Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SWP272176
1 1 1 SW 12TH STREET 1 STORMWATER IMPROVEMENTS DRAINAGE REPORT 1 1 Prepared by: 1 City of Renton Planning/ Building/ Public Works Department 1 Surface Water Utility 1 1 1 i 1 December 1994 Revised May 1995 1 1 i 1 1 ' SW 12TH STREET STORMWATER IMPROVEMENTS DRAINAGE REPORT Prepared by: ' City of Renton Planning/ Building/ Public Works Department Surface Water Utility December 1994 ' Revised May 1995 SW 12TH STREET DRAINAGE REPORT 1 CERTIFICATE OF ENGINEER 1 The engineering material and data contained in this report were prepared under the supervision and direction of the undersigned, whose seal as a Registered Professi nal Engineer is affixed below. J a ��Z3lQs 20727 1NAL s aka Engineering Supervisor Daniel W. Carey Project Manager SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 2 ' SECTION 1 ' INTRODUCTION ' In November 1994 the City Maintenance staff installed a new 18-inch and 12-inch ADS N-12 pipe in SW 12th Street following plans prepared by the Surface Water Utility. Section 1 through 4 of this report contain the analysis of the basin used in part to prepare ' the design. The as-built information and new as-built backwater analysis are contained in Section 5. The runoff and backwater analyses assumed that all runoff from the basins would flow directly into the drainage system. The use of onsite detention systems, as required in the King County Surface Water Design Manual, would reduce the peak flows reaching ' the system and potential for overflow. In the future the City or a private developer may need to upgrade the existing systems in ' Maple Avenue to obtain the full capacity of the stormwater drainage system: • Replace the existing 18-inch CMP with a 24-inch concrete pipe, t • Replace the existing 24-inch CMP with a 24-inch concrete pipe, Install the new pipes at a constant slope from SR 405 north to the Maple Avenue/ SW 12th Street intersection (appx. 0.48 %) A. Site Location SW 12th Street is located approximately 1.5 miles southwest of City Hall, just north of I- ' 405 and south of SW Grady Way (see Figure 1). The area is in the Black River drainage basin. ' The area consists primarily of open grassed lots and single family residences. The area has very little slope and is below the elevation of SW Grady Way, Rainier Avenue, 1-405, and Lind Avenue. There are some commercial buildings along Lind Avenue and SW Grady Way. SW 12th Street is asphalt with grass and gravel shoulders. There are no established drainage system or ditches along SW 12 Street east of Maple Avenue. In effect, the area acts as a closed depression with the only outlet for surface water runoff ' being installed drainage systems. B. Purpose The proposed project would provide a new stormwater drainage system to reduce local ' ponding in front of the affected residences, and at other low points. The drainage system will be designed to convey the estimated peak flow from the area under future developed conditions. SW 12th Street Stormwater Improvements Drainage Report H:D0CS:95-509:DWC:ps Page 3 r One of the residences on SW 12th Street (#118) experiences ponding in the front of the lot and water running into the building during more prolonged periods of rainfall. This is r partially due to runoff from the graveled lots east of the residence ponding at the edge of the street. In addition, runoff from intersection of SW Grady Way and Rainier Avenue travels to the north side of SW 12th Street, and to the west toward #118. rResidences along SW 12th Street have either broad, shallow, grassed swales next to the asphalt pavement or dirt shoulders. During periods of extended rainfall water ponds ' several inches deep in the swales, and in low areas of the lots. Water also ponds in low points along the street near the east end of SW 12th Street and at the intersection with Maple Avenue. r r r r r r rSW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 4 r wm ®IJ I m� Iyib C Nm „9 ® K1q11m Qn-A �$ 11® M, [ f,EA ®® »Fs u9m f9/p� �5Xm,IA <Q IIM z s LIIJU l��m'J l s 3 S 119m 's g X em St 3( s sl"R QS IAm h- C b av a S Inr1 OS 121A = LIt J ��a 0 ,zzm 12bA a srnn 9 s Iu a Y Xw 1m � It3d ,t16 � ��� �Q VS6R 1}]N Pl X6%St S IN m A 126m INm 6m SL N 6m A J sm �/ ❑a H S1EMA XX Sm St �OU SL A a +1 �bt � � 11� XIm St � >AA r =oD �H E S ISM6 A �© o SI. dA � zgY d 6 IHmY �1� A. a SOD s IGmY � Q 52MA S IM A Y SmA q '¢6 O SX"MA 0� SE IV S4 so I S Pslm vaX M te SN,2m X 1 16m A 16m S Y 16m fl a �S� sm Project Location ss (� ' � J A119m A"' SIAA A �--�1 Y 21X A ab' 60m A A161><6l ` sX ssa A vi° A III - � SY ;e I A A w 6t a� smST £ SE 1616A 5 F I Y 161m 9 SE 161M ST R VI 52XS SW IM A AI 2q6 A SE 16%Sf a SX 2XM1 {'s• ` Y,66q S 5[J-2 T 1 , ,gyp I^I - I Figure 1 � I� Project Location Map I SCALE: 1 Inch = 2000 Feet North SW 12th Street Storm System Project 1000 2000 4000 D. Carey 4/94 I r SECTION 2 EXISTING CONDITIONS DRAINAGE ANALYSIS A. Soils ' The Soil Conservation Service Soil Survey for King County shows the soils in the area as "Ur", Urban Land (sheet no.11). It describes Ur as soil that has been modified by ' disturbance of the natural soil layers with additions of fill material several feet thick for construction of industry and housing. The soil classifications adjacent to the Ur area are "Pu", Puget silty clay loam, and "Wo", Woodinville silt loam. ' Pu and Wo are both classified as Hydrologic Soil Group "D" in the King County Surface Water Design Manual. This soil group is characterized as having slow infiltration rates and high runoff potential. Ur is classified as variable; soil sampling and testing would be needed to classify soils on a specific site. A portion of the area is not connected to the sewer system, and septic tanks and drain fields are used for residential sewage disposal. Several residents comments that the area is always susceptible to ponding and that it is common to have their basements wet ' or flooded. Therefore, the soils may not be very efficient at infiltrating large volumes water. ' Soil group "D" was used to determine runoff curve numbers based on the adjacent soil classification and since specific soil testing was not done for the area. ' B. Existing Drainage Systems The existing drainage systems and the drainage basins identified for this report are ' shown on Figure 2. The drainage system on the northeast side of basin 5 connects to the system in SW Grady Way. The system serves the commercial building at the corner of SW Grady Way and Maple Avenue, and a portion of the system has been extended east down the alley. The system consists of 8-inch concrete pipe at a shallow slope. This system could not be use for part of the proposed improvement because it is higher in elevation than the proposed system. ' There is a roadside ditch along the south side of basin 6 which collects some runoff from the 1-405 and SR 167 interchange. It may collect some runoff from adjacent lots on the ' south side of basin 6. Flow in the ditch travels to the west and into the Washington State Department of Transportation (DOT) system for 1-405. ' There is an existing system in Maple Avenue SW from the intersection of SW 12th Street and Maple Avenue to 1-405. The system consists of 18 and 24-inch corrugated metal pipe (CMP) at a 0.25% and 0.5% slope. The main source of flow to the system is the commercial building located northwest of the intersection. There are two catch basins at the intersection that collect some flow from the street. However, the street does not have curb and gutter so runoff is not efficiently directed to the catch basins. The catch basin rSW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 5 r near the intersection with SW 13th Street is above ground surface and would not collect runoff. The existing system in Maple Avenue connects to the DOT system at the south end of Maple Avenue. The DOT system flows to the west, under Lind Avenue, and eventually discharges to Springbrook Creek. ' C. Drainage Basins The drainage basins used for the analysis are shown in Figure 2. The center of the ' street usually forms a high point and act as drainage divide, with the adjacent property being lower in most cases. Drainage basin size, pervious and impervious areas, runoff curve numbers, and times of concentration are shown in Table 1. Basin 1 included a portion of SW Grady Way and Rainier Avenue that appears to flow to the southwest corner of the intersection and down to a gravel dry well. When the dry well is saturated runoff flows south toward the eastern end of SW 12th Street. There are two large graveled lots north of SW 12th Street that are graded to slope to SW 12th Street. ' Basin 2 and 3 are mainly composed of single family residences with some open grassed lots. ' Basin 4 is primarily a commercial building, parking lot, and the street adjacent to it. The stormwater system installed for the building development is shown on Figure 2 ' Basin 5 contains a small (8-inch) storm line that has a very shallow slope and a small flow capacity. Under existing conditions the alley isolates this basin from the rest of the area. If the area is developed commercially it may be possible that the alley would be ' eliminated to create larger blocks of property, and runoff from the new development would be directed to a system installed in SW 12th Street. Basin 6, 7, and 8 are mainly composed of single family residences with some open grassed lots. Basin 9, 10, and 11 are mainly composed of single family residences with some open ' grassed lots. Basin 9 contains commercial buildings. These basins appear to drain to stormwater systems that discharge to the west, and are not included in the flow analysis for the proposed stormwater system for SW 12th Street. C. Drainage Analysis Method The existing drainage basin was analyzed using the methods and procedures in the 1990 King County Surface Water Design Manual (KCM). Peak runoff rates and volumes ' were estimated using the Santa Barbara Unit Hydrograph (SBUH) method by using the King County "HYD" computer program. SW 12th Street stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 6 The drainage basin was analyzed using the SCS Type 1a rainfall distribution for the following storm events: 25-Year, 24-Hour 3.4 Inches 100-Year, 24-Hour 3.9 Inches ' The time of concentration for each basin was determined using the travel time equations in Chapter 3 of the KCM. The travel path was estimated by assuming that a new stormwater conveyance system would be constructed in SE 12th Street and runoff within each basin would be routed to potential catch basins in that system. Most of the travel times were based on sheet flow over grassed areas. The basin characteristics and time of concentration calculations are included in Appendix A. The time of concentration for each basin is given in Table 1. To simplify the design process the time of concentration and peak flow for each individual basin was determine. The peak flows from each basin were added together where they would be combined in a proposed drainage system. The correct procedure is to add the upstream drainage areas, determine a new time of concentration, and determine a new peak flow for each pipe segment of the proposed drainage system. This would result in a slightly smaller peak flow than simply adding the peak flows from ' each basin. D. Analysis Results The peak flows for each drainage basin estimated by the SBUH method are given in ' Table 1, and the actual printout are included in Appendix A. For basins 1, 2, 3, 4, 6, 7, and 8 the combined peak flow for the 25-Year storm is 6.70 cubic feet per second (cfs). The combined peak flow for the 100-Year storm is 8.03 cfs. Figure 3 is a schematic drawing of a proposed new stormwater system in SW 12th Street connecting to the existing system in Maple Avenue. The stormwater flows from each basin are distributed to the system as shown by the arrows and are summarized by the ' table in the figure. The existing 18-inch CMP in Maple Avenue SW has a capacity of 2.84 cfs using the ' Manning Equation. The peak flow for the 25-Year storm exceeds the 18-inch pipe's capacity, so the 18-inch line would need to be upgraded to carry the peak flow for existing conditions. The existing 24-inch CMP has a capacity of 8.85 cfs using the Manning Equation. The 24-inch line would be capable of carrying the peak flow for the existing conditions. ' The Manning Equation assumes uniform flow in the pipe with the only energy losses due to pipe friction. If the peak flow approaches the pipe capacity a backwater analysis may need to be performed to determine the elevation of water in manholes and catch basins, and if overflow from the system will occur. The backwater analysis includes head losses due to structures and changes in flow direction. SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 7 Table 1 Existing Conditions - Drainage Basin Summary 1 Subbasin Pervious Curve Imperv. Curve Percent Time of Total Area Number Area Number Impervious Concentration Area acres CN acres CN % min. acres 1 0.9 90 0.7 98 43% 13.3 1.6 2 1.3 88 0.5 98 26% 39.4 1.7 3 1.8 88 0.7 98 27% 39.4 2.5 4 0.2 88 0.6 98 73% 6.3 0.8 5 1.2 88 0.5 98 27% 39.4 1.7 6 5.1 88 1.5 98 23% 39.4 6.6 7 0.7 88 0.3 98 28% 28.5 1.0 8 1 0.6 88 1 0.2 98 29% 1 28.5 0.8 11.8 4.8 29% 16.6 1 ' Existing Conditions - Peak Flows 25-Year, 24-Hour Storrs 100-Year, 24-Hour Storm 3.4 Inches 3.9 Inches Basin Peak Flow Basin Peak Flow (cfs) (cfs) 1 1.03 1 1.22 2 0.68 2 0.82 3 0.99 3 1.19 4 0.58 4 0.67 ' 5 NA (0.67) 5 NA (0.81 ) 6 2.59 6 3.13 7 0.46 7 0.55 8 0.38 8 0.46 ' Total 6.71 Total 8.04 Assuming flow from Subbasins 9, 10, 11 will be directed to the west. Runoff from subbasin 5 does not reach SW 12th Street (existing conditions). ' BASINS.XLS Page 1 ' — 2LE3-10 Z Q 2LE3-1 � - 2LE3-2 , 2LE3-9 2LE3-3 2LE3-7 21,C3-1 -g � 21,➢3-1 � � 3-5 '�t 1 2LC4-3 -4 / 2LD4-7 / o I 2LD4-8 ] D - LD4 1 2LC4-7 -- I 2LD7-3J f, 2LD7 21,E4-i 2 D -5 1fl ' O W Y " ' 2LE4-5 o l 21-EL �► �' ► ' / 21,E4- �i1 � 2LO � L� i !1 qq W O- ll tq,n Age lJ 4Jrn J _ J t J — F�DW [i it CC f/o7 DOT ' System i i Figure 2 Drainage Basins ' SCALE: 1 Inch = 200 Feet North SW 12th Street Storm System Project 100 200 400 D. Carey 4194 Figure 3 Schematic Drawing - Flow For Existing Conditions SW 12th Street Storm System Project D. Carey 4194 � QZ Z QZ � a1 ' M H 5 / e 5wf fh f t4H3 H H 6 ✓1H -4 Q xxx I1H4 Q3 3 3 Q3 ' coo NOO z T � J vaa 1 me L O Q H r O .o z MHz a e< A A <--- Q6 Pivr se� nrNT a6 / 2 �Q� Run e�� FYDYr, t`J.Sin 1- y0S Existing Flow To Proposed Drainage System 25-Year, 244-lour Storm 100-Year, 24-Hour Storm 3.4 Inches 3.9 Inches Pipe Size Slope Capacity Flow Flow Total Pipe Flow Flow Total No. in. ft./ft. cfs Added cfs Flow Seg. Added cfs Flow Q1 1.03 01 1.22 7 - 1/3 03 0.33 1.36 7 1/3 03 0.39 1.61 ' 1/2 Q2 0.34 1/2 Q2 0.41 - B 1/3 Q3 0.33 2.02 6 1/3 03 0.39 2.42 5 - 1/2 02 0.34 2.36 5 1/2 Q2 0.41 2.83 4 1/3 Q3 0.33 2.69 4 1/3 Q3 0.39 3.22 04 0.58 Q4 0.67 ' 3 18 0.25% 2.84 1/2 Q7 0.23 3.50 3 1/2 Q7 0.28 4.16 Q6 2.59 Q6 3.13 ' 1/2 Q7 0.23 1/2 Q7 0.28 2 1 24 0.50% 8.85 1 08 0.38 1 6.70 1 2 1 Q8 0.46 1 8.03 ' SECTION 3 FUTURE CONDITIONS DRAINAGE ANALYSIS A. Future Conditions The City Comprehensive Land Use Plan identifies the area as a commercial employment ' area, and the interim zoning map shows it as mixed commercial. Current City code for commercial development would require a 15-foot wide landscaping area along street and highway frontage. An additional 2 % of each property must be set aside as wildlife ' habitat. The remaining area of a property could be developed as impervious building and parking areas. The analysis does not account for any stormwater detention systems that may be required for development in each basin. ' B. Proposed Drainage System The proposed drainage system is shown on Figure 4. The system would start at the existing connection to the DOT system at the south end of Maple Avenue. The existing CMP pipes in Maple Avenue would be replaced with smooth wall pipe to increase their flow capacity. A new system would be constructed in SW 12th Street to collect flow from that area and convey it to the new pipes in Maple Avenue. Manholes would be located every 300 feet and catch basins would be connected to the manholes. Future developments in the drainage basins would be able to connect their on site drainage systems to the proposed manholes, or construct new manholes on the system to connect into. ' C. Drainage Analysis Method ' The drainage basins areas used for the future conditions analysis are the same as the drainage basins used for existing conditions (Figure 2). The basins were analyzed using the maximum amount of impervious area that would be allowed, as described in section A above. The impervious area ranged from 79 to 88 % of the total area for each basin. The remaining area would be landscaping and wildlife set-aside. Basin 4 is already developed as commercial property, so the basin characteristics were not changed from existing conditions. It was assumed that the area for drainage basin 5 will be connected to the new system. Drainage basin size, pervious and impervious areas, runoff curve numbers, and times of concentration are shown in Table 2. The time of concentration was determine starting at basin 1 and moving progressively downstream in the proposed new stormwater system to the connection with 1-405. For basin 1 the time of concentration was estimated at 8.5 minutes. The time of concentration was determined by using the flow time for 200 feet of overland flow over pavement and 350 feet of flow in a stormwater pipe system. SW 12th Street Stomvmater Improvements Drainage Report H:DOCS:95.509:DWC:ps Page 8 r ' For basin 2 the time of concentration was estimated at 12.7 minutes. The time of concentration for basin 2 was estimated at the downstream end of the new stormwater ' system in the basin. The flow time for 550 feet of new stormwater pipe was added to the flow time for basin 1 for a total of 12.7 minutes. ' For basin 3, 4, and 5 the time of concentration was estimated at 13.4 minutes. It was assumed that all three basins would connect to the new system at approximately the same location, near the intersection of Maple Avenues and SW 12th Street. The time of ' concentration for basin 2 was estimated at the downstream end of the new stormwater system in the basin. The flow time for 100 feet of new stormwater pipe was added to the flow time for basin 2 for a total of 13.4 minutes. ' The time of concentration for basins 6, 7, and 8 were determined in a similar manner. The calculations are included in Appendix B. To simplify the design process the time of concentration and peak flow for each individual basin was determine. The peak flows from each basin were added together ' where they would be combined in a proposed drainage system. The correct procedure is to add the upstream drainage areas, determine a new time of concentration, and determine a new peak flow for each pipe segment of the proposed drainage system. ' This would result in a slightly smaller peak flow than simply adding the peak flows from each basin. ' D. Analysis Results The peak flows for each drainage basin estimated by the SBUH method are given in ' Table 2, and the actual printouts are included in Appendix B. For the entire basin the combined peak flow for the 25-Year storm is 11.96 cfs. The combined peak flow for the 100-Year storm is 13.87 cfs. rFigure 5 is a schematic drawing of a proposed new stormwater system in SW 12th Street connecting to the existing system in Maple Avenue. The stormwater flows from each ' basin are distributed to the system as shown by the arrows and are summarized by the table on the figure. ' Pipe segments 2 and 3 are the existing CMP and would be replaced with a smooth wall concrete or polyethylene pipe. Segment 2 would have a flow capacity of 13.40 cfs if it was replaced with an 24-inch pipe at a slope of 0.30 % (using the Manning Equation). ' This would be capable of conveying 11.96 cfs from the 25-Year storm, and would be slightly less than 13.87 cfs from the 100-Year storm. ' Pipe segment 3 would have a flow capacity of 6.25 cfs if it was replaced with an 18-inch pipe at a slope of 0.30 %. This would have slightly less capacity than 6.36 cfs from the 25-Year storm, and would be less than 7.38 cfs from the 100-Year storm. A backwater analysis would be needed to determine if the water level will overtop the structure. Pipe segment 4 would have a flow capacity of 5.70 cfs if a 18-inch pipe at a slope of 0.25 ' % was used. This would be capable of conveying 5.48 cfs from the 25-Year storm, and SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 9 1 1 ' would be less than 7.38 cfs from the 100-Year storm. A backwater analysis would be needed to determine if the 18-inch pipe would be acceptable. Pipe segments 5 and 6 twould be capable of carrying the 25-Year flow by using 18-inch pipes at 0.25%. Pipe segment 7 would have a flow capacity of 1.93 cfs if a 12-inch pipe at a slope of 0.25 ' % was used. This would have slightly less capacity than 2.20 cfs from the 25-Year storm, and would be less than 2.54 cfs from the 100-Year storm. A backwater analysis would be needed to determine if the water level will overtop the structure. 