Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SWP272344(2)
N. 40TH STREET / MEADOW AVE. N. STORMWATER SYSTEM IMPROVEMENTS DRAINAGE REPORT Prepared by: City of Renton Planning/ Building/ Public Works Department Surface Water Utility May 1998 (Revised October 1999) N. 40TH STREET/ MEADOW AVE. N. STORMWATER SYSTEM IMPROVEMENTS DRAINAGE REPORT CERTIFICATE OF ENGINEER The engineering material and data contained in this report were prepared under the supervision and direction of the undersigned, whose seal as a Registered Professional Engineer is affixed below. Ronald J. Straka, P.E. Engineering Supervisor Daniel W. Carey, P.E. Project Manager TABLE OF CONTENTS 1 Introduction A. Site Location B Purpose Location Figures 2 Existing Conditions Drainage Analysis A Soils B Existing Drainage Systems C Drainage Basins D Drainage Analysis Method E Analysis Results Drainage Subbasins 3 Future Conditions Drainage Analysis A Future Conditions B Proposed Drainage System C Drainage Analysis Method D Analysis Results Proposed Drainage System Schematic 4 Backwater Analysis A Analysis Method B Analysis Results Backwater Analysis Results Appendices A Existing Conditions Drainage Analysis B Future Conditions Drainage Analysis C Future Conditions Backwater Analysis D Barbee Mill Drainage System SECTION 1 INTRODUCTION The area around Meadow Avenue N. consists primarily of older single family homes. The street is asphalt with a gravel, dirt, and grass shoulder. There are no curbs, gutters and sidewalks (except for limited areas). During prolonged rains, runoff tends to pond on the shoulder, and in residential driveways and yards. In the past, the City Public Works Maintenance Department installed asphalt curbs to reduce the flooding at residences. However, this tended to increase the flooding problems for the downstream shoulder and residences. During 1995-96 several new developments occurred next to Meadow Avenue which seemed to increase the runoff and amount of ponding along the street. A. Site Location N. 40th Street and Meadow Ave. N. is located approximately 4.0 miles north of City Hall, just east of Lake Washington Blvd., in the Kennydale area (see figures at end of section). The area is in the East Lake Washington drainage basin. B. Purpose The project is intended to provide a drainage system for the 1300-1400 block of N. 40th Street and the 3700-3900 block of Meadow Avenue N. to reduce the major ponding along the gravel shoulders. Local ponding along the road and driveways probably cannot be completely eliminated until a curb and gutter system is installed along the entire street. The runoff and backwater analysis assumed that all runoff from the subbasins would flow directly into the drainage system. The use of onsite detention systems for new developments, as required in the King County Surface Water Design Manual, would reduce the peak flows reaching the new drainage system and potential for overflow. \\CENTRAL\SYS2\DEPTS\PBPIMDIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Pagel � �I " � Lam,► *JIM O. Project Location HIMINI IIIII�II�I�•� .v �1 � •_ �„� . �'�11111111� Mmis ©=aa� .ten ' ■tea ■ �� OEM- MEN U HE Project • • 000 North Storm System Project Scale: 1 Inch 000 Feet City of Renton • /III '�' s � - III/' !� .:�'�■ ��I no fill "NOR �1�RI1:i1111/ �� � • . 11��11l�uIl�ull/A ��� /INII ' II lipIV HIM 0 AILI!J:11� 1 �IIIH9'IM�.11ia�/u.ci WE owns IHIIri3ialuRH — a AI 11l111 iiii-C111 lflrll H�9u/:1l111! WEi+ � � qua- oil l/11 .�. IHIIIIIII►1[�is IilrllliiSllfCiN11 _ ■! 1�1111i!MM�I!11/HI ' J �IallHlrtll��e1��� ■ I,. �� �111/ii�� NM1SO 1�111 � � � ■. � _ �. ■ ii illllil►� Project Vicinity N 40th St. / Mea. . 000 North Storm System Project Scale: 1 Inch = 1000 Feet City of Renton SECTION 2 EXISTING CONDITIONS DRAINAGE ANALYSIS The calculations and figures for the Existing Conditions Analysis are in Appendix A. A. Soils The Soil Conservation Service Soil Survey for King County shows the soils in the area as "InC", Indianola series (sheet no. 5). It describes "InC" as made up of somewhat excessively drained soils that formed under conifers in sandy, recessional, stratified, glacial drift. Permeability is rapid, runoff is slow to medium. A small portion of the drainage basin on the west side is shown as "AgC", Alderwood series. It describes "AgC" as made up of moderately well drained soils that have a weakly consolidated to strongly consolidated substratum at a depth of 24 to 40 inches. Permeability is moderately rapid in the surface layers and subsoil, and very slow in the substratum, runoff is slow to medium. Soil group "A" (low runoff potential) was used to determine runoff curve numbers. B. Existing Drainage Systems N. 40th Street and Meadow Ave. N. are asphalt streets with gravel, dirt, and grass shoulders. There is no established drainage system along the 3800 and 3900 blocks of Meadow Avenue N. During prolonged rainfall ponds 4 to 6 feet wide and 2 to 3 inches deep form along the roads shoulders. Runoff flows north along the shoulders until it reaches the ditch on the south side of N. 40th Street. Along the south side of N. 40th Street, runoff flows to the west in a shallow grassed swale. Just before the intersection with Park Avenue runoff enters an existing 12-inch pipe. From the intersection with Park Ave. to Lake Washington Blvd. there is a 12-inch drainage system along the south side of N. 40th Street. The existing 12-inch drainage system connects to a system in Lake Washington Blvd. The system in Lake Washington Blvd. was improved as part of a Transportation Dept. project (SWP-2292, sheet 23 of 53). From Lake Washington Blvd. the drainage system drains to the west under the railroad berm and into a drainage system on the Barbee Mill property. The system on the Barbee Mill property is a private system. Runoff flows from a culvert under the railroad berm, in a small open ditch, into a 15-inch CPEP pipe, and into Lake Washington. With the owner's permission the system was measured and the invert elevations surveyed. The result are shown in Appendix D. The capacity of the private system is limited by the open ditch and inlet conditions to the 15-inch pipe. The ditch is approximately 4 feet wide and 1 foot deep. Depending on the ditch roughness and slope it has a capacity of 8 to 10 cfs. The ditch drains into the 15-inch pipe. \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 2 There is only 2 to 4 inches of headwater above the pipe inlet before water will overflow. The inlet control nomograph gives the inlet capacity as 4 to 5 cfs. The owner (Barbee Mill - Robert Cujini (425) 226-3900) was contacted regarding the City project. He was told that there would probably be a small increase in peak runoff due to the new drainage system in Meadow Avenue. However, all the runoff from that area currently drains to his system, only at a slower rate. As development occurs, the flow will increase and the system on the Barbee Mill property will become less capable to handle the larger flows. We mentioned his improving the Barbee Mill system, or turning it over to the City in an easement. Because of potential property development Mr. Cujini was not interested in granting an easement, and preferred to maintain private ownership of the drainage system at that time. C. Drainage Basins The total drainage area for the project is 31.04 acres. The area was divided into 9 subbasins for drainage and flow analysis. The drainage subbasins used for the analysis are shown in the figure at the end of this section. The area consists primarily of single family residences. The latest City aerial photo and onsite observation were used to determine the land use conditions and approximate number of dwelling units per acre for each subbasin. The density ranged from 2.0 to 3.5 dwelling units per acre. For existing conditions the basin was analyzed as follows Total Area (acres) Impervious Area (acres) Pervious Area (acres) --] 31.04 9.83 21.21 In general, the drainage area slopes to the northwest toward Lake Washington. The area has a moderate slope around the south end of Meadow Ave. N. (7 percent), a flatter area at the north end of Meadow Ave. (0.5 to 1 percent), and steeper on the west end of N. 40th Street (12 percent). D. Drainage Analysis Method The existing drainage basin was analyzed using the methods and procedures in the 1990 King County Surface Water Design Manual (KCM). Peak runoff rates and volumes were estimated using the Santa Barbara Unit Hydrograph (SBUH) method by using the King County "HYD" computer program. The drainage basin was analyzed using the SCS Type la rainfall distribution for the following storm events: 25-Year, 24-Hour 3.4 Inches 100-Year, 24-Hour 3.9 Inches \\CENTRAL\SYS2\DEPTS\PBPw\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 3 The time of concentration for the entire basin was determined using the travel time equations in Chapter 3 of the KCM. The time of concentration for existing conditions was estimated at 22 minutes. The travel time was based on sheet flow over grassed areas, shallow concentrated flow and open channel flow along street shoulders, and pipe flow in the existing pipe system. The basin characteristics and time of concentration calculations are included in Appendix A. To simplify the design process, the longest time of concentration (22 minutes) was used to determine the peak flow for each individual subbasin. The peak flows from each subbasin were added together where they would be combined in the proposed drainage system. The correct procedure would be to work from the bottom of the entire basin upstream, calculating a time of concentration and peak flow for each subbasin, then adding the hydrograph from each subbasin together to get a combined hydrograph for the entire basin. For a basin this small the difference in peak flow is not worth the additional time and effort needed for the