Loading...
HomeMy WebLinkAboutSWP272102 1 1 1 1 Hydraulic Analysis 1 1 and Design Report 1 1 1 1 Regional Disposal Company 1 1 Black River CDL Facility 1 1 MY OF REMN RE C E I V ED 1 - �► JUN 0 2 1992 BUILDING DIVISION qW 1 TABLE OF CONTENTS I. Project Overview II. Preliminary Conditions Summary III. Off-Site Analysis ' IV. Detention Analysis and Design V. Conveyance Systems Analysis and Design VI. Special Reports and Studies ' VII. Basin and Community Planning Areas ' VIII. Other Permits ' IX. Erosion/Sedimentation Control Design X. Bond Quantities Worksheet, Retention/ ' Detention Facility Summary Sheet and Sketch ' XI. Maintenance and Operations Manual 1 � 1 1 1 1 I. PROJECT OVERVIEW 1 1 i 1 1 1 1 1 1 1 1 1 1 1 ' PROJECT OVERVIEW 1 ' INTRODUCTION ' The Black River CDL is located in Section 14, T23N, R5E, W.M. The property is bounded on the east by 68th Avenue South and Mine Access Road. The Union ' Pacific and Burlington Northern Railroad right-of-way bounds the property on the south and west sides. The site contains 17.6t acres. ' The project site is predominately clear with trees and brush along the east boundary adjacent to 68th Avenue N.E. and Mine Access Road. Brush patches ' and small deciduous trees exist along the southerly portion of the west boundary. ' EXISTING DRAINAGE ' The site drains to the west and to the north. Major fills on the site have created ' a swale in the northern part of the property which acts as a cutoff for drainage and redirects drainage to the north into the Class III Wetland. The northern one-third ' of the property sheetflows to the west to a sharply defined ditch created by the fill for the railroad grade and the site fill The ditch reduces in depth to the south and ' disappears at about midpoint of the property. The southern portion of the property sheet flows westerly to the toe of the railroad fill. The site is located in the Duamish River Sub-basin of the Green River Basin. A Class III Wetland exists at the extreme northern end of the property. ' PROPOSED IMPROVEMENTS The site is being developed as a collection/shipping facility for construction debris. ' Improvements will include an office, waste transfer building, scales, scale house and a large paved area for container storage, heavy forklift loading, truck ' maneuvering and a railroad spur. ' DEVELOPED DRAINAGE CONCEPT 1 Storm water runoff will be collected in a piped drainage system and conveyed to ' a 3-cell wetpond. The drainage system will prevent storm water from reaching the railroad fill. Some runoff will sheet flow to the wetpond. The wetpond will ' also contain staged storage for storm water detention. The wetpond will flow into ' the existing Class III Wetland and then through a 24 inch steel pipe under the railroad right-of-way and into the Duamish River. 1 1 s s II. PRELIMINARY CONDITIONS ' SUMMARY UNITED STATES MOINES QUADRANGLEw) pARTMENT OF THE INTERIOR JUASHINGTON—KING CO. GEOLOGICAL SURVEY TE SERIES (TOPOGRAPHIC„ 5 0.9 Mi. 122 R.< E- R.$ E. SEATTIE(CITY P.O.)r0 MI. � Ar:R• r _ '• K � nk �r •s i � 1 + �' ran _ a we — 7IS K .. \ \. rl ' i / t• 1y TON 1'p SewaRe A � 1`jj�' •�, }� / � (\-� A R OR�tn I T gisppsa am • •Foster /�•. � ` \ � _ . ••y `�. • '\ , , ♦ Golf "14 l:.. ■ — +I- �'. :+ Cocrset '• l' �. I S iil i � R�IuoAo N \ Fc r4 AL •13 '\ � `t: .i� —__—_— — II13 �:rP_;1--t—�—_ S a:= / I -a n. — ` •� �Sch �. ~�I'� "6L NOATt+_ _ + z =�.• tl `uaa •• J ' 'ICI •\ � "4 .'1 . t i•Sd•.. - ` ra r �_ an . t: I I i•�ii 'I R .-_y a+vs:q �: T . II ALlj BM !�Tr 'E iey �1uy{'�'��n -i : •. I --- a A j ' 1 G . I •. - d1J. I a. h k� I I }�at�,•n; rKraS 14'4 , a -ryF•e n '— n i m ,� I ! �• B 26 a 25 ( 30 I'M , e aa. r _ a AREA UNDISTURBED AND UNDETAtNED WETLANDS = 0.47 ACRES BRUSH AND GRASS - 0.67 ACRES AREA EX-4 8502 FEET 0.20 0.20 ACRES dtKT .'