0000 0.0000
0.0000 60.8769
0.0000
F
0.0000
0.0000
0.0000
60.0964
0.0000
G
0.0000
0.0000
0.0000
50.5424
0.0000
H
0.0000
0.0000
0.0000
42.1971
0.0000
Box cb B
261.0625 0.0000
0.0000
79.4776
0.0000
Box cb C
262.5000
0.0000 0.0000
75.4423
0.0000
Box cb A
259.6875
0.0000 0.0000 86.3169
0.0000
Simulation Specific Information
Number of Input Conduits..........
16 Number of Simulated Conduits...... 17
Number of Natural Channels........
4 Number of Junctions ............... 16
Number of Storage Junctions.......
0 Number of Weirs ................... 0
Number of Orifices ................
0 Number of Pumps................... 0
Number of Free Outfalls...........
1 Number of Tide Gate Outfalls...... 0
Average % Change in Junction or Conduit is defined as:
Conduit % Change => 100.0 ( Q(n+1) - Q(n)) / Qfull
Junction % Change => 100.0 (Y(n+l) - Y(n)) / Yfull
The Conduit with the largest average change was..Box 1 with 0.177 percent
The Junction with the largest average change was.Box cb A with 0.645 percent
The Conduit with the largest sinuosity was ....... Box 1 with 25.474
Table E21. Continuity balance at the end of the simulation
Junction Inflow, Outflow or Street Flooding
Error = Inflow + Initial Volume - Outflow - Final Volume
Inflow Inflow Average
Junction Volume,ft^3 Inflow, cfs
N1
5.36453E+06
62.0895
N3
1.00396E+06
11.6200
N2
308660.8665
3.5725
N5
77100.4173
0.8924
N4
295576.4838
3.4210
N5
-7.034E+06
-81.4083
Outflow Outflow Average
r
Junction Volume, ft^3 Outflow, cfs
N5 7.03368E+06 81.4083
Initial system volume =
25069.7474 Cu Ft
Total system inflow volume
= 7.049939E+06 Cu Ft
Inflow + Initial volume =
7.075009E+06 Cu Ft
Total system outflow =
7.033680E+06 Cu Ft
Volume left in system =
39219.2956 Cu Ft
Evaporation =
0.0000 Cu Ft
Outflow + Final Volume
= 7.072899E+06 Cu Ft
Total Model Continuity Error
Error in Continuity, Percent = 0.02381
Error in Continuity, ft^3 = 1681.2041
+ Error means a continuity loss, - a gain
######### #
# Table E22. Numerical Model judgement section #
########### ######
Your overall error was 0.0238 percent
Worst nodal error was in node D with-0.0097 percent
Of the total inflow this loss was 0.0156 percent
Your overall continuity error was Excellent
Excellent Efficiency
Efficiency of the simulation 1.89
Most Number of Non Convergences at one Node 0.
Total Number Non Convergences at all Nodes 0.
Total Number of Nodes with Non Convergences 0.
_> Hydraulic model simulation ended normally.
=> XP-SWMM Simulation ended normally.
=> Your input file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 25 dec 06.DAT
—_> Your output file was named: M:\RENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 25 dec 06.out
SWMM Simulation Date and Time Summary
Starting Date... December 22, 2006 Time... 7:38:24:93
Ending Date... December 22, 2006 Time... 7:39:51: 6
Elapsed Time... 1.43550 minutes or 86.13000 seconds
M M M M M M M M M M M M M M r
XP-SWMM MODELING OUTPUT - Alternative 1 (West -4' x 6' Box Culvert) —100-Year Storm
Current Directory: C:\XPS\XP-SWMM
Engine Name: C:\XPS\XP-SWMM\swmmengw.exe
Read 1 line(s) and found 1 items(s) from your cfg file.
Input File : \Design\Design Future\Altematives\Dec 06 Alt\Alt 1 100 dec 06.XP
XP-SWMM
Storm and Wastewater Management Model
Interface Version: 9.52
Engine Version: 9.28
Developed by
i I
XP Software
� I
XP Software November, 2004
Data File Version ---> 11.7
Serial Number: 42-xxx-0000
XP Software (Evaluation)
Engine Name: C:\XPS\XP-SWMM\swmmengw.exe
Input and Output file names by Layer
Input File to Layer # 1 JOT.US
Output File to Layer # 1 JOT.US
Special command line arguments in XP-SWMM2000. This
now includes program defaults. $Keywords are the program)
defaults. Other Keywords are from the SWMMCOM.CFG file.1
or the command line or any cfg file on the command line.1
Examples include these in the file xpswm.bat under the
section :solve or in the windows version XPSWMM32 in they
file solve.bat
Note: the cfg file should be in the subdirectory swmxp
or defined by the set variable in the xpswm.bat
file. Some examples of the command lines possible)
are shown below:
swmmd swmmcom.cfg
swmmd my.cfg
swmmd nokeys nconv5 pery extranwq
$powerstation
0.0000
1
2
$pery
0.0000
0
4
$oldegg
0.0000
0
7
$as
0.0000
0
11
$noflat
0.0000
0
21
$oldomega
0.0000
0
24
$oldvol
0.0000
1
28
$implicit
0.0000
1
29
$oldhot
0.0000
1
31
$oldscs
0.0000
0
33
$flood
0.0000
1
40
$nokeys
0.0000
0
42
$pzero
0.0000
0
55
$oldvol2
0.0000
2
59
$storage2
0.0000
3
62
$oldhotl
0.0000
1
63
$pumpwt
0.0000
1
70
$ecloss
0.0000
1
77
$exout
0.0000
0
97
M M M M o M M M M M M M M M M M M M M
M M M M M M M M M M M M M M M M M M M
SPATIAL=0.55 0.5500 5 124
$djref = -1.0-0.1000 3 143
$weirlen = 50 50.0000 1 153
$oldbnd 0.0000 1 154
$nogrelev 0.0000 1 161
$ncmid 0.0000 0 164
$new n1 97 0.0000 2 290
$best97 0.0000 1 294
$newbound 0.0000 1 295
$q_tol = 0.1 0.0010 1 316
$new storage 0.0000 1 322
$old iteration 0.0000 1 333
$minlen=30.0 30.0000 1 346
$review_ elevation 0.0000 1 383
$use_ half_ volume 0.0000 1 385
$min is = 0.5 0.5000 1 407
$design —restart = on 0.0000 1 412
$zero—value=l.e-05 0.0000 1 415
$relax depth = on 0.0000 1 427
Parameter Values on the Tapes Common B1ock.These are the
values read from the data file and dynamically allocated
by the model for this simulation.
Number of Subcatchments in the Runoff Block (NW).... 0
Number of Channel/Pipes in the Runoff Block (NG).... 0
Runoff Water quality constituents (NRQ)............. 0
Runoff Land Uses per Subcatchment (NLU)............. 0
Number of Elements in the Transport Block (NET)..... 0
Number of Storage Junctions in Transport (NTSE)..... 0
Number of Input Hydrographs in Transport (NTH)...... 0
Number of Elements in the Extran Block (NEE)........ 17
Number of Groundwater Subcatchments in Runoff (NGW). 0
Number of Interface locations for all Blocks (NIE).. 17
Number of Pumps in Extran (NEP)..................... 0
Number of Orifices in Extran (NEO).................. 0
Number of Tide Gates/Free Outfalls in Extran (NTG).. 1
Number of Extran Weirs (NEW) ........................ 0
Number of scs hydrograph points ..................... 1
Number of Extran printout locations (NPO)........... 0
Number of Tide elements in Extran (NTE)............. I
Number of Natural channels (NNC).................... 4
Number of Storage junctions in Extran (NYSE)........ 0
Number of Time history data points in Extran(NTVAL). 0
Number of Variable storage elements in Extran (NVST) 0
Number of Input Hydrographs in Extran (NEH)......... 5
Number of Particle sizes in Transport Block (NPS)... 0
Number of User defined conduits (NHW)............... 17
Number of Connecting conduits in Extran (NECC)...... 20
Number of Upstream elements in Transport (NTCC)..... 10
Number of Storage/treatment plants (NSTU)........... 0
Number of Values for Rl lines in Transport (NR1).... 0
Number of Nodes to be allowed for (NNOD)............ 17
Number of Plugs in a Storage Treatment Unit......... 1
##################################################
# Entry made to the HYDRAULIC Layer(Block) of SWMM #
# Last Updated October,2000 by XP Software #
Renton Village Existing
HYDRAULICS TABLES IN THE OUTPUT FILE
These are the more important tables in the output file.
You can use your editor to find the table numbers,
for example: search for Table E20 to check continuity.
This output file can be imported into a Word Processor
and printed on US letter or A4 paper using portrait
mode, courier font, a size of 8 pt. and margins of 0.75
M M M M M M M M M M M M M M M M M M r
W
I I
Table E1 - Basic Conduit Data
Table E2 - Conduit Factor Data
Table E3a - Junction Data
Table E3b - Junction Data I
Table E4 - Conduit Connectivity Data
Table E4a - Dry Weather Flow Data
Table E4b - Real Time Control Data
Table E5 - Junction Time Step Limitation Summary
Table E5a - Conduit Explicit Condition Summary
Table E6 - Final Model Condition
Table E7 - Iteration Summary
Table E8 - Junction Time Step Limitation Summary
Table E9 - Junction Summary Statistics
Table E10 - Conduit Summary Statistics
I Table El l -Area assumptions used in the analysis
I Table E12 - Mean conduit information
I Table E13 - Channel losses(H) and culvert info
I Table E13a - Culvert Analysis Classification
I Table E14 - Natural Channel Overbank Flow Information
Table E14a - Natural Channel Encroachment Information
Table E14b - Floodplain Mapping
Table E15 -Spreadsheet Info List
Table E15a - Spreadsheet Reach List
Table E16 - New Conduit Output Section
Table E17 - Pump Operation
Table E18 - Junction Continuity Error
Table E19 - Junction Inflow Sources
Table E20 - Junction Flooding and Volume List
Table E21 - Continuity balance at simulation end
Table E22 - Model Judgement Section
Time Control from Hydraulics Job Control
Year......... 2008 Month....... 1
Day.......... 8 Hour........ 18
Minute....... 0 Second...... 0
Control information for simulation
Integration cycles ................. 5760
Length of integration step is...... 15.00 seconds
Simulation length .................. 24.00 hours
Do not create equiv. pipes(NEQUAL). 0
Use U.S. customary units for VO... 0
Printing starts in cycle........... 1
Intermediate printout intervals of. 500 cycles
Intermediate printout intervals of. 125.00 minutes
Summary printout intervals of..... 500 cycles
Summary printout time interval of.. 125.00 minutes
Hot start file parameter (REDO).... 0
Initial time ....................... 18.00 hours
Iteration variables: Flow Tolerance. 0.00010
Head Tolerance. 0.00050
Minimum depth (m or ft)......... 0.00001
Underrelaxation parameter....... 0.85000
Time weighting parameter........ 0.85000
Conduit roughness factor........ 1.00000
Flow adjustment factor.......... 1.00000
Initial Condition Smoothing..... 0
Courant Time Step Factor........ 1.00000
Default Expansion/Contraction K. 0.00000
Default Entrance/Exit K......... 0.00000
Routing Method .................. Dynamic Wave
Default surface area of junctions... 12.57 square feet.
Minimum Junction/Conduit Depth...... 0.00001 feet.
Ponding Area Coefficient............ 5000.00
Ponding Area Exponent ............... 1.0000
Minimum Orifice Length .............. 300.00 feet.
NJSW input hydrograph junctions..... 5
or user defined hydrographs....
M M r = = M M = = = = = M = = M
M M M M M M M M M r M M M M= M r i r
Natural Cross -Section information for Channel N3-F
Cross -Section ID (from X1 card) : 1.0 Channel sequence number: 1
Left Overbank Length 171.0 ft Maximum Elevation 28.39 ft.
Main Channel Length 171.0 ft Maximum depth 8.26 ft.
Right Overbank Length : 171.0 ft Maximum Section Area : 105.3132 ft^2
Maximum hydraulic radius : 3.40 ft.
Manning N : 0.050 to Station -2.7 Max topwidth : 23.24 ft.
of
" : 0.025 in main Channel Maximum Wetted Perimeter: 3.10E+01 ft
It
" : 0.050 Beyond station 7.6 Max left bank area : 22.69 ftA2
Max right bank area . 11.34 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 71.2900 ft^2
Natural Cross -Section information for Channel F-G
Cross -Section ID (from X1 card) : 2.0 Channel sequence number: 2
Left Overbank Length 162.0 ft Maximum Elevation 26.50 ft.
Main Channel Length 162.0 ft Maximum depth 7.59 ft.