more detailed analysis. E. Analysis Results The peak flows for each drainage basin estimated by the SBUH method are given in the following table, and the actual printouts are included in Appendix A. Existing Conditions Subbasin Peak Flow Peak Flow 25-Year, 24-Hour (cfs) 100-Year, 24-Hour (cfs) 1 1.61 2.05 2 1.07 1.37 3 1.46 1.86 4 0.45 0.58 5 0.36 0.46 6 0.96 1.20 7 0.84 1.06 8 1.49 1.85 9 0.65 0.84 Total 8.89 11.27 \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 4 I i o a ° o 0 0 0 0 0 SECTION 3 FUTURE CONDITIONS DRAINAGE ANALYSIS A. Future Conditions The City Comprehensive Land Use Plan identifies the area as residential with a density of 8 dwelling units per acre(DU/acre). Using 8 DU/acre for potential future conditions the basin was analyzed as follows Total Area (acres) Impervious Area (acres) Pervious Area (acres) 31.04 18.62 12.42 The analysis does not account for any potential stormwater detention systems that may be required for developments in the drainage basin. B. Proposed Drainage System The proposed drainage system schematic drawing is shown at the end of this section. The proposed system would start at node 2, in Lake Washington Blvd. The new system would be installed from Lake Washington Blvd. to the east, along the south side of N. 40th Street (replacing the existing 12-inch system), to Meadow Ave. N. In Meadow Ave., the new system would be located on the east side of the street and would run to the south to N. 36th Street. The proposed drainage system was designed to extend to N. 36th Street to allow for future residential construction and expansion of the drainage system. Manholes would be located approximately every 300 feet and catch basins would be connected to the manholes. Future developments in the drainage basin would be able to connect their on-site drainage systems to the proposed manholes, or construct new manholes on the system to connect into. At this time it does not appear necessary to construct a new system all the way up Meadow Ave. to N. 36th Street. Due to the road's slope, the south end of Meadow Ave. does not have a problem with ponded water, and flooding has not been seen along the shoulders during storm events. Actual project construction may only extend to slightly past N. 38th Street to connect to an existing pipe/culvert on the west side of the Meadow Avenue. C. Drainage Analysis Method The drainage basins used for the future conditions analysis are the same as the drainage basins used for existing conditions. The basins were analyzed using the maximum amount of impervious area that would be allowed, as described in Section A above. \\CENTRAL\SYS2\DEPTS\PBPw\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 5 The time of concentration for the developed basin and new drainage system was estimated at 16 minutes using the travel time equations in Chapter 3 of the KCM. The travel times were based on sheet flow over grassed areas, shallow concentrated flow, and pipe flow in the proposed new pipe system. The basin characteristics and time of concentration calculations are included in Appendix B. To simplify the design process the longest time of concentration (16 minutes) was used to determine the peak flow for each individual basin. The peak flows from each basin were added together where they would be combined in a proposed drainage system. D. Analysis Results The peak flows for each drainage basin estimated by the SBUH method are given in the following table, and the actual printouts are included in Appendix B. Future Conditions Subbasin Peak Flow Peak Flow 25-Year, 24-Hour (cfs) 100-Year, 24-Hour (cfs) 1 2.82 3.37 2 1.88 2.25 3 2.57 3.07 4 0.87 1.04 5 0.63 0.76 6 1.46 1.75 7 1.36 1.64 8 2.25 2.69 9 1.27 1.51 Total 15.11 18.08 \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOCS\l999\CURRENT\99-684.DOC Page 6 b� 9l is 147C, N 8� /lop i SI 3 tb A r z � l s� t7 �b ? �b ? Zb it I Mpl� t W � ;N of b e t S Ma,=1 h RvmN "MIX `n 0 -"', tS yr oh tiNNNm ;mB'3`7D N o00000 Cy D.mmmmDD � r S'/S 7 VIV d'71 t!M H d fJ' SECTION 4 BACKWATER ANALYSIS A. Analysis Method The capacity of the proposed conveyance system for the project was analyzed using the King County Surface Water Management Backwater Analysis Program "BWPIPE". This program computes the backwater elevation at each structure for a range of flows using inlet, outlet, and system head losses. The analysis started at the existing system in Lake Washington Blvd. and extended upstream for the entire length of the proposed system. The proposed drainage system consists of an 18-inch diameter stormwater pipe from Lake Washington Blvd. through Meadow Ave., and changes to a 12-inch diameter pipe in the upper half of Meadow Ave. Several iterations were performed by changing the pipe size in various segments to reduce the potential for overflow before the final design was determined. B. Analysis Results The results from the Backwater Analysis are summarized below, and the complete analysis is included in Appendix C. Core requirement #4 in the KCM requires that the proposed pipe system must provide a 0.5 foot freeboard between the hydraulic grade line and the top of the structure for the 25-Year peak flow. The analysis shows that the water elevation will remain within the structures for the 25- Year, 24-Hour storm for future conditions. The KCM allows structures to overflow for the 100-Year, 24-Hour storm analysis provided that: 1. Runoff does not overtop the crown of the roadway; and/or 2. No portions of a building will be flooded; and/or 3. If overland sheet flow occurs, it will be through a drainage easement. For the 100-Year, 24-Hour storm, the analysis predicts that overflow would not occur. Overflow occurred in node 3 at 18.18 cfs, which is greater than the 100-year peak flow at that node. \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 7 Future Conditions - Backwater Analysis Results Pipe Size 25-Year 100-Year Backwater Comments Segment (inch) Peak Flow Peak Flow Analysis (cfs) (cfs) Flow (cfs) 1 18 15.11 18.08 20 2 18 15.11 18.08 20 3 18 13.70 16.40 18 Overflow at 18.18 cfs. OK, greater than 100-year storm 4 18 12.30 14.71 16 5 18 10.42 12.46 14 6 18 9.12 10.92 12 7 18 7.84 9.39 10 8 18 6.97 8.35 9 9 18 6.97 8.35 9 10 18 6.97 8.35 9 11 18 6.34 7.59 8 12 18 6.34 7.59 8 13 18 5.61 6.72 7 14 12 4.88 5.84 6 15 12 3.52 4.20 5 16 12 1.27 1.51 1.6 \\CENTRAL\SYS2\DEPTS\PBPIMDIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Page 8 I Al 8 A c K 6tiA IVA L y sis a�Qaaa � oo�000 �ti�.ww IV wwwwo /V Ll �UU yWTT s �8�88 _oeo�oE A( - m FL°w L 1t 2 Q� Z Q i QZ 1 03 y 2 Q3 Q i � Z Q6 13 /V i t ti st. 14 e } 0 z 15 Qg NJCr4 S4. 16 Q9 APPENDIX A Existing Conditions Drainage Analysis \\CENTRAL\SYS2\DEPTS\PBP\MDIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC 23-78 -- _ _jV y0 t�-7_ do Ave - _ - D. Co ,V -- -- Z-X 1 S T/iy G C O N D I i IOP-s - IQ UAvo r-l-- A IV 1141-rl-5 - (�(S�r� �/L ✓,ou1/y dC / r �d blrfi%fS dC �,rh,�7C y / Larva e"r %c / -Fo r e X i J f-i: e or7 C,»»> 000000 ¢T,Tuf�w w �wwwoo �rrUT } Y�8 g a. la w I P-rr G,oJf A(,, I y„�crv��Ns �crvio�.l Q44» Sit. 6aJin A cc a ►o n4 �p (PC KLM ju61[ 3,5.2 6 ) a s. 7 c- (12) 2. 5 I .-7y y. 05 0 2 3. v� ( 8) 2.5 1. I6 2. 7l 3 5. 27 (Il) 2.S 1. 56 3. o q J, 78 (3 ) 2.0 0, y5 1 . 33 5 1. 30 (3 ) 2.5 0, 39 0.q1 3.00 HO) 3..5 I. ILI 2. .51 (-i) 3.0 0. 16 � . 85 S q, 62 (I5) 3.5 1. 76 2. 86 2. 60 ( y) 2,0 0. 65 1.95 31 .0LI ac 1 . B3 o,L 21. 21 ac Tc for E„ A.rin = 2 2 /0-yf 2-L4 hr 2. 0 Ir .. f o�- 3. q P e a � �/�+.✓ Ear. D,"t�h Nrt� ��pt QP 25 yr C-cS f C/ownJfrtar� e,-Ic! Op /oo yr _ //. 3 c-f-r 12.5 CIS C T, z 2 in.r ) (Tc- = 14 ";n ) / t-ofnt zi : //• 1 �' I 5 u�� .•;: /ttf� Ek 122 a rest Pc U r �nG Ur AmC k Am6 \ az InC P AkF, Bh ; I AkF P� -- — QBM B I B KPD --- :- 29 2 3 Z •AgC •! m 42 — — I BeC — -- p n KpB AgC s Pin -lewpo AgD U r EwC Hills ' AgB InA ,; AgC ---- - - - .. a •v ArnC ourse 0 Ev8 v / KpDyh ' BeC 3 D 2' ,�D M 3 n C I k pD _ BM149e EvC BeD t.,. AgC 8 AmC I Bh Bh � •�• May e •Q KPC Y� •EvC 9 AgC ' ��• e � \ OvD , En Bt� , �.. Ago• •• t No AgC 4BM 0 i. •AgC 605 �. 1l , ��,;• ,�z d fat, •.x�; � �' .t ;AgC cn .• AgD 4 1 5P AgD 0r b AgC,, Kenn dat �-� ., •InC I � >AkF'- � .. -.a, t . AkF A� Ev6 AkF BeG Coleman Poin m GR.+vE/- AkF O� 30G •InA AgC - — —— ---- --L - �•-.• -- i ���--• -- 19 Gst$ i B C AKD m •BM* 0 BM411 EvC/, e -- _Pgc +'77r,1 i1 •i' UN AkF SM EVC =V :. + ' � G K � is BDY — I • i_�j _ r fJJ� a' Plant yi fir RENTON 1.9 At/. 12/30" (Joins sheet 1 1) Rdc 10, RENTON 1.7 Ml. Scale 1:24 000 V2 1/a 0 1 2 Miles 3000 2000 1000 0 5000 10000 Feet This map.s one of a set of 20 KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL TABLE 3.5.213 SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS (Published by SCS in 1982) Runoff curve numbers for selected agricultural, suburban and urban land use for Type 1A rainfall distribution, 24-hour storm duration. CURVE NUMBERS BY HYDROLOGIC SOIL GROUP LAND USE DESCRIPTION A B C D Cultivated land(1): winter condition 86 91 94 95 Mountain open areas: low growing brush and grasslands 74 82 89 92 Meadow or pasture: 65 78 85 89 Wood or forest land: undisturbed 42 64 76 81 Wood or forest land: young second growth or brush 55 72 81 86 Orchard: with cover crop 81 88 92 94 Open spaces, lawns, parks, golf courses, cemeteries, landscaping. good condition: grass cover on 75% or more of the area 68 80 86 90 uSr. fair condition: grass cover on 50% to 75% of the area 77 85 90 92 Gravel roads and parking lots 76 85 89 91 Dirt roads and parking lots 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 98 98 98 Open water bodies: lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential (2) Dwelling Unit/Gross Acre % Impervious (3) u!' 1.0 DU/GA 15 Separate curve number C N 1.5 DU/GA 20 shall be selected 2.0 DU/GA 25 for pervious and i-f 2.5 DU/GA 30 impervious portion 3.0 DU/GA 34 of the site or basin 3.5 DU/GA 38 • 7 P��O` 4.0 DU/GA 42 4.5 DU/GA 46 5.0 DU/GA 48 5.5 DU/GA 6.0 DU/GA 5 • S C 5 S r-. I T/Pc, 6.5 DU/GA 54 1 7.0 DU/GA 56 Z n�'' 1 r U,n d ti Planned unit developments, % impervious condominiums, apartments, must be computed commercial business and industrial areas. (1) For a more detailed description of agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, August 1972. (2) Assumes roof and driveway runoff is directed into street/storm system. (3) The remaining pervious areas (lawn) are considered to be in good condition for these curve numbers. 