1 1 1 SW 121h Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 10 1 ' Table 2 Future Conditions - Drainage Basin Summary Subbasin Pervious Curve Imperv. Curve Percent Time of Total ' Area Number Area Number Impervious Concentration Area acres CN acres CN % min. acres 1 0.2 90 1.4 98 87 % 8.5 1.6 2 0.2 90 1.5 98 86 % 12.7 1.7 3 0.4 90 2.1 98 84 % 13.4 2.5 4 0.2 90 0.6 98 73 % 13.4 0.8 5 0.3 90 1.4 98 82 % 13.4 1.7 6 0.8 90 5.8 98 88 % 15.2 6.6 7 0.2 90 0.8 98 81 % 15.2 1.0 ' 8 1 0.2 90 0.7 98 79 % 1 16.4 1 0.8 2.5 14.1 85 % 16.6 1 ' Future Conditions - Peak Flows ' 25-Year, 24-Hour storm 100-Year, 24-Hour Storrs 3.4 Inches 3.9 Inches Basin Peak Flow Basin Peak Flow (cfs) (cfs) 1 1.24 1 1.43 2 1.25 2 1.45 3 1.80 3 2.09 4 0.53 4 0.62 5 1.21 5 1.41 6 4.69 6 5.43 7 0.70 7 0.81 ' 8 0.56 8 0.65 Total 11.98 Total 13.89 ' Flow from Subbasins 9, 10, 11 will be directed to the west. 1 ' BASINS.XLS Page 2 2LE3-4 21,E Q 2LE3-10 Q 2LE3-1 21.E3-2 1 2LE3-9 Z _ f_ l�� 2LE3-3 21,E3-7 -g / 21,C3-1 / _�� 21,D3-1 3-5 2LC4-3 / � �.i -4 21,D4-7 I l 2LD4-0 L 1➢ _ D41b � 2LC4-7 3 � -- -� 2LD7-3� b 2LD7 r � O l SRpPosED YSTEM r H 2LE4- r 2LD�-5 f � � � S ,(/ iD O LLJ7 I `� 2LE4-5 21,E4-6 t� O ► 21,E4- 21,D I i W ' a Q Figure 4 Proposed Drainage System i SCALE: 1 Inch = 200 Feet North I tao zoo 400 SW 12th Street Storm System Project D. Carey 4194 Figure 5 Schematic Drawing - Flow For Future Conditions SW 12th Street Storm System Project D. Carey 4194 ' D. Q5 1 tf 4Z 0.5Q5 z 0Z 0,3 K Qt M H 5 �� 1 6 7 MH3 HH6 MH7 WWW QN -' Q 1 xxx I MH4 j Q3 3 3 J 43 V N O O0 n00 z 1 H aaa ' "NN l p MHZ PIP-- Secrrr.V7 Q � z Fror Ba5;n ' fi1 M H 1 I- 4DS Future Flow To Proposed Drainage System 25-Year, 24-Hour Stomi 100-Year, 24-Hour Storm 3.4 Inches 3.9 Inches Pipe Size Slope Capacity Flow Total Pipe Flow Total No. in. ft./ft. cfs Added Flow Flow No. Added Flow Flow ' Q1 1.24 Q1 1.43 0.3 05 0.36 0.3 Q5 0.42 7 12 0.25% 1.93 1/3 Q3 0.59 2.20 7 113 Q3 0.69 2.54 ' 112 Q2 0.63 1/2 Q2 0.73 0.4 Q5 0.48 0.4 Q5 0.56 6 18 0.25% 5.70 1/3 03 0.59 3.90 6 1/3 Q3 0.69 4.52 ' 0.3 Q5 0.36 0.3 Q5 0.42 5 18 0.25% 5.70 112 Q2 0.63 4.89 5 1/2 02 0.73 5.67 1 4 18 0.25% 5.70 1/3 Q3 0.59 5.48 4 1/3 Q3 0.69 6.36 Q4 0.53 04 0.62 3 18 0.30% 6.25 1/2 Q7 0.35 6.36 3 1/2 Q7 0.41 7.38 ' Q6 4.69 Q6 5.43 1/2 Q7 0.35 1/2 Q7 0.41 2 24 0.30% 13.40 Q8 0.56 11.96 2 Q8 0.65 13.87 i ' SECTION 4 ' BACKWATER ANALYSIS ' A. Analysis Method The capacity of the proposed conveyance system for SW 12th Street was analyzed ' using the King County Surface Water Management Backwater Analysis Program "BWPIPE". This program computes the backwater elevation at each structure for a range of flows using inlet, outlet, and system head losses. The analysis for the proposed system considered the existing DOT pipe system at the south end of Maple Avenue, parallel to 1-405. The DOT system consists of a 30-inch concrete pipe, a manhole east of the Lind Avenue overpass, a 24-inch CMP, an open ditch, and a 24-inch concrete pipe (pipe segment 1). A cross-section of the system is shown on Figure 6 ' The 30-inch pipe has a capacity of 20 cfs, using the Manning equation. In the manhole east of Lind Avenue the top of the 30-inch pipe is at the same elevation as the top of the ' 24-inch CMP. Based on the top of pipe elevations in the manhole the analysis assumes that flow in the 24-inch CMP will be governed by inlet control. The inlet control nomograph for CMP culverts in the KCM was used to determine flow in the 24-inch CMP ' for given headwater elevations at the pipe entrance. The headwater elevations and flows were used as tail water conditions for pipe segment 1 and the rest of the proposed stormwater conveyance system in Maple Avenue and SW 12th Street. ' B. Analysis Results ' The results from the Backwater Analysis are summarized in Table 3, and the complete printout is included in Appendix C. Core requirement #4 in the King County Manual requires that the proposed pipe system must provide a 0.5 foot freeboard between the ' hydraulic grade line and the top of the structure for the 25-Year peak flow. The analysis shows that the water elevation will remain within the structures for the 25- ' Year, 24-Hour storm for future conditions. In pipe segment 7 the water elevation is predicted at 0.09 feet (1.0 inches) below the top of the structure. In all other structures the water elevation is greater than 0.5 feet below the top of the structure. ' For the 100-Year, 24-Hour storm the analysis predicts overflow in pipe segments 3, 4, 5, and 7. The King County Manual allows structures to overflow for the 100-Year, 24-Hour storm analysis provided that: 1. runoff does not overtop the crown of the roadway; and/or 2. no portions of a building will be flooded; and/or 3. if overland sheet flow occurs, it will be through a drainage easement. ' SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 11 r rFuture street improvements in the area would include reconstructing the streets and including installing curbs and gutters. Overflow out of structures during the 100-Year storm would be limited by the curb and gutter. It is anticipated that buildings in the area would be placed on fill graded higher than the curb elevation and graded so water would not run toward the building. Overflow from the new stormwater system would be ' expected to cause minor flooding of the road during the 100-Year storm, but would not be anticipated to cause flooding in any future building constructed in this manner. 1 1 i SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 12 1 LINO Mt , MAOLe ACE, ISW 12fh S� • MH Dlick SYSTEM 1 N V N w W w I1.50 _ NNN -- �So �p xxx 9.95= N N N INNN (®®-0 3V Conc 2Li" cmp1r.NC. 24" Ca.,r . 1 _ A Ssurne '9 CM/'�GOVG . 3// C�/�� /� hu ✓�y� s� ,�;� t C /;,, 1, H u'/�� n d/L ✓< /V�Jr j W F,It. S yJ +c ., ( 2/LJ Xr116t Co -fro Ala jr,s�, cfvr 3.tl � CMf lGoNG. Z;-Ycva {r�, 2 12 , 3 G�J I 3 13 . 51 2. 6 P's I ly. 51 3, 0 4.0 Figure 6 Profile of DOT Drainage System SW 12th Street Storm System Project D. Carey 4194 I Table 3 ' Proposed Drainage System Future Conditions - Backwater Analysis Results Peak Flow Analysis Backwater Analysis ' Pipe 25-Year 100-Year Q Headwater Rim Segment Size Q Q ( cfs ) Elevation Elevation Comments (inches) ( cfs ) ( cfs ) ( ft ) ( ft ) 1 7 12 2.20 2.2 18.58 18.67 w/in 0.5 ft 2.54 2.4 19.59 " " Overflow for 100-Year 6 18 3.90 3.9 17.35 18.75 ' 4.52 4.6 18.26 .. " 5 18 4.89 4.9 16.94 17.70 ' 5.67 5.7 17.91 Overflow for 100-Year 4 18 5.48 5.5 16.63 17.50 6.36 6.4 17.94 " " Overflow for 100-Year 3 18 6.36 6.4 16.31 17.50 7.38 7.4 17.58 11 11Minor Overflow for 100-Year 2 24 11.96 12.0 14.97 18.96 (existing) 13.87 14.0 15.77 " 1 24 11.96 12.0 14.31 17.48 ' (existing) 13.87 14.0 14.87 " SW 12th Street Stormwater Improvements Drainage Report H:D005:95-509:DWC:ps Page 15 r r SECTION 5 rAS-BUILT SYSTEM rA. Construction r In November 1994 the City Maintenance staff installed a new drainage collection system consisting of 18-inch and 12-inch ADS N-12 pipe in SW 12th Street following plans prepared by the Surface Water Utility. The slope of the new pipe was changed from the r design plans due to conflicts with existing utilities in Maple Avenue. The Surface Water Utility and Maintenance Section decided to install a siphon to go under the existing 12- inch water main, fiber optics cable, and telephone duct at the intersection, due to the rdifficulty in relocating those utilities. The new system was connected to the existing 18-inch CMP at the southwest comer of r the Maple Avenue intersection. On SW 12th Street the pipe was extended to the area where ponding occurs east of residence# 118. After the new system was installed the large pond that was in that area was reduced or totally eliminated. During prolonged rains the smaller ponds east of the catch basin, along the edge of the gravel parking area and SW 12th Street, were still present. ' In the future the City or a private developer may need to upgrade the existing 18- and 24- inch CMP pipes in Maple Avenue to obtain the full capacity of the stormwater drainage system. ' B. As-Built Information ' The as-built elevations and pipe lengths were obtained from the Maintenance Section, and from field leveling performed by the Surface Water Utility. The as-built pipe slopes are shown in Figure 7. rAdditional information on the existing 18- and 24-inch CMP in Maple Avenue was obtained from the topographic plans being used for a proposed development on the property west of Maple Avenue ( ESM Inc., sent to Surface Water Utility). The invert elevations showed that the slope of the existing 18-inch CMP was 0.18 % instead of 0.25 %, and the existing 24-inch CMP was at 1.04 % instead of 0.50 %. rThe revised slopes for the existing CMP pipes were used for the As-Built backwater analysis. r C. Existing Conditions - Runoff and Backwater Analysis r A schematic of the as-built drainage system, pipe slopes, and assumed existing drainage ' conditions is shown in Figure 7. Based on field observations only limited areas of the SW 12th Street Slomrwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 13 r r ' defined drainage basins are likely to flow to the drainage system as it now exists. The entire drainage basin area would flow to the drainage system only if extensive regrading of the properties occurred (see basin description in Section 2). The analysis for peak runoff from the 25-Year and 100-Year, 24 Hour storm events was ' redone for the as-built system. For each pipe segment the upstream basin areas were added together and a new time of concentration for the entire upstream basin area was determined. A backwater analysis using the King County "BWPIPE" program was ' performed for the as-built system. The printouts for the new analyses are included in Appendix D. The results of the runoff and backwater analyses are shown in Figure 7. The analyses show that no overflow would occur for the predicted peak flows in the as-built system. D. Future Conditions - Runoff and Backwater Analysis ' A new runoff and backwater analysis was performed for the as-built system assuming the drainage basins were completely developed, as described in Section 3. The analysis for the peak runoff from the 25-Year and 100-Year, 24 Hour storm events was redone. ' For each pipe segment the upstream basin areas were added together and a new time of concentration for the entire upstream basin area was determined. The printouts for the new analysis are included in Appendix D. The results of the runoff and backwater analyses are shown in Figure 8. The backwater analysis showed that for the 25-Year and 100-Year peak flows from developed conditions overflow would occur in pipes 9, 8, 7, and 3. Overflow would also occur in pipe 4 for the 100-Year peak flow only. E. Potential Improved System - Runoff and Backwater Analysis Pipe 2 is a 24-inch CMP at 1.04 % slope and pipe 3 is a 18-inch CMP at 0.18 % slope. ' Potential improvements to obtain maximum capacity from the drainage system would involve changing both pipes to 24-inch concrete at the same slope, 0.48 %. These changes were made to the pipe data file and a new backwater analysis was performed for future conditions. The printouts for the new analysis are included in Appendix D. The results of the runoff and backwater analyses are shown in Figure 9. The analyses ' show that no overflow would occur for the predicted peak flows in the improved system. The runoff and backwater analyses for future conditions assumed that all runoff from the basins would flow directly into the drainage system. The use of onsite detention systems, as required in the King County Surface Water Design Manual, would reduce the peak flows reaching the system and potential for overflow. rSW 12th Street Stormwater Improvements Drainage Report H:D0CS:95-509:DWC:ps Page 14 1 Figure 7 Schematic Drawing - As-Built System, Flow For Existing Conditions SW 12th Street Storm System Project D. Carey 6/95 ' Q A AZ Rf 4 2 a CB4 , CBS C86 9gg�g< S �riei ;MH C83 »cwwwW ■88 A ' yry3 ` 1 A y 3 A7 �i CB 1 (S.1%l L;l) 3 a SIR �� z ® n o ' z / P/PE SEGMENT �.� MH i -A-- ,J A6 / �}f '�`"">{{ Fr~ 8afin ' SR yos AS-BUILT SYSTEM - ESTIMATED EXISTING FLOW 25-Yr,24-Hr, 100-Yr,24-Hr, ' Storm-3.4 in. Storm -3.9 in. Manning Backwater Pipe Size Slope Capacity Analysis Peak Peak ' No. Capacity ` Flow Flow in. ft./ft.) (cfs) (cfs) (cfs) (cfs 9 12 0.27% 2.00 1.45 0.95 1.13 8 18 0.20% 5.08 1.77 1.16 1.38 7 18 0.91% 10.84 2.14 1.40 1.68 t 6 18 0.00% siphon 2.14 1.40 1.68 5 18 0.20% 5.08 2.14 1.40 1.68 4 18 2.90% 19.35 2.63 1.84 2.19 3 18 0.18% 2A1 3.47 2.43 2.89 2 24 1.04% 12.52 3.47 2.43 2.89 Runoff analysis does not include any onsite detention. Pipe 2, 3 are existing CMP ' Pipe Capacities exceeded Backwater Analysis limits, no overflow Figure 8 Schematic Drawing - As-Built System, Flow For Future Conditions SW 12th Street Storm System Project D. Carey 6195 ' 0,3AS 0,5Ag Q J '/zA2. I /zAz Ai 1 C8.5 CB6 � 5�✓ 12r6 , 221g99 C82 Sfrr<i� o'N'oN ` 1 �bLE C83 3 A3 3 A3 ��?u2s ' "sas Ay 3 �j Ag S 2 A� CB 1 (ScIiS L;J) 3 3 2 Al -a iw H 2 � 2 A n C� ' A " Z J 6 P/P� SEGN/fNT . � 171 MH i -- j A6 f Af R""-ff From PJasin � rll /, r AS-BUILT SYSTEM - ESTIMATED FUTURE FLOW 25-Yr, 24-Hr 100-Yr,24-Hr Storm-3.4 in. Storm-3.9 in. Manning Backwater Pipe Size Slope Capacity Analysis Peak Peak No. Capacity ` Flow Flow in. ft./ft.) (cfs) (cfs) (cfs) (cfs 9 12 0.27% 2.00 1.49# 2.08 2.41 ' 8 18 0.20% 5.08 3.53# 3.99 4.63 7 18 0.91% 10.84 4.62# 4.97 5.76 ' 6 18 0.00% siphon 5.88 4.97 5.76 5 18 0.20% 5.08 5.88 4.97 5.76 ' 4 18 2.90% 19.35 6.60 A 5.54 6.41 3 18 0.18% 2.41 4.48# 6.29 7.29 2 24 1.04% 12.52 12.17 10.37 12.02 Runoff analysis does not include any onsite detention. Pipe 2, 3 are existing CMP # = overflow at 25- and 100-year peak flow = overflow at 100-year peak flow Figure 9 Schematic Drawing - Future System, Flow For Future Conditions SW 12th Street Storm System Project D. Carey 6195 ' 0.3 As 0. s AS 0. 2 as %zAZ %aA Ai ' c84 CBS C06 � -p Sw12rb C 8 2 R 1 >, C 83 3 A 3 3 A3 3 �3 R 3 1 Al C8 I (S-41 L;d) Z 3 ' IlkM>i2 A ~ 3 A6 •r n O 8 z P/PC S'E6N1£NT R". 4f Fr-m PaJ)"n r SR y0-S IMPROVED SYSTEM - ESTIMATED FUTURE FLOW 25-Yr, 24-Hr 100-Yr, 24-Hr Storm - 3.4 in. Storm - 3.9 in. Manning Backwater Pipe Size Slope Capacity Analysis Peak Peak ' No. Capacity Flow Flow in. ft./ft.) (cfs) (cfs) (cfs) (cfs 9 12 0.27% 2.00 1.93# 2.08 2.41 8 18 0.20% 5.08 4.71 3.99 4.63 7 18 0.91% 10.84 5.88 4.97 5.76 6 18 0.00% siphon 5.88 4.97 5.76 5 18 0.20% 5.08 5.88 4.97 5.76 ' 4 18 2.90% 19.35 6.53 5.54 6.41 3 24 0.48% 17.01 7.38 6.29 7.29 2 24 0.48% 17.01 12.17 10.37 12.02 Runoff analysis does not include any onsite detention. Pipe 2, 3 changed from CMP to 24-inch Concrete, slope revised to 0.48 for both. # = overflow at 25- and 100-year peak flow ' APPENDIX A Existing Conditions Drainage Analysis 1 ' SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 16 1 1 1 APPENDIX A Existing Conditions Drainage Analysis 1 I 1 1 1 1 1 1 1 1 SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 16 1 SW 12th Street - Runoff Summary Existing Conditions Subbasin Pervious Curve Imperv. Curve Percent Time of Total ' Area Number Area Number Impervious Concentration Area (acres) CN (acres) CN (% min. acres 1 0.9 90 0.7 98 43 % 13.3 1.6 2 1.3 88 0.5 98 26 % 39.4 1.7 3 1.8 88 0.7 98 27 % 39.4 2.5 4 0.2 88 0.6 98 73 % 6.3 0.8 5 1.2 88 0.5 98 27 % 39.4 1.7 6 5.1 88 1.5 98 23 % 39.4 6.6 7 0.7 88 0.3 98 28 % 28.5 1.0 8 0.6 88 0.2 98 29 % 28.5 0.8 9 0.4 88 0.3 98 46 % 6.3 0.7 10 0.8 88 0.3 98 28 % 34.0 1.2 ' 11 0.5 88 0.2 98 26 % 34.0 91 19.1 1 ' BASINS.XLS Page 1 cf 1,t i Ir- 21,E3-10 I M � � Q � N � 2LE3-1 o 200 200 � - _ — �— 2LE3-2 ` 2LE3-9 ` 2LE3-3 2LE3-7 21,C3-1 9 �- 21,D3-1 3-5 I, 2LC4-3 2I,D4-7 2LD4-8 - LD4 1 b ] D 2LC4-7 a � i 2LD7-3 2LD 2LE4- I � 2LD4� � s/ y �9 ' 2LE4-5 avow 2LE4-6 .00aw 21,E4- SW 1 Z tk 54, 49 A ' D RAINA & BASINS - 2LD5-5 1 2LD5 2LD5-2 - `. 1 2LE5-2 2LDs-4 LLIi :� -"- - 21,E5-3 Q ' 21,D5-1 m ii iil if ii If 7 * ■o M m sopi x ' 11 jj �� II I I z5 EARLINGTO GOLF COIJR E i 55K4. SSN'T" IA 1{ �I o xv� U� l I �! IS x - � IS / /�%r• II - x x��x� it - 6 I SR I C�(,�y,� II o lo0 200 I Ili/�/�Y II 1 / n II _ 6 It KING COUNTY, WASIIINGTON, SURFACE WATER DESIGN MANUAL ' TABLE 3.5.2B SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS SCS WESTERN WASHINGTON RUNOFF CURVE NUMBERS (Published by SCS in 1982) ' Runoff curve numbers for selected agricultural, suburban and urban land use for Type 1A rainfall distribution, 24-hour storm duration. CURVE NUMBERS BY ' HYDROLOGIC SOIL GROUP LAND USE DESCRIPTION A B C D Cultivated land(1): winter condition 86 91 94 95 Mountain open areas: low growing brush and grasslands 74 82 89 92 Meadow or pasture: 65 78 85 89 ' Wood or forest land: undisturbed 42 64 76 81 Wood or forest land: young second growth or brush 55 72 81 86 Orchard: with cover crop 81 88 92 94 ' Open spaces, lawns, parks, golf courses, cemeteries, landscaping. good condition: grass cover on 75% ' or more of the area 68 80 86 90 fair condition: grass cover on 50% to 75% of the area 77 85 90 92 ' Gravel roads and parking lots 76 85 89 91 Dirt roads and parking lots 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 96 98 L98 I ' Open water bodies: lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential (2) ' Dwelling Unit/Gross Acre % Impervious (3) 1.0 DU/GA 15 Separate curve number 1.5 DU/GA 20 shall be selected 2.0 DU/GA 25 for pervious and ' 2.5 DU/GA 30 impervious portion 3.0 DU/GA 34 of the site or basin 3.5 DU/GA 38 4.0 DU/GA 42 ' 4.5 DU/GA 46 5.0 DU/GA 48 5.5 DU/GA 50 6.0 DU/GA 52 t 6.5 DU/GA 54 7.0 DU/GA 56 Planned unit developments, % impervious ' condominiums, apartments, must be computed commercial business and industrial areas. ' (1) For a more detailed description of agricultural lard use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, August 1972. (2) Assumes roof and driveway runoff is directed into street/storm system. (3) The remaining pervious areas (lawn) are considered to be in good condition for these curve numbers. ' 3.5.2-3 I/90 I 5G5 So ; 1 Svrva)r Ur = �Jr(at � ����s — Vnru6lc Mrdr+�nK/ 0 3 Wood,'„ l He - D 1� Sly��t 11 ot�r r sa:rr W _ pb�r!