Right Overbank Length 162.0 ft Maximum Section Area : 114.9073 ft^2
Maximum hydraulic radius: 3.38 ft.
Manning N : 0.050 to Station -5.3 Max topwidth : 28.20 ft.
it It
: 0.025 in main Channel Maximum Wetted Perimeter : 3.40E+01 ft
" : 0.050 Beyond station 4.5 Max left bank area . 17.87 ft^2
Max right bank area : 31.77 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 65.2666 ft^2
Natural Cross -Section information for Channel G-H
Cross -Section ID (from X1 card) : 3.0 Channel sequence number: 3
Left Overbank Length 167.0 ft Maximum Elevation 30.01 ft.
Main Channel Length 167.0 ft Maximum depth 10.74 ft.
Right Overbank Length : 167.0 ft Maximum Section Area : 231.7196 ft^2
Maximum hydraulic radius: 5.78 ft.
Manning N : 0.050 to Station -1.9 Max topwidth : 33.96 ft.
It
to
0.025 in main Channel Maximum Wetted Perimeter : 4.01E+01 ft
It
" 0.050 Beyond station 8.7 Max left bank area 56.23 ft^2
Max right bank area : 66.77 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 108.7145 ft^2
Natural Cross -Section information for Channel H-I
Cross -Section ID (from X1 card) : 4.0 Channel sequence number: 4
Left Overbank Length 70.0 ft Maximum Elevation 25.23 ft.
Main Channel Length 70.0 ft Maximum depth 6.37 ft.
Right Overbank Length 70.0 ft Maximum Section Area : 130.4888 ft^2
Maximum hydraulic radius: 3.41 ft.
Manning N : 0.050 to Station -8.9 Max topwidth : 36.34 ft.
" 0.025 in main Channel Maximum Wetted Perimeter: 3.82E+01 ft
" 0.050 Beyond station 9.9 Max left bank area . 10.53 ft^2
Max right bank area : 25.86 ft^2
Allowable Encroachment Depth: 0.00 ft Max center channel area : 94.0951 ft^2
M M = r M i = i = = = = M = = r =
M M M = = = r = = = = M M = = M
Table
E1 - Conduit Data
Inp
Conduit
Length
Conduit
Area
Manning
Max Width
Depth Side
Num.
--------------------
Name
(ft)
----------
Class
(ft-2)
Coef.
(ft)
(ft) Slopes
1
B-NI
74
----------
Circular
-------
19.635
-------
0.012
---------
5
------------
5
2
NI-C
395
Circular
28.2743
0.014
6
6
3
C-D
336
Circular
28.2743
0.014
6
6
4
N3-17
171
Natural
105.3132
0.025
23.2405
8.26
5
A-N1
90
Circular
7.0686
0.014
3
3
6
N2-D
306
Circular
9.6211
0.014
3.5
3.5
7
I-N4
375
Circular
12.5664
0.014
4
4
8
N4-N5
100
Circular
12.5664
0.014
4
4
9
I-N5
500
Circular
95.0332
0.014
11
11
10
F-G
162
Natural
114.9073
0.025
28.2
7.59
11
G-H
167
Natural
231.7196
0.025
33.96
10.74
12
H-I
70
Natural
130.4888
0.025
36.34
6.37
13
Box 1
70
Rectangle
24
0.014
6
4
14
Box 3
114
Rectangle
24
0.014
6
4
15
Box 4
257
Rectangle
24
0.014
6
4
16
Box 2
162
Rectangle
24
0.014
6
4
Total length of all conduits
.... 3349.0000 feet
If there are messages about (sqrt(g*d)*dt/dx), or
the sgrt(wave celerity)*time step/conduit length
in the output file all it means is that the
program will lower the internal time step to
satisfy this condition (explicit condition).
You control the actual internal time step by
using the minimum courant time step factor in the
HYDRAULICS job control. The message put in words
states that the smallest conduit with the fastest
velocity will control the time step selection.
You have further control by using the modify
conduit option in the HYDRAULICS Job Control.
Conduit Courant
Name Ratio
B-NI
2.57
=> Warning ! (sgrt(wave celerity) *time step/conduit length)
NI-C
0.53
C-D
0.62
N3-F
1.06
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
A-N1
1.64
=__> Warning ! (sgrt(wave celerity)*time step/conduit length)
N2-D
0.52
I-N4
0.45
N4-N5
1.70 => Warning ! (sgrt(wave celerity)*time step/conduit length)
I-N5
0.56
F-G
1.06
=> Warning ! (sgrt(wave celerity)*time step/conduit length)
G-H
1.33
=> Warning ! (sgrt(wave celerity)*rime step/conduit length)
H-I
2.30
=_> Warning ! (sgrt(wave celerity)*time step/conduit length)
Box 1
2.43
=> Warning ! (sgrt(wave celerity)*rime step/conduit length)
Box 3
1.49
=_> Warning ! (sgrt(wave celerity)*time step/conduit length)
Box 4
0.66
Box 2
1.05
=_> Warning ! (sgrt(wave celerity)*time step/conduit length)
Conduit Volume
Full pipe or full open conduit volume
Input full depth volume............ 1.7811E+05 cubic feet
_> Warning !! The upstream and downstream junctions for the following conduits
have been reversed to correspond to the positive flow and decreasing
slope convention. A negative flow in the output thus means
the flow was from your original upstream junction to your original
M M M M M M M M M r M r M M M r M M M
M M M M M M M M r M M M M M M M M M M
downstream junction. Any initial flow has been multiplied by -1.
1. Conduit #...N2-D has been changed.
Table E3a - Junction Data
Inp
Junction Ground Crown Invert
Qinst Initial Interface
Num
------------------
Name Elevation Elevation Elevation cfs Depth-ft Flow (%)
------------------
1
---------
B 35.0000 35.0000
--------
23.0000
-----------------
0.0000 0.0000 100.0000
2
N1 32.6600 32.6600
22.0000
0.0000 0.0000 100.0000
3
C 35.2200 35.2200
21.5700
0.0000 0.0000 100.0000
4
D 28.6700 28.6700
20.8400
0.0000 0.0000 100.0000
5
N3 28.0000 28.0000
19.3900
0.0000 0.0000 100.0000
6
I 30.0000 30.0000
17.9400 0.0000 0.0000 100.0000
7
A 33.3500 33.3500
24.4000
0.0000 0.0000 100.0000
8
N2 30.3000 30.3000
18.9000
0.0000 0.0000 100.0000
9
N5 28.0000 26.0000
15.0000
0.0000 0.0000 100.0000
10
N4 25.0000 25.0000
15.5000
0.0000 0.0000 100.0000
11
F 28.5100 28.5100
18.9375
0.0000 0.0000 100.0000
12
G 30.0100 30.0100
18.5325
0.0000 0.0000 100.0000
13
H 30.0100 30.0100
18.1150
0.0000 0.0000 100.0000
14
Box cb B 28.5000 24.3296
20.3296 0.0000 0.0000 100.0000
15
Box cb C 26.6000 24.0788
20.0788 0.0000 0.0000 100.0000
16
Box cb A 30.2500 24.6860
20.6860 0.0000 0.0000 100.0000
Table E3b - Junction Data
Inp
Junction
X
Y Type of Type of Maximum
Pavement
Num
------------------
Name Coord. Coord. Manhole Inlet Capacity
----------------------
Shape Slope
1
B
152.5521
--------------------------------------
446.4433 Flooded Normal
-------
0 0.0000
2
N1
145.5257
436.6950 Flooded Normal
0 0.0000
3
C
123.4209
437.1191 Flooded Normal
0 0.0000
4
D
106.3969
437.5303 Flooded Normal
0 0.0000
5
N3
95.8286
416.8616 Flooded Normal
0 0.0000
6
I
67.4830
416.7636 Flooded Normal
0 0.0000
7
A
146.0405
428.7429 Flooded Normal
0 0.0000
8
N2
126.9908
454.2198 Flooded Normal
0 0.0000
9
N5
66.0831
409.8093 No Ponding Normal
0 0.0000
10
N4
62.2778
416.4918 Flooded Normal
0 0.0000
11
F
89.1392
416.9094 Flooded Normal
0 0.0000
12
G
81.4822
417.0487 Flooded Normal
0 0.0000
13
H
74.6604
416.9094 Flooded Normal
0 0.0000
14
Box cb B
96.8341 435.2930 No Ponding Normal
0 0.0000
15
Box cb C
92.3030 432.6534 No Ponding Normal
0 0.0000
16
Box cb A
103.4470 434.9879 No Ponding Normal
0 0.0000
M M M = = r= M = = = M= M r M M
M M M M M M= M= M M M s= M
Table E4 - Conduit Connectivity
Input
Conduit
Upstream
Downstream Upstream Downstream
Number Name
Node
Node Elevation Elevation
1
B-NI
B
-------- ------
N1 23.3920 23.3000 No Design
2
N1-C
N1
C 22.3000 21.6600 No Design
3
C-D
C
D 21.5700 20.9200 No Design
4
N3-F
N3
F 19.3900 18.9375 No Design
5
A -NI
A
N1 24.4600 23.3000 No Design
6
N2-D
D
N2 20.9200 18.9000 No Design
7
I-N4
I
N4 17.9400 16.0000 No Design
8
N4-N5
N4
N5 15.5600 15.0000 No Design
9
I-N5
I
N5 17.9400 15.0000 No Design
10
F-G
F
G 18.9375 18.5325 No Design
11
G-H
G
H 18.5325 18.1150 No Design
12
H-I
H
I 18.1150 17.9400 No Design
13
Box 1
D Box cb A 20.8400 20.6860 No Design
14
Box 3
Box cb B
Box cb C 20.3296 20.0788 No Design
15
Box 4
Box cb C
N3 20.0788 19.3900 No Design
16
Box 2
Box cb A
Box cb B 20.6860 20.3296 No Design
FREE OUTFALL DATA (DATA GROUP I 1)
BOUNDARY CONDITION ON DATA GROUP J1
Outfall at Junction .... N5 has boundary condition number... I
__> Warning H Outfall Junction N5 has two or more connecting conduits.
INTERNAL CONNECTIVITY INFORMATION
CONDUIT JUNCTION JUNCTION
---------------- ---------------- ----------------
FREE # 1 N5 BOUNDARY
Boundary Condition Information
Data Groups J1-J4
*---_-------__--------- __----------
BC NUMBER.. 1 Control water surface elevation is.. 20.16 feet.
XP Note Field Summary
Conduit Convergence
Criteria
Conduit
Full
Conduit
Name
----------------
Flow
----------
Slope
B-N1
----------
99.4838
0.0012
NI-C
158.2956
0.0016
C-D
172.9674
0.0019
N3-F
728.0530
0.0026
A -NI
70.3134
0.0129
N2-D
75.9050
0.0066
I-N4
95.9369
0.0052
N4-N5
99.8147
0.0056
I-N5
1518.2495
0.0059
r M M M M = M M M = M = = M
M M M M M M M M
F-G 769.4335
0.0025
G-H 2216.8183
0.0025
H-I 879.2816
0.0025
Box 1 134.9276
0.0022
Box 3 134.9276
0.0022
Box 4 148.9257
0.0027
Box 2 134.9276
0.0022
Initial Model Condition
Initial Time = 18.00 hours
Junction / Depth / Elevation
-_> "*" Junction is Surcharged.
B/ 0.00 / 23.00
N1/ 0.00 /
22.00
C/ 0.00 /
21.57
D/ 0.00 / 20.84
N3/ 0.77 /
20.16
F 2.22 /
20.16
A/ 0.00 / 24.40
N2/ 1.26 /
20.16
N51 5.16 /
20.16
N4/ 4.66 / 20.16
F/ 1.22 /
20.16
G/ 1.63 /
20.16
H/ 2.05 / 20.16
Box
cb B/ 0.00
/ 20.33
Box cb C/ 0.08 / 20.16
Box cb A/ 0.00 / 20.69
Conduit/ FLOW
=_> ""Conduit
uses the normal flow option.
