Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
SWP272094(3)
i l . r r � i r _J L BROWN AND CALDWELL CONSULTING ENGINEERS 1 1 1 1 1 Drainage Report Metro Treatment Plant at Renton Enlargement III ' September 16, 1991 1 1 ' 1 l� 1 ' INTRODUCTION The Municipality of Metropolitan Seattle (Metro) is enlarging its regional wastewater treatment plant at Renton (MTP) to ' provide treatment capacity for increased wastewater flows. These increased flows are the result of growth in the plant's service area and the transfer of flows from adjacent service areas. The proposed enlargement is a component of Metro's Comprehensive Water Pollution Abatement Plan for the Seattle-King County Metropolitan area, which implements Metro's Wastewater Management Plan for the Lake Washington-Green River Basins. 1 The existing secondary treatment facilities at Renton will be retained and new facilities will be added to provide increased t treatment capacity and other process improvements to alleviate overflows and plant surcharging. The plant can now provide secondary treatment for 72 million gallons of sewage a day (mgd) . The expanded plant will have the capacity to treat about 108 mgd. Plant expansion from 72 to 108 mgd will be referred to in this document as Enlargement III . Phase A of Enlargement III entails site preparation and perimeter landscaping. Phase B includes liquid and solids stream upgrade and expansion. Phase C includes final landscaping and cleanup. Stage 2 of Enlargement III entails construction of four more new additional secondary clarifiers and a new additional 115-feet diameter anaerobic sludge digester. Enlargement III will include constructing additional paved areas for access roads, parking, and a maintenance trail. Other large impermeable areas constructed in Enlargement III will include several open tanks and structures that will drain ' stormwater runoff to the plant's sanitary drain system. The sanitary drain system is routed through the plant for treatment and is ultimately pumped to Puget Sound through a 108-inch ' diameter force main; the effluent transfer system (ETS) . Because rainwater falling in tanks and on process structures is routed through the plant, the net stormwater runoff resulting from Enlargement III will actually decrease. Rain falling on plant ' grounds and draining to surface waters will be subject to collection, flow routing, pumping, and water quality treatment as described at length in this document. This drainage report was prepared in accordance with Paragraph 4 . 22 .8 of the City of Renton Code. It describes the physical aspects of the existing and proposed stormwater drain system in order to demonstrate compliance with applicable core requirements, special requirements, and design criteria of the King County Surface Water Design Manual (SWM) . ' September 16, 1991/t1h - DRAFT to CITY -2 ' Enlargment III does not require detention/retention facilities but does require biofiltration facilities and water quality control facilities. These proposed stormwater facilities will consist of biofiltration swales located adjacent to newly constructed roadways and parking lots, a pump station to lift stormwater to water quality control facilities, and an oversized wetpond facility. Metro anticipates that the oversized wetpond facility, which will be constructed as three cells, will attain pollutant removals equal to or greater than removals attainable t with a wetpond facility sized according to minimum requirements in series with a biofiltration Swale. The wetpond facility and pump station will have three times ' the capacity as required by the King County Surface Water Design Manual (SWM) for wetponds. The pump station should be constructed and in operation by the summer of 1992 . Stormwater ' will be pumped to the treatment plant (for treatment and discharge to Puget Sound) until that time when the oversized wetpond facility is operational. The wetpond facility is ' scheduled to be designed and constructed during Phase B of Enlargement III . The wetponds, bioswales and pump station are being designed to treat stormwater for the Enlargement III development, i .e. , eight new secondary clarifiers, two new dissolved air flotation tanks (DAFTS) , one new aeration tank, four new primary clarifiers and one new anaerobic sludge digester. SITE PREPARATION AND CONSTRUCTION Site preparation for the MTP will entail excavating approximately 180, 000 cubic yards of native soil and rock and placement of approximately 30, 000 cubic yards of engineered fill. Excavated material will be stockpiled on-site for use in the perimeter landscaping. Excess material will be distributed on- site and graded to drain to the existing storm drain system. The first construction phase (Phase A) will involve installation of concrete-drilled shafts (space piles) , stone columns, a site dewatering system, and approximately 840-feet of 48-inch diameter reinforced concrete pipe. Perimeter landscaping will involve construction of berms and fences, about 5, 500 lineal feet of impervious maintenance trail, an irrigation system, and extensive tree and shrubbery planting. The perimeter landscaping will use approximately 120, 000 cubic yards of material, excavated from the secondary sedimentation area, for construction of the berms. Interior landscaping will include approximately 150, 000 square feet of new and replaced asphalt roads and parking lots, and 6, 500 lineal feet of new and ' replaced concrete curb and gutter. September 16, 1991/t1h - DRAFT to CITY -3 ' CORE REQUIREMENT NO. 1: DISCHARGE AT THE NATURAL LOCATION ' Existing System ' Most of the stormwater collected and concentrated on the Renton MTP site drains to the Green River via an on-site stormwater sewer system and a 120-inch outfall diffuser. The wetland collects and stores runoff from about 8 . 2 acres of ' pervious area at the northern site periphery (north of the northern access road) . A retention Swale along Longacres Drive collects and stores runoff from the southwest boundary of the ' site. Runoff from the swale, which accumulates to a depth of 18 inches, drains eastward to the P-1 channel. The narrow areas between the eastern property line and the east access road drain 1 directly to the P-1 channel . Stormwater collected in open vessels and on some process buildings drain into the plant process stream for treatment and ultimate transfer to Puget Sound through the ETS. Likewise, runoff from the solids treatment and handling tanks and the septage unloading areas drains to the plant' s sanitary sewer system for treatment and discharge via the ETS. Proposed System The existing stormwater sewer system will be modified and extended to collect runoff from regraded landscaped areas, realigned roadways, and proposed new parking areas and roadways. Stormwater will continue to drain to the outfall manhole west of ' the Administration Building and just east of Monster Road. The size of the drainage area tributary to the stormwater sewer system will not be extended in Enlargement III. Modifications to the sewer system basically consist of relocating existing catch basins to drain realigned roadways and parking lots. Realigned roads and parking lots requiring the repositioning of catch basins are the roads extending from the new entrance from Monster Road, roads near the 7th Avenue entrance, the road realigned around the base of water tower hill, the repositioned parking lot north of the Administration Building and the new parking lot for the existing 12 KVA Substation. Extensions of the stormwater sewer system will be made to the new roads and parking lots serving the new DAFT complex, anaerobic ' sludge digester and new secondary clarifiers. The existing stormwater system will be augmented with a pump ' station at the Green River outfall manhole. This pump station is necessary to lift stormwater flows requiring treatment to water quality facilities located on the surface. This pump station ' will have the capacity to pump three times the required design storm peak flow rate for wetponds, i.e. , 4 . 5 cfs (2 .9 MGD) . The design storm peak flow rate was synthesized using the entire September 16, 1991/t1h - DRAFT to CITY 1 -4 ' area, pervious and impervious, tributary to the stormwater sewer system. Flows in excess of the pump capacity will overflow into the Green River via the existing 120-inch outfall diffuser. The proposed system will retain the flap gates located at the ' outfall manhole. These flap gates prevent the influx of the Green River into the stormwater sewer system during extreme flood stage in the Green River. ' New emergency relief overflow sewers, one serving each of the two 30-inch sewer branches, are proposed to provide relief to the plant's stormwater sewer system during extreme flood events. ' During the 100 year flood, the Green River is at Elevation 121 and the P-1 channel is at Elevation 113 . This elevation difference makes gravity drainage to the P-1 channel possible to alleviate potential flooding of the site. Draining flood flows to the P-1 channel avoids the need for another pump station, which will be required if flood flows must be discharged directly to the Green River. Emergency overflow weirs will have a weir ' elevation of 117 . 0 and be located at the eastern end of the 30- inch pipe sections . Stormwater flowing over the weirs will flow by gravity to the P-1 channel through 30-inch pipe. Both emergency relief sewers will be supplied with a flap gate to prohibit water in the P-1 channel from entering the on-site stormwater system. Discharging flood flows to the P-1 channel allows the Black River pumping station to regulate the discharge of stormwater to the Green River. Both biofiltration and water quality control facilities are required for this project in accordance with SWM Core Requirement No. 3 and Special Requirement No. 5, respectively. (See also Sections 4 . 3 and 4 . 6) . Biofiltration swales will be locally constructed alongside new roadways and parking lots where sufficient pervious area is available. Runoff from greater than 33% of the proposed new roadway and parking lot surface area will be treated with bioswales. Bioswale effluent will drain to the ' on-site stormwater sewer system where it can be pumped to the water quality control facility. The bioswales will be constructed in accordance with Sections 1. 2 . 3 , 4 . 6. 3 , and 4 . 3 . 6 of the SWM. New roadways and parking areas not treated by localized biofiltration because of site limitations will satisfy the ' requirements of SWM Core Requirement No. 3 . The intent of the requirement will be satisfied by sizing the wetponds to handle three times the flow and volume as required by SWM special ' Requirement No. 5. Metro believes it can demonstrate that oversizing the wetpond facility will impart equivalent or better treatment than biofiltration and wetponds sized for the minimal ' acceptable criteria. September 16, 1991/t1h - DRAFT to CITY -5 Stormwater will be pumped to wetponds for water quality treatment. The wetponds, which will be a series of ponds located near the existing on-site wetlands, will ultimately drain to the P-1 channel. The ponds will be terraced in such a fashion as to allow gravity flow between the wetponds. The wetpond facility will be designed and constructed in accordance with SWM Sections 1.3 . 5, 4 . 6. 2 and 4 . 4 . 4 . Metro will evaluate the possibility of discharging effluent from the wetponds to the existing wetlands. However, use of the wetlands is not an integral part of this proposed treatment system. A preliminary schedule shows that the proposed pump station ' will be operational by the Summer of 1992 . The biofiltration swales and wetpond facility will be constructed as part of the Phase B Enlargement (Liquid Stream) . Construction for this phase is scheduled to commence in January 1993 . In the interim, the pump station will pump stormwater flows to the headworks of the wastewater plant for treatment and discharge to Puget Sound via the Effluent Transfer Station (ETS) . Stormwater pumping will be redirected to the wetpond facilit� when it becomes operational. Stormwater will be pumped to the treatment plant while the water quality control facility is being designed and constructed. In an emergency, stormwater will be routed directly to the Green River outfall . Metro currently holds a NPDES permit to discharge sewage to the Green River in such an emergency, but has never ' needed to do so. Also, Metro does not currently need an NPDES permit to discharge stormwater to the Green River. ' CORE REQUIREMENT NO. 2 : OFF-SITE ANALYSIS ' Upstream Drainage Areas The King County Reconnaissance Program has placed the Renton ' MTP site within the Black River watershed. A vestige of the Black River, the P-1 channel , is indeed located adjacent to the boundary of the treatment plant. However, except for rainwater falling on or near the banks of the P-1 channel, all site drainage flows either to the stormwater system or the sanitary system. The current stormwater system is routed to the Green River, as described above. The sanitary system is treated and discharged to Puget Sound. The treatment plant and stormwater outfall are located just upstream of the confluence of the Green and Black rivers . The Green River and Black River combine to ' form the Duwamish River. The Green-Duwamish River drains approximately 483 square miles of south and southwest King County. Flow in the main river below River Mile 64 . 5 is controlled by release from Howard A. Hanson Dam. The mean annual flow at Auburn is 1366 cfs (1986) . September 16, 1991/t1h - DRAFT to CITY -6 The upper drainage of the Green-Duwamish system is fed by rains and snowmelt. The lower drainage, Big Soos Creek, and Newaukum ' Creek (two main tributaries) , are fed by rain and groundwater. The northern portion of the lower Green River basin is dominated by the commercial areas of Southcenter, surrounding commercial and light-industrial land uses, three major traffic arterials, and the shopping district north of Sea-Tac Airport. Problems in the lower Green River, both existing and anticipated, are clearly development-related. Severe erosion along the basin's steep slopes and valley walls (Grandview Park, Kent Highlands Landfill) results in downstream sedimentation that reduces channel capacity and degrades water quality. Continued rapid development in this basin, without installation of adequate runoff controls, will exacerbate existing problems. A vestige of the Black River intersects the Green River at River Mile 11 and forms the Duwamish River. The Black River used to be the primary drainage for Lake Washington before the Lake ' Washington Ship Canal was dug in 1917 . Now the Black River originates from storm drainage and groundwater in the center of Renton and flows west 2 . 