3.5.2-3 I/90 Project: N 40th Street / Meadow Ave. N D. Carey Revised: 4/23/98 For Entire Basin - Existing Conditions Total Pervious CN Imper. CN Estimated Entire Basin Area (ac) Area (ac) Area (ac) Tc (min.) 31.04 9.83 70 21.21 98 21.9 Sheet Flow ns L P2 s Time T = {0.42x(ns x W0.8} / 1 Overland,lawns 0.15 200 2.0 0.10 11.3 {( P2)"0.5 x (s)"0.4 } 0.4 0 2.0 999 0.0 Shallow Conc. Flow k L s v Time T= L/(V x 60), V= k Sgrt(s) 2 Paved, Graveled 20 700 0.07 5.29 2.2 3 Paved, Graveled 20 600 0.01 2.00 5.0 Open Channel (same eqn as above) 4 Earth ditch 20 600 0.037 3.85 2.6 Roadside 20 0 999 632.14 0.0 5 Pipe, s=0.12 450 10.00 0.8 Pipe, s=0.015 0 999.00 0.0 Comments: Minimum Tc = 6.3 minutes. Sheet Flow up to 300 feet. CN-TCEX.XLS Page 1 KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL TABLE 3.5.2C "n" AND "k" VALUES USED IN TIME CALCULATIONS FOR HYDROGRAPHS 'n.'Sheet Flow Equation Manning's Values(For the Initial 300 ft of travel) n.' Smooth surfaces(concrete,asphalt,gravel,or bare hard packed soli) 0.011 Fallow fields or loose"surface(no residue) 0.05 Cuttivated soil with residue cover(s <= 0.20 ft/ft) 0.06 Cultivated soft with residue cover(S> 0.20 ft/ft) 0.17 Short prairie grass and lawns 0.15 Dense grasses 0.24 Bermuda grass 0.41 Range(natural) 0.13 Woods or forest with light underbrush 0.40 Woods or forest with dense underbrush 0.80 *Manning values for sheet flow only,from Overton and Meadows 1976(See TR-55, 1986) 'k'Values Used In Travel Time/Time of Concentration Calculations Shallow Concentrated Flow (After the initial 300 R of sheet flow,R - 0.1) k. 1. Forest with heavy ground litter and meadows(n-0.10) 3 2. Brushy ground with some trees(n = 0.060) 5 3. Fallow or minimum tillage cultivation(n =0.040) 8 4. High grass(n = 0.035) 9 5. Short grass,pasture and lawns(n=0.030) 11 6, Nearly bare ground(n=0.025) 13 7. Paved and gravel areas(n=0.012) 27 Channel Flow(Intermittent) (At the beginning of visible channels:R=0.2) k, 1. Forested Swale with heavy ground litter(n = 0.10) 5 2. Forested drainage course/ravine with defined channel bed(n=0.050) 10 3. Rock-lined waterway(n=0.035) 15 4. Grassed waterway(n-0.030) 17 5. Earth-lined waterway(n=0.025) 20 6. CMP pipe(n=0.024) 21 7. Concrete pipe(0.012) 42 8. Other waterways and pipes 0.508/n Channel Flow(Continuous stream,R = 0.4) k� 9. Meandering stream with some pods(n = 0.040) 20 10. Rock-lined stream(n-0.035) 23 11. Grass-lined stream(n=0.030) 27 12. Other streams,man-made charnels and pipe 0.807/n•• **See Chapter 5,Table 5.3.6C for additional Mannings'n'values for open channels IV yotA / McaJa-t-) Avc Al 25— yR S / er L 7 T 1..3"cti /o J 2 ✓ SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: I - S.C.S. TYPE-IA /CGS/n op 15 2 - 7-DAY DESIGN STORM 1 /. 6 / 3 - STORM DATA FILE SPECIFY STORM OPTION: 3 J, I/L 1 0. �lS S.C.S. TYPE-IA RAINFALL DISTRIBUTION 5 3 6 ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 6 6 25, 24, 3.4 ---------------------------------------------------------------------- # $ *# $$# $ S.C.S. TYPE-IA DISTRIBUTION $$ $ 25-YEAR 24-HOUR STORM ***$ 3.40' TOTAL PRECIP. $ #$ $ ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 4.05, 70, 1.74, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 5.8 4.1 70.0 1.7 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.61 7.83 33810 ENTER [d:][path]filenare[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 2.71, 70, 1.16, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 3.9 2.7 70.0 1.2 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.07 7.83 22574 ENTER [d:][Path)filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 2�y Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 3.69, 70, 1.58, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 5.3 3.7 70.0 1.6 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.46 7.83 30743 ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c: FILE ALREADY EXIST; OVERWRITE (Y or N) ? n ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? V SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 1.33, 70, .45, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 1.8 1.3 70.0 .4 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .45 7.83 9710 ENTER (d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or H) ? V SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 31� ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 .91, 70, .39, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.3 .9 70.0 .4 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .36 7.83 7585 ENTER [d:][path]filenawe[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 1.86, 70, 1.14, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.0 1.9 70.0 1.1 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .96 7.83 19401 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.85, 70, .96, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.9 70.0 1.0 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .84 7.83 17338 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y/y Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 2.86, 70, 1.76, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 4.6 2.9 70.0 1.8 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.49 7.83 29913 ENTER (d:)[path)filenawe[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:tras6 FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.95, 70, .65, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 2.6 2.0 70.0 .6 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .65 7.83 14125 ENTER (d:)[path)filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? D. Ca ro. fI NIYO ll"1<adou, Avt A/ y/23/98 2 D 0- YX S f a r.-n — Z r i,r 6 / Cd7 J, SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH G = '1 2 STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE l 2 , OS SPECIFY STORM OPTION: 3 � 3 S.C.S. TYPE-IA RAINFALL DISTRIBUTION y 0 . J 6 ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 100, 24, 3.9 �/G -------------------------------------------------------------------- - $ $ ## ##$ $ S.C.S. TYPE-IA DISTRIBUTION $# $$ 100-YEAR 24-HOUR STORM **** 3.90" TOTAL PRECIP. $ $$ f . 0 6 ---------------------------------------------------------------------- 8 / . 8-5 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 Q , 8 y 4.05, 70, 1.74, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 5.8 4.1 70.0 1.7 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.05 7.83 41588 ENTER [d:j[path)filenaee(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 2.71, 70, 1.16, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 3.9 2.7 70.0 1.2 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.37 7.83 27771 ENTER (d:](path]filenase[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 3.69, 70, 1.58, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 5.3 3.7 70.0 1.6 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.86 7.83 37821 ENTER [d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 4 1.33, 70, .45, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.3 70.0 .4 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .58 7.83 12045 ENTER [d:][path]filenate[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 .91, 70, .39, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.3 .9 70.0 .4 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .46 7.83 9331 ENTER (d:](path]filenase[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? y 31q ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 6 1.86, 70, 1.14, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 3.0 1.9 70.0 1.1 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.20 7.83 23581 ENTER (d:](path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.85, 70, .96, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.9 70.0 1.0 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.06 7.83 21150 ENTER (d:](path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 2.86, 70, 1.76, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 4.6 2.9 70.0 1.8 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.85 7.83 36354 ENTER (d:](path]filename(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.95, 70, .65, 98, 22 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 2.6 2.0 70.0 .6 98.0 22.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .84 7.83 17531 ENTER (d:][path)filenaee[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: P. Carr 2 z, 5 -yr 5+a em — ,Ex%sf,�J L4 d llrt- SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH n/ 10�lc, He 1 STORM OPTIONS: TG = n i n ttracl i 2 2 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: op z S 1 1 /, 31 C,4s S.C.S. TYPE-lA RAINFALL DISTRIBUTION D ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 3 3 25, 24, 3.4 ---------------------------------------------------------------------- y D. S D $ $ $ $ $ S.C.S. TYPE-lA DISTRIBUTION $$ #$$$# $# 5 D , y o 25-YEAR 24-HOUR STORM #*** 3.40" TOTAL PRECIP. ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 " 4.05, 70, 1.74, 98, 16 g / , 4.5 DATA PRINT-OUT: o . 