Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SWP272837(7)
LAKE WASHINGTON BLVD / BURNETT AVE. N. STORMWATER SYSTEM IMPROVEMENTS DRAINAGE REPORT Prepared by: City of Renton Planning/ Building/ Public Works Department Surface Water Utility April 2000 LAKE WASHINGTON BLVD / BURNETT AVE. N. STORMWATER SYSTEM IMPROVEMENTS DRAINAGE REPORT Prepared by: City of Renton Planning/ Building/ Public Works Department Surface Water Utility April 2000 LAKE WASHINGTON BLVD / BURNETT AVE N. STORMWATER SYSTEM IMPROVEMENTS DRAINAGE REPORT CERTIFICATE OF ENGINEER The engineering material and data contained in this report were prepared under the supervision and direction of the undersigned, whose seal as a Registered Professional Engineer is affixed below. Ronald J. Straka, P.E. Engineering Supervisor Daniel W. Carey, P.E. Project Manager TABLE OF CONTENTS 1 Introduction A. Site Location B Purpose Location Figures 2 Existing Conditions Drainage Analysis A Soils B Existing Drainage Systems C Drainage Basins D Drainage Analysis Method E Analysis Results Drainage Subbasins 3 Future Conditions Drainage Analysis A Future Conditions B Proposed Drainage System C Drainage Analysis Method D Analysis Results Proposed Drainage System Schematic 4 Backwater Analysis A Analysis Method B Analysis Results Backwater Analysis Results Appendices A Existing Conditions Drainage Analysis B Future Conditions Drainage Analysis C Future Conditions Backwater Analysis SECTION 1 INTRODUCTION The Kennydale neighborhood in the project area consists primarily of older single family homes. The streets are asphalt with gravel, dirt, and grass shoulders. There are very few curbs, gutters and sidewalks (except for limited areas). The existing stormwater drainage system consists of a pipe system in some areas, and open ditches and culverts in other areas. A. Site Location Lake Washington Blvd and Burnett Ave N. is located approximately 3.5 miles north of City Hall in the Kennydale area (see figures at end of section). The area is in the East Lake Washington drainage basin. B. Purpose The purpose of the project is to upgrade the existing stormwater pipe system to current standards and reduce the frequency of overflow and flooding. The project will eliminate a section of undersized pipe and an open ditch that crosses private property (3313 Burnet Ave N, Fawcett property). This section is subject to clogging and flooding occurs across private property and onto Lake Washington Blvd. The project will relocate the drainage system so it is in City ROW or easements. The project will upsize the pipe system so it is capable of conveying the peak flow from the 25-year, 24-hour storm event for existing and future conditions without overflowing. The runoff and backwater analysis assumed that all runoff from the subbasins would flow directly into the drainage system. The use of onsite detention systems for new developments, as may be required in the King County Surface Water Design Manual, would reduce the peak flows reaching the new drainage system and potential for overflow. HADIVISION.S\UTILITIE.S\DOM2000-136Aoc Pagel Project Location $ $ f .:. r sr WIN IMF ©®air ••rn ®� luIBM � �l�l ���� ■ r ®III■ 1 �� E� •� Project Location Washington North Storm System Project Scale: 1 inch 000 Feet City of Renton CareySurface Water Utility D. 00 !� Now 1 MEN Project Location Him .r t�NNfa !t■■■�■ � 7ir�i■ f• ® t � ■�J ■ n■ttf1►1'� 1�1if■1■ �� � ■1■■N■llAw!JI■N/.A rn� ■fN1lRiiyfC�11■� sus 91i::!/ �� h1■IAAIIHt*cif/!1! �t1a � `ii �'r, IE=fNIJaCi1.'i�l{■�I_ a���� _ 1 ��' ' �/� faillq/!L'!/�It!NNlii ■''� � � ■ fM1■f:ir:iNlit111H1 �',■, wRAMI 1 ■Ile1f!?II■Rlft■t■ WC�6;111 II NNl1 ■■1 � SM .9111111 -in ��� f�'�t'rli�ilINIIIIJ�t�3ifidf1111■ � � ,Fin.NI 111111N1llMtl'�fIN , � MAM2 1 ■1�111 ■,sil■:1■Ifl■ 1, wllfl ■IIIItRl,Nlt1�.l1111111 �I � ��JS 11111■YiLtS�YtC�■Ill■�'� � ,`o`�� �_ ♦I t.■/■ II�t11fN.AA1f:A1/tl1 �A� �1 � ►�j ■ ■Itl■t11i0:1u11■■■■fl : ♦ �,lo�J1� • � ■INIHI■11■■HI�N_����`�� 1�, fry■�7+�-rniiii�'I �■n i � 1■IE'� CIE: :111 � li ' •• � 6 lif' c r •��i MEN a■. a I�t��N■ Project Vicinity 0 1000 Lake Washi . North Storm System Project Scale: 1 Inch 000 Feet City of Renton Surface Water Utility D.Carey 00 SECTION 2 EXISTING CONDITIONS DRAINAGE ANALYSIS The calculations and figures for the Existing Conditions Analysis are in Appendix A. A. Soils The Soil Conservation Service Soil Survey for King County shows the soils in the area as "InC", Indianola series (sheet no. 5). It describes "InC" as made up of somewhat excessively drained soils that formed under conifers in sandy, recessional, stratified, glacial drift. Permeability is rapid, runoff is slow to medium. Soil group "A" (low runoff potential) was used to determine runoff curve numbers. B. Existing Drainage Systems The drainage basin potentially extends from N 29th ST. in the south to N 34th ST. in the north. The majority of the streets are asphalt with asphalt, gravel, dirt, or grass shoulders. There are a variety of rough drainage systems in the streets consisting of open ditches, culverts, and limited pipe systems with catchbasins and manholes. Most of the systems were probably installed as individual homes were build, street repairs were made, or to respond to local drainage problems. The systems in the side streets run downhill to Burnett Ave.N. On Burnett Ave. a variety of open ditches and culverts on the east side of the street convey flow to the north to a manhole between N 33rd PI. and N 34th St. That manhole directs flow across the street to the west into a 30-foot long section of open channel in a 12-foot wide unused ROW. The open channel drains into a 12-inch culvert which crosses private property to connect to the City drainage system in Lake Washington Blvd. The City system crosses under Lake Washington Blvd and the railroad ROW in a 24-inch pipe and drains to Lake Washington. Drainage problems have occurred in the open ditch and where it flows into the 12-inch culvert. The ditch and culvert have been overwhelmed by excess flow and debris, resulting in flooding across private property and onto Lake Washington Blvd. C. Drainage Basin The total drainage area for the project is 60.5 acres. The area was divided into 6 subbasins for drainage and flow analysis. The drainage subbasins used for the analysis are shown on the figure at the end of this section. The area consists primarily of single family residences. The latest City aerial photo and onsite observation were used to determine the land use conditions and approximate number of