B-N1/ 0.00
N1-C/
0.00
C-D/
0.00
N3-F/ 0.00
A-N1/
0.00
N2-D/
0.00
I-N4/ 0.00
N4-N5/
0.00
I-N51
0.00
F-G/ 0.00
G-H/
0.00
H-F
0.00
Box 1/ 0.00
Box 3/
0.00
Box 4/
0.00
Box 2/ 0.00
FREE # 1/
0.00
Conduit/ Velocity
B-N1/ 0.00
NI-C/
0.00
C-D/
0.00
N3-F/ 0.00
A-N1/
0.00
N2-D/
0.00
I-N4/ 0.00
N4-N5/
0.00
I-N51
0.00
F-G/ 0.00
G-H/
0.00
H-I/
0.00
Box 1/ 0.00
Box 3/
0.00
Box 4/
0.00
Box 2/ 0.00
Conduit/ Cross Sectional Area
B-N1/
0.00
NI-C/
0.00
N3-F/
3.09
A-N I /
0.00
I-N4/
9.70
N4-N5/
12.91
F-G/
7.81
G-H/
14.77
Box 1/
0.00
Box 3/
0.22
Box 2/
0.00
Conduit/ Hydraulic Radius
B-N1/
0.00
N1-C/
N3-F/
0.42
A-N1/
I-N4/
1.04
N4-N5/
F-G/
0.93
G-H/
Box l/
0.00
Box 3/
Box 2/
0.00
C-D/ 0.00
N2-D/ 1.40
I-N5/ 27.24
H-I/ 18.62
Box 4/ 2.35
0.00
C-D/
0.00
0.00
N2-D/
0.32
1.00
I-N5/
1.92
1.27
H-I/
1.28
0.04
Box 4/
0.32
Conduit/ Upstream/ Downstream Elevation
B-Nl/
22.00/
22.00
N1-C/
21.57/
21.57
N3-F/
20.16/
20.16
A-N1/
22.00/
22.00
I-N4/
20.16/
20.16
N4-N5/
20.16/
20.16
F-G/
20.16/
20.16
G-H/
20.16/
20.16
Box 1/
20.69/
20.69
Box 3/
20.33/
20.16
Box 2/
20.33/
20.33
######## Important Information ########
Start time of user hydrographs was... 18.000000000000000
Start time of the simulation was..... 18.000000000000000
Found a match between user hydrograph and simulation start time.
Will move ahead 1.561251128379126E-017 hours
C-D/
20.84/
20.84
N2-D/
20.84/
20.16
I-N51
20.16/
20.16
H-I/ 20.16/
20.16
Box 4/
20.16/
20.16
----------------------
_> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs )
N1 / 6.23E+00 N3 / 6.14E-01 N2 / 2.00E-02 N5 / 5.00E-03 N4 / 2.00E-02
########################################
===> System inflows (data group K3) at 18.00 hours ( Junction / Inflow,cfs )
MMMMM M M M M M M M
N1 / 8.85E+00 N3 / 1.17E+00 N2 / 2.05E-01 N5 / 5.40E-02 N4
/ 2.05E-01
########################################
########################################
-=> System inflows (data group K3) at 19.00 hours ( Junction / Inflow,cfs )
N1 / 1.47E+01 N3 / 2.38E+00 N2 / 6.14E-01 N5 / 1.56E-01 N4
/ 5.94E-01
########################################
########################################
__> System inflows (data group K3) at 20.00 hours ( Junction / Inflow,cfs )
N1 / 1.57E+01 N3 / 2.60E+00 N2 / 6.96E-01 N5 / 1.77E-01 N4
/ 6.76E-01
########################################
Cycle 500 Time 20 Hrs - 5.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 0.56 / 23.56 N1/ 1.56 / 23.56 C/ 1.23 / 22.80
D/ 0.74 / 21.58 N3/ 1.65 / 21.04 1/ 2.21 / 20.15
A/ 0.00 / 24.40 N2/ 2.68 / 21.58 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 1.43 / 20.37 G/ 1.67 / 20.20
H/ 2.05 / 20.16 Box cb B/ 0.86 / 21.19 Box cb C/ 1.01 /
21.09
Box cb A/ 0.75 / 21.44
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ 0.00 NI-C/ 14.82 C-D/ 14.78 N3-F/
17.56
A-N1/ 0.00 N2-D/ -0.61 I-N4/ -2.64 N4-N5/
-2.04
I-N5/ 20.17 F-G/ 17.52 G-H/ 17.52 H-1/
17.52
Box 1/ 15.38 Box 3/ 15.32 Box 4/ 15.25 Box 2/
15.36
FREE # 1/ 18.29
########################################
_> System inflows (data group K3) at 21.00 hours( Junction / Inflow,cfs )
N1 / 1.47E+01 N3 / 2.42E+00 N2 / 6.35E-01 N5 / 1.61E-01 N4
/ 6.14E-01
########################################
########################################
_> System inflows (data group K3) at 22.00 hours ( Junction / Inflow,cfs )
Ni / 1.87E+01 N3 / 3.24E+00 N2 / 9.22E-01 N5 / 2.30E-01 N4 / 8.81E-01
########################################
Cycle 1000 Time 22 Hrs - 10.00 Min
Junction / Depth / Elevation = _> "*" Junction is Surcharged.
B/ 0.58 / 23.58 N1/ 1.58 / 23.58
C/ 1.25 / 22.82
D/ 0.76 / 21.60 N3/ 1.67 / 21.06
I/ 2.21 / 20.15
A/ 0.00 / 24.40 N2/ 2.70 / 21.60
N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 1.44 / 20.38
G/ 1.67 / 20.20
H/ 2.05 / 20.16 Box cb B/ 0.88 / 21.21
Box cb C/ 1.04 /
21.12
Box cb A/ 0.77 / 21.45
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ 0.00 NI-C/ 15.35 C-D/
15.22 N3-F/
18.18
A-N1/ 0.00 N2-D/ -0.66 I-N4/
-3.77 N4-N5/
-3.11
I-N5/ 21.90 F-G/ 18.14 G-H/
18.13 H-I/
18.13
Box 1/ 15.85 Box 3/ 15.77 Box 4/
15.70 Box 2/
15.82
FREE # 1/ 18.95
########################################
___> System inflows (data group K3) at 23.00 hours ( Junction / Inflow,cfs )
N1 / 4.62E+01 N3 / 8.72E+00 N2 / 2.70E+00 N5 / 6.78E-01 N4 / 2.60E+00
########################################
########################################
__> System inflows (data group K3) at 24.00 hours ( Junction / Inflow,cfs )
N1 / 4.85E+01 N3 / 9.22E+00 N2 / 2.87E+00 N5 / 7.19E-01 N4
########################################
Cycle 1500 Time 24 Hrs - 15.00 Min
Junction / Depth / Elevation ==> "*" Junction is Surcharged.
B/
1.52 /
24.52
N1/
2.52 /
24.52
C/
2.13 /
23.70
D/
1.76 /
22.60
N3/
2.70 /
22.09
1/
2.16 /
20.10
A/
0.12 /
24.52
N2/
3.71 /
22.61
N5/
5.16 /
20.16
N4/
4.66 /
20.16
F/
2.28 /
21.22
G/
2.03 /
20.56
/ 2.74E+00
H/ 2.12 / 20.23 Box cb B/ 1.98 / 22.31 Box cb C/ 2.13 /
22.21
Box cb A/ 1.81 / 22.50
Conduit/ FLOW =_> ""Conduit uses the normal flow option.
B-N1/ -0.01 NI-C/ 46.75 C-D/ 46.70 N3-F/
58.19
A-N1/ 0.00 N2-D/ -2.74 I-N4/ -10.02 N4-N5/
-7.38
I-N51 68.13 F-G/ 58.16 G-H/ 58.14 H-V
58.13
Box l/ 49.42 Box 3/ 49.39 Box 4/ 49.37 Box 2/
49.41
FREE # 1/ 61.43
########################################
___> System inflows (data group K3) at 25.00 hours ( Junction / Inflow,cfs )
N1 / 4.62E+01 N3 / 8.70E+00 N2 / 2.68E+00 N5 / 6.71E-01 N4
/ 2.56E+00
########################################
########################################
_> System inflows (data group K3) at 26.00 hours ( Junction / Inflow,cfs )
N1 / 5.83E+01 N3 / 1.10E+01 N2 / 3.40E+00 N5 / 8.47E-01 N4
/ 3.26E+00
########################################
Cycle 2000 Time 26 Hrs - 20.00 Min
Junction / Depth / Elevation =_> "*" Junction is Surcharged.
B/ 1.60 / 24.60 N1/ 2.60 / 24.60 C/ 2.20 / 23.77
D/ 1.85 / 22.69 N3/ 2.77 / 22.16 1/ 2.16 / 20.10
A/ 0.20 / 24.60 N2/ 3.79 / 22.69 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 2.35 / 21.28 G/ 2.07 / 20.60
H/ 2.13 / 20.25 Box cb B/ 2.06 / 22.39 Box cb C/ 2.21 /
22.29
Box cb A/ 1.90 / 22.58
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ -0.01 N1-C/ 50.11 C-D/ 49.84 N3-F/
61.70
A-N1/ -0.01 N2-D/ -2.89 I-N4/ -10.14 N4-N5/
-7.35
I-N51 71.64 F-G/ 61.58 G-H/ 61.49 H-I/
61.47
Box 1/ 52.65 Box 3/ 52.49 Box 4/ 52.38 Box 2/
52.58
FREE # 1/ 65.00
########################################
_> System inflows (data group K3) at 27.00 hours ( Junction / Inflow,cfs )
N1 / 1.07E+02 N3 / 1.97E+01 N2 / 5.98E+00 N5 / 1.50E+00 N4
/ 5.73E+00
########################################
########################################
_> System inflows (data group K3) at 28.00 hours ( Junction / Inflow,cfs )
Nl / 1.62E+02 N3 / 2.89E+01 N2 / 8.54E+00 N5 / 2.13E+00 N4
/ 8.17E+00
########################################
Cycle 2500 Time 28 Hrs - 25.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 3.26 / 26.26 Nl/ 4.26 / 26.26 C/ 3.89 / 25.46
D/ 4.01 / 24.85 N3/ 4.23 / 23.62 1/ 2.27 / 20.21
A/ 1.86 / 26.26 N2/ 5.97 / 24.87 N5/ 5.16 / 20.16
N4/ 4.68 / 20.18 F/ 3.86 / 22.80 G/ 3.25 / 21.79
H/ 2.75 / 20.87 Box cb B/ 4.02*/ 24.35 Box cb C/ 4.03*/ 24.11
Box cb A/ 4.02*/ 24.70
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ -0.09 NI-C/ 129.13 C-D/ 127.70 N3-F/
155.34
A-N1/ -0.06 N2-D/ -7.04 I-N4/ 11.61 N4-N5/
18.34
I-N5/ 141.96* F-G/ 154.60 G-H/ 154.05 H-I/
153.80
Box 1/ 133.96 Box 3/ 132.99 Box 4/ 132.43 Box 2/
133.52
FREE # 1/ 162.06
########################################
_> System inflows (data group K3) at 29.00 hours ( Junction / Inflow,cfs )
Nl / 2.42E+02 N3 / 4.12E+01 N2 / 1.16E+O1 N5 / 2.90E+00 N4
/ 1.11E+01
########################################
########################################
-=> System inflows (data group K3) at 30.00 hours ( Junction / Inflow,cfs )
Nl / 2.18E+02 N3 / 3.75E+01 N2 / 1.07E+01 N5 / 2.66E+00 N4
/ 1.02E+01
########################################
M M M
Cycle 3000 Time 30 Hrs - 30.00 Min
Junction / Depth / Elevation => ""Junction is Surcharged.
B/ 8.51 / 31.51 N1/ 9.51 / 31.51 C/ 8.60 / 30.17
D/ 8.19*/ 29.03 N3/ 5.52 / 24.91 I/ 2.85 / 20.79
A/ 7.11 / 31.51 N2/ 10.18 / 29.08 N5/ 5.16 / 20.16
N4/ 4.89 / 20.39 F/ 5.01 / 23.94 G/ 4.24 / 22.77
H/ 3.54 / 21.66 Box cb B/ 7.07*/ 27.40 Box cb C/ 6.52*/
26.60
Box cb A/ 7.86*/ 28.54
Conduit/ FLOW => "*" Conduit uses the normal flow option.
B-N1/ 0.00 NI-C/ 229.88 C-D/ 229.89 N3-F/
272.82
A-N1/ 0.00 N2-D/ -11.14 I-N4/ 49.88 N4-N5/
60.55
I-N5/ 222.99* F-G/ 272.83 G-H/ 272.85 H-U
272.86
Box l/ 242.21 Box 3/ 242.21 Box 4/ 233.45 Box 2/ 242.21
FREE # 1/ 286.33
########################################
_> System inflows (data group K3) at 31.00 hours ( Junction / Inflow,cfs )
N1 / 2.10E+02 N3 / 3.61E+01 N2 / 1.03E+01 N5 / 2.56E+00 N4
/ 9.83E+00
########################################
########################################
=_> System inflows (data group K3) at 32.00 hours ( Junction / Inflow,cfs )
N1 / 1.94E+02 N3 / 3.34E+01 N2 / 9.52E+00 N5 / 2.38E+00 N4
/ 9.11E+00
########################################
Cycle 3500 Time 32 Hrs - 35.00 Min
Junction / Depth / Elevation =_> "*" Junction is Surcharged.