73 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 5.8 4.1 70.0 1.7 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.79 7.83 33832 ENTER [d:)[path)filenaee[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 2.71, 70, 1.16, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.9 2.7 70.0 1.2 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.20 7.83 22589 ENTER [d:)[path)filenase[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y 2/W c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 3.69, 70, 1.58, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 5.3 3.7 70.0 1.6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.63 7.83 30764 ENTER (d:)[path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 1.33, 70, .45, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.3 70.0 .4 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .50 7.83 9717 ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 .91, 70, .39, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 1.3 .9 70.0 .4 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .40 7.83 7590 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 3/w ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 1.86, 70, 1.14, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 3.0 1.9 70.0 1.1 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.07 7.83 19449 ENTER [d:][path)filenaoe[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.85, 70, .96, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.9 70.0 1.0 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .94 7.83 17349 ENTER [d:][path]filenane[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, H - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 2.86, 70, 1.76, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 4.6 2.9 70.0 1.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.65 7.83 29987 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ______________________________________________________________________ ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.95, 70, .65, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 2.6 2.0 70.0 .6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .73 7.83 14135 ENTER [d:](path)filenane[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 160 - /A Sforn-7 — Fx;x-fiN� Lc„ d Vic 2 /Vc n,r74,, d SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDR0GRAPH r uICJ TG = i'>iin /r1J�uca oT 22 STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) - 100,24,3.9 ---------------------------------------------------------------------- $# $ t$$$$$$$ #$ S.C.S. TYPE-IA DISTRIBUTION $ $ $ # $ 100-YEAR 24-HOUR STORM t#** 3.90" TOTAL PRECIP. $ # $ 3 ---------------------------------------------------------------------- Ll ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 4.05, 70, 1.74, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 8 2 " 0 S A CH A CH 9 0. 9�/ 5.8 4.1 70.0 1.7 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 12. S 2 �S 2.27 7.83 41615 ENTER [d:][path]filenare[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 2.71, 70, 1.16, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 3.9 2.7 70.0 1.2 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.52 7.83 27789 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 3.69, 70, 1.58, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 5.3 3.7 70.0 1.6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.07 7.83 37845 ENTER [d:](path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or H) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 1.33, 70, .45, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.3 70.0 .4 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .65 7.83 12054 ENTER (d:][path)filenaee[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? t ENTER (d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 .91, 70, .39, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 1.3 .9 70.0 .4 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .51 7.83 9337 ENTER [d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 1.86, 70, 1.14, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.0 1.9 70.0 1.1 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.33 7.83 23639 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.85, 70, .96, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.9 70.0 1.0 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.18 7.83 21203 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y corrTrY. r - rnWTTWllr N - WrWQTnOM 0 - OOTNT S - STnO c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 2.86, 70, 1.76, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 4.6 2.9 70.0 1.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.05 7.83 36443 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.95, 70, .65, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.6 2.0 70.0 .6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .94 7.83 17543 ENTER [d:][path]filenane[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: � ...� _ , ; -.�1► ► j ; ;_____ 0o W L_ X 4 El '✓` \ �� 0 � II � I I t/ 1 a g LAKE WAS INGTON ' 3 Q ► I '❑ x / 8 R U S H 3 I o J , II Zoo, I c 1.�8 11.301 I ( x I ( I ( x -x X t2 Y I R U S 13 x =1 _ I ❑ I T R S e /� �•SlaL I I c / x x / -z- O� I I -- x x I TREES 5 14 — S E _ 87 TH ST. / I x o i / INI ( (} ' ! �x N�0 -th11vleaCow _ LI 1 .28 / —o �, _ S E. 8 _��,.r ST. 177 ; 31a.7 ❑ ❑ " ❑ I i � ��- - -� - - — `� � �,>:'/S%lNG Co IvIJ l i l o NS I — — — S. E. 8 T ❑ 1 I Y—x ❑ x — � I I ❑ n II i i 1\ S. E. _ 89 T H_ S , — — -- — - — — ---------�,XI 59 I x 207X x J x ' I I '�\ no � � V . CG p LJ El O LY J - - J - --- -.E. -LAKE WAS IN(3TON T- - — 84 REIN P.&E �� , I► \ TG h �• ( `°° �G a}H I � 0' � ,I � x , ' I J I I -- • , � � I � x I I ' � x I I � I x t2t I I If x O It N 195 B R U S I I o 0 / S U / - - - - -- - - - -E. I I T R ,F- TREES � s x x I I ' I I E 87 TH ST. 146 I P X / EJ a / I x o ti El — _ J - _ -� � S. E. 8 T J � ST. I17 - �X/iti, Con[~i(f/DhS / N 194,I -28 / 'O Q 601 E 1,66 918.70 t I I TG Pa tk S. E. 8 T ST Cl J =_ -J ► TL _S- E. _ 89 TH_ S 59 ax XB.as / A3o V ` `\ _i^fit _. ./1.��! \ Q•\\V.tt `\� � t / _! 014 \tt\t.`\tttt\'`` .\ ,ad3 Ix ,wu &61 ',\\\\mod•.. \• \\\ \ \ 1 ~ kit ..--' 14.75 t 1 = 14.77 t , 14. . ./�---- ^i �.:��\\� J A75 11It}\It}t\1\1 \ x 1 I x / r 1674 r/ x / r \5: '\'\`\\� {{{}1 {l li`\ \ , xi43T^ ------ / \\Z, K I5,70 X ,a3s' X R14.20 antra a i ri o C 21.ss� x377 /If / % /r �',^•�`/J / tr'i-- _._..-.�' 1 r'� / 11 ��1� j t!!tl 1 11� 4 / / r 38.73X 38.37 If 1/t I 17-47 fit /r / 1✓/ 11 / 1 1 x ,r��� I I fS35 t 37.17 X37.a] X 3a, Q)t�` ti I }. x 15.30 x X i i ••// f I{# '• � ! i ,� t 1 4• I %-_ii.1a ia� (t I1 �t1 II r x I / I � r xif x ds";! 4t // r i � �// ❑ ` \. �l ! 1f:lll}y ` f 1t 17-19 ! j/ It ( j / Via,,.J •/ - \ -_` •- \" `\ } X4o.33 I li,l �� f i•+! ' ti `I y f If 17.15 1 14 t j x X I Ji r X rf ,, 2 li`.i i ; i' / ! /'�ll , .'� - '' - •�� ` ` -- -� `�.�\ t ,}(} \ttlj'i �t;(i{t(1c I1� i� �17.61 t r i •�/j1 r J([ x � f ! Ir !_ /. /_. lij }j h I , / � t{t.�i Jjt y• tr rjt /'/ f :!1 /f J 1 j /r 7! % _ r .%j l.. i "-; t ii;?i v-��, +,i it � st /j ' - i�1 f' t/JJ'J'"'77)�4►► YS � �, i J- � t � T ``� tkft:� _--.-.'-,. •, { /� i"' / �r t/%r,/ G: J f j i / ji r n t I 'I 31 f tvlttl[tu1i11}i ! ! r, �i�i. El ',r• _ \ I ! i'r � � � � { il,::iui;ttt to, i 1 . 1 i 43-22 I / / / >t 1 r 77 t 7 i � \ ~\�'�., � t •1 flit I f � f �I I /" � 4 .•'•' 1. � It }} � �'� !lltijl '� N y A N �r o VC rr 1/ / 11 J t j f 1 I ''� t� �I t 4 \ �!il'i G- �S 7 (\ 48 � r ,. -.. X , �\ - R f 6�o li6 J y1�\ rtLx \ ~\j\� \ 1 l``l;; i U JG d T. �C't'�1'" �C p U/ '`} i+ 1 / 1 1 \ .' / I 1 i/ , it tt % i ad 4 x 1 `\ 777Mitt / :fir � Iltt'•'I� `:.1 `"�--�' +I r 5h,1 1 rl IJ I L 1_ 11 I 7. I INI3I I!'ft, i - , ,I �t�' ,_._ t j i 11 I i 1 ��..+•t t I !I I ; 1✓ M-. , \ i)I I 7b.•s 1•;' IJ,,� i l� )� %J J i� 91i I`}I� +i<<t?ff !' I r'•' r 1 ( X 1 t, — sr / i �% I � j i 1 )I ❑i , j 11,1,� f 1.,,1:,'.'i'I; 1 t,t. i `' l \•, \ _ _ - Itl , V'1h"li'I+yi\ 2aa6x ..�-."' '' \t�ut , }{fi'' d,.25 'l r J In jttr �" Itlltit\+tl\ur'�11 r. 1 1 i / 1' - < •fi. . t r �' I r U\ YJ .r x r'r i' - —<rn, / J i �' / 4s.v �, 1 \` t - j �' si 1 '�� r.;1,J1,>•\t.\I(}/t.rJ/j am.., 7a4.? i� ` r• 1 '�l i t / 1 t � �'' ! /�31 I I i 77 _ _ ! :..---� -/-�- ��,! L,I/I t \\�.�,���,-•�\\� 1; � � APPENDIX B Future Conditions Drainage Analysis \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOCS\1999\CURRENT\99-684.DOC T F A /V Sys/s F� to C ��, d, f i0Y'7 Dej-, 7�- +"rc �v Cifio✓�S Gt 1J�cn�i?Jri ho Oc 7COTlrh �<aaaa o8odo> »>� -v �arc �Lol��nG ctl�o w.3 S DU/GA o r ¢fuTifLww LL���xx CN= 98 UU C N wry k('C4 /'r~r,s m, 2 «o« Gs So. Ty/JG 1 h� 1n� /uNJ�a Giv �o m 5� 6 �Ks�✓� � rca Irn�crv. Pt14 ,-✓. I'll 1 5, a 2. 32 z 3. s7 2. 32 /,s5 3 5,2:7 3. 16 2. 1 . 7�8 /, 07 0, 5 1 . 30 D. 78 0. 52 6 3.00 / , 80 1. 20 z. 8 / / . 6 9 1. 12 8 y.62 2. 77 1 . 95 oy 31.OH 18.62 12. tie 1 C For En4l'rc 4Sih 5 � N1 C- /Ls , 16 fo - yr 25_ y� - too - Pe a A f �ownS�/C4M C' nc� QP 2S yr - I5. l G{J Of roint z1 5 r�r n IS rest N� Pc nG •' I Ur `- AmC t AmB \ I � .. az InC 1 P 1 P¢ AkF, Bh I AkF QBN B B -- -- ---- :- 29 37 •AgC •i 42 — — — BeC — -- KPD' -K t Q AgC A D PB 'Pin Newpo g Ur Ew'C( 1 HMS AgB. InA ' :( AgC ---- C I - nurse •Ev8 goi m 0• .?s •KPD y .. BeC f, k t � � c, c AgD. M 3 • BM ^ l 1998 PD AmC EvC BeD i, AgC a I i' Bh Bh _ r q AgC BM, May a KPC r° •EvC 9e,O �• e \ 109 i ♦ / / OvD - g AgD.. •. 1 ,t r �• t POO m I 'AgC No. AgC 0 I Kpg �f* .r� r ... T tnL, rt •O { Y•:y aZnd�aholall AgC to .Age 4 1 •5e y AgD �rI Ag Kennydale y ,� •• �... � ,> l roc. •InCI AkF' �t 1 AkF _w I+ rt I AkF AgC EvB i i BeC, �' Py. GRAVEL Coleman Poin Q • PIT AkF Pr 306 • 'InA• 1 I e r AgC — -- ---- --�. _ -- j 319 ----' -- `$ B qgp D N ��' ♦ BM 411E 1. m n •BM• 0 .••• w a r ... ♦ m i:.♦ a .EvO r � x' r'1r~-.•.u9 � � '•+� >:��._ n AkF ,�a ,� , } ' KS' :. II 'Ar•.-'�, ', '•w' 8 .�, N .s :a. AmC " I'- .Sm . 1' Ev llawr Via. I• •�• -Ur ; ..,-,�. •i 1 1 •'�' -A4 . Ur •� I .•:', '�' I• ;� R®rvfr. •dG .r BDY - — • i•�1 1• r R 3 'PAST Ir.' Ms`l`j^.?