65 miles to its confluence with the Duwamish. Springbrook Creek (also known as the P-1 Channel) drains about 12 miles along the east valley hillside. The Black River basin has extensive areas of impervious surface and is almost wholly contained within the cities of Tukwila, Renton, and Kent. The P-1 Channel conveys drainage from the Southcenter area ' north of I-405 into the former Black River channel. The channel generally follows the former path of Springbrook Creek and thus is referred to as both Springbrook Creek and the P-1 Channel. Drainage is impounded in the P-1 pond and pumped into the Black River channel before discharge to the Green River. The P-1 channel joins the former Black River south of a forested wetland area, at the P-1 Pond, behind the county pumping station. Problems in the Black River basin stem partly from high runoff velocities from developing areas. Steep slopes and saturated soils in the ravines, garbage disposal along ' riverbanks, and commercial and industrial runoff have all contributed to visibly poor water quality, sedimentation, decimated fish habitat, and other complications. The King County Basin Reconnaissance Program Summary notes that Springbrook Creek, where it flows under the SW 16th Street bridge just east of Longacres (and just upstream of the Renton MTP) is one of the ' worst examples of surface water degradation in the area. Problems with this channel will continue unless storm flows are controlled where they originate, steep valley walls are protected from erosion and landslides, garbage dumping is checked, and ' sediment transport into the valley floor is reduced. September 16, 1991/t1h - DRAFT to CITY ' -7 Downstream Drainage Areas ' Water quality in the Duwamish up to River Mile (RM) 11 is designated "Class B" (good) due to, and in full consideration of, its industrial nature. The navigable portion of the Duwamish Waterway, below RM 5 . 2 , is dredged almost every year to alleviate the river' s heavy sediment load. The Green River from the mouth of the Black River (RM 11) to RM 42 . 3 is designated "Class All (excellent) . Stormwater from the Renton MTP discharges at RM 12 .2 . The lower Green River sites have relatively moderate turbidities and high suspended solids. Water quality in the P-1 Channel generally appears turbid at the point of discharge to the ' Black River. The Black River, both upstream and downstream of the Renton MTP, is listed among the most degraded streams in the Metro sampling area. ' According to the King County Sensitive Area Map Folios, the treatment site is not in the 100 year flood plain. On-site Drainage Table lA presents the tributary drainage areas of the ' proposed Enlargement III . Of a total site area of 84 . 5 acres, only 49 . 6 acres will be tributary to the on-site stormwater sewer system. The 49 . 6 acres will consist of about 30. 7 acres of pervious surface and about 18 . 9 acres of impervious surfaces. Of the 18 . 9 acres of impervious surfaces, only 12 . 0 acres will be subject to vehicular use or chemical storage. About 3 . 6 acres of the site will drain directly to the P-1 channel, about 7 .8 acres 1 will drain to the wetlands, about 2 . 93 acres will drain to the sanitary system from the Sludge Dewatering Facility (during non- extreme storm events) and about 17 . 0 acres of the site will be open tanks or will drain to treatment process tanks. ' The existing on-site stormwater sewer system has the capacity to handle the modeled 100 year 24 hour storm which is about 23 ' cubic feet per second (cfs) . The existing site impervious area is approximately 16 . 5 acres. Enlargement III will result in a net increase the total impervious area by 2 . 4 acres to 18 .9 acres. Only 0 . 4 acres of this new impervious area will drain to the stormwater system. The remaining impervious areas will drain to the plant's sanitary system. New roads, which will be realignments of existing roads, will not significantly increase the area of impervious surfaces draining to the stormwater sewer system. Surfaces that will ' significantly increase the volume and flow of stormwater runoff are new additional roadways and parking areas to be constructed in Enlargement III . Specifically, these surfaces are the new road and parking lots serving the new DAFT complex, the new parking lot for the 12 KVA Substation, and the proposed roadways September 16, 1991/t1h - DRAFT to CITY ' -8 providing access to the new secondary clarifiers and aeration tank. The perimeter trail, which is about 5, 500 feet long and between four and six feet wide , constitutes about 0.8 acres of impervious surfaces. This trail is hydraulically disconnected from the stormwater sewer system and should not significantly alter the existing drainage conditions along the trail. The trail will drain to the surrounding land, including the wetland, thereby receiving treatment by way of infiltration. The peak stormwater runoff during the 100 year 24 hour design storm (3 . 9 inches of rainfall) for Enlargement III is estimated to be about 23 . 0 cfs. The proposed stormwater sewer system will convey about 22 .7 cfs, which is the post-development 100 year 24 hour peak storm runoff rates to the outfall manhole, without the occurrence of overflows. The proposed stormwater system will include emergency overflow relief sewers which discharge to the P-1 channel to guarantee its ability to discharge adequately under 100 year flood conditions. Off-site Drainage ' No stormwater originating off-site drains through the MTP site. All stormwater originating on-site drains to either the Green River, the P-1 Channel , or to the treatment plant via open ' vessels or the plant's sanitary sewer system. Rain falling on the MTP site therefore does not affect other sites. ' CORE REQUIREMENT NO. 3 : PEAK RATE RUNOFF CONTROL ' According to the King County SWM Section 1. 2 . 3 , Core Requirement 3 , all proposed projects must provide runoff control through a combination of peak rate runoff control and on-site biofiltration measures. Peak Rate Runoff Control ' All proposed projects must provide peak rate runoff control through detention, retention, or infiltration except under any one of the following situations : ' * The project includes less than 5, 000 square feet of additional impervious surface, or * stormwater modeling indicates that the proposed project will not increase the peak rate runoff resulting from a 100-year, 24-hour storm more than 0 . 5 cfs above the peak rate runoff for existing runoff conditions, or September 16, 1991/tlh - DRAFT to CITY 1 -9 * The proposed project will discharge surface and stormwater runoff directly to: a regional facility; below River Mile 6. 0 ' of the Green-Duwamish River; a lake; a wetland; or a closed depression. ' Enlargement III would be exempt due to the second situation identified above. Modeling results indicate that the peak rate runoff for the 100 year 24 hour storm will decrease due to the proposed construction: 22 . 99 cfs before development as opposed to 22 . 61 cfs after development. The remainder of this section describes the methodology used to determine the peak storm runoff rates for the pre- and post-developed site. ' Stormwater System Modeling. Figures 1 and 2 are schematic diagrams of the existing and proposed stormwater drain systems for the MTP. The plans show location, diameter, and node ID used ' in the computer modeling . Two 30-inch storm sewers, one serving the north and the other serving the south part of the plant, carry most runoff to an outfall manhole west of the ' Administration Building. Two smaller lines also discharge into the outfall manhole: an 18-inch line that drains the parking lot north of the administration building and the impervious areas around the grit handling facility, and a 10-inch line that accepts runoff through catch-basins located on the northern entrance road near Monster Road. The locations of the existing stormwater sewer system are based on construction drawings and ' inspection surveys. About 101 pipe segments were used to model the existing system; about 108 for the proposed system. Stormwater from the dewatered sludge truck loading area, the septage disposal area, and chemical storage areas (such as the sodium hydroxide storage tank) is directed into the sanitary drain system. The sanitary drains flow to the treatment plant for processing before being discharged into Elliot Bay via the effluent transfer system. In the proposed enlargement, stormwater draining to the grit loading ramp will also be pumped ' to. the plant sanitary sewer system in a manner similar to that serving the dewatered sludge loading area. only when the capacity of the pumps is exceeded, such as during an extreme storm event like the 100 year storm, does (will) stormwater from these areas drain to the stormwater sewer system. For modeling the 100 year 24 hour storm event, both the sludge loading area and the grit loading area were assumed to flow into the ' stormwater sewer system. In the proposed stormwater sewer system, several existing catch basins and inlets will be relocated to drain newly landscaped areas and realigned access roads and parking lots. Most of the realignment changes are occurring near the Administration Building and the Dewatering Building. The new ' grades of the proposed plan will redirect some of the flows to new inlets, thus changing the site hydrology. New extensions of September 16, 1991/t1h - DRAFT to CITY ' -10 the stormwater system will be required to serve the new proposed roads and parking lots of the new DAFT complex and the new Isecondary clarifiers. Areas that do not drain to the stormwater sewer system ' include the wetlands, the eastern perimeter of the site, the southwest and southeast corners of the site, open process tanks and sludge processing tanks. The wetlands accept runoff from the area north of the northern access road (north of the solids handling facilities) . The P-1 channel receives flow from the eastern perimeter of the site. A swale located just north of Longacres Drive receives stormwater from pervious areas along the ' southwest corner of the site. The swale operates like a retention pond, draining east to the P-1 Channel when the water accumulates to a depth of about 18 inches . Changes proposed in these areas for Enlargement III are minimal and will not ' significantly alter the drainage patterns or peak flow rates. Stormwater from these areas were not included in the modeling effort as agreed to by the City of Renton' s Surface and Storm 1 Water Division. Figures 1 and 2 also show the subcatchments that were input into the hydrograph model . These subcatchments were delineated based on the contours of the site maps. The following areas do not contribute runoff to the stormwater sewer system: open vessels such as the aeration tanks, RAS channel, mixed liquor channel, chlorine contact channels, and secondary clarifiers; the primary clarifiers; solids area structures such as the DAFTs, the anaerobic digesters, and the sludge blending tank; the secondary control facilities; the influent pump building; and the area between secondary clarifiers 3-4 and 5-6. About half of the roof of the sludge dewatering building drains to the plant's sanitary system; the other part drains to the stormwater sewer system. ' The area around secondary clarifiers 3 , 4 , 5 and 6 drain to the chlorine contact channel . ' Modeling Methodology. The methodology used to model peak storm runoff rates and route storm flows through the stormwater sewer system complies with the requirements of the SWM. Modeling involved the following tasks: * Mathematically define the stormwater conveyance system, e. g. , pipe diameter, length, upstream and downstream invert and rim elevations. * Delineate catchbasins for each stormwater inlet. * Calculate the pervious and impervious areas contributing to a stormwater inlet. * Determine the SCS curve numbers, K value, conveyance slope, and characteristic length for each catchbasin. * Define the 100-year, 24-hour design storm hydrograph. ' * Run simulation runs for both pre- and post-developed site conditions. September 16, 1991/t1h - DRAFT to CITY ' -11 ' * Compare the peak flow rates to the 0. 5 cfs exemption criterion. The 24 hour design storm hyetograph found in Figure 3 . 5. 1A of the SWM Manual (SCS Type lA Distribution) was used in this analysis. The unit hyetograph was multiplied by the total 100- year, 24-hour precipitation for the MTP site (3 . 9 inches according to Figure 3 . 5 . 1H of the SWM Manual) to produce the design storm hyetograph. Adjustments for snowmelt were not required because the site elevation is below 1, 000 MSL. The design storm hyetograph was input to the model using 10-minute intervals. HYDRA4 , a sanitary and stormwater sewer analysis program available on Brown and Caldwell' s GIS package, was used to calculate conveyance system response to storms. HYDRA4 uses the Soil Conservation Service (SCS) hydrograph method modified with the Santa Barbara Unit Hydrograph algorithm to generate runoff ' hydrographs. HYDRA4 routes the stormwater inflow hydrographs through the stormwater drain system. This methodology complies with Section 3 . 2 of the SWM, "Computation Methods" . Inputs required to generate runoff hydrographs included the following: * Total area in acres * Proportion of impervious surfaces * SCS curve number for impervious areas * SCS curve number for pervious areas * Overland flow characteristics factor "K" * Slope of the overland conveyance system * The longest route surface water must flow to reach the outlet for the land segment. Tables 3 and 4 present the data used by HYDRA4 to generate runoff hydrographs for pre- and post- development stormwater systems. Soil Group C was used for all subcatchments. The majority of the pervious surfaces on the plant site are imported topsoil. These soils fall under the SWM Manual hydrologic group C. The western landscaped areas may be partly Beausite soils, although much of that is also imported topsoil. The wetland area 1 will fall under the Puyallup soil group, which is classified as hydrologic group B but was modeled as soil group C. Curve numbers used in the model were obtained from the SWM: * CN for impervious areas = 98 * CN for open spaces in good condition (grass cover on 75% or more of the area) = 86 * CN for open spaces in fair condition (grass cover on 50 to 75% of the area) = 90 ' September 16, 1991/t1h - DRAFT to CITY -12 1 An example of open spaces in good condition is the open field north of the Administration Building. An example of an open field in fair condition is the landscaped area lining the road just south of the solids handling facilities. ' K values which are used to calculate the time of concentration were weighted averages based on contributing area. K values used in the modeling were obtained from the SWM: * K for short pasture and lawn = 11 * K for nearly bare ground = 13 * K for paved areas = 27 The peak flow rate through the outfall manhole was used to compare before and after development. Flow through the outfall was assumed to be unhindered by the Green River surface elevation. 