•��l To Area Pw - P,L+ ID_ R.4 E. R.5 E. SEATTLE(CITY P.o.I to ML12'30" 6 M,. TO INTERS TAT£90 "AkF (Joins sheet 5) AmC ISSAOU '•.+=., • Suosla n• I67 f : � ' �\ , I �� Ur li � ' a $�j, r J,•''�r No . .m - 9 '..'E K�dC•'L T i 'y. + A R O f r :. � Athleb 2L 1(�U rp/ �•F' j'� �p 1 bstA' •- - 1 • • ` r •r' I 1 •• 1 y'� • - � .y Pdrk • GRAVEL iPIT •! • ° pc • 6 a 111 BM •+ I :/ t e _ • y.1 a +c-� rP321' an a BCD I BCC • a g .\ "Rh• a It �• AkF I Evc GFp ROAD�y ••..' ..... ,. � c 9 ...._ _ p� - q��e,( �'�40E 1 I• \ h T 't Ur I �11r, '•.k `- _ _ • , P No _ m AkF —� Ur /I I• 1 InC •' Py •' _. ` rt ' i. !' SP " AgC BM11137 Al ACC {{a�5ew 6e ORTHE ,�•, , � . �., ___ ryQ '°asi SIC--< \ _� � • Disp sal � � •__ _ 'ApnC -- °' 'a 'n`c `` - � AgC I_ _ I,. ••�`�°ram= k AgD 20 ammms�;y I •� ,•. m 1.61. 455 mm o° LiI : F i t• ` ,i. C m ur I:LongaoreC I Pu •i• � �. Pu •+• ' o•'a 515 AOf:E �FR �I FlyI Wo eD iii •,iBec, + ( 'j �JTraek i 29 r 10 c 76 a �y -Ur -. � Ng ❑ R s rvoir g0 •, AgC : py so = n ua W Pu i m Sk I _ - Wo s r(' AI m 25 =ice 9BM 29 — Age 169 203 A6C a••• Pr 451 Wu �� ' �.. ,AmC it '• : ' Project: SW 12th Street Small Drainage Problem D. Carey Revised: 1/20194 ' Existing Sub-basin Characteristics -------------------------------------------------------------------------------------------------------------------------- ' SUB-BASIN 1 Total Pervious CN Imper. CN Estimated Area ac Area ac Area ac Tc min. 1.58 0.9 90 0.68 98 13.3 ' Sheet Flow ns L P2 s T T = (0.42x(ns x L)^0.8}/ Pavement F70.011 250 2.0 0.002 8.0 (( P2)^0.5 x (s)^0.4 } Shallow Cone. Flow k L s v T V= k Sgrt(s) , T= U(v x 60) Pavement 20 450 0.005 1.4142 5.3 #DIV/0! Comments: ' Roads measured 0.68 ac. Gravel and dirt lots are most of remaining area, SCS Hydro Group D. Minimum Tc = 6.3 minutes. ' SUB-BASIN 2 Total Pervious CN Imper. CN Estimated ------------------- Area ac Area ac Area ac TIT.) 1.7 1.25 88 0.45 98 39.4 ' Sheet Flow ns L P2 s T T = (0.42x(ns x L)^0.8)/ Grass 0.15 300 2.0 0.01 39.4 1 (( P2)^0.5 x (s)^0.4 } Comments: Roads measure 0.25 ac, + 15% for bldgs(0.20 ac). Area mainly lawns, pasture, SF homes. 1 -------------------- --------------------------------- ----------------------------------- SUB-BASIN 3 Total Pervious CN Imper. CN Estimated Area (ac) Area ac Area ac Tc min. 2.48 1.82 88 0.66 98 39.4 Sheet Flow ns L P2 s T T = (0.42x(ns x L)^0.8}/ Grass F 0.15 300 2.0 0.01 39.4 (( P2)^0.5 x (S)^0.4} ' Comments: Roads measure 0.36 ac, + 15% for bldgs(0.30 ac). Area mainly lawns, pasture, SF homes. 1 SW12-CN.XLS Page 1 SUB-BASIN 4 Total Pervious CN Imper. CN Estimated Area (ac) Area ac Area (ac) Tc min. 0.75 0.2 88 0.55 98 6.3 ' Sheet Flow ns L P2 s T T= {0.42x(ns x L)A0.8}/ Pavement 0.011 200 2.0 0.005 4.6 {( P2)A0.5 x (s)A0.4 } ' Comments: Mainly roads, parking lot, bldg. ' Minimum Tc= 6.3 minutes. SUB-BASIN 5 Total Pervious CN Imper. CN Estimated Area ac Area ac Area ac Tc min. 1.68 1.23 88 0.45 98 39.4 ' Sheet Flow ns L P2 s T T= {0.42x(ns x L)A0.8}/ Grass F 0.15 300 2.0 0.01 39.4 ' f( P2)AO.5 x (S)AO.4 } Comments: Roads measure 0.15 ac, + 20% for bldgs( 0.30 ac). Area mainly lawns, pasture, SF homes, bldg. Use 2.0 du/ga ' SUB-BASIN 6 Total Pervious CN Imper. CN Estimated Area (ac) Area ac Area ac Tc min. 6.58 5.06 88 1.52 98 39.4 Sheet Flow ns L P2 s T T = {0.42x(ns x L)A0.8}/ Grass 0.15 300 2.0 0.01 39.4 {( P2)^0.5 x (S)AO.4 } ' Comments: Roads measure 0.27 ac, + 20% for bldgs( 1.26 ac). Area mainly lawns, pasture, SF homes,. Use 2.0 du/ga SW12-CN.XLS Page 2 SUB-BASIN 7 Total Pervious CN Imper. CN Estimated ' Area ac Area ac Area ac Tc min. 1.0 0.72 88 0.28 98 28.5 ' Sheet Flow ns L P2 s T T= {0.42x(ns x L)^0.8)/ Grass 0.15 200 2.0 0.01 28.5 {(P2)^0.5 x (s)^0.4 } Comments: Roads measure 0.1 ac, + 20% for bldgs(0.18 ac). ' Area mainly lawns, pasture, SF homes,. Use 2.0 du/ga -------------------------------------------------------------------------------------------------------------------------- ' SUB-BASIN 8 Total Pervious CN Imper. CN Estimated Area (ac) Area ac Area ac Tc min. 0.82 0.58 88 0.24 98 28.5 ' Sheet Flow ns L P2 s T T= {0.42x(ns x L)^0.8}/ Grass r 0.15 200 2.0 0.01 28.5 {( P2)^0.5 x (s)^0.4 } Comments: Roads measure 0.1 ac, + 20% for bldgs( 0.14 ac). ' Area mainly lawns, pasture, SF homes,. Use 2.0 du/ga ' SUB-BASIN 9 Total Pervious CN Imper. CN Estimated Area ac Area ac Area ac Tc min. 0.67 0.36 88 0.31 98 6.3 minimum Tc Sheet Flow ns L P2 s T T= (0.42x(ns x L)^0.8)/ Pavement 0.011 250 2.0 0.01 4.2 f( P2)AO.5 x (s)^0.4) ' Comments: Roads measure 0.67 ac, + 40% for bldgs(0.24 ac). Area mainly lawns, bldgs,SF homes,. Use 4.0 du/ga ' SUB-BASIN 10 Total Pervious CN Imper. CN Estimated Area ac Area ac Area ac Tc min. 1.15 0.83 88 0.32 98 34.0 ' Sheet Flow ns L P2 s T T = (0.42x(ns x L)^0.8}/ Grass F 0.15 250 2.0 0.01 34.0 ' {( P2)^0.5 x (S)^0.4) Comments: Roads measure 0.69 ac, + 20% for bldgs(0.23 ac). Area mainly lawns, pasture, SF homes,. Use 2.0 du/ga 1 ' SW12-CN.XLS Page 3 SUB-BASIN 11 Total Pervious CN Imper. CN Estimated Area (ac) Area ac Area ac Tc min. 0.7 0.52 88 0.18 98 34.0 ' Sheet Flow ns L P2 s T T= (0.42x(ns x L)10.8}/ Grass 0.15 250 2.0 0.01 34.0 (( P2)A0.5 x (s)A0.4} ' Comments: Roads measure 0.05 ac, + 20% for bldgs(0.13 ac). ' Area mainly lawns, pasture, SF homes,. Use 2.0 du/ga 1 1 1 ' SW12-CN.XLS Page 4 r ' SW 12 tI St- - 3r-n it ar��<�e Prsbl� 17. Car�Y STORM OPTIONS: S YcKr zc{ - �1 °wr ✓r TO/T 1 - S.C.S. TYPE-lA I' 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: BASrn! Qp 1 I ).03 c-s S.C.S. TYPE-IA RAINFALL- DISTRIBUTION 2 0.68 ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 3 ,9 25, 24, 3.4 ---------------------------------------------------------------------- 4 58 xxxx:xxxxxxxxxxxxxxx S.C.S. TYPE-IA DISTRIBUTION xx**xxxxxx**xxx**x*x 5 a/o *xxxxxxxx 25-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP. xxxx*xxxx 6 2 s9 ------------------------------------------------------------- y6 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 O $ B 0.9, 90, .68, 98, 13.3 " DATA PRINT-OUT: fp y 9 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MIHUTES) J� 3 A CN A CN 1.6 .9 90.0 .7 98.0 13.3 - PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) ' 1.03 7.83 15488 ENTER [d:](path]filena®e[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 1.25, 86, .45, 98, 39.4 '- DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) I' A CH A CN 1.7 1.3 88.0 .4 98.0 39.4 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) ' .68 7.83 14943 ENTER [d:](path]filena®e[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP - .a .: c 1,82, 88, .66, 98, 39.4 DATA PRINT-OUT: _ l/ , 2� AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 1 A CN A CN r - 2.5 1.8 88.0 .1 98.0 39.4 1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .99 7.83 21812 1 ENTER (d:)(path]filenaae(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 11 c ENTER: A(PERY), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 0.2, 88, 0.55, 98, 6.3 <1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 1 A CH A CN .8 .2 88.0 .6 98.0 6.3 1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .58 7.67 7903 it ENTER [d:][path]filenaAe(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash - FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 y SPECIFY: C - CONTINUE, N NEWSTORM, P - PRINT, S - STOP c ENTER: A(PERY), CN(PERY), A(IMPERV), CN(IMPERV), TC FOR BASIN H0. 5 1.23, 88, 0.45, 98, 39.4 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.7 1.2 88.0 .4 98.0 39.4 1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .67 7.83 14786 1 ENTER (d:][path]filena®e[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 5.06, 88, 1.52, 98, 39.4 1 DATA PRINT-OUT: ARFA(ACRF91 PFRVTOIIS TMPFRVTOUS Tr..(MTNlJTFS) s 6.6 5.1 88.0 1.5 98.0 39.4 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) by 2.59 7.83 57045 A ' ENTER (d:](path]filenane[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y iSPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 c-------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 0.72, 88, 0.28, 98, 28.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 1.0 .l 88.0 .3 98.0 28.5 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) :46 7.83 8845 I' ENTER [d:](path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? X SPECIFY: C - CONTINUE, N NEWSTORM, P - PRINT, S - STOP c----- -------- --------- ---------- ----------- -- --- ----- --- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 8 ' 0.58, 88, 0.24, 9B, 28.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS -IMPERVIOUS TC(MINUTES) ,i A CN A CN .8 .6 88.0 .2 98.0 28.5 tPEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .38 7.83 7290 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? V SPECIFY: C - CONTINUE, N NEWSTORM, P - PRINT, S - STOP ' c ------ -------- --------- ---------- - --------- -- --- ----- --- - 9 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN H0. 9 1,11, 88, 0.31, 11, 6.3 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH .7 .4 88.0 .3 98.0 6.3 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) - ' - .47 7.67 6409 —.1 ,trash II II FILE ALREADY EXIST; OVERWRITE (Y or N) ? r _,.y / SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP C--------------------------------------------------------------------- '' ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 10 0.83, 88, 0.32, 98, 34 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 1.1 .8 -88.0 .3 98.0 34.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .49 7.83 10165 ' ENTER ['[path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 11 0.52, 88, 0.18, 98, 34 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .7 .5 88.0 .2 98.0 34.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .30 7.83 6134 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? ` Y SPECIFY: C - CONTINUE, N NEWSTORM, P PRINT, S STOP <.1 s KING COUNTY DEPARTMENT OF PUBLIC WORKS '— Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - ROUTED 3 - ROUTE 4 - ROUTE2 5 - ADOHYD 7- PLOTHYD �! 8 - DATA 1 9 - ROFAC i 10 RETURN TO DOS ' ENTER OPTION: -- ' .P Sw U1rfc1 — Sma (( Drt[ •n cle- YrebIt ts, STORM OPTIONS: 015- yeK , 2ti - Ho,, S+a m D. c liar 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREO(YEAR), DURATION(HOUR), PRECIP(INCHES) 100, 24, 3.9 --- --- -- — — — xx:xxxxsx:xxxxxxxxxz S.C.S. TYPE-lA DISTRIBUTION xxxxxxxxxxzxxxxzxxxx `' xxzzsxxxs 100-YEAR 24-HOUR STORM xxsx 3.90° TOTAL PRECIP. xxxxxsxxx ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TO FOR BASIN NO. 1 f 0.9, 00, 0.68, 98, 13.3 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A ON A ON ' 1.6 .9 90.0 .7 98.0 13.3 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 1.22 7.83 18251 ENTER [d:][path]filenaoe[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? V SPECIFY: C - CONTINUE, H - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TO FOR BASIN NO. 2 O 1.25, 88, .45, 98, 39.4 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN ' 1.7 1.3 88.0 .4 98.0 39.4 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) .82 7.83 17782 ' ENTER [d:)(path]fileoa®e(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trasb FILE ALREADY EXIST; OVERWRITE (Y or H) ? Y QDrrrrv. n _ nnYTTuur u - urueTnem 0 - DQTUT c - aTnO c ---------------- -------------------- --------- ------------------ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 O ' 1,11, 11, .66, 98, 39.4 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.5 1.8 88.0 .7 98.0 39.4 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.19 7.83 25955 ' ENTER (d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ------ -------- --------- ---------- ----------- -- --- ---- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 O 0.2, 88, 0.55, 98, 6.3 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN .8 .2 88.0 .6 98.0 6.3 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .67 7.67 9231 ' ENTER (d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash - FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, H - NEWSTORM, P - PRINT, S - STOP c --------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN N0. 5 O 1,23, 88, 0.45, 98, 39.4 ' DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.7 1.2 86.0 .4 98.0 39.4 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .81 7.83 17593 ENTER [d:][path)filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP `.: 31q ----- --- ENTER: A(PERV),-CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. b 5.06, 88, 1.52, 98, 39.4 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CH 6.6 5.1 88.0 1.5 98.0 39.4 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 3.13 7.83 68003 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 O 0.72, 88, 0.28, 98, 28.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 1.0 .7 88.0 .3- 98.0 - — 28.5 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .55 7.83 10540 ENTER (d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? i. Y SPECIFY: C - CONTINUE, N - NEWSTORM, P PRINT, S - STOP l c ------------- ---------------- - ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 ' 0.58, 88, 0.24, 98, 28.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ACHACH .8 .6 88.8.0 .2 98.8. 0 28.5 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .46 7.83 8681 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y `� SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ----- --------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 9 0.36, 88, 0.31, 98, 6.3 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CN .7 .4 88.0 .3 98.0 6.3 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) .55 7.67 7569 a- ENTER [d:][pathlfilename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 10 l� 0.83, 88, 0.32, 98, 34 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.1 .8 88.0 .3 98.0 34.0 PEAK-A(CFS) T-PEAK(HRS) VOL(CU-FT) 54 7.83 12114 ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? V iSPECIFY: C CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ` ------------------------------------------------ -------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 11 1) 's>= .52, 88, .18, 98, 34 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A A CH .7 .5 88.8.0 .2 98.8, 0 34.0 PEAK-p(CFS) T-PEAK(HRS) VOL(CU-FT) .36 7.83 7318 ENTER [d:](path]filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP s r r r r APPENDIX B rFuture Conditions Drainage Analysis r r r r r r r r r r r r r SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 17 r APPENDIX B ' Future Conditions Drainage Analysis 1 SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 17 Project: SW 12th Street Small Drainage Problem D. Carey Revised: 3/10/94 ' Potential Future Sub-basin Characteristics - Commercial Development ' Analyzing for the longest Time of Concentration in the basin. From 1-405 at the south end of Maple to the northeast corner of subbasin 1 travelling in the new pipe system. ' SUB-BASIN 1 Total Pervious CN Imper. CN Estimated Area (ac) Area 0.21 ac Area(ac) Tc(min. ' 1.58 90 1.37 98 8.5 Longest Tc ' Sheet Flow ns L P2 s T T={0.42x(ns x QA0.8)/ Pavement F70.011 200 2.0 0.0025 6.1 {(P2)A0.5 x(s)A0.4) ' Shallow Cone. Flow k L s v T V= k Sgrt(s) ,T= L/(v x 60) Pavement 20 0 0.005 1.4142 0.0 Assume Val =2.5 fps Pipe 350 2.5 2.3 Comments: SCS Hydro Group D. Roads measured 0.68 ac. Landscaping 0.18ac. (15'x 540) 2%Wildlife=0.03 ac. ' All other area developable, assume as impervious 1.37 ac. ' SUB-BASIN 2 Total Pervious CN Imper. CN Estimated Area(ac) Area ac) Area (ac) Tc (min.) 1.7 0.24 9D 1.46 98 12.7 ' Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8)/ Pavement 0.011 200 2.0 0.002 6.7 t {( P2)A0.5 x (S)AO.4) Shallow Cone. Flow k L s v T V= k Sgrt(s) , T=L/(v x 60) Pavement F 20 0 0.005 1.4142 0.0 ' Assume Vel =2.5 fps Pipe 900 2.5 6.0 Comments: ' Roads measured 0.25 ac. Landscaping 0.21 ac. (16 x 610) 2%Wildlife=0.03 ac. All other area developable, assume as impervious 1.46 ac. ' FUTUR-CN.XLS Page 1 1 SUB-BASIN 3 Total Pervious CN Imper. CN Estimated ' Area(ac) Area(ac) Area(ac) To (min.) 2.48 0.39 90 2.09 98 13.4 ' Sheet Flow ns L P2 s T T={0.42x(ns x L)A0.8}/ Pavement r 0.011 200 2.0 0.002 6.7 ((P2)^0.5 x (s)A0.4} ' Shallow Conic. Flow k L s v T V=k Sgrt(s) ,T= U(v x 60) Pavement 20 0 0.005 1.4142 0.0 Assume Vel=2.5 fps Pipe 1000 2.5 6.7 ' Comments: Roads measured 0.36 ac. Landscaping 0.34 ac. (15'x 980) 2%Wildlife=0.05 ac. ' All other area developable, assume as impervious 2.09 ac. SUB-BASIN 4 Total Pervious CN Imper. CN Estimated Area (ac) Area (ac) Area ac Tc (min.) 0.75 0.2 90 0.55 98 13.4 Sheet Flow ns L P2 s T T={0.42x(ns x L)"0.8}/ Pavement 0.011 200 2.0 0.002 6.7 ((P2)A0.5 x(s)A0.4} ' Shallow Conc. Flow k L s v T V=k Sgrt(s) ,T= U(v x 60) Pavement F 20 0 0.0DS 1.4142 0.0 ' Assume Val=2.5 fps Pipe 1000 2.5 6.7 Comments: Mainly roads, parking lot, bldg. SUB-BASIN 5 Total Pervious CN Imper. CN Estimated Area(ac) Area(ac) Area (ac) Tc (min.) 1.68 0.3 90 1.38 98 13.4 ' Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8}! Pavement F 0.011 200 2.0 0.002 6.7 ' {(P2)A0.5 x(s)A0.4} Shallow Conc. Flow k L s v T V= k Sgrt(s) ,T=U(v x 60) Pavement F 20 0 0.005 1.4142 0.0 ' Assume Vel =2.5 fps Pipe 1000 2.5 6.7 Comments: ' Roads measured 0.15 ac. Landscaping 0.27 ac. (15'x 780) 2%Wildlife=0.03 ac. All other area developable, assume as impervious 1.38 ac. ' FUTUR-CN.XLS Page 2 1 SUB-BASIN 6 Total Pervious CN Imper. CN Estimated t Area (ac) Area (ac) Area(ac) Tc (min.) 6.58 0.78 90 5.8 98 15.2 Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8}/ Pavement F0.011 200 2.0 0.002 6.7 ((P2)^0.5 x(s)A0.4} Shallow Conc. Flow k L s v T V=k Sgrt(s) ,T= U(v x 60) Pavement 20 0 0.0D5 1.4142 0.0 Assume Val=2.5 fps Pipe 1280 2.5 8.5 ' Comments: Roads measured 0.27 ac. Landscaping 0.65 ac. (15'x 1900) 2%Wildlife=0.13 ac. ' All other area developable, assume as impervious 5.80 ac. ' SUB-BASIN 7 Total Pervious CN Imper. CN Estimated Area (ac) Area (ac) Area (ac) Tc (min.) LO 0.19 90 0.81 98 15.2 ' Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8}/ Pavement 0.011 200 2.0 0.002 6.7 {(P2)A0.5 x(s)"0.4} ' Shallow Conc. Flow k L s v T V=k Sgrt(s) T= U(v x 60) Pavement 20 0 0.005 1.4142 0.0 ' Assume Val =2.5 fps Pipe 1280 2.5 8.5 Comments: Roads measured 0.1 ac. Landscaping 0.17 so. (15'x 500) 2%Wildlife=0..02 ac. ' All other area developable,assume as impervious 0.81 ac. SUB-BASIN 8 Total Pervious CN Imper. CN Estimated Area(ac) Area (ac) Area (ac) Tc (min.) 0.82 0.17 90 0.65 98 16.4 ' Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8}1 Pavement F 0.011 200 2.0 0.002 6.7 ' (( P2)A0.5 x(S)AO.4} Shallow Conc. Flow k L s v T V=k Sgrt(s) T= U(v x 60) Pavement 20 0 0.005 1.4142 0.0 Assume Val =2.5 fps Pipe 1450 2.5 9.7 Comments: Roads measured 0.1 ac. Landscaping 0.15 ac. (15'x 450) 2%Wildlife=0..02 ac. All other area developable, assume as impervious 0.65 ac. Assuming Basins 9, 10, 11 discharge to the west. ' FUTUR-CN.XLS Page 3 2LE3-4 ' 21,E TFNT/,4 L Fl/i uRE. COND / T !o /VS - ce - - ------- 2LE3-10 ? fN lae I L LE3-1 o 2ob' Zoo —� 2LE3-2 1 2LE3-9 — 2LE3-3 2LE3-7 21,C3-1 I 21,D3-1 i -5 2LC4-3 -4 2 , 4-7 2LD4-B 1D - LD4 iG i 2LC4-7 LD7-3 2LD7 2LE4-i 1° — 2LE4-5 i �, 21,E4-6 4- 21,E4- � 8 , 1 2LD I / / ) j - Nb Lim !fS e'-r D-�hGy /5 La�as«P,� Alo�� nn .s4rec+ Fla.