`"�, •.i�': / ` •.n . �.i. 1,Y `�eeylt. RENTON 1.9 Mi. 12r30r1 (Joins sheet 1 1) RdC 10, RENTON 1.7 Ml. Scale 1:24 000 V2 /a O 1 2 Miles > 3000 2000 1000 0 5000 10000 Feet KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL TABLE 3.51B SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS (Published by SCS in 1982) Runoff curve numbers for selected agricultural, suburban and urban land use for Type 1A rainfall distribution, 24-hour storm duration. CURVE NUMBERS BY HYDROLOGIC SOIL GROUP LAND USE DESCRIPTION A B C D Cultivated land(1): winter condition 86 91 94 95 Mountain open areas: low growing brush and grasslands 74 82 89 92 Meadow or pasture: 65 78 85 89 Wood or forest land: undisturbed 42 64 76 81 Wood or forest land: young second growth or brush 55 72 81 86 Orchard: with cover crop 81 88 92 94 Open spaces, lawns, parks, golf courses, cemeteries, landscaping. good condition: grass cover on 75% or more of the area 68 80 86 90 IASL' fair condition: grass cover on 50% G 0_�0 to 75% of the area 77 85 90 92 Gravel roads and parking lots 76 85 89 91 Dirt roads and parking lots 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 98 98 98 Open water bodies: lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential (2) Dwelling Unit/Gross Acre % Impervious (3) Vie- 1.0 DU/GA 15 Separate curve number C N :1 8 1.5 DU/GA 20 shall be selected 2.0 DU/GA 25 for pervious and .w 2.5 DU/GA 30 impervious portion 3.0 DU/GA 34 of the site or basin Z�1Puv' 3.5 DU/GA 38 • �D N.r G M,4 P Pica 4.0 DU/GA 42 4.5 DU/GA 46 o 5.0 DU/GA 48 - b 5.5 DU/GA 50 6.0 DU/GA 52 • S C S S 6.5 DU/GA 54 7.0 DU/GA 56 Planned unit developments, % impervious H a o r condominiums, apartments, must be computed commercial business and industrial areas. (1) For a more detailed description of agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, August 1972. (2) Assumes roof and driveway runoff is directed into street/storm system. (3) The remaining pervious areas Qawn) are considered to be in good condition for these curve numbers. 3.5.2-3 INO Project: N 40th Street / Meadow Ave. N D. Carey Revised: 1 2/8/97 For Entire Basin - Future Conditions Total Pervious CN Imper. CN Estimated Entire Basin Area (ac) Area (ac) Area (ac) Tc (min.) 31.04 12.42 70 18.62 98 16.8 Sheet Flow ns L P2 s Time T = {0.42x(ns x L)"0.8} / 1 Overland,lawns 0.15 200 2.0 0.10 1 1 .3 {( P2)"0.5 x (s)"0.4 } 0.4 0 2.0 999 0.0 Shallow Conc. Flow k L s v Time V = k Sgrt(s) , T= L/(v x 60) Roadside 20 0 0.07 5.29 0.0 2 Pipe, s=0.07 700 10.00 1.2 3 Pipe, s=0.015 700 5.00 2.3 4 Pipe, s=0.04 500 7.00 1 .2 5 Pipe, s=0.12 450 10.00 0.8 Comments: Minimum Tc = 6.3 minutes. For Entire Basin - Future Conditions , for L = 150' Total Pervious CN Imper. CN Estimated Entire Basin Area (ac) Area (ac) Area (ac) Tc (min.) 31.04 12.42 70 18.62 98 14.4 Sheet Flow ns L P2 s Time T = {0.42x(ns x L)"0.8} / 1 Overland, lawns 0.15 150 2.0 0.10 9.0 {( P2)"0.5 x (s)"0.4 } 0.4 0 2.0 999 0.0 Shallow Conc. Flow k L s v Time V = k Sgrt(s) , T= L/(v x 60) Roadside 20 0 0.07 5.29 0.0 2 Pipe, s=0.07 700 10.00 1.2 3 Pipe, s=0.015 700 5.00 2.3 4 Pipe, s=0.04 500 7.00 1.2 5 Pipe, s=0.12 450 10.00 0.8 Comments: Minimum Tc = 6.3 minutes. CN-TC2.XLS Page 1 KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL TABLE 3.5.2C "n" AND "k" VALUES USED IN TIME CALCULATIONS FOR HYDROGRAPHS 'n;Sheet Flow Equation Mar"ng's Values(For the Initial 300 it of travel) n.. Smooth surfaces(concrete,asphalt,gravel,or bare hard packed sod) 0.011 Fallow fields or loose sod surface(no residue) 0.05 Cultivated soil with residue cover(s <= 0.20 ft/ft) 0.06 Cultivated sod with residue cover(S> 0.20 ft/tt) 0.17 Short prairie grass and lawns 0.15 Dense grasses 0.24 Bermuda grass 0.41 Range(natural) 0.13 Woods or forest with light underbrush 0.40 Woods or forest with dense underbrush 0.80 *Manning values for sheet flow only,from Overton and Meadows 1976(See TR-55, 1966) 'W Values Used In Travel Time/Time of Concentration Calculations Shallow Concentrated Flow;(After the initial 300 ft-of sheet now,R - 0.1) k. 1. Forest with heavy ground litter and meadows(n-0.10) 3 2. Brushy ground with some trees(n = 0.060) 5 3. Fallow or minimum tillage cultivation(n .0.040) 8 4. High grass(n - 0.035) 9 5. Short grass,pasture and lawns(n=0.030) it 6. Nearly bare ground (n=0.025) 13 7. Paved and gravel areas(n=0.012) 27 Channel Flow(Intermittent) (At the beginning of visible channels:R=0.2) k� 1. Forested Swale with heavy ground litter(n = 0.10) 5 2. Forested drainage course/ravine with defined channel bed(n=0.050) 10 3. Rock-lined waterway(n=0.035) 15 4. Grassed waterway(n=0.030) 17 5. Earth-lined waterway(n=0.025) 20 6. CMP pipe(n=0.024) 21 7. Concrete pipe(0.012) 42 8. Other waterways and pipes 0.508/n Cont . Channel Flow(Continuous stream,R - 0.4) k, 9. Meandering stream with some pools(n - 0.040) 20 10. Rock-lined stream(n-0.035) 23 it. Grass-lined stream(n-0.030) 27 12. Other streams,man-made channels and pipe 0.807/n•• **See Chapter 5,Table 5.3.6C for additional Mannings'n'values for open channels 1Z/8 /9 �- /V �/o !h f /�'1l�AOvw /} yr 2 2 5- Y/( s forr►� — �i� i� �, r/o✓�J SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE BR s,N Q p 25 SPECIFY STORM OPTION: 2 . $ 2- 1 2 I. 88 S.C.S. TYPE-lA RAINFALL DISTRIBUTION 3 2 . S7 ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 25,24,3.4 y 0. 8 --------------------------------------------------------------------- $$$ # $ $ # #$ S.C.S. TYPE-IA DISTRIBUTION $ $ #x$$ $$ S $ $ $ 25-YEAR 24-HOUR STORM **** 3.40' TOTAL PRECIP. ---------------------------------------------------------------------- 36 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 S z • 2 S 8.32, 70, 3.47, 98, 16 2 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 15. 11 A CN A CN 5.8 2.3 70.0 3.5 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.82 7.83 47758 ENTER [d:][path]filenade[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 1.55, 70, 2.32, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.9 1.5 70.0 2.3 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.88 7.83 31926 ENTER (d:](path]filenaee[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ---------------------------------------------------------------------- 213 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 2.11, 70, 3.16, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 5.3 2.1 70.0 3.2 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.57 7.83 43482 ENTER [d:][path)filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 0.71, 70, 1.07, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 1.8 .7 70.0 1.1 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .87 7.83 14708 ENTER [d:)[path)filenare[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 0.52, 70, 0.78, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 1.3 .5 70.0 .8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .63 7.83 10730 ENTER [d:)[path)filenawe[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 313 ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 1.20, 70, 1.80, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 3.0 1.2 70.0 1.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.46 7.83 24762 ENTER (d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.12, 70, 1.68, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.1 70.0 1.7 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.36 7.83 23111 ENTER [d:][path]filename(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 1.85, 70, 2.77, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 4.6 1.9 70.0 2.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.25 7.83 38117 ENTER (d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.04, 70, 1.56, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 2.6 1.0 70.0 1.6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.27 7.83 21460 ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c,'rtr 113 Nyofti / ,��gpow Avc n 'DC ' YX .$ Td R/'I F14 Tart t -/ten STORM OPTIONS: 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: I 6,as,N S.C.S. TYPE-IA RAINFALL DISTRIBUTION �. 3 ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 2 a 2 S 100, 24, 3.9 ---------------------------------------------------------------------- 3 3 . 03 **************xx*xxx S.C.S. TYPE-IA DISTRIBUTION ******************** xxxxxxxxx 100-YEAR 24-HOUR STORM **** 3.90- TOTAL PRECIP. ********* / y 5 0. U ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 1 2.32, 70, 3.47, 98, 16 6 y DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 5.8 2.3 70.0 3.5 98.0 I6.0 18, 08 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 3.37 7.83 56685 ENTER (d:)(path]filename(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 1.55, 70, 2.32, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 3.9 1.5 70.0 2.3 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.25 7.83 37893 ENTER (d:)(path]filename(.exQ FOR STORAGE OF COMPUTED HYDROGRAPH: 213 ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 2.11, 70, 3.16, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 5.3 2.1 70.0 3.2 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 3.07 7.83 51608 ENTER (d:](path)filenaae(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 .71, 70, 1.07, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 .7 70.0 1.1 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.04 7.83 17454 ENTER [d:][path)filenaoe(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 0.52, 70, 0.78, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.3 .5 70.0 .8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .76 7.83 12735 ENTER (d:)(path]filenase(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: 313 ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 1.20, 70, 1.80, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 3.0 1.2 70.0 1.