1 Tables 1 and 2 represent the database files used as inputs to the HYDRA4 model for the pre- and post-development stormwater systems. The database files include information pertinent to the conveyance systems: ' * Downstream Node ID * Downstream Invert Elevation * Downstream Rim Elevation * Pipe Segment Length * Pipe Diameter * Upstream Node ID * Upstream Invert Elevation * Upstream Rim Elevation Node IDS and pipe diameters are presented on the site plans. I To orient the reader, node 1000 is the Green River outfall diffuser; node 1001 is the outfall junction manhole; nodes between 1001 and 1040 are located along the southern half of the site, and nodes between 1044 and 1101 are located on the northern half of the site. Node 1055 is the overflow drain from the ETS Surge Tank west of the site. Input parameters required to produce the storm hydrographs are presented in Tables 3 and 4 . Model Results. The existing and proposed stormwater sewer systems were modeled to establish whether the proposed construction will increase the peak flow resulting from a 100- year storm by more than 0 . 5 cfs. Modeling demonstrated that the calculated peak runoff for the 100-year 24 hour storm after development was less than before development: 22 .99 cfs before development vs . 22 . 61 cfs after development; a difference of - September 16, 1991/t1h - DRAFT to CITY -13 0.38 cfs . Flow hydrographs at the outfall manhole are presented in Figure 3 . These results are wholly consistent with the construction occuring in Enlargement III . Construction of the new additional ' open vessels, DAFTs and the digester (which will drain to the sanitary sewer system) will capture over four acres of pervious area that is currently tributary to the stormwater sewer system. After Enlargement III , stormwater from these areas will be treated and will drain to Puget Sound via the ETS. The proposed new impervious areas that will drain to the stormwater system will result in a net increase of tributary impervious areas of 2 . 3 acres, from 16 . 6 to 18 . 9 acres. Some of the new net impervious area is a maintenance trail that meanders along the perimeter of the site and the roads serving the new DAFT complex and new secondary clarifiers. Most of the trail is separated from impervious areas that drain directly to the stormwater sewer and therefore, runoff from the trail must flow over pervious areas to reach a stormwater inlet . Considering that model ' conditions inherently assume pervious areas to be saturated, or nearly saturated, the relatively small net increase in impervious area does not appear to be sufficient to offset the removal of ' more than four acres of pervious area from the drainage basin. Tables 5 and 6 present the flow quantities and velocities through each stormwater pipe segment for the 100 year 24 hour storm for pre- and post-development, respectively. The tables show that flow between the northern and southern 30-inch drain lines is fairly equal . Only one pipe segment, the 30-inch pipe at node 1004 , experienced flow greater than its rated capacity during this design storm. Though the peak flow at node 1004 was about 102 percent of capacity for both pre- and post-development conditions, no overflows occurred in any part of the sewer system during this hypothetical storm. Thus, the proposed stormwater sewer system is capable of conveying the peak flows generated by the 100 year 24 hour design storm. ' Exemption from Peak Storm Runoff Control . stormwater modeling indicates that the Enlargement III project will not increase the 100-year, 24-hour storm peak rate runoff more than 0. 5 cfs above the existing site conditions. In fact, the peak runoff rate should decrease with development of the site. Furthermore the MTP site is not in a Critical Drainage Area as defined by the SWM Manual. Thus, the proposed project is exempt from Core Requirement No. 3 of the SWM Manual and no peak rate runoff control measures are necessary. 1 Biofiltration Requirements According to Section 1 . 2 . 3 of the SWM, on-site biofiltration ' measures must be used in combination with peak rate runoff control to provide project runoff control . on-site biofiltration September 16, 1991/t1h - DRAFT to CITY ' -14 measures are required if the proposed project runoff results from more than 5000 square feet of impervious surfaces subject to vehicular use or chemical storage. Biofiltration must take place prior to discharge from the project site and be designed as described in SWM Section 4 . 6 . 3 . Biofiltration facilities will be ' designed to handle the peak flow rate from the two year 24 hour storm event from the developed site. One option for meeting the biofiltration requirements is to treat all stormwater after it has been collected and routed to the outfall manhole . Modeling results indicate that a bioswale properly sized to treat runoff from all tributary surfaces ' requires a peak flow rate capacity of 10. 2 cfs, a width of 50 feet, and a length of 245 feet. Similarly, wetpond facilities would be sized for a peak flow rate of 1 . 5 cfs, a water surface area of 8200 square feet and an active pool volume of 210, 000 ' gallons . In operation, the pump station would pump stormwater runoff from the outfall manhole to the biofiltration Swale at a rate of 10. 2 cfs. After biofiltration, flows in excess of 1.5 ' cfs would be discharged directly to a receiving stream while the wetpond facilities would provide treatment to 1. 5 cfs. For a two year 24 hour storm, the theoretical detention time through the biofiltration swale and wetpond will be about 0. 13 hours and 5.2 hours, respectively; for the 1/3 of the two year 24 storm, the detention time will be 0. 05 hours and 5 . 2 hours, respectively. This option, though meeting the intent of the SWM, bestows some hardships to the design, cost and implementation of the alternative, which can be avoided with another treatment option. L Most of these hardships have to do with the capacity of pump station, its construction and the required and available power sources and force main piping. The pump station must be sized to capture and pump the 10. 2 cfs peak flow of the two year 24 hour ' storm to the bioswale. A wetwell could be designed to attenuate the peak flow rate. However, any increase in the size of the pump station will significantly impact the design and cost of the 1 facility due to the extreme depth of the pump station. (The invert of the pump station wet well will be about 25 feet below ground surface. ) Also, a pump station with a capacity of 10. 2 ' cfs would require an additional source of emergency power. The proposed method of providing the required biofiltration is to construct bioswales adjacent to new roadways and parking ' lots where sufficient pervious area is available and to pump stormwater from the outfall manhole to an "oversized" wetpond facility. New impervious surfaces, which will be served by local (adjacent) bioswales, include the access road that starts at Monster Road and winds around water tower hill, the new parking ' lot north of the Administration Building, the new parking lot south the 12 KVA Substation, and the east-west road just south of September 16, 1991/t1h - DRAFT to CITY -15 ' the Sludge Dewatering Building. These local bioswales will serve 33% of the new impervious surfaces subject to vehicular use, but over 75% of the net increase in impervious road surfaces. The proposed bioswales will be constructed in conjunction with the new roadways and parking lots that they will serve. The swales will be designed to handle the peak flow from the two year 24 hour storm event for the tributary impervious area. Preliminary calculations indicate that the swales will be about six to fifteen feet in width. Flows in excess of the peak flow rate from the two year 24 hour storm will be diverted around the Swale to the stormwater sewer system as required by the SWM. ' Treated effluent from the bioswales will drain to the stormwater sewer system. Roadways and parking areas not treated by localized biofiltration because of site constraints will still 1 satisfy the requirements of SWM Section 1. 2 . 3 . As noted previously, the collected stormwater will be pumped from the outfall manhole to an "oversized" wetpond facility. ' Metro believes that the proposed oversized wetpond facility, which will be three times the minimum area and volume suggested by Section 1. 3 . 5 of the SWM, along with the locally constructed biofiltration swales, will provide equivalent or better treatment than a minimum sized wetpond facility and biofiltration facility. Over an entire year, it is anticipated that an equivalent or greater mass of pollutants will be removed by the oversized wetpond facility and local bioswales than by a minimum required wetpond facility and biofiltration facility. (See letter from Metro referencing technical studies with wetponds and stormwater treatment. ) The pump station capacity will be 4 . 5 cfs, which is three ' times the peak storm runoff rate resulting from a 1/3 of the two- year 24 hour storm (Section 4 . 6 . 2 . ) . This is also nearly equal to the average runoff rate for the two-year 24 hour storm. A 12- inch city water line that will be abandoned under Phase A will be used to pump stormwater to the wetpond facility. Emergency power to the pump station can be provided by an existing power feed near the dechlorination facility. The preferred site for the ' oversized wetpond is near the wetlands. CORE REQUIREMENT NO. 4 : CONVEYANCE SYSTEM ADEQUACY All proposed projects must show that a conveyance system I exists, or will be constructed, to adequately convey the runoff from the 100-year 24 hour design storm. This compliance condition includes runoff that originates on the project site I plus any existing runoff that will be conveyed through the project site. Surcharged conditions for pipe systems is acceptable for demonstrating the adequacy of the conveyance September 16, 1991/t1h - DRAFT to CITY -16 system provided that all runoff is contained within the conveyance system elements and does not inundate the crown of the roadway. The adequacy of the conveyance system was analyzed using the procedure described in the section titled Core Requirement No. 3 . Modeling results indicate that the existing and proposed conveyance system is adequate to convey the 100 year design storm without producing overflows . The results of the modeling effort ' are presented in Tables 5 and 6. These tables present flows and velocities through each stormwater pipe segment for the 100 year 24 hour storm event for pre- and post-development, respectively. The tables show that flow between the northern and southern 30- inch drain lines is fairly equally split. Only one pipe segment, the 30-inch pipe at node 1004 , was surcharged during the design storm simulation. Though peak flow at Node 1004 was about 102% 1 of capacity for both pre- and post-development conditions, nowhere in the system did stormwater overflow a manhole cover. ' CORE REQUIREMENT NO. 5: TESCP All engineering plans for proposed projects that propose to construct new, or modify existing drainage facilities shall include an erosion and sedimentation control plan (ESP) to prevent sediment-laden runoff from leaving the site during construction. Enlargement III meets the requirements of Section 1. 2 . 5 of the SWM. A temporary erosion and sedimentation control plan (TESCP) has been prepared for the proposed project. The TESCP is included in Addendum No. 1 of the Contract Drawings and Specifications. The TESCP was submitted to the City of Renton on July 11, 1991, certified by the City of Renton, and submitted to the Hearing Examiner on July 16, 1991 . Subsequently, the TESCP has been revised in response to City of Renton review comments. These comments are currently being incorporated into the contract drawings . ' SPECIAL REQUIREMENT NO. 5: SPECIAL WATER QUALITY CONTROL ' In addition to the Core Requirements, the proposed project has also been assessed for compliance with twelve Special Requirements of the SWM. Each special requirement identifies "Threshold" criteria to assess the compliance of the proposed project with the Special Requirements. ' Based on the Threshold criteria, the proposed project is exempt from all the Special Requirements but one: Special ' September 16, 1991/t1h - DRAFT to CITY -17 Requirement #5: Special Water Quality Control. Because the proposed project will result in more than one acre of impervious surface that will be subject to vehicular use and runoff from the project will discharge into the P-1 channel and the Green River, a Type 1 stream, a wetpond, wetvault or water quality Swale is required for water quality control . ' Wetpond Reauirements As discussed in the section of this report about runoff ' control, this project proposes to provide water quality treatment to stormwater via an oversized wetpond facility. The proposed wetpond facility will be oversized three times the required minimum surface area, volume and peak flow rate. Metro believes this treatment scheme will provide equivalent or better treatment than a minimally sized wetpond and biofiltration facility. The wetpond facility will receive stormwater from the proposed pump station to be located at the outfall manhole. The wetponds will be located on the surface of the site near the wetlands. Stormwater will flow by gravity through the cells of the wetpond and effluent will drain by gravity to the P-1 channel. Wetpond Sizing ' The size of the wetpond is determined as follows in accordance with Section 1 . 3 . 5 of the SWM: ' * The design water surface area shall be a minimum of one percent of the impervious surface area in the drainage sub-basin contributing to the facility. j * The design volume shall be as a minimum the total runoff volume from the proposed tributary sub-basin I using the total precipitation equal to one-third of the two year, 24-hour total precipitation. Enlargement III will result in a total of 18 . 