+l�jt 4,l H�fl, 4yj rr[o, , fi 2 sef 4.ri1c 4r k.c ;Vnerviows w:(d/.�c Hu6�t+t Ou;ld nys Pe,kn Or lows) 2LD5-5 21,D 22LD5-2 j 2LE5-2 ' ~ 2LD5-4 W 1 , Q — 21.D9-1 a.,y' A"e °" >g a ;� .;t� c T : .... sw na✓R. .wmW .d�ads'P.:r� -:.ss..�,wv Sn »S' "4` � �©` ` _ a ;�ARTERlAL�COIDIMF'RCIAL ;OIV C )a ,.,, ,,,:.,a+tw�ews..::.,.........._;.w.,.,•[f�v. ..xmiso.: ..>:m x.. n . .. . .: .>,a.;. . . .aw':kE 5. Signs: See Chapter 20, Title IV of the City Code. 6. landscaping: Lots abutting public streets shall have a minimum landscaping strip of fifteen feet (15�, except for the downtown area as defined in Section D.I. of the CM zone. + 2 °I of Lot 'f� w^ Id Ir4c a) Lot Line Requirements: HAVtA,- t � (1) Fronting Public Streets: A minimum of fifteen feet (15). (2) Special Requirements: If the CA lot is adjacent to a residential lot designated "Residential" on the City of Renton Comprehensive Plan and Zoning Map, then there shall be a fifteen foot (151 landscaped strip or a five foot (51 wide sight obscuring landscaped strip and a solid six foot (6) high barrier used along the common boundary. b) Stale routes or freeways: Properties whose rear yard directly abuts a freeway or ' state route shall provide a site obscuring landscaped buffer within the fifteen foot (15) landscaped strip. 7. Surface Mounted Equipment: All on-site surface mounted utility equipment shall be screened from public view. 8. Roof-Top Equipment: All operating equipment located on the roof of any building shall ' be enclosed so as to be shielded from view, except for telecommunication equipment. 9. Outdoor storage: ' a) Permitted outdoor storage must be screened from adjacent properties and public rights-of-way. b) Products or Bulk Materials covered by buildings with roofs but without sides shall be considered outside storage and subject to the screening provisions of this Section. ' C) Exterior retail sales of auto, boats and motorcycles are not considered outdoor storage. ' 10. Refuse and Recyclables Collection & Storage: All Recyclables Collection & storage, garbage, refuse or dumpsters contained within specified areas shall be screened, except for access points, by a fence or landscaping or some combination thereof. 11. Sensitive Areas: See Chapter Section 431-34; Chapter 32, Title IV; Chapter 8, Title I Vill; Section 4-31-35: Chapter 19, Title IV; Section 4-31-31; and Chapter 6, Title IV of the City Code. 12. Single Family Compatibility: Where the CA Zone abuts or is adjacent to (adjacency ' being defined as across the street from) a single family zone: i a) Require a fifteen foot (15� sight obscuring landscape buffer screen adjacent to a residential street or property. b) Loading. or parking access is restricted to an arterial street and these areas cannot be accessed from a residential street. H:VZONECOOSCAMCC -7- erM 4 31� 0 4 sst =ARTERIALCOMMERCIAL ZONE (C4) c) Loading docks shall not be located adjacent to or across the street from a ' residential property. d) Parking of vehicles related to the commercial uses shall not be allowed on residential streets. ' e) Require vehicle storage for repair and/or maintenance and other outdoor storage areas to be screened from residential areas by a one hundred percent (100%) sight-obscuring fence or other barrier. () With Hearing Examiner site plan approval, these provisions may be modified where the applicant can show that the same or better results will occur because of creative design solutions, unique aspects or use, etc. that cannot be fully anticipated at this time. t E. CONDITIONAL USE PERMIT FOR EXCESS HEIGHT: In consideration of a request for conditional use permit for a building height in excess of forty-five feet (45) the Hearing Examiner or Development Services Division shall consider the following factors in addition to the criteria in , Section 4-31-36, and all other relevant information. 1. Location Criteria: Proximity of arterial streets that have sufficient capacity to , accommodate traffic generated by the development. Developments are encouraged to locate in areas served by transit. All transit facilities must be incorporated into the site design. 2. Comprehensive Plan: The proposed use shall be compatible with the general purpose, goals, objectives and standards of the comprehensive plan, the zoning ordinance and any other plan, program, map or ordinance of the City of Renton. , 3. Effect on .adjacent Properties: Buildings in excess of fifty feet (50) in height at the proposed location shall not result in substantial or undue adverse effects on adjacent ' property. When a building in excess of fifty feet (50) in height is adjacent to a multiple family lot zoned MF or MR on the City of Renton zoning map and Multi-Family on the City of Renton comprehensive plan, then setbacks shall be equivalent to the requirements of the adjacent residential zone. ' 4. Building Height and Bulk: a) Buildings near public open spaces should permit visual access and, where ' feasible, physical access to the public open space. b) Whenever practicable, buildings should be oriented to minimize the shadows they cause on publicly accessible open spaces. 5. Light and Glare: Due consideration shall be given to mitigation of light and glare impacts upon streets, major public facilities, and major public open spaces. (Ord. 3750, , 9-26-83) F. CONFLICTS: In the event that there is a conflict between either the development standards or ' special development standards listed above and the standards and regulations contained in other ordinance(s), the Zoning.Adminislrator shall determine which ordinance shall prevail based upon the intent of the zones. Life, safety and public health ordinances are assumed to prevail. i I,H:t7_0NECO0EICA.00C W/M j J z J �1 "t . •J Ala /l ©Yain wrL ��n 6l Girl -Pi ' STORM OPTIONS: I - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM FurvKE C0ND/r1,?A1S 3 - STORM DATA FILE 1 SPECIFY STORM OPTION: h 5 YEA R a Z y' HO!/R 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ' ENTER: FREW(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 xzxzxzzzzxzzxzxzxxxz S.C.S. TYPE-IA DISTRIBUTION xxzzzzzxxzxxzxxxzxxx zzzzzxzzx 25-YEAR 24-HOUR STORM zzzz 3.40" TOTAL PRECIP. zzzzzxxxz ENTER: A(PERV), CN(PERV), A(IMPER'V), CN(IMPERV), TC FOR BASIN NO. 1 .21, 90, 1.37, 9e, 8.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A 1.6 2 90.0 1.4 98.8.0 8.5 PEAK-D(CFS) T-PEAK(HRS) VOL(CU-FT) 1.24 7.83 17539 ENTER (d:)[path)filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c -----------------------------------------•-------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 O .24, 90, 1.46, 98, 12.7 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 1 A CN A 1.7 ? 40.0 1.5 98.8.0 12.7 PEAK-A(CFS) T-PEAK(HRS) VOL(CU-FT 1.25 7.83 19314 ENTER (d:)[path)filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' Ih FILE ALREADY EREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ENTER: A(PERV), CM(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 O .39, 90, 2.09, 98, 13.4 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CH A CH 2.5 .4 90.0 2.1 98.0 13.4 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) 1.80 7.83 21325 ENTER [d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: C:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 O .2, 90, .55, 98, 13.4 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A.8 .2 40.0 .b 48.8.0 13.4 PEAK-R(CFS) T-PEAK(HRS) VOL(CU-FT) ' 53 7.83 8021 l- ENTER (d:][path]filename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ----------------------------------------------'-------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 O .3, 90, 1.38, 98, 13.4 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' ACNACH 1.7 .3 90.0.0 1.4 98.8.0 13.4 PEAK-B(CFS) T-PEAK(HRS) VOL(CU-FT) 1.21 7.83 18404 ENTER (d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' c:trash FILE FILE ALREADY EXIST; OVERWRITE (Y or N) ? 5' ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, 3 - STOP 3/4 ., P STORM OPTIONS: 1 S.C.S. TYPE-IA 2 7-DAY DESIGN STORM 3 STORM DATA FILE ' SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ' ENTER: FREO(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 zxssaxxxxsxsssxxsssx S.C.S. TYPE-IA DISTRIBUTION sxxxsxxxxxxx:xxxsxxx xxsxsxs:x 25-YEAR 24-HOUR STORM ssss 3.40" TOTAL PRECIP. xxxxxssxx ENTER: A(PERV), CM(PER9), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .78, 90, 5.8, 98, 15.2 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' ACHACH 6.6 .8 90.0.0 5.8 98.8.0 15.2 PEAK-A(CFS) T-PEAK(HRS) VOL(CU-FT) ' 4`69 7.03 73215 ENTER Id:)(pathIfilename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' Ih FILE A FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c -------------------------- ---------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 O '.: .19, 90, .81, 98, 15.2 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.0 .2 90.0 .8 98.0 15.2 PEAK-G(CFS) T-PEAK(HRS) VOL(CU-FT) ' .70 7.83 10916 ENTER [d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE AL FILE ALREADY EXIST; OVERWRITE (Y or H) ? y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c DADA PRINT-OUT:V AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) O A CH A CH .8 .2 90.0 .6 98.0 16.4 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .56 7.83 8906 ENTER [d:](path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 'SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP s 1 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 ' 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE ' 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTAYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: 1 1 113 S t2 -th S4 . - s �„ l/ STORM OPTIONS: ' 1 - S.C.S. TYPE-iA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE F u T U (2 C C, O N .D (T 10 JJ S SPECIFY STORM OPTION: job " YL�R � 'I- H 0 2 1 S.C.S. TYFE A RAINFALL DISTRi8010N ENTER: FREO(YEAR), DURATION(HOUR), PRECIP(INCHES) .00, 24, 3.9 S.C.S. TYPE-IA DISTRIBUTION ***t*x*** 100-YEAR 24-HOUR STORM **** 3.90" TOTAL PRECIP. #+ ###$ --------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 O .21, 90, 1.37, 98, 8.5 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.6 .2 90.0 1.4 98.0 8.5 ' PERK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 1.43 7.83 20376 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? ' Y SPECIFY:' C - CONTINUE, N - 4EWSTORM, P - PRINT, S - STOP c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 O ' 21, 11, 1.46, 11, 12.7 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 1.7 .2 90.0 t.S 98.0 12.7 PEAK-0(CFS) T-PEAK(HRSJ VOL(CU-FT) 1.45 7.83 21863 ENTER [d:][path]filename[.extl FOR STORAGE OF COMPUTEC HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 2�3 c `1 ------------------------------ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 O' 39, 90, 2.09, 98, 13.4 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.5 .4 90.0 2.1 98.0 13.4 PEAK-:(CFS) T-PEAK(HRS) VOL(CU-FT) 2.09 7.83 31767 ENTER [a][path)filenane[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:tras, FILE ALREADY EXIST; OVERWRITE (Y Cr N) ? Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP C -------------------------------------------------_.-------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 4 O ' 2, 90, .55, 98, 13.4 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 8 .2 90.0 .6 98.0 13.4 ' PEAK-0!CFS) T-PEAK(HRS) VOL(CU-FT) 62 7.83 9356 ENTER ,d:)[path]filename[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE 11RE11Y EXIST; OVERWRITE (Y Cr N) ? Y SPECIF' : C - CONTINUE, N - NEWSTORM, P PRINT, S - STOP ---------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN 80. 5 O ' 3, I 1.38, 98, 13.4 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .3 90.0 1.4 98.0 13.4 PEAK-2(CFS) T-PEAK(HRS) VOL(CU-FT) 1.41 7.83 21410 ' ENTER (C: [path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: C:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y SPECIFY: C CONTINUE, N NEWSTORM, P PRINT, S STOP 1 313 `--------------------------------------------------------------------- '1 ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 8,08, 90, 5.8, 98, 15.2 DATA PRINT-OUT: 1 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 6.6 .8 90.0 5.8 98.0 15.2 1 PERK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 5.43 7.83 85024 1 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 Y SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c 1 - ...--...----- ENTER: A(PERV), CN(PERV}, A(IMPERV), CN(IMPERV), TC FOR BASIN H0. 7 .19, 90, .81, 98, 15.2 1 DATA PRINT-OUT: 1 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.0 90.0 .8 98.0 15.2 1 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) .81 7.83 12703 1 ENTER [d:][path]fiiename(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) ? 1 'SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP c ---------------------------- --------------------------------------- ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 8 O .17, 90, .65, 98, 16.4 1 DATA PRINT-OUT: 1 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A. CN A CN .8 .2 90.0 .6 98.0 116.4 1 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) .65 1.83 10370 1 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c:trash FILE ALREADY EXIST; OVERWRITE (Y or N) P 5 1 SPECIFY: C - CONTINUE, N - NEWSTORM, P PRINT, S STOP 1 1 1 APPENDIX C 1 Future Conditions Backwater Analysis 1 1 1 1 1 1 i i i 1 1 1 1 SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 18 1 1 1 APPENDIX C 1 Future Conditions Backwater Analysis 1 i 1 1 1 1 1 1 1 1 1 1 1 SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 18 1 P SW 12 I PoSPD S ys%EM D - Gar, , FvruRb7 CoAv017 AIs 3 - 16 - lq ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' BACKWATER ANALYSIS PROGRAM AhAl USING Version 4.20 T,4/1w-4rER f ' INFO ON THIS PROGRAM 2 BWCHAN 3 BWPIPE ' < BWCULV BWBOX e - DATA-FILE ROUTINES 7 - RETURN TO DOS 1 ' ENTER OPTION 3 BACKWATER COMPUTER PROGRAM FOR PIPES SPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD F - FILE F ENTER [d:j(pathjfilename[.ext] OF PIPE-DATA FILE c:\swl2th\PRO-18 --------------------------- --------------------------------------------------- OUT FLOW CONDITIONS PIPE NC, l TAILWATER DATA: 1) SPECIFY TYPE OF TAILWATER DATA INPUT: S SINGLE TW-ELEV. F TW/HW DATA FILE �2) ENTER: OF HWJTW FILE c:\5wl2th\TW-1 Vur�o `)c Tw d C) ' set 1, 54 f4j Or:RFLOW DATA AND UPSTREAM VELOCITY DATE: 1 WEIR-i, SHARP-6ETR-2) 18.15, 0 ' 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V-C;A s 3) ENTER: VELOCIiY(fps) UPSTREAM 0.1 'LjiER: WIN, AMAX, OIHCRE, PRINT-OPTION (STANDARD-1, CONDENSED,2, EXPANDED=3) 1115, , 1 1 2/C .: RUN a 4.�..Y f 3a i s ifs .✓! PIPE NO. 1: 127 LF - 24'CP @ .65% OUTLET: 11.26 INLET: 12.00 INTYP: 5 O PIPE Sr GM ENT JUNC NO. 1: OVERFLOW-EL: 17.48 BEND: 90 DEG DIA/WIDTH: 3.0 G-RATIO: .00 d(CFS) HW(FT) HW ELEV. x N-FAC DC ON TW DO DE NWO HWI D°T SrZYloa PAPAW fl, %zz#zzzz#zzzzkzzkzz##z#zzz#zzzxzxzz#zzzzz#zzzz#x##%#xIz#xxxxxxxxxxxzxx#zzz%#zx# To Z-11 c S 1.00 .46 12,54 x .012 .35 .31 .48 .48 .35 *#Yxx .46 2.00 .66 12.74 # .012 .50 .44 .70 .70 .50 xz:## .66 3.00 .83 12.91 z .012 .61 .53 .93 .93 .61 #z#zz .83 4.00 .9B 13.06 z .012 .71 .62 1.16 1.16 .71 z#z#z .98 5.00 1.11 13.19 % .012 .79 .69 1.38 1.38 .79 z##:# 1.11 ' 1,11 1,24 13.32 z .112 .17 .76 1,14 1,14 .17 xzzzz 1.21 7,00 1.37 13.45 z .012 .94 .83 1.67 i.67 .94 z%x%z 1.37 8.00 1.62 13.70 x .012 1.01 .89 1.80 1.80 1.03 1.62 1.49 9.00 1.73 13.81 z .012 1.08 .95 1.93 1.93 11.18 1.73 1.62 10,06 1,86 13,94 x .012 1.14 1.01 2.06 2.06 1.37 1.86 1.74 1i.00 2.03 14.11 # .012 1.19 1.07 2.19 2.19 1.56 2.03 1.86 12.00 2.23 14.31 z .012 1.25 1.13 2.33 2.33 1.7, 2.23 1.98 ' 3.00 2.50 14.58 % .012 1.30 1.19 2.48 2.48 2.02 2.50 2.11 i 4.00 2.79 14.87 x .012 1.35 1.25 2.63 2.63 2.23 2.79 2.24Qlop = 13, 95.00 3.09 15.17 k .012 1.40 1.31 2.79 2.79 2.44 3.09 2.36 PIPE NO. 2: 168 LF 24"CP @ .48% OUTLET: 12.10 INLET: 12.91 INTYP: 5 O JUNC NO. 2: OVERFLOW-EL: 18.96 BEND: 0 DEG DIA/WIDTH: 4.0 9-RATIO: .88 I N A yr u(CFS) HW(FT) HW ELEV. z N-FAC DC ON TW DO DE HWO HWI YY%Ix###############x#kkx#####Ik#%k###%%I###%###%%x#Ixx#Y%####x##k########%#### N o �VGr-��•u1 1.00 .46 13,17 x .112 .31 .13 .44 .44 .35 zzzzz .46 2.00 .66 13.57 x .012 .50 .47 .64 .64 .50 zzz## .66 3.00 .82 13.73 z .012 .61 .57 .81 .81 .61 #zzzz .82 4.00 .96 13.87 z .012 .71 .66 .96 .96 .71 zzz%# .96 ' 5.00 1.09 14.00 z .012 .79 .75 1.09 1.09 .79 zzzzz IA9 6.00 1.21 14.12 x .012 .87 .83 1.22 1.22 .87 zzzzz 1.21 7 0^ 1.32 14.23 z .012 .94 .90 1.35 1.35 A4 xzzzz 1.32 6.ao 1.42 14.33 x .012 1.01 .97 1.60 1.60 1.01 xzzzz 1.42 9.00 1.66 14.57 x .012 1.08 1.04 1.71 1.71 1.09 1.66 1.53 10.00 1.74 14.65 x .012 1.14 1.11 1.84 1.84 1.24 1.74 1.63 11,11 1,11 14,77 # .012 1,11 1.11 2.01 2.01 1.41 1,16 1,73 112.00 2.06 14.97 x .012 1.25 1.24 2.2i 2.21 1.75 2.06 1.83 13.00 2.45 15.36 z .012 1.30 1.31 2.48 2.48 2.15 2.45 1.93 14.00 2.86 15.77 x .012 1.3S 1.39 2.77 2.77 2.51 2.86 2.02 Q lu = �3.5 15.00 3.29 16.20 z .012 1.40 1.46 3.07 3.07 2.89 3.29 2.12 t� FIPE NO. 3: 304 LF - 18"CP ,p .49% OUTLET: 12.91 INLET: 14.40 INTYP: 5 jAC NO. 3: OVERFLOW-EL: 17.50 BEND: 90 DEG DIA/WIDTH: 4.0 O-RATIO: .16 3 IN MA PI_ A V 5 ;(CFS) HW(FT) HW ELEV. x N-FAC DC ON TW DO DE HWO HWI Q,no = -4•3 S .53 .36 14.76 z .012 .28 .27 A6 .46 .28 xzzzz .36 1.06 .52 14.92 x .0:2 .39 .38 .66 .66 .39 zzzz# .52 L60 .66 15.06 z .012 .48 .46 K. .52 .48 zzzzz 66 2.13 .77 15.17 z .M .56 .53 Ao .96 .56 zzz#x .77 2.66 .88 15.28 z .012 .62 .60 1.09 1.09 .62 zzzzz .88 3.19 .99 15.39 z .012 .69 .67 1.21 1.21 .69 zzzzz .99 3.72 1.09 15.49 z .012 .74 .73 1.32 i.32 .74 zzz#% 1.09 4.26 1.19 1559 x .012 .80 1.42 1.42 .80 zzz#z 1.19 4.79 1.38 15.78 # .012 .85 .84 1.66 1.66 .89 1.38 1.29 5.32 1.47 15.87 x .012 .89 .90 1.14 1.14 1.00 1.47 1.39 5.85 1.59 15.99 z .012 .94 .96 1.86 1.86 1.16 1.59 1.50 6.3R 19? 16.31 x 019 9A 109 ?.OF ? 1b 1.5.1 1 91 1.60 7.45 3.10 11.5E * .012 1.06 1.15 2.86 2.86 2.67 3.18 1.81 ' kxxzzx#x#xx##x## OVERFLOW ENCOUNTERED AT 7.45 CFS DISCHARGE #zxzz*xxxzxxxxk#z Q luu = 3 g 315 PIPE NO. 4: 20 LF - 18"CP @ .20% OUTLET: 14.73 INLET: 14.77 INTYP: 5 JUNC NO. 4: OVERFLOW-EL: 17.50, BEND: 90 DEG DIA/WIDTH: 4.0 Q-RATIO: .12 O MAPLe1,< IJ 12 INTL-k. Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI #Yk#Yk#k###xxkk#x#*#x##x*k#***4 It* ###### 46 .38 15.15 * .012 .26 31 .03 .26 .30 .38 .34 .92 .54 15.31 * .012 .30 .44 .19 .36 .42 .54 .49 1.38 .67 15.44 * .012 .44 .54 .33 .44 .52 .67 .61 1.83 79 15.56 * .012 .51 .53 .44 .51 .60 .19 .7i 2.29 .89 15.66 * .012 .58 .71 .55 .58 .66 .89 .81 2,71 .11 15.76 # .012 .13 .11 .61 .66 .73 .11 .11 3.21 1.08 15.85 * .012 .69 .87 .76 .76 .80 1.08 .99 3.67 1.17 15.94 * .012 .74 .95 .86 .86 .88 1.17 1.OB 4.13 1.31 16.08 * .012 .78 1.03 1.05 1.05 1.05 1.31 1.17 4.59 1.41 16.18 1 .012 .63 1.12 1.14 1.14 1.14 1,41 1.26 5.04 1.55 16.32 * .012 8' 22 1.26 1.26 1.27 1.55 1.34 5.50 1.86 16.63 x .012 .91 1.50 1.58 1.58 1.58 1.86 1.43 D k 1 5.96 2.54 17.31 * .012 .35 1.50 2.20 2.20 2.21 2.54 1.52 6.42 2.73 17.94 * .012 .98 1.50 2.77 2.77 2.79 7.17 1.61 _ #z*#k*x##*s#Y*## OVERFLOW ENCOUNTERED AT 6.42 CFS DISCHARGE ****kY#xY#Y**#*** �"� " •3 6 PIPE NO. 5: 4C LF - l8'CP @ .25$ OUTLET: 14.77 INLET: 14.87 INTYP: 5 JUNC NO. 5: OVERFLOW-EL: 17.70 BEND: 90 DEG DIA/WIDTH: 4.0 Q-RATIO: .25 O MAPLE / ,S W { 2 I N TER. Q(CFS) HW(FT! HW ELEV. z N-FAC DC ON TW DO DE HWO HWI #x#Y#kkxk###%ff*##k#%f######}x#####ffY##k########xx##x##xxxxx##x####kk##xk##### .41 .37 15.24 * .012 .24 .28 .38 .38 .31 .37 .32 .82 .54 15.41 * .012 .34 .39 .54 .54 .47 .54 .46 1.23 .68 15.55 * .012 .42 .48 .67 .67 .60 .68 .57 1.64 B1 15.68 * .012 .49 .56 .79 .79 .71 .81 .67 2.05 .K 15.79 * .012 .54 .63 .89 .89 .81 .92 .76 2.46 1.03 15,90 * .012 .60 .69 .99 .99 .91 1.03 .84 2.87 i.i5 16.02 * .012 .65 .76 1.08 1.08 1.01 1.15 .93 3.28 1.26 16.13 # .012 .69 .82 1.17 1.17 1.11 1.26 1.01 3.68 1.40 16.27 * .012 .74 .88 1.31 1.31 1.24 1.40 1.09 4.09 1,53 16.40 * .012 .78 .95 1.41 1.41 1.36 1.53 1.17 t 4.50 1,71 11,11 * .112 .12 1.01 1.51 1.55 1.52 1.71 1,14 D K 4.91 2.07 16.94 * .012 .BE 1.08 1.86 1.86 1.84 2.07 1.32 5.32 2.79 17.66 * .012 .89 1.16 2.54 2.54 2.53 2.79 1.40 5.13 2.63 17.91 * .012 .93 1.24 2.73 2.73 2.73 3.04 1.48 _ /� 5• OVERFLOW ENCOUNTERED AT 5.73 CFS DISCHARGE ****x#x*zx#***z** 41ou ' PIPE NO. 6: 300 LF - 18"CP @ .25% OU"LET: 14.87 INLET: 15.62 INTYP: 5 O S w { 2 7 H JUNC NO, 6: OVERFLOW-EL: 18.75 aEND: 0 DEG DIA/WIDTH: 4,0 Q-RATIO: .77 Ok Q(CFS) HW(FT) HW ELEV. * N-FAC DC ON TW DO DE HWO HWI z######k*x#xx#xxx#zx*z#z#*kx##zkk##fzx%#x#fx#x##x}f#kzf#kxxxx##xxxx%f##xx#%#kxx .33 .32 15.94 # .012 .K 15 .37 .37 .25 .32 .28 .66 .45 16.07 * .012 .31 .35 .54 .54 .35 .45 .40 ' 98 .55 16.17 * .012 .37 .43 .68 .68 .43 .55 .50 31 .64 16.26 * .012 .43 .49 .81 .81 .49 .64 .58 1.64 .72 16.34 * .012 .49 .56 .92 .92 .56 .72 .65 ' 11 .97 .79 16.41 * .O12 .53 .61 i.03 1.03 .62 .79 .72 2.29 .87 16.49 % .012 .58 .67 1.15 1.15 .70 .87 .78 2.62 94 i6.56 * .012 .62 ..2 1.26 1.26 .79 .94 .84 2.95 1.C3 16.65 * .012 .66 .77 1.40 1.40 .90 1.03 .89 ' 3.28 1.15 16.77 * .012 .69 .82 1.53 1.53 1.05 1.15 .94 3.60 1.32 16.94 k .012 .73 .87 1.7,1 1.71 1.25 1.32 .99 3.93 1.73 11.35 1 .019 76 .92 2.07 2.07 1.68 1.73 1.04 .012 .83 1.03 2.83 2.83 2.57 2.64 1.13 ' 4.91 2.80 18.42 z .012 .86 1.08 2.91 2.91 2.72 2.80 1.18 ) 5 2 PIPE NO. 7: 300 LF 12"CP @ .25% OUTLET: 15.62 INLET: 16.37 INTYP: 5 JUNC NO. 7: OVERFLOW-EL: 18.67 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .36 O SW 1 2 T H 0(CFS) HW(FT) NW ELEV. x N-FAC DC ON TW DO DE HWO AWI zzzzzzzzxxxxzrxrrxxxxxxxxxxxxxxxzxxxxzzxxxxzzxzzxxxxxxxzzzzzxzxxxzzzzxxxxxxxxxx 1 5 w OAin D.5 {}. F .19 '7 16.64 * .012 .18 .21 .32 .32 .21 .27 .24 top m f Y r.. CIV'f .�t 31 .38 16.75 x .012 .26 .30 .45 .45 .30 .38 .34 $ r Flu,. . ' 56 .48 16.85 * .012 .31 .3,7 .55 .55 .37 .48 .43 .74 Su 16.93 * .012 .36 .43 .64 .64 .43 .56 .50 O rr�o s .f r 100- r 93 .04 17.01 x .012 .41 .49 .72 .72 .49 .64 .58 Y ' .71 17.08 * .012 .45 .55 .19 .79 .55 .71 .64 D 1.30 7q 17.15 x .012 .49 .60 .87 .87 .60 .78 .71 1.48 .86 17.23 * .012 .52 .66 .94 .94 .68 .86 .18 1.67 .99 17.36 * .012 .55 .72 1.03 1.03 .82 .99 .84 1.85 1.26 17.63 * .012 .58 .79 1.15 1.15 1.09 1.26 .-1 2.04 1.60 17.97 * .012 .61 89 1.32 1.32 1.40 1.60 .96 2.22 2:i 18.58 z .012 .64 1.00 1.73 1.73 1.97 2.21 1.04 ' 241 2.30 19.59 * .012 .67 1.00 2.52 2.52 2.94 3.22 1.Ii xz****xzs*>***xx OVERFLOW ENCOUNTERED AT 2.41 CFS DISCHARGE ***zxxxxxxxxzxxxx = 2.5 �I - Q 1ou Q25 = 2.20 PIPE NO. 8: 15 LF - 12"CP @ Bl$ OUTLET: 16.37 INLET: 16.50 IHTYF: 5 ' 8 ) T}H)s kevr?ESENT5 A 0(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HW'I C'ONNt-(,rlv ✓ TO 4 C6 xxxxxxxzxxxxxxz:xrrxxzxxxzxxzzxxzzzzzxxzxxxxxxxxxxxxxzxxzxxxxxxxxxxxxxzxxzxxxxz FRoJu s .14 .20 16.70 z .012 .16 .14 .21 .27 .16 xxxxr .10 E6 N E Nr .27 .32 16.82 * .012 .22 .19 .38 .38 .25 .32 .29 .41 .41 16.91 * .012 .27 .23 48 .48 .34 .41 .36 .54 .49 16.99 x .012 .31 .27 .56 .56 .42 .49 .42 .68 .57 17.07 * .012 .35 .30 .64 .64 .50 .57 .47 .82 .65 17.15 * .012 .38 .33 .71 .71 .58 .65 .52 ' 95 .12 17.22 * .012 .41 .36 .78 .78 .65 .72 .57 �1 2Srr= J.2H c{J 1.09 .81 17.31 * .012 .44 .38 .86 .86 .74 .81 .62 1.22 .94 17.44 * .012 .47 .41 .99 .99 .87 .94 .67 1.36 1.22 17.72 * .012 .50 .43 1.26 1,26 1.15 1.22 .71 Ok 1.50 1.5E 18.08 * .012 .52 .46 1.60 1.60 1.50 1.58 .76 1.63 2.21 18.71 * .012 .55 .48 2.21 2.21 2.11 2.21 .80 xxxxxzzxxxxxxxzz OVERFLOW ENCOUNTERED AT 1.63 CFS DISCHARGE xzzxxxxxzx***zzxx ' SPECIFY: R - REVISE, N - NEWJOB, F - FILE, S - STOP 1 S/S P I 1 1 1 1 1 1 REVIEW OF TAILWAiER DATA 1 NDATA STAGE(ft) A(cfs) 1 .00 .00 2 1.20 5.30 ' 3 2.00 11.50 4 3.00 18.00 ELEVATION AT STAGE = 0 IS: 11.51 ENTER: E - EDIT TW DATA, F FILE TW DATA, S STOP F 1 ENTER (d:][nath]filename(.ext] FOR STORING THIS iW DATA-FILE C;\swl2th\TW-1 FILE ALREADY EXIST; OVERWRITE (Y or N) ? Y 1 i 1 1 S 2 Propnscd SysaCm ' PROJECT: PAGE—OF PIPE DATA FILE NAME __C•\ Sw I2TH\ PRO I $ ROUND/ARCH PIPE INPUT CODING INFORMATION: PIPE TYPE CODING: 4-CMP ARCH (OLD GEOMETRY) 1 -CONC/SMOOTH BORE (n=.012) 5-CMP ARCH (NEW GEOMETRY) ' 2 -CORRUGATED METAL(n=.024) 6- GONG/SMOOTH ARCH (OLD) 3 - HELICAL CMP (n-fac varies) 7-CONC/SMOOTH ARCH (NEW) ' ARCH PIPE CODING -EQUIVALENT ROUND SIZE MUST BE INPUTTED PER FOLLOWING TABLE: EQUIV-DIAM OLD-ARCH NEW-ARCH * EQUIV-DIAM. OLD-ARCH NEW-ARCH ' 15" 18"X 11" 17'X 13" * 42" 50"X 31" 49"X 33" 18" 22"X 13" 21'X 13" * 48" 58"X 36" 57 X 38" 21" 25'X 16" 24"X 18" * 54" 65"X 40" 64 X 43" 24" 29"X 18" 28-X 20" * 60" 72"X 44" 71"X 47" 30" 36'X 22' 35 X 24" * 66" 79"X 49" 77 X 52" 36" 43"X 27" 42"X 29" * 72" 85"X 54' 83"X 57' ' INLET TYPE CODING: 1 -CMP/PROJ. 4-CP SOCKET/PROJ 7-CMAP/PROJ 10-OTHER (SEE 2-CMP/HDWALL 5 -CP SO.EDGE/HDWALL 8-CMAP/HDWALL FHWA REPORT ' 3 -CMP/MITER 6-CP SOCKET/HDWALL 9-CMAP/MITER HDS NO.5) 2, Syr # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' 1I 2j �u 1 H 26 i2.0F 5 O O ' KE = K = M = C = _ Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) O-RATIO ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE I (rb l �I 12 . 10 12 , 19 ' KE = K = M = C'= Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 1t11 � 0 U Ss . 88 ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 3 3o� 18 I11A IL D S I �• so 90 Ll l6 16 Page 45 1 PROJECT:PAGE_OF Re1ro ' PIPE DATA FILENAME ------------ Zsy� JD9 / # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET4E INLET-IE INLET-TYPE 20 1 —1 1 'J. y,72 5 1 KE = — K = M = C = Y = 1 OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) O-RATIO I-4, 5 �, -1 , 12 .12 # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 1 Lj0 1 °o I 1�• 7-� Iq -87 S KE = K = M = C = Y = 1 OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) O-RATIO 1 17.40 t o q . 25 ,25 # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' 3 V ► s 1 14,67 15. 6 2 s KE = K = M = C = Y = __ OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) O-RATIO # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 1 7 300 J Sr,62 4.37 S KE = K = M = C = _ Y = 1 OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) O-RATIO 1 S. 6 } 90 y . 36 . 3q # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE KE = K = M = C = Y = I8. 15 D 2 0 1 Page 47 1 SwZ 2. 47 s + . l AI], WA rE/Z A /v/4 L ys 1,5 L I ND AVE, MAPLP AVE, $(IJ 54 MH Sy5TFM 1 NV/ i NNN I2.u5 O.L �� D oo W I _ i0O0 _ -Na eae Ip 915= — I0.5 /D nnri — I NwwN N (a 3p.. conc 21" CMP/coNC, 24" C6. c . 1 LL A SS lime- __r7 /i � G^n Tyr / �ry 2cr C ///M G 3 0" C(J,, , LV/ // /7/w vc SN��/ [/�/ C ' /11 V� 6 F c ku.6 le, M H N /%l /7 t Cl c v L /"/o. ' w F,Ic. 4 S /J +e„, ( 2LI " CO- e_ G.fed 4v 2 12 . 1. 2 ft 5. 3 C-�(, 3 13 . 51 2. o //.5 ly. 5/ 3, 0 /B.o Figure 6 Profile of DOT Drainage System SW 12th Street Storm System Project D. Carey 4/94 ' -rAIL w� »l2 D/1 -ta KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL 1 FIGURE 4.3.51)HEADWATER DEPTH FOR CORRUGATED PIPE CULVERTS WANLET CONTROL r ' t-oK ZLI • CMPlGONC 1-6 z Au,"t HLy'D 180 10,000 1 I65 8,000 EXAMPLE (11 — Qtw 1p�e lei I w6ltr 156 .6,000 De 361 ece..(3.0 feet) ' 144 5.000 De66c1f (3) a,000 5. 6 HW' MW ENTRANCE TYPE 132 } 3.000 D (feel) 6. ' 120 0 II) 1.8 3.4 5' HEADWALL PLAN u 2,000 I2f 2.1 6.3 3. 108 y (31 2.2 6.6 4' 'D m feet ' 4 96 1,000 3 800 3. Ba 600 2 (1) ' 00 4 -- -- oo 2 MITERED TO 72 / 2. CONFORM 300 // # 15 — TO SLOPE N SECTION 60 V 200 '. 54100 V 80�/j 48 rc a 60 PROJECTING 42 �1 so ? 1'0 1.0 SECTION V 40 a ' r 36 30 HW ENTRANCE ¢ p SCALE T PE 9 a 33 20 0 (1) —�� Neae..0 3 V 30 121 rit.r.a to' coop".to slop• _ c 27 / c 10 I I.S 13) r,uf.cr.y B 7 .7 0 ' u 24 .7 5 To�• ob 121 or(3) p,oPtct 21 4 nori"a a ry 00 teen __ 6 „•• pro;pet Inc un•an.e•pe�� .6 ' 3 D eea 0 +c.h•, e. ...o•. he .6 10 illuf trpb A. 2 HW Q ELEV ' 15 S 1.0 0 11.5 ( L .5 ' 0.6 5, S 12.7� 1 12 1. 0 II. 5 13. 51 ' 43.5-12 1/90 FLOWUNE OF CONCRETE _ "�A J2`I 0Y' � tN VERTICAL CURB x .r $4�(�0 ` 7A1CAwPOPT me ❑006 h1 , ' x , ,00 60b �OJ e x �yx ` x x , 1 x 14- c b x i 0 A'O ,�'• ,0 x ^x + x y� QP Jam' x x Nlb ' ti6 I CENTERLINE x ,0 n 241 rr L)J e1 OF DITCH 0 p I "fREG7 g:`O O X°' N x , , z LLJ UV x 1�� �� `66 / x x`6- S w " MB 1b ,0 ry LT x ,�6y x9ry,�ry © 12"D 9 D / x, b0 ❑ ,A x\ ASPHA bb i N 0 1 ti - ,0 ¢ 06 CONCRETE ' NORTH END OF 18" CMP Q No ,'1• / ry ,I.E. 13.35 x O WALK �� > 0. 0 ,��S C7 pL g 0. I .pia A 32 60/ x-- _ _ _ �,x ro, y x, Oi_ 6, STORM DRAINAGE CATCH BASIN Z S/ f 9 yb 0y 10 11. 11. ,0' ,fib Jr, 3.0' X 4.5' VAULT WITH GRATE J ❑ ,1 ,ro' 6 x , 1 6-8 D ,�' r0 '7 STORM DRAINAGE CATCH T.G. = 16.15 Ll �- y ,1' 0p BASIN - TYPE II I.E. - 11.73 - 18' CMP S 1 ,^; ASP1''P' 4-8"D RIM = 18.96 I.E. = 11.90 - 16' CMP N x I ❑ue �� /Ot8"D a0"OOI.E. = 13.54 - 2a' CMP N CMP S M DRAINAGE CATCH BACK OF CONCRETE I 17.41 � , ,1� 1�' CQ�`l ;IN - TYPE II SIDEWALK - FACE OF '� , j �� �g .�0a CONCRETE F10 GUARD RAIL 36.2l ,0 UV ,0 6 x WALK 9.69 - 30" CONIC E ❑ / x I x 9.60 - 30" CONIC S UTILITY MANHOLE ti �E,` d 7 p - ELECTRIC ? 2a'C 2a"D TORM DRAINAGE CATCH I x b �d' 4 ,�i' x 18 I ~ SIN - TYPE 11 ,510 I 18 """"RIM 23.38 ( Ab �- "OIL .�0' Q 17"D „ fi a I.E. = 9.99 - 24" CONC N lu w I I x C M a �ro0 a 1 Q� N N 1 b 6' HIGH WOOD 0 E. = 9.68 - 30" CONIC w � > V NA I �OJy x�0' FENCE NN SHED L= 1�8' Y4i E. - 9.68 - 30" CONC E ,0 .E. - 19.38 - 12" CONC E rn I\0A y y S 0.51 x # I 1 Tt Nk n , •01 x b ,1 I ,0' x a BS c(s ^A , STORM DRAINAGE CATCH N. O �`� Q°°a-•' BASIN - TYPE I b _ �0• 0 4D r~ x RIM 17.11 ; I I 10"D 28" • � • + •.�• b w I.E. 13.61 - 15" CMP NE 9 ® O '' = yO` 3' HIGH WIRE 11. •' ' I.E. = 11.00 - 24" CMP S o I 14'D 0 9' FENCE b 9b x I I I 10. ds � �0� `1. `b. i b , STORM DRAINAGE CATCH m 12"D ,0. 1 FOUNDATION ONLY x E``� ,1� BASIN . TYPE I r 1 r��4...../// 1 ,0 b RIM 23.3a I `L 10'., $,y' ✓ m bh 60 0 I.E. - 19.36 - 12" CONC W o x,�' FF 12'D `� , > I 5 HIGH WIRE 14'C _ 0 NI 0 I FENCE 0 -' STORM DRAINAGE CATCH 6, CENTER EN E ,01 12"C � ' 2 ' BASIN - TYPE II br'J'bCJ I Oy WIDE GATE �. r,8 --. r' RIM 23.37 b 6 7 ' I.E. - 10.50 - 24" CONC E �' x - to �- �� TOP 6 7.1 I.E. - 9.95 - 30" CONC W ✓ A y b �" TOP 27.15 I.E. = 10.59 - 24" CONC N 6 I.E. - 19.27 - 12" CONC E 1u° BOTTOM 17.2 30" C•^`•^ = '01�q p' LEND OF WALL TOP 26.20 STORM DRAINAGE CATCH BASIN L= " r s o.o TOP OF W TOP 25.81 BOTTOM 73.7 CONCRETE RETAINING - 3.0' X 4.5' VAULT 'HITH GRATE 52 cis BOTTOM 16.9 WALL , 0.83 WIDE aN" Co-c. RIM = 17.48 _ '19• STORM DRAINAGE CATCH B01TOM 22.9OZ46' HIGH CHAIN BASIN - TYPE I Z4°CMP 1t. 0.61 L ", ��"} I.E. 11.58 - 21 CMP N LINK FENCE RIM 23.21 24" CMP INLET PIPE L= loo' S . 0.01D 0 Gy °/ I.E. = 12.58 - 18" �:ONC. E 30" CONC. OUTFALL PIPE I.E. = 11.51 24" CONC INLET PIPE 5 I.E. = 12.08 - 24" CONC. W I.E. = 10.08 (172.6 L.F.) I.E. = 19.27 - 12' CONC W Q n . _ Q ll T-s I.E. = 11.26 n = • 012 .... Q�pu = �9,b c4s i P SW 54 . p . Cwr�y r Pl #T nrd- s.-J.. o 1.inJ SR y.,s ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division BACKWATER ANALYSIS PROGRAM Version 4.20 gyp, Lonc � Li CYKn ZE I).51 ' 1 - INFO ON THIS PROGRAM 7E l0. 50 2 - BWCHAN 3 - BWPIPE 4 - BWCULV 5 - BWBOX 6 - DATA-FILE ROUTINES 7 - RETURN TO DOS ' ENTER OPTION 4 BACKWATER PROGRAM FOR ROUND/ARCH CULVERTS ' ENTER: NUMBER OF CULVERTS 1 _ O R U >J 1 OUTFLOW CONDITIONS PIPE NO. 1 - TAILWATER DATA: ' I) SPECIFY TYPE OF TAILWATER DATA INPUT: 5 - SINGLE TW-ELEV. F - TW/HW DATA FILE s 2) ENTER: TW-ELE'V 12.5 ---------------------------------------------------------------------------- ROUND/ARCH PIPE INPUT CODING INFORMATION: ' PIPE TYPE CODING: 1 - CONC/SMOOTH BORE (n=0.012) 5 - CMP ARCH (NEW GEOMETRY) 2 - CORRUGATED METAL (n--0.024) 6 - CONC/SMOOTH ARCH (OLD) 3 HELICAL _ .iFar, ;aries} 7 - CONC/SMOOTH ARCH (Niri; 4 - CMP ARCH (OLD GEOMETRY) 8 - ROUND (user sets n-fac) ' EDUIU DIAM. OLD-ARCH NEW-ARCH EAUIV-DIAM. OLD-ARCH NEW-ARCH :5' 19"X li" :?"X 13" 42" 50% 31" 491 33" IS' 22"X 13" 21"X 13" 48" 58 IT X 36" 571 38" 21" 25"X IC 24'X 18" $ 54" 651 40" 64"X 43" 24" 291 18" 28"X 20" 60" 72"X 44" 711 47" Sn" ""Y 77" ?C"Y U" Y A(, 79"Y 49" 77"X 57" "INLET TYPE CODING: �/� 1 - CMP/PROJ. 4 - CP SOCKET/PROJ. 7 - CMAP/PROJ. 10 - OTHER (SEE 2 - CMP/HDWALL 5 - CP SQ.EDGE/HDWALL 8 - CMAP/HDWALL FHWA REPORT 3 - CMP/MITER 6 - CP SOCKET/HDWALL 9 - CMAP/MITER NOS NO.5) {. ENTER PIPE # 1: LENGTH(ft), DIA(in), PIPE TYPE, OUTLET IE, INLET IE, INLET TYPE ' 111, 14, 2, 10.50, 11.51, 1 --------------------------------------------------------------- ------------- I INFLOW CONDITIONS - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE:O, BROAD-WEIR:1, SHARP-WEIR:2) 15.00, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V:Q/A s3) ENTER: VELOCITY(fps) UPSTREAM 0.1 -------------------------------------------------------------- -- i ENTER: QMIN, QMAX, QINCRE, PRINT-OPTION (STANDARD:l, CONDENSED:2, EXPANDED:3) Top 1, 15, 1, 1 PIPE NO. 1: 100 LF - 24"CMP @ 1.01% OUTLET: 10.50 INLET: 11.51 INTYP: 1 E L Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWO HWI ' 1.00 1.02 12.53 # .024 .35 .39 2.00 2.00 1.01 1.02 .46 2.00 1.08 12.59 # .024 .50 .55 2.00 2.00 1.04 1.08 .68 3.00 1.18 12.69 Y .024 .61 .68 2.00 2.00 1.09 1.18 .85 4.01 1,21 12,11 # .124 .11 .71 2.00 2,10 1,14 1,21 1.01 5.00 1.39 12.90 # .024 .79 .89 2.00 2.00 1.20 1.39 1.15 6.00 1.51 13.02 # .024 .81 .99 2.00 2.00 1,27 1.51 1.29 7.00 1.63 13.14 # .024 .94 1.08 2.00 2.00 1.35 1.63 1.43 ' 8.00 1.76 13.27 # .024 1.01 1.18 2.00 2.00 1.43 1.76 1.56 9.00 1.88 13.39 # .024 1.08 1.27 2.00 2.00 1.52 1.88 1.69 10.00 2.02 13.53 # .024 1.14 1.37 2.00 2.00 1.62 2.02 1.81 11.00 2.16 13.67 Y .024 1,19 1.48 2.00 2.00 1.73 2.16 1.94 12.00 2.33 13.84 # .024 1.25 1.60 2.00 2.00 1.88 2.33 2.07 13.00 2.62 14.13 # .024 1.30 1.77 2.00 2.00 2.12 2.62 2.19 14.00 2.88 14.39 # .024 1.35 2.00 2.00 2.00 2.30 2.80 2.32 ply n�/ ° { Q F°` 00 yr 15.00 3.16 14.67 # .024 1.40 2.00 2.00 2.00 2.49 3.16 7.45 pc / j Co d;d SPECIFY: N - NEWJOB, F - FILE, S - STOP Qloo = 12. !�J F SPECIFY [d:)[path]filename[.ext) FOR STORAGE OF HW-DATA AT INLET OF CULVERT(S) ' c:\swl2th,twl25 SPECIFY: N - NEWJOB, F - FILE, S - STOP n BACKWATER PROGRAM FOR ROUND/ARCH CULVERTS E v Q U rJ ENTER: NUMBER OF CULVERTS 1 OUTFLOW CONDITIONS PIPE NO, I - TAILWATER DATA: 11 SPECIFY TYPE OF TAILWATER DATA INPUT: S - SINGLE TW-ELEV. 5 2) ENTER: TW-ELEV 3/q 13.5 O ----------•--------------------------------------------------------------- R o fi 2 ROUND/ARCH PIPE INPUT CODING INFORMATION: �S�s �� . f ' hi�►��r PIPE TYPE CODING: 1 - CONC/SMOOTH BORE (n=0.012) 5 CMP ARCH (NEW GEOMETRY) 2 - CORRUGATED METAL (n=0.024) 6 CONC/SMOOTH ARCH (OLD) 3 - HELICAL CMP (n-fac varies) 7 CONC/SMOOTH ARCH (NEW) 4 - CMP ARCH (OLD GEOMETRY) 8 ROUND (user sets n-fac) ARCH PIPE CODING - EQUIVALENT ROUND SIZE MUST BE INPUTTED PER FOLLOWING TABLE: EQUIV-DIAM. OLD-ARCH NEW-ARCH # EQUIV-DIAM. OLD-ARCH NEW-ARCH 15" 18"X 11" 17"X 13" # 42" 501 31" 491 33" 18" 22"X 13" 211 13" t 48" 58"X 36" 57"X 38" 21' 25"X 16" 24"X 18" t 54" of"X 40" 64"X 43' 24" 291 18" 28"X 20" k 60" 72".X 44" 71% 47" 30" 36% 22" 35"X 24" # 66" 791 49" 771 52" 36" 431 21" 42"X 29" 72" 551 54" 631 57" ' INLET TYPE CODING: ' 1 - CMP/PROJ. 4 - CP SOCKETJPROJ. 7 CMAP/PROJ. 10 - OTHER (SEE 2 - CMP/HDWALL 5 - CP SQ.EDGE/HDWALL B CMAP/HDWALL FHWA REPORT 3 - CMP/MITER 6 - CP SOCKET/HDNALL 9 CMAP/MITER HIS N0.5) ENTER PIPE 6 1: LENGTH(ft), DIA(in), PIPE-TYPE, OUTLET-IE, INLET-IE, INLET TYPE 100, 24, 2, 10.5, 11.51, 1 INFLOW CONDITIONS - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE=O, BROAD-WEIR-1, SHARP-WEIR-2) 15.0, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V=Q/A s 3) ENTER: VELOCITY(fps) UPSTREAM ' 0.1 ENTER: QMIN, QMAX, QINCRE, PRINT-OPTION (STANDARD=1, CONDENSED=2, EXPANDED=3) ' PIPE NO. 1: 100 i:' 24"CMP @ 1.01% OUTLET: 10.50 INLET: 11.5i INTYP: 1 ' Q(CFS) HW(FT) HW ELEV. # N-FAC DC ON TW DO DE HWD HWI k##tttt#4tttt###tiititttt#ttk#tttttttttt##tt####t#t#ttt###tt tt#t t t t t#tt ti t#t ttt 1.00 2,00 13.51 t .024 .35 .39 3.00 3.00 2.00 2.00 .46 2.00 2.03 i3.54 t .024 .50 .55 3.00 3.00 2.02 2.03 .68 2.OB 13.59 t .024 .61 .68 3.00 3,00 2.05 2.08 .85 4.00 2.14 13.65 t .024 .71 .79 3.00 3.00 2.10 2.14 1.01 5.00 2.23 13,74 t .024 .79 .89 3.00 3.00 2.16 2.23 1.15 6.00 2.34 3.85 # .024 .87 .99 3.00 3.00 2,13 2.34 1,29 7.00 2.46 13.97 # .024 94 1.08 3.00 3.00 2.32 2.46 1.43 8.00 2.61 14.12 # .024 1.01 1,18 3.00 3.00 2.42 2.61 1.56 A ccfl�•6/c . 9.00 2.77 14.2B $ .024 1.08 1.27 3.00 3.00 2.53 2.77 1.60 10.00 2.96 14.47 t .024 1.14 1.37 3.00 3.00 2.66 2.96 1.81 11.00 3.16 14.67 t .024 1.19 1.48 3.00 3.00 2.80 3.16 1.94 nn 7 za ie ae t Old 1 9s i An 3 nn 11 nA 9 as 7 3A n 67 14.00 . 3.88 15.39 4 .024 1.35 2.00 3.00 3.00 3.30 3.88 2.32 ' 15.00 4.16 15.67 z .024 1.40 2.00 3.00 3.00 3.44 4.16 2.45 SPECIFY: N - NENJOB, F - FILE, S - STOP ' S 1 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division BACKWATER ANALYSIS PROGRAM ' Version 4.20 i 1 - INFO ON TNIS PROGRAM ' 2 - BWCHAN 3 - BWPIPE 4 - BWCULV S - BWBOX 6 - DATA-FILE ROUTINES 7 - RETURN TO DOS 1 ENTER OPTION 1 For = 10 aFs RCswfi-s ml*- 7 ' 3-5.2 Corrugated Metal Pipe(Outlet Control Nomograph) ry = j5wGvly O 2000 N a u x Nw 1000 —.5 e 0 800 $wd. sd� 6 SUBMERGED OUTLET CUL.E RT FLdMIMG NLL 600 120 500 toe Eo, wun crc., n m6m...... mom. Nw nr .8 m ff d. n.scrlW6 m 1M 66110 Vendor. 400 96 to ' 300 84 0 i ?J O h 200 72 .J 66 09 �0 1 60 N Z 54 2 _ ' Z 100 w = 0 40 0/ F.L 80 �a 200 w w 42 4 ? / .