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.75 7.83 29388 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 1.12, 70, 1.69, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.8 1.1 70.0 1.7 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.64 7.83 27562 ENTER [d:](path]filenaae(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 8 1.85, 70, 2.77, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 4.6 1.9 70.0 2.8 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.69 7.83 45241 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 1.04, 70, 1.56, 98, 16 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 2.6 1.0 70.0 1.6 98.0 16.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.51 7.83 25470 ENTER [d:](path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: I n ❑ X 42 El O N LAKE WAS INQTON — ' '/ r p r it � I � I � � � 1 •--` F U S H 3 1p L I 200 ,/// �� ---- - - �►- III � ���g ao 1,301 El 125 G I I I I 95 // --lk bt U T R S �e /� ) I ❑ 2.�14 it II / — x x , tr ���, Oro ❑ I I - x x I I TREES S_T. Ii o I o N'I �1 l/vl e a d o w " D II x El --- — 1 0 f �� ' cJ L 1o�+s►hS Arka'yS(J S�. E. 8 T ST. 1 77 I I / El - - -lXll 3 > IY_x IL II �. D �l[ — — _ S E. —� a9 TM_ S X -- -- X 59 207 )( X II x t o Ur' — do El LAKE WAS IN(3TON J = -_ _- - -84 I � RF+INP�ETc PC.+k - s II ❑ , , I❑ x I ; t e R U S H -- IZw17G4 II -X X�X Elx122 II O x x x x Tc Cl I ❑ I I � N 195 R U S I I I I o of l n D El x _ - -E- - @� - - -�T - -- _ 150 R//E /E S t —_ II c x x x X I TREES r D,p ❑ / 1 ST_ z l i I o ❑ I I \�� 110 X x x— I i T E o 10 I i / / o I x ❑- II I \ I -° ----- 601. - -� S. E. 8 T ST. - - 117 - I _ I t\ N 194,1 .28 4 E 1,66 918.706 .70 ❑ (� ,x S. E. 8 T ST ❑ — — J t J ❑ 11 �1 T`V i W 11 \\ � - - - - - - - -- - - - XII 3 N 19 - - - - - l 1 Y_x 1 O w 11 X � I ❑ I � .� ! 1 -- — S- E- 89 T 5 H S I x x �x - -- - - - -- - - - - -—--- ---�X 159 207X El 7 I D Eb\ Ix I �• APPENDIX C Future Conditions Backwater Analysis \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC Al Ave- Z), CG �`� - - mil- 98 8AcK6tJArr,�' Atig 2- X.51s 0000NN Sawa=�_ �8888 < � mM�a ®,� 3 4 FLew 5 $ q jo Qeeee m 1fLOw Z Q I Z a QZ Z 43 2 43 iz i Q6 13 � J iY.�8 tti st. I'i Q / o Z Q7 15 Qg N 3 C 07 S4. 16 Q9 I N4/ofH f /''ICadui _�✓c - - - --- - - -L CG�.� --- /1 - �- � - — F��w Sc dded ( rl-7 n 0 27 oc000� 15 , 2 � 2. 2 Sc Q 8 . 77 = w3� >,oLL 3. 52 1 , 36 Q 0. 38 O Cac�o 30 a 0 63 Z 6. 97 0. 57 0, 12 `A 2. s � Q, 0, 33 y M. y) 1. 88 QZ 0, J8 3 12 , 29 2. 82 Qi U, 2 3 2 /S, // 0 0 1 /s, // U 0 � Q�s c d o•-, Q p c�c lc -�tr 2 .5-yr s-F-a�"-, -fir�,�-, e �� ti FO r 100 - yr $+-anti, P P C M&.-, Flow APZJ I6 0 1,31 lS 1 . 51 2.69 LI, 2o /.64 12 S.BY 1. 35 to 7. 5q --6 8. 3s 1, oY 5 9, 3q 3, o7 4 12. ti6 2. 25 0 D. c.w rt y 116 N �i�t� S�. l Mek dog Ave KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division 1� BACKWATER ANALYSIS PROGRAM Version 4.22 — C, e P,pj I I2, 13, 14 1 - INFO ON THIS PROGRAM g 2 - BWCHAN 3 - BWPIPE 4 - BWCULV 5 - BWBOX 6 - DATA-FILE ROUTINES l - RETURN TO DOS ( k FI 2 5 ' 6�c �Ub-yr P.f G UnJ„Q ENTER OPTION Size(ih) �i-Pe- (CIS) 3 " 20 BACKWATER COMPUTER PROGRAM FOR PIPES , 3 1 o/r. Oki SPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD ' /6 >J00Y� F - FILE F 5 /Ll ENTER [d:](path]filename(.ext] OF PIPE-DATA FILE It / Z c:\model\n40\p3 ------------------------------------------------------------------------------- 8 9 OUTFLOW CONDITIONS PIPE NO. 1 - TAILWATER DATA: 1) SPECIFY TYPE OF TAILWATER DATA INPUT: S - SINGLE TW-ELEV. " /0 F - TW/HW DATA FILE If 11 8 S 2) ENTER: TW-ELEV �� 1 Z 8 30.5 /3 ------------------------------------------------------------------------------- 1211 /q P It / s s INFLOW CONDITIONS PIPE NO.16 - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE=O, BROAD-WEIR=1, SHARP-WEIR=2) 181.5, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V=Q/A S 3) ENTER: VELOCITY(fps) UPSTREAM 0.5 ENTER: QMIN, QMAX, QINCRE, PRINT-OPTION (STANDARD:1, CONDENSED:2, EXPANDED:3) /6 0, 20, 2, 1 PIPE NO. 1: 35 LF - 18"CP @ 31.43E OUTLET: 29.50 INLET: 40.50 INTYP: 5 JUNC NO. 1: OVERFLOW-EL: 47.30 BEND: 0 DEG DIA/WIDTH: 4.5 Q-RATIO: .00 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI 2.00 .54 41.04 # .012 .54 .19 1.00 1.00 .54 ####k .49 4.00 .80 41.30 # .012 .77 .26 1.00 1.00 .77 k#### .80 6.00 1.05 41.55 k .012 .95 .32 1.00 1.00 .95 kkk## 1.05 8.00 1.27 41.77 # .012 1.10 .36 1.00 1.00 1.10 kk#k# 1.27 r 10.00 1.56 42.06 # .012 1.22 .41 1.00 1.00 1.22 k#### 1.56 12.00 1.90 42.40 # .012 1.32 .45 1.00 1.00 1.32 ##k#k 1.90 14.00 2.31 42.81 # .012 1.39 .48 1.00 1.00 1.39 k#### 2.31 16.00 2.78 43.28 # .012 1.43 .52 1.00 1.00 1.43 kkk## 2.78 18.00 3.32 43.82 # .012 1.46 .55 1.00 1.00 1.46 ##k## 3.32 )6 . 6 20.00 3.92 44.42 k .012 1.47 .58 1.00 1.00 1.47 #kkk# 3M - IbD PIPE NO. 2: 32 LF - 18"CP @ 4.69E OUTLET: 40.50 INLET: 42.00 INTYP: 5 JUNC NO. 2: OVERFLOW-EL: 48.00 BEND: 17 DEG DIA/WIDTH: 4.5 Q-RATIO: .10 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI 2.00 .69 42.69 k .012 .54 .29 .54 .54 .54 #k#k# .69 4.00 1.03 43.03 # .012 .77 .41 .80 .80 .77 kkkk# 1.03 6.00 1.31 43.31 # .012 .95 .51 1.05 1.05 .95 #kk## 1.31 8.00 1.57 43.57 k .012 1.10 .59 1.27 1.27 1.10 #kk## 1.57 10.00 1.90 43.90 # .012 1.22 .67 1.56 1.56 1.22 ##### 1.90 12.00 2.31 44.31 # .012 1.32 .74 1.90 1.90 1.32 ##### 2.31 14.00 2.80 44.80 # .012 1.39 .81 2.31 2.31 1.39 ##k## 2.80 16.00 3.36 45.36 # .012 1.43 .89 2.78 2.78 1.92 2.96 3.36 18.00 4.00 46.00 # .012 1.46 .96 3.32 3.32 2.62 3.93 4.00 20.00 5.03 47.03 # .012 1.47 1.03 3.92 3.92 3.40 5.03 4.71 PIPE NO. 3: 37 LF - 18"CP @ 13.51E OUTLET: 42.00 INLET: 47.00 INTYP: 5 JUNC NO. 3: OVERFLOW-EL: 51.10 BEND: 60 DEG DIA/WIDTH: 4.5 Q-RATIO: .11 Q(CFS) HW(FT) HW ELEV. k N-FAC DC DN TW DO DE HWO HWI ####k#####k#k####k#k########k#####kk#k##k#k####k##k###kk######k#########k####k# 1.82 .60 47.60 # .012 .51 .22 .69 .69 .51 kkk## .60 3.64 .94 47.94 # .012 .73 .30 1.03 1.03 .73 kkk#k .94 5.45 1.24 48.24 k .012 .91 .37 1.31 1.31 .91 kk### 1.24 7.27 1.53 48.53 # .012 1.05 .43 1.57 1.57 1.05 kkkk# 1.53 9.09 1.86 48.86 # .012 1.17 .48 1.90 1.90 1.17 kkkk# 1.86 10.91 2.28 49.28 # .012 1.27 .53 2.31 2.31 1.27 kk### 2.28 12.73 2.78 49.78 k .012 1.35 .57 2.80 2.80 1.35 kkkkk 2.78 14.55 3.36 50.36 k .012 1.40 .62 3.36 3.36 1.40 ###kk 3.36 j htri miK1 Fir lop y�� Frih/t 16.36 4.01 51.01 k .012 1.44 66 4.00 4.00 1.44 #kk## 4� Cu�di} 'oN Flo- 18.18 4.10 51.74 k .012 1.46 70 5.03 5.03 1.46 k#### 4.74 0 k � C( 14�ix�r 10a r #kkk#k######k### OVERFLOW ENCOUNTERED AT 18.18 CFS DISCHARGE x####kkk####kk### ,9rc Y PIPE NO. 4: 137 LF - 18°CP @ 11.02E OUTLET: 47.00 INLET: 62.10 INTYP: 5 JUNC NO. 4: OVERFLOW-EL: 66.60 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .18 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI #####kk######k############k#kk###########k#k#k##kk#k##kk##k#######k#######k#### 1.64 .57 62.67 # .012 .49 .22 .60 .60 .49 #k##k .57 3.28 .87 62.97 # .012 .69 .30 .94 .94 .69 kkkk# .87 4.91 1.12 63.22 # .012 .86 .37 1.24 1.24 .86 #kk## 1.12 O.il i.ji o,.�) 1 .1- ..la .Yu -lu -, 1- . . . . 9.83 1.86 63.96 x .012 1.21 .53 2.28 2.28 1.21 xxxxx 1.86 3 /6 11.47 2.20 64.30 x .012 1.30 .57 2.78 2.78 1.30 xxxxx 2.20 13.10 2.59 64.69 x .012 1.36 .61 3.36 3.36 1.36 xxxxx 2.59 14.74 3.04 65.14 x .012 1.40 .66 4.01 4.01 1.40 xxxxx 3.04 16.38 3.54 65.64 x .012 1.44 .70 4.10 4.10 1.44 xxxxx 3.54 PIPE NO. 5: 260 LF - 18"CP @ 11.88% OUTLET: 62.10 INLET: 93.00 INTYP: 5 JUNC NO. 5: OVERFLOW-EL: 97.50 BEND: 14 DEG DIA/WIDTH: 4.0 Q-RATIO: .17 Q(CFS) HW(FT) HW ELEV. x N-FAC DC ON TW DO DE HWO HWI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1.39 .51 93.51 x .012 .45 .20 .57 .57 .45 xxxxx .51 2.78 .78 93.78 x .012 .64 .28 .87 .87 .64 xxxxx .78 4.16 1.01 94.01 x .012 .79 .34 1.12 1.12 .79 xxxxx 1.01 5.55 1.21 94.21 x .012 .91 .39 1.35 1.35 .91 xxxxx 1.21 6.94 1.40 94.40 x .012 1.03 .43 1.57 1.57 1.03 xxxxx 1.40 8.33 1.59 94.59 x .012 1.12 .47 1.86 1.86 1.12 xxxxx 1.59 9.72 1.85 94.85 x .012 1.21 .51 2.20 2.20 1.21 xxxxx 1.85 11.11 2.13 95.13 x .012 1.28 .55 2.59 2.59 1.28 xxxxx 2.13 12.49 2.45 95.45 x .012 1.34 .59 3.04 3.04 1.34 xxxxx 2.45 13.88 2.82 95.82 x .012 1.38 .62 3.54 3.54 1.38 xxxxx 2.82 PIPE NO. 6: 40 LF - 18"CP @ 8.75% OUTLET: 93.00 INLET: 96.50 INTYP: 5 JUNC NO. 6: OVERFLOW-EL: 101.00 BEND: 14 DEG DIA/WIDTH: 4.0 Q-RATIO: .16 Q(CFS) HW(FT) HW ELEV. x N-FAC DC ON TW DO DE HWO HWI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1.19 .49 96.99 x .012 .41 .20 .51 .51 .41 xxxxx .49 2.37 .74 97.24 x .012 .59 .27 .78 .78 .59 xxxxx .74 3.56 .94 97.44 x .012 .73 .33 1..01 1.01 .73 xxxxx .94 4.75 1.12 97.62 x .012 .84 .39 1.21 1.21 .84 xxxxx 1.12 5.93 1.28 97.78 x .012 .95 .43 1.40 1.40 .95 xxxxx 1.28 7.12 1.44 97.94 x .012 1.04 .47 1.59 1.59 1.04 xxxxx 1.44 8.31 1.61 98.11 x .012 1.12 .51 1.85 1.85 1.12 xxxxx 1.61 9.49 1.82 98.32 x .012 1.20 .55 2.13 2.13 1.20 xxxxx 1.82 10.68 2.05 98.55 x .012 1.26 .59 2.45 2.45 1.26 xxxxx 2.05 11.86 2.32 98.82 x .012 1.31 .62 2.82 2.82 1.31 xxxxx 2.32 PIPE NO. 7: 240 LF - 18"CP @ 3.92% OUTLET: 96.50 INLET: 105.90 INTYP: 5 JUNC NO. 7: OVERFLOW-EL: 110.20 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .12 Q(CFS) HW(FT) HW ELEV. x N-FAC DC DN TW DO DE HWO HWI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1.02 .48 106.38 x .012 .38 .22 .49 .49 .38 xxxxx .48 2.05 .71 106.61 x .012 .54 .31 .74 .74 .54 xxxxx .71 3.07 .89 106.79 x .012 .67 .38 .94 .94 .67 xxxxx .89 4.09 1.05 106.95 x .012 .78 .44 1.12 1.12 .78 xxxxx 1.05 5.11 1.19 107.09 x .012 .88 .49 1.28 1.28 .88 xxxxx 1.19 6.14 1.33 107.23 x .012 .96 .54 1.44 1.44 .96 xxxxx 1.33 7.16 1.46 107.36 x .012 1.04 .59 1.61 1.61 1.04 xxxxx 1.46 8.18 1.59 107.49 x .012 1.11 .63 1.82. 