B/ 6.63 / 29.63 N1/ 7.63 / 29.63 C/ 7.10 / 28.67
D/ 7.05 / 27.89 N3/ 5.28 / 24.67 1/ 2.71 / 20.65
A/ 5.23 / 29.63 N2/ 9.00 / 27.90 N5/ 5.16 / 20.16
N4/ 4.84 / 20.34 F/ 4.81 / 23.74 G/ 4.05 / 22.58
H/ 3.38 / 21.49 Box cb B/ 6.32*/ 26.65 Box cb C/ 5.94*/
26.02
Box cb A/ 6.82*/ 27.50
Conduit/ FLOW = _> "*" Conduit uses the normal flow option.
B-N1/ -0.02 N1-C/ 200.29 C-D/ 200.55 N3-F/
245.47
A-N1/ -0.02 N2-D/ -9.86 I-N4/ 44.26 N4-N5/
53.67
I-N51 201.39* F-G/ 245.45 G-H/ 245.58 H-I/
245.63
Box 1/ 209.71 Box 3/ 210.79 Box 4/ 211.23 Box 2/
210.56
FREE # 1/ 257.52
########################################
___> System inflows (data group K3) at 33.00 hours ( Junction / Inflow,cfs )
N1 / 8.72E+01 N3 / 1.51E+01 N2 / 4.30E+00 N5 / 1.07E+00 N4
/ 4.12E+00
########################################
########################################
_> System inflows (data group K3) at 34.00 hours ( Junction / Inflow,cfs )
N1 / 5.77E+01 N3 / 9.11E+00 N2 / 2.33E+00 N5 / 5.84E-01 N4
/ 2.23E+00
########################################
Cycle 4000 Time 34 Hrs - 40.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 1.99 / 24.99
N1/ 2.99 / 24.99 C/ 2.57 / 24.14
D/ 2.30 / 23.14
N3/ 3.16 / 22.55 V 2.13 / 20.07
A/ 0.59 / 24.99
N2/ 4.24 / 23.14 N5/ 5.16 / 20.16
N4/ 4.66 / 20.16
F/ 2.73 / 21.66 G/ 2.34 / 20.87
H/ 2.24 / 20.36
Box cb B/ 2.50 / 22.83 Box cb C/ 2.63 /
22.71
Box cb A/ 2.35 / 23.03
Conduit/ FLOW
=_> ""Conduit uses the normal flow option.
B-N1/ 0.04
N1-C/ 67.82 C-D/ 68.23 N3-F/
83.58
A-N 1 / 0.02
N2-D/ -3.03 I-N4/ -12.48 N4-N5/
-9.62
I-N5/ 96.62
F-G/ 83.85 G-H/ 84.08 H-I/
84.18
Box l/ 71.61
Box 3/ 71.95 Box 4/ 72.20 Box 2/
71.78
FREE # 1/ 87.75
########################################
_ _> System inflows (data
group K3) at 35.00 hours ( Junction / Inflow,cfs )
N1 / 5.01E+01 N3
/ 7.60E+00 N2 / 1.84E+00 N5 / 4.58E-01 N4
/ 1.76E+00
M M= M = = = M i M= B M= M
M = = M M M = = M
########################################
########################################
__> System inflows (data group K3) at 36.00 hours ( Junction / Inflow,cfs )
N1 / 4.72E+01 N3 / 6.96E+00 N2 / 1.64E+00 N5 / 4.07E-01 N4
/ 1.56E+00
########################################
Cycle 4500 Time 36 Hrs - 45.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/ 1.551 24.55 N1/ 2.55 / 24.55 C/ 2.16 / 23.73
D/ 1.76 / 22.60 N3/ 2.68 / 22.07 U 2.16 / 20.10
A/ 0.151 24.55 N2/ 3.70 / 22.60 N51 5.16 / 20.16
N4/ 4.66 / 20.16 F/ 2.26 / 21.20 G/ 2.01 / 20.54
H/ 2.11 / 20.23 Box cb B/ 1.97 / 22.30 Box cb C/ 2.11 / 22.19
Box cb A/ 1.81 / 22.49
Conduit/ FLOW => ""Conduit uses the normal flow option.
B-N1/ 0.00 N1-C/ 47.96 C-D/ 48.02 N3-F/
56.97
A-N1/ 0.00 N2-D/ -1.70 I-N4/ -10.00 N4-N5/
-8.39
I-N5/ 67.01 F-G/ 57.00 G-H/ 57.02 H-I/ 57.02
Box 1/ 49.74 Box 3/ 49.78 Box 4/ 49.81 Box 2/
49.76
FREE # 1/ 59.05
########################################
_=> System inflows (data group K3) at 37.00 hours ( Junction / Inflow,cfs )
N1 / 4.33E+01 N3 / 6.21E+00 N2 / 1.39E+00 N5 / 3.46E-01 N4
/ 1.33E+00
########################################
########################################
_> System inflows (data group K3) at 38.00 hours( Junction / Inflow,cfs )
N1 / 4.13E+01 N3 / 5.86E+00 N2 / 1.29E+00 N5 / 3.20E-01 N4
/ 1.23E+00
########################################
Cycle 5000 Time 38 Hrs - 50.00 Min
Junction / Depth / Elevation => "*" Junction is Surcharged.
B/
1.39 /
24.39
D/
1.58 /
22.42
A/
0.06 /
24.46
N4/
4.66 /
20.16
H/
2.09 /
20.20
Box cb A/ 1.63 / 22.31
N1/
2.39 /
24.39
N3/
2.51 /
21.90
N2/
3.52 /
22.42
F/
2.10 /
21.04
Box cb B/ 1.78 / 22.11
C/ 2.01 /
23.58
I/ 2.17 /
20.11
N51 5.16 /
20.16
G/ 1.92 /
20.45
Box cb C/ 1.94
/ 22.01
Conduit/ FLOW - > ""Conduit uses the normal flow option.
B-N1/ 0.00 NI-C/ 41.64 C-D/ 41.68 N3-F/
49.00
A-N1/ 0.00* N2-D/ -1.31 I-N4/ -8.98 N4-N5/
-7.74
I-N5/ 58.01 F-G/ 49.02 G-H/ 49.03 H-I/
49.03
Box 1/ 43.01 Box 3/ 43.04 Box 4/ 43.06 Box 2/
43.02
FREE # 1/ 50.60
########################################
__> System inflows (data group K3) at 39.00 hours ( Junction / Inflow,cfs )
N1 / 3.60E+01 N3 / 4.79E+00 N2 / 9.42E-01 N5 / 2.33E-01 N4
/ 9.01E-01
########################################
########################################
_> System inflows (data group K3) at 40.00 hours ( Junction / Inflow,cfs )
N1 / 2.95E+01 N3 / 3.52E+00 N2 / 5.12E-01 N5 / 1.31E-01 N4
/ 4.92E-01
########################################
Cycle 5500 Time 40 Hrs - 55.00 Min
Junction / Depth / Elevation =_> "*" Junction is Surcharged.
B/ 1.08 / 24.08
N1/ 2.08 /
24.08
C/ 1.72 /
23.29
D/ 1.23 / 22.07
N3/ 2.18 /
21.57
I/ 2.19 /
20.13
A/ 0.06 / 24.46
N2/ 3.17 /
22.07
N5/ 5.16
/ 20.16
N4/ 4.66 / 20.16
F/ 1.80 /
20.74
G/ 1.78 /
20.31
H/ 2.06 / 20.17
Box cb B/ 1.42
/ 21.75
Box cb C/
1.58 / 21.66
Box cb A/ 1.27 / 21.96
Conduit/ FLOW
=> "*" Conduit uses the normal flow option.
B-N1/ 0.01
NI-C/ 30.12
C-D/
30.29
N3-F/ 34.82
A-N1/ 0.00*
N2-D/ -0.58
I-N4/
-7.11
N4-N5/ -6.58
M M M M M M M M M M M
I-N5/ 42.03 F-G/ 34.90 G-H/ 34.93 H-I/ 34.93
Box 1/ 30.91 Box 3/ 31.02 Box 4/ 31.10 Box 2/ 30.96
FREE # 1/ 35.59
########################################
_=> System inflows (data group K3) at 41.00 hours( Junction / Inflow,cfs )
N1 / 2.62E+01 N3 / 2.91E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01
########################################
########################################
_> System inflows (data group K3) at 42.00 hours ( Junction / Inflow,cfs )
N1 / 2.62E+01 N3 / 2.91E+00 N2 / 3.28E-01 N5 / 8.20E-02 N4 / 3.07E-01
########################################
Table E5 - Junction Time Limitation Summary
(0.10 or 0.25)* Depth * Area
Time step = ------------------------------
Sum of Flow
The time this junction was the limiting junction
is listed in the third column.
Junction Time(.10) Time(.25) Time(sec)
-------------------------------------------
B 3.0363 7.5907 39585.0000
N 1 5.7325 14.3312 105.0000
C 6.0502 15.1254 90.0000
D 3.4898 8.7244 120.0000
N3 111.4043 150.0000 0.0000
I 150.0000 150.0000 0.0000
A 4.4383 11.0959 30.0000
N2 5.2084 13.0211 195.0000
N5 150.0000 150.0000 0.0000
N4 150.0000 150.0000 0.0000
F
142.3458 150.0000 0.0000
G
150.0000 150.0000 0.0000
H
150.0000 150.0000 0.0000
Box cb B
0.6556 1.6390 4320.0000
Box cb C
0.0979 0.2448 5670.0000
Box cb A
0.2451 0.6127 36285.0000
The junction requiring the smallest time step was ... B
— ---- -------*
Table E5a - Conduit Explicit Condition Summary
Courant = Conduit Length
Timestep = --------------------------------
Velocity + sgrt(g*depth)
Conduit Implicit Condition Summary
Courant = Conduit Length
Time step = --------------------------------
Velocity
The 3rd column is the Explicit time step times the
minimum courant time step factor
Minimum Conduit Time Step in seconds in the 4th column
in the list. Maximum possible is 10 * maximum time step
The 5th column is the maximum change at any time step
during the simulation. The 6th column is the wobble
value which is an indicator of the flow stability.
You should use this section to find those conduits that
are slowing your model down. Use modify conduits to
alter the length of the slow conduits to make your
simulation faster, or change the conduit name to
"CHME?????" where ????? are any characters, this will
lengthen the conduit based on the model time step,
not the value listed in modify conduits.
r M M M M ■t M M M M M M r M a M M M M
M
Conduit Time(exp) Expl*Cmin Time(imp) Time(min) Max Qchange Wobble Type of Soln
B-NI
4.4365
4.4365
150.0000
0.2500
0.5360
1.5493 Normal Soln
NI-C
15.1176
15.1176
46.4024
0.0000
0.4510
4.1610 Normal Soln
C-D
13.2154
13.2154
39.4414
0.0000
0.7954
4.2719 Normal Soln
N3-F
10.8318
10.8318
27.5211
0.0000
0.2080
0.7835 Normal Soln
A -NI
5.3953
5.3953
150.0000
0.0000
0.2349
1.0395 Normal Soln
N2-1)
15.7241
15.7241
150.0000
0.0000
-0.2753
2.7535 Normal Soln
I-N4
22.9002
22.9002
83.7291
0.0000
-0.1824
1.5828 Normal Soln
N4-N5
5.6617
5.6617
20.9530
304.5000
-0.2493
1.6482 Normal Soln
I-N5
24.7058
24.7058
68.0444
0.0000
0.2764
0.2831 Normal Soln
F-G
10.8936
10.8936
26.2230
0.0000
0.2181
0.7028 Normal Soln
G-H
11.1755
11.1755
26.9353
0.0000
0.2361
0.2425 Normal Soln
H-I
4.6787
4.6787
9.5734 0.0000 0.2491 0.6224 Normal Soln
Box 1
2.6071
2.6071
6.7183 1135.2500
-4.7444
24.8563 Normal Soln
Box 3
4.4539
4.4539
10.9227
0.0000
-1.9217 16.5926
Normal Soln
Box 4
10.6150
10.6150
26.4398
0.0000
-0.9440
8.1639 Normal Soln
Box 2
6.1167
6.1167
15.5364
0.0000
2.3464 14.7769
Normal Soln
The conduit with
the smallest time
step limitation
was..Box 1
The conduit with
the largest wobble was.................Box
1
The conduit with
the largest flow change in any
consecutive time step...................................Box
1
Table E6. Final Model Condition
This table is used for steady state
flow comparison and is the information]
saved to the hot -restart file.
Final Time = 42.004 hours
Junction / Depth / Elevation =_> "*"
Junction is Surcharged.