dwelling units per acre for each subbasin. The density is approximately 4.8 dwelling units per acre. From the King County Manual 5 dwelling units per acre with 48 percent impervious area was used for the analysis. \\CENTRAL\SYS2\DEPTS\PBPW\DIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 2 For existing conditions the basin was analyzed as follows Total Area (acres) Impervious Area (acres) Pervious Area (acres) 60.5 29.0 31.5 In general, the drainage area slopes to the west / northwest toward Lake Washington. The side streets (N 32nd, 33rd, 34th) slope at about 7 to 10 percent. Burnett Ave N slopes at about 3 to 4 percent to the north. D. Drainage Analysis Method The existing drainage basin was analyzed using the methods and procedures in the 1990 King County Surface Water Design Manual (KCM). Peak runoff rates and volumes were estimated using the Santa Barbara Unit Hydrograph (SBUH) method by using the King County "HYD" computer program (ver. 4.21). The drainage basin was analyzed using the SCS Type 1 a rainfall distribution for the following storm events: 10-Year, 24-Hour 2.9 Inches 25-Year, 24-Hour 3.4 Inches 100-Year, 24-Hour 3.9 Inches The time of concentration for the entire basin was determined using the travel time equations in Chapter 3 of the KCM. The time of concentration from the farthest point in the drainage basin to the outfall in Lake Washington (about 3600 feet) for existing conditions was estimated at 35 minutes. The travel time was based on sheet flow over grassed areas, shallow concentrated flow and open channel flow along street shoulders, and pipe flow in the existing pipe system. The basin characteristics and time of concentration calculations are included in Appendix A. To simplify the design process, the longest time of concentration (35 minutes) was used to determine the peak flow for each individual subbasin. The peak flows from each subbasin were added together where they would be combined in the proposed drainage system. The correct procedure would be to work from the bottom of the entire basin upstream, calculating a time of concentration and peak flow for each subbasin, then adding the hydrograph from each subbasin together to get a combined hydrograph for the entire basin. For a basin this small the minor difference in peak flow is not worth the additional time and effort needed for the more detailed analysis. \\CENTRAL\SYS2\DEPTS\PBPW\DIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 3 E. Analysis Results The peak flows for each drainage basin were estimated by the SBUH method. The results are included in Apppendix A and are given in the following table. Peak flows for each subbasin were determined for the 25-year flow to use for the Backwater analysis. The peak flows for the entire basin were determined for the 10- and 100-year events: Existing Conditions Subbasin Peak Flow Peak Flow Peak Flow 10-Year, 24-Hour (cfs) 25-Year, 24-Hour (cfs) 100-Year, 24-Hour (cfs) 1 0.53 2 0.26 3 1.30 4 3.42 5 4.15 6 12.25 Total 17.5 21.9 26.5 \\CENTRAL\SYS2\DEPTS\PBPW\DIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 4 ��I/�i �l --1=__—_—--— _=-o oi■ ��■ •� ll�� ��.as�����_altIII.ni At r ' III,MON.JIM will r�a:c�1�1�■�-cr:/�rIL1T�- .�u�tt�1�..1•�/�.� � "�'I 051 Lek ����~ Iw '�r � � it ■i.■I� ' 11 ■I■■ �� Iw . t■ tt■ � � j R lr �' 111 hr r�■� tt...i� —� J•I� �Lam. � �i '' . ■ ' � I 1• / •�_• 111,31, tttlttttl.ttt—.����,.�►—e�>•—rr�r�■.�.�rr��,--- I � � r FEE ON Is '1►�� :. � y� � ls',� �� ram �„'I : �i�.Jr ��F� �`��II�10111 1i i MIND go III ' r �.il _r -;.• -_ -�^v�tr.��r�.,= v■,-�.;_ isi�- �ttt�r.--= .-.�.-ter �■n�.■.� 7 10II:0-1[on a J ro Fefir' O -WELOW-- -- -- - ► ►►���I �i =-'tea ��' • '-�►- n � �tr�1.■tom/11tt��.ttttttttt....�■ � ���5 .I ■ 1.1��1 i IROME ���l,►%\ 'LLlil1` 11r� ��VVi� ��'��1'�fi��il, � f - SECTION 3 FUTURE CONDITIONS DRAINAGE ANALYSIS A. Future Conditions The City Comprehensive Land Use Plan identifies the area as residential with a density of 8 dwelling units per acre(DU/acre). From the King County Manual 8 dwelling units per acre with 60 percent impervious area was used for the analysis. For potential future conditions the basin was analyzed as follows Total Area (acres) Impervious Area (acres) Pervious Area (acres) 60.5 18.62 12.42 The analysis does not account for any potential stormwater detention systems that may be required for developments in the drainage basin. B. Proposed Drainage System The proposed drainage system schematic drawing is shown at the end of this section. The new system would start on the east side of Lake Washington Blvd by replacing an existing brick manhole. The new system would proceed up the east side of the street for about 300 feet. From there it would go to the west, in the unused City ROW for N 34th Street, until it reached Burnett Ave N. The new drainage system will be located on the west side of Burnett Ave. N. The new system will proceed 500 feet to the south to at least N 33rd Street. Depending on the design results the system may be extended to N 32nd Street. The new system will replacesome of the existing culvert and catchbasins. Some sections of the roadside ditches will be filled in when the new system is placed. The new system will be sized for the peak flow from the entire drainage basin for future conditions. The system should be capable of conveying the peak flow from the 25-year, 24-hour storm event without overflow. C. Drainage Analysis Method The drainage basins used for the future conditions analysis are the same as the drainage basins used for existing conditions. The basins were analyzed using the maximum amount of impervious area that would be allowed, as described in Section A above. \\CENTRAL\SYS2\DEPTS\PBPIMDIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 5 The time of concentration for the developed basin and new drainage system was estimated at 30 minutes using the travel time equations in Chapter 3 of the KCM. The travel times were based on sheet flow over grassed areas, shallow concentrated flow, and pipe flow in the proposed new pipe system. The basin characteristics and time of concentration calculations are included in Appendix B. To simplify the design process the longest time of concentration (30 minutes) was used to determine the peak flow for each individual basin. The peak flows from each basin were added together where they would be combined in a proposed drainage system. D. Analysis Results The peak flows for each drainage basin estimated by the SBUH method are given in the following table, and the actual printouts are included in Appendix B. Future Conditions Subbasin Peak Flow Peak Flow Peak Flow 10-Year, 24-Hour (cfs) 25-Year, 24-Hour (cfs) 100-Year, 24-Hour (cfs) 1 0.64 0.76 2 0.31 0.37 3 1.56 1.86 4 1 4.10 4.89 5 4.97 5.93 6 14.69 17.51 Total 21.4 26.3 31.3 \\CENTRAL\SYS2\DEPTS\PBPw\DIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 6 -- ,p0 QA k wA -TFA A N0 ZY,is z aaaaaa \ /v 3 m S »»60 ) ,! 