1.82 1.11 xxxxx 1.59 9.21 1.76 107.66 x .012 1.18 .67 2.05 2.05 1.18 xxxxx 1.76 10.23 1.94 107.84 x .012 1.24 .71 2.32 2.32 1.24 xxxxx 1.94 PIPE NO. 8: 195 LF - 18"CP @ 3.49% OUTLET: 105.90 INLET: 112.70 INTYP: 5 JUNC NO. 8: OVERFLOW-EL: 117.00 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .00 Q(CFS) HW(FT) HW ELEV. x N-FAC DC ON TW DO DE HWO HWI xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx .91 .45 113.15 x .012 .36 .22 .48 .48 .36 xxxxx .45 L.1 4 .QJ L1J.JJ 1 .Vim .II .II •'+� 3.65 .97 113.67 # .012 .74 .43 1.05 1.05 .74 $$ $ .97 4.57 1.09 113.79 * .012 .83 .48 1.19 1.19 .83 ##$ $ 1.09 ! �D 5.48 1.20 113.90 * .012 .91 .52 1.33 1.33 .91 #$$$ 1.20 6.39 1.31 114.01 $ .012 .98 .57 1.46 1.46 .98 ##$ 1.31 7.31 1.41 114.11 # .012 1.05 .61 1.59 1.59 1.05 ##### 1.41 8.22 1.51 114.21 * .012 1.12 .65 1.76 1.76 1.12 ##### 1.51 9.13 1.63 114.33 * .012 1.17 .69 1.94 1.94 1.17 ### 1.63 PIPE NO. 9: 205 LF - 16"CP @ 2.34% OUTLET: 112.70 INLET: 117.50 INTYP: 5 JUNC NO. 9: OVERFLOW-EL: 122.00 BEND: 81 DEG DIA/WIDTH: 4.0 Q-RATIO: .00 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI .91 .47 117.97 # .012 .36 .24 .45 .45 .36 ##### .47 1.83 .69 118.19 # .012 .51 .33 .66 .66 .51 ##### .69 2.74 .87 118.37 # .012 .63 .41 .83 .83 .63 ##### .87 3.65 1.05 118.55 # .012 .74 .47 .97 .97 .74 ##### 1.05 4.57 1.21 118.71 # .012 .83 .53 1.09 1.09 .83 ##### 1.21 5.48 1.37 118.87 # .012 .91 .58 1.20 1.20 .91 ##### 1.37 6.39 1.53 119.03 # .012 .98 .63 1.31 1.31 .98 ##### 1.53 7.31 1.70 119.20 # .012 1.05 .68 1.41 1.41 1.05 ##### 1.70 8.22 1.88 119.38 # .012 1.12 .73 1.51 1.51 1.12 ##### 1.88 9.13 2.09 119.59 # .012 1.17 .78 1.63 1.63 1.17 ##### 2.09 PIPE NO.10: 57 LF - 18"CP @ .70% OUTLET: 117.50 INLET: 117.90 INTYP: 5 JUNC NO.10: OVERFLOW-EL: 122.20 BEND: 9 DEG DIA/WIDTH: 4.0 Q-RATIO: .10 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI ############################################################################### .91 .48 118.38 # .012 .36 .32 .47 .47 .36 ##### .48 1.83 .69 118.59 # .012 .51 .45 .69 .69 .51 ##### .69 2.74 .86 118.76 # .012 .63 .56 .87 .87 .63 ##### .86 3.65 1.00 118.90 # .012 .74 .65 1.05 1.05 .74 ##### 1.00 4.57 1.14 119.04 # .012 .83 .74 1.21 1.21 .83 ##### 1.14 5.48 1.34 119.24 # .012 .91 .82 1.37 1.37 1.01 1.34 1.26 6.39 1.50 119.40 # .012 .98 .90 1.53 1.53 1.27 1.50 1.38 7.31 1.75 119.65 # .012 1.05 .99 1.70 1.70 1.54 1.75 1.50 8.22 2.03 119.93 # .012 1.12 1.08 1.88 1.88 1.77 2.03 1.61 9.13 2.38 120.28 # .012 1.17 1.18 2.09 2.09 2.06 2.38 1.76 PIPE NO.11: 182 LF - 18-CP @ 1.26% OUTLET: 117.90 INLET: 120.20 INTYP: 5 JUNC NO.11: OVERFLOW-EL: 124.50 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .00 Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI 12 .8 cis ############################################################################### .83 .45 120.65 # .012 .34 .26 .48 .48 .34 ##### .45 1.66 .65 120.85 # .012 .49 .37 .69 .69 .49 ##### .65 2.49 .80 121.00 # .012 .60 .45 .86 .86 .60 ##### .80 3.32 .93 121.13 # .012 .70 .53 1.00 1.00 .70 ##### .93 4.15 1.05 121.25 .012 .79 .59 1.14 1.14 .79 ##### 1.05 4.98 1.16 121.36 # .012 .86 .65 1.34 1.34 .86 ##### 1.16 5.81 1.26 121.46 # .012 .94 .71 1.50 1.50 .94 ##### 1.26 6.64 1.35 121.55 # .012 1.00 .77 1.75 1.75 1.00 ##### 1.35 7.47 1.44 121.64 # .012 1.06 .83 2.03 2.03 1.06 ##### 1.44 8.30 1.53 121.73 # .012 1.12 .89 2.38 2.38 1.12 #### 1.53 PIPE NO.12: 153 LF - 18-CP @ .85% OUTLET: 120.20 INLET: 121.50 INTYP: 5 JUNC NO.12: OVERFLOW-El: 125.80 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .15 Q(CFS) HW(FT) HW ELEV. * N-FAC DC ON TW DO DE HWO HWI .OJ .YJ -i, 7J .1- .JY ' - 1.66 .65 122.15 .012 .49 .41 .65 .65 .49 .65 2.49 .81 122.31 .012 .60 .50 .80 .80 .60 $$ $ .81 3.32 .95 122.45 .012 .70 .58 .93 .93 .70 $ $ .95 4.15 1.08 122.58 .012 .79 .66 1.05 1.05 .79 $$ 1.08 4.98 1.20 122.70 $ .012 .86 .73 1.16 1.16 .86 1.20 5.81 1.32 122.82 * .012 .94 .80 1.26 1.26 .94 1.32 6.64 1.43 122.93 * .012 1.00 .87 1.35 1.35 1.00 $ $ 1.43 7.47 1.53 123.03 * .012 1.06 .94 1.44 1.44 1.06 1.53 8.30 1.65 123.15 * .012 1.12 1.01 1.53 1.53 1.12 1.65 PIPE NO.13: 136 LF - 18"CP @ .51% OUTLET: 121.50 INLET: 122.20 INTYP: 5 JUNC NO.13: OVERFLOW-EL: 126.50 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .15 Q(CFS) HW(FT) HW ELEV. N-FAC DC DN TW DO DE HWO HWI .72 .42 122.62 $ .012 .32 .31 .45 .45 .32 $ $ .42 1.44 .58 122.78 .012 .46 .43 .65 .65 .46 $ $$ .58 2.17 .70 122.90 # .012 .56 .53 .81 .81 .56 # $ .70 2.89 .78 122.98 .012 .65 .62 .95 .95 .65 $ $ .78 3.61 .83 123.03 # .012 .73 .70 1.08 1.08 .73 $$ $ .83 4.33 .86 123.06 .012 .80 .78 1.20 1.20 .80 $ .86 5.05 .88 123.08 $ .012 .87 .86 1.32 1.32 .87 $$ ## .88 5.78 1.01 123.21 # .012 .93 .94 1.43 1.43 1.01 .95 .87 6.50 1.22 123.42 .012 .99 1.02 1.53 1.53 1.22 .94 .85 7.22 1.46 123.66 # .012 1.05 1.10 1.65 1.65 1.46 1.00 ..82 PIPE NO.14: 150 LF - 12"CP @ 3.87% OUTLET: 122.20 INLET: 128.00 INTYP: 5 JUNC NO.14: OVERFLOW-EL: 131.70 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .38 Q(CFS) HW(FT) HW ELEV. N-FAC DC ON TW DO DE HWO HWI .63 .43 128.43 .012 .33 .20 .42 .42 .33 $$ .43 1.26 .65 128.65 .012 .48 .28 .58 .58 .48 #$ .65 1.88 .83 128.83 .012 .59 .34 .70 .70 .59 $ .83 2.51 1.00 129.00 .012 .68 .40 .78 .78 .68 # 1.00 3.14 1.19 129.19 .012 .76 .45 .83 .83 .76 $ 1.19 3.77 1.43 129.43 .012 .83 .50 .86 .86 .83 ###$ 1.43 4.39 1.71 129.71 .012 .88 .55 .88 .88 .88 * 1.71 5.02 2.04 130.04 .012 .92 .60 1.01 1.01 .92 $ #$ 2.04 5.65 2.41 130.41 # .012 .95 .65 1.22 1.22 .95 # $ 2.41 6.28 2.82 130.82 .012 .97 .70 1.46 1.46 .97 # 2.82 PIPE NO.15: 200 LF - 12"CP @ 8.65% OUTLET: 128.00 INLET: 145.30 INTYP: 5 JUNC NO.15: OVERFLOW-EL: 149.80 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: 1.77 Q(CFS) HW(FT) HW ELEV. N-FAC OC ON TW DO DE HWO HWI .45 .34 145.64 .012 .28 .14 .43 .43 .28 ## .34 .91 .52 145.82 .012 .40 .20 .65 .65 .40 $ .52 1.36 .67 145.97 .012 .50 .24 .83 .83 .50 $ .67 1.82 .82 146.12 .012 .58 .28 1.00 1.00 .58 $ $ .82 2.27 .96 146.26 .012 .65 .31 1.19 1.19 .65 $ $ .96 2.73 l.il 146.41 .012 .71 .34 1.43 1.43 .71 $#$ 1.11 3.18 1.27 146.57 .012 .77 .37 1.71 1.71 .77 $ 1.27 3.64 1.47 146.77 .012 .82 .39 2.04 2.04 .82 $ 1.47 4.09 1.70 147.00 # .012 .86 .42 2.41 2.41 .86 $$ 1.70 4.55 1.95 147.25 # .012 .90 .45 2.82 2.82 .90 $$$ # 1.95 PIPE NO.16: 450 LF - 12"CP @ 7.00% OUTLET: 145.30 INLET: 176.80 INTYP: 5 r rrrrrrrrrrrrrTrrr..,.r,.r„„ r„ . .. . . .16 i9 176.99 * .012 .17 .09 .34 .34 .17 .19 / .33 .28 177.08 * .012 .24 .13 .52 .52 .24 $$ $ .28 .49 .36 177.16 * .012 .30 .15 .67 .67 .30 $$ $# .36 .66 .43 177.23 * .012 .34 .18 .82 .82 .34 #$ .43 .82 .49 177.29 * .012 .38 .20 .96 .96 .38 #$$ .49 .99 .55 177.35 * .012 .42 .21 1.11 1.11 .42 # # .55 1.15 .61 177.41 x .012 .46 .23 1.27 1.27 .46 $$ .61 1.31 .66 177.46 * .012 .49 .25 1.47 1.47 .49 $ $ .66 1.48 .72 177.52 * .012 .52 .26 1.70 1.70 .52 # .72 1.64 .77 177.57 $ .012 .55 .28 1.95 1.95 .55 $$$$ .77 SPECIFY: R - REVISE, N - NEWJOB, F - FILE, S - STOP APPENDIX D Barbee Mill Drainage System \\CENTRAL\SYS2\DEPTS\PBPW\DIVISION.S\UTILITIE.S\DOGS\1999\CURRENT\99-684.DOC l ` r � f l � i // r .lam CO 16 r /_r 'l �► I l r•ram,+' G� 3 / t �rr �/ ' ,re s 14F# r .,, N yv lh s / le '►••...►+ ''.r•w'^'� fir' ,r� �� .NyUf� / Mekjow At Al ,:�,'rt'�''r Q�J Pr i v a f� 5 ys-(z rh �,✓c s fi a f e+'' 70 Of r� , �, � s , �' �l-zN-98 D. Cary N 40th/ Meadow Ave N D. Carey Existing System -West of Lake Washington Blvd. 4/24/98 Private, starting at CB-1 and going to the west CB-A 48"Type 2 Rim EL 48.30 18" Conc W IE 42.00 18" Conc S IE 42.00 12" Conc N IE 45.00 32 LF 18" Conc. Pipe CB-B 48"Type 2 Rim EL 47.63 18" Conc E IE 40.60 18" Conc W IE 40.60 43 LF 18" Conc. Pipe C13-1 48"Type 2 Rim EL 33.99 24" Clay W IE 29.24 18" Conc E IE 29.48 18" Conc SE IE 29.90 Culvert to SE, appx 10 LF 18" Conc. Inlet IE= 30.58 45 LF 24" Clay Pipe Outlet IE= 27.76 Open Channel -appx. 48 LF Culvert- IE= 24.34, appx 10.5 LF to C13-3 CB-3 Type 1 Rim EL 25.56 15" CPEP E IE 22.24 15" CPEP W IE 22.48 81 LF 15" CPEP Pipe C13-4 Type 1 Rim EL 22.10 15" CPEP E IE 19.91 15" CPEP S IE 19.98 100.5 LF 15" CPEP Pipe Outlet IE= 18.26 EXSYSTM.XLS Page 1 • I Fs- ._�l``'- - -.Jep�d_____- _ lV HOt�► St�_M�ADOw AvY P�PoTr��_ _ 10 _ 77t� BS on CB-8 __ 'JYanc!_s. _ ,j u ryl _Fiats ...._� G/�►�1_ _13Jv _fv._1 -kQ_ fit/ h rn�fca _ D. :R_IM _ __ /y-__l�. _3��.��_ '__u_3`�b-� ____ _ ��k�����L--- - - _ __ 9_�_m 71.1 Cu-IV'r. _S E let _ _ _ i .�_, S -'--3 � 58 - CB-� A- aM 4 2L 14 NAvo 1_tis8__.----�-_ -_ 20"YO RoD R p -- _C_UL_�_-'�'?��S-Ems} ��_�s,�p'•�',._Z3.8b_+_1�{30._ �l_ 7,SC O12_ ---- T�� o ,n Ti97���L ;.�VEL"__Tp_ CoN_ Tg P1.1_- w-A-kr Vu_Lvs. CevZ,r 2 O-9 2 10 o , v 2, 30 25.5 Sl b - - - - - A,+V L 5 _ Is 8 22 48 G � . - 3_ r_ _ -----__ C8 4 - R_)M -S•76FM - / 47 r - Cup 3_ 15N 5--o [_ - _ ---9--60.}_18•z 6 _-----_ _-- ��� 1 0-8 I .3 j 2 ,n� \1 - i tZ-tin D d b oN l � N 40th St. / Meadow Ave. N Storm Project Daniel Carey Open Ditch on Barbee Mill Property Date: 4/28/98 OPEN CHANNEL USING MANNING EQUATION For A Trapezoidal Swale: A = ( b + zy) y b = base width (ft) R = A / ( b + 2y SQRT( 1 + z"2)) y = flow depth (ft) Q = ( 1.49/n ) A x R'2/3 x S^1/2 z = z : 1 side slope ( z = horizontal leg) SOLVE MANNING EQN BY TRIAL & ERROR - DESIGN INPUTS Target Q = n =10.040 1 Slope s = 10.06 Side z Flow Depth Width Area Hyd. Rad. Velocity Flow y ( ft) b ( ft ) A (sgft) R v ( fps ) Q ( cfs ) 0.25 1.7 0.494 0.202 3.14 1.55 0.50 1.7 1 .125 0.353 4.56 5.13 0.75 1.7 1 .894 0.482 5.61 10.62 1.00 1.7 2.800 0.599 6.48 18.16 1.10 1.7 3.201 0.644 6.80 21.78 SOLVE MANNING EQN BY TRIAL & ERROR - DESIGN INPUTS Target Q = n =10.040 Slopes = 10.04 Side z = 1.1 Flow Depth Width Area Hyd. Rad. Velocity Flow y ( ft) b ( ft ) A (sgft) R v ( fps ) Q ( cfs ) 0.25 1.7 0.494 0.202 2.56 1.27 0.50 1.7 1.125 0.353 3.72 4.19 0.75 1.7 1.894 0.482 4.58 8.67 1.00 1.7 2.800 0.599 5.29 14.82 1.10 1.7 3.201 0.644 5.55 17.78 OPNCHN.XLS KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL FIGURE 4.3.5C HEADWATER DEPTH FOR SMOOTH INTERIOR PIPE CULVERTS WITH INLET CONTROL 180 10,000 168 6,000 EXAMPLE (2)6. ENTRANCE TYPE 156 6,000 0•42 inches (3.5 feet) _-_ _ 6_ 0•120 cfs SQUARE EDGE WITH 5,000 5 144 5. HEADWALL 6. 4,000 tLw' Mw 132 D feet 4. >. 3,000 (I) 2.5 8.8 5. 4. I •• 120 (2) 2.1 T.♦ 1 _.J- .0- 2.000 (3) 2.2 T.T 4.— 108 3 in feet 3. 96 1,000 3. y PLAN \1� GROOVE END WITH 600 _ __- HEADWALL 84 - 600 i — 2•-- 2. 