B/ 0.96 / 23.96/ N1/
1.96 / 23.96/ C/ 1.61 / 23.18/
D/ 1.10 / 21.94/ N3/
2.05 / 21.44/ U 2.20 / 20.14/
A/ 0.06 / 24.46/ N2/
3.04 / 21.94/ N5/ 5.16 / 20.16/
N4/ 4.66 / 20.16/
F/ 1.69 / 20.63/
G/ 1.74 / 20.27/
H/ 2.05
/ 20.17/
Box
cb B/ 1.28 /
21.61/
Box cb C/ 1.44 / 21.52/
Box cb A/
1.14 /
21.82/
Conduit/ Flow =>
"*" Conduit uses the normal flow option.
B-N1/
0.00 /
N1-C/
26.26 /
C-D/
26.34 /
N3-F/
29.77 /
A-N1/
0.00*/
N2-D/
-0.34 /
I-N4/
-6.12 /
N4-N5/
-5.81 /
I-N5/
35.93 /
F-G/
29.80 /
G-H/
29.82 /
H-I/
29.82 /
Box l/
26.71 /
Box 3/
26.77 /
Box 4/
26.81 /
Box 2/
26.74 /
FREE #
1/ 30.20 /
Conduit/
Velocity
B-N1/
0.00 /
NI-C/
4.34 /
C-D/
4.78 /
N3-F/
3.36 /
A-N1/
0.00 /
N2-D/
-0.06 /
I-N4/
-0.60 /
N4-N5/
-0.45 /
I-N5/
1.32 /
F-G/
2.98 /
G-H/
1.94 /
H-I/
1.61 /
Box 1/
3.98 /
Box 3/
3.30 /
Box 4/
2.61 /
Box 2/
3.71 /
Conduit/
Width
B-Nl/
3.26 /
N1-C/
5.30 /
C-D/
5.17 /
N3-F/
7.41 /
A-N1/
1.76 /
N2-D/
2.72 /
I-N4/
2.63 /
N4-N5/
0.47 /
I-N5/
9.78 /
F-G/
7.37 /
G-H/
9.66 /
H-I/ 13.61
/
Box 1/
6.00 /
Box 3/
6.00 /
Box 4/
6.00 /
Box 2/
6.00 /
Junction/
EGL
B/
0.96 /
N1/
1.96 /
C/ 1.91 /
D/
1.78 /
N3/
2.15 /
1/ 2.24 /
A/
0.06 /
N2/
3.04 /
N5/ 5.19
/
N4/
4.66 /
F/
1.86 /
G/ 1.88 /
H/
2.11 /
Box cb B/
1.501
Box cb C/
1.61 /
Box cb A/
1.38 /
Junction/ Freeboard
M M M M
M = = w
B/
11.04 /
N1/
8.70 /
C/ 12.04 /
D/
6.73 /
N3/
6.56 /
I/ 9.86 /
A/
8.89 /
N2/
8.36 /
N5/ 7.84 /
N4/
4.84 /
F/
7.88 /
G/ 9.74 /
H/
9.84 /
Box cb B/
6.89 /
Box cb C/ 5.08 /
Box cb A/ 8.43 /
Junction/ Max Volume
B/
112.35 /
N1/
124.90 /
C/ 111.82 /
D/
3799.50 /
N3/
69.54 /
1/ 35.86 /
A/
94.77 /
N2/
130.31 /
N5/ 64.84 /
N4/
61.52 /
F/
63.00 /
G/ 53.35 /
H/
44.62 /
Box cb B/
89.67 /
Box cb C/ 81.95 /
Box cb A/ 100.63 /
Junction/Total Fldng
B/
0.00 /
N1/
0.00 /
C/ 0.00 /
D/
4285.68 /
N3/
0.00 /
I/ 0.00 /
A/
0.00 /
N2/
0.00 /
N51 0.00 /
N4/
0.00 /
F/
0.00 /
G/ 0.00 /
H/
0.00 /
Box cb B/
0.00 /
Box cb C/ 0.00 /
Box cb A/ 0.00 /
Conduit/ Cross Sectional Area
B-N1/
1.38 /
NI-C/
6.05 /
C-D/ 5.511
N3-F/
8.87 /
A-N1/
0.52 /
N2-D/ 5.94 /
I-N4/
10.23 /
N4-N5/
12.85 /
I-N5/ 27.13 /
F-G/
9.99 /
G-H/
15.38 /
H-I/ 18.55 /
Box 1/
6.70 /
Box 3/
8.12 /
Box 4/ 10.28 /
Box 2/
7.21 /
Conduit/ Final Volume
B-N1/
101.76 /
NI-C/ 2389.47 /
C-D/ 1850.03 /
N3-F/
1516.61 /
A-N1/
46.75 /
N2-D/ 1816.41 /
I-N4/
3836.23 /
N4-N5/
1285.20 /
I-N5/ 13566.16 /
F-G/
1618.88 /
G-H/
2567.79 /
H-I/ 1298.25 /
Box 1/
469.34 /
Box 3/
925.55 /
Box 4/ 2642.97 /
Box 2/ 1167.87 /
Conduit/ Hydraulic Radius
B-N1/
0.38 /
N1-C/
0.93 /
C-D/
0.87 /
N3-F/
0.80 /
A-N1/
0.18 /
N2-D/
0.84 /
I-N4/
1.03 /
N4-N5/
1.00 /
I-N5/
1.92 /
F-G/
1.09 /
G-H/
1.31 /
H-I/
1.27 /
Box 1/
0.81 /
Box 3/
0.93 /
Box 4/
1.08 /
Box 2/
0.86 /
Conduit/ Upstream/ Downstream Elevation
B-N1/
23.96/
23.96
N1-C/
23.96/
23.18
C-D/
23.18/
22.27/
N3-F/
21.44/
20.63
A-N1/
24.46/
23.96
N2-D/
21.94/
21.94/
I-N4/
20.14/
20.16
N4-N5/
20.16/
20.16
I-N5/
20.14/
20.16/
F-G/
20.63/
20.27
G-H/
20.27/
20.17
H-V 20.17/
20.14/
Box l/
21.94/
21.82
Box 3/
21.61/
21.52
Box 4/
21.52/
21.44/
Box 2/
21.82/
21.61
Table E7 - Iteration Summary
Total number of time steps simulated ............ 5760
Total number of passes in the simulation........ 73364
Total number of time steps during simulation.... 25860
Ratio of actual # of time steps / NTCYC......... 4.490
Average number of iterations per time step...... 2.837
Average time step size(seconds)................ 3.341
Smallest time step size(seconds)................ 0.500
Largest time step size(seconds)................ 7.500
Average minimum Conduit Courant time step (sec). 5.419
Average minimum implicit time step (sec)........ 3.703
Average minimum junction time step (sec)........ 3.703
Average Courant Factor Tf....................... 3.703
Number of times omega reduced ................... 0
M M M M i M M M M M M M M M i M M M M
M
Table E8 - Junction Time Step Limitation Summary
Not Convr = Number of times this junction did not
converge during the simulation.
Avg Convr = Average junction iterations.
Conv err = Mean convergence error.
Omega Cng = Change of omega during iterations
Max Item = Maximum number of iterations
Junction Not Convr Avg Convr Total Itt Omega Cng Max Item Ittm >10 Ittm >25 Ittrn >40
-------------------------------------------------------------------
B 0 4.24 109739 0 46 1990
------------------
23 4
N1 0 4.82 124742 0 55 2118
545 59
C 0 1.03 26683 0 8 0
0 0
D 0 1.45 37431 0 16 70
0 0
N3 0 1.06 27347 0 15 1
0 0
I 0 1.11 28773 0 12 1
0 0
A 0 2.80 72397 0 48 690
16 1
N2 0 1.22 31577 0 20 2
0 0
N5 0 1.16 29938 0 23 1
0 0
N4 0 1.10 28529 0 17 3
0 0
F 0 1.05 27224 0 7 0
0 0
G 0 1.06 27307 0 13 1
0 0
H 0 1.04 26944 0 9 0
0 0
Box cb B 0 1.50 38702 0 32 217
217 0
Box cb C 0 1.22 31518 0 20 108
0 0
Box cb A 0 2.88 74475 0 58 1357 1317 297
Total number of iterations for all junctions.. 743326
Minimum number of possible iterations......... 413760
Efficiency of the simulation .................. 1.80
Excellent Efficiency
Extran Efficiency is an indicator of the efficiency of
the simulation. Ideal efficiency is one iteration per
time step. Altering the underrelaxation parameter,
lowering the time step, increasing the flow and head
tolerance are good ways of improving the efficiency,
another is lowering the internal time step. The lower thel
efficiency generally the faster your model will run.
If your efficiency is less than 1.5 then you may try
increasing your time step so that your overall simulation]
is faster. Ideal efficiency would be around 2.0
Good Efficiency < 1.5 mean iterations
Excellent Efficiency < 2.5 and > 1.5 mean iterations
Good Efficiency < 4.0 and > 2.5 mean iterations
Fair Efficiency < 7.5 and > 4.0 mean iterations
Poor Efficiency > 7.5 mean iterations
M M M M M M S S M M M M M M M
M M M M M M M M M M M M M M M M r M
Table E9 - JUNCTION SUMMARY STATISTICS
The Maximum
area is
only the area of the node, it
does not include
the area of the surrounding conduits)
Uppermost
Maximum
Time
Feet of
Maximum
Maximum
Maximum
Maximum
Ground
PipeCrown
Junction
of
Surcharge
Freeboar
d Junction
Gutter
Gutter
Gutter
Junction
Elevation
Elevation
Elevation
Occurence
at Max
of node
Area
Depth
Width
Velocity
Name
feet
feet
feet
Hr. Min.
Elevation
feet
ft^2
feet
feet
ft/s
---------------
B
---------
35
--------
28.392
--------
31.9408
---------
30
0
---------
3.5488
--------
3.0592
--------
12.566
---------
0
---------
0
---------
0
N1
32.66
28.3
31.9398
30
0
3.6398
0.7202
12.566
0
0
0
C
35.22
27.66
30.4688
30
2
2.8088
4.7512
12.566
0
0
0
D
28.67
26.92
29.224
30
4
2.304
0
8701.1107
0
0
0
N3
28
27.65
24.9242
30
0
0
3.0758
12.566
0
0
0
I
30
28.94
20.794
30
1
0
9.206
12.566
0
0
0
A
33.35
27.46
31.9415
30
0
4.4815
1.4085
12.566
0
0
0
N2
30.3
22.4
29.2699
30
4
6.8699
1.0301
12.566
0
0
0
N5
28
26
20.16
18
0
0
7.84
12.566
0
0
0
N4
25
20
20.3956
30
1
0.3956
4.6044
12.566
0
0
0
F
28.51
27.1975
23.9509
30
0
0
4.5591
12.566
0
0
0
G
30.01
29.2725
22.778
30
0
0
7.232
12.566
0
0
0
H
30.01
28.855
21.6656
30
1
0
8.3444
12.566
0
0
0
Box cb B
28.5
24.3296
27.4659
30
4
3.1363
1.0341
12.566
0
0
0
Box cb C
26.6
24.0788
26.6
29 42
2.5212
0
12.566
0
0
0
Box cb A
30.25
24.686
28.6941
30
4
4.0081
1.5559
12.566
0
0
0
Table E10 - CONDUIT SUMMARY STATISTICS
Note: The peak flow may be less than the design flow
and the conduit may still surcharge because of
the
downstream boundary
conditions.
* denotes
an open conduit that has
been overtopped
this is a potential source of severe errors
Conduit
Maximum
Maximum
Time
Maximum
Time
Ratio of
Maximum
Depth Ratio
Ratio
Design
Design
Vertical
Computed
of
Computed
of
Max. to
at Pipe
Ends d/D
d/D
Conduit
Flow
Velocity
Depth
Flow
Occurence
Velocity
Occurence
Design
Upstream
Dwnstrm US
DS
Name
---------------
(cfs)
-------
(ft/s)
--------
(in)
--------
(cfs)
-------
Hr. Min.
(ft/s)
Hr. Min.