9 acres of impervious surfaces as shown in Table 1 . Thus, the minimum required water surface area of the wetponds is 1% of 18.9 acres or 8200 square feet. L The minimum volume requirements for the wetpond facility were calculated based on Chapter 3 of the SWM and as described in this drainage report in the section Core Requirement No. 3 : Runoff ' Control. The required wetpond volume was calculated using one- third of the total precipitation resulting from the two year 24 hour storm event, i .e 33% of two inches, or 0 . 67-inches. Based on the modelling results , the minimum required wetpond volume is 210, 000 gallons. With a minimum required surface area of 8200 square feet, the wetpond must have an active depth of 3.4 feet. This depth satisfies the requirement to maintain a permanent pool in a wetpond between three to six feet (Section 4 . 6. 2) . An ' September 16, 1991/t1h - DRAFT to CITY -18 ' additional one foot of dead storage must also be provided for sediment storage, for a total depth of 4 . 4 feet. The wetponds must be designed to bypass flows greater than the peak flow resulting from the one-third of the two year 24 hour storm (Pt-wq design storm) for developed conditions (Section 4. 6. 2) . The peak flow resulting from the Pt-wq design storm under developed conditions is 1 . 5 cfs based on the HYDRA4 model. All flows greater than 1 . 5 cfs must bypass the wetpond facilities. The pumps at the outfall manhole will be sized to only pump the required peak flow. Flows in excess of the design peak flow rate will drain by gravity to the Green River. Oversized Wetoond Sizing The oversized wetpond facilities will be sized to be three times the minimum requirements . The wetponds are being oversized to attain a mass removal of pollutants equivalent to, or greater than, that which can be attained with a minimum sized wetpond in series with a bioswale. Using oversized wetponds with localized biofiltration swales reduces the required pump size and will allow the use of existing on-site services (pipe, emergency power supply, etc. ) , thus avoiding the hardship of having to install ' new piping, additional emergency power capacity and flow bypass structures at the water quality facility. The factor of three is based on studies which have demonstrated that the net return in increased removal efficiency diminishes as the surface area of the wetpond is increased beyond the range of 2% to 3% of the contributing impervious area (as opposed to the minimum required 1%) . The oversized wetpond facility will be designed for a peak flow rate of 4 . 5 cfs, a total water surface area of 24 , 600 square ' feet, a volume of 630, 000 gallons and a permanent pool depth of 3 . 4 feet plus one foot of dead storage for sediment (Section 4 . 6 . 2) . The stormwater pump station will have a capacity of 4 . 5 cfs with flows in excess of this rate draining to the Green River. For comparison, the average 24 hour runoff flow resulting from the two year 24 hour storm from the entire site is about 5 cfs. ' Wetoond Design ' The wetpond will be designed in accordance with Section 4 . 6. 2 and Section 4 . 4 . 4 of the SWM. Section 4 . 6. 2 will control the design if discrepancies exist between the two sections. Figure 4 is a schematic of a three celled oversized wetpond facility located around the wetlands on the north end of the site. Figure 5 shows the approximate locations of the proposed pump station and wetponds on a site map. Design criteria of specific note are reproduced below: September 16, 1991/t1h - DRAFT to CITY -19 ' * Depth of permanent pool shall be 3 to 6 feet plus one foot of dead storage for sediment. * The length:width ratio at the design surface area shall be no less than 3 : 1 (preferably 5: 1) . * The facility will be divided into three cells. The first cell shall contain about 10% of the design surface area, the second and third cells about 45% each of the design surface area. * Flows above the two year 24 hour peak storm flow must by-pass the facility. A mechanism must be provided to ' take the facility off-line. * A gravity drain one foot above the facility bottom shall drain the facility in less than four hours. ' Criteria Compliance . The wetpond facility will be designed with three cells, the first cell having 10% of the total water 1 surface area and the other two cells with about 45% each of the total water surface area . Each cell will have a length to width ratio greater than 3 : 1 as required. The total water depth will be 4 . 4 feet in each cell , one foot of dead storage for sediment and 3 . 4 feet of depth for the permanent pool. The inlet and outlet of the tanks will be designed to maximize travel time ' through the facility. The inlet will be designed to prevent scouring of the bottom sediments and promote sedimentation. The capacity of the stormwater pumps (4 . 5 cfs) prevents flows ' any greater than the design storm peak flow rate from entering the wetponds. Thus, in effect, the pump station will act as the required overflow system to control discharge of the 100 year 24 hour design storm and the required emergency overflow spillway to safely pass the 100 year 24 hour storm. A gravity drain for maintenance will be installed on each cell. The drain shall maintain one foot of depth and will drain the facility in less ' than four hours. The outlet drains will be controlled by valves in a control manhole(s) . Berm embankments shall be constructed as recommended by a geo-technical engineer following the criteria described in Section 4 . 4 . 4 of the SWM. Access to the wetponds will be provided for maintenance and public viewing. If located near the wetlands, the perimeter trail can serve as the necessary ' access. Signs will be designed, installed and located so at least one is clearly visible and legible from all adjacent streets and paths. VARIANCES ! See attached letter: Application for Variance Pursuant to 4- 22-16, September 16, 1991 . September 16, 1991/t1b - DRAFT to CITY 1 1 1 1 Page 1 of 2 ' King County Building and Land Development Division TECHNICAL INFORMATION REPORT (TIR) WORKSHEET PROJECT ENGINEER DESCRIPTION ' Project Owner Metro Project Name Enlargement III Address 821-2nd Ave. , Seattle Location Phone 684-2100 Township T2314 ' ProjectEngineer Jack Warburton Range R4E - - 24 Brown and Caldwell Section Company Project Size 85 AC 85 ' Address Phone 261-4000 Upstream Drainage Basin Size 28 MLIZ AC • PART 4 OTHER PERMITS ' Q Subdivision Q DOF/G HPA Q Shoreline Management Q Short Subdivision Q COE 404 Q Rockery ' ® Grading Q DOE Dam Safety Q Structural Vaults Q Commercial Q FEMAFloodplain Q Other • Q Other Q COE Wetlands Q HPA COMMUNITYPART 5 SITE AND DRAINAGE Community Renton ' Drainage Basin Black River PART 6 SITE CHARACTERISTICS ®'River Black, Green Rivers Q Floodplain Not 100-year ' ® Stream P-1 Channel Q Wetlands Yes, north end Q Critical Stream Reach Q Seeps/Springs ' Q Depressions/Swales Q High Groundwater Table Q Lake No Q Groundwater Recharge Q Steep Slopes NO Q Other ' Q Lakeside/Erosion Hazard scam- Soil Type Slopes Erosion Potential Erosive Velocities Puyallup Level - 2% Moderately low 1� Roa iGi a i5 - 30% Moderately high Q Additional Shoots Attached ' lry0 Page 2 of 2 ' King County Building and Land Development Division TECHNICAL INFORMATION REPORT (TIR) WORKSHEET PART 8 DEVELOPMENT REFERENCE LIMITATION/SITE CONSTRAINT Q Ch.4-DownstreamAnalysis No major construction limitations (� Wetland Protection No construction activity allowed within 25 feet; fenced. 0 O ' Additional Sheets Attatched rosion a amen a ion Control ' PART 9 ESC REQUIREMENTS MINIMUM ESC REQUIREMENTS MINIMUM ESC REQUIREMENTS DURING CONSTRUCTION FOLLOWING CONSTRUCTION ' ® Sedimentation Facilities ® Stabilize Exposed Surface ® Stabilized Construction Entrance ® Remove and Restore Temporary ESC Facilities Ox Perimeter Runoff Control ® Clean and Remove All Silt and Debris ' ® Clearing and Grading Restrictions ® Ensure Operation of Permanent Facilities © Cover Practices ® Flag Limits of NGPES ® Construction Sequence ED Other 0 Other PART r SURFACE WATER SYSTEM c ' [n Grass Lined Channel 0 Tank ED Infiltration Method of Analysis M1 Pipe System © Vault =] Depression HYDRA and SCS ' 0 Open Channel Energy Dissapator C Flow Dispersal Compensation/Mitigation Dry Pond ® Wetland (] Waiver of Eliminated Site Storage = Wet Pond Stream Regional Detention ' Brief Description of System Operation Gravity flow to wet vault Vault pumps for emergency overflow. Facility Related Site Limitations Additional Sheets Attatched Reference Facility Limitation PART 11 STRUCTURAL ANALYSIS (May require special structural review) Drainage Easement ® Cast in Place Vault 0 Other Access Easement ' = Retaining Wall Native Growth Protection Easement = Rockery>4'High Tract = Structural on Steep Slope Other 1PART 14 SIGNATURE OF PROFESSIONAL ENGINEER — I or a civil engineer under my supervision have visited the site. Actual ' alte conditions as observed were incorporated into this worksheet and the attalchments. To the best of my knowledge the information provided here is accurate. 1/90 p BLACK RIVER BASIN - Bentsl 4�i b v w Basin Boundary M. I Subcatchment Boundary 9O Collection Point Stream ✓ 4 — yr��� 000e Tributary Number ivawda £ . i 00301 Proposed Project - s.... 000fi --y 4 a_- 1 I • i - 10 July,1987 .6 O v 30 0301 , i o O3 — y -.-r - e 0012 •j o — ` •�° '= F Erfs I I �, �16 ' '"S• �r / •:_Gig �� a aYr005-Mo1A85; .�...• r - n� — — i $ T� ,_ .w r Q ✓ Neu _ 0 r_•+M J k�--, U s I -{..S �; t yr �. I x. 1 1 1 Table 1 A Drainage Basins-Proposed Development C d E 0 am 01 Area/Basin Acres w W 1 . Tributary to P-1 Channel 3.57 0 2. Tributary to Wetlands 7.72 d a. Oakesdale 1 .16 It C 3. Tributary to Longacres Swale 2.33 0 4. Septage Unload 0.19 5. Sludge Dewatering 2.93 E 6. Direct to Treatment Plant 17.00 d 7. Tributary to Stormwater Sewer 49.60 i a. Pervious Area 30.75 C 0, b. impervious Area 18.85 m oc (Subject to Vehicles & Chemical Storage) 12.00 a Total 84.50 �. 5400248A Ash Tablet. Existing Conveyance System Parameters ' Downstream Upstream Elevations Pi Dimensions Elevations ' Node ID Invert Manhole Rim Len 1h Diameter Node ID Invert Manhole Rim 1000 88.00 99.00 999.9 12D 1001 89.75 129.00 1001 89.75 129.00 71.0 30 1002 102.73 128.00 1002 102.73 128.00 112.0 30 1003 112.95 127.50 ' 1003 102.95 127.50 102.0 30 1004 103.46 126.00 10D4 103.46 126.00 482.0 3D 1006 104.35 125.50 1006 120.90 125.50 150.0 3D 1007 121.50 125.50 1 D07 104.70 125.50 284.0 30 1DOS 105.24 125.60 1008 105.24 125.60 160.0 30 1009 105.56 125.50 1009 106.06 125.50 105.0 24 1010 106.27 126.50 1010 117.14 126.50 47.0 8 1011 11752 126.40 1011 117.52 126.40 309.0 8 1012 120.00 125.74 ' 1010 1D6.27 126.50 290.0 8 1014 120A0 125.50 1010 106.27 126.50 83.0 21 1015 106.58 125.94 1015 106.60 125.94 63.0 10 1016 109.08 126.20 1016 122.84 126.20 217.0 10 1017 124.58 128.58 1018 107.00 125.50 245.0 18 1020 107.44 125.50 1020 107.00 125.50 308.0 16 1021 108.22 128.80 1018 107.00 125.50 2 `0 8 1019 124.88 128.80 1015 106.58 125.94 . D.0 18 1018 107.00 125.50 ' 1008 105.24 125.60 128.0 15 1024 107.80 123.30 1024 107.90 123.30 06.0 15 1025 110.50 123.30 1025 110.50 123.30 128.0 15 1026 113.80 123.30 1026 113.80 123.30 100.0 15 1027 114.D0 124.00 1027 114.00 124.00 320.0 15 102e 115.55 125.00 1029 116.00 125.20 220.0 12 1030 120.25 124.25 1029 116.00 125.20 55.0 12 1031 116.54 123.50 1031 116.54 123.50 125.0 12 1032 117.89 123.00 1032 117.89 123.00 50.0 12 1033 11e.50 123.30 1033 118.50 123.30 90.0 12 1034 119.51 123.40 1034 119.51 123.40 14.0 12 1035 119.86 123.50 ' 1035 119.86 123.50 100.0 12 1036 121.00 123.50 1007 104.70 125.50 45.0 a 1037 123.36 125.46 1007 12150 125.50 40.0 12 1022 121.70 125.50 1022 121.70 125.51 244.0 12 1023 123.D0 128.80 1006 105.35 125.50 80.0 12 1038 106.50 128.80 1038 119.00 126.D0 100.0 8 1039 120.20 126.00 1038 119.50 12F"0 120.0 12 1040 120.20 126.00 1040 120.20 126 169.0 12 1041 121.60 125.50 1041 121.61 125.51� 148.0 8 1042 122.75 125.50 1003 115.50 127.50 72.0 12 1043 116.00 125.50 1001 102.59 129.00 136.0 18 1044 119.79 130.10 1044 119.79 130.10 124.0 15 1045 121.73 129.42 1045 121.73 129.42 296.0 15 1046 122.00 129.42 1044 119.79 130.10 227.0 8 1047 123.39 127.65 1044 119.79 130.10 302.0 15 1048 122.00 126.00 1048 122.00 126.00 43.0 6 1049 124.00 133.00 1049 121.62 133.00 177.0 10 1050 131.00 136.00 1050 131.00 136.00 160.0 a 1051 175.00 189.80 1001 102.59 129.00 305.0 30 1 D52 105.01 129.00 1052 105.01 129.00 191.0 12 1053 106.20 129.00 1053 106.20 129.00 339.6 12 1054 149.20 156.00 1052 105.01 129.00 252.0 30 1D55 105.85 126.00 1055 105.85 126.00 325.0 30 1056 106.50 125.25 1056 107.00 125.25 2-, 24 1058 1 108.20 1 125.25 ' Tablet. Existing Conveyance System Parameters Downstream Upstream Elevations PiDe Dimensions i Elevations Node ID Invert Manhole Rim Length Diameter Node ID Irnert I Manhole Rim 1000 89.00 99.00 999.9 120 1001 89.75 129.00 1001 89.75 129.00 71.0 30 1002 102.73 128.00 1002 102.73 128.00 112.0 3D 1003 112.95 127.50 1003 102.95 127.50 102.0 30 1004 103.46 126.00 1004 103.46 126.00 482.0 3D 1006 104.35 125.50 1006 120.90 125.50 150.0 30 1007 121.50 125.50 1007 104.70 125.50 284.0 30 1008 105.24 125.60 1008 105.24 125.60 160.0 30 1009 105.56 125.50 >� 1009 106.06 125.50 106.0 24 1010 106.27 126.50 1010 117.14 126.50 47.0 8 1011 117.52 126.40 1011 117.52 126.40 309.0 8 1012 120.00 125.74 1010 106.27 126.50 280.0 a 1014 120.00 125.50 t 1010 106.27 126.50 83.0 21 1015 106.58 125.94 1015 106.60 125.94 63.0 10 1016 109.08 126.20 1016 122.84 126.20 217.0 10 1017 124.58 128.68 1018 107.00 125.50 245.0 18 1020 107.44 125.50 102D 107.00 12550 308.0 18 1021 108.22 128.80 1018 107.00 125.50 217.0 8 1019 124.88 128.80 1015 106.58 125.94 1...0.O 1S 1018 107.00 125.50 1008 105.24 125.60 128.0 15 1024 107.80 123.30 1024 107.80 123.30 96.0 15 1025 110.50 123.30 1025 110.50 123.30 128.0 15 1026 113.80 123.30 1026 113.80 123.30 100.0 15 1027 114.00 124.00 1027 114.00 124.00 320.0 15 1028 115.55 125.00 1029 116.00 125.20 220.0 12 1030 120.25 124.25 1029 116.00 125.20 56.0 12 1031 116.54 123.50 1031 116.54 123.50 125.0 12 1032 117.89 123.00 1032 117.89 123.00 50.0 12 1033 118.50 123.30 1033 118.50 123.30 90.0 12 1034 119.51 123.40 1034 119.51 123.40 14.0 12 1035 119.86 123.50 1035 119.86 123.50 100.0 12 1036 121.00 123.50 ' 1007 104.70 125.50 45.0 a 1037 123.36 125.46 1007 121.50 125.50 40.0 12 1022 121.70 125.50 1022 121.70 125 b 1 244.0 12 1023 123.00 128.80 1006 105.35 125.50 80.0 12 1038 106M 126.80 ' 1038 119.00 126.00 100.0 8 1039 120.20 126.00 1038 119.50 12C^0 120.0 12 1040 120.20 126.00 1040 120.20 126 169.0 12 1041 121.60 125.50 1041 121.61 125.50 148.0 8 1042 122.75 125.60 ' 1003 115.50 127.50 72.0 12 1043 116.00 125.50 1001 102.59 129.00 136.0 1s 10" 119.79 130.10 1044 119.79 130.10 124.0 15 1045 121.73 129.42 1045 121.73 129.42 296.0 15 1046 122.00 129.42 1044 119.79 13O.1O 227.0 a 1047 123.39 127.65 1044 119.79 