500 t 72 400 = 300 �y = 1.5 1.5 ' 1 N Z 60 Zoo / LLJ 1.5 PLAN \2� Z z GROOVEEND 0 54 a PROJECTING v � o w 100 z j 48 / cr- 60 u 60 w e I.O 1.0 � 42 u) 50 � HW ENTRANCE 40 p SCALE TYPE w 1.0 Cr ` t— 36 30 (1) Square edge .ite 4 9 9 3 tL headwall 33 O a a 20 12) Groove end■nth w O head.all = •9 .8 30 _ .8 (3) Groove end projecting 27 10 .7 7- 24 8 .7 6 AZTo use scale (2) or (3) VOW 5 horizontally to scale(1).then 21 4 use straight inclined line through D and 0 scales,or reverse at ,6 .6 / 3 illustrated. .6 18 2 15 .5 .2G41 .5 5 12 ' �il C14 VIrt on /3a/ �( ldl/oto, �. Curt/ y128� 98 4.3.5-11 1/90 ......................................................................................................................................................................................................................................................................................._....__.........._..... . ...._.........._.._........._..........�. _....__....-....._..............._... _._ ........................_._.._.....i.._....._ _ _ . . . . . . . ! . . . . . . . . . . t . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 4 E G!/.1.�.�'1 S2 G �9�J . . . . . . ' .l.�( lt� /•�. Sl�d.41 . . . . .`. . f . . . . . . . . . . . . . . . . . . . � . . . . . . . r . . . - . . . . . ; . . . . . . . . . ; .......................... ...............................................................................:.......................................:...........................-...........:.......................................- ._.............._......... ..............._...-.............. ......_............................_ ..........__....__......._ Y_ .._ € . . . . . . . . . € . . . . . . . . . . . . . . . . . . :...;......;...:..._..:...;...: :...:...;...;...:...:...;...:...; :...:...:...:...;...:............ ;.......-.... . . . . . . . . . . . . . . . . . . . . . . . . . ... r c1 . ..... .. ...... .3 . • 0�<� • n•ri+t l r• i . . . . . . . . . . . . . . . . . . . . . . . . . . . . :�i>-i '„�; _ . . . . . . . . . '_. : � . :�✓a��iri�:fo�:B�v. . . . . . . . . :r. . . . . . . . . . . . Qs i . . . . . : : . . . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . wu. . , : : : : : : : . . : : : : : : : : : :I : : : : : : : . . . . . . . . . ` : : : : : : : : : : : : : . . . . ...........................................................................'........................................................................... ............................... ................................. ...................................._..............................................................-.................................-.............. l/a fv i, _.. _. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . . . . : : : : : : : : : : : : : : : : : . . . - - RnG . :. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . _� . . . E . . _ _ . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : "". : : . : : : : : : : : : D ........... . ................................. ................................. .........._...._.----.._._ _......._._..�__. _..._.__... _ _ _ _ _.w__ _ `••�0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :H . . . . . : : : . - : : : : : . . . . . . . . . . . � . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . :C �: �: . . . . . . . . . . . . . . . .. . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . : �21%�t : `� € ;33: 99 : : : : : : : : : : . . . : : . . : : : : : $ 2 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..C:Q: :3: �8° 5�• �E• l2%: q 0. IE 2y n ��. . . . . i . . . . . zt: : . . . . . . . 22: . . . . . € € _ -............. _ -___ _ _ :Qu+ U'�f. 7 22. . . . . . . . . . . . . . . . . 4 - : : : . . . . . . : : . . . . . . . . - : . . . : : . . . : : : : : : . . . : : : : : : : : : . . . - _ . . . . . . . . . . :............................................................................................................. ....:.................................. ...... ..... ...............................- ..-.._....._................... _.... ._._..... •----- .-_._...... _ ................:.......................................:.......................................:......................................... .......... _. . . . : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . :5 - . 3:29' `/b . . . . . . . : : . /� r.�x . �1.6 LF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - - . . . . . . . . . . : : : : : : : : : . . . . . . . _ 2 .o'e. . . . . . . . . . . . . . . . . . .............................. __...._...._-.._..._.-_ .... -:...:.......€_.................................................... '...............:.................... ................................. ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . : ...... ...:... . . . . . . . . . . .a. . . ... . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . i . . . . . . . . . : : : : : : : : : : : : : : : : : : : : . . . . . . : : : . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : ` : : : : : : : : : CITY O F R E N T O N . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . .e . . . ............................................................ .............................................................................. ...............s ...'....../..5.....E..�. ......C..,sM�o :�...w�-c..... .+{ ..... .........................5.......L......:.....�5......E r' P.....:...s.........3.:.1 ......Q......................... _ D E P A R T M E N T OF PURL WORKS NyvtS 5�. Imeodow Ave- Al Sforw, /),-o -e(f Nnl•iNG- It 1,S4 tl. `�AAIAI�N(. E . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . I� : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . / I ✓a Syfm �n uarbrc. . . : ........................:........................................ .................._. .....-......-.................... .-.........................._... ............._........--........ ........................_... ��;✓<r; /OviS S(�r.vlj.e� : : : : : : : : : . . . . . . . DATE - FILE NO /ri . D / DESIONE y 2 9B . DRAWN-.,_ G u rc : : : : : : : : : � �i. : : - : . . . . : : : : : : : : : sCALR Ftdp so0V__ PAa�_ . . . . . . . . . :V.er:t:.: �. : - : 5: : : : : : ` : : : : : : : . . . . . . . . . `— CHECKED NO. REVISION rY APPR. DATE APPROVED SHEET OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V WOK NOTES: LEGEND (EXISTING) LEGEND (PROPOSED) SEC. 32, T.24 N-, R.5 E. W.M. PROJECT #cM-1070(001 1. FOR PAVING AND CHANNELIZATION PLAN SEE SHEET 48. SAN. SEWER CLEANOUT FIRE HYDRANT FILTER FABRIC FENCE 2. THE CONTRACTOR SHALL PROVIDE FILTER FABRIC FOR =SM,H SAN SEWER MANHOLE y WATER VALVE (SEE DETAIL SHEET 2) SEDIMENT CONTROL AT EXISTING CATCH BASINS AS REQUIRED. SD;H GAS VALVE � STORM DRAIN MANHOLE BEAM GUARDRAIL " 3. CONTACT ALL UTIUTY COMPANIES INVOLVED AND VERIFY TELEPHONE RISER ------- ---"=— ALL EXISTING UTILITIES BEFORE DIGGING. STORM DRAIN CATCH BASIN _ TELEPHONE VAULT 4. REMOVE ALL EXISTING PAINTSTRIPES. LANE MARKERS, SYMBOLS, _ STORM DRAIN CULVERT -- POWER VAULT ETC. STARTING AT COULON PARK SOUTH ACCESS ROAD. (SEE y 0 STORM DRAIN MANHOLE -- SPECIAL PROVISIONS FOR REMOVAL OF MISCELLANEOUS TRAFFIC - " DITCH JUNCTION BOX ITEMS.) WATER METER GUARD POST 5. LOCATION OF CLEARING & GRUBBING LIMITS AND FILTER FABRIC UTILITY POLE 5 BRASS PLUG EXISTING CATCH BASIN IN DITCH FENCE ARE APPROXIMATE CONTRACTOR SHALL ADJUST AND �__ UTILITY POLE ANCHOR �' R/R CROSSING GATE FINALIZE LOCATIONS IN THE FIELD AND/OR AS DIRECTED LUMINAIRE ON UTILITY POLE -x-_s R/R CROSSING SIGNAL ti BY THE ENGINEER. j .�. SIGN — RIGHT OF WAY 36 LF, 18" PIPE S = .30 CONC. ANCHOR BLOCK 6. CONTRACTOR TO LOCATE 12' GAS BEFORE CONSTRUCTION. REMOVE EXISTING PIPE. IF ENCOUNTRED STA.i 176+50, 32 LT. ADJUST CB $3 LOCATION AND PIPE ELEVATIONS AS NEEDED. - OBTAIN CITY APPROVAL FOR ADJUSTMENTS. -- -— -I ; 7. MINIMUM DESIGN SLOPE ON 18" PIPE-CB $1 TO CB $3 IS .025. 35 LF, 18" PIPE. S - .G45 CB $3! TYPE 2. 54" REMOVE EXISTING PIPE, IF ENCOUNTRED STA. 176+50, 16' RT. PROVIDE 4" DIAM. BY 1-1/2" STEEL RING 1 ADJUST WATER VALVE BOX AT BRASSCAP TO ALLOW FUTURE ACCESS j & COVER TO GRADE N CLEARING AND GRUBBING LIMIT RELOCATE EXISTING UTILITY POLE a (SEE SPECIAL PROVISIONS) (BY OTHERS) i w ui w N OE _ H H r 35)' TCt2" E _ I I + LW 175+90 In ADJUST EXISTING -N(iI!tj1T'AI:!R Y S°IljIiIIE!I W ER MANHOLE FRAME COVER TO GRADE II1ij-I1 I TL,IIi 1i AIp!( K ElIIIII WASHINGTON ASHINGTON BLVD. LVD.i E NO FILTER FABRIC iF E_N2 C0 E \ \\`\\\•�\\\`9\\\�\\"\\\\\ \� \\ \\ \\\\\\\\ R\\E \�M/ \V \ \E� �l` WA N1D7 62 LF. 12- PIPE. S .005 R+E8P0 REGRADE DITCH TO MA PIPE BEGIN FILTEL AR FABRIC FENCE CB J1. TYPE 2. 54- 42LF--12" PIPE, S C E.0E2X0STA. 176+02, 2 Y RT. I REMOVE AND REPLACE 462 REGAOE DITCH TO MATCHI S TPIPEEXSTING EXISTING CATCH BASINIEDGE F 86#NEW GRATED'LID INEW SODU UDI LLOW ! I EX I STING 6" CONCRETE PIPE °C 2 TYPE 2. 54 CENELI! ! 14A ;OF D1 I 1r RN ! IEIL ADJUST EXISTING SANITARY SEWER PROXIMATE LOCATION C 4 EL E 1. i I , I MANHOLE FRAME & COVER TO GRADE '1218?J IE 144.00 I 44.6 ; '50 so 50 '4540 18 W I.E.142. 12 L RW 48 LF, 12' PIPE S .040 0 1 S .02 REMOVE AND REPLACE EXISTING PIPE AP T n' 45 45 \ CB $2. TYPE 2. 54" TA. 176+50. 19' RT.0 G. � 61? OCKI 1 ,PFR 40 REMOVE AND REPLACE EXISTING CATCH BASIN 40 8 C.i 12STOR� IPE W 1 D. I ! 005 LES I-AN DR - TION 48 L F! 18 STORM OP 32. 2L 8" E UTITO I St t 0401 t i ' 0 0F 35 35 20 0 20 40 5 8rE j1.6. 219.501 TAD 1 9 SCALE �1 ADJUSTED TO IN VO i988).t- 4 B Y2 30 ! g CNN DARK I ,CITY OF RE 8"E E. 40.50 6S4 FEE 8_WJ.E_400 S - - � AE 111138 MERS!OR ORM PIPE TCP1 ! 36 IL 11w ST CITY OF REN T PlBOIP� ENN VO 1888 LAKE WASHINGTON B L�VO`C D .DEPARTMENT OF PUBLC WORKS 1 COULON PARK TO NORTH 44TH STREET 175+50 176+00 176+50 177+50 SITE PREPARATION PLANSA Iy DRAINAGE PROFILE °Am 2i3i� "'" b LW�P22 DATE07//0000/95 x29prn 1' - 40' H °'.... DWC NAW G\TRMS\» U 7012\GMS\LW-SG22.DWD SO.VE: 1"-211' ,s YX JOB NO, 1837012 1" - 10' V �` ALPHA Engineering Group, Inc. �- b ° ,� ,,Gb m roc mot. 23 — 53