Flow
(ft)
(ft)
B-N1
99.4838
5.0667
60
-0.5808
-----------
29
30
-------
-0.2982
----------
19
30
-------
-0.0058
--------
31.9408
-------- -----
31.9398
1.709
-----
1.728
NI-C
158.2956
5.5986
72
241.5501
30
0
8.5137
30
0
1.5259
31.9398
30.4688
1.606
1.468
C-D
172.9674
6.1175
72
241.5851
30
0
8.5208
30
0
1.3967
30.4688
29.224
1.483
1.384
N3-17
728.053
6.9132
99.12
273.9896
30
0
6.2134
30
0
0.3763
24.9242
23.9509
0.67
0.6069
A -NI
70.3134
9.9473
36
0.3367
31
17
0.0473
31
17
0.0048
31.9415
31.9398
2.493
2.879
N2-D
75.905
7.8894
42
-11.607
30
0
-1.1936
30
0
-0.1529
29.2699
29.224
2.385
2.949
I-N4
95.9369
7.6344
48
50.005
30
2
4.4787
30
3
0.5212
20.794
20.3956
0.7135
1.098
N4-N5
99.8147
7.943
48
61.0924
30
2
4.7726
30
2
0.6121
20.3956
20.16
1.208
1.29
I-N5
1518.25
15.976
132
223.9672
30
1
7.3482
30
1
0.1475
20.794
20.16
0.2595
0.4691
F-G
769.4335
6.6961
91.08
273.9776
30
0
6.1778
30
0
0.3561
23.9509
22.778
0.6605
0.5593
G-H
2216.818
9.5668
128.88
273.9714
30
1
6.2001
30
1
0.1236
22.778
21.6656
0.3953
0.3306
H-1
879.2816
6.7384
76.44
273.9691
30
1
7.3119
30
1
0.3116
21.6656
20.794
0.5574
0.448
Box 1
134.9276
5.622
48
251.3819
30
4
10.4194
30
4
1.8631
29.224
28.6941
2.096
2.002
Box 3
134.9276
5.622
48
251.3823
30
4
10.437
30
4
1.8631
27.4659
26.6
1.784
1.63
Box 4
148.9257
6.2052
48
233.9234
30
47
9.7225
30
47
1.5707
26.6
24.9242
1.63
1.383
Box 2
134.9276
5.622
48
251.3822
30
4
10.4271
30
4
1.8631
28.6941
27.4659
2.002
1.784
FREE # 1
Undefnd
Undefnd
Undefn
287.9489
30
1
= = = = M = M r = = = M = = = M = r M
Table El 1.
Area assumptions used in the analysis)
Subcritical and Critical flow assumptions from
Subroutine Head. See Figure 17-1 in the
manual for further information.
Duration Duration Durat. of Durat. of
of
of Sub- Upstream Downstream Maximum
Maximum Maximum
Conduit
Dry Critical Critical Critical Hydraulic X-Sect
Vel*D
Name
Flow(min) Flow(min) Flow(min) Flow(min)
Radius-m Area(ft^2) (ft^2/s)
---------------
B-N1
-----------------------------------------------
81.7500 1349.8750 8.3750 0.0000
---------
1.5207
--------
20.5788 0.1964
NI-C
0.1875 1434.3750 0.0000 5.4375
1.8255
29.6049 78.4187
C-D
0.1875 453.7500 0.0000 986.0625
1.8249
29.6340 73.0143
N3-F
0.0000 1440.0000 0.0000 0.0000
1.9843
44.0965 32.7678
A-N1
587.8333 850.5833 1.5833 0.0000
0.8395
7.2673 0.2882
N2-D
3.6250 1436.3750 0.0000 0.0000
0.9604
9.8549 11.1075
I-N4
0.0000 1440.0000 0.0000 0.0000
1.1049
11.1657 16.2332
N4-N5
0.0000 1440.0000 0.0000 0.0000
1.0000
12.9108 23.8522
I-N5
0.0000 1440.0000 0.0000 0.0000
2.1009
30.4793 29.4440
F-G
0.0000 1440.0000 0.0000 0.0000
1.8816
44.3487 28.5993
G-H
0.0000 1440.0000 0.0000 0.0000
1.9656
44.1886 24.1677
H-I
0.0000 1440.0000 0.0000 0.0000
1.6930
37.4688 23.4147
Box 1
0.3750 1439.6250 0.0000 0.0000
1.6298
26.3149 85.3956
Box 3
3.6250 1436.3750 0.0000 0.0000
1.6239
26.3134 71.2707
Box 4
0.0000 1440.0000 0.0000 0.0000
1.5781
26.3092 58.5138
Box 2
2.1250 1437.8750 0.0000 0.0000
1.6208
26.3131 78.9546
Table E12. Mean Conduit Flow Information
Mean Total Mean Low Mean Mean Mean Mean
Conduit Flow Flow Percent Flow Froude Hydraulic Cross Conduit
Name (cfs) (ft^3) Change Weightng Number Radius Area Roughness
B-NI
-0.0007-58.2268
0.0066
0.9746
0.0002
0.9525
11.4536
0.0120
NI-C
75.5146 6524465.1
0.0367
0.9998
0.5579
1.3262
18.4316
0.0140
C-D
75.4778 6521278.5
0.0397
0.9998
0.6107
1.2969
18.1135
0.0140
N3-F
91.3318 7891067.6
0.0340
1.0000
0.4773
1.4932
27.5362
0.0254
A-N1
0.0000-2.3095
0.0028
0.7746
0.0003
0.5506
4.3062 0.0140
N2-D
-3.5608-307656.3
0.0099
0.9988
0.0005
0.8633
8.3775
0.0140
I-N4
3.7105 320585.88
0.0097
1.0000
0.2242
1.0607
10.5488
0.0140
N4-N5
7.1315 616160.90
0.0103
1.0000
0.1782
1.0000
12.8422
0.0140
I-N5
87.6128 7569745.0
0.0255
1.0000
0.5121
1.9923
28.5199
0.0140
F-G
91.3247 7890453.0
0.0319
1.0000
0.5023
1.5525
27.6955
0.0260
G-H
91.3223 7890245.4
0.0321
1.0000
0.4736
1.6568
29.8364
0.0260
H-I
91.3220 7890221.1
0.0377
1.0000
0.5557
1.4820
27.3608
0.0251
Box 1
79.0306 6828248.0
0.1378
0.9998
0.6205
1.1140
17.2376
0.0140
Box 3
79.0082 6826306.1
0.0947
0.9988
0.5875
1.1564
17.9016
0.0140
Box 4
78.5556 6787206.8
0.0599
1.0000
0.5491
1.2114
18.8913
0.0140
Box 2
79.0215 6827461.9
0.0924
0.9992
0.6149
1.1298
17.4869
0.0140
FREE #
1 95.6361 8262959.9
M
Table E13. Channel losses(H), headwater depth (HW), tailwater
depth (TW), critical and normal depth (Yc and Yn).
Use this section for culvert
comparisons
Conduit Maximum Head Friction Critical
Normal
HW TW
Name Flow
Loss
Loss Depth Depth Elevat Elevat
---------------------------------
B-N1 0.5360
---------
0.0000
---------
0.0000
---------
0.1959
---------
0.2480
---------
30.5751
30.5543
Max Flow
Nl-C 241.5127
0.0000
1.4796
4.2548
6.0000
31.9162
30.4417
Max Flow
C-D 241.5315
0.0000
1.2605
4.2550
6.0000
30.4414
29.1867
Max Flow
N3-F 273.9894
0.0000
0.8029
4.1661
6.0238
24.9242
23.9508
Max Flow
A -NI 0.2983
0.0000
0.0000
0.1587
0.1351
30.7570
30.7714
Max Flow
N2-D-0.3439
0.0000
-0.0001
0.1652
0.1617
21.9427
21.9428
Max Flow
I-N4 50.0048
0.0000
0.5845
2.1201
2.0501
20.7937
20.3954
Max Flow
N4-N5 61.0924
0.0000
0.2022
2.3547
2.2614
20.3955
20.1600
Max Flow
I-N5 223.9662
0.0000
0.8906
3.4078
2.8479
20.7940
20.1600
Max Flow
F-G 273.9758
0.0000
0.8918
4.0926
5.4016
23.9508
22.7779
Max Flow
G-H 273.9705
0.0000
0.8727
3.3558
4.6178
22.7780
21.6655
Max Flow
H-I 273.9682
0.0000
0.5383
3.1957
4.1284
21.6656
20.7939
Max Flow
Box 1 251.3819
0.0000
0.5290
3.7914
4.0000
29.2238
28.6939
Max Flow
Box 3 251.3823
0.0000
0.8644
3.7914
4.0000
27.4658
26.6000
Max Flow
Box 4 233.8887
0.0000
1.6902
3.6133
4.0000
26.6000
24.9077
Max Flow
Box 2 251.3822
0.0000
1.2260
3.7914
4.0000
28.6939
27.4658
Max Flow
Table E13a. CULVERT ANALYSIS CLASSIFICATION,
and the time the culvert was in a particular
classification during the simulation. The time is
in minutes. The Dynamic Wave Equation is used for
all conduit analysis but the culvert flow, classification
condition is based on the HW and TW depths.
Mild Mild Steep Mild Mild
Slope Slope TW Slope TW Slug Flow Slope Slope
Critical D Control Insignf Outlet/ TW > D TW <= D
Conduit Outlet Outlet Entrance Entrance Outlet Outlet Outlet Inlet Inlet
Name Control Control Control Control Control Control Control Control Configuration
B-N1
0.0000 1120.2500
81.7500
0.0000 238.0000 0.0000
0.0000
0.0000 None
NI-C
0.2500 1204.7500
0.0000
0.0000 235.0000 0.0000
0.0000
0.0000 None
C-D 416.2500 787.0000
0.0000
0.0000 236.7500 0.0000
0.0000
0.0000 None
N3-F
0.0000 1440.0000
0.0000
0.0000 0.0000 0.0000
0.0000
0.0000 None
A-N1
0.0000 0.0000 614.0000 572.0000 0.0000 253.5000
0.5000
0.0000 None
N2-D
0.0000 0.0000
12.5000 1094.0000 0.0000 331.0000
2.5000
0.0000 None
I-N4
0.0000 0.0000 0.0000 1378.2500 61.7500 0.0000
0.0000
0.0000 None
N4-N5
0.0000 0.0000
0.0000
0.0000 29.2500 1410.7500
0.0000
0.0000 None
I-N5
0.0000 0.0000 0.0000 997.7500
0.0000 0.0000 442.2500
0.0000 None
F-G
0.0000 1440.0000
0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 None
G-H
0.0000 1440.0000
0.0000
0.0000 0.0000 0.0000
0.0000
0.0000 None
H-I 345.2500 1094.7500
0.0000
0.0000 0.0000 0.0000
0.0000
0.0000 None
Box 1
4.7500 1119.2500
0.2500
0.0000 315.7500 0.0000
0.0000
0.0000 None
Box 3
1.0000 1117.7500
3.5000
0.0000 317.7500 0.0000
0.0000
0.0000 None
Box 4
0.0000 1100.2500
0.0000
0.0000 339.7500 0.0000
0.0000
0.0000 None
Box 2
4.7500 1116.7500
2.0000
0.0000 316.5000 0.0000
0.0000
0.0000 None
Kinematic Wave Approximations
Time in Minutes for Each Condition
M M M M M M M M M M
m m m m r M M M m m m M M
Conduit Duration of Slope Super- Roll
Name Normal Flow Criteria Critical Waves
B-NI
0.0000 634.8917
0.0000
0.0000
NI-C
0.0500 6.1316
0.0000
0.0000
C-D
0.2375 83.9821
1.3750
0.0000
N3-F
0.0000 68.3125
0.0000
0.0000
A -NI
261.1667 575.8000 0.0000 0.0000
N2-D
11.2500 14.0000
0.0000
0.0000
I-N4
0.0000 431.5625
0.0000
0.0000
N4-N5
0.0000 0.0000
0.0000
0.0000
I-N5
371.00001440.0000
0.0000
0.0000
F-G
0.0000 323.4375
0.0000
0.0000
G-H
0.0000 556.7500
0.0000
0.0000
H-I
0.0000 556.3750
0.0000
0.0000
Box 1
0.5000 1036.0000
3.2500
0.0000
Box 3
6.6250 1142.4250
0.0000
0.0000
Box 4
0.0000 1140.8125
0.0000
0.0000
Box 2
14.3750 1136.1000
3.0000
0.0000
Table E 14 - Natural Channel Overbank Flow Information
<---- Maximum Velocity -----> <------ Maximum Flow -------> <------ Maximum Area ------> <--- Max. Storage Volume
--->
Conduit
Left Center Right
Left Center Right Left Center Right
Left Center Right Maximum
Name Velocity Velocity Velocity Flow Flow
------------------------------------------------------
Flow
Area
Area
Area Area Area Area Depth
N3-F
1.2333 6.6008 1.0863
---------
2.7261 270.2567
------------------
1.0068
---------
2.2104
---------
40.9429
---------------------------
0.9268 377.9747 7001.2386 158.4862
5.3108
F-G
1.1990 7.1175 1.6906
1.7874 262.0535
10.1367
1.4908
36.8184
5.9960 241.5048 5964.5802 971.3589
4.6818
G-H
1.2772 7.1125 1.7607
1.9816 261.8131
10.1767
1.5516
36.8102
5.7799 259.1100 6147.2972 965.2451
3.9437
H-I
0.0000 7.5085 1.0385
0.0000 272.8408
1.1283
0.0000
36.3374
1.0865 0.0000 2543.6205 76.0548 3.2614
Table E14a - Natural Channel Encroachment Information
<------- Existing Conveyance Condition -------> <----- Encroachment Conveyance Condition -----> <- % Volume --> <-- Encroachment Data -->
Conduit Left Centre Right Total Left Right Left Centre Right Total Left Right Reduction Depth
Name Bank Channel Bank Station Station Bank Channel Bank Station Station Left Right Incr. Method
N3-F
45.204 4481.4
16.694 4543.3-6.3815 9.1598 45.204 4481.4
16.694 4543.3-6.3815 9.1598 0.0000 0.0000 0.0000 None
F-G
28.763 4216.9
163.12 4408.8-7.9213 11.028 28.763 4216.9
163.12 4408.8-7.9213 11.028 0.0000 0.0000 0.0000 None
G-H
32.174 4250.9
165.23 4448.3-4.1722 14.478 32.174 4250.9
165.23 4448.3-4.1722 14.478 0.0000 0.0000 0.0000 None
H-I
0.0000 3399.2
14.058 3413.3-7.2107 13.618 0.0000 3399.2
14.058 3413.3-7.2107 13.618 0.0000 0.0000 0.0000 None
Table E14b - Floodplain Mapping
Conduit Upstream Downstream Channel Center <----- Left Offsets ------> <----- Right Offsets ------> <- Channel Widths->
Name WS Elev. WS Elev. Length Station Natural Encroach Bank Natural Encroach Bank Total Encroach.