130.10 302.0 15 1048 122.00 126.00 1048 122.00 126.00 43.0 6 1049 124.00 133.00 1049 121.62 133.00 177.0 10 1050 131.00 136.00 ' 1050 131.00 136.00 160.0 a 1051 175.00 189.80 1001 102.59 129.00 305.0 30 1052 105.01 129.00 1052 105.01 129.00 191.0 12 1053 106.20 129.00 1053 106.20 129.00 339.6 12 i 054 149.20 156.00 1052 105.01 129.00 252.0 30 1055 105.85 126.00 1055 105.85 126.00 325.0 30 1056 106.50 125.25 1056 107.00 125.25 276.0 24 1058 108.20 125.25 1 Tablet. Existing Conveyance System Parameters Downstream U stream Elevations PI Dimensions Elevations Node ID Invert Manhole Rim Len tlt Diameter Node ID Invert Manhole Rim ' 1058 108.20 126.25 107.0 24 1059 108.67 125.26 1059 108.67 125.25 191.0 24 1060 109.53 125.25 1060 109.53 12525 155.0 24 1061 110.19 126.50 1061 120.10 126.60 38.0 12 1062 120.25 125.25 1056 110.00 125.25 100.0 6 1057 111.00 126.00 1061 110.44 126.50 383.0 21 1063 111.78 125.33 1063 112.28 125.33 170.0 15 1067 112.77 125.00 1067 112.77 125.00 172.0 15 1069 113.34 125.00 1063 112.86 125.33 65.0 12 1064 117.00 125.50 1064 117.00 125.50 53.0 12 1065 118.70 125.50 1065 116.70 125.50 43.0 12 1066 123.21 125.00 1056 106.50 125.25 320.0 30 1072 106.61 125.25 1072 118.73 125.25 83.0 12 1073 119.39 125.39 1072 116.74 125.25 205.0 12 1074 118.38 125.25 1074 119.62 125.25 196.0 12 1076 121.00 125.50 1074 118.38 125.25 77.o 12 1075 119.00 125.25 ' 1072 106.61 125.25 290.0 30 1077 107.36 125.25 1077 120.65 125.25 103.0 12 1078 120.98 125.50 1078 120.98 125.50 100.0 12 2079 121.78 128.80 1077 107.35 125.25 72.0 30 1079 107.80 125.25 ' 1079 120.16 125.25 103.0 12 1080 120.98 125.50 1080 120.98 125.50 100.0 12 1081 121.78 128.80 1079 107.80 125.25 210.0 30 1082 108.36 125.25 ' 1082 108.36 125.25 105.0 30 1083 110.00 125.25 1083 121.00 125.25 107.0 12 1084 12325 125.30 1083 121.00 125.25 14.0 14 1085 95.50 111.50 1085 103.24 111.50 110.0 18 1086 103.36 110.75 1086 103.42 110.75 88.0 12 1087 103.94 110.68 1087 103.94 110.68 30.0 8 1088 104.12 125.35 1088 104.12 125.35 153.0 8 1089 113.50 115.54 1 D89 105.D4 115.54 78.0 6 1090 105.52 111.00 1089 105.04 115.54 72.0 8 1091 105.47 111.00 1086 103.92 110.75 95.0 12 1092 104.68 110.10 1092 1 D4.68 110.10 95.0 12 1093 105.44 109.90 1093 105 44 109.90 70.0 12 1094 106.00 111.00 ' 1094 106.00 111.00 40.0 12 1095 106.39 114.24 1095 106.39 11424 77.0 12 1096 106.95 119.20 1083 11125 125.25 108.0 15 1097 113.19 125.25 1097 113.19 125.25 324.0 15 1098 119.00 126.21 low 119.00 126.21 105.0 8 1099 119.84 124.94 1098 119.00 126.21 58.0 6 1100 119.50 126.90 1100 119.60 126.90 200.0 8 1101 123.56 128.11 1089 113.76 125.00 127.0 10 1070 114.92 125.02 ' 1070 114.92 125.02 160.0 a 1071 120.00 124.92 1001 116.91 129.50 180.0 10 3001 122.25 126.10 1006 120.70 125.50 140.0 12 1005 121.40 124.20 1028 115.55 125.20 15.0 12 1029 116.00 125.20 1021 106.22 128.80 320.0 a 2021 122.10 124.10 1020 116.00 125.20 100.0 12 2028 117.00 124.00 1076 121.00 125.50 207.0 12 2076 123.60 125.60 1 7able2. Proposed Conveyance System Parameters ' Downstream Upstream Eleveuons PI Dimensions Elevatlons Node ID Invert Manhole Rim Le Diameter Node ID Invert Manhole Rim ' 1000 89.00 99.00 999.9 120 1001 89.75 129.00 1001 89.75 129.00 71.0 30 1002 102.73 128.00 1002 102.73 128.00 112.0 30 1003 112.95 127.50 1003 102.95 127.50 102.0 30 1004 103.46 126.00 1004 103.46 126.00 482.0 30 1006 104.35 125.50 1006 120.90 125.50 150.0 30 1007 121.50 125.50 1 D07 104.70 125.50 284.0 30 1008 105.24 125.6D 1008 105.24 125.60 160.0 30 1009 105.56 125.50 ' 1009 106.06 125.50 105.0 24 1010 106.27 126.50 1010 117.14 126.50 47.0 8 1011 117.52 126.40 1011 117.52 126.40 309.0 8 1012 120.00 125.74 1010 106.27 126.5o 280.0 8 1014 120.00 125.50 ' 1010 106.27 126.50 83.0 21 1015 106.58 125.94 1015 106.60 125.94 63.0 10 1016 109.08 126.20 1016 122.84 12620 217.0 10 1017 124M 128.58 1018 107.00 125.50 245.0 16 1020 107.44 125.50 1020 107.00 125.50 308.0 18 1021 108.22 128.80 1018 107.00 125.50 217.0 8 1019 124.88 128.80 1015 106.58 125.94 255.0 18 1018 107.00 125.50 1008 105.24 125.60 128.0 15 1024 107.8D 123.30 1024 107.80 123.30 96.0 15 1025 110.50 123.30 1025 110.50 123.3D 128.0 15 1026 113.80 123.30 1026 113.80 123.30 100.0 15 1027 114.00 124.00 ' 1027 114.00 124.00 320.0 15 1028 116.55 125.00 1029 116.00 125.20 220.0 12 1030 120.25 124.25 1029 116.00 125.20 55.0 12 1031 116.54 123.50 1031 116.54 123.50 125.0 12 1032 117.89 123.00 1032 117.89 123.00 50.0 12 1033 118.50 123.30 1033 118.50 123.30 90.0 12 1034 119.51 123.40 1034 119.51 123.40 14.0 12 1035 119.86 12350 1035 119.86 123.50 100.0 12 1036 121.00 123.50 ' 1007 104.70 125.50 45.0 8 1037 123.36 125.46 1007 121.50 125.50 40.0 12 1022 121.70 125.50 1022 121.70 125.51 244.0 12 1023 123.00 128.80 1006 105.35 125.50 BOA 12 1038 10650 128.80 1038 119.00 126.00 100.0 8 1039 12020 126.00 1038 119.50 126.00 120.0 12 1040 120.20 126.00 1040 120.20 126.00 169.0 12 1041 121.60 125.50 1041 121.61 125.50 148.0 8 1042 122.75 125.50 1043 117.50 125.50 160.0 10 2043 121.70 129.50 1003 115.50 127.50 72.0 12 1043 116.00 125.50 1001 102.59 129.00 136.0 18 10" 119.79 130.10 1 D44 119.79 130.10 124.0 15 1045 121.73 129.42 1045 121.73 129.42 296.0 15 1046 122.00 129.42 1044 119.79 130.10 227.0 8 1047 123.39 127.65 1044 119.79 130.10 302.0 15 1048 122.00 126.00 ' 1044 121.79 132.20 227.0 8 2047 119.79 130.10 1048 122.00 126.00 43.0 6 1049 124.00 133.00 1049 121.62 133.00 177.0 10 1050 131.00 136.00 1D50 131.00 136.00 160.0 8 1051 175.00 189.80 ' 1001 102.59 129.00 305.0 30 1052 105.01 129.00 1052 105.01 129.00 101.0 12 1053 106.20 129.00 1053 106.2D 129.00 339.6 12 1054 149.2D 156.00 1052 105.01 129.00 252.0 30 1055 105.85 126.00 1 ' TOW. Proposed Conveyance System Parameters ' Downstream upstream Elevations -Pioe Dimenslons Elevations Node ID Invert Manhole Rim Len tit Diameter Node ID Invert Manhole Rlm 1055 105.85 126.00 325.0 30 1056 106.50 125.25 1056 107.00 125.25 276.0 24 1058 108.20 125.25 1058 108.20 125.25 107.0 24 1059 108.67 125.25 1059 108.67 125.25 191.0 24 1060 109.53 125.25 ' 1060 109.53 125.25 155.0 24 1061 110.19 126.50 1061 120.10 126.50 38.0 12 1062 120.25 125.25 1056 110.00 125.25 100.0 6 1057 111.00 126.00 1061 110.44 126.50 383.0 21 1063 111.78 125M 1063 112.28 125.33 170.0 15 1067 112.77 125.00 1067 112.77 125.00 172.0 15 1089 113.34 125.00 1063 112.86 125.33 65.0 12 1064 117.00 125.50 1064 117.00 125.60 63.0 12 1065 118.70 125.50 ' 1065 118.70 125.50 43.0 12 1066 123.21 125.00 1 D56 106.50 125.25 320.0 30 1072 106.61 125.25 1072 118.73 125.25 83.0 12 1073 110.39 125.39 1072 116.74 125.25 205.0 12 1074 118.38 125.25 1074 119.62 125.25 196.0 12 1078 121.00 125.50 1074 118.38 125.25 77.0 12 1075 119.00 125.25 1072 106.61 125.25 290.0 30 1077 107.35 125.25 1077 120.65 125.25 103.0 12 1078 120.98 125.50 1078 120.98 125.50 100.0 12 2079 121.78 128.80 1077 107.35 125.25 72.0 30 1079 107.80 125.25 1079 120.16 125.25 103.0 12 1080 120.98 125.50 109D 120.98 125.50 100.0 12 1081 121.78 128.80 ' 1079 107.80 125.25 210.0 30 1082 108.36 125.25 1082 108.36 125.25 105.0 30 1083 110.00 125.25 1083 121.00 125.25 107.0 12 1084 123.25 125.30 1083 121.00 125.25 14.0 14 1085 95.50 111.50 1085 103.24 111.50 110.0 1s 1086 103.36 110.75 1086 103.42 110.75 88.0 12 1087 103.94 110.68 1087 103.94 110.66 30.0 8 108B 104.12 125.35 1088 104.12 125.35 153.0 8 108D 113.50 115.54 1089 105.04 115.54 78.0 8 1090 105.52 111.00 1089 105.04 115.64 72.0 8 1091 105.47 111.00 1086 103.92 110.76 95.0 12 1092 104.68 110.10 ' 1092 104.68 110.10 95.0 12 1093 105.44 109.90 1093 105.44 109.90 70.0 12 1094 106.00 111.00 1094 106.00 111.00 40.0 12 1095 106.39 114.24 1095 106.39 114.24 77.0 12 1096 106.95 119.20 ' 1083 111.25 125.25 108.0 15 1097 113.19 125.25 1097 113.19 125.25 324.0 15 1098 119.00 126.21 1098 119.00 126.21 105.0 8 1099 110.84 124.94 1098 119.00 126.21 58.0 8 1100 119.50 126.90 1100 119.50 126.90 290.0 6 1101 123.56 128.11 1 D69 113.76 125.00 127.0 10 1070 114.92 125.02 1070 114.92 125.02 160.0 8 1071 12D.00 124.92 3002 119.76 129.75 120.0 10 3001 122-26 126.1D 3001 118.91 127.50 36.0 10 3002 119.75 129.75 1006 120.70 125.50 140.0 12 1005 121.40 124.20 1028 115.55 125.20 15.0 12 1029 116.00 125.20 1021 108.22 128.80 32D.0 8 2021 122.1D 124.10 ' 1029 116.00 125.20 100.0 12 2028 117.00 124.00 1076 121.00 125.50 2D7.0 12 2076 123.60 125.60 1 1 Table 3. Hydrograph Input Paramters: Pre-Development Node Total Area Fraction of CNlmper CNPery K Slope Distance ' Acres Imperv.Area Ft 1101 1.12 0.123 98.0 86.0 13.0 0.03 220 ' 1100 0.72 0.118 98.0 86.7 13.2 0.03 180 1099 0.64 0.269 96.0 88.7 16.3 0.021 200 1098 1097 1096 0.23 0.884 98.0 86.0 25.2 0.02 300 1095 0.26 0.309 98.0 86.0 15.9 0.054 80 ' 1094 0.49 0.507 98.0 87.1 19.4 0.07 160 1093 0.52 0.575 98.0 87.3 20.5 0.148 220 1092 0.35 0.748 96.0 90.0 23.5 0.012 100 1091 0.08 0.417 98.0 86.0 17.7 0.07 60 1090 0.15 0.344 98.0 86.0 16.5 0.07 60 1089 0.28 0.361 98.0 88.5 17.6 0.066 200 1088 0.11 1.000 98.0 #DIV/01 27.0 0.0013 160 1087 0.25 0.661 98.0 90.0 22.2 0.107 70 1086 0.24 0.732 98.0 86.0 22.7 0.01 60 1085 ' 1084 0.19 1.000 98.0 #DIV/01 27.0 0.0067 240 1083 2.75 0.000 98.0 86.0 11.0 0.0115 320 1082 1081 0.06 1.000 98.0 #DIV/0! 27.0 0.008 50 1080 0.10 1.000 98.0 #DIV/0! 27.0 0.0036 160 1079 1.62 0.000 98.0 86.0 11.0 0,012 220 ' 1078 0.55 0.091 98.0 86.0 12.5 0.003 260 1076 0.49 0.000 98.0 86.0 11.0 0,0035 170 1075 0.64 1.000 98.0 #01V/01 27.0 0.014 260 ' 1074 0.10 1.000 98.0 9DIV/01 27.0 0.03 210 1073 2.41 0.095 98.0 86.0 12.5 0.015 160 1072 0.06 0.000 98.0 86.0 11.0 0.33 40 1071 0.14 1.000 98.0 #DIV/01 27.0 0.005 100 1070 0.33 0,533 98.0 88.2 20.0 0.009 145 1069 0.11 0.613 98.0 86.0 24.0 0.003 90 1068 1067 0.30 0.504 98.0 86.0 19.1 0.011 750 1066 0.20 0.884 98.0 86.0 25.2 0.007 140 1065 1064 0.11 0.780 98.0 86.0 23.5 0.01 65 1063 1.02 0.111 98.0 86.0 12.8 0.004 180 1062 0.04 1.000 98.0 #DIV/01 27.0 0.021 90 ' 1061 Assumed no inlet at this node. HYDRA4 Input Files Hydrograph Parameters Pre-Development Renton III ' Node Total Area Fraction of CNlmper CNPery K Slope Distance Acres Im rv.Area Ft 1 1060 3.46 0.119 98.0 86.0 12.9 0.08 400 1059 0.54 0.000 98.0 86.0 11.0 0.045 180 1058 0.66 0.231 98.0 86.0 14.7 0.045 80 ' 1057 1056 1055 1 1054 1053 1052 ' 1051 0.05 1.000 98.0 #DIV/O! 27.0 0.002 60 105D 1049 ' 1048 3.62 0.000 98.0 86.0 11.0 0.0002 380 1047 0.67 1.000 98.0 #DIV/0! 27.0 0.0065 200 1046 0.22 1.000 98.0 #DIV/OI 27.0 0.01 220 104 1044 1021 0.43 0.706 98.0 86.0 22.3 0.006 270 ' 1020 0.20 0.765 98.0 86.0 23.2 0.003 160 1019 0.11 0.857 98.0 86.0 24.7 0.005 115 1018 0.21 0.564 98.0 86.0 20.0 0.003 135 ' 1017 0.54 0.879 98.0 86.0 25.1 0.005 12D 1016 1015 0.39 0.520 98.0 86.9 19.6 0.0065 170 1014 0.44 0.301 98.0 88.3 -16.6 0.006 200 1012 1.20 0.149 98.0 89.8 15.0 0.005 120 1011 0.10 1.000 98.0 #DIV/0! 27.0 0.005 110 1010 1009 0.34 0.827 98.0 66.0 24.2 0.005 100 1036 0.48 0.168 98.0 87.1 14.2 0.0044 90 1035 0.20 1.000 98.0 #DIV/O! 27.0 0.005 100 ' 1034 0.16 0.280 98.0 66.0 15.5 0.006 180 1033 0.D6 0.155 98.0 86.0 13.5 0.086 50 1032 0.09 0.667 98.0 86.0 21.7 0.0017 90 ' 1031 0.39 0.000 98.0 86.0 11.0 0.008 80 1029 0.65 0.690 98.0 88.3 22.4 0.005 160 1028 1027 0.23 0.000 98.0 86.0 11.0 0.006 80 1026 0.33 0.341 98.0 87.5 16.9 0.005 130 Assumed no inlet at this node. 1 ' HYDRA4 Input Files Hydrograph Parameters Pre-Development ' Renton III Node Total Area Fraction of CNlmper CNPery K Slope Distance ' Acres lmperv.Area Ft 1025 0.31 0.323 98.0 86.0 16.2 0.005 100 ' 1024 1008 1023 0.19 0.576 98.0 87.8 20.6 0.011 150 1022 0.17 0.232 98.0 e6.0 14.7 0.005 90 1037 0.18 0.640 98.0 86.0 21.2 0.005 130 1007 ' 1042 0S8 1.000 98.0 #DIV/0! 27.0 0.01 150 1041 1040 1.18 0.730 98.0 86.0 22.7 0.0114 420 1 D39 0.21 1.000 98.0 #DIV/01 27.0 0.012 260 1038 0.34 0.669 98.0 86.0 21.7 0.005 150 1006 ' 1005 0.45 0.656 98.0 86.0 21.5 0.01 190 1004 0.34 0.557 98.0 86.0 19.9 0.016 170 1043 0.71 0.849 98.0 86.0 24.6 0.026 160 1003 1002 1001 1000 Assumed no inlet at this node. 1 1 Table 4. Hydrograph Input Parameters: Post-Development Node Total Area Fraction of CNlmper CNPery K Slope Distance Acres Im rv.Area Ft 1101 0.72 0.191 98.0 86.0 14.0 0.03 220 ' 1100 0.72 0.118 98.0 86.7 13.2 0.03 180 1099 0.73 0.396 98.0 $7.7 17.9 0.021 200 1096 1097 1096 0.20 1.000 98.0 86.0 27.0 0.02 300 1095 0.08 1.000 98.0 86.0 27.0 0.054 8o 1094 0.49 0.416 98.0 86.0 17.7 0.07 160 1093 0.66 0.593 98.0 86.0 20.5 0.148 220 1092 0.43 0.654 98.0 90.0 22.2 0.012 100 1091 0.08 0.417 98.0 86.0 17.7 0.07 60 1090 0.15 0.344 98.0 86.0 16.5 0.07 60 1089 0.28 0.361 98.0 88.5 17.6 0.066 200 1088 0.11 1.000 98.0 86.0 27.0 0.0013 160 ' 1087 0.25 0.661 98.0 90.0 22.2 0.107 70 1086 0.39 0.445 98.0 86.0 18.1 0.01 60 1085 t 1084 0.19 1.000 98.0 86.0 27.0 0.0D67 240 1083 2.50 0.0D0 98.0 86.0 11.0 0.0115 320 1082 ' 1081 0.06 1.000 98.0 86.0 27.0 0.D08 50 1080 0.10 1.000 98.0 86.0 27.0 0.0036 160 1079 1.62 0.000 98.0 86.0 11.0 0.012 220 ' 1078 0.19 0.267 98.0 86.0 15.3 0.003 260 1077 2076 1.03 0.000 0 86.0 11.0 0.001 400 ' 1076 0.49 0.000 98.0 86.0 11.0 0.0035 170 1075 0.64 1.000 98.0 86.0 27.0 0.014 260 1074 0.10 1.000 98.0 86.0 27.0 0.03 210 1073 2.41 0.141 98.0 86.0 13.3 0.015 160 ' 1072 0.06 0.000 98.0 86.0 11.0 0.33 40 1071 0.14 1.0D0 98.0 86.0 27.0 0.005 100 1070 0.33 0.533 98.0 88.2 20.0 0.0D9 145 ' 1069 0.11 0.813 98.0 86.0 24.0 0.0D3 90 1068 1067 0.30 0.504 98.0 86.0 19.1 0.011 150 ' 1066 020 0.884 98.0 86.0 26.2 0.007 140 1065 1064 0.11 0.780 98.0 86.0 23.5 0.01 65 ' 1063 1.02 0.111 98.0 86.0 12.8 0.004 180 Assumed no inlet at this node. ' HYDRA4 Input Files Hydrograph Parameters Post- Development Renton III Node Total Area Fraction of CNlmper CNPery K Slope Distance ' Acres Im rv.Area Ft 1062 0.04 1.000 98.0 86.0 27.0 0.021 90 ' 1061 1060 2.92 0.236 98.0 86.0 14.8 0.08 400 1059 0.54 0.000 98.0 86.0 11.0 0.045 180 ' 1058 2.49 0.061 08.0 86.0 12.0 0.045 300 1057 1056 1055 1054 1053 1052 1051 0.05 1.000 98.0 86.0 27.0 0.002 60 1050 1049 1048 0.29 0,000 98.0 86.0 11.0 0.0002 380 1047 0.74 0.034 98.0 86.0 11.5 0.051 300 2047 154 0.061 98 86.0 12.0 0.05 400 1046 0.22 1.000 98.0 86.0 27.0 0.01 220 1045 1044 2021 2.47 0.000 0.0 86.0 11.0 0.005 350 1021 0.43 0.706 98.0 86.0 22.3 0.006 270 1020 0.20 0.765 98.0 86.0 23.2 0.003 160 ' 1019 0.11 0.857 98.0 86.0 24.7 0.005 115 1018 0.21 0.564 98.0 86.0 20.0 0.003 135 1017 0.23 0,711 98.0 $6.0 22.4 0.005 120 ' 1016 1015 0.39 0.520 98.0 86.9 19.6 0.0065 170 1014 0.44 0.301 98.0 88.3 16.6 0.006 200 ' 1012 1.20 0.149 98.0 89.8 15.0 0.005 120 1011 0.10 1.000 98.0 86.0 27.0 0.005 110 1010 ' 1009 0.34 0.827 98.0 86.0 24.2 0.005 100 1036 0.42 0.194 98.0 86.0 14.1 0.0044 90 1035 0.20 1.000 98.0 86.0 27.0 0.005 100 ' 1034 0.74 0.135 98.0 86.0 13.2 0.047 150 1033 0.06 0.155 98.0 86.0 13.5 0.086 50 1032 0.09 0.802 98.0 86.0 23.8 0.0017 90 ' 1031 0.39 0.000 98.0 86.0 11.0 0.008 80 1029 