♦ _ � 60 ' .X 50 36 // 200 5 x vul 40 ¢ 33 ''00 6 0•]5 w 0 ——H ——' EXAMPLE N.T$30 30 �Op B 0 0 2 7 400 20 t0 24 a00 500 5 0 8 20 e 6 15 ' 5 4 12 ' 3 ' 2 HEAD FOR STANDARD ' C. M. PIPE CULVERTS FLOWING FULL BUREAU Or PUBLIC RONO$ AN n = 0.0 24 t ' May 1989 3 - 18 1 1 1 APPENDIX D 1 As-Built System Analysis i 1 1 1 1 1 1 1 1 1 1 1 1 SW 121h Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:pS Page 19 i 1 APPENDIX D t As-Built System Analysis 1 1 1 1 1 1 SW 12th Street Stormwater Improvements Drainage Report H:DOCS:95-509:DWC:ps Page 19 1 S w 12 o' 5+. D , C ee r- 6/ .1 9S ' k EV1510 NS %o FX/ST/NG FLow To AS - ev/l-T 09411VA6F 51VJ7,4,tii i„— Pf 6 AS/,v P4,-v. C ni l rncufv. CA/ w ) Tc I° ' A rek rc&- AreK (o c) 00000 Al 0, 9 38 07 98 ►.J....)+ 1. V 3 . ,V.2,,,;,, 9 by%bbww _ _ C�yw �w4 EON 1 M- y A z 0, 33 0.13 9 S �Asja— vet. p;pc o.�v{« �a�a$ J . 2 3 8 8 0 . 83 98 TT = 2. 3 m YqA, 0, 33 0, 13 18,5� 16,5 + 0. 3 18.8 6 1 s 6441 ! . 59 88 0. 94 98 18,b 1 6. 4 0. 2 5 A3 0. 6 0. 23 �5u+tDf4I 2 , 16 8B 1 19 9 $ ' Ay 0. 2 0, 6 %3 Aq 0, 23 21, 5M:� 3 89 /. 89 98 21. S o. 5 22 ,n.y 2 '13 A6 0. s 1 q .2 9 88 2 .37 $ B ' From S 6 u4 Pt< 4J Flow Rcfu /fs P r c Qpu k QAA7-10 0, 9S 0 C? Ra7o = Flo- 444 8 ) . 14 0. 22 cx;f+/y Flow 0 , 21 0 5 / . 0 8 o.4s H /. y o'. 23 3 2. L/3 0, 32 2 2, 4a3 0 ' 1 3, sa 0, N 4 I, D . CQ S 12- A Sf. 6 �1�95 ' f} S - B01LT Sy,STrM - 25- y«r �XtS Ttti1G Conl�r rlvnls VJi'J eK. Cwj CN 'f ' CLnm, 1141'vr Avf J Tc�1 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' NYDROGRAPH PROGRAMS Version 4.20 ' 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADOHYD 6 - BASEFLOW ' 7 - PLOTHYD 8 - DATA 9 - ROFAC 10 - RETURN TO DOS ENTER OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ' ENTER: FRED(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 ---------------------------------------------------------------------- *MUSS xxaxuxxxu S.C.S. TYPE-IA DISTRIBUTION x:xxxxx:xx:::x:xxxxx ' xx usM 25-YEAR 24-HOUR STORM xxxx 3.40- TOTAL PRECIP. xxtt SM ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(INPERV), CN(IMPERV), TC FOR BASIN NO. 1 To PIPE q 0.9, 88, 0.7, 98, 16.2 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 1.6 .9 88.0 .7 99.0 16.2 PEAK-0(CFS) T-PEAK(HRS) YOL(CU-FT) ' .95 7.83 15127 ENTER (d:)(patM]filenue(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ENTER: A(PERV), CN(PERY), A(IMPERY), CN(INPERY), iC FOR BASIN N0. 2 ?, Plpc $ 1.23, 88, 0.83, 98, 18.5 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A cm A CN 2.1 1.2 88.0 .8 98.0 18.5 1.16 7.83 19205 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYOROGRAPH: z/ - c --------------------------------------------------------------------- ' ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 1.56, 88, 0.96, 98, 18.5 7Ae P leg ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CH 2.5 1.6 88.0 1.0 98.0 18.5 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) I ' ' ' 1.41 7.83 23296 ENTER [d:)[path]filenave[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO, 4 To Pipt 98, 18.8 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH 2.5 1.6 88.0 1.0 98.0 18.8 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) 1.40 7.83 23293 ENTER [d:](path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 jo PIPE ,j 1.56, 88, 0.96, 98, 19.2 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ACNACN 2.5 1.6 88.8.0 1.0 98.8. 0 19.2 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) ' 1.40 7.83 23290 ENTER [d:][path]filenama[.ext] FOR STORAGE OF COMPUTED HYOROGRAPH: 1 1 3/4 ENTER OPTION: 1 2 SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROBRAPH iSTORM OPTIONS: i 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE i SPECIFY STORM OPTION: 1 i S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 25,24,3.4 ---------------------------------------------------------------------- i ssxxxtxxtx:asxttzxz S.C.S. TYPE-IA DISTRIBUTION xssauxxsssUMM s::xsxxxx 25-YEAR 24-HOUR STORM stu 3.40' TOTAL PRECIP. UMSM ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 iSPECIFY STORM OPTION: 1 i S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREO(YEAR), DURATION(HOUR), PRECIP(INCHES) 25,24,3.4 :zsxz:s::xsssxxxtts: S.C.S. TYPE-IA DISTRIBUTION xttxtxstsxtx::xt::sx stsxttttt 25-YEAR 24-HOUR STORM tzzt 3.40' TOTAL PRECIP. szztts:tx i -------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 2.16, 88, 1.19, 98, 19.2 To P I P1 y DATA PRINT-OUT: i AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CM A CN I I $y 3.4 2.2 88.0 1.2 98.0 19.2 " i PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 1.84 7.83 30651 iENTER [d:)(pathIfilename[.extI FOR STORAGE OF COMPUTED HYDROGRAPH: 1 ---------------------------------------------------------- _ VA( ' ENTER: A(PERV), CM(PERV), A(IMPERV), CN(IMPERV), IC FOR BASIN NO. 2 p lP� 3 2 2.59, 88, 1.89, 98, 21.5 T. r DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MIMUTES) A CM A CN ' 4.5 2.6 88.0 1.9 98.0 21.5 PEAK-D(CFS) T-PEAK(HRS) VOL(CU-FT) Z. 4 3 ' 2.43 7.83 42026 ENTER (d:)[path)filena@e[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 ` 4.29, 88, 2.39, 98, 22 T. P rc 1 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 6.7 4.3 88.0 2.4 98.0 22.0 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 3 . S v 3.50 7.83 61116 ' ENTER [d:)[path]filenaee(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: ' Y . Carty 113 .Sw ll -rk St. G /r /95 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS ex C°}`, G NP Surface Water went � ManaQ Division ` I �Yt cl t� TG S' HYDROGRAPH PROGRAMS Version 4.20 ' 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 ' 5 - ADOHYD 6 - BASEFLOW 7 - PLOTHYD ' 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: 2 ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM ' 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) ` 100, 24, 3.9 xsxxxxxxsxxxx:x::xx: S.C.S. TYPE-IA DISTRIBUTION :xxxsxxxxxxxx:xxxxx: ' xxxxxxxxx 100-YEAR 24-HOUR STORM xxxx 3.90' TOTAL PRECIP. *MUM ---------------------------------------------------------------------- ' ENTER: A(PERV), CH(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 0.9, 88, 0.7, 98, 16.2 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CH /1 ' 1.6 .9 88.0 .7 98.0 16.2 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) ' 1.13 7.83 17886 ENTER [d:)[path)filenaae(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: 2/3 ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN 00. 2 7o P 1.23, 88, 0.83, 98, 18.5 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CH 2.1 1.2 88.0 .8 98.0 18.5 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) Q = 1 , 38 ' 1.38 7.83 22745 ENTER [d:j(path]filename[.extj FOR STORAGE OF COMPUTED HYDROGRAPH: ----------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 To Piet -41 61 s- ' 1.56, 88, 0.96, 98, 18.5 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.5 1.6 88.0 1.0 98.0 18.5 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) Q - [ 6 e 1.68 7.83 27618 t ENTER [d:j(path]filenaae(.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: c ' ----------------------------------------------------- r ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 4 7o P.` t Y 2.16, 88, 1.19, 98, 19.2 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN ' 3.4 2.2 88.0 1.2 98.0 19.2 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 2 • 9 ' 2.19 7.83 36384 ENTER [d:](path]filena9e[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c - ----------------------------------------------------- --- - ENTER: A(PERV), CN(PERY), A(lMPERY), CN(INPERV), TC FOR BASIN-M0.--5-- 2.59, 88, 1.89, 98, 21.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 4.5 2.6 88.0 1.9 98.0 21.5 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 2.89 7.83 49729 ' ENTER [d:j[path]filenaae[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: 1 c 3/3 ---------------------------------------------------------------------- 1 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 6 o Qt pt 4.29, 88, 2.39, 98, 22 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A co A CN 1 6.7 4.3 88.0 2.4 98.0 22.0 PEAK-O(CFS) T-PEAK(HRS) VOL(CU-FT) 4.19 7.83 72538 1 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1 1 1 1 i 1 i 1 1 1 1 1 1 D. Gard /L} SysirM ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' BACKWATER ANALYSIS PROGRAM Version 4.20 Al- 61t � r�� lhJ ark ' 1 - INFO ON THIS PROGRAM 2 (fin �7vns 2 - BWCHAN 3 - BNPIPE — �,' ,�+r � Fl,µ + Sy_jJ--� 4 - BWCULV 5 - BWBOK 6 - OATA-FILE ROUTINES — O 1�cr 7 - RETURN TO DOS N ' �ow ehcv 1tr ' ENTER OPTION 3 ' BACKWATER COMPUTER PROGRAM FOR PIPES ' SPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD F - FILE F ENTER (d:][path]filename(.ext) OF PIPE-DATA FILE c:\sw12th\asblt-I ------------------------------------------------------------------------------- ' OUTFLOW CONDITIONS PIPE NO. 1 - TAILWATER DATA: ' 1) SPECIFY TYPE OF TAILWATER DATA INPUT: S - SINGLE TW-ELEV. F - TN/HW DATA FILE f ' 2) ENTER: [d:](path]filenaee[.ext] Of HW/TW FILE c:\swl2th\tw-1 ------------------------------------------------------------------------------- ' INFLOW CONDITIONS PIPE NO. 9 - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: I) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE:O, BROAD-WEIR:l, SHARP-HEIR:2) 18.00, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V:0/A s 3) ENTER: YELOCITY(fps) UPSTREAM 0.1 ------------------------------------------------------------------------------- V, ], V.], 1 PIPE NO. 1: 127 LF - 24'CP @ .65% OUTLET: 11.26 INLET: 12.08 INTYP: 5 2.Iy ' JUNC NO. 1: OVERFLOW-EL: 17.48 BEND: 90 DEG DIAIWIDTH: 4.0 0-RATIO: .44 0(CFS) HN(FT) HW ELEV. X H-FAC DC ON TW DO DE HWO HWI ' S0 .32 12.40 X .012 .25 .22 .36 .36 .25 xtt:t .32 1.00 .46 12.54 X .012 .35 .31 .46 .48 .35 ttttf .46 Z S to 0 1.50 .57 12.65 i .012 .43 .38 .59 .59 .43 Y;xt; .57 ' 2,01 .16 12,71 X .012 .10 Al .71 TO .50 ;txiY 66 2.50 .75 12.83 i .012 .56 .49 .82 .82 .56 x#x:# .75 3.00 .83 12.91 t .012 .61 .53 .93 .93 .61 #t:Yx .83 3.50 .91 12.99 i .012 .66 .58 1.04 1.04 .66 ttsis .91 ' 4.00 .98 13.06 i .012 .71 .62 1.16 1.16 .71 ttftf .98 4.50 1.05 13.13 X .012 .75 .66 1.27 1.27 .75 xxils 1.05 5.00 1.11 13.19 X .012 .79 .69 1.38 1.38 .79 txtit 1.11 PIPE NO. 2: 168 LF - 24'CHP @ 1.02% OUTLET: 11.83 INLET: 13.54 INTYP: 5 ' JUNC N0. 2: OVERFLOW-EL: 11,96 BEND: 0 DEG DIAJWIDTH: 4.0 0-RATIO: .00 0(CFS) HW(FT) HW ELEV. i N-FAC OC ON TW DO DE HWO HNI tii;YYYiii3iYYYtxti#3YYf ilfliff#tiYffi#iiitiif!#iff;;Y#i#f#Yfi;itifY#YfifYi33i! ' 35 .30 13.84 i .024 .21 .24 .57 .57 .24 .30 .26 .69 .43 13.97 i .024 .29 .33 .71 .71 .33 .43 .37 1.04 .52 14.06 k .024 .36 .40 .82 .82 .40 .52 .46 1.39 .60 14.14 X .024 .41 .46 .91 .91 .46 .60 .53 1.74 .67 14.21 f .024 .46 .51 1.00 1.00 .51 .67 .60 2.08 .73 14.27 X .024 .51 .56 1.08 1.08 .56 .73 .65 Q2J to O 2.43 .79 14.33 X .024 .55 .61 1.16 1.16 .61 .79 .70 ' 2.78 .84 14.38 X .024 S9 .65 1.23 1.23 .65 .84 .75 2, 3 3.13 .89 14.43 X .024 .62 .69 1.30 1.30 .69 .89 .79 3.47 .93 14.47 k .024 .66 .73 1.36 1.36 .73 .93 .83 ' PIPE NO. 3: 304 LF - 18'CMP @ .18% OUTLET: 13.54 INLET: 14.10 INTYP: 5 JUNC 11, 3: OYERFLOW-EL: 11.71 BEND: 90 DEG DIA/WIDTH: 3.0 0-RATIO: .32 0(CFS) HW(FT) ON ELEV. X N-FAC DC ON TW DO DE HNO HWI #f#Xtiiik3XY#Yi tixiYtt##ii##fitt;#slit#if;itiilliii;it#fiiittxtiiitxx##ii##tilt Q ZS (cJ 35 .41 14.51 X .024 .22 .39 .30 .30 .39 .41 .29 .69 .58 14.68 X .024 .31 .55 .43 .43 .55 .58 .42 1.04 .73 14.83 X .024 .39 .69 .52 .52 .69 .73 .52 2, 143 2 .8 1.39 .87 14.97 t .024 .45 .82 .60 .60 .82 .87 .61 1.74 1.00 15.10 i .024 .50 .94 .67 .67 .94 1.00 .69 2.08 1.13 15.23 X .024 .55 1.07 .73 .73 1.07 1.13 .77 ' 2,11 1,11 15.40 i .024 A 1,21 .79 .79 1,11 1.30 .14 2.78 1.79 15.89 Y .024 .64 1.50 .84 .84 1.72 1.79 .91 3.13 2.02 16.12 X .024 .68 ' 1.50 .89 .89 1.93 2.02 .98 3.47 2.26 16.36 x .024 .72 1.50 .93 .93 2.15 2.26 1.05 PIPE NO. 4: 22 LF - 18'CP @ 2.95% OUTLET: 14.16 INLET: 14.81 INTYP: 5 ' JUNC NO. 4: OVERFLOW-EL: 17.22 BEND: 90 DEG DIA/WIDTH: 4.0 O-RATIO: .23 0(CFS) HW(FT) KW ELEV. X N-FAC DC ON TW DO DE HWO HWI YtisXiiiii#iiiiiiittiiltlYiiYttiiiYt;Xl#YYYYYYitfi;iiii32iltiiii3;tiff;x#iifx#f ' 26 .23 15.04 i .012 .19 .13 .35 .35 .19 US** .23 .53 .34 15.15 X .012 .27 .17 .52 S2 .27 hits _34 .79 .43 15.24 X .012 .34 .21 .67 .67 .34 ukx# .43 ' 1.05 .50 15.31 Y .012 .39 .24 .81 .81 .39 fYfks .50 1.32 .57 15.38 X .012 .43 .27 .94 .94 .43 ttttk .57 1.58 .63 15.44 X .012 .48 .29 1.07 1.07 .48 sxttX .63 L.LV L.L1 1J.)J - .VLL .JJ .V• L.IJ ♦.IJ L.VY 1.11 .IJ ' 2.37 1.31 16.18 i .012 .59 .36 1.96 1.96 1.32 1.37 .80 2.63 1.63 16.44 # .012 .62 .38 2.20 2.20 1.57 1.63 .85 �3/q ' PIPE NO. 5: 46 IF - I8"CP @ .20% OUTLET: 14.80 INLET: 14.89 INTYP: 5 JUNC NO. 5: OVERFLOW-EL: 17.85 BEND: 90 DEG DIA/WIDTH: 4.0 D-RATIO: .00 ' O(CFS) HW(FT) HW ELEV. Y N-FAC DC ON IN DO OF HMO HNI 2;tilt;;;tifkfi;iiiti3Y#;Y#Yiti;#;#i#iXXXYfifYY#XfXkYi2YYY#iYYY#i;;Y;ii;fii;iii 2 �- �O .21 .26 15.15 f .012 .18 .22 .24 .24 .22 .26 .23 43 .37 15.21 i .012 .21 .30 .35 .35 .31 .37 .32 �(o j • 6 y .64 .46 15.35 i .012 .30 .37 .44 .44 .39 .46 .40 .86 .55 15.44 i .012 .35 .42 .51 .51 .47 .55 .47 1.07 .62 15.51 # .012 .39 .47 .58 .58 .53 .62 .53 ' 1.28 .68 15.57 i .012 .43 .52 .64 .64 .59 .68 .58 1.50 .75 15.64 i .012 .46 .57 .70 .70 .65 .75 .63 1.71 1.11 16.00 f .012 .50 .61 1.15 1.15 1.07 1.11 .68 ' 1.92 1.34 16.23 # .012 .53 .65 1.38 1.38 1.31 1.34 .72 2.14 1.60 16.49 i .012 .56 .69 1.64 1.64 1.57 1.60 .77 PIPE NO. 6: 33 LF - 18'CP @ .00% OUTLET: 11.20 INLET: 11.20 INTYP: 5 JUNC NO. 6: OVERFLOW-EL: 18.10 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .00 0(CFS) HW(FT) HW ELEV. Y N-FAC DC ON TN DO DE HWO HWI iYiYfii;f;iii2Yii i;Y##if#i IYYf#Yifff#22fM tYfUSUS fii it#S2UM i#iYYY#Y2f M .21 3.95 15.15 Y .012 .18 .00 3.95 3.95 3.95 3.95 .23 ' .41 4.01 15.26 i .012 .25 .00 4.06 4.06 4.06 4.06 .33 �• n �, (�� .64 4.16 15.36 2 .012 .30 .00 4.15 4.15 4.15 4.16 .40 .86 4.24 15.44 i .012 .35 .00 4.24 4.24 4.24 4.24 .47 1.07 4.32 15.52 i .012 .39 .00 4.31 4.31 4.31 4.32 .53 1.28 4.39 15.59 = .012 .43 .00 4.37 4.37 4.38 4.39 .58 1.50 4.46 15.66 i .012 .46 .00 4.44 4.44 4.44 4.46 .64 1.71 4.83 16.03 f .012 .50 .00 4.80 4.80 4.81 4.83 .69 ' 1.92 5.08 16.28 f .012 .53 .00 5.03 5.03 5.04 5.08 .73 2.14 5.35 16.55 i .012 .56 .00 5.29 5.29 5.31 5.35 .78 PIPE NO. l: 14 IF 18'CP @ .93% OUTLET: 14.88 INLET: 15.01 INTYP: 5 JUNC NO. 7: OVERFLOW-EL: 17.82 BEND: 90 DEG DIA/WIDTH: 2.0 0-RATIO: .21 0(CFS) HW(FT) NN ELEV. Y N-FAC DC ON TN DO DE HWO HNI i##iiYY##;;Y#ii;iifYYYtiYYY#YYXiXkYYfYYYY2YfY22f22YkiYYYkYYYY33tifffX2kkYYYYfii .21 .22 15.23 Y .012 .18 .15 .27 .27 .18 US # .22 .43 .32 15.33 i .012 .25 .21 .38 .38 .25 iiY2i .32 ' .64 .45 15.46 i .012 .30 .25 .48 .48 .32 .45 .40 .86 .53 15.54 i .012 .35 .29 .56 .56 .42 .53 .46 1.07 .60 15.61 i .012 .39 .32 .64 .64 .49 .60 .52 1.28 .67 15.68 Y .012 .43 .35 .71 .71 .57 .67 .58 1.50 .75 15.76 # .012 .46 .38 .78 .78 .64 .75 .63 1.71 1.07 16.08 i .012 .50 .41 1.15 1.15 1.02 1.07 .68 t 1.92 1.31 16.32 Y .012 .53 .43 1.40 1.40 1.27 1.31 .73 2.14 1.59 16.60 # .012 .56 .45 1.67 1.67 1.55 1.59 .77 ' PIPE NO. 8: 270 LF - 18"CP @ .20% OUTLET: 15.07 INLET: 15.61 INTYP: 5 JUNC NO. 8: OVERFLOW-El: 18.00 BEND: 0 DEG DIA/WIDTH: 2.0 0-RATIO: .22 0(CFS) HW(FT) HN ELEV. # H-FAC DC ON TW DO DE HNO HNI C?1 s Q Joo .18 .24 15.85 # .012 .16 .20 .16 .16 .20 .24 .21 ' 35 .33 15.94 # .012 .22 .27 .26 .26 .27 .33 .29 .53 .41 16.02 # .012 .27 .33 .39 .39 .33 .41 .36 .71 .47 16.08 Y .012 .32 .38 .47 .47 .38 .47 .42 1.V0 .21 10.10 • .V1[ .a7 .%1 .01 .01 .11 .41 ..0 1.24 .62 16.23 r .012 .42 .51 .69 .69 .51 62 .55 U 1.41 .69 16.30 Y .012 .45 .55 1.01 1.01 .62 .69 .58 1.59 .83 16.44 Y .012 .48 .58 1.25 1.25 .80 .83 .62 1.77 1.06 16.67 j .012 .51 .61 1.53 1.53 1.06 1.06 .65 PIPE NO. 9: 302 LF - 12'CP t .27t OUTLET: 15.73 INLET: 16.56 INTYP: 5 ' 0(CFS) HN(FT) HN ELEV. f N-FAC DC ON TN DO DE HHO NMI i;;i;i;Yk#Y;iik##iYY3YYfYYfYYikkiYYkifYYYY3YYk;lYfYYY;YYYifkkfkiikkYki###iY#Y# ' 14 .24 16,10 f .112 .16 .19 .12 .16 Al .24 .21 .29 .33 16.89 Y .012 .23 .26 .21 .23 .26 .33 .30 5 • ( 3 .43 .41 16.97 > .012 .28 .32 .29 .29 .32 .41 .37 .58 .48 17.04 # .012 .52 .37 .35 .35 .37 .48 .44 72 .54 17.10 Y .012 .36 .42 .40 .40 .42 .54 .49 .87 .60 17.16 i .012 .40 .46 .45 .45 .46 .60 .55 1.01 .66 17.22 x .012 .43 .51 .50 .50 .51 .66 .60 1.16 .71 17.27 t .012 .46 .55 .57 .57 .55 .71 .65 1.30 .76 17.32 f .012 .49 .59 .71 .71 .59 .76 .70 1.45 .81 17.37 = .012 .51 .63 .94 .94 .64 .81 .74 ' SPECIFY: R REVISE, N - NENJOB, F - FILE, S - STOP 1 Table . ' As-Built Future Conditions - Drainage Basin Summary Subbasin Pervious Curve Imperv. Curve Percent Time of Total Area Number Area Number Impervious Concentration Area (acres) CN (acres) CN ( % ) ( min. ) (acres) 1 0.2 90 1.4 98 87 % 8.5 1.6 ' 2 0.2 90 1.5 98 86 % 12.7 1.7 3 0.4 90 2.1 98 84 % 13.4 2.5 4 0.2 90 0.6 98 73 % 13.4 0.8 5 0.3 90 1.4 98 82 % 13.4 1.7 ' 6 0.8 90 5.8 98 88 % 15.2 6.6 7 0.2 90 0.8 98 81 % 15.2 1.0 8 1 0.2 90 1 0.7 98 79 % 1 16.4 0.8 ' 2.5 14.1 85 % 16.6 ' Pervious Curve Imperv. Curve Percent Time of Cum. Pipe Area Number Area Number Impervious Concentration Area Segment (acres) CN (acres) CN ( % ) ( min. ) (acres) ' 9 Subbasin Areas-Al, 0.33 A3, 0.2 A5, 0.4 90 I 2.3 98 85 % 9.5 2.7 8 Subbasin Areas-above + 0.5 A2, 0.33 A3, 0.5 A5, 0.8 90 I 4.5 98 85 % 11.1 5.3 7 Subbasin Areas -above + 0.5 A2, 0.3 A5 ' 1.0 90 I 5.6 98 85 % 11.1 6.6 6 Subbasin Areas -above + no change 1.0 90 I 5.6 98 85 % 11.3 6.6 ' 5 Subbasin Areas -above+ no change 1.0 90 I 5.6 98 85 % 11.6 6.6 4 Subbasin Areas -above+ 0.33 A3 1.1 90 I 6.3 98 85 % 11.6 7.4 3 Subbasin Areas -above + A4, 0.5 A7 ' 1.4 90 1 7.3 98 83 % 13.6 8.7 2 Subbasin Areas- above+ 0.66 A6, 0.5 AT A8 2.2 90 I 12.2 98 85 % 14.0 14.4 1 Subbasin Areas- above+ 0.33 A6 2.5 90 I 14.1 98 85 % 14.0 16.6 ' BASINSXLS Pagel ' Project: SW 12th Street Small Drainage Problem D. Carey Revised: 5/24/95 ' As-builtTC Calculations ' Analyzing for the cumulative Time of Concentration in the basin. From 1-405 at the south end of Maple throught the new pipe system. ' SECTION Est. Cuml. Pipe 9 To CB 5 Assume flow over pavement in Basin 1 Tc(min.) Tc(min.) ' Sheet Flow ns L P2 s T T=(0.42x(ns x L)A0.8)/ Pavement 0.011 200 2.0 0.0025 6.1 ' {(P2)A0.5 x (S)A0.4) Shallow Conc. Flow k L s v T V=k Sgrt(s) ,T=U(v x 60) Pavement r 7 0 1 1 7 0.0 ' Assume 12-in pipe Pipe on site 200 0.0025 2.5 1.3 Assume 12-in pipe Pipe 9 302 0.0027 2.5 2.0 Assume Vel= fps 9.5 Pipe 8 To CB 4 L s v T 18-in pipe Pipe 270 0.002 2.8 1.6 Assume Vel= fps 11.1 Pipe 7 To CB 3 L s v T 18-in pipe Pipe 14 0.0091 5.9 0.0 Assume Vel= fps 11.1 Pipe 6 To CB 2 L s v T ' 18-in pipe Pipe, siphon 33 0.002 2.8 0.2 Assume Vel= fps (assuming equal to smallest slope on either end, 0..20) 11.3 ' Pipe 5 To CB 1 L s v T 18-in pipe Pipe 46 0.002 2.8 0.3 Assume Vel= fps 11.6 ' Pipe 4 To MH 3 L s v T 18-in pipe Pipe 22 0.029 10 0.0 Assume Vel= fps 11.6 ' Pipe 3 To MH 2 L s v T 18-in pipe Pipe 304 0.0018 2.6 1.9 ' Assume Vel= fps (assuming existing 18-inch will be upgraded to a 24-inch) 13.6 Pipe 2 To MH 1 L s v T ' 24-in pipe Pipe 168 0.0104 7.4 0.4 Assume Vel= fps Existing 24-inch, no change 14.0 ' FUT-TCALS Page 1 D. Guray V3 6 y,/ys As - 8V ((_T SX,57rM 1 1 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS QhgT ' 8 Version 4.20 1 - INFO ON THIS PROGRAM P iPt QPcs k Qr i 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 8 3 9 D q 2 5 - ADDNYD D Z S 6 - BASEFLOW H•r1 7 - PLOTHYD 6 p 8 - DATA 9 - RDFAC 5 L1 O 10 - RETURN TO DOS 5, S Li 6� 11 ENTER OPTION: 3 6. 