N3-F 24.9242 23.9509 171.0000 2.4000 8.7815 8.7815 5.1000 6.7598 6.7598 5.1900 15.5412 15.5412
F-G 23.9509 22.7780 162.0000 0.0000 7.9213 7.9213 5.3100 11.0285 11.0285 4.4720 18.9498 18.9498
G-H 22.7780 21.6656 167.0000 0.0000 4.1722 4.1722 1.8800 14.4781 14.4781 8.7000 18.6504 18.6504
H-I 21.6656 20.7940 70.0000 0.0000 7.2107 7.2107 8.9100 13.6175 13.6175 9.8800 20.8282 20.8282
mmmmm MM M MM
M
Table E15 -SPREADSHEET INFO LIST
Conduit Flow and Junction Depth Information for use in
spreadsheets. The maximum values in this table are the
true maximum values because they sample every time step.
The values in the review results may only be the
maximum of a subset of all the time steps in the run.
Note: These flows are only the flows in a single barrel.
Conduit
Maximum Total
Maximum
Maximum ##
Junction Invert Maximum
Name
Flow Flow Velocity
Volume ##
Name
Elevation Elevation
(cfs) (ft^3) (ft/s)
(ft^3) ##
(ft)
(ft)
-----------
---------------------------------------- ##----------------
------------------
B-N1
-0.5808-58.2268
-0.2982 1523.1881
##
B 23.0000 31.9408
N1-C
241.55016524465.142
8.5137
11708.0598
##
N1 22.0000 31.9398
C-D
241.58516521278.461
8.5208
9959.2578
##
C 21.5700 30.4688
N3-F
273.9896 7891067.632
6.2134
7461.3985
##
D 20.8400 29.2240
A-N1
0.3367-2.3095
0.0473 643.7861 ##
N3 19.3900 24.9242
N2-D
-11.6070-307656.279
-1.1936
2980.8529
##
I 17.9400 20.7940
I-N4
50.0050 320585.8797
4.4787
4373.0399 ##
A 24.4000 31.9415
N4-N5
61.0924 616160.9012
4.7726
1288.0010
##
N2 18.9000 29.2699
I-N5
223,9672 7569745.012
7.3482
15444.6755
##
N5 15.0000 20.1600
F-G
273.9776 7890453.018
6.1778
7035.0445
##
N4 15.5000 20.3956
G-H
273.9714 7890245.447
6.2001
7246.0089
##
F 18.9375 23.9509
H-I
273.96917890221.080
7.3119
2557.4028 ##
G 18.5325 22.7780
Box 1
251.3819 6828247.978
10.4194
1842.0594
##
H 18.1150 21.6656
Box 3
251.3823 6826306.057
10.4370
2999.9281
##
Box cb B 20.3296 27.4659
Box 4
233.9234 6787206.834
9.7225
6762.3276
##
Box cb C 20.0788 26.6000
Box 2
251.3822 6827461.875
10.4271
4263.0570
##
Box cb A 20.6860 28,6941
FREE #
1 287.9489 8262959.867
0.0000
0.0000
##
Table E15a -SPREADSHEET REACH LIST
Peak flow and Total Flow listed by Reach or those
conduits or diversions having the same
upstream and downstream nodes.
Upstream
Downstream Maximum Total
Node
Node Flow Flow
--------------------------
(cfs) (ft^3)
B
-------------------
NI-0.5808-58.2268
N1
C 241.5501 6524465.14
C
D 241.5851 6521278.46
N3
F 273.9896 7891067.63
A
N1 0.3367-2.3095
D
N2 11.6070 307656.279
I
N4 50.0050 320585.880
N4
N5 61.0924 616160.901
I
N5 223.9672 7569745.01
F
G 273.9776 7890453.02
G
H 273.9714 7890245.45
H
I 273.9691 7890221.08
D
Box cb A 251.3819 6828247.98
Box cb B
Box cb C 251.3823 6826306.06
Box cb C
N3 233.9234 6787206.83
Box cb A
Box cb B 251.3822 6827461.88
################# ##################
# Table E16. New Conduit Information Section #
# Conduit Invert (IE) Elevation and Conduit #
# Maximum Water Surface (WS) Elevations #
#########################################################
Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up WS Dn Conduit Type
------------------------------------------------------------------------------------------------
B-NI B N1 23.3920 23.3000 31.9408 31.9398 Circular
NI-C N1 C 22.3000 21.6600 31.9398 30.4688 Circular
C-D C D 21.5700 20.9200 30.4688 29.2240 Circular
N3-F N3 F 19.3900 18.9375 24.9242 23.9509 Natural
A-Nl A N1 24.4600 23.3000 31.9415 31.9398 Circular
N2-D D N2 20.9200 18.9000 29.2240 29.2699 Circular
I-N4 I N4 17.9400 16.0000 20.7940 20.3956 Circular
N4-N5 N4 N5 15.5600 15.0000 20.3956 20.1600 Circular
I-N5 I N5 17.9400 15.0000 20.7940 20.1600 Circular
F-G F G 18.9375 18.5325 23.9509 22.7780 Natural
G-H G H 18.5325 18.1150 22.7780 21.6656 Natural
H-I H I 18.1150 17,9400 21.6656 20.7940 Natural
Box 1 D Box cb A 20.8400 20.6860 29.2240 28.6941 Rectangle
Box 3 Box cb B Box cb C 20.3296 20.0788 27.4659 26.6000 Rectangle
Box 4 Box cb C N3 20.0788 19.3900 26.6000 24.9242 Rectangle
Box 2 Box cb A Box cb B 20.6860 20.3296 28.6941 27.4659 Rectangle
-----------------------
Table E18 -Junction Continuity Error. Division by Volume added 11/96 1
Continuity Error = Net Flow + Beginning Volume - Ending Volume
-------------------------------------------------
Total Flow + (Beginning Volume + Ending Volume)/2
Net Flow = Node Inflow - Node Outflow
Total Flow = absolute (Inflow + Outflow)
Intermediate column is a judgement on the node continuity error.
Excellent < 1 percent Great 1 to 2 percent Good 2 to 5 percent
Fair 5 to 10 percent Poor 10 to 25 percent Bad 25 to 50 percent
Terrible > 50 percent
Junction < ------ Continuity Error -------> Remaining Beginning Net Flow Total Flow Failed to
Name Volume % of Node % of Inflow Volume Volume Thru Node Thru Node Converge
B-2.3750-2.6410 0.0000 63.4002
0.0000 61.0252 58.2268 0
N1 627.5315 0.0048 0.0075 1280.2302
0.0000
1907.761813051021.14
0
C 1034.1769 0.0079 0.0124 2118.1390
0.0000
3152.315813045743.60
0
D-1296.8127-0.0095 0.0156 1964.5190
0.0000
667.7063 13657182.72
0
N3 297.2792 0.0019 0.0036 2107.7284
560.1840
1844.823615783984.55
0
I-9.2941-0.0001 0.0001 9319.1477 9361.6093
-51.755615780551.97
0
A-21.5711-189.7151 0.0003 18.1215
0.0000
-3.4495 2.3095 0
N2 179.1494 0.0290 0.0022 842.9150
15.8332
1006.2312 616316.6837
0
N5 67.8837 0.0004 0.0008 7509.9991
7540.2257
37.657116525966.08
0
N4 8.4495 0.0007 0.0001 2540.5729
2549.5502
-0.52791232322.813
0
F-69.5591-0.0004 0.0008 1576.0257
923.8147
582.651915781520.65
0
G-44.9372-0.0003 0.0005 2127.2966
1907.4362
174.923215780698.47
0
H-32.7243-0.0002 0.0004 1972.6617
1927.0530
12.884415780466.53
0
Box cb B 122.6144 0.0009 0.0015 1068.4580 0.0000 1191.0725 13653767.93
0
Box cb C 128.9322 0.0009 0.0016 1821.3869 284.0411 39081.4405 13613512.89
0
Box cb A 77.6157 0.0006 0.0009 836.4096 0.0000
914.0252 13655709.85
0
The total continuity error was 1066.4 cubic feet
The remaining total volume was 37167. cubic feet
Your mean node continuity error was Excellent
Your worst node continuity error was Excellent
M
Table E19 - Junction Inflow Sources
Units are either ft^3 or m13
depending on the units in your model.
Constant User Interface DWF Inflow RNF Layer Inflow
Junction Inflow Inflow Inflow Inlow
through Inflow Outflow Evaporation from
Name to Node to Node to Node to Node
---------------------------------------------------------
Outfall to Node from Node from Node 2D Layer
-----------
N1 0.0000 6.5266E+06 0.0000 0.0000
--------------------------------------------
0.0000 0.0000 0.0000 0.0000 0.0000
N3 0.0000 1.1057E+06 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
N2 0.0000 308659.1100 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
N5 0.0000 77099.9775 0.0000 0.0000
0.3220 0.0000 8.2630E+06 0.0000 0.0000
N4 0.0000 295574.7525 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
Box cb C 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 37415.1625 0.0000 0.0000
Table E20 - Junction Flooding and Volume Listing.
The maximum volume is the total volume
in the node including the volume in the
flooded storage area. This is the max
volume at any time. The volume in the
flooded storage area is the total volume)
above the ground elevation, where the
flooded pond storage area starts.
The fourth column is instantaneous, the fifth is the)
sum of the flooded volume over the entire simulation]
Units are either ft^3 or m^3 depending on the units.
Out of
System
Junction Surcharged Flooded
Name Time (min) Time(min)
Stored in System
Flooded Maximum Ponding Allowed
Volume Volume Flood Pond Volume
B
236.3500
0.0000
0.0000
112.3501
0.0000
N1
238.0000
0.0000
0.0000
124.9041
0.0000
C
234.9182
0.0000
0.0000
111.8223
0.0000
D
236.5000
83.1189
0.0000
3799.5024
4285.6765
N3
0.0000
0.0000
0.0000
69.5429
0.0000
I
0.0000 0.0000
0.0000 35.8635
0.0000
A
253.5500
0.0000
0.0000
94.7670
0.0000
N2
917.3333
0.0000
0.0000
130.3080
0.0000
N5
0.0000
0.0000
0.0000
64.8406
0.0000
N4
1440.0000
0.0000
0.0000
61.5187
0.0000
F
0.0000
0.0000
0.0000
62.9981
0.0000
G
0.0000
0.0000
0.0000
53.3484
0.0000
H
0.0000
0.0000
0.0000
44.6165
0.0000
Box cb
B 316.6875 0.0000 0.0000 89.6742
0.0000
Box cb
C 317.6875 64.8575 37415.1625
81.9454
0.0000
Box cb
A 315.7500 0.0000 0.0000 100.6293
0.0000
Simulation Specific Information
Number of Input Conduits.......... 16 Number of Simulated Conduits......