000060 o NwwGr� Q Q3 z N 3 3,d PL O � Q Q y g c 9 IV33rd 5t 5 10 N 32nd S I SECTION 4 BACKWATER ANALYSIS A. Analysis Method The capacity of the proposed conveyance system for the project was analyzed using the King County Surface Water Management Backwater Analysis Program "BWPIPE". This program computes the backwater elevation at each structure for a range of flows using inlet, outlet, and system head losses. The analysis started at the existing system in Lake Washington Blvd. and extended upstream for the entire length of the proposed system. The proposed drainage system consists of a 24-inch diameter stormwater pipe from Lake Washington Blvd. through Burnett Ave. N. Several iterations were performed by changing the pipe size in various segments to reduce the potential for overflow before the final design was determined. B. Analysis Results The results from the Backwater Analysis are summarized below, and the complete analysis is included in Appendix C. Core requirement #4 in the KCM requires that the proposed pipe system must provide a 0.5 foot freeboard between the hydraulic grade line and the top of the structure for the 25-Year peak flow. The analysis shows that the water elevation will remain within the structures for the 25- Year, 24-Hour storm for future conditions. The KCM allows structures to overflow for the 100-Year, 24-Hour storm analysis provided that: 1. Runoff does not overtop the crown of the roadway; and/or 2. No portions of a building will be flooded; and/or 3. If overland sheet flow occurs, it will be through a drainage easement. For the Existing Conditions 100-Year, 24-Hour storm and the Future Conditions 25-Year, 24- Hour storm, the analysis predicts that overflow would not occur. For the Future Conditions 100-Year, 24-Hour storm overflows at nodes 4, 5, 6, 7, and 8. The future drainage analysis uses a density of 8 du/ac while the existing conditions is about 4.8 du/ac. It is unlikely that the new system will experience overflow from normal design storms in the near future. \\CENTRAL\SYS2\DEPTS\PBPIMDIVIS ION.S\UTILITIE.S\DOCS\2000-136.doc Page 7 Future Conditions - Backwater Analysis Results Pipe Size 25-Year 100-Year Backwater Comments Segment (inch) Peak Flow Peak Flow Analysis (cfs) (cfs) Flow (cfs) 1 24 26.3 31.3 32 OK, no overflow 2 24 25.6 30.5 32 " 3 24 25.3 30.2 31.37 " 4 24 25.3 30.2 31.06 Overflow about 100-year level 5 22* 25.3 30.2 27.18 " 6 24 23.7 28.3 30.75 " 7 24 19.7 23.4 27.41 " 8 24 19.7 23.4 21.19 " 9 24 14.7 17.5 23.98 OK, no overflow 10 18 14.7 17.5 17.89 " HDPE Pipe, 24" OD, 22" ID H:\DIVISION.S\UTILITIE.S\DOCS\2000-136.doc Page 8 ti QAC VATZ� R AIV4 y /5 z N3y 1h Sf 'cooca c Q v 3 3 R 1 2 �O— Q Ilk N 3 3,d PL o� Q Q $ 4 U LJ J 9 IV 33rd St S 10 N 32nd St' Q6 ( e✓ 4-Ke lA�3T/CGM 6�`S�� I I i � APPENDIX A Existing Conditions Drainage Analysis L a Al w4zblAz4ll 91, K rrnett /4 vt Al D. Cary R UAI of F A Nq L ys/s JORA /NAGE 134SlAl Seel F/'u�� , ehlirc lja�i,� 2 63'/, 000s-4 4r 60, -5- 4Cr�J 0090 a Alo*- area -fve 441ArC_ olevr w o/l�ru.af.�ww "�w / J0 �w�wiY Cu rrL'N� y S 6 rrQ� D f ��J C�tC LI. ��O DR �IL (/ 1 O / LLwww�w / /Yi / N=TN' SZ NNN¢Q gg5t8� Pimp a 'Y n C 1n d(G o/w , hyelr. �rowP /� /f,-v 10 d,/1 4G • y 8 % 1 rnP erv,o�., 52 Cnr = 98 CN = 7 -7 S ug BAJINs 5 ,7 TiYC l7AJr�7175 fir t3 G H c„a 4-r, AH a /71/.1 . / ,5 rpaJ�" Area fC,-✓. (52 % rmauV, (y S 7.) 1 . 114 ac. 0. 36 aL 0. 70 a� z 0 . 32 0 . 37 0 , .3s 3 3 . 60 / . a � / . 73 4 7 . qv y . s3 S //, yS S. 95 .5. 50 33. 83 /7- 60 4, 21 �o. S L G A' Gt/. A. b v u rncf! t4Vc. �, a�^t J -A6 -O n 2 .3 T/,Nlr o F CvNC e1v TRA T/OA/ ASP Lawn 4-6 Pa, A ,¢vt. 200f� nh S 0, 028 awn ¢ QQ2QQ6 GU Y/ J;tc A Ow fool / 'AA — . Q�aQaQaQQ Nlh Nf]1lO/Ih CIE pri r-low (4JJu,r�t 741- lvi ><i� reoi,nci; i17 le - w33 . w MNtAUU �200' r 1400''' 206 300 .3300 U1c .3, -S -Fjof V6�ocrf� S2 t=/yN22 Tc N 3 5 rrn,o,,.kt Sty S�OrcAJ Aeet for ca /c-S , ?»>ee 1 RAIN FALL /err , 2 z . 1 ih • 25-Yr� ZH-fir 3 , y ih. 1•UO -yr� ZN- hr J , irr RE S ULTS — CXl.57-W& S e l°rf;� rou -ft Ar re r u TJ ( 60. 2S -Y, 21, 9 /00 - yr z `. 5 SU 6 - 6aSi S - 25-yr ,S -�zIYr7 0. 53 c�S 2 0, 26 3 1 . 30 N 3 . y2 5 y. Is G 12 , Zs • 2 �. 9 c-�S L t aJh. Ivj /nL7�- vC �. CArc �'��"�0 3/3 FOTOPE CompITIONS - LANd VJE FC Fr'opr, KrnJ (0. M�d✓1 kA I U % IMP 11!/V ASJun e- f/�yhf WHO, rc du ,► ih Tc, due a� a a Perv, z y. 2 KG Cti = 7� �/' l�._f W 1,7lam`r j S a c CAI - 9 8 Je �O �w�wo 0, S a � L EM�1 L) S2nS '2 � /. 2-5 Yr /Do - yr 3/. 3 5 U6 BASIrJS FOTJRE / _ RESULTS -SktbGs {�;o Are, rlyv. (60%) Qp -25y� 1 I . g6ac 0, 5 0. 88 a 0 . 611 ck 2 6.?2 0 , 29 0 . 43 . 3 / 3 3 . 60 1 . 44 2. / 6 / , S6 y �. by 3 .37 5, 6-7 ti . to 5 //. 45 H. 58 6 . 8-7 4. 9 G 33, 8.3 13. 53 20. 30 /y. 69 60, 5 2 6. 3 c4s R E.5 u L T S - t= U To P, E - zS- YP S TORM QP Sec, Printpµt far 4aT6cl-/1� (xSiaJ TL A l s o F , A-u C o r J r-4-Aj — 100-yr Of • Mere JrA i-.I �� � � ,IiC ��Bh "" ' • } :'►r °{ t ' 1a �r6 '�,• �,r I �� y llw.� I., EwC BM May 109• •• ♦ .. e/ q�0 M V C tj ♦ �. BM �La !ridge ScA', •_t r { ; 356 a _ \ _— �� — --- — --- �■ B�7 AgD �a...� '`t }"� ' ; BMA ABM ---- 1 � p4 �: .,r s Yr v � /• 690 692. rn I. •AgC. No \•KPD I r t`i n .,: • se -'. 10 '� rr�x''�. c2`,',a r -� 605 I OvD •+'• t ]rti";} ., KPBeC AgC 9 , J i AgC 1 POlnt JD 0r I 34 e +rt+. qgp ii C' Kennydale S J - I h C ... '°,t, •InC �A it d 161 n C (k AgC• EvB AkF EvC Coleman Poin m• Pr GRAVEL A � /r ,♦w: AkF � •, •, 306 t , > e"d 1n a vD A C A8p ` Y .• :� - • • °gip!; • • ,, ,ytic�"� '' ;�34 � ♦r +'' r �� ,a 9 & 1n�,AkF A•� s �• `r a •. _ m6 .'4 .� &¢r -- � — ro ;gY •Y� .y� . AgC I. 167 � " :�+�. �. •• : I T: offi \�\\ Bryn Mawr _ , Imo' _ _ " '; , �, ..• �: • i .. Ur - �f,. -t_ o r '�,• •: ��: Ir R®ry BDY f.1J'� • w_♦i1 � r, `'*aS! •• � � Y 1�BM ,�'a O ABC:• t kq' '�+ /" PIaaC' �Y 1 �• i.- '.,•r.''.♦ J� } s• ,1 t Ev � � �. :•O Ur .. °s.T --�• • I ARC may. _ _ •aG� .r i'•� , a.