2 q 3 2 2 10. 33 D . 6ic, 1 I1 . 96 0 . IS 58UHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: I - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES) 25, 24, 3.4 1 --- - :xtttxxxtstttxxtsttx S.C.S. TYPE-lA---- DISTRIBUTION xxtx:xttttttatttxt: tt::ttxxs 25-YEAR 24-HOUR STORM tttt 3.40- TOTAL PRECIP. t:x:ttttt 1 ---------------------------------------------------------------------- q ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), IC FOR BASIN NO. 1 To Pj L I 0.4, 90, 2.3, 98, 9.5 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 2.7 .4 90.0 2.3 98.0 9.5 PEAK-D(CFS) T-PEAK(HRS) VOL(CU-FT) 2.08 7.83 29846 1 2/3 - -- - -- ------------------------------------------------ ' ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 To c 8 0.8, 90, 4.5, 98, 11.1 DATA PAIMT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CM A CH ' 5.3 .8 90.0 4.5 98.0 11.1 PEAK-D(CFS) T-PEAK(HRS) VOL(CU-FT) ' 3.99 7.83 58525 ENTER [d:)(path)filename[.ext) FOR STORAGE OF COMPUTED HYDR06RAPH: c - - ---------- ----------- -- --- ----- --- - ENTER: A(PERV), CN(PERV), A(IMPERV), CH(INPERV), TC FOR BASIN N0. 3 [� ei/` 1.0, 90, 5.6, 98, 11.1 6 5 ' DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 6.6 1.0 90.0 5.6 98.0 11.1 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 4.97 7.83 72870 ENTER (d:)[path)filename(.ext) FOR STORAGE OF COMPUTED HYDR06RAPH: c -------------------------------------------------------- ' ENTER: A(SE6y), CH(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 4 To P1Pc ik IV 0'r Ni. (cJ SAry DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CM ' 6.6 1.0 90.0 5.6 98.0 11.3 PEAK-D(CFS), T-PEAK(HRS) VOL(CU-FT) 4.96 7.83 72B67 ENTER [d:][pathIfilenaee[.extI FOR STORAGE OF COMPUTED HYDROGRAPH: c ENTER: A(PERV), CN(PERV), A(IMPERV),-CH(IMPERV),-TC-FOR-BASIN-KO. 5 p 1.1, 90, 6.3, 98, 11.6 1 ° I /e- Li ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CH 7.4 1.1 90.0 6.3 98.0 11.6 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 5.54 7.83 81756 ENTER (d:][path]filena@e(.ext) FOR STORAGE OF COMPUTED HYDROBRAPH: 313 ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 6 ;P� 3 1.4, 90, 1.3, 98, 13.6 lD ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CH A CM 8.7 1.4 90.0 7.3 98.0 13.6 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 6.29 7.83 95759 ENTER (d:][path]filenaee(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: t c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 7a Pie e 2 2.2, 90, 12.2, 98, 14 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CH 14.4 2.2 90.0 12.2 98.0 14.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 10.37 7.83 158827 ENTER [d:](path)filenaee(.extI FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- p / ' ENTER: A(PERV), CN(PERV), A(IMPERV), CM(IMPERV), TC FOR BASIN NO. 8 To %P I 2.5, 90, 14.1, 98, 14 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 16.6 2.5 90.0 14.1 98.0 14.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) ' 11.96 7.83 183199 ENTER (d:)(path)filenaee[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1 t 113 sw f2 rh s�. 6A/Is ' AS ^ 8 !//LT ^SYS7e-M f60'Year 1 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - AOOHYD 6 - BASEFLOW 7 - PLOTHYD ' 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: 2 ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM ' 3 - STORM DATA FILE SPECIFY STORM OPTION: ' 1 S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREO(YEAR), DURATION(HOUR), PRECIP(INCHES) ' 100, 24, 3.9 ---- --- -- - - ss;a;*;;*;a;; S.C.S. TYPE-IA DISTRIBUTION ;;s;t;;;s;;s ' **stria** 100-YEAR 24-HOUR STORM =ass 3.90' TOTAL PRECIP. *sass;"$ ---------------------------------------------------------------------- ' ENTER: A(PERV), CH(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 1 ( P;7 e 9 0.4, 90, 2.3, 98, 9.5 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CK A CN 2.7 .4 90.0 2.3 98.0 9.5 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 2.41 7.83 34689 ENTER (d:j(path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: i - -------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 2 To 0.8, 90, 4.5, 98, 11.1 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) ' A CN A CN 5.3 .8 90.0 4.5 98.0 11.1 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 4.63 7.83 68028 ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 3 P s ' 1.0, 90, 5.6, 98, 11.1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 6.6 1.0 90.0 5.6 98.0 11.1 ' PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 5.76 7.83 84703 ' ENTER (d:][path)filenaee(.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: c ---------------------------------------------------------------------- ' ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN 00. 4 7n PEP y 1.1, 90, 6.3. 98, 11.6 ' DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MIHUTES) A A 7.4 1.1 90.0.0 6.3 98.8. 0 11.6 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 6.41 7.83 95025 ENTER (d:I(path]filenase(.extI FOR STORAGE OF COMPUTED HYDROCRAPH: ' c ------------------------------------------------------------------ ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 5 To 1.4, 91, 7.3, 91, 13.6 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MIMUTES) A CH A CN 8.7 1.4 90.0 7.3 98.0 13.6 PEAK•0(CFS) T-PEAK(HRS) VOL(CU-FT) 7.29 7.83 111340 ' ENTER [d:][path]filenaae[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ---------------------------------------------------------------------- ., ENTER: A(PERV), CN(PERV), A(IMPERV), CH(IMPERV), TC FOR BASIN NO. 6 ro �. L 2 2.2, 90, 12.2, 98, 14 P 1 DATA PRIKT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) 1 A CN A CK 14.4 2.2 90.0 12.2 98.0 14.0 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 12.02 7.83 184626 ENTER (d:)(pathIfilanaee(.extI FOR STORAGE OF COMPUTED HYOROGRAPH: c --------------------------------------------------- ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 7 Tu P- 2.5, 90, 14.1, 98, 14 DATA PRINT-OUT: 1 AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CH A CN 16.6 2.5 90.0 14.1 98.0 14.0 1 PEAK-0(CFS) T-PEAK(HRS) VOL(CU-FT) 13.86 7.83 212943 1 ENTER (d:)[path)filenaee[.ext) FOR STORAGE OF COMPUTED HYDROGRAPH: 1 i 1 1 .. 1 1 1 i i D. Cctl • 6/r/ys ' As— �5L) iL_ 5xs7km Fv i vRr cones tTn„✓s KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Managesent Division BACKWATER ANALYSIS PROGRAM Version 4.20 1 - INFO ON THIS PROGRAM 2 - BWCHAN ' 3 - BWPIPE 4 - BWCULV 5 - BWBOX 6 - DATA-FILE ROUTINES ' 7 - RETURN TO DOS ENTER OPTION 3 BACKWATER COMPUTER PROGRAM FOR PIPES ' SPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD F - FILE F ENTER [d:)(path)filenaae(.ext) OF PIPE-DATA FILE c:\swl2th\ashlt-2 ------------------------------------------------------------------------------- OUTFLOW CONDITIONS PIPE NO. 1 - TAILWATER DATA: 1) SPECIFY TYPE OF TAILWATER DATA INPUT: S - SINGLE TW-ELEV. F - TN/HW DATA FILE F ' 2) ENTER: (d:)(path]filenawe[.ext) OF HW/TW FILE c:\sw12th\tw-1 ------------------------------------------------------------------------------- ' INFLOW CONDITIONS PIPE NO. g - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: ' 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE-0, BROAD-WEIR-1, SHARP-NEIR-2) 18.00, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM ' V - VARY VELOCITY ACCORDING TO V=Q/A s3) ENTER: VELOCITY(fps) UPSTREAM ' 0.1 ------------------------------------------------------------------------------- ' 0, 14, 0.5, 1 PIPE 110. 1: 127 LF - 24 CP @ .65% OUTLET: 11.26 INLET: 12.08 INTYP: 5 ' JUNC NO. 1: OVERFLOW-EL. 7.48 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .15 0(CFS) HW(FT) HN ELEV. t N-FAC DC ON TW DO DE ONO HWI ' YstYfxi#YtxttYxtxiiYiiitiiiiifiislis#tikstxis#iSYY3YiifffYtsfYtYYYYYYYsiYYYYtfi .50 .32 12.40 t .012 .25 .22 .36 .36 .25 ifxxt .32 1.00 .46 12.54 t .012 .35 .31 .48 .48 .35 xxxiY .46 1.50 .57 12.65 t .012 .43 .38 .59 .59 .43 stixx .57 ' 2.00 .66 12.74 s .012 .50 .44 .70 .70 .50 xttsx .66 2.50 .75 12.83 t .012 .56 .49 .82 .82 .56 xx3zx .75 3.00 .83 12.91 3 .012 .61 .53 .93 .93 .61 xxsxx .83 ' 3.50 .90 12.98 3 .012 .66 .58 1.04 1.04 .66 txxti .90 4.00 .97 13.05 t .012 .71 .62 1.16 1.16 .71 ttsxs .97 4.50 1.04 13.12 i .012 .75 .66 1.27 1.27 .75 tttxt 1,04 ' 1,00 1,11 11,11 i .012 .79 .69 1.38 1.38 .79 stssi 1.11 5.50 1.17 13.25 f .012 .83 .73 1.48 1.48 .83 ttxsx 1.17 6.00 1.24 13.32 $ .012 .67 .76 1.54 1.54 .87 txis: 1.24 6.50 1.30 13.38 t .012 .91 .80 1.60 1.60 .91 tiftx 1.30 ' 7.00 1.36 13.44 i .012 .94 .83 1.67 1.67 .94 xxiis 1.36 7.50 1.42 13.50 t .012 .98 .86 1.73 1.73 .98 ttsxt 1.42 8.00 1.61 13.69 t .012 1.01 .89 1.80 1.80 1.03 1.61 1.40 ' 8.50 1.66 13.74 t .012 1.04 .92 1.86 1.86 1.10 1.66 1.54 9.00 1.71 13.79 Y .012 1.08 .95 1.93 1.93 1.18 1.71 1.60 9.50 1.77 13.85 t .012 1,11 .98 1.99 1.99 1.27 1.77 1.65 10.00 1.84 13.92 t .012 1.14 1.01 2.06 2.06 1.37 1.84 1,71 ' 10.50 1.91 13.99 i .012 1.17 1.04 2.12 2.12 1.46 1.91 1.77 11.00 2.00 14.08 t .012 1.19 1.07 2.19 2.19 1.56 2.00 1.83 11.50 2.08 14.16 i .012 1.22 1.10 2.25 2.25 1.65 2.08 1.89 ' 12.00 2,19 14.27 ! .012 1.25 1.13 2.33 2.33 1.77 2.19 1.94 12.50 2.30 14.36 t .012 1.28 1.16 2.40 2.40 1.88 2.30 2.00 13.00 2.46 14.54 s .012 1.30 1.19 2.48 2.48 2.02 2.46 2.06 ' 11,11 2,19 14,67 t .012 1.33 1.22 2.56 2.56 2.12 2.59 2.12 14.00 2.73 14.81 Y .012 1.35 1.25 2.63 2.63 2.23 2.73 2.18 PIPE NO. 2: 168 LF 24'CHP @ 1.02% OUTLET: 11.83 INLET: 13.54 INTYP: 5 JUNC NO. 2: OVERFLOW-EL: 18.96 BEND: 0 DEG DIA/WIDTH: 4.0 0-RATIO: .65 ' 0(CFS) HN(FT) HW ELEV. t N-FAC DC ON TN DO OE HNO HWI !Y##iitiYYlYiftxiiYtiiiiiiSYYktYYYsttsisYYtkxxtittYls3iYiiYYYYYt#32fii#Yiiiiiii .43 .34 13.BB t .024 .23 .26 .57 _57 .26 .34 .29 87 A 11,12 t ,024 .11 .31 .71 .71 .16 Al .42 1.30 .59 14.13 t .024 .40 .44 .82 .82 .44 .59 .52 1.74 .68 14.22 t .024 .46 .51 .91 .91 .51 .68 .61 2.17 .77 14.31 t .024 .52 .57 1.00 1.00 .57 .77 .68 ' 2.61 .84 14.38 t .024 .57 .63 1.08 1.08 .63 .84 .75 3.04 .91 14.45 t .024 .61 .68 1.15 1.15 .68 .91 .82 3.48 .98 14.52 t .024 .66 .73 1.22 1.22 .73 .98 .88 t 3.91 1.04 14.58 t .024 .70 .78 1.29 1.29 .78 1.04 .94 4.35 1.10 14.64 t .024 .74 .82 1.36 1.36 .82 1.10 .99 4.78 1.16 14.70 t .024 .77 .B7 1.42 1.42 .87 1.16 1.04 5.22 1.21 14.75 t .024 .81 .91 1.49 1.49 .91 1.21 1.10 ' 5.65 1.26 14.80 t .024 .84 .95 1.55 1.55 .95 1.26 1.14 6.09 1.31 14.85 t .024 .88 1.00 1.61 1.61 1.00 1.31 1.19 6.52 1.36 14.90 t .024 .91 1.04 1.67 1.67 1.04 1.36 1.24 6.96 1.41 14.95 t .024 .94 1.08 1.86 1.86 1.08 1.41 1.28 7.39 1.45 14.99 t .024 .97 1.12 1.91 1.91 1.13 1.45 1.33 7.83 1.50 15.04 t .024 1.00 1.16 1.96 1.96 1.19 1.50 1.37 ' 8.26 1.56 15.10 t .024 1.03 1.20 2.02 2.02 1.28 1.56 1.42 8.70 1.62 15.16 t .024 1.06 1.24 2.09 2.09 1.36 1.62 1.46 9.13 1.69 15.23 Y .024 1.08 1.28 2.16 2.16 1.45 1.69 1.50 q c1 1 17 tc 71 t AIA 1 11 1 77 1 qc 0 oc 1 c[ 1 11 111 10.43 2.02 15.56 i .024 1.16 1.41 2.44 2.44 1.86 2.02 1.62 10.87 2.33 15.87 s .024 1.19 1.46 2.55 2.55 2.17 2.33 1.66 316 11.30 2.60 16.14 3 .024 1.21 1.51 2.71 2.71 2.43 2.60 1.70 11.74 2.86 16.40 s .024 1.24 1.56 2.84 2.84 2.68 2.86 1.73 ' 12.17 3.13 16.67 s .024 1.26 1.62 2.98 2.98 2.93 3.13 1.77 PIPE NO. 3: 304 LF - 18'CNP B .18% OUTLET: 13.54 INLET: 14.10 INTYP: 5 JUNC NO. 3: OVERFLOW-EL: 16.72 BEND: 90 DEG DIAJWIDTH: 3.0 Q-RATIO: .13 Q(CFS) HW(FT) HN ELEV. s N-FAC OC ON IN DO DE HNO HMI iYiiiit*tiiiiuuu*iYlY3xYYi3fY*Y23ii*ui*fiiiittiiikitultuitiYtxlYYiiixfiii .26 .36 14.46 s .024 .19 .34 .34 .34 .34 .36 .25 .53 .51 14.61 s .024 .27 .48 .48 .48 .48 .51 .36 ' 79 .63 14.73 s .024 .34 .59 .59 .59 .59 .63 .45 1.05 .73 14.83 s .024 .39 .69 .68 .68 .69 .73 .52 1.32 .83 14.93 s .024 .43 .79 .77 .77 .78 .83 .59 1.58 .93 15.03 s .121 .48 .88 .84 .14 .11 .11 .11 1.84 1.03 15.13 s .024 .52 .98 .91 .91 .97 1.03 .71 2.11 1.13 15.23 s .024 .55 1.08 .98 .98 1.07 1.13 .77 2.37 1.23 15.33 s .024 .59 1.20 1.04 1.04 1.16 1.23 .83 ' 2.64 1.35 15.45 s .024 .62 1.50 1.10 1.10 1.27 1.35 .88 2.90 1.48 15.58 s .024 .65 1.50 1.16 1.16 1.40 1.48 .93 3.16 1.71 15.81 s .024 .68 1.50 1.21 1.21 1.62 1.71 .98 ' 3.43 1.91 16.01 s .024 .71 1.50 1.26 1.26 1.80 1.91 1.04 3.69 2.12 16.22 s .024 .74 1.50 1.31 1.31 1.99 2.12 1.09 3.95 2.33 16.43 s .024 .77 1.50 1.36 1.36 2.19 2.33 1.14 4.22 2.57 16.67 s .024 .79 1.50 1.41 1.41 2.41 2.57 1.19 ' 4.48 2.62 16.96 s .024 .82 1.50 1.45 1.45 2.67 2.86 1.24 iuxuuis**M* OVERFLOW ENCOUNTERED AT 4.48 CFS DISCHARGE ussi;suuuuYi ' PIPE NO. 4: 22 IF - 18'CP B 2.95% OUTLET: 14.16 INLET: 14.81 INTYP: 5 JUNC NO. 4: OVERFLON-EL: 17.22 BEND: 90 DEG DIA/WIDTH: 4.0 Q-RATIO: .I1 ' Q(CFS) HW(FT) HN ELEV. s N-FAC DC ON IN DO OE HNO HWI Iiiiifiiiiixii3i213Y3YtY3kYiYi*Yii*iit3tiititt3Y3YYutiYxYYYisYxiiiifiiiY3;iiii .23 .22 15.03 s .012 .18 .12 .30 .30 .18 Yuii .22 47 .32 15.13 s .012 .26 .16 .45 .45 .26 suss .32 .70 .40 15.21 s .012 .32 .20 .57 .57 .32 uui .40 .93 .47 15.28 s .012 .36 .23 .67 .67 .36 casts .47 ' 1.17 .53 15.34 s .012 .41 .25 .77 .77 .41 Mst .53 1.40 .59 15.40 s .012 .45 .28 .87 .87 .45 suit .59 1.63 .64 15.45 s .012 .49 .30 .97 .97 .49 uus .64 1.87 .69 15.50 s .012 .52 .32 1.07 1.07 .52 tt**Y .69 2.10 .74 15.55 t .012 .55 .34 1.17 1.17 .55 MU .74 2.33 .79 15.60 s .012 .58 .35 1.29 1.29 .58 tsui .79 2.57 .84 15.65 s .012 .61 .37 1.42 1.42 .61 iiii* .84 ' 2.80 1.11 15.92 s .012 .64 .39 1.65 1.65 .98 1.11 .88 3.03 1.30 16.11 s .012 .67 .40 1.85 1.85 1.20 1.30 .93 3.26 1.52 16.33 s .012 .69 .42 2.06 2.06 1.43 1.52 .97 ' 3.50 1.75 16.56 s .012 .72 .43 2.27 2.27 1.65 1.75 1.01 3.73 2.00 16.81 s .012 .74 .45 2.51 2.51 1.89 2.00 1.06 3.96 2.06 16.87 s .012 .77 .46 2.56 2.56 1.94 2.06 1.10 4.20 2.14 16.95 t .012 .79 .48 2.62 2.62 2.00 2.14 1.14 ' 4.43 2.19 17.00 t .012 .81 .49 2.65 2.65 2.04 2.19 1.18 4.66 2.24 17.05 * .012 .83 .50 2.68 2.68 2.07 2.24 1.22 4.90 2.29 17.10 * .012 .86 .52 2.71 2.71 2.10 2.29 1.26 ' 5.13 2.33 17.14 t .012 .88 .53 2.73 2.73 2.12 2.33 1.31 5.36 2.38 17.19 i .012 .90 .54 2.75 2.75 2.15 2.38 1.35 5.60 2.41 17.23 i .012 .92 .55 2.77 2.77 2.18 2.42 1.39 ' Yauuu3usus OVERFLOW ENCOUNTERED AT 5.60 CFS DISCHARGE t*:*txtstttxattt nrnr un c. 4( I c - la-r. a nM ru1T1 r1. I I an rul cr. 14 00 rurve. c Q(CFS) HW(FT) HN ELEV. 3 N-FAC DC ON TN DO DE HWO HNI .21 .26 1S.1S 3 .012 .17 .21 .23 .23 .21 .26 .22 .42 .37 15.26 t .012 .24 .30 .33 .33 .30 .37 .32 .63 AS 15.34 t .012 .30 .36 .41 .41 .38 .45 .40 .84 .53 15.42 t .012 .35 .42 .48 .48 .44 .53 .46 ' 1.05 .60 15.49 3 .012 .39 .47 .54 .54 .50 .60 .52 1.26 .66 15.55 3 .012 .43 .52 .60 .60 .56 .66 .57 1.47 .72 15.61 3 .012 .46 .56 .65 .65 .61 .72 .62 1.68 .78 15.67 3 .012 .49 .60 .70 .70 .66 .78 .67 ' 1.89 .83 15.72 3 .012 .52 .64 .75 .75 .71 .83 .72 2.10 .89 15.78 = .012 .55 .68 .80 .80 .76 .89 .76 2.31 .94 ISM 3 .012 .58 .72 .85 .85 .81 .94 .80 ' 2.52 1.14 16.03 3 .012 .61 .76 1.12 1.12 1.06 1.14 .85 2.73 1.31 16.20 3 .012 .63 .79 1.31 1.31 1.24 1.31 .89 2.94 1.54 16.43 t .012 .66 .83 1.53 1.53 1.47 1.54 .93 ' 3.11 1.71 16.67 t .012 .68 .87 1.11 1.76 1.71 1.78 .96 3.36 2.04 16.93 3 .012 .70 .90 2.01 2.01 1.96 2.04 1.00 3.57 2.12 17.01 3 .012 .73 .94 2.07 2.07 2.03 2.12 1.04 3.78 2.22 17.11 t .012 .75 .98 2.15 2.15 2.11 2.22 1.08 ' 3.99 2.29 17.18 L .012 .77 1.01 2.20 2.20 2.17 2.29 1.12 4.20 2.36 17.25 k .012 .79 1.05 2.25 2.25 2.22 2.36 1.15 4.41 2.42 17.31 t .012 .81 1.09 2.30 2.30 2.28 2.42 1.19 4.62 2.49 17.38 3 .012 .83 1.14 2.34 2.34 2.33 2.49 1.23 4.83 2.56 17.45 L .012 .85 1.18 2.39 2.39 2.38 2.56 1.26 5.04 2.61 17.50 k .012 .87 1.24 2.42 2.42 2.42 2.61 1.30 ' 1.21 2.69 17.58 i .112 .19 1.31 2.47 2.47 2.41 2.69 1.33 5.46 2.74 17.63 ; .012 .91 1.50 2.50 2.50 2.52 2.74 1.37 5.67 2.80 17.69 t .012 .92 1.50 2.53 2.53 2.56 2.80 1.41 5.88 2.85 17.74 t .012 .94 1.50 2.55 2.55 2.59 2.85 1.44 PIPE NO. 6: 33 LF 18'CP 0 .00% OUTLET: 11.20 INLET: 11.20 INTYP: 5 ' JUNC NO. 6: OVERFLOW-EL: 18.10 BEND: 90 DEG DIA/WIDTH: 4.0 Q-RATIO: .00 Q(CFS) HN(FT) HN ELEV. 3 N-FAC DC ON TN DO DE HWO HWI ii23kkYYYf3YLYtf3#itYLLYLYitYtiYtiti;iiiiikiYif;iiiii#iiiitiiiitiii;#Ykkii#YYii ' 21 3.95 15.15 3 .012 .17 .00 3.95 3.95 3.95 3.95 .23 .42 4.06 15.26 t .012 .24 .00 4.06 4.06 4.06 4.06 .32 .63 4.15 15.35 3 .012 .30 .00 4.14 4.14 4.15 CIS .40 ' 84 4.23 15.43 t .012 .35 .00 4.22 4.22 4.22 4.23 .47 1.05 4.30 15.50 t .012 .39 .00 4.29 4.29 4.29 4.30 .52 1.26 4.37 15.57 3 .012 .43 .00 4.35 4.35 4.36 4.37.. .58 1.47 4.44 15.64 3 .012 .46 .00 4.41 4.41 4.42 4.44 .63 1.68 4.50 15.70 3 .012 .49 .00 4.47 4.47 4.47 4.50 .68 1.89 4.56 15.76 3 .012 .52 .00 4.52 4.52 4.53 4.56 .72 2.10 4.63 15.83 # .012 .55 .00 4.58 4.58 4.59 4.63 .77 ' 2.31 4.69 15.89 t .012 .58 .00 4.63 4.63 4.65 4.69 .81 2.52 4.91 16.11 t .012 .61 .00 4.83 4.83 4.85 4.91 .86 2.73 5.09 16.29 3 .012 .63 .00 5.00 5.00 5.02 5.09 .90 ' 2.94 5.33 16.53 3 .012 .66 .00 5.23 5.23 5.25 5.33 .94 3.15 5.59 16.79 t .012 .68 .00 5.47 5.47 5.50 5.59 .98 3.36 S.86 17.06 t .012 .70 .00 5.73 5.73 5.76 5.86 1.02 3.57 5.96 17.16 = .012 .73 .00 5.81 5.81 5.85 5.96 1.06 ' 3.78 6.07 17.27 3 .012 .75 .00 5.91 5.91 5.94 6.07 1.10 3.99 6.16 17.36 3 .012 .77 .00 5.98 5.98 6.02 6.16 1.14 4.20 6.25 17.45 t .012 .79 .00 6.05 6.05 6.09 6.25 1.18 4.41 6.34 17.54 t .012 .81 .00 6.11 6.11 6.16 6.34 1.22 4.62 6.43 17.63 3 .012 .83 .00 6.18 6.18 6.23 6.43 1.26 4.83 6.52 17.72 i .012 .85 .00 6.25 6.25 6.31 6.52 1.30 ' 1.04 6.61 17.80 i .112 .17 Al 6.30 6.30 6.37 6.60 1.34 5.25 6.70 17.90 t .012 .89 .00 6.38 6.38 6.45 6.70 1.38 5.46 6.78 17.98 k .012 .91 .00 6.43 6.43 6.51 6.78 1.42 e 11 1 en .n n1 a n.n 61 nn 1 m 1 e n e, 1 on 1 11 tixuxataixxt: OVERFLOW ENCOUNTERED AT 5.88 CFS DISCHARGE iisss#;;xsa#axx PIPE NO. 7: 14 LF - 18'CP @ .93% OUTLET: 14.88 INLET: 15.01 INTYP: 5 ' JUNC NO. 7: OVERFLOW-EL: 17.82 BEND: 90 DEG DIA/WIDTH: 2.0 0-RATIO: .25 0(CFS) HW(FT) HM ELEV. t N-FAC DC ON TN DO DE HMO HMI ' i#t#i2ixtYiiYYYYiiiii#Yii;#ix#;#IxixYYi3 i#txtifiYYiiliYiiii;;i#iY;;tikxitix#ixY .21 .22 15.23 i .012 .17 .15 .27 .27 .17 tssx# .22 .42 .32 15.33 i .012 .24 .21 .38 .38 .24 xxfit .32 .63 .44 15.45 f .012 .30 .25 .47 .47 .31 .44 .39 84 .51 15.52 s .012 .35 .29 .55 .55 .39 .51 .46 1.05 .59 15.60 x .012 .39 .32 .62 .62 .47 .59 .52 1.26 .66 15.67 i .012 .43 .35 .69 .69 .55 .66 .57 1.47 .72 15.73 i .012 .46 .38 .76 .76 .61 .72 .62 1.68 .79 15.80 t .012 .49 .40 .82 .82 .68 .79 .67 1.69 .86 15.87 t .012 .52 .43 .88 .88 .75 .86 .72 ' 2,11 .93 15.94 s .112 .51 .41 .11 .95 .11 ,93 .76 2.31 1.00 16.01 ; .012 .58 .47 1.01 1.01 .88 1.00 .81 2.52 1.19 16.20 i .012 .61 .49 1.23 1.23 1.10 1.19 .85 2.73 1.36 16.37 x .012 .63 .52 1.41 1.41 1.28 1.36 .89 ' 2.94 1.61 16.62 t .012 .66 .54 1.65 1.65 1.53 1.61 .94 3.15 1.88 16.89 i .012 .68 .56 1.91 1.91 1.79 1.88 .98 3.36 2.17 17.18 t .012 .70 .57 2.18 2.18 2.07 2.17 1.02 ' 3.57 2.28 17.29 t .012 .73 .59 2.28 2.28 2.16 2.28 1.06 3.78 2.41 17.42 t .012 .75 .61 2.39 2.39 2.28 2.41 1.10 3.99 2.52 17.53 f .012 .77 .63 2.48 2.48 2.37 2.52 1.14 4.20 2.63 17.64 i .012 .79 .65 2.57 2.51 2.46 2.63 1.18 ' 4.41 2.73 17.74 i .012 .81 .67 2.66 2.66 2.55 2.73 1.22 4.62 2.81 17.85 t .012 .83 .68 2.75 2.75 2.64 2.84 1.26 ;afuuUMM OVERFLOW ENCOUNTERED AT 4.62 CFS DISCHARGE ;;xu#if##xtxssts PIPE NO. 8: 270 LF - 18'CP @ .20% OUTLET: 15.07 INLET: 15.61 INTYP: 5 ' JUNC NO. 8: OVERFLOW-EL: 18.00 BEND: 0 DEG DIA/WIDTH: 2.0 0-RATIO: .92 0(CFS) HW(FT) HW ELEV. t M-FAC DC ON TM DO DE HWO HMI #ixixiktktYtYYYiliYixikii#;ii;;xkxYxt#ktYYYiftYii;Yif;fi;;x#iitifxiixxxitixixxY ' 17 .23 15.84 t .012 .16 .19 .16 .16 .19 .23 .20 .34 .33 15.94 t .012 .22 .27 .26 .26 .27 .33 .29 .50 .40 16.01 t .012 .27 .32 .38 .38 .32 .40 .35 ' 67 .46 16.07 t .012 .31 .37 .45 .45 .37 .46 .41 .84 .52 16.13 t .012 .35 .42 .53 .53 .42 .52 .46 1.01 .57 16.18 t .012 .38 .46 .60 .60 .46 .57 .51 1,11 ,61 16,23 t .012 41 .50 .61 .66 .10 .62 .51 1.34 .66 16.27 t .012 .44 S3 .73 .73 .53 .66 .59 1.51 .70 16.31 t .012 .47 .57 .80 .80 .57 .70 .63 1.68 .74 16.35 t .012 .49 .60 .87 .87 .60 .74 .66 1.85 .79 16.40 t .012 .52 .63 .94 .94 .65 .79 .70 2.02 .86 16.47 t .012 .54 .66 1.13 1.13 .76 .86 .73 2.18 .97 16.58 t .012 .56 .69 1.30 1.30 .89 .97 .76 ' 2.35 1.18 16.79 t .012 .59 .72 1.55 1.55 1.13 1.18 .80 2.52 1.44 17.05 t .012 .61 .75 1.82 1.82 1.41 1.44 .83 2.69 1.76 17.37 t .012 .63 .78 2.11 2.11 1.73 1.76 .86 2.86 1.89 17.50 $ .012 .65 .81 2.22 2.22 1.86 1.89 .88 ' 3.03 2.04 17.65 t .012 .67 .84 2.35 2.35 2.00 2.04 .91 3.19 2.18 17.79 i .012 .69 .87 2.46 2.46 2.13 2.18 .94 3.36 2.31 17.92 x .012 .70 .90 2.57 2.57 2.26 2.31 .97 ' 3.53 2.39 18.06 t .012 .72 .92 2.67 2.67 2.39 2.45 .99 iiiitt;i UMU OVERFLOW ENCOUNTERED AT 3.53 CFS DISCHARGE #Yi#tttstttsutit ' PIPE NO. 9: 302 LF - 12'CP @ .27% OUTLET: 15.73 INLET: 16.56 INTYP: 5 nlnrn\ uufrTl uu n ro ♦ u_ren nn nu ♦u nn nr uun uui ..18 ..26 1166..82 k ..001122 ..118 ..20 ..211 ..21 ..2I0S ..26 ..23 .26 .32 16.88 Y .012 .22 .25 .28 .28 .25 .32 .28 .35 .37 16.93 k .012 .25 .29 .34 .34 .29 .37 .33 ' 44 .42 16.98 k .012 .28 .32 .40 .40 .32 .42 .37 .53 .46 17.02 Y .012 .31 .35 .45 .45 .35 .46 .41 .61 .50 17.06 < .012 .33 .38 .50 .50 .38 .50 .45 ' 70 .53 17.09 k .012 .35 .41 .54 .54 .41 .53 .48 .79 .57 17.13 $ .012 .38 .44 .58 .58 .44 .57 .52 .88 .60 17.16 k .012 .40 .46 .62 .62 .46 .60 .55 ' .96 .64 17,21 Y .112 .42 .41 .11 .17 .41 .64 .11 1.05 .67 17.23 k .012 .44 .52 .74 .74 .52 .67 .61 1.14 .70 17.26 k .012 .45 .54 .85 .85 .54 .70 .64 1.23 .76 17.32 k .012 .47 .57 1.06 1.06 .63 .76 .67 ' 1.31 .91 17.47 k .012 .49 .59 1.32 1.32 .83 .91 .70 1.40 1.28 17.84 k .012 .51 .62 1.64 1.64 1.21 1.28 .73 1.49 1.47 18.03 Y .012 .52 .64 1.77 1.77 1.39 1.47 .76 ' kkkSkkkkkkkkkkkk OVERFLOW ENCOUNTERED AT 1.49 CFS DISCHARGE iYYkkkkYYkkYkkkYi SPECIFY: R REVISE, N HEMS, F FILE, S - STOP 1 1 17• Gary 1/(D s L✓ r z �� s+. 