0.65 0.729 98.0 98.1 22.9 0.005 160 Assumed no inlet at this node. i 1 ' HYDRA4 Input Files Hydrograph Parameters ' Post- Development Renton III ' Node Total Area Fraction of CNlmper CNPe" K Slope Distance Acres Im m.Area Ft ' 028 1 027 0.23 0.086 98.0 86.0 12.4 0.006 80 1026 0.33 1.000 98.0 86.0 27.0 0.01 120 1025 0.31 0.323 98.0 66.0 16.2 0.005 100 ' 1024 1008 1023 0.19 0.576 98.0 67.8 20.6 0.011 150 ' 1022 0.17 0.232 98.0 86.0 14.7 0.005 90 1037 0.18 0.640 98.0 86.0 21.2 0.005 130 1007 ' 1042 0S8 1.000 96.0 86.0 27.0 0.01 150 1041 1040 1.23 0,781 98.0 86.0 23.5 0.0114 420 ' 1039 0.21 1.000 98.0 86.0 27.0 0.012 280 1038 0.34 0.669 98.0 86.0 21.7 0.005 150 1006 ' 1005 0.45 0,656 98.0 MO 21.5 0.01 190 1004 0.34 0.616 98.0 86.0 20.9 0.016 170 1043 0.6o 0.822 98.0 86.0 24.2 0.026 160 ' 1003 7002 1.24 0.100 98 86.0 12.6 0.011 400 1001 ' 000 'Assumed no inlet at this node. 1 ' Table 5. Results of 100 year Storm Modeling Pre-Development Total Contributing Area = 48.47 Acres Peak Flow- 22.99 cfs ' Link Node length Downstream Elevation Diameter Area Deso DesVel Time LatLong Sys Long to 1t Rim Invert n Acres) (cfs) (fps) (min tt ft 1 1101 290 126.9 119.5 8 1.12 0.56 3.28 1.48 290 290 ' 2 1100 58 126.21 119 a 1.84 0.89 3.18 0.3 348 348 3 1099 105 126.21 119 a 0.64 0.45 2.51 0.7 105 105 4 1098 324 125.25 113.19 15 2.48 1.31 4.23 1.28 429 777 ' 5 1097 106 125.25 111.25 15 2.48 1.24 4.16 0.43 537 885 6 1096 77 114.24 106.39 12 0.23 0.26 2.02 0.63 77 77 7 1095 40 111 106 12 0.49 0.43 2.56 0.26 117 117 8 1094 70 109.9 105.44 12 0.98 0.86 2.91 0.4 187 187 9 1093 95 110.1 104.68 12 1.5 1.33 3.3 0.48 282 282 10 1092 95 110.75 103.92 12 1 As 1.69 3.55 0.45 377 377 11 1091 72 115.54 105.04 a 0.08 0.06 1.32 0.91 72 72 12 1090 78 115.54 105.04 8 0.15 0.11 1.53 0.85 78 78 13 10B9 153 125.35 104.12 8 0.51 0.39 4.96 0.51 153 303 ' 14 10811 30 110.68 103.94 a 0.62 0.51 2.36 0.21 183 333 15 1087 as 110.75 103.42 12 0.87 0.77 2.52 0.58 271 421 16 1096 110 111.5 103.24 18 2.96 2.66 1.92 0.95 110 908 17 1085 140 125.25 121 14 2.96 2.55 4.35 0.54 250 1048 ' 18 10114 107 125.25 121 12 0.19 0.22 2.88 0.62 107 107 19 1083 105 125.25 108.36 30 8.38 4.81 5.65 0.31 105 2145 20 1082 210 125.25 107.8 30 8.38 4.75 2.9 1.2 315 2355 ' 21 1081 100 125.5 120.98 12 0.06 0.08 1.52 1.1 100 100 22 1080 103 125.25 120.16 12 0.16 0.19 1.94 0.88 203 203 23 2079 100 125.5 120.98 12 1.62 0.59 2.57 0.65 100 100 24 1078 103 125.25 120.65 12 2.17 0.81 2.06 0.83 203 203 25 1079 72 12525 107.35 30 8.54 4.68 3.91 0.31 72 2630 26 1077 290 125.25 106.61 30 10.71 6.35 2.99 1.62 362 3123 27 2076 207 125.5 121 12 2.07 0.69 3.16 1.09 207 207 28 1076 196 12525 119.62 12 2.56 0.85 2.77 1.18 403 403 29 1075 77 125.25 116.38 12 0.64 0.77 2.82 0.46 77 77 ' 30 1074 205 125.25 116.74 12 3.3 1.56 3.46 0.99 282 685 31 1073 83 125.25 118.73 12 2.41 1.15 3.15 0.44 83 83 32 1072 320 125.25 106.5 30 16.48 7.76 1.61 3.3 403 4211 ' 33 1071 160 125.02 114.92 a 0.14 0.17 3.19 0.64 160 160 34 1070 127 125 113.76 10 0.47 0.46 2.56 0.83 287 287 35 1069 172 125 112.77 15 0.58 0.56 1.81 1.58 459 459 ' 36 1067 170 125.33 112.28 15 0.88 0.77 1.89 1.5 629 629 37 1066 43 125.5 118.7 12 0.2 0.23 5.18 0.14 43 43 39 1065 53 125.5 117 12 0.2 0.23 1 3.39 0.26 96 1 96 ' Storm Water Modeling Resufts Hydra&SCS: Brown and Caldwell GIS Pre-Development Conditions Renton III 100 yr-24 hr storm ' Link Node Length Downstream Elevation Diameter Area DesO Del Time LatLong Sys Long ID ft Rim Invert n Acres) (cfs) (fps) (min ft (it) ' 39 1064 65 125.33 112.86 12 0.31 0.34 4.86 0.22 161 161 40 1063 383 126.5 110.44 21 2.21 1.49 2.36 2.7 544 1173 41 1062 38 126.5 120.1 12 0.04 0.05 1.05 0.6 38 38 42 1061 155 125.25 109.53 24 2.25 1.39 2.54 1.02 193 1366 t 43 1060 191 125.25 108.67 24 5.71 3.01 3.12 1.02 384 1557 44 1059 107 125.25 108.2 24 6.25 3.09 3.13 0.57 491 1664 45 1058 276 125.25 107 24 6.91 3.44 3.23 1.43 767 1940 ' 46 1051 160 136 131 8 0.05 0.06 5.16 0.52 160 160 47 1050 177 133 121.62 10 0.05 0.06 2.85 1.04 337 337 48 1049 43 126 122 6 0.05 0.06 2.77 0.26 380 380 49 1048 302 130.1 119.79 15 3.67 1.04 2.86 1.76 682 682 50 1047 227 130.1 119.79 8 0.67 0.8 3.81 0.99 227 227 51 1046 296 129.42 121.73 15 0.22 0.27 0.93 5.31 296 296 52 1045 124 130.1 119.79 15 0.22 0.23 2.6 0.79 420 420 53 10" 136 129 102.59 18 4.56 1.83 9.55 0.24 556 1465 54 2021 320 128.8 108.22 8 3.28 1.16 6.04 0.88 320 320 55 1021 308 125.5 107 18 3.71 1.48 2.52 2.04 628 628 56 1020 245 125.5 107 18 3.91 1.62 1.96 2.08 873 873 57 1019 217 125.5 107 8 0.21 0.18 4.55 0.8 217 217 58 10111 255 125,94 106,58 18 4,33 1.86 1.99 2,14 472 1345 59 1017 217 126.2 122.84 10 0.54 0.61 2.68 1.35 217 217 60 1016 63 125594 106.6 10 0.54 0.58 4.62 0.23 280 280 61 1015 83 126.5 106.27 21 5.26 2.52 2.86 0.48 363 1708 ' 62 1014 280 126.5 1D6.27 8 0." 0.28 4.24 1.1 280 280 63 1012 309 126.4 117.52 8 1.2 0.75 2.94 1.75 309 309 64 1011 47 126.5 117.14 8 1.3 0.81 3.02 0.26 356 356 65 1010 105 125.5 106.06 24 7 3.48 2.47 0.71 461 2449 66 1009 160 125.6 105.24 30 7.34 3.72 2.44 1.1 621 2609 67 2028 100 125.2 116 12 0.1 0.05 1.46 1.14 100 100 68 1030 22D 125.2 116 12 0.13 0.11 2.3 1.6 220 220 69 1036 100 123.5 119.86 12 0.48 0.27 2.42 0.69 100 100 70 1035 14 123.4 119.51 12 0.68 0.51 3.84 0.06 114 114 ' 71 1034 90 123.3 118.5 12 0.84 0.6 2.92 0.51 204 204 72 1033 50 123 117.89 12 0.9 0.63 3.04 0.27 254 254 73 1032 125 123.5 116.54 12 0.99 0.7 3.01 0.69 379 379 ' 74 1031 56 125.2 116 12 1.38 0.84 3.09 0.3 434 434 75 1029 15 125 115.55 15 2.26 1.6 5.38 0.05 449 769 76 1024 320 124 114 15 2.26 1.59 2.83 1.88 769 1089 ' 77 1027 100 123.3 113.8 15 2.49 1.55 2.07 0.8 869 1189 78 1026 128 123.3 110.5 15 2.82 1.73 5.19 0.41 997 1317 79 1 1025 96 123.3 107.8 15 3.13 1.9 1 5.51 0.29 1093 1413 ' Storm Water Modeling Results Hydra&SCS: Brown and Caldwell GIS ' Pre-Development Conditions Renton III 100 yr- 24 hr storm ' Link Node Length Downstream Elevation Diameter Area Deso DesVel Time LalLong Sys Long ID tt Rim Invert n Acres cfs min ft tt 80 1024 128 125.6 105.24 15 3.13 1.88 4.87 0.44 1221 1541 ' 61 1023 244 125.51 121.7 12 0.19 0.17 1.63 2.5 244 244 82 1022 40 125.5 121.5 12 0.36 0.26 1.76 0.38 284 264 83 1037 45 125.5 104.7 8 0.18 0.17 8.04 0.09 45 45 ' 84 1042 148 125.5 121.61 8 0.58 0.72 2.87 0.86 148 148 85 1041 169 126 120.2 12 0.58 0.69 2.74 1.03 317 317 86 1040 120 126 119.5 12 1.76 1.73 3.21 0.62 437 437 ' 87 1039 100 126 119 8 0.21 0.25 2.42 0.69 100 100 88 1038 80 125.5 105.35 12 2.31 2.24 4.75 0.28 180 617 89 1005 140 125.5 120.7 12 0.45 0.42 1.97 1.18 140 140 ' 90 1056 325 126 105.85 30 23.39 11.03 3.4 1.59 325 6476 91 1055 252 129 105.01 30 23.39 10.82 4.03 1.04 577 6728 92 1052 306 129 102.59 30 23.39 10.64 5.45 0.93 882 7033 93 1008 284 125.5 104.7 30 10.47 5.54 2.71 1.75 284 4434 94 1007 150 125.5 120.9 30 11.01 5.84 3.56 0.7 434 4913 95 1006 482 126 103.46 30 13.77 8.04 3 2.68 916 6152 ' 96 1004 102 127.5 102.95 30 14.11 8.19 4.29 0.4 102 6254 97 3001 156 129.5 118.91 10 3.42 1.47 4.91 0.53 156 156 98 1043 72 127.5 115.5 12 2.99 1.65 3.36 0.36 72 72 99 10011 112 128 102.73 30 17.1 9.27 3.2 0.58 184 6438 100 1002 71 129 89.75 30 17.1 9.24 16.47 0.07 255 6509 101 1001 999.9 99 89 120 48.47 22.99 2.63 6.33 1254.9 16162.9 1 1 1 Table 6. Results of 100 year Storm Post-Development t Total Contributing Area = 43.65 Acres Peak Flow= 22.61 cis Link Node Length Downstream Elevation Diameter Area DesQ DesVel Time LatL.ong SysLong ID (ft Rim Invert in Acres) cis) min ft ft ' 1 1101 290 126.9 119.5 6 0.72 0.4 2.97 1.63 290 290 2 1100 58 126.21 119 8 1.44 0.74 3.01 0.32 348 348 3 low 105 126.21 119 8 0.73 0.58 2.72 0.64 105 105 ' 4 109e 324 125.25 113.19 15 2.17 1.29 4.21 128 429 777 5 1D97 108 125.25 111.25 15 2.17 1.22 4.15 0.43 537 885 6 1096 77 114.24 106.39 12 0.2 024 1.99 0.64 77 77 ' 7 1095 40 111 106 12 0.28 0.34 2A3 0.27 117 117 8 1094 70 109.9 105.44 12 0.77 0.73 2.75 0.42 187 187 9 1093 95 110.1 104.68 12 1.43 1.34 3.31 0.48 282 282 ' 10 1092 95 110.75 103.92 12 1.86 1.76 3.6 0." 377 377 11 1091 72 11554 105.04 8 0.08 0.06 1.32 0.91 72 72 12 1090 78 115.54 105.04 8 0.15 0.11 1.53 0.85 78 78 ' 13 10119 153 125A5 104.12 8 0.51 0.39 4.96 0.51 163 303 14 lose 30 110.68 103.94 8 0.62 0.51 2.36 0.21 183 333 15 1087 88 110.75 103A2 12 0.87 0.77 2.52 0.58 271 421 ' 16 1086 110 11111 103.24 18 3.12 2.79 1.95 0.94 110 908 17 1085 140 125.25 121 14 3.12 2.68 4.42 0S3 250 1048 18 1084 107 125.25 121 12 0.19 0.22 2.88 0.62 107 107 19 1083 105 125.25 108.36 30 7.98 4.84 5.66 0.31 105 2145 ' 20 1082 210 125.25 107A 30 7.98 4.78 2.91 1.2 315 2355 21 1081 100 125.5 120.98 12 0.06 0.08 1.52 1.1 100 100 22 low 103 125.25 120.16 12 0.16 0.19 1.94 OAS 203 203 ' 23 2079 100 125.5 120.98 12 1.62 0.59 2.67 0.65 100 100 24 1078 103 125.25 120.65 12 1181 0.69 1.96 0A7 203 203 25 1079 72 125.25 107.36 30 8.14 4.71 3.92 0.31 72 26W ' 26 1077 290 125.25 106.61 30 9.95 5.28 2.97 1.63 362 3123 27 2076 207 125.5 121 12 1.03 0.34 2.68 12D 207 207 28 1076 196 125.25 119.62 12 1.52 Obi 2.36 1.39 403 403 ' 29 1075 77 125.25 118.38 12 0.64 0.77 2.82 0.46 77 77 30 1074 205 125.25 116.74 12 2.26 129 3.27 1.04 282 685 31 1073 83 125.25 118.73 12 2.41 124 3.23 0.43 83 83 ' 32 1072 320 125.25 106.5 30 14.68 7A8 1.61 3.31 403 4211 33 1071 160 125.02 114.92 8 0.14 0.17 3.19 0.84 160 160 34 1070 127 125 113.76 10 OA7 0.46 2.56 0.83 287 287 ' 35 1069 172 125 112.77 15 0.58 0.56 1.81 1.58 459 459 36 1067 170 125.33 112.28 15 0.88 0.77 1.89 1.5 629 62D 37 1066 43 125.5 118.7 12 1 0.2 1 0.23 1 5.18 1 0.14 43 I 43 1 Storm Water Modeling Results Hydra& SCS Post-Development Conditions Renton III 100 yr-24 hr storm Link Node Length Downstream Elevation Diameter Area DesQ DesVel Time Latl.ong Sys Long ID ft Rim Invert n Acres cfs min tt ft) 36 1065 53 125.5 117 12 0.2 0.23 3.39 0.26 96 96 ' 3B 1064 65 125.33 112.86 12 0.31 0.34 4.86 0.22 161 161 40 1063 383 126.5 110.44 21 2.21 1.49 2.36 2.7 544 1173 41 1062 38 126.5 120.1 12 0.04 0.05 1.05 0.6 38 38 42 1061 155 125.25 109.53 24 2.25 1.39 2.54 1.02 193 1366 43 1060 191 125.25 108.67 24 5.17 3.04 3.13 1.02 384 1557 44 1059 107 125.25 108.2 24 5.71 3.13 3.14 0.57 491 1664 ' 45 1058 276 125.25 107 24 8.21 4.15 3.43 1.34 767 1940 46 1051 160 136 131 8 0.05 0.06 5.16 0.52 160 160 47 1050 177 133 121.62 10 0.05 0.06 2.85 1.04 337 337 48 1049 43 126 122 6 0.05 0.06 2.77 0.26 380 360 49 1048 302 130.1 119.79 15 0.34 0.15 1.77 2.84 662 682 50 1047 140 132.2 121.79 8 0.74 0.31 2.56 0.91 140 140 51 2047 227 130.1 119.79 8 2.28 0.95 3.26 1.16 367 367 52 1046 296 129.42 121.73 15 0.22 0.27 0.93 5.31 296 296 53 1045 124 130.1 119.79 15 0.22 0.23 2.6 0.79 420 420 ' 54 11144 136 129 102.59 18 2.84 1.28 8.77 0.26 556 1605 55 2021 320 128.8 108.22 8 2.47 0.81 5.41 0.99 320 320 56 1021 308 125.5 107 18 2.9 1.13 2.31 2.22 628 628 57 1020 245 125.5 107 18 3.1 1.26 1.83 2.23 873 873 58 1019 217 125.5 107 8 0.11 0.12 4.15 0.87 217 217 59 1018 255 125.94 106.58 18 3.42 1.46 1.85 2.3 472 1345 60 1017 217 126.2 122.84 10 0.23 0.23 2.02 1.79 217 217 ' 61 1016 63 125.94 106.6 10 0.23 0.21 3.58 0.29 280 280 62 1015 83 126.5 106.27 21 4.04 1.85 2.57 0.54 363 1708 63 1014 280 126.5 106.27 8 0.44 0.28 4.24 1.1 280 280 ' 64 1012 309 126.4 117.52 8 1.2 0.75 2.94 1.75 309 309 65 1011 47 126.5 117.14 8 1.3 0.81 3.02 0.26 356 356 66 1010 105 125.5 106.06 24 5.78 2.81 2.33 0.75 461 2449 67 1009 160 125.6 105.24 30 6.12 3.05 2.3 1.16 621 2609 68 2028 100 125.2 116 12 0.1 0.05 1.46 1.14 100 100 69 1 D30 220 125.2 116 12 0.13 0.11 2.3 1.6 220 220 ' 70 1036 100 123.5 119.86 12 0.42 0.24 2.36 0.71 100 100 71 1035 14 123.4 119.51 12 0.62 0.49 3.78 0.06 114 114 72 1034 90 123.3 118.5 12 1.36 0.83 3.22 0.47 204 204 73 1033 50 123 117.89 12 1.42 0.85 3.33 0.25 254 254 74 1032 125 123.5 116.54 12 1.51 0.93 3.31 0.63 379 379 75 1031 55 125.2 116 12 1.9 1.07 3.32 0.28 434 434 ' 76 1029 15 125 115.55 15 2.78 1.84 5.511 0.04 4" 769 77 1028 320 124 114 15 2.78 1.84 2.96 1.8 769 1089 78 1 1027 100 123.3 113.8 15 1 3.01 1 1.8 1 2.17 1 0.77 8% 1189 1 ' Storm Water Modeling Results Hydra & SCS Post-Development Conditions Renton III 100 yr- 24 hr storm Unk Node Length Downstream Elevation Diameter Area DesO DesVel 71me LalLong Sys Long ID ft Rim Invert n Acres cfs min ft ft ' 79 1026 126 123.3 110.5 15 3.34 2.16 5.55 0.38 997 1317 80 1025 96 123.3 107.8 15 3.65 2.33 6.86 0.27 1093 1413 81 1024 128 125.6 105.24 15 3.65 2.3 5.22 0.41 1221 1541 82 1023 244 125.51 121.7 12 0.19 0.17 1.63 2.5 244 244 83 1022 40 125.5 121.5 12 0.36 0.26 1.76 0.38 284 284 84 1037 45 125.5 104.7 8 0.18 0.17 8.04 0.09 45 45 85 1042 148 125.5 121.61 8 0.58 0.72 2.87 0.86 148 148 ' 86 1041 169 126 120.2 12 0.68 0.69 2.74 1.03 317 317 87 1040 120 126 110.5 12 1.81 1.83 3.26 0.61 437 437 88 1039 100 126 119 8 0.21 0.25 2.42 0.69 100 100 ' 89 1038 80 125.5 105.35 12 2.36 2.34 4.82 0.28 1B0 617 90 1005 140 125.5 120.7 12 0.45 0.42 1.97 1.18 140 140 91 1056 325 126 105.85 30 22.89 11.36 3.43 1.58 325 6476 ' 92 1055 252 129 105.01 30 22.89 11.18 4.07 1.03 577 6728 93 1052 305 129 102.69 30 22.89 11.01 5A9 0.93 882 7033 94 1008 284 125.5 104.7 30 9.77 5.19 2.66 1.76 284 4434 ' 95 1 D07 150 125.5 120.9 30 10.31 5.62 3.5 0.72 434 4913 96 1 D06 482 126 103.46 3D 13.12 7.79 2.97 2.71 916 6152 97 1004 102 127.5 102.95 30 13.46 7.99 426 0.4 102 6254 ' 98 3001 12D 129.75 119.75 10 1.39 1.52 4.91 0.41 120 120 99 3002 36 1275 118.91 10 1.61 1.65 5.14 0.12 156 156 100 2043 160 125.5 117.5 10 1.01 0.4 3.65 0.73 160 160 ' 101 1043 72 127.5 115.5 12 1.61 1.07 2.94 0.41 232 232 102 1003 112 128 102.73 30 15.07 B.71 3.14 0.59 3" 659E 103 1002 71 129 89.75 30 16.31 9.2 16.45 0.07 415 6669 104 1001 999.9 99 N 120 43.65 22.61 2.62 6.36 1414.9 16462.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Figure 3 2—YEAR and 100—YEAR DESIGN STORM HYDROGRAPHS 25 20 ■ 100 year pre—development 15 + 100 year post—development a 2 year post—development f S 10 5 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o v o 0 0 0 o v o 0 in IQ N N tq Lq N u] in u-1 O N M '�F If) f0 1� a0 Of O CV hours a C D E F C N ' MATCH UNE SEE DRAPING L117 etlari „A„ r / MEE a ' I O� 7 Off. G, EW FENCE - - r I 2e - s\ �rll ! `� + ` i / r a / ! c� / \ � I \-/; Wt It AND PERIMETER t / i i/Vetpond / / ;' Gell No.3 NcwaYSRV° FENCE F l Wetland "Be W Z56e 9s O�sJ /j Figure 4. etp _ Wetpond Facilities Total Water Surface = 24,700 sq f r A \ 1 ` ✓; ' NOTE: TEMPORARY CHAIN LINK FENCE ' -i N EC SHALL BE LONSTRVCT EU TO PROTECT,`\ 1 ---��-� •,�"' ` '�� - THE EXISTING WETLANDS. THE FENCE SHALL BE LOCATED A MINIMUM OF 15' \ v` - t \; � I :P rr - -•.. -J , < C OFF THE WETLAND PERIMETER ,� 1 1 ' 1 ••` ' 4 ` i1,t RELOCA VAULT l[lCAT10N Monste FGR ACCE y -- , oad ` - _. ROAD ' -) 1 MATCH UNE SEE DRAPING L124 WNY NaE mErAo 9.waa<,•,A.otxc _yw�.��� �FRBUgrD ASso,rts � YuwetPWtT of WUopeDtu ]wtW MAY 15,190 Brown and Caldwell �a��""" �FtV �.