� t' 1 R 4 E. R.S E. RENTON 1.9 Ml. 12'30// (Joins sheet 1 1) e RdC 10, RENTON 1.7 Mt. SCSlyP�s N Scale 1:24 000 3a 1, t.q 0 Orth 1 2 Wes deta SOCO 4000 3000 2000 1000 0 5000 10000 Feet Poly, 10,( This map,s o,e of a Set of 20 nOrt KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL TABLE 3.5.2B SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS (Published by SCS in 1982) Runoff curve numbers for selected agricultural, suburban and urban land use for Type 1 A rainfall distribution, 24-hour storm duration. CURVE NUMBERS BY HYDROLOGIC SOIL GROUP LAND USE DESCRIPTION A B C D Cultivated land(1): winter condition 86 91 94 95 Mountain open areas: low growing brush and grasslands 74 82 89 92 Meadow or pasture: 65 78 85 89 Wood or forest land: undisturbed 42 64 76 81 Wood or forest land: young second growth or brush 55 72 81 86 Orchard: with cover crop 81 88 92 94 Open spaces, lawns, parks, golf courses, cemeteries, landscaping. good condition: grass cover on 75% or more of the area 68 80 86 90 fair condition: grass cover on 50% U`` to 75% of the area ! 77 85 90 92 N= Gravel roads and parking lots 76 85 89 91 Dirt roads and parking lots 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 98 98 98 Open water bodies: lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential (2) Dwelling Unit/Gross Acre % Impervious (3) 1.0 DU/GA 15 Separate curve number 1.5 DU/GA 20 shall be selected 2.0 DU/GA 25 for pervious and 2.5 DU/GA 30 impervious portion 3.0 DU/GA 34 of the site or basin 3.5 DU/GA 38 4.0 DU/GA 42 4.5 DU/GA 46 5.0 DU/GA 48 5.5 DU/GA 50 6.0 DU/GA 52 6.5 DU/GA 54 7.0 DU/GA 56 Planned unit developments, % impervious condominiums, apartments, must be computed commercial business and industrial areas. (1) For a more detailed description of agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, August 1972. (2) Assumes roof and driveway runoff is directed into street/storm system. (3) The remaining pervious areas (lawn) are considered to be In good condition for these curve numbers. 3.5.2-3 1/90 Project: Lake Washington Blvd / Burnett Ave N D. Carey Final Design Revised: 3/16/00 Existing Basin Characteristics Total Pervious CN Imper. CN Estimated For Entire Basin Area (ac) Area (ac) Area (ac) Tc (min.) 60.5 31.5 77 29 98-F 34.8 Sheet Flow ns L P2 s T T={0.42x(ns x L)^0.8)/ Lawn 0.15 200 2.0 0.028 18.9 {( P2)A0.5 x (s)^0.4 ) 0.15 2.0 0.100 0.0 Short Prairie Grass and Lawns, ns=0.15 Shallow Conc. Flow k L s v T V= k Sgrt(s) , T= L/(v x 60) Gutter or roadsi 27 100 0.06 6.6136 0.3 27 0 0.065 6.8837 0.0 Pipe Flow Pipe 3300 3.5 15.7 Uses estimate of flow velocity, based on Manning Nomograph. Comments: Tc calculations per King County Manual - pp.3.5.2-5 Minimum Tc= 6.3 minutes. Cn-tc-4.xls Page 1 Project: Lake Washington Blvd / Burnett Ave N D. Carey Final Design Revised: 3/16/00 Future Basin Characteristics Total Pervious CN Imper. CN Estimated For Entire Basin Area (ac) Area (ac) Area (ac) Tc (min.) 60.5 24.2 77 36.3 ---98—T 29.3 Sheet Flow ns L P2 s T T={0.42x(ns x L)^0.8)/ Lawn 0.15 130 2.0 0.028 13.4 {( P2)^0.5 x (s)^0.41 0.15 2.0 0.100 0.0 Short Prairie Grass and Lawns, ns=0.15 Shallow Conc. Flow k L s v T V= k Sgrt(s) , T= L/(v x 60) Gutter or roadsil 27 100 0.06 6.6136 0.3 27 0 0.065 6.8837 0.0 Pipe Flow Pipe 3300 3.5 15.7 Uses estimate of flow velocity, based on Manning Nomograph. Comments: Tc calculations per King County Manual - pp.3.5.2-5 Minimum Tc= 6.3 minutes. Cn-tc4.xls Page 1 iLEEll RUN till!I IT!I 1 .9 r1il ELM _ ■ �� Wilma!MwIMM oil I in IMI rd WON I ISO .�� MI .� � ' .- -ice :=./_ /�■1 � all .�. ..,� ice. '� ■ � ���■' Lake Washington Blvd / Burnett Ave. N Storm System Project D.Carey 3/16100 Final Analysis - Existing Conditions - For Subbasins KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.21B 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 -MODIFIED SBUHYD 4- ROUTE 5 -ROUTE2 6-ADDHYD 7-BASEFLOW 8-PLOTHYD 9-DATA 10-RDFAC 1 I -RETURN TO DOS ENTER OPTION: 2 SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2- 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR),DURATION(HOUR), PRECIP(INCHES) 25,24,3.4 C:\MODEL\Fawcett\Basins-exist-hyd.doc Page 1 of 3 For Existing Conditions ----------------------------------------------------------------------------------------------------------- * * y **** S.C.S. TYPE-lA DISTRIBUTION ******************** xxYxYrYY* 25-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP. ******** ----------------------------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1 0.76, 77, 0.7,98,35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.5 .8 77.0 .7 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .53 7.83 11698 SPECIFY: C -CONTINUE,N-NEWSTORM, P- PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 2 0.37, 77, 0.35, 98,35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .7 .4 77.0 .3 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .26 7.83 5800 SPECIFY: C-CONTINUE,N-NEWSTORM, P- PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 3 1.87, 77, 1.73,98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.6 1.9 77.0 1.7 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.30 7.83 28871 SPECIFY: C -CONTINUE,N-NEWSTORM, P-PRINT, S - STOP c C:\MODEL\Fawcett\Basins-exist-hyd.doc Page 2 of 3 ---------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 4 4.91, 77,4.53, 98,35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 9.4 4.9 77.0 4.5 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 3.42 7.83 75664 SPECIFY: C -CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 5 5.95, 77, 5.5,98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.4 5.9 77.0 5.5 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 4.15 7.83 91810 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 6 17.6, 77, 16.23, 98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 33.8 17.6 77.0 16.2 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 12.25 7.83 271130 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S- STOP s C:\MODEL\Fawcett\Basins-exist-hyd.doc Page 3 of 3 Lake Washington Blvd / Burnett Ave. N Storm System Project D.Carey 3/16/00 Final Analysis - Existing Conditions - 60.5 acre Basin KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.21 B 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3- MODIFIED SBUHYD 4- ROUTE 5- ROUTE2 6-ADDHYD 7 - BASEFLOW 8 - PLOTHYD 9 - DATA 10 - RDFAC 11 - RETURN TO DOS ENTER OPTION: 2 SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA 2 -7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-1A RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 10, 24, 2.9 ------------------------------------------------------------------------------------------------------------- *********** ******** S.C.S. TYPE-1A DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 31.5, 77, 29, 98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 31.5 77.0 29.0 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 17.46 7.83 392426 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\hyd 10 C:\MODEL\Fawcett\Exist-hyd-resuIts.doc Pagel of 3 SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S -STOP n STORM OPTIONS: 1 -S.C.S. TYPE-1A 2 -7-DAY DESIGN STORM 3- STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-1A RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 ------------------------------------------------------------------------------------------------------------- ******************** S.C.S. TYPE-1A DISTRIBUTION ******************** ********* 25-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP.********* ------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 31.5, 77, 29, 98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 31.5 77.0 29.0 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 21.90 7.83 484714 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\hyd25 C:\MODEL\Fawcett\Exist-hyd-results.doc Page2 of 3 SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP n STORM OPTIONS: 1 -S.C.S. TYPE-1A 2 -7-DAY DESIGN STORM 3 -STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-1A RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 100, 24, 3.9 ------------------------------------------------------------------------------------------------------------ ******************** S.C.S.TYPE-1A DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3.90"TOTAL PRECIP. ********* ------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 31.5, 77, 29, 98, 35 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 31.5 77.0 29.0 98.0 35.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 26.51 7.83 579695 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\hyd 100 SPECIFY: C - CONTINUE, N - NEWSTORM, P- PRINT, S - STOP s C:\MODEL\Fawcett\Exist-hyd-results.doc Page3 of 3 APPENDIX B Future Conditions Drainage Analysis Lk C -fA. BI�� /nC7� VL L. Carc ,3-4-00 31 FUTvRE C1vPIT�oiyS - LANd USE Ptr Ci fy Z -1,� ) O d 1 6 a F✓owe, �-r� �o. f'l air c�4 j "� 60 % .In'Ij-tfv A-f-r. c- s�i�hr zaaQ<a r��u�f:� ih To due- o oasc P-( V. z /N. 2 Cti = 7q� '13 I«sAf Twn . �Quu's m -C r V3 CAI _ _ �UU w�22 Qo�o �0r 4t- in 64Jiti C�s /• ( b 2-5- Yr 2`, 3 /oo - y r -3 /. 3 �=t S U Q Q AS S FOTJRE / [� !� _ R E s 0 L Ts Stti� bliS/'n / 1fCa �CYV. � "10��� �rr�1/v. Cdv%) Qr - 25P 1 I . y6ac 0, 58 -L 0. 98 0. cq Cfi 2 6, Z 0 . 29 0 . 43 . 31 3 3 . 60 I . q4 2. / 6 . 56 y q , Liy 3 .�� 5, 6-7 H. to 1�5 y. 58 6 . 8-7 �. 97 33, 33 13. 53 2o. 30 /y. 69 60, 5 2 6. 3 Cis � ES0LTS - F= U T URE - zs- yR SloRN► QP See- (its,;)j / / ISD rin. Y�. CJn CI TIY�I — ��� yY 01- i L �.✓�--F-� ti r n t� /��/C �--- � C q r! J �D D L v ( ACk VATZ-A AIV4ZI5/,5 z aa� 1 »-, -1 a �0000 0 c �UU �ryog< R RQoaer v 3 4-- �z 3 1 z a-- 1 N 3 3rd PL Ilk � O� 04 Q $ U L l b 9 N33rd 5t 5 Io N 32nd -5 Q6 � e✓) +ire nPs ��ca�•� bGS�� i i i Lake Washington Blvd / Burnett Ave. N Storm System Project D.Carey 3/16/00 Final Analysis - Future Conditions - For Subbasins KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.21B 1 -INFO ON THIS PROGRAM 2- SBUHYD 3 -MODIFIED SBU1 YD 4-ROUTE 5 -ROUTE2 6-ADDHYD 7-BASEFLOW 8-PLOTHYD 9-DATA 10-RDFAC 11 -RETURN TO DOS ENTER OPTION: 2 SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA 2- 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR),PRECIP(INCHES) 25,24,3.4 C:\MODEL\Fawcett\Basins-future-hyd.doc Page 1 of 3 --------------------------------------------------------------------------------------- ******************** S.C.S.TYPE-1A DISTRIBUTION ******************** ********* 25-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP. ********* ----------------------------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1 .58, 77, .88, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.5 .6 77.0 .9 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .64 7.83 12902 SPECIFY: C -CONTINUE,N-NEWSTORM,P-PRINT, S- STOP c --____--_---------------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 2 .29, 77, .43, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .7 .3 *77.0 .4 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .31 7.83 6336 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 3 1.44, 77,2.16, 98,30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.6 1.4 77.0 2.2 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.56 7.83 31748 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S- STOP c CAM ODEL\Fawcett\Basins-future-hyd.doc Page 2 of 3 ___----------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 4 3.77, 77, 5.67, 98,30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 9.4 3.8 77.0 5.7 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 4.10 7.83 83291 SPECIFY: C-CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 5 4.58, 77, 6.87, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.4 4.6 77.0 6.9 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 4.97 7.83 100978 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c ----------------------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 6 13.53, 77,20.3,98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 33.8 13.5 77.0 20.3 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 14.69 7.83 298363 ENTER[d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE(Y or N)? y SPECIFY: C- CONTINUE,N-NEWSTORM,P-PRINT, S- STOP s C:\MODEL\Fawcett\Basins-future-hyd.doc Page 3 of 3 Lake Washington Blvd / Burnett Ave. N Storm System Project D.Carey 3/16/00 Final Analysis - Future Conditions - 100-Year Storm - For Subbasins KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.21B 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 -MODIFIED SBUHYD 4 -ROUTE 5 - ROUTE2 6 -ADDHYD 7 - BASEFLOW 8 - PLOTHYD 9 - DATA 10-RDFAC 11 -RETURN TO DOS ENTER OPTION: 2 SBUIVSCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 100,24, 3.9 C:\MODEL\Fawcett\Basins-future-100hyd.doc Page 1 of 3 ------------------------------------------------------------------------------------------------------------- X XYY):YY%YY>CXYY)CY*!G** S.C.S.TYPE-IA DISTRIBUTION **r*xxxxY 100-YEAR 24-HOUR STORM **** 3.90" TOTAL PRECIP. *******x* ---------------------___---------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV), CN(IMPERV),TC FOR BASIN NO. 1 .58, 77, .88, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.5 .6 77.0 .9 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .76 7.83 15277 