6 I f/9S =' IM/�Rovt D SytTGri"/ FUTuK6 Cviv�i�i,�N�' n KING COUNTY DEPARTMENT OF PUBLIC WORKS �S- B I � $ Jkn ' Surface Water Managesent Division r y BACKWATER ANALYSIS PROGRAM ' Version 4.20 PjeL � 3 C�f0..,�11 7� CINC. — Sl yej J'1/t. to 0. y5 1 - INFO ON THIS PROGRAM �a12 PTI°!J 2 - BWCHAN 3 - BNPIPE DY[v f low k fi �ipe 3 17�/j} 4 - BNCULV ' 5 - BNBOK fAiud 4F EC 6 - DATA-FILE ROUTINES Mcr hi �r a z,,V ,4 44k T - RETURN TO DOS p ENTER OPTION Re).. 1-b BACKWATER COMPUTER PROGRAM FOR PIPES �� o k 1 2 12 .1- SPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD 3 7.30 F - FILE y 53 F ENTER [d:][path]filenaoe[.ext] OF PIPE-DATA FILE c:\swl2th\ashlt-3 G S 80 ' ------------------------------------------------------------------ S. 88 Y OUTFLOW CONDITIONS PIPE N0. 1 - TAILNATER DATA: -/,� 1 ovUq OVCr 1) SPECIFY TYPE OF TAILNATER DATA INPUT: S - SINGLE TW-ELEV. F - TN/HW DATA FILE ' F 2) ENTER: [d:][path]filenawe(.ext] OF NN/TM FILE c:\swl2th\tw-1 ------------------------------------------------------------------------------- INFLOW CONDITIONS PIPE NO. 4 - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: ' 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE=O, BROAD-NEIR-1, SHARP-WEIR=2) 18.00, 0 2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V=D/A S ' 3) ENTER: VELOCITY(fps) UPSTREAM 0.1 ------------------------------------------------------------------------------- ENTER: QMIN, QMAX, QINCRE, PRINT-OPTION (STANDARD-1, CONDENSED:2, EXPANDED-3) ' 0, 14, 0.5, 1 PIPE NO. 1: 127 LF - 24'CP @ .65t OUTLET: 11.26 INLET: 12.08 INTYP: 5 JUNC NO. 1: OVERFLON-EL: 17.48 BEND: 90 BEG DIA/WIDTH: 4.0 Q-RATIO: .15 ' Q(CFS) HN(FT) HN ELEV. t N-FAC DC ON IN DO DE NWO HMI YiffYYYYfY;YiittkfiifiSYfYfffiitfiiYii#Yii#fi;;ti;ifffti3;f2ff33fttYkiYYffitx#; 50 .32 12.40 t .012 .25 .22 .36 .36 .25 Yftts .32 1.00 .46 12.54 t .012 .35 .31 .48 .48 .35 ttxix .46 1.50 .57 12.65 s .012 .43 .38 .59 .59 .43 xfsYf .57 2.00 .66 12.74 t .012 .50 .44 .70 .70 .50 t;tff .66 2.50 .75 12.63 t .012 .56 .49 .82 .82 .56 tsxt# .75 3.00 .83 12.91 = .012 .61 .53 .93 .93 .61 sxttt .83 3.50 .90 12.98 s .012 .66 .58 1.04 1.04 .66 Ytttt .90 4.00 .97 13.05 t .012 .71 .62 1.16 1.16 .71 tsts; .97 4.50 1.04 13.12 3 .012 .75 .66 1.27 1.27 .75 xxtts 1.04 ' 5.00 1.11 13.19 t .012 .79 .69 1.38 1.38 .79 fsttx 1.11 5.50 1.17 13.25 s .012 .83 .73 1.48 1.48 .83 Yxttt 1.17 6.00 1.24 13.32 t .012 .87 .76 1.54 1.54 .87 stkxt 1.24 6.50 1.30 13.38 s .012 .91 .80 1.60 1.60 .91 tttx; 1.30 7.00 1.36 13.44 t .012 .94 .83 1.67 1.67 .94 sttxf 1.36 7.50 1.42 13.50 = .012 .98 .86 1.73 1.73 .98 tuts 1.42 ' 8.00 1.61 13,69 t .012 1.01 .89 1.80 1.80 1.03 1.61 1.48 8.50 1.66 13.74 t .012 1.04 .92 1.86 1.86 1.10 1.66 1.54 9.00 1.71 13.79 3 .012 1.08 .95 1.93 1.93 1.18 1.71 1.60 9.50 1.77 13.85 s .012 1.11 .98 1.99 1.99 1.27 1.77 1.65 10.00 1.84 13.92 t .012 1.14 1.01 2.06 2.06 1.37 1.84 1.71 10.50 1.91 13.99 3 .012 1.17 1.04 2.12 2.12 1.46 1.91 1.77 11.00 2.00 14.08 f .012 1.19 1.07 2.19 2.19 1.56 2.00 1.83 ' 11.50 2.08 14.16 f .012 1.22 1.10 2.25 2.25 1.65 2.08 1.89 12.00 2.19 14.27 t .012 1.25 1.13 2.33 2.33 1.77 2.19 1.94 12.50 2.30 14.38 f .012 1.28 1.16 2.40 2.40 1.88 2.30 2.00 13.00 2.46 14.54 f .012 1.30 1.19 2.48 2.48 2.02 2.46 2.06 ' 13.50 2.59 14.67 $ .012 1.33 1.22 2.56 2.56 2.12 2.59 2.12 14.00 2.73 14.81 x .012 1.35 1.25 2.63 2.63 2.23 2.73 2.18 ' PIPE NO. 2: 168 LF 24'CP @ .48t OUTLET: 11.83 INLET: 12.64 INTYP: 5 JUNC NO. 2: OVERFLOW-EL: 18.96 BEND: 0 DEG DIA/WIDTH: 4.0 Q-RATIO: .65 ' Q(CFS) HW(FT) HW ELEV. Y N-FAC DC ON IN DO DE HWO HNI fYiYlifiiYiififiitYYftYitiflffif;t3YYYYYYffiYkYYxi#f;tiifii;;if YYYi3tffiii3Yi#i .43 .34 12.9E # .012 .23 .23 .57 .57 .23 .34 .30 87 .43 13.07 3 .012 .33 .31 .71 .71 .33 fats .43 1.30 .53 13.17 f .012 .40 .38 .82 .82 .40 sxYtx .53 1.74 .62 13.26 t .012 .46 .44 .91 .91 .46 tt;xx .62 2.17 .69 13.33 Y .012 .52 .49 1.00 1.00 .52 tttxt .69 2.61 .77 13.41 t .012 .57 .53 1.08 1.08 .57 xsxts .77 3.04 .83 13.47 s .012 .61 .58 1.15 1.15 .61 xsxfx .83 3.41 .90 13.51 t .012 .66 .62 1.22 1.22 .66 ftfxt .90 3.91 .96 13.60 s .012 .70 .66 1.29 1.29 .70 fxtfs .96 4.35 1.02 13.66 s .012 .74 .69 1.36 1.36 .74 fxttt 1.02 4.78 1.08 13.72 t .012 .77 .73 1.42 1.42 .77 xttst 1.08 1 5.22 1.25 13.89 $ .012 .81 .76 1.49 1.49 .82 1.25 1.13 5.65 1.31 13.95 t .012 .84 .80 1.55 1.55 .87 1.31 1.19 6.09 1.36 14.00 $ .012 .88 .83 1.61 1.61 .92 1.36 1.24 ' 6.52 1.41 14.05 # .012 .91 .86 1.67 1.67 .98 1.41 1.29 6.96 1.48 14.12 i .012 .94 .90 1.86 1.86 1.15 1.48 1.34 7.39 1.54 14.18 # .012 .97 .93 1.91 1.91 1.21 1.54 1.40 7.83 1.60 14.24 f .012 1.00 .96 1.96 1.96 1.27 1.60 1.45 8.26 1.67 14.31 f .012 1.03 .99 2.02 2.02 1.36 1.67 1.50 8.70 1.75 14.39 t .012 1.06 1.02 2.09 2.09 1.45 1.75 1.55 9 IS I RA IA YA 2 tr19 I RR I A5 7 14 9 14 1 SS 1 RA I LO 10.00 2.05 14.69 i .012 1.14 1.11 2.33 2.33 1.77 2.05 1.10 10.43 2.19 14.83 t .012 1.16 1.14 2.44 2.44 1.92 2.19 1.75 316 10.87 2.37 15.01 i .012 1.19 1.17 2.55 2.55 2.08 2.37 1.80 11.30 2.57 15.21 f .012 1.21 1.20 2.71 2.71 2.25 2.57 1.84 11.74 2.76 15.40 i .012 1.24 1.23 2.84 2.84 2.42 2.76 1.89 12.17 2.95 15.59 i .012 1.26 1.26 2.98 2.98 2.59 2.95 1.94 ' PIPE 10. 3: 304 LF - 24'CP B .48% OUTLET: 12.64 INLET: 14.10 INTYP: 5 JUNC NO. 3: OVERFLOW-EL: 17.10 BEND: 90 DEG DIA/WIDTH: 3.0 0-RATIO: .13 0(CFS) HN(FT) HN ELEV. t N-FAC DC ON IN DO DE HWO HNI tYYYititYYitfkiYitYttiYiiikYYYtYYSYIkYiiitiifitifiiitfittiftfkfiiiifYitiitiiiiY .26 .26 14.36 t .012 .18 .18 .34 .34 .18 .26 .23 ' 53 .38 14.48 t .012 .25 .25 .43 .43 .25 .38 .33 .79 .41 14.51 t .012 .31 .30 .53 .53 .31 M0 .41 1.05 .47 14.57 t .012 .36 .34 .62 .62 .36 fiYYY .47 1.32 .53 14.63 t .012 Al .11 .69 .61 .40 xsttt 53 1.58 .59 14.69 t .012 .44 .42 .77 .77 .44 ttffk .59 1.84 .64 14.74 t .012 .48 .45 .83 .83 .48 YYiit .64 2.11 .69 14.79 t .012 .51 .48 .90 .90 .51 fttit .69 ' 2.37 .74 14.84 t .012 .54 .51 .96 .96 .54 SMS .74 2.64 .78 14.88 t .012 .57 .54 1.02 1.02 .57 MU .78 2.90 .83 14.93 t .012 .60 .56 1.08 1.08 .60 Mst .83 3.16 .87 14.97 t .012 .63 .59 1.25 1.25 .63 ftttt .87 ' 3.43 .91 15.01 t .012 .65 .61 1.31 1.31 .65 Ytttt .91 3.69 .95 15.05 t .012 .68 .64 1.36 1.36 .68 ut;t .95 3.95 .99 15.09 t .012 .70 .66 1.41 1.41 .70 kiiii .99 ' 4.22 1.03 15.13 t .012 .73 .68 1.48 1.46 .73 tfUkt 1.03 4.48 1.07 15.17 Y .012 .75 .71 1.54 1.54 .75 utts 1.07 4.74 1.11 15.21 f .012 .77 .73 1.60 1.60 .77 Usti 1.11 ' 5.01 1.14 15.24 x .012 .79 .75 1.67 1.67 .79 ftftt 1.14 5.27 1.18 15.28 i .012 .81 .77 1.75 1.75 .81 iittk 1.18 5.53 1.22 15.32 t .012 .84 .79 1.84 1.84 .84 tiff* 1.22 5.80 1.38 15.11 f .112 .16 .11 1.94 1.91 .17 1.38 1.26 6.06 1.41 15.51 t .012 .88 .83 2.05 2.05 .94 1.41 1.29 6.32 1.45 15.55 Y .012 .90 .85 2.19 2.19 1.03 1.45 1.33 6.59 1.52 15.62 t .012 .91 .87 2.37 2.37 1.17 1.52 1.37 ' 6.85 1.64 15.74 t .012 .93 .89 2.57 2.57 1.35 1.64 1.41 7.11 1.80 15.90 f .012 .95 .91 2.76 2.76 1.54 1.80 1.44 7.38 1.98 16.08 t .012 .97 .93 2.95 2.95 1.74 1.98 1.48 ' PIPE NO. 4: 12 LF 18'CP Q 2.95% OUTLET: 14.16 INLET: 14.81 INTYP: 5 JUNC 10. 4: OVERFLOW-EL: 17.22 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .11 0(CFS) HN(FT) HN ELEV. t N-FAC OC ON TW DO DE HWO HMI ttflkYYYY;iiiiitlitYYfiiiiiiiYixlitfitiiYiittttYtiitiYi;f;iYtiYYYYYYiffifiiiiYi ' 23 .22 15.03 t .012 .18 .12 .20 .20 .18 ittxf .22 .47 .32 15.13 t .012 .26 .16 .32 .32 .26 UM .32 .70 .40 15.21 t .012 .32 .20 .35 .35 .32 last .40 ' .93 .47 15.28 t .012 .36 .23 .41 .41 .36 xistt .47 1.17 .53 15.34 t .012 .41 .25 .47 .47 .41 xxtft .53 1.40 .59 15.40 t .012 .45 .28 .53 .53 .45 ttttx .59 1.63 .64 15.45 Y .012 .49 .30 .58 .58 .49 sxitf .64 1.87 .69 15.50 i .012 .52 .32 .63 .63 .52 fstxt .69 2.10 .74 15.55 i .012 .55 .34 .68 .68 .55 ttixx .74 2.33 .79 15.60 t .012 .58 .35 .72 .72 .58 x:sss .79 ' 2.57 .84 15.65 t .012 .61 .37 .77 .77 .61 itxxt .84 2.80 .88 15.69 t .012 .64 .39 .81 .81 .64 kxtft .88 3.03 .93 15.74 t .012 .67 .40 .85 .85 .67 tittt .93 3.26 .97 15.11 ! All .61 .42 .11 .89 .11 kfitY *17 3.50 1.02 15.83 f .012 .72 .43 .93 .93 .72 xttit 1.02 3.73 1.06 15.87 t .012 .74 .45 .97 .97 .74 ssitx 1.06 4.43 1.18 15.99 t .012 .81 .49 1.08 1.08 .81 tuu 1.18 / ' 4.66 1.23 16.04 ; .012 .83 .50 1.12 1.12 .83 tuts 1.23 Ll 4.90 1.27 16.08 t .012 .86 .52 1.16 1.16 .86 ssstt 1.27 5.13 1.31 16.12 # .012 .88 .53 1.32 1.32 .88 uut 1.31 5.36 1.35 16.16 t .012 .90 .54 1.35 1.35 .90 kut# 1.35 5.60 1.39 16.20 s .012 .92 .55 1.39 1.39 .92 futi 1.39 5.83 1.43 16.24 t .012 .94 .57 1.46 1.46 .94 MU 1.43 ' 6.06 1.47 16.28 f .012 .96 .58 1.58 1.58 .96 tut: 1.47 6.30 1.52 16.33 t .012 .98 .59 1.74 1.74 .98 tttts 1.52 6.53 1.56 16.37 t .012 .99 .60 1.92 1.92 .99 #utt 1.56 PIPE NO. 5: 46 LF - 18'CP @ .20% OUTLET: 14.80 INLET: 14.89 INTYP: 5 JUNC NO. 5: OVERFLOW-EL: 17.85 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .00 0(CFS) HW(FT) HN ELEV. t N-FAC DC DH TH DO DE HWO HWI l ktfYkYttttf YtYii;tYYYkklYYkkY#YktYitiiiYYtii;ii###YtfiitYY#tit;iYtY#Y#YYkitYfi ' .21 .26 15.15 t .012 .17 .21 .23 .23 .21 .26 .22 .42 .37 15.26 t .012 .24 .30 .33 .33 .30 .37 .32 .63 .45 15.34 t .012 .30 .36 .41 .41 .38 .45 .40 .84 .53 15.42 t .012 .35 .42 .48 .48 .44 .53 .46 ' 1.05 .60 15.49 t .012 .39 .47 .54 .54 .50 .60 .52 1.26 .66 15.55 t .012 .43 .52 .60 .60 .56 .66 .57 1.47 .72 15.61 t .012 .46 .56 .65 .65 .61 .72 .62 1.68 .78 15.67 t .012 .49 .60 .70 .70 .66 .78 .67 1.89 .83 15.72 t .012 .52 .64 .75 .75 .71 .83 .72 2.10 .89 15.78 t .012 .55 .68 .80 .80 .76 .89 .76 2.51 .94 15.83 $ .012 .58 .72 .85 .85 .81 .94 .80 ' 2.52 .99 15.88 t .012 .61 .76 .89 .89 .85 .99 .85 2.73 1.04 15.93 t .012 .63 .79 .94 .94 .90 1.04 .89 2.94 1.09 15.98 t .012 .66 .83 .98 .98 .94 1.09 .93 3.15 1.14 16.03 t .012 .68 .87 1.03 1.03 .99 1.14 .96 3.36 1.19 16.08 t .012 .70 .90 1.07 1.07 1.03 1.19 1.00 3.57 1.24 16.13 t .012 .73 .94 1.11 1.11 1.08 1.24 1.04 3.71 1.29 16.11 t .011 .71 .91 1.11 1.11 1.12 1.21 1.08 3.99 1.33 16.22 t .012 .77 1.01 1.19 1.19 1.16 1.33 1.12 4.20 1.39 16.28 t .012 .79 1.05 1.24 1.24 1.21 1.39 1.15 4.41 1.43 16.32 s .012 .81 1.09 1.28 1.28 1.25 1.43 1.19 ' 4.62 1.49 16.38 t .012 .83 1.14 1.32 1.32 1.30 1.49 1.23 4.83 1.54 16.43 i .012 .85 1.18 1.36 1.36 1.35 1.54 1.26 5.04 1.59 16.48 k .012 .87 1.24 1.40 1.40 1.39 1.59 1.30 ' 5.25 1.65 16.54 s .012 .89 1.30 1.44 1.44 1.44 1.65 1.33 5.46 1.71 16.60 t .012 .91 1.50 1.48 1.46 1.49 1.71 1.37 5.67 1.79 16.68 t .012 .92 1.50 1.53 1.53 1.55 1.79 1.41 5.88 1.86 16.75 t .012 .94 1.50 1.57 1.57 1.60 1.86 1.44 PIPE NO. 6: 33 LF 18'CP 8 .00t OUTLET: 11.20 INLET: 11.20 INTYP: 5 ' JUNC NO. 6: OVERFLOW-EL: 18.10 BEND: 90 DEG DIA/WIDTH: 4.0 0-RATIO: .00 0(CFS) HW(FT) HN ELEV. t N-FAC DC DH TN DO DE HWO NNI ' fYtiiYiYiYii##ttittitiiiiitit;Yiii;;kt##kfY##Y#YYtYYYkkYttk##itY##Y;kit#kii##fY .21 3.95 15.15 # .012 .17 .00 3.95 3.95 3.95 3.95 .23 .42 4.06 15.26 t .012 .24 .00 4.06 4.06 4.06 4.06 .32 .63 4.15 15.35 t .012 .30 .00 4.14 4.14 4.15 4.15 .40 ' 84 4.23 15.43 t .012 .35 .00 4.22 4.22 4.22 4.23 .47 1.05 4.30 15.50 t .012 .39 .00 4.29 4.29 4.29 4.30 .52 1.26 4.37 15.57 t .012 .43 .00 4.35 4.35 4.36 4.37 .58 1.47 4.44 15.64 t .012 .46 .00 4.41 4.41 4.42 4.44 .63 1.68 4.50 15.70 f .012 .49 .00 4.47 4.47 4.47 4.50 .68 1.89 4.56 15.76 t .012 .52 .00 4.52 4.52 4.53 4.56 .72 2.10 4.63 15.83 t .012 .55 .00 4.58 4.58 4.59 4.63 .77 ' 2.31 4.69 15.89 ; .012 .58 .00 4.63 4.63 4.65 4.69 .81 2.52 4.75 15.95 s .012 .61 .00 4.68 4.68 4.70 4.75 .86 1 11 1 AA 11 Al . Al9 11 AA A 71 I 77 11L I CA EA 3.15 4.95 16.15 ; .012 .68 .00 4.83 4.83 4.66 4.95 .98 ' 3.36 5.01 16.21 Y .012 .70 .00 4.88 4.88 4.91 5.01 1.02 ��to 3.57 5.08 16.28 t .012 .73 .00 4.93 4.93 4.96 5.08 1.06 3.78 5.14 16.34 t .012 .75 .00 4.98 4.98 5.01 5.14 1.10 3.99 5.21 16.41 i .012 .77 .00 5.02 5.02 5.06 5.21 1.14 4.20 5.28 16.48 t .012 .79 .00 5.08 5.08 5.12 5.28 1.18 4.41 5.35 16.55 t .012 .81 .00 5.12 5.12 5.17 5.35 1.22 ' 4*12 1,41 16,11 t All .11 .00 5,11 1*18 5,11 1,43 1,21 4.83 5.51 16.71 t .012 .85 .00 5.23 5.23 5.29 5.51 1.30 5.04 5.58 16.78 t .012 .87 .00 5.28 5.28 5.35 5.58 1.34 5.25 5.66 16.86 t .012 .89 .00 5.34 5.34 5.41 5.66 1.38 5.46 5.75 16.95 t .012 .91 .00 5.40 5.40 5.48 5.75 1.42 5.67 5.86 17.06 t .012 .92 .00 5.48 5.48 5.56 5.86 1.46 5.88 5.95 17.15 t .012 .94 .00 5.55 5.55 5.64 5.95 1.50 PIPE NO. 7: 14 LF 18'CP 4 .931 OUTLET: 14.88 INLET: 15.01 INTYP: 5 JUNC NO. 7: OVERFLOW-EL: 17.82 BEND: 90 DEB DIA/NIDTH: 2.0 0-RATIO: .25 0(CFS) KW(FT) HN ELEV. t N-FAC OC ON TN DO DE HNO HNI .21 .22 15.23 t .012 .17 .15 .27 .27 .17 ii:i: .22 .42 .32 15.33 t .012 .24 .21 .38 .38 .24 ttist .32 .63 .44 15.45 t .012 .30 .25 .47 .47 .31 .44 .39 .84 .51 15.52 t .012 .35 .29 .55 .55 .39 .51 .46 1.05 .59 15.60 t .012 .39 .32 .62 .62 .47 .59 .52 1.26 .66 1S.67 t .012 .43 .35 ,69 .69 .55 .66 .57 1.47 .72 15.73 t .012 .46 .38 .76 .76 .61 .72 .62 1.68 .79 15.80 t .012 .49 .40 .82 .82 .68 .79 .67 1.89 .86 15.87 t .012 .52 .43 .88 .88 .75 .86 .72 2.10 .93 1S.94 t .012 .55 .45 .95 .95 .81 .93 .76 2.31 1.00 16.01 t .012 .58 .47 1.01 1.01 .88 1.00 .81 2.52 1.06 16.07 t .012 .61 .49 1.07 1.07 .94 1.06 .85 2.73 1.13 16.14 t .012 .63 .52 1.14 1.14 1.01 1.13 .89 2,94 1,21 16,21 t .012 *16 .54 1,21 1,21 1,07 1,20 .94 3.15 1.27 16.28 t .012 .68 .56 1.27 1.27 1.14 1.27 .98 3.36 1.34 16.35 t .012 .70 .57 1.33 1.33 1.20 1.34 1.02 3.57 1.42 16.43 t .012 .73 .59 1.40 1.40 1.28 1.42 1.06 3.78 1.49 16.50 t .012 .75 .61 1.46 1.46 1.34 1.49 1.10 3.99 1.58 16.59 t .012 .77 .63 1.53 1.53 1.42 1.58 1.14 4.20 1.67 16.68 i .012 .79 .65 1.60 1.60 1.50 1.67 1.18 4,41 1,71 16.16 t .012 .81 .67 1.67 1.67 1.57 1.75 1.22 4.62 1.84 16.85 t .012 .83 .68 1.75 1.75 1.64 1.84 1.26 4.83 1.94 16.95 t .012 .85 .70 1.83 1.83 1.72 1.94 1.30 5.04 2.04 17.05 t .012 .87 .72 1.90 1.90 1.80 2.04 1.34 5.25 2.14 17.15 Y .012 .89 .74 1.98 1.98 1.88 2.14 1.38 5.46 2.25 17.26 t .012 .91 .75 2.07 2.07 1.97 2.25 1.42 5.67 2.38 17.39 i .012 .92 .77 2.18 2.18 2.08 2.38 1.46 5.88 2.51 17.52 t .012 .94 .79 2.27 2.27 2.18 2.51 1.51 ' PIPE N0. B: 271 LF 18-CP Q .20% OUTLET: 15.07 INLET: 15.61 INTYP: 5 JUNC NO. 8: OVERFLON-EL: 18.00 BEND: 0 DEG DIAINIDTH: 2.0 0-RATIO: .92 0(CFS) HW(FT) HN ELEV. t N-FAC DC ON A DO DE HNO HNI .17 .23 15.84 t .012 .16 .19 .16 .16 .19 .23 .20 .34 .33 15.94 t .012 .22 .27 .26 .26 .27 .33 .29 ' .50 .40 16.01 t .012 .27 .32 .38 .38 .32 .40 .35 .67 .46 16.07 t .012 .31 .37 .45 .45 .37 .46 .41 .84 .52 16.13 t Al2 .35 .42 .53 .53 .42 .52 .46 1.01 .17 16,11 t .012 .11 Al AD A .41 .57 *11 1.18 .62 16.23 t .012 .41 .50 .66 .66 .50 .62 .55 1.34 .66 16.27 t .012 .44 .53 .73 .73 .53 .66 .59 1 CI ,n 11 11 . h.n 11 C, aG 0l C, ,fl 17 1.11 .11 16.41 # .012 .11 .11 .91 .94 .65 .11 .11 / 2.02 .83 16.44 i .012 .54 .66 1.00 1.00 .70 .83 .73 //p 2.18 .88 16.49 i .012 .56 .69 1.07 1.07 .75 .88 .76 2.35 .92 16.53 # .012 .59 .72 1.14 1.14 .80 .92 .80 ' 2.52 .98 16.59 i .012 .61 .75 1.21 1.21 .87 .98 .83 2.69 1.05 16.64 # .012 .63 .78 1.28 1.28 .93 1.03 .86 2.B6 1.10 16.71 i .012 .65 .81 1.36 1.36 1.00 1.10 .88 ' 3.03 1.16 16.77 i .012 .67 .84 1.43 1.43 1.07 1.16 .91 3.19 1.26 16.87 i .012 .69 .87 1.52 1.52 1.18 1.26 .94 3.36 1.36 16.97 i .012 .70 .90 1.61 1.61 1.29 1.36 .97 3.53 1.46 17.07 # .012 .72 .92 1.69 1.69 1.40 1.46 .99 ' 3.70 1.59 17.20 i .012 .74 .95 1.78 1.78 1.53 1.59 1.02 3.87 1.72 17.33 i .012 .76 .98 1.88 1.88 1.65 1.72 1.05 4.03 1.85 17.46 i .012 .77 1.01 1.98 1.98 1.78 1.85 1.07 ' 4.20 1.99 17.60 # .012 .79 1.04 2.08 2.08 1.91 1.99 1.10 4.37 2.14 17.75 i .012 .81 1.08 2.19 2.19 2.05 2.14 1.12 4.54 2.30 17.91 i .012 .82 1.11 2.32 2.32 2.21 2.30 1.15 ' 4.71 2.39 18.07 I .012 .14 1.14 2,11 1,45 2.31 2.46 1.11 OVERFLOW ENCOUNTERED AT 4.71 CFS DISCHARGE i#Ifffi#UMiiii ' PIPE NO. 9: 302 LF - 12'CP @ .27% OUTLET: 15.73 INLET: 16.56 INTYP: 5 0(CFS) HW(FT) HN ELEV. i N-FAC DC DR TW DO DE HWO HWI .09 .18 16.74 i .012 .13 .15 .11 .IS .15 .18 .16 .18 .26 16.82 # .012 .18 .20 .21 .21 .20 .26 .23 ' .26 .32 16.88 i .012 .22 .25 .28 .28 .25 .32 .28 .35 .37 16.93 i .012 .25 .29 .34 .34 .29 .37 .33 .44 .42 16.98 # .012 .28 .32 .40 .40 .32 .42 .37 .53 .46 17.02 i .012 .31 .35 .45 .45 .35 .46 .41 61 .50 17.06 # .012 .33 .38 .50 .50 .38 .50 .45 .70 .53 17.09 i .012 .35 .41 .54 .54 .41 .53 .48 .79 .57 17.13 i .012 .38 .44 .58 .58 .44 .57 .52 ' 88 .60 17.16 # .012 .40 .46 .62 .62 .46 .60 .55 .96 .64 17.20 i .012 .42 .49 .67 .67 .49 .64 .58 1.05 .67 17.23 i .012 .44 .52 .71 .71 .52 .67 .61 1.14 .70 17.26 i .012 .45 .54 .76 .76 .54 .70 .64 1.23 .73 17.29 i .012 .47 .57 .80 .80 .57 .73 .67 1.31 .76 17.32 i .012 .49 .59 .86 .86 .59 .76 .70 1.40 .79 17.35 i .012 .51 .62 .91 .91 .62 .79 .73 ' 1.49 .83 17.39 I .012 .52 .64 .98 .98 .67 .83 .76 1.58 .89 17.45 i .012 .54 .67 1.04 1.04 .74 .89 .78 1.66 .97 17.53 I .012 .55 .70 1.14 1.14 .84 .97 .81 1.71 1,11 17.71 # .112 .17 .72 1.24 1.24 1.03 1.15 .14 1.84 1.32 17.88 i .012 .58 .75 1.34 1.34 1.19 1.32 B7 1.93 1.53 18.09 I .012 .60 .78 1.47 1.47 1.39 1.53 .90 iixiiuxixttisii OVERFLOW ENCOUNTERED AT 1.93 CFS DISCHARGE iii#iiiY#YSiY#YYi ' SPECIFY: R - REVISE, N - NEW00B, F - FILE, S - STOP