=•T" ��'� TC AP3 REGIONAL TREATMENT PI ANT NI RENTOM ENLARGEMENT•A g Consultonts a ,•tea ''-70 . Seattle, Washington ,9,ao`dl GRADING PLAN L118 w Mwvo, m ww r'•w.,- ARFA 76 t.b> — ' KEY. ` — CITY LIMITS ' o 100 200 aoD 0AKE3RlTLE AVE SW ✓ ! SCALE IN FEET ) PROPERTY LINE SHORELINE BOUNDARY '/ .' �`� I - \ NEW FACILITIES [ ;' ,' I "•—`--_�___ I ^^,"\ 1 (INCLUDING ROADS ✓ / s' : / _ _ "'-".. 4r. I '� L AND PARKING) _ NEW 810FILTRATION / SWALE < : ` r EXISTING FACILITIES r� (t f `� (INCLUDING ROADS ' NEW 18" 0 Pl i / r ; y i 3 a' ` AND PARKING) CHANNEL STORMWATER r r 0 OUTFALL a EASEMENTS EXISTING 12"0 CITY WATER PIPELINE (TO REMAIN) FENCE LINE NEW STORMWATER i / I \\a't"l�' i E 1!� 7 I 6 TREATMENT WET PONDS f- is .y NEW BIOFILTRATION SWALE NEW 20"0 WASHINGTON NATURAL GAS PIPELINE Y 3tr.:✓ r t i �`/ r � ._.......... �-.: .- I w --- J o t 7•- ea 7� EXISTING 20'0 t �' I� ' ,i�•:/,g } WASHINGTON NATURAL GAS s1 ' PIPELINE (TO EXISTING 12"0 CITY BE ABANDONED S I:' WATER PIPELINE + i i (TO BE ABANDONED) - i y (CAN BE USED BY n'O ' NEW 12"0 CITY METRO TO TRANSPORT WATEP PIPELINE 4.5 CFS OF STORMWATER y` c r ^";r t y.-. \•�\ \\ T s TO NEW WET PONDS) ' NEW BIORLTRATION SWALES \l �\ / °N\ .�k5 .t NEW 4.5CFS (2000GPM) _ STORMWATER PUMPING STATION r _ (INCLUDES CONNECTION - - TO D WATER ' _ NGjQN C10R�HERN RR - PLANT FLOW)E PIPELINE AND TREATMENT Figure. t 'Vigo METRO fie ENLARGEMENT REGIONAL TREATMENT PLANT IN RENTON ENLARGEMENT III 54 10I 11CX%= EXISIING AND NEW TREATMENT FACILITIES rQ sy o gi J Y t _ t i -t . f' 12" 1 C�61. 063""""" 15 15 1067 1069 ; ' rep' (�(� ff �.J •.�, _i tj {` ., � VV4 068 Al 1065 411. 10711 1066 00 r , 1089 g» 10881087 Co 4 1054 8,R '� f s� f - 1086 12" 1092 12 1093 12' '�' 0 5 050 �.- 1058 24" 00 1094 4 , 1059 1t - , 10 �- 12 12 ay.. I 2079 1078 1081 ---- K.� , 1073 i { ( N i 1049 " „ ff ,► , ff 10 5f, 1055 30 1056 1072 30 3D 30 30 �5 79 �- 1077 ' 1079 1082 1083 - 109 1048 � 12t, 1052 I 1047 r ri 1074 12" 1076 12" 2076 �' '; J" 3001 1101, Mi fanf»#, ` 1045 1046 t f ...... 002 104314 i � 'f ► { ' n DISCHARGE TO �', i j 2021 { THE GREEN RIVER � ,. I 1 1041 1042 I f • 1004 tQ N 1 i 4e.Aa t _ :_ - _. 2 t t s 1017 1040 1039 - 00 1005 - ,r 001038 I : 1 0.J 1016 t � 23 ----- ' z � � 1022 „�`1 � �„ s , - O18 ' fTl , . _ �� .y _ 7 0 , 101 � j f�l i'` 1�31 .._. 02 2026 34 24" 101 Z o o ;�i `; 1 ' ` '`�' 1009 1011 t, t .. 1012 OEM Z _. . yQO _ 1029 tit 1 4 15" 1 Q2 , l ' 1025 t. D Fri , , fir m , , t - -- , r (10 4 ' _49 O ., ,. ,_ -� r'" : it ._ -.-. _ .,-_— ..•.. ,._._. Fq Amr z - 1 _ N- Z ' _ �_ ._ _ _mow..-••- 0 . I . I � . I - , . . . f . I . , . � . I I . -- �41 I 1. . . I . . � -I . I. I I . i . . . . .� . -16hI .& ' 'I . 1 . . .. . . I I I . � . .�` . •4 - .1 �\ f r go \\\ 1 l . \ '\ _ \ \ . \� - ''r w y F' } x t I It P>1j /,:, ,_\ " \ \ /. l'- v . , / it \\ - `.Y " ',\ ,i j - \ 0 i/,,',i i . - .. , � �T1 ,;; _ ;II, 11 A. t �;,,mi o 1, i , j `'I , i iii ! \ _ •.\\ Z O t - \\ 1 ��J{f � .t�111' FI . ! \ FT] 33 'r F1'#+J1 I 1 \ ----I ` ; [ .hi . 1 ' 1�i11l `1.,t _ . I . , 0 ; , , 1 \\ `` •\\ I ; - ! -, i ; �`f�\-,-, \�, ,- ,-,\-,� I I I :, I ! I , I �l, 1�,,. - 7- -._. --,N' -", ",�N'�,J\ " ,� % I . --- "- --i,., - . . 1-11 � I 11 I'll `)`l -, "I --1 11.1I `- 1, , , �� �i,, t f , , \ I , ! .. ?�13 " I i+,t j r ,� . it ♦\\ .i r r i i P ' ' i r�f1 ', t\ \ :.I . I Pil . , - / I, !i�,,/' ,\ I ', I \i . I I `� - '. I I /. , \ x . _ 2 i /1 f - 1 \ \ '' II 21 1063 15 \mow: .; - l t ` 11 ri ,e r } „ jl�tli � ,`'. `Tr i' ; , ; j, ; 1064 068 A, �`'\ \ \: I / 7" I. I , i i 1� ! , �� i �,- 6 5 J, y \♦ \,�: 1 p 07 o 1. ,' • `1.. ,t , gyp,.,\ .p I 1 0 `� � \ . >� lk� '- I . 1071 1 -,��\,� , 11, -- -- . - r f` 10 0 1 -II I it .; I I . \I., It 't ,. __ 1060 .1 y� �- / r 51' 1 'a 1; 1 - ,f . , - ` 7 ,. 1 �j%' '% ,�"' 1089 g" 1088 8� *1087 - , �1, `, �` _- . ..~._ �' 1. 1. J - ,r _, .._ _.._ .. ., q t og , I i � -t � I I �� , ' ,¢% - '� ' , ;` 1 - 1086 2„ 1092 2„ 1093 2„ 09 ',i:\ ``i =,f : . % `', � �/;,", ;� �� * 11 1091 1094 ` {\�� it l,;. + ,�� ;' , �,s,,` 105 _; �' 1058 24 i r t l ,Ia } i I . f' 10591:1 -- , � 11 , ; i ,,i �' f ', >/,/,-// I Af : ' .r. -. \'~._ter- '"� » -- - _ - - ... _ i �� t 1 rt i i i .. ..M .• - ji/ r�� I 1 I t- .:+.■■•••■r.■w.r--------„^ - - ..._:�:f� .._ -...-... .. _._ .. �f 1 1 - - / / ; / . t� t �, 1 J. ,-s,.... .■ 0 9 r 79 7 �.�. � / \ _.t � I/�/ M p - 1081 ; f, ,f , 1 ,; r' -. - X . '` ii� II i i iIl if - N K 4 `( i dd : ' 1055 Q 11056 30 1072 30 30 30 30 15 15 ( 1; 1 t; 1079 \ d : i <y �� 1077 1079 1082 1083 1098I '; 1 I i I ( ,i) , ;i ;. �� 1048 �� 1 s /,� �F y \ r ., 1.1052 , 1 . if , 1 . r �i 1. %11 � \ i , 10531. 11-1 i °� i .11 I ; ; 1 i ' I1.f i + 1 J , �l `l•I. , \ ,,\ ,X I f tl�l t ) - .,o'N -� - .� 1 1 V0 ! ` J It� r '11` -. i i '� .. 1,t1 � � ,tN; a:�� �`f/iJ('`i {�'Y //' �{.°` 204 7 / N I I I ao . Li '; \�, + \�ti� :`; :� , ,:°; �' y 1 16 2„ 2076 i; ;, �,j` �i ; �" h:,; ,: 4 ii a\ •. ;�',\11 ,� j'. 0 7 4 • 12 0 1 1 f ;;, i ' l t I �� 3 1 0 �- i i i 1 ,''�7rf �,) 1 i� }% \ `-,1,' � \ �� \ ..`,11 iftt� / `'t' - i\ \ i ! ifEit r ii .fJJf r , 11 {f:i - 1 p� ! �1. ., � t`t ' ` � ,, \ 1 � \ \ ;\ ;'�p i s 1 44 _ :, i i 1 3 i I +- i l i �� J.1• ,` , < ,� f/;` ."\ .. `\ \\l \ 1 A -_' I� 1 ) i f 1 7 i ... {I t;? , I i -r r 1 - N ' 1 �t 1 V.\ I', %' \I \,♦ \ \\ •�� \ O 2 '1 I {'" ? f f` 1 i I i ;If I `'t ,,. Y,•1 +� ` {`,,� z\,, �"Jh \ ,, J 43 -.►CA I �.---.- ' - ,4 * `li J t i �1 j 11. .a., 1 1 :tS ; `:t`', 111 . r� A \. l \`.,,. ,! 1 p= _�20 , f f j j 1 / 1 I 'tf i �' 3 \, \,ti ,ii , t! \ ; t i f l f �Iliil !i i Ii , 1 I ; i ` I l+ ,,':``.•.'11 ,F ;t, . - It,. ,I ' , n _..r„-.-... ) - 1 ' 1 ; i`i I! , I 1 f i(E , ';i 1045 15 i i ; �' a :� \ z 1046 i t i iV . ; i i ; i:,. ) l R ,, t• 2 LA 0 I ;1ii, i li � 1 :)I ( Ei ,' 1 , � •- 'rf 'I f I , i t!I i ''• f' 'I ( 11 t ; f i i�,.l 1 ) 1 i i, � i', ,% , ,-,-�111 I 1�"" I" � SUN ill i . , � - :�.-' � I ��l �` ',,_ ` �I ; \, - f } I .1 ii) I IjI1'1, I- : ; � 4 : : , \ I I if! r' +' �`' ,� t .�I `1 ,, t=I s.A`'k\, t.:, { , , t , i i I r ` i , !,i %: jl :� v q 1; v\ i Ir ; Iir i tI1' 1} i i , . fI irli I ; 1�0 . ;� \ { 1,,, \1 oc) 4.(�-;,-_.- I I - i i. i f I I , ,,. I!.i r :f n DISCHARGE TO . r �t r 2021i , . I � i I : I' �'.f i THE GREEN RIVER \�-J +.\ �j '�` w 11 � "\ ' ; i i � i l I : I ! f f J; 0 '?\ ,?, 1. I, \1. i ,\L \. ' " - ! i ! qi 1! . I I D I ti t I J Ii N 1i`1 ` �°'� 041 �1.042 '� - =� ' iiiiiiiiiiiiiiiiiiiiiilill �'' ' +I f I , 1 �'t ; ' ; 't so,1 t' 1 ;33 _ .iI all/ ` .i .iL 9 1. 1 I Ii, ,� 1i . �1l ST'\ 1 .�,.} t .. ....- -, ......,.> . f`. 1. } -+ r._. .,...M..f 1 i,� _ I'd 's } _ f , 9 t, k f t . ! ' i i ` k° -.. .f • JJ , w t - - ii^ 2 '�0 1 ( 4'l •', IL ii 'L: I, `- .. -.:.:. - _. n----3"_ I V 1 1 V l • !;, 11 i ° i , I,i .,r j' i \ //:. i ,� �` I11 ` , 1 ,, , '{_ _r � 1 j i, I ' , I I i i� .i�l , �, 1039 f , x , !i 4 f i f ; I . B ! I E. i: . `x 1' 'It � I . I , ` i ;; re ;t t� i N ! ,f �J ' , t4 fi}� .. ,' t \ ,rr �00 � `Ri f ,' i ,,i' 31 `` �, `,t\� ` 1 038 ; \� %:/ j 'I . i i l ' Illlr i !'�{ } { i I N1 s 't `ik , 7 }t. __ ` 11 { I f ri44 r 1; \Iii 1,;� 1A I, . I ........ ,-.-.-----, . . ..I ---- �; , . il .i li i i I I,I �r 1 1 il�l- i . o fix', '�� 0 5 ,,, �� 1 G16 ,� \, I //; =;i ',i I ;!f l C r !1 .. i , 11 ; t l ' It'', -J�' 1. " .`----- } /Lf 0 ___ -. l l o ;,: 1035 1037 __ '- -- .- -_ , �- --• -_ - t`' 1 , i I, t ,I l i Mt . - .1 2" ... c.. ,l ...w.+::x•Ic+ame.. -_. 18 :.$ i `�, ' i 1 i I .ii { �, MAI 1 I /� (� �,. ;, i 1 �34 - t1�3 „_,� 1015 8 i ; i 1 ';` 1 i, . (�-1 ' i 030 1 7 p„ 2� tT t ! . ; ; . ! , s J,. N �j { ! { I l + ,1 : 1 i i (Tl t`` // 1 31 28 �` 30" i. 2 4" 101 jM1 f; I f! i; '� z o � << 1032 ►�'� h_ 1009 i1 G11 1* IN r; f ' , 1; 1� V�, ----� Z --) 1012 I ; . u0 I } I ; `, =I D � 15 / � k -, k� S„ "5 1024 _ _ i I l f 1031 2027 026 _._.-- -- - _ _ ' ` .... � , ' ' t S 0�5ii V.. i _ - 1 E - if ; - _ il- �7 1 \ ; . . -- 4. ` _ - \ ': - .,.._. .,-' fa-_•----.__•....- 4- ... , �. �• J' `+ . ( ,..!� � `/ �tI { t f �• r m i 1 I:•;} // i \,N X, . � I - --- , .,�, I / I. i -�--_-; / I I z , 1 . ,1.t I � ' ,, j r t, � Sy.1 - i.! _ t.�'> :I� ' j f . 1��' 7� 1 1 _ 11 �' Iz _ ftt i� .' 1 4 _ ..- I I. 1., + - �-�-7 - - _ .. -.. -- . \ ,I". . , I 1. ,� , /I ,� ,�-- ` . � I I i:, ;<, )"-, x -_ -- ..�� ¢ 7 _ "` l f ' /' F L•' .--- ,.. -j �• _ l � _ _ /. ,y tt py` 1} f/C % \ l t t Ill t r , s ,�- - .:.i. _ / _s.:_- ' , ;`t 5 - _-_4.. r,.-- _ _ - . . - - - - �_ •,' �/ . , � N - a 11 i /// �..�- - - - W •~ .. r 1. - _ -.- t Z .... ---_ - _. _ ....-_ .-. . ._` -, �, mw ,, i 4 y t,�il �,` - //� I J L ..•r••.. - ,� - _,�.-..�.'-^^Ji '. - _ y w _........ - -•__`_ . ,i t .`i 1 1,,,. �11 - ...','-.A. -�f, \ 4_: ., �^ rr,�y+^-. \, _ .. _ _ �s�.- _ _ _ . ` \ / _ 1 . 1 lI t t t't ,lt,1 .'� z.s='-="�C ...w.-` w-•""'r"'•.J _ y,.- . - -..r•;'- _. - _ - -- - } +,;, , (�� 1 i 11 t�i f,I, ___- -y- f ,�i \ _ . ' I 1 - - _ -. - - " - . .. . - - ' - i Tr_._ - o ` z � I - . I I I . ., I - .1 � - . . .. l - - � - I .r. . . .. . . '. . I , . " . ; ... . -I. . :, ' 1-1-4i- ,�. .11 . - . . - . . . 11 I., I-� � .11-. ''. .- .. 'N- : .,. I . ". _.1 - - 11� - I-, ..-, I , t., --,, I � . I _f T - . . . � }I . I ,� ,. I;- -_ ¢I . . '. . I , '. . � . 11 . . I I I . I . : I . . . . I '. . .1 . i - . . 1 . - I - . I , " . . I 1 , . .- I- __, . , . � -, , I -I I � .,�' . - , . I � %, � I I I I 1, , -::_.- " ': t .. I . , '' � . . , - - -t, - � i5w - , - , , , - r I I ,. I�-,�---;- , -�,� . , } .. I . , � � ' �' ., :: ' , .. ,. . - Y^ I . I , - --; ,-;0�11- ,X�. ji� : ,..; ; ; �:- I : -1 'p. , , - 17�1�e�11l 11 I - "�'.�+�rw�I���..�w�wsl�lla�s�+� mwwm 1! f .I..�... . ..I....I.I � .� 1.1.I I I .. I I.., .\. , � � . I � I . 1 .I. � I I .� . I .� � I ". .I. I I.I . � ��'\1, ' .I . . I . �I � I 1 I ._, 1 . I� I .. I I I I . �. . . I II 1. . I . I . I I � . I I • :\ i t I 7 .4k4 'FA ' *. . I � . . �^` . . \\ -' ��v . . "`\_ /" . •"\' •`mot 'fin b t i . a , :"\ \\S ` r\;. o , Y 4 •, . . - �. . ` ` / ��\ . , I . \� . r `� \ ' n h \ \ }j/ � �; D J J' ,,4 t 1 i - i \- 00 N > .1 i +^•-\ill t ' , I -'\ \` o i �� A�- -.II,r,.�,�b 7._,,��",�", .I I_I.-...i�III.�.:"I 1-.I.�.1��'..I.��,I...�._..,:II1 ItI�.I I..II II I..I I,.��I'-..�../I.I.*....1....I..I..,1.I..._..iI_.,\_.1..1I�.II,.,..GC;.1II"I.-�.I_�,.\.'..I I....I....1 I I_.I_I—1I.I I��,t II.��-.."A ` .'!! j1 t, r:. �l1��('i l 1 it i ,,i-W_,\I--,-_5I�.\,-;�'.,`a,_-7 1I'.-1)-._I�0�1—9,_-...b,-.i".,'I,,I,I.�- ij•1 1 •\+ \��--�"�."....-.._I-I--,1 I"-,���mI_I.I 1_._,:_-.I�1 1�.-i 1I�..-"r.I:l1::i�:I,!1:.'1If! ��-1, n ' \ \ .II.II...I I.-(II�1,.I.II...I...�.,I�-..1..\.,I 1��.I..I...,_..I..I..�1�..,�.I...I.I,..F..0cU.�mMKI.CU*--U:�_.z_;'�.1�I/�..I,�.:I."I.�..:II.-..*.t.I.-.I,.I\..��1..�../,..TII..__u:....-,/-...I.�I.I��,-I�.A'.I(.u..0...II�..1,I-.II���.�I I..�.--)I�...I-.)i.I....)lII.�'�I _-�_III..`I�_-.u V.��I...-)..I�I\.I,....1.!I.II..,I...�I..�I\_I I,..I...-1..-."II.�.I.:..I.-I�..I.\1_.....I.1I.-I,I*\I...I.V.�I_I-tII.%I,.I..,_..(I,.I-I.\/.*.VI�I1.-...�.,..I.1I lII..I/..kI,.I 1..�.i I I1.�_I..�.\I I-.:,,.A I,,.:.I.1I.._..I�.I.�1...,-�..�:.."�I.,�.�Ij,��1.A"..I...I.�.I�'I..�.....�-...I I.II,�.-A I�I�-A II.I.II..��.I 0II.I.�.II V%..1..,I,I'I.��l I.`..4II.,l .'!1 1_.-I,,I;*-1'.',I,."v�1,I,,I'/-,',I"[,9,_I,/\._/,/�;,.I,,,i'-\,t....N.t.��,-/I�\.,.,'�.�,�I�",,1.1,-j I�i!:1i,1 j1!7/",I;%1.i i,I',/%;I\;�,1 l..�,-I,Il�/,1,I1,)II"-, ,�,..,_iq.�'1','I�I�i,�;"..I.I�I..,-`/\-;,"N,' "I��1�.��I"z,..1l1I,l���I.���/4)I j,.,-�I,.I,"�-1'I,"-,*`-�,1";,\_�!.I 1,,II i,_��P.,,Iz,/\,,, 1..��..I;",.I/,.,�1/_r,1"11/Q1.1.,,1.*"..��.�5/-,1�_i.N 1\,-./-'1"k:.LN,/J II 'A,�,,�'"II.,1.i'I/�\,_'1r'.1 iit'I J,,,,"�\I o I��_�1,_\f%��Q-II�,�1, �\�i t,"��,V�1,.,"",,1\Ij_`,1:�II1x1,i�,V��,,-I I-\.�0i.,_,.I!I_-,i�".-$I.-_.'',I tI;II1�j�7 f1,_.,..i��'v�1I h!,t-I:-,.i ,ti I,*���-i"..w..Aj,-1i�,,Y.-,i,,I/'./IIIk,I 1�,-I,11I,I'_I.1I1 I,,J.,,r.;;.i X-,,\l,I",�.f--,,.I./,'-I.-I_II I-...I..I�\1=/�:1:�'..I�-.-.�.-I.,/i I,'I,t 1I,!�h"i,,_.1.. ""i1. (--��1N_I,1�J_1 T._V",I,,1",I,-I�I-�i\-/ ,.'.11-.I'\I.,!t,-,1\,-.-...V.,1 1 1.�I,_-,�1--..I-I-1�I,_i,�, ._P,_1-,,I-",1—_I 1,I-7;--*�."N-._ �--,.,I--�.-�'I�.._�1i;g.._1v-",.�_.-.0'.-._ ,-.-,1i,I-�..-\� �1I;,.rrII.I.- \,,,,I--"I,,.._.�*�,i:,-I1j�..j,a- !�I It.�,�KL-:.'I"�wJ'4_/_I,,4.1-"iI:iII.I.II:*:..IIii ,,�6 Ij o�-..�I ,.0 1_\-.I.\I_-1I".-�.:.7ITt r..-\�4�-".Ii; %\6.,1 i:_-/..,::..1-7,II_,III�-1:--N I.1.:I.��1_��II t1_',"'i_.-4-l��-I:-�..---,_.,,_t I 1_,.�,�__1,_.1I__-_.,\1-..\1__-�_1 I�X 11i_I-1.-�_I.I6.-_.__-..__.__1.,_._--.7j .-,1.1_�-__,k�I—,,-\,\ I_";1,:t"!I�-_ .,.... .-._.\k.-..,-,t�_I1,�,.�"-II,..�".�I%1-.-*"�-1"��I�1-I.I.1-,._.\\1/-*---I�,.I�I.ta:1..1,.f,���..�\1--!��;1".1,.::i.:!:�:I:�*,o::....!:i"-I.::..,_I..1-:...-:.�."-1.�,--.���-.—I.-�_�.II_'.�,_I,;:._.1.�.._..-�":.-..:,..,1_.If j-�,,-j-,;,.-,.I.-re7_1.-'�.,_._,-.v 1\,I)__�_a:__,i-t..IiIII-.!.,t,.Ii:�.�.I:.I._--",\_v""-_:,I-1\,.�71t�_:-.� ,1,11,_I:IT 11-I:.,,�..*,.i\�I-1_�-.,-I.-1_.M.1-II1,�1,-\-/,��-I�-.--I�-, ,.I1 II I1IIi.)�.-I.i="-I,,-.-1_ .,I',--:_.,I�-:�I'\.:�.-I.,,...I-!1..�iI1�...7I!iih.,,�..,�.*—���:-_��-...-�'."_�-t-.,.:,.F I.��II�...'_�.!"_1� -,:—.K'�-.;__,_I..�I"'-\/I-1I,&",1/-,_1.�II.,.,,./I-_/.I IZ .1It:1 7_i11-11_�.._� '.:�::1I:.11.,"I.-,-_1.-�.,-�-,f�%*-6�_� . • s .�.`:I.-I �-I-'1'Ii.Iii.II!.- :1.I` _T t , 1 \\ _.�.0I-�I,-�__II j I- , - • ` ' \ ' 4I :.1._l-I--1I:�,_5,_�._-_n_-.1��,-..��1f7 ./.�!_--_%�i1�m,f--�tI�i-.".1 I--1�.._-",_'I-"-.---_-_�I./1.--_�.-__.- L1.7jI I'_I�-.,I'—_-I'�,1___..�.-�--�t/I_�,,.,p ,���.�.1�._-�-.,/_.�'.I:;-"_ _I_�1ttI,n--:._,-�-:�II..L.b__.�IIj-_II ",...,--�.,,_,I'..4.-.1,-.;'-.�-.�"-I_.� .1��.""!:'-1.11__Il/-.-�..I,..,I4I..,�1_,�_-.�'-.,-0y\.I,,,I..-,-.-,f_-I1—_,I,'.!..-_.7-_�i_.,�Ii.1---,I.1 1 1*I.,i . ; \ __,,1_-.- -__I,A-I 7 _ft I_4 I!-,_.t4-. -I,..: ;1 K-'1"!I I...(I---; �.1:."..1:,,Ii I�I9�*.-f\_...1.'.. :,� ' ^t` ' \ t �' \ \\ \ I_I%.8.I-_.�I._I,-I.,:I:II,.�\..Iz.�'..�)--.�;'-1,��-I:N'-_�I.���.7-.,_.,.�,-'I\�I1 J. _ _ - t ./ . I _..:. 1 � 'E i`'�,t t L`,.I..1.�i� �1a i . ,\ ,, , t,1 - - . ,. .%.!t_\-V t-k V-\-�-_r.l.I—,I1.�1,)II-1,-"-�iI I II I�.:"-Ii*1_I�.I,.:_1.�)�\I_-i .. t , bi , , �: -1..,.-..I.'.�,1�-�.�[�-.�..�.1.,..!.: ;� r I , .,f k . '�, _ `t ? , t M :iz 1,/":-;":.I-_1,4_�,;\\I-�,,; . 1. \ 1 r' � �o ,- !I"1t;.��;.,\I . iI ,. r1,.�,',; *f�"_,.:I:-,�. :",�..."I:!.f��.,..'�."3.1.,10,,- f1,�, \:,.I ,tI�,f.:%�-I �,-s�.r,. ,\� ,1l/,,.I-,1 I� t 1!,;.h.i�.!,;.I; I i!'�4..("1 1"I�-I.!:1"I i;-,�-i,..,Iii,..�i tiI,�I�-cj1 I.jI,.�,?�t.-�':I.-,,1 ;"�-I_�,�t (� ;Iii.I,l. . tI���.I/;!"�,;I i;:. !"\,!IoI�, .�\I- 01 I \'., lj 1 if iI,.;Ii "[ ,iI1.,,�,�.,.�i 1J",i, "fI! il Ii I.114f 0. i. ii i 1.A61 21 „ �....�., ri �• . t / j 106 063 15 15 \,y , ; ~, 1 �1 i7 f,f f.�/ 1 I y..4 - _ �' , �;j; .T( s'> 1, -.11..•- i i . { , i s i\' \ . ,•\\.'