SPECIFY: C- CONTINUE,N-NEWSTORM,P-PRINT, S - STOP C ENTER: A(PERV),CN(PERV),A(IMPERV), CN(IMPERV),TC FOR BASIN NO. 2 .29, 77, .43,98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .7 .3 77.0 .4 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .37 7.83 7506 SPECIFY: C - CONTINUE,N -NEWSTORM, P- PRINT, S - STOP c ENTER: A(PERV),CN(PERV),A(EVIPERV),CN(IMPERV),TC FOR BASIN NO. 3 1.44, 77,2.16, 98,30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.6 1.4 77.0 2.2 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.86 7.83 37601 c C:\MODEL\Fawcett\Basins-future-100hyd.doc Page 2 of 3 ---------------------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 4 3.77, 77, 5.67, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 9.4 3.8 77.0 5.7 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 4.89 7.83 98642 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S - STOP c --------------------------------------------------------------------------------------- ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 5 4.58, 77, 6.87,98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.4 4.6 77.0 6.9 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 5.93 7.83 119595 SPECIFY: C - CONTINUE,N-NEWSTORM,P-PRINT, S- STOP C ---------------------___------------------------------------------------------------------------------ ENTER: A(PERV),CN(PERV),A(EUPERV),CN(IMPERV),TC FOR BASIN NO. 6 13.53, 77,20.30, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 33.8 13.5 77.0 20.3 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 17.51 7.83 353367 SPECIFY: C - CONTINUE,N -NEWSTORM, P- PRINT, S - STOP s C:\MODEL\Fawcett\Basins-future-100hyd.doc Page 3 of 3 Lake Washington Blvd / Burnett Ave. N Storm System Project D.Carey 3/16/00 Final Analysis - Future Conditions - 60.5 acre Basin KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPHPROGRAMS Version 4.21 B 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - MODIFIED SBUHYD 4 - ROUTE 5- ROUTE2 6 -ADDHYD 7- BASEFLOW 8 - PLOTHYD 9 - DATA 10- RDFAC 11 - RETURN TO DOS ENTER OPTION: 2 SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 -S.C.S. TYPE-lA 2 -7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 10, 24, 2.9 ------------------------------------------------------------------------------------------------------------- ******************** S.C.S. TYPEAA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90"TOTAL PRECIP.********* ------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 24.2, 77, 36.3, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 24.2 77.0 36.3 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 21.37 7.83 437285 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\fuhydlO C:\MODEL\Fawcett\Future-hyd-results.doc Pagel of 3 SPECIFY: C -CONTINUE, N - NEWSTORM, P- PRINT, S - STOP n STORM OPTIONS: 1 - S.C.S. TYPE-1A 2 -7-DAY DESIGN STORM 3 -STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-1A RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 ------------------------------------------------------------------------------------------------------------- ******************** S.C.S.TYPE-1A DISTRIBUTION ******************** ********* 25-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP. ********* -------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 24.2, 77, 36.3, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 24.2 77.0 36.3 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 26.28 7.83 533556 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\fuhyd25 C:\MODEL\Fawcett\Future-hyd-results.doc Page2 of 3 SPECIFY: C -CONTINUE, N - NEWSTORM, P - PRINT, S -STOP n STORM OPTIONS: 1 - S.C.S. TYPE-1A 2 -7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-1A RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 100, 24, 3.9 ------------------------------------------------------------------------------------------------------------- ******************** S.C.S. TYPE-1A DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3.90"TOTAL PRECIP.********* -------------------------------------------------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 24.2, 77, 36.3, 98, 30 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN Tc 60.5 24.2 77.0 36.3 98.0 30.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 31.32 7.83 631921 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:\model\fawcett\fu hyd 100 SPECIFY: C -CONTINUE, N - NEWSTORM, P- PRINT, S- STOP s C:\MODEL\Fawcett\Future-hyd-resuIts.doc Page3 of 3 APPENDIX C Future Conditions Backwater Analysis • 4S Puz � N zl 00 b • F z � c 7d T bN t F�' � mma f S tfE h E Al �� o'MUCH D D�DDDD 1 m mmmm c� Z oo-oi- g �S s l s 7 kN V Y I-L V M 4 � V g LWi3 AA Al 3-16-00 213 Pipes flu,:► /dw Q-Rato SC vntn'f Flow ` Ai dtl ( Maur �WWWWW ¢¢¢ ,D a oopCI°° ° 1 z 12. 2 5 cif 0 C�s 0 JNnNNN ¢til�llTLWW 1 1 2. 2 5 QS i s 0, 3 y hT TO r> SZNNN¢¢ �sas a 10 /6. 3 5 0 0 dge�� �6 35 Qy IH2. 6, zf 1, 30 1 f 0 0 6 0 0 s o b 4 0 0 3 2 I, fl Q2 0.26 0, 01 2 2 1 . 33 Qi 0. 53 0, 02 1 21, 90 D 0 U4Jtj An Cxl s�/hy �Ov�(�[ l/UnJ �), 2 5 rr. • LW61 eurneftAve /V D. Care 3-/6-00 '3/3 • FLOLi RAit.S Ft,r err hlrc- 400, S a 6a1,�7 fXc Ts ooa0007. w�G 21. R z 6. 3 LLwwwww /00 wN�NUU ywwwUU �NN V=162 988g�y 8 Rips BACK (AiA TER Rr-5 vLTS Fo Z y n !°,i4& J�•S 4/->j h o tc/ me c c a rrr d t 26 cfr ( Sth i1'It,��iv� ) corref�ogd,'n9 fa FUTURE C4.vp/T/ONs 2S-yr� 24"�►r s4or" evt. 4 Pc-th pow . s e e, �J r/.1 fiou t 4, de- • • D. -oo i Q A ATZ-A A 1V4 IYsis z �c a q« �000co c rUU ��vtiZNww � F V3 m N 3 3rd PL Ix J O� Q ' `i Q g I U l V 9 N33rd 5t o S 10 N 32nd .St Q6 ( 2r, 4ire n�s4feo, bUS�n i i I / •r - NO ;■ � ��■.���1� �:,� Iy.4 �J��1� Ira WigVAR ► �.� '�i ����,,1��1■ �.. Long E ISM rg If OF a 11 FAI �,� ____J �-___C7�f r'�J��r���.�E.��f.��1i,�f i�I�'f:'C.�� ���� � f � ►�� /�■1 �ai� �S�// '�is��t•.—rL_—tt•�.t•II•����rr�.�1IL_i/�7�t/�\ JJ ■ r I Ida LI�s ::��: i� � �� 1 �_r:.�� r.A., fr . ■� F���I�����ri � �� �. mot•\.ttiti�IJ►i�����'—� 1` L�C47 DrAp"I 19�!`�G��� �. tl oil J ■. fir' ■ _ slim ---- �. r.\\ a t•r «rrrt.■_o.:�rt.rr�.n��rt/��t..uo�� • 1 � n 1 � .� .,.�.�� . ��, Irk ���,,�. \ 7i1ii�17� I!��I'7�Irf�t�l�.�iG ��■?■?■��■�.��"'7 i�7��� d ts-t i F/I l): !z d i be l 11 434614 ,� - c6- JLb / L \ 43.E O f 3 C -l2 .C7r 11 ) J - ! / i^A W ' l � E 1 IT 7,l ) 1 J_J ] 7 � �s . S i l i ` S IT /�, Dr'a(na9e� J G 3/ 3 ✓t -ju"anal a Q ! l � r tf i 1 •-� 3 f 7- 3.0 -10 3 - f 3 =8 f 3 -7 \ 1 •q7-C i S r: {l i qq t �? f J _ ! 