.•AY.py�:, ' 4T:ScNARE.F�ET.'.'.'.'.'.'. V 2 RES•.'..'.'.'r:.'.'.•.•. \ TOTAL EXISTING CONDITIONS DRAINAGE BASIN - 18.07 ACRES ' V AREA EX-5 3€ 15630 SOUARE FEET gq 0.36 ACRES A \ AREA E%-2 \ 487791 SOUARE FEEIp "11.20.20 ACRES 1 b 2896 SOUARE FEET 0.07 ACRES � 3327 SOUARE FEET $ 0.08 ACRES r eat SOUARE FE 0.02 EXISTING CONDITIONS ` ' •- SCALE 1"=200 0 a w x 0 - - - - - - - - - - - - - - - - - - - 11335 NE 122nd Way RZA AGRA, Inc. Suite100 (formerly Rittenhouse Zeman&Associates, Inc.) Kirkland,WA 98034-6918 Engineering&Environmental Services (206) 820-4669 ' FAX (206)821-3914 19 September 1991 W-7250-1 Rabanco, Ltd. 4730 32nd Avenue South ' Seattle, Washington 98118 ' Attention: Mr. Rick Morck, P.E. ' Subject: Subsurface Exploration and Geotechnical Report Black River Waste Reduction Center Renton, Washington Gentlemen: We are pleased to present herein a copy of the above referenced report. This report ' presents the results of our subsurface exploration and geotechnical engineering recommendations relative to the design and construction of the proposed project. We appreciate the opportunity to be of service. If you have any questions or we can ' provide additional information, please call. Respectfully submitted, RITTENHOUSE-ZEMAN & ASSOCIATES, INC. 5. DR1.lr le wee . I . z James S. Dransfield, w Associate 2M3 yes GISTE4 ' `rIeVAL F'1' EXPIRES 12/t9/q AGRA ' Earth&Environmental Group ' TABLE OF CONTENTS W-7250-1 1 Page 1.0 SUMMARY 1 ' 2.0 SITE AND PROJECT DESCRIPTION 1 3.0 SITE CONDITIONS 3 3.1 Surface Conditions 3 3.2 Subsurface Conditions 3 3.3 Groundwater 4 4.0 ENGINEERING DESIGN CONSIDERATIONS 5 ' 4.1 Structural Fill 6 4.1.1 Railroad Fills 7 ' 4.2 Preloading 7 4.3 Foundation Recommendations 8 ' 4.3.1 Shallow Foundations 9 4.3.2 Deep Foundations 9 4.3.3 Pile Capacities 10 4.4 Slabs on Grade 12 4.5 Retaining Walls 13 ' 4.5.1 Retained Earth Fill Wall 14 4.5.2 Tied Back Deadman Anchor Wall 15 ' 4.6 Drainage Considerations 16 4.7 Pavement Subgrade Recommendations 17 5.0 CONSTRUCTION CONSIDERATIONS 17 5.1 Site Preparation 17 5.2 Temporary Slope 18 ' 5.3 Structural Fill Placement 19 5.4 Piling Installation 20 ' 6.0 CLOSURE 21 Figure 1 - Site Vicinity Map Figure 2 - Site and Exploration Plan Figure 3 - Generalized Subsurface Profile A-A' ' Figure 4 - Generalized Subsurface Profile B-B' Figure 5 - Approximate Bedrock Elevation Contour Map Figure 6 Approximate Thickness of Compressible Fill Plan Figure 7 Pile Supported Tie Back Anchor Wall Criteria ' Figure 8 - Settlement Plate Detail Appendix A - Subsurface Exploration Procedures and Logs ' Appendix B - Laboratory Testing Procedures and Results t 1 t ' SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING REPORT Black River ' Waste Reduction Center Renton, Washington Prepared for ' Rabanco, Ltd. ' 4730 32nd Avenue S. Seattle, Washington 98118 Prepared By ' RZA-AGRA, INC. 11335 N.E. 122nd Way, Suite 100 ' Kirkland, Washington 98034 September 1991 W-7250-1 1 1 ' SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING REPORT BLACK RIVER WASTE REDUCTION CENTER ' RENTON, WASHINGTON ' 1.0 SUMMARY The proposed development appears feasible, but difficult, with respect to subsurface ' conditions encountered at the site. Special considerations for earthwork as presented herein should be followed. A brief summary of the project geotechnical considerations ' are presented below: o Our subsurface exploration program consisted of advancing 18 ' borings across the parcel with a truck-mounted drill rig. Our borings disclosed variable subsurface conditions, with the depth to competent ' bearing soils ranged from roughly 10 to 55 feet across the main building footprint. Major portions of