Number of Natural Channels........ 4 Number of Junctions ............... 16
Number of Storage Junctions....... 0 Number of Weirs ................... 0
Number of Orifices ................ 0 Number of Pumps................... 0
Number of Free Outfalls........... 1 Number of Tide Gate Outfalls...... 0
Average % Change in Junction or Conduit is defined as:
Conduit % Change => 100.0 ( Q(n+1) - Q(n) ) / Qfull
Junction % Change => 100.0 (Y(n+l) - Y(n)) / Yfull
17
M M M M M M i M M M M M M M M M M M
The Conduit with the largest average change was..Box 1 with 0.138 percent
The Junction with the largest average change was.Box cb A with 0.563 percent
The Conduit with the largest sinuosity was ....... Box 1 with 24.856
Table E21. Continuity balance
at the end of the simulation
Junction Inflow, Outflow
or Street Flooding
Error = Inflow + Initial Volume - Outflow - Final Volume
Inflow Inflow
Average
Junction Volume,ft^3
Inflow, cfs
----------------------------------------
N1 6.52650E+06
75.5381
N3 1.10571E+06
12.7976
N2 308660.4044
3.5725
N5 77100.3006
0.8924
N4 295576.0319
3.4210
N5 -8.263E+06
-95.6361
Box cb C-37415.1625
-0.4330
Outflow Outflow
Average
Junction Volume,ft^3
---------------
Outflow, cfs
------------------------
N5 8.26296E+06
95.6361
Box cb C 37415.1625
0.4330
Initial system volume = 25069.7474 Cu Ft
Total system inflow volume = 8.313613E+06 Cu Ft
Inflow + Initial volume = 8.338683E+06 Cu Ft
Total system outflow = 8.300375E+06 Cu Ft
Volume left in system = 37167.0115 Cu Ft
Evaporation = 0.0000 Cu Ft
Outflow + Final Volume = 8.337542E+06 Cu Ft
Total Model Continuity Error
Error in Continuity, Percent = 0.01281
Error in Continuity, ft^3 = 1066.3591
+ Error means a continuity loss, - a gain
# Table E22. Numerical Model judgement section #
#############################
Your overall error was 0.0128 percent
Worst nodal error was in node D with-0.0095 percent
Of the total inflow this loss was 0.0156 percent
Your overall continuity error was Excellent
Excellent Efficiency
Efficiency of the simulation 1.80
Most Number of Non Convergences at one Node 0.
Total Number Non Convergences at all Nodes 0.
Total Number of Nodes with Non Convergences 0.
=--> Hydraulic model simulation ended normally.
XP-SWMM Simulation ended normally.
_> Your input file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Altematives\Dec 06 Alt\Alt 1 100 dec 06.DAT
Your output file was named : MARENTON\05731 Renton Village\Modeling\Design\Design Future\Alternatives\Dec 06 Alt\Alt 1 100 dec 06.out
SWMM Simulation Date and Time Summary
Starting Date... December 22, 2006 Time... 7:45:26:45
Ending Date... December 22, 2006 Time... 7:46:55:28
Elapsed Time... 1.48050 minutes or 88.83000 seconds I
APPENDIX E
' DIGITAL XP-SWMM MODELING FILES
Modeling Files:
{Designed Alternatives}:
• {Alternative 1 }
o Alt 1_25 dec 06.xp [25-year storm under future conditions for Alt. 1]
o Alt 1 100 dec 06.xp [100-year storm under future conditions for
Alt. 1 ]
• {Alternative 2}
o Alt 2_25 dec 06.xp [25-year storm under future conditions for Alt. 2]
o Alt 2 100 dec 06.xp [100-year storm under future conditions for
Alt. 2]
{Alternative Output}
o Alt 1_25 dec 06.out [25-year storm, Alt. 1 output file; Opens in
Notebook or WordPad programs]
o Alt 1_100 dec 06.out [100-year storm, Alt. 1 output file; Opens
in Notebook or WordPad programs]
o Alt 2_25 dec 06.out [25-year storm, Alt. 2 output file; Opens in
Notebook or WordPad programs]
o Alt 2_100 dec 06.out [100-year storm, Alt. 2 output file; Opens
in Notebook or WordPad programs]
{Existing Flows in Existing System}:
• Renton Village Existing 2.xp
• Renton Village Existing 10.xp
• Renton Village Existing 25.xp
• Renton Village Existing 100.xp
[2-Year Storm, Existing System with
Existing Land Use]
[10-YearStorm, Existing System with
Existing Land Use]
[25-Year Storm, Existing System with
Existing Land Use]
[100-Year Storm, Existing System with
Existing Land Use]
• {Existing Output}
o Renton Village Existing 2.out
[2-Year storm, Existing Land Use,
Existing System, Output file]
o Renton Village Existing 10.out
[10-Yearstorm, Existing Land
Use, Existing System, Output file]
o Renton Village Existing 25.out
[25-Year storm, Existing Land
Use, Existing System, Output file]
o Renton Village Existing 100.out
[100-Year storm, Existing Land
Use, Existing System, Output file]
{Future Flows in Existing System):
• RV fut 2.xp [2-Year Storm, Existing System with future Land Use]
• RV fut 10.xp [10-Year Storm, Existing System with future Land Use]
• RV fut 25.xp [25-Year Storm, Existing System with future Land Use]
• RV fut 100.xp [100-Year Storm, Existing System with future Land Use]
'
• {Future Output}
o RV fut 2.out [2-Year storm, Future Land Use, Existing System,
Output file]
o RV fut 10.out [10-Year storm, Future Land Use, Existing System,
RV fut 2.out
o RV fut 25.out [25-Year storm, Future Land Use, Existing System,
,
Output file]
o RV fut 100.out [100-Year storm, Future Land Use, Existing
System, Output file]
r
APPENDIX F
CONSTRUCTION COST ESTIMATES
Alt 1 (west box)
1
fl
1
DESCRIPTION
QUANTITY
UNIT
AMOUNT
No.
Spec No.
PRICE
1
1-04.12
Mobilization, Cleanup & Demobilization
1 LS
$98,000.00
$98,000.00
2
1-05.4(2)
Construction Surveying, Staking, and As -built Drawings
1 LS
$2,000.00
$2,000.00
3
1-09.14(1)
Traffic Control
1 LS
$5,000.00
$5,000.00
4
8-01
Temporary Water Pollution / Erosion Control
1 LS
$5,000.00
$5,000.00
5
7-08.3(1)D
Dewatering
1 LS
$8,000.00
$8,000.00
6
1-04.12
Temporary Bypass Pumping
1 LS
$3,000.00
$3,000.00
7
1-04.12
Trench Shoring and Excavation Safety Systems
1 LS
$10,000.00
$10,000.00
8
1-07.16(5)
Locate and Protect Existing Utilities
1 LS
$5,000.00
$5,000.00
9
2-02
Removal of Structure and Obstruction
1 LS
$8,000.00
$8,000.00
10
1-09.14(1)
Remove / Relocate Existing Signing
1 LS
$500.00
$500.00
11
4'x6' Pre Cast Box Culvert (incl. bedding)
605 LF
$1,140.00
$689,700.00
12
7-17.3(3)
Bank Run Gravel for Trench Backfill
9700 TN
$15.00
$145,500.00
13
1-09.14(1)
Unsuitable Foundation Excavation, Incl. Haul
150 CY
$20.00
$3,000.00
14
9-03.17
Gravel Backfill for Foundation Class B
270 TN
$20.00
$5,400.00
15
9-03.22
Controlled Density Fill
150 CY
$100.00
$15,000.00
16
Sanitary Sewer Crossing/Encasement
1 LS
$5,000.00
$5,000.00
17
Relocate 12-inch Water Main
1 LS
$20,000.00
$20,000.00
18
8-04
Cement Concrete Curb and Gutter
30 LF
$12.00
$360.00
19
Cement Concrete Sidewalk
0 SY
$50.00
$0.00
20
4-04
Crushed Surfacing Top Course
320 TN
$20.00
$6,400.00
21
2-02.3(4)
Sawcutting
1220 LF
$3.00
$3,660.00
22
5-04.3
Temporary Hot Mix Asphalt Concrete Patch
220 TN
$75.00
$16,500.00
23
5-04.3(9)
Asphalt Concrete Pavement Cl. "B"
120 TN
$60.00
$7,200.00
24
8-22
Restore Pavement Markings
1 LS
$500.00
$500.00
25
1-07.16(1)
Remove / Restore Existing Landscaping
1 LS
$1,000.00
$1,000.00
26
8-01.3(2)A
Topsoil Type A
1 CY
$25.00
$25.00
27
8-01.3(4)A
Seeding, Fertilizing, and Mulching
10 SY
$2.00
$20.00
28
7-04.6
Television Inspection
605 LF
$1.25
$800.00
29
7-08.3(1)C
Compaction Testing
12 EA
$60.00
$800.00
30
1-04.4(1)
Force Account
1 LS
$10,000.00
$10,000.00
Subtotal (Items 1-38)
Sales Tax (8.8%)
TOTAL ESTIMATED CONSTRUCTION COST
Construction Contingencies (10%)
SUBTOTAL
FINAL CONSTRUCTION COST ESTIMATE
$1,075,365.00
$94,632.12
$1,169,997.12
$116,999.71
$1,286,996.83
$1,287,000.00
' 1/16/2007
Renton Village Cost Est 1-12-2007.xls
Alt 2 (East box)
DESCRIPTION
QUANTITY
UNIT
AMOUNT
No.
Spec No.
PRICE
1
1-04.12
Mobilization, Cleanup & Demobilization
1 LS
$89,000.00
$89,000.00
2
1-05.4(2)
Construction Surveying, Staking, and As -built Drawings
1 LS
$2,000.00
$2,000.00
3
1-09.14(1)
Traffic Control
1 LS
$5,000.00
$5,000.00
4
8-01
Temporary Water Pollution / Erosion Control
1 LS
$5,000.00
$5,000.00
5
7-08.3(1)D
Dewatering
1 LS
$8,000.00
$8,000.00
6
1-04.12
Temporary Bypass Pumping
1 LS
$1,000.00
$1,000.00
7
1-04.12
Trench Shoring and Excavation Safety Systems
1 LS
$8,000.00
$8,000.00
8
1-07.16(5)
Locate and Protect Existing Utilities
I LS
$7,000.00
$7,000.00
9
2-02
Removal of Structure and Obstruction
1, LS
$5,000.00
$5,000.00
10
1-09.14(1)
Remove / Relocate Existing Signing
1 LS
$500.00
$500.00
11
4 x6' Pre Cast Box Culvert (incl. bedding)
497 LF
$1,140.00
$566,580.00
12
7-17.3(3)
Bank Run Gravel for Trench Backfill
8000 TN
$15.00
$120,000.00
13
1=09.14(1)
Unsuitable Foundation Excavation, Incl. Haul
230 CY
$20.00
$4,600.00
14
9-03.17
Gravel Backfill for Foundation Class B
403 TN
$20.00
$8,050.00
15
9-03.22
Controlled Density Fill
230 CY
$100.00
$23,000.00
16
Sanitary Sewer Crossing/Encasement
1 LS
$50,000.00
$50,000.00
17
Relocate 12-inch Water Main
1 LS
$20,000.00
$20,000.00
18
8-04
Cement Concrete Curb and Gutter
65 LF
$12.00
$780.00
19
Cement Concrete Sidewalk
40 SY
$50.00
$2,000.00
20
4-04
Crushed Surfacing Top Course
260 TN
$20.00
$5,200.00
21
2-02.3(4)
Sawcutting
1004 LF
$3.00
$3,012.00
22
5-04.3
Temporary Hot Mix Asphalt Concrete Patch
220 TN
$75.00
$16,500.00
23
5-04.3(9)
Asphalt Concrete Pavement Cl. "B"
100 TN
$60.00
$6,000.00
24
8-22
Restore Pavement Markings
1 LS
$500.00
$500.00
25
1-07.16(1)
Remove / Restore Existing Landscaping
1 LS
$1,000.00
$1,000.00
26
8-01.3(2)A
Topsoil Type A
1 CY
$25.00
$25.00
27
8-01.3(4)A
Seeding, Fertilizing, and Mulching
10 SY
$2.00
$20.00
28
7-04.6
Television Inspection
497 LF
$1.25
$700.00
29
7-08.3(1)C
Compaction Testing
10 EA
$60.00
$600.00
30
1-04.4(1)
Force Account
1 LS
$10,000.00
$10,000.00
Subtotal (Items 1-38)
Sales Tax (8.8%)
TOTAL ESTIMATED CONSTRUCTION COST
Construction Contingencies (10%)
SUBTOTAL
FINAL CONSTRUCTION COST ESTIMATE
$969,067.00
$85,277.90
$1,054,344.90
$105,434.49
$1,159,779.39
$1,160,000.00
1/16/2007 Renton Village Cost Est 1-12-2007.xls