31 / 1 \1I D \ 11'r J --NE J r 1\iilk 3.68- 88-6 3e 8- 3 1 8-7 r LklIO -IU r i r3 3: /-3 -6/ i'�/ .C9- - �7" D -3 1,D9-3 /'3 DY- 'O th t ' • � a � l 2 � t � i� t tc;�.�. 3 ' 1; .' 00 J ; 1 K I I L �H ' NiAt1 1 1 1 % 1 I1 IA\\ \ 'IIr �Rd) �, \, 7.cP-►._ AKA (/1�ASHl/�lG% N �LvO I \\\ \ buRNETT Ave N - \� � ' 0'\- -= %'': D. Card, 3-14-00 IL�;I Q-Ratio - Flow Calculation Sheet* 03/16/00 Updated 8/10/00 Lake Washington Blvd/ Burnett Ave N Storm System D.Carey Event- Existing Conditions 25-Year, 24-Hour Storm Cumulative Flow In Inflow at Junction Flow Total Q-Ration Pipe Main Line Subbasin Flow(cfs) Multiplier inflow Q-in Q-existing (Q-i/Q-ex) Segment (cfs) (cfs) (cfs) (cfs) (cfs) 10 12.25 Q6 0.00 1 0.00 12.25 0.00 0.00 [ First Segment has no Q-ratio 0.00 New flow 12.25 = 9 12.25 Q5 4.15 1.0 __[ 4.15 4.15 12.25 0.34 0.00 4.15 New flow 16.40 8 16.40 0.00 0.00 16.40 1 0.00 0.00 0.00 New flow 16.40 7 16.40 Q4 3.42 1.0 3.42 3.42 16.40 0.21 0.00 3.42 New flow 19.82 6 19.82 Q3 1.30 1.0 1.30 1.30 19.82 1 0.07 0.00 F 1.30 I New flow 21.12 5 21.12 0.00 0.00 21.12 0.00 0.00 I 0.00 1 New flow 21.12 4 21.12 0.00 1 0.00 21.12 1 0.00 F 0.00 1 0.00 1 New flow 21.12 3 21.12 Q2 0.26 1.0 __L :.�26 0.26 21.12 0.01 0 0.26 1 New flow 21.38 2 21.38 Q1 0.53 1.0 0.53 0.53 21.38 0.02 0.00 0.53 1 New flow 21.91 1 21.91 0.00 1 0.00 21.91 0.00 0.00 0.00 New flow 21.91 * Input items in boxes: Pipe Segment, Flow in first segment,subbasin name,subbasin inflow,flow-multiplier. Flow multiplier allows for flow from a subbasin to be split(i.e. 1/2 Q5 to one junction), use 1.0 for full flow. Yellow shading are calculation cells,do not change. D.Carey gratio.xls Q-Ratio - Flow Calculation Sheet* 03/16/00 Updated 8/10/00 Lake Washington Blvd/Burnett Ave N Storm System D.Carey Event-Future Conditions 25-Year, 24-Hour Storm Cumulative Flow In Inflow at Junction Flow Total Q-Ration Pipe Main Line Subbasin Flow(cfs) Multiplier inflow Q-in Q-existing (Q-i/Q-ex) Segment (cfs) (cfs) (cfs) (cfs) (cfs) 10 14.69 Q6 0.00 0.00 14.69 1 0.00 i 0.00 First Segment has no Q-ratio 0.00 New flow 14.69 i 9 14.69 Q5 4.97 1.0 4.97 4.97 14.69 0.34 0.00 i 4.97 New flow 19.66 8 19.66 0.00 0.00 19.66 0.00 0.00 0.00 I New flow 19.66 7 19.66 Q4 4.10 1.0 4.10 4.10 19.66 1 0.21 0.00 4.10 New flow 23.76 6 23.76 Q3 1.56 1.0 1.56 1.56 23.76 0.07 0.00 i 1.56 s New flow 25.32 5 25.32 0.00 0.00 25.32 1 0.00 0.00 i 0.00 New flow 25.32 4 25.32 0.00 0.00 25.32 0.00 0.00 0.00 New flow 25.32 3 25.32 Q2 0.31 1.0 0.31 1 0.31 25.32 0.01 0.00 0.31 [ New flow 25.63 2 25.63 Q1 0.64 1.0 0.64 1 0.64 25.63 0.02 0.00 0.64 New flow 26.27 1 26.27 0.00 1 0.00 26.27 0.00 0.00 0.00 = New flow 26.27 Input items in boxes: Pipe Segment, Flow in first segment,subbasin name,subbasin inflow,flow-multiplier. Flow multiplier allows for flow from a subbasin to be split(i.e. 1/2 Q5 to one junction),use 1.0 for full flow. Yellow shading are calculation cells,do not change. D.Carey qratio.xls Q-Ratio -Flow Calculation Sheet* 03/16/00 Updated 8/10/00 Lake Washington Blvd /Burnett Ave N Storm System D.Carey Event-Future Conditions 100-Year, 24-Hour Storm Cumulative Flow In Inflow at Junction Flow Total Q-Ration Pipe Main Line Subbasin Flow(cfs) Multiplier inflow Q-in Q-existing (Q-i/Q-ex) Segment (cfs) (cfs) (cfs) (cfs) (cfs) 10 17.50 Q6 0.00 0.00 17.50 0.00 0.00 First Segment has no Q-ratio 0.00 New flow 17.50 9 17.50 Q5 5.93 1.0 5.93 5.93 17.50 0.34 0.00 5.93 New flow 23.43 8 23.43 0.00 0.00 23.43 1 0.00 0.00 0.00 New flow 23.43 7 23.43 Q4 4.89 1.0 ___[==189 4.89 23.43 0.21 00 4.89 i New flow 28.32 6 28.32 Q3 1.86 1.0 1.86 1.86 28.32 0.07 0.00 1.86 New flow 30.18 5 30.18 _L 0.00 0.00 30.18 0.00 0.00 0.00 New flow 30.18 4 30.18 0.00 0.00 30.18 0.00 0.00 0.00 New flow 30.18 3 30.18 Q2 0.37 1.0 __[ 0.37 0.37 30.18 1 0.01 0.00 i 0.37 New flow 30.55 2 30.55 Q1 0.76 1.0 0.76 0.76 30.55 0.02 0.00 1 0.76 New flow 31.31 1 31.31 0.00 0.00 31.31 0.00 0.00 0.00 New flow 31.31 * Input items in boxes: Pipe Segment, Flow in first segment,subbasin name,subbasin inflow,flow-multiplier. Flow multiplier allows for flow from a subbasin to be split(i.e. 1/2 Q5 to one junction), use 1.0 for full flow. Yellow shading are calculation cells,do not change. D.Carey qratio.xls Lake Washington Blvd /Burnett Ave N Storm System D. Carey 6/26/00 Backwater Analysis - Final Design ( based on Ringel Survey, May 2000) Existing Conditions Q peak Future Conditions Q peak(cfs) (cfs) 10-yr, 24-hr 17.5 21.4 25-yr, 24-hr 21.4 26.3 100-yr, 24-hr 1 26.3 1 31.3 Uses 21.7" HDPE ID Pipe for pipe 5. 13 01< ay" P;P�1 BACKWATER COMPUTER PROGRAM FOR PIPES ,Z f, f,i,c S T 0 4, 24 N{7I'L Pipe data from file:c:\model\fawcett\bw-8.bwp Using a broad-crested weir at intermediate junctions Individual CB's subject to surcharged condition should be simulated by raising the overflow elevation GV 4tiol to an appropriate height above the rim elevation. � OVIr `f6�uJ , Tailwater Elevation:26.1 feet Discharge Range: 18. to 32. Step of 2. [cfs] Overflow Elevation:101.4 feet Weir:NONE Upstream Velocity:0.5 feet/sec PIPE NO. 1: 41 LF - 2411CP @ 4 .51% OUTLET: 26.05 INLET: 27. 90 INTYP: 5 JUNC NO. 1: OVERFLOW-EL: 34 .05 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: 0.00 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 18.00 2.55 30.45 * 0.012 1.53 0.82 0.05 0.82 1.53 ***** 2.55 20.00 2.85 30.75 * 0.012 1.61 0.87 0.05 0.87 1.61 ***** 2.85 22.00 3.19 31.09 * 0.012 1.68 0. 91 0.05 0. 91 1.68 ***** 3.19 24.00 3.55 31.45 * 0.012 1.74 0. 96 0.05 0.96 1.74 ***** 3.55 I o-yr 26.00544 3. 96 31.86 * 0.012 1.79 1.00 0.05 1.00 1.79 ***** 3. 96 Fo 15_yr 28.001}tr 4.39 32.29 * 0.012 1.83 1.05 0.05 1.05 1.83 ***** 4.39 30.00 4 .86 32.76 * 0.012 1.87 1.09 0.05 1.09 1.87 ***** 4.86 32.00 5.35 33.25 * 0.012 1.89 1.14 0.05 1.14 1.89 ***** 5.35 PIPE NO. 2: 49 LF - 2411CP @ 11.12% OUTLET: 27.75 INLET: 33.20 INTYP: 5 JUNC NO. 2: OVERFLOW-EL: 43.70 BEND: 90 DEG DIA/WIDTH: 4.5 Q-RATIO: 0.02 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 18.00 2.70 35. 90 * 0.012 1.53 0. 64 2.70 2.70 1.53 ***** 2.70 20.00 3.05 36.25 * 0.012 1. 61 0.68 3.00 3.00 1.61 ***** 3.05 22.00 3.43 36. 63 * 0.012 1.68 0.71 3.34 3.34 1.68 ***** 3.43 24.00 3.85 37.05 * 0.012 1.74 0.75 3.70 3.70 1.74 ***** 3.85 26.00 4.30 37.50 * 0.012 1.79 0.78 4 .11 4.11 1.79 ***** 4 .30 28.00 4.79 37.99 * 0.012 1.83 0.81 4 .54 4.54 1.83 ***** 4 .79 30.00 5.32 38.52 * 0.012 1.87 0.84 5.01 5.01 1.87 ***** 5.32 32.00 5.88 39.08 * 0.012 1.89 0.87 5.50 5.50 1.89 ***** 5.88 PIPE NO. 3: 49 LF - 24"CP @ 1.12% OUTLET: 36.70 INLET: 37.25 INTYP: 5 JUNC NO. 3: OVERFLOW-EL: 42.40 BEND: 0 DEG DIA/WIDTH: 4 .5 Q-RATIO: 0.01 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 17. 