•\ _ fltpjj1✓1 r!k , t , 064 068 �\ \ \\ \, \. { 1 • i \��\ I. �\ !- _ _.. ! ,� ` �;, if"`�, ij $ :1 ` _-�. 8" \ \ \\ \, 1I. I. ,\. ; I. �,• -� : \',, %\ t1Ei • ( 1, ,, - + 10 0 ,t }'; Q . ,L/ . r _/ rl, I1,. �3r f j,i.: ; 1 ' 1 0 V 0 J : \ /;,,. . J 1 1 F� ( 1 f ` .t'� N51 ;� r , ,.. 11 f, tf , Y.. % , % !/, a. rt '/, r 1t)1 rr i 1 (Y? \ ` ' " ;!'� 1I..;I 4.1�.z?,1.0 r'I 1'v I II.."..*!II.-!.--f':I 9m 1%.I.�I...I)I.-1,I.i,,�..-,,I.-_II I1."I 1.�,�.,:.I�'.II�1;�1�%."�1i.�,I-f.,"I W.,1I'_'1,..1.,1 t%I.,.. - -; Fly J �/ 1 a \ 3 1 � ,,�%',-f y 'r' r' 1` 1089 8" 1 G88 " 11`} V . , f, �, t ' -,.I..IZ iI'-i1,I..,-1 4..,.-",,1�,.I.k-"..I,.I-..I..,i�'I'I.�..j'I".V L-,.t,f?-.,/."II`-,V,..-.�1!I.j-._/._-I...-,.,�,I I- -.I�-1%I�,......�e4.I1-1.`I.,L_�_-11.-,�_1.k_I,_I,,�/:./11 I.1.1;.-�,1_,,..d_.._._._,,��_I._o_�II�...I_._....1�I..?.,�I 1..__.._.:�)/_,I.I/I.__..1,.jIIf�II I_—,/r.:�-I I-I.=I.\A 1-,\,.:�.,I�P1.4��.,111.I I�\-,1:.1I,I1:1 I41IX.I-.1bt_.III1 �..,I�/,1I:I�I-I'p.!.I�,..1�I.I�..,,,''1�.ItI1i I...,I 1 1;1�1,.I.��.�,I....,.�..,./11t I,.1,1 I-"1.,/'�III,Z 1:1-..I,.�I1-:/I.I/,I...�/,,_/,I�.�I;I;�i�����0_PI I:I.I 1 IAIl II�I01 I 1e*,...".I...".N I III.I�%-.1 I..."11 t `' ',\ - _1 r, ""-i':i Jr 'd , _ j J " 1-.09 ,`I l',1 .`�A` `;+ . 1( 2 v✓ yt :. ',. 'f 1086 12" 1092 12" 093 12 '` L p l:;,r ` �\, 1,'t. . l I 109 tt! ; � ' , ' 4" \ 1058 t 10 , 0 1 3 . j 1 12 .�.- , 108g 11ii 9 . .�,,, 12„ I`,, � ,.. ae �.y... .(_� eswar a+•.•-�.,.,�w _._...._.;::-_:._.- ..........-.._- 1•-�.Li,I�..•-... ...--_,.................r..,r..._...... _. i �r ' f' �k 1 y 0 V I rI i ' f '� x I L_ 20 1 g j rf i ; Y t1 i ' ` `� _ 3 _ r. - �J N IV , "'� "-.� I t f. i ( t;- 1 r. 1 t( / . 1055 30 1056 30 : 072 30 30 30 30 15 1079 5 i 3� o `. 1077 1079 1082 1083 , 1 , . 1048 , �P `f , tf , : t ,. 3 f �•q€' k1 \\ \ .\ .,I - _ 1( , - - _•.Y'�" '[ - 1 100, i i f i j { .` i`.`• t ,;�.t \Jr, . `. ,\. ` } f ►r !lr N �q► f f I ' .` ' ' . ���7 1047 i I I )NI".�.,\\-.�\I.�.�.\.I_�..�'.A...1.`"�I..��VV.I41..I"-..�. III\II�,.,..-I.-.-.l;."I",�.II1I V�,6 I.I\I1II,�%.I,iI,..�I.0,,.�II-II�,I.NI.t II I_..I II'�.i.\4.\-.i�.,,.�.."-'%-�1 ,t a\1 , j {a ` ;: rf ' _ r t y 1076 2076 co + 'i' �{ f €l i, ,`\ t+N ~ ,,,._�.!.I�.,,..'"--.�I..�I."...,,.p,�t IA..I�,'-"i.,V'�,,-I�1 1i'I\/,,.-.'�I,.l"..I-i��.'"�*,%�,�.t1,.�I*.,,I�.�,.I,--""".,'.",��tI.I,,'.I%?.�1.,.��".,.-�,I,�IL,k-"\%\1.�.,"..�\�.I,i'.I,�.1,1�",1 I,�j",II.V 1"�III1\\�I,""�r:.,",i.\,.""--..1�_It,-.1,"-�I..,i'I..�.,�1�...,�,.,.I..I.,.I��I.,1 I.1.....I1,�I.I..II....�.��..I,II.I.II�..,�I I.I I�.I.t\�����..�,�I.,.�1..I.I..I,iI..I�".'I11��.'.�a\lI.�I�1\".�,�.1\lI�'.'..I,.I.\-...I-I\.-\.I,..�:�..I.,�IA�I",..�k I'1�,\o�.,.'�..--��..I.I�)A k.I\�I.'..Xi�..I.,I,..�'i r I..,II,I�\..�i..II�3 XI.....�.\:II..,I.��\�.�,,..I._i�..\I... `.\ ,r, i.-1 j /� , ; j t i, i t l f� t i . i,l €t t ';.a 1 I I \ .?' » \ ;. 1 1 1 0� I k ' Wi t;.: t l.."1i I,"II.I I\,.I�I.�.1.I..,\,�\I.I:'I I I�,:�.,� �1"".1.�.�"II�1...Z\-11,,�I�\,I,�1.1,,II.I-1I.II-1-.�,�1 1,��..1\.\.k\��1 I.,I,,"-II.,\ . t'y1 - ' ! i ,t`. , !y r . -1 Y t t: �t1 ; t t, '\ ti I, r 4 . , _ _ � jai ! J f •104 { 1 . , . , i 9t , , V} 3 ;. - t, t��V; t, ,,\'<. r.,Ii 10 . 1 Y _. . f. - -- .-.. �. y _-: , �..:. - _ _.�. , tt Lf: I -tf , '' {, •�a j s f I , i €' ,, 15 1 E., , a .,. 1045 _ 1 , 0i fir. +' 0 104 1 i i tI , f ,., i I. t "t' ` t' y_. ` , - _1._-.____- _{......._T_1 - _. r,+ ' I. '• } : { j 11f. _ i. ik: �',' I ,,�1a t, i .,1 . i . _ . F 1 . ", ...may .._-. , , . 1 '' :R ; ii I �, 002, r ! i;i fit ( } ( 5 +It._. I. J , ` {1 ' f.-.. 4 i i , 1; ti, y i ' (t Z '" i f ( k I / + + i 1 i -1 I I•f ' i + 1, ,`tii L, �, � j j ( {` t1 1 I i jt.� i * ` !i i r f i j j �j ' , ti''". x',. S vt 'fit i i 1 i 3 E. i ( t + ,r t i _ k I 100" r �I 1 1 i ; I ,i i ( I 'ii 1 ri ( i i L! n DISCHARGE TO , , , ,., + 2021 ill , +' 1` THE GREEN RIVER , �t i j i i j i j i !t r i i i ; ti is i ! i ( t . �, _ . `{ 1 V ^ }Ic;., 041 t - - ' �- -- f;,,,� •,i, 1 ; , 1-_ �. . 42 '�, k: , 1004 ;,: fit: ;; + , " p + 1 ��i T ,t i .. :• 'i'�..._......� .T ...-vim \ j 1 I '; 1 '1 - } ;' i , i i`'r ;n 1021 II ,, , . ; ! ,I :i i _ ,w . 1017 -.* - , .� , ., ii ii , ,' . , � , 1',\ 1�' 1039 f- .... _ , — ---4. f I '. f ,; -y _ f ,, 'l\ 5 11 .,--.' .t 1`4 -, I _� ' - ,`' Jr `�\ +1f/ j,• f I,i + 1 tf =I ; lll "' j� '•,'`, f \\ \ `, 1 i U = 00 ! i i 4 t 11 kii M,-1�I.:::I 1.,.��f-...-j,...i_1...,:::,_I��.,,\-11.._"'.i===..-II-,"I I�"-.��..,�'..c.."---*IIt.--1.\,.���",I-'t i,I..�-lI'.�1 io�\,I,,_-p-�.-,.-.-.t,/".I1_1-t,1)-_.;_...).,I,..o�\.,I...`,1\..�-_,,I,/j 1\.,"I,I�".,,...-!.-",-�0.,.;1..W 1\,1 I,,,:�,I 1 1."'N.-',,I.;I.N,,1-,..._,, ..0�'.V%:,-.I 1.-.�-,1,.�I.-2/.,\I1,1.\.,.,.—7_.�.-�.�-I�I�.�..�.I.-,,_."I 4�'_I.'�,1\..._�41-,,,I-..NI".,I.I i,.t I,-I..�,,Ii.I:%,.1,._�I-r//."I1,_\I.I.I-.\1.1_�,I..�,.Ii.1I.-:.Ii.II i_.I j-.I_�0\---'1I'I/�./I";.,.1�:.,_,...�p.,._;._,I�r I/,I11..I._5-11��.1�._4-,;\-.,/-�4,*-I p-�;�,!.-I,,,..I j�II.I"1'-;II-,,j,,-_I2.-I,..-,-.!" t, t, k; *; , ! '. . 1005 i i /: l f Z- ,2 `-' ` ,-- J � j } i- i i \ 1038 ,i , , I i ► ! i } 1 K ' I —� '., t l ,, • ,`' , ,`'.` J +� f i si + . : t_ j 1!i ;'t.I /`, �; '; ;, 1 �.. n � `t t i. •y 1 l_. ,.,-� ',; it; }' ,t t ,�, ' �.�, ,\' i•—•_ - f.-t�, _.__ ."�` t_. _..-._:f- L_....._.. 1-} �._ ---- -- R'f i ! � ,I i, k ,,.' 1 , I i jt-. 1,, ;, tS i `•i ,t ` ,,- ._..l' .,fir-i --, ,- ,. _ Ijl� f tii �'-� •? f 1` `�1 Z �-' x ` ))tc Il' �( ^ iai i �, i 1 I r j' t+ , k,i 7u 1okj ,i \� ! isli' i` fI '� 1 i ri i,) . \it , f' . t\ •' . � ,,, ,, t `';` \ , 1 Q16 # 1 , , , II D t , - - 1� ' i 1 + i 1; o, _ 5 1 - zi� o �l �,\ t. 2 1022 _� i , i i l , + r f f I 1 1 { .r.y.._�� 1 , � i \,,\ �'t 1 k --- _ 034 2 ^2 _ �_.,�_.. 18 Y, : ; i I } ;\, '0 i t� i', t' .1 I 1 5 1 t 1 i i} t i t \ r �• i 1 101$ 1 '► � 1, �7 ,. (T1 --� ii k' ,,, ,.it J I' ► 0 3 0 r. ; 1 1 2Q 1 ,--- - _ 141 ,.ter. i � , - + 1 1, ''1 ,, �.__ . r j`:,'t - 1�31 l' 2028 202$ 30 24 ::: - j .' t I Z {/�/ �,� ,, S1, . ., _ I., 10 2 r h 1009 1 b1 1 _�._ "i ,.~-�-�.'-j---~` ^I ; f + I 1 ; ;rL�,•'%,4 ` . ; /.'[ ,,'�' �.2 ;1 29 1�•( ,,. 1 _ ' f i. i t IV"I � '1 �\ D � ; o A ,:, 1 / f 15 15 1024 _ 4 , �,-a, j t;I I ; f ��) t: ,s4 //. 1 2027 , 103 ' t ' , • 1 E I /� 025 i J" t i - -. Dk 1 / / t, r, , I ' I i 1 / } —jj}I % , _ J' i l i lit _. tt i 1 6 i - P,..�1 / , t A �1I�j {f , / c_' r� /� 1 ! f rt 1 ,\ 1t i , { 0j 't . Mi?. j 1 I-,_. 1 ti..,_J `•_._ 11 I. 1 1 1 I . `'i , (' i I . F 1 , �f .��p�,,,,- 1 ,r /` 1 }- i. r •�. �,..•.• i / ! 1 t7t'i ,► '1!• c 1 r/ f„ _z i .1,r•S^ t. .�"'1+.r• , \j .1/ /. � f ( / '!1 ' cd s,�. X{: //:, j' f 1 , i . - . - . I f .? . ,^�, IV��:� �."�, I m . . . _��._'__kj?�,_Eq ,A6L 4 F4 ID .�,.�-....V:..��II�11..�I�11�.,1 I..I1..I.I�I....-.I..�..1..�..�,...I.1.�..,....I 1 I.1 I.I�I.I1....-.....�.I,I.I.�-1 I.II.F..1..�mm 0I.�K-..�I.X;(0-I._1..I I..;.�I.I.�I�I 1I I.I I..1...),I II_�:.I I 3 I I.—.I I-\01 1I�..I...�.I�...)&I-I k.I.�.II,..,III.j.I...�I.�..I.�."Id...I�I.IIt.II...I����I1.....��\.�I..II...I I...I.1..�-.II.I.!.I\I.I.�...�i.I..1�,I..I.I�I..�.�.I,�.I..I..I�I l.I�1�.1�I.I...I':�,I..�;.�...-1--�.L.II.I.I,.�.:II 1�.I1I'1.I.I.I..1 I.1 I 0.1 m�-_.-.m0E-z;--z-_z-I I....,-�>-KZ1.I..,...,�.I.I�I..I,II_�II...I 1 I I_-.I-.II1.�.-...UI,1I:-1.II-_1,�,1.I-I 1 I.-_,'Nu..�..II_�-_.-�.-._�..I..dd.�:d"�.*�I��\II.1_�\.I..I-I.�1..�i,.,.I�I.I�._��,. y i. t I' �� - i. ('�-( ••� _ - - ?"r••'•r.,\ ``�,�. V / /' 1 !�/ JI /"; • ? T _,f f .. '1 la. 7t ,I ,.i __k ''� .,,� ♦ y `� \ €,.t.'\ / r -. / f -,i i _ I ! .. _-, ff i�A ili IFlsuI ,,... .r-..,.,I,..i1-�.\,�1�I i,\-l`,.,,�I,.\,,I II I.II�',,.'.�"\V1'..,,,,,.\\Ii�I`.I I,,.\I,"V,�'1.�,"k.1v-11�:'.-.I_i�i..\,.,-')\�-",I 1v,x..\I��-V.�, ,,"i���I,..I,,�I I Ni i.I')1,..I..;,i�..,,1_.,.-,-��'V-�",t I 1 1,,,,1.,\-.1,_.�,�I`IV,.�I",1l/\-1I1.�O�A.,�.,-.���.,�,.,.�—.�.t..1.-1,I,,\.,,;1,ti--I""I\'I,.I:I,.�1"I,.%.I',I I�.'1-11P,DI.I,.I I....�-1l�,!2I'1 I"1--��1j'.;,I�.'c"1i i!I;.."it�.I,I,,,..�,"I*�"1��.V I.I/I1,.,II.��k,JIi���.�..,�.,�k-v,`�A.\t�1-\-��i-._I,.�.,1-'...*.."1§"I,,�\I*"�.k\_1 I..-".��;I,".:I,'�.-��.�,/,I�i.-�.-)11\-I I.,I } \ . \� tit a 'a I .,�.~' ; j� `• \`, .. . \'y,.` .'1 r'� �,'. J_ -/ % �� _ -.-x.". i - _1 -ti._. i , C-'._ f yi, I i �.,:s'.,::�I�.���.I..I V 0,v��I I,,,.�_�%\..��I.,�\\...I.,.-.�.t1\.I.\..I\�I\1,,\�._..,....�a�_-,I,5I\...--,1I.1 A.�i1 II I`,-.,.�1x_�k V��:�,.�-._I,iJtIN��,--�-II�\��,-I.3I_,�V�.Ii.*-",I�..�._j0'.I..--W.I�I i�I-1.,--I_t,_1,"0.��:.I-.I�.�.k..-kD-."0W"�,:,�&:::.` •, J_ F...•� ! i ter, - _ . �''}���J ., .ems a ,rl - „ ,^ 1. ` _ __. T _ _• _J. _ ✓- '\F 'f. 1 ... _ • t tt D , t , � `� --. 1 'l �t � -'�ar:7� _" _s- __ _ _ y---'-- .. �,.r Sys �_ -'�. 'w.,\l�%a� ' .�.(/ • .. 5 t �.:. / t�. . ,... y - - ._ - � _01 - r s ter="``tip ,0' t t , 1 1 _,f�, - - — — \ �a v l it - ' e ' . l Y,• _ J �. ' R' _ - J - — - - J - - . . .. —..- jl _ _ tI � I� 1 .. �.. . 11 t� . �I .- I - . I.I I I I I y z ..I .I...�.-.: .�. .1.1.. — � . � .1. .. . I. .�1. ` _ .,. 11 . .. I I .. — I -_ 1 - _ _ - . 1 �{ , - . . . �_3iLi' _ - I '� 1 1 . .—. I . II;J�I1,..1 I __ ..�.., ..;II� 1 .. ... - \ . .r ;. -tl. ..: _--:. .. - �.4 - Xt..s<�.t11. . . - I I I . z f r•.-,.,...lam--s_' _ -•_ - .-.... - T' _ _ a . . . �- . .I I t.I I .I. . . �. .�. p —. . _ ♦J .- .. , . , .. _ t _ ..__. • -. _ ¢ :E ' ' .. : _ , k I.' 1. ,k . - ,. .�-I. I .1 . .1.....- I I �d . I. I . . . .. . I..I . ,` ` 'O\ ` \" `1 y. . \ , . -';� \ ,•.._., \?. \ / w _" �1. �' i'+ . . ,, \�R. - `\�\\\\ 1 R ` 1 �_11_ f'- �y�, rx �� . i, i;. `�\, \.� 0 f; F \� D � ' , t J'r % _I it 1 . %I= -� _ 1r M 't j , it O r .k .f• f T' ' ; f , 1 /.r , !i I t! 1 `- I ' ' J...l , � 'I+ it k; . - j, / ,,'1 ///// i i � `\� ` �J `\\. \ t + f ` \ \ ' ?'. \ ram' i l t 1 } `,' ., .- `I , I , !'i, y+ � ; i , . ! . y ,i�// i /'J r/If \� / j Y l g', t \ // � 'J % ; fit! �1 c , , 061 A !i, ' 21 06 `i ,,r. 1 i ,% i. _ 1a67 ` , . J; h `; �i` ,, ; r ,, i,. . -', ` ,`Jf, f1i{�6 � 1 . 1 f � 1..__ ti' 6 . f � 'I it , f, t / 1 10 9 �' : i/ ir+r J',, if ;t �C J i t I i''1 .' �. ```� .� \\.- j P ii t , t, I i i . 1-0fi4 �;=.. ' n \ I jar, x . t, i ; i 068 J jp i� ` �^1' Y ; \ , 1 , ! °1``/rrf", p�fr(( y!t i j i Q� �`,\.' ` l \,'{i_, �,\,,'''' i % l�r /s •fl� ,iY/"rT fir , i , ',1 � r\ t \ t f ' �, //// ,-j I .1j - 8 (�88 087 I i ;1 .,� - - k .`� 1 f t t t' i `/' rJ i. `'/)''ji /j'..��f/J" /f�. I t + _ �\.. ' J i:• yl 1� 1O9 '`, I `••' i i 1054 i 1 1, �` `;`'' i 1086 109 2 fl �L t !` , ; 12 12 109 3 12 '� {39�5 � ',� � 'I' � 1 . I, < 1 ��SC :. '°'�''.f! . 1058 24It I r II \,I t� 1094 � `\i°! i't1 t ` I 1 _ . . 1091 (` I, k �,�; f,. 1 5 i i 1 i . n I! 1085 - j , f f' r ._. t, t . t / , r \ fir �— 1.2 . - . � 08 f f (: , o tv :: x 1073 « ; f ;j r �s 4t-: -P 00' ! J f 'I ;i .. I ! 1055 1049 0" 1056 3Q'' l q72 30" 3-0 30 30 15 1079 15 » » ff �� „ 1 t f 1I . l! . i `i \ �� f i 1 1 j' . 3� 7 1077 1079 1082 1083 ..- i i i t i , i i , ,, Ji 1098 J { ' , r 1 i ._, I I ;, , i , , 1 1048 F1il i i { + ' j i 1%'� 12fY 105 sii � j' i „ it's `� 1053 '\`� `n ,'I 1 I I i i i i i ,, ,, i f ,\ i .. {, , , 1 1 II ,, 1 l `.LSD i .< \♦C\ r 204/ `` N I f f i ri f ,`�.i i1,, '1'\,`f f , fJ"` t .\,,,: ' ' ''�/ 12" 1076 12" 2076 I - °p l' kl i i,I'. rr , , ! , x i? i . j - 300� a ! � i,rr 1 t\ ''{. •t ' ? „ i i I ! + r J i i i 1 (t ' ,, ,t, t, t ','.!`; - 11 0 ii .f 'i it i�i f '.. "',. t.\ eu •L` � \1t\t+, 1', ti.,� `'} .. ,. d 1 44 r` jp 1 ( + „j !1`, tt ,..: ; �t} , r, !�i � ,� '\ 1+ :, 3 . it ` I — ` i - ` ` i' t`' i '.`:i' J ,`f,. II . 204 ?,� r• r ,t 1;11t! it tI:! i� i I j ;a�, '� 1045 15 1 I ,` a i �t• \ I 1 ! C]+ + J i i I :, i ; i l ,t ... I , ....I r , i'r ! 1 : 4I t �/1 I ! 1 1 F.�I4 •I! ,� tf •t t., _ ` I ,. 'I i I i 1 i 1'` \ -t I i{, ' i ... i J .is .: -_{ i!'i___ t U I 11 I I i f , ' ,I !: I ii' t �\ ; I i ;1 r i, I ' i ' ;f ,:tL ( I I I I 1 E I t{ , 1 ;1,f , . t1 P. 11 �,. - � 't t•� .,I \, I ;' iI ))J �. -{ i'I ' .J 1�'I) 'i• i i . 't T1 t V ° ` ,. //^\ ! ..__ , I I I 1 �. 1 ;I i +'. t. - i, i ,. i. Ii. r� '. fI! Ii N �\ ; 1., } 1 O O "/, -- i i I I i i I I J 1•f I� ' t n DISCHARGE TO '+ ; rt 1�.: I i , I 2021 I �� r! :; i ! I THE GREEN RIVER �" ; � . I I t {,,;I I I I # ; i'i, �, O, , i iI 41- f I ' ` i I •' 1 11 �' I �' ,,, ",\' 1'l , '.. ... i i 1 i: 1 I. , i!: I i r f i , e 1 F! _ N \ it �: 1 \ \ f _ -. 8 • i jill I`IN ti ! f r fit . : .t - ] 042 - l € - - ., , ,5 I �� J; i ; >r, ''a i 1004 i ! v i ,,,,i „7 . I. ._; ,- -_L_� - ;, I 1 i ;,.jam 1 i �}� , \ 1 +--- .. . , t • _..... ,r- �'; �' s; i i . 1021 i f j J�w 101 f i s - I I ,• :, r , I \ i\ i. 1 , ,• 1 103g r I�: :::�� . - -. . I i . i ; `` 1 ` .• I.i \\!1\� { ��t\1� i `; ' \; , N \1' �� 1 j a t 11��r: `� I I Ic a i . )^,i I - \, � ,1l ` + ; , � i i �J ._ `1 l -.J t i i 00 d t 1 '� , 12' 1 . -'; t 100 5 , , 1 i k E 1 `` Y t f r : ? ti I 1038 tt a 1 - I { I,,, gyp, �,- !,.,'` .. .\ 1, ,t ,>> , !. :r , t 1 1�� 1, ' it i 1 i .` t• ` rt ,' f 2 , �1 l _ /7, !'.' { y r " ! ' i, i t I f ., I I ` ty �. i ! �I,! t,\. 11 iA. t, t." } I ,,,\ . St. t: �iJ... _ _ _-f t--- k t i t i 1 I it r t _j1 :"`. M /l/ i(i i t ,,.+ j �.r' t�. iA'` i' ', .1-' t.11i , !3' !t,�_� ... r l 99 : :!. ' \ t { i � ,1 103 fin. '; . ,,; ! , j l„ i. r f o 'L' \\ ,! ,1 +. .A .\t c ,� V- V 4 t .I \��.._ k 1 1 f.� _ +., :-` I •'t 1. 'Ii i ii i11�� 't � �' ' „ - It �L J •I i !, D I 1 't�, ,l ''r I:'i E U•', -V :i.I ,t ' `.4. - _ ,I .. I '' it' ie% 1, i '' ' i �j� T/ i {i /�l a O , r ,,- I� I 1037 I, (Tl ` _.. . S i 8!f i I i ,� �� �;(`,�'1 _��, \ ,i ; 12 1 023 1015 101 18' J li ,i I�f I 1034 1 i , .. \1t �t ;I , i l . . I; I �; . "�� . _ , { �1 � h] N �� ,. `, , f , ti _ 030 r ;a 02q' i I > ,_. (—� , ,V,& • „ e I i ;4 1 07 3p ITI \' �` \ I - f : I 1 31 28 30" 24 ' 01 _. . I I i ;` 1j 4 ; S 1 � z (� 1'; �� /;' 1032 ►.`� ti h 1009 i1011 A_ f' _.:�__ I3 , i -�, . \ , I i �, '.\ f '7" J' ; 1012 i r I► .. . . .>rl ;� r f Y 1� j! I t t I'1 , 102 4 { , ` I ��I _ _ ' I 1 +` �'` x ,. • I 1031 2027 -- — 'I t ��.' i i ,a t � I. t , r, , 1 ��' ' `� 'fC:r� / 1: i , '', - .. i \ JfI .? �� ,I. + i D ,.j, .\3' , ,i _, • j . �1,,,X �° r1``,``,\ {.J '1 t �� �4 ! 1 " ��` y -..'-' 1 ; } I 4. tI A {,\k' f i\ \ ,`,.5 :.:+�, f ..J //' lf/ J ' J ^! \`\t j I ' I '` fi + ;e ;\ (' i ('' E",if J \,� t I .`'\ __ ice. r I (�i ' I ,',' , f_ t �� !l• ,'} i , , ^r I /. ,• k ', _ F' J1 J \i ' t r(} `,'1 j' ;,`` r/ .i I,r j , '1..4�"•.` Q -' '•..-_.. J1 ! f f t. j 'I .A., .. i� ` 1 .I t ''' 3J' ,� .4//���' r l- r I \' iT ; `•IM �.:`t ,�, !�_ ` --`... \ /, ,. f �...,,I • 1 I ) `'� '', ; I •?'1;-- ---� f Y I y�. J i , ... .,. 1, {{ - . Y.. - . , J ` .; . { i, , 1 - ., I'I ... ,. _ _• - s - _. , _ t . _._ , _ _ �e 4 jj \ N~ T .. r V / _ - i . / _._ _ _ -- —\ ,� .- / _ - _ --� _ _ _ ,� _• _ _._._ _ _ .�_. — _ _ •.- -- - x _ .�. ---lt-_ _ 7 , 1 "T _ , _t� _ - -• 4 J'. r' M _ �- . _ Y III - - -�_ _ � �- _ _ _ _.. .- __•, 0 1- . Z ' . f :.y. - - _ � . �.