65 2.10 39.35 * 0.012 1.52 1.21 0.00 1.21 1.52 ***** 2.10 19. 61 2.30 39.55 * 0.012 1.60 1.30 0.00 1.30 1.60 ***** 2.30 21.57 2.51 39.76 * 0.012 1.67 1.40 0.00 1.40 1.67 ***** 2.51 23.53 2.73 39.98 * 0.012 1.73 1.50 0.35 1.50 1.73 ***** 2.73 25.49 2.97 40.22 * 0.012 1.78 1. 61 0.80 1. 61 1.78 ***** 2.97 27.45 3.24 40.49 * 0.012 1.82 1.77 1.29 1.77 1.82 ***** 3.24 29.41 3.52 40.77 * 0.012 1.86 2.00 1.82 1.86 2.06 2.81 3.52 31.37 3.82 41.07 * 0.012 1.89 2.00 2.38 2.38 2.63 3.48 3.82 PIPE NO. 4: 73 LF - 24"CP @ 1.03% OUTLET: 37.25 INLET: 38.00 INTYP: 5 JUNC NO. 4: OVERFLOW-EL: 44.00 BEND: 75 DEG DIA/WIDTH: 4 .5 Q-RATIO: 0.00 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 17.47 2.52 40.52 * 0.012 1.51 1.24 2.10 2.10 1.51 ***** 2.52 19.41 2.87 40.87 * 0.012 1.59 1.34 2.30 2.30 2.02 2.87 2.81 21.36 3.34 41.34 * 0.012 1. 66 1.43 2.51 2.51 2.31 3.34 3.12 23.30 3.87 41.87 * 0.012 1.72 1.54 2.73 2.73 2.64 3.87 3.46 25.24 4.44 42.44 * 0.012 1.77 1.67 2.97 2.97 3.00 4 .44 3.83 27.18 5.05 43.05 * 0.012 1.82 2.00 3.24 3.24 3.38 5.05 4 .23 29.12 5.71 43.71 * 0.012 1.85 2.00 3.52 3.52 3.80 5.71 4 . 66 **************** OVERFLOW ENCOUNTERED AT 31.06 CFS DISCHARGE ***************** **************** OVERFLOW HEADWATERS ASSUME 6.4 FT. BROAD_WEIR **************** 31.06 6.00 44 .42 * 0.012 1.88 2.00 3.82 3.82 4 .24 6.42 5.12 ************************** PIPE FLOW PLUS WEIR FLOW *************************** a PIPE NO. 5: 103 LF - 21"CP @ 26.70% OUTLET: 38.00 INLET: 65.50 INTYP: 5 JUNC NO. 5: OVERFLOW-EL: 70.50 BEND: 60 DEG DIA/WIDTH: 4.5 Q-RATIO: 0.00 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 17.47 2. 63 68.13 * 0.012 1.53 0.53 2.52 2.52 1.53 ***** 2. 63 19.41 3.02 68.52 * 0.012 1.60 0.55 2.87 2.87 1.60 ***** 3.02 21.36 3.46 68. 96 * 0.012 1.65 0.58 3.34 3.34 1. 65 ***** 3.46 23.30 3.93 69.43 * 0.012 1.69 0. 61 3.87 3.87 1. 69 ***** 3. 93 25.24 4.44 69. 94 * 0.012 1.72 0. 64 4.44 4.44 1.72 ***** 4.44 **************** OVERFLOW ENCOUNTERED AT 27.18 CFS DISCHARGE ***************** **************** OVERFLOW HEADWATERS ASSUME 6.4 FT. BROAD WEIR **************** 27.18 5.00 70.50 * 0.012 1.74 0. 66 5.05 5.05 1.74 ***** 5.00 ************************** PIPE FLOW PLUS WEIR FLOW *************************** 27.18 5.00 70.50 * 29.12 5.22 70.72 * 30.75 5.33 70.83 * PIPE NO. 6: 68 LF - 24"CP @ 9.56% OUTLET: 65.50 INLET: 72.00 INTYP: 5 JUNC NO. 6: OVERFLOW-EL: 77.00 BEND: 80 DEG DIA/WIDTH: 4.5 Q-RATIO: 0.06 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 17.47 2.51 74 .51 * 0.012 1.51 0.66 2.63 2.63 1.51 ***** 2.51 19.41 2.83 74.83 * 0.012 1.59 0.70 3.02 3.02 1.59 ***** 2.83 21.36 3.16 75.16 * 0.012 1.66 0.73 3.46 3.46 1.66 ***** 3.16 23.30 3.52 75.52 * 0.012 1.72 0.77 3.93 3.93 1.72 ***** 3.52 25.24 3. 92 75.92 * 0.012 1.77 0.80 4 .44 4 .44 1.77 ***** 3.92 27.18 4.35 76.35 * 0.012 1.82 0.83 5.00 5.00 1.82 ***** 4.35 29.12 4.81 76.81 * 0.012 1.85 0.87 5.22 5.22 1.85 ***** 4.81 **************** OVERFLOW ENCOUNTERED AT 30.75 CFS DISCHARGE ***************** **************** OVERFLOW HEADWATERS ASSUME 6.4 FT. BROAD WEIR **************** 30.75 5.00 77.22 * 0.012 1.88 0.89 5.33 5.33 1.88 ***** 5.22 ************************** PIPE FLOW PLUS WEIR FLOW *************************** 30.75 5.00 77.00 * PIPE NO. 7: 220 LF - 24"CP @ 0.59% OUTLET: 72.00 INLET: 73.30 INTYP: 5 JUNC NO. 7: OVERFLOW-EL: 79.80 BEND: 0 DEG DIA/WIDTH: 4.5 Q-RATIO: 0.21 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 16.48 2. 61 75.91 * 0.012 1.47 1.45 2.51 2.51 2.21 2. 61 2.19 18.31 3.25 76.55 * 0.012 1.55 1.60 2.83 2.83 2.76 3.25 2.39 20. 15 3.95 77.25 * 0.012 1.62 1.82 3.16 3.16 3.35 3.95 2.61 21.98 4 .71 78.01 * 0.012 1.68 2.00 3.52 3.52 3. 99 4.71 2.86 23.81 5.54 78.84 * 0.012 1.74 2.00 3.92 3.92 4.70 5.54 3.12 25.64 6.43 79.73 * 0.012 1.78 2.00 4 .35 4 .35 5.46 6.43 3.41 **************** OVERFLOW ENCOUNTERED AT 27.47 CFS DISCHARGE ***************** **************** OVERFLOW HEADWATERS ASSUME 6.4 FT. BROAD WEIR **************** 27.47 6.50 80. 69 * 0.012 1.82 2.00 4 .81 4 .81 6.27 7.39 3.71 ************************** PIPE FLOW PLUS WEIR FLOW *************************** 29.01 6. 69 79.99 PIPE NO. 8: 45 LF - 24"CP @ 0.67% OUTLET: 73.30 INLET: 73.60 INTYP: 5 JUNC NO. 8: OVERFLOW-EL: 80.10 BEND: 0 DEG DIA/WIDTH: 4 .5 Q-RATIO: 0.00 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 13.62 2.61 76.21 * 0.012 1.33 1.22 2.61 2.61 2.46 2. 61 1.81 15.14 3.31 76.91 * 0.012 1.41 1.31 3.25 3.25 3.12 3.31 1.91 16.65 4 .08 77. 68 * 0.012 1.48 1.40 3.95 3.95 3.86 4.08 2.02 18.16 4 .93 78.53 * 0.012 1.54 1.50 4.71 4.71 4.66 4. 93 2.15 19. 68 5.84 79.44 * 0.012 1. 60 1. 61 5.54 5.54 5.53 5.84 2.30 **************** OVERFLOW ENCOUNTERED AT 21.19 CFS DISCHARGE ***************** **************** OVERFLOW HEADWATERS ASSUME 6.4 FT. BROAD WEIR **************** 21. 19 6.50 80.43 * 0.012 1.65 1.78 6.43 6.43 6.47 6.83 2.45 ************************** PIPE FLOW PLUS WEIR FLOW *************************** 21.42 6.55 80.15 23.98 6.78 80.38 PIPE NO. 9: 220 LF - 24"CP @ 4.55% OUTLET: 73.60 INLET: 83.60 INTYP: 5 JUNC NO. 9: OVERFLOW-EL: 90.10 BEND: 0 DEG DIA/WIDTH: 4 .5 Q-RATIO: 0.34 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 13.62 1. 68 85.28 * 0.012 1.33 0.70 2.61 2. 61 1.33 ***** 1.68 15.14 1.76 85.36 * 0.012 1.41 0.74 3.31 3.31 1.41 ***** 1.76 16.65 1.84 85.44 * 0.012 1.48 0.78 4 .08 4.08 1.48 ***** 1.84 18.16 1.95 85.55 * 0.012 1.54 0.82 4 .93 4. 93 1.54 ***** 1.95 19. 68 2.07 85.67 * 0.012 1.60 0.86 5.84 5.84 1.60 ***** 2.07 17.51 1.90 85.50 * 0.012 1.60 0.86 0.00 0.86 1. 60 ***** 1.90 21.42 2.21 85.81 * 0.012 1.66 0.90 6.55 6.55 1.66 ***** 2.21 23. 98 2.44 86.04 * 0.012 1.74 0.96 6.78 6.78 1.74 ***** 2.44 PIPE NO.10: 270 LF - 18"CP @ 2.96% OUTLET: 87.00 INLET: 95.00 INTYP: 5 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 10.17 2.30 97.30 * 0.012 1.23 0.77 0.00 0.77 1.23 ***** 2.30 11.30 2. 61 97.61 * 0.012 1.29 0.82 0.00 0.82 1.29 ***** 2.61 12.43 2. 95 97.95 * 0.012 1.34 0.87 0.00 0.87 1.34 ***** 2.95 13.55 3.32 98.32 * 0.012 1.37 0. 92 0.00 0.92 1.37 ***** 3.32 14 .68 3.73 98.73 * 0.012 1.40 0. 97 0.00 0.97 1.40 ***** 3.73 13.07 3.16 98.16 * 0.012 1.40 0. 97 0.00 0.97 1.40 ***** 3.16 15.98 4.24 99.24 * 0.012 1.43 1.03 0.00 1.03 1.43 ***** 4.24 17.89 5.06 100.06 * 0.012 1.46 1.13 0.00 1.13 1.46 ***** 5.06 L W5j Q Cti r etc fl 14 uC �---- ------ ( `' --J - O D I �� Q A 6 k t/✓ A T f A A A14 L y.S/,S z aazz »--C 0000co zwN� ; 4 6 Q � Pv�B v 3 pZ Q3 2 Ilk IV3 3,J PL O� Q 8 U Z LJ (�J -{ y / 33rd St 5 io N 32nd -5 (o evi4 ve nPs�/CGM bcS�� t