the unsuitable soils were found to ' consist of moderately to highly compressible silts on the order of 20 to 25 feet in thickness, originating from wash ponds on this former gravel ' pit site. U The moderate to heavy foundation loads for the main transfer building ' and scales will require pile support. Pile capacities are reduced by the downdrag imposed as the upper granular fills settle over the lower compressible fills. We have evaluated the use of steel H-piles and concrete filled pipe piles for this application. G Heavily loaded floor slabs, concrete pavement, and settlement- sensitive container storage pads will occupy major portions of the site. In lieu of using a pile-supported structural slab, we have evaluated ' other methods for reducing the long term differential settlements across these areas by placement of a preload fill, possibly in conjunction with wick drains to increase the rate of consolidation. G Subgrade support for the lightly loaded buildings and ancillary facilities may be provided by the granular fills placed in the upper few feet ' across the site. However, even if preconsolidation of the compressible soils at depth is accomplished, all areas to receive high capacity 1 ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 2 pavement, storage pads, and floor slabs would be subject to some long term differential settlement and cracking. This summary is presented for introductory purposes only and should be used in conjunction with the full text of this report. The project description, site conditions, and detailed geotechnical recommendations are presented in the text of this report. The exploration procedures and boring logs are presented in Appendix A. Laboratory test procedures and results are presented in Appendix B. 2.0 SITE AND PROJECT DESCRIPTION The part of the subject property explored for this report was approximately rectangular in ' shape. The eastern side of the site was bordered by 68th Avenue South, and the northern part of the site we explored generally coincided with the City of Renton/King ' County border. The Burlington Northern Railroad tracks were located west and south of the sfte within the City of Renton as shown on the Site Vicinity Map, Figure 1. We ' understand that site development is to include a large waste transfer building, a small office building, scales and scale house. Surrounding areas are to be paved to support truck traffic, heavy forklift loading, container storage pads, and a railroad spur. The purpose of the study was to establish general subsurface conditions at the site from which conclusions and recommendations for grading, foundation design, and construction considerations for the project could be formulated. The scope of work ' consisted of field exploration, geotechnical engineering analysis, laboratory testing, and report preparation. In the event of any changes in the nature, design, or location of the ' project, the conclusions and recommendations contained in this report should be -_ reviewed and modified, if necessary to reflect the changes. This report has been prepared for the exclusive use of Rabanco, Ltd , and their agents for specific application to this project in accordance with generally accepted geotechnical engineering ' practices. ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 3 3.0 SITE CONDITIONS The site conditions for the study were evaluated between 19 to 21 June 1991, and had been previously evaluated between 16 and 20 November 1990. The surface and subsurface conditions are described below. The exploration procedures and interpretive ' logs for the explorations are presented in Appendix A. Laboratory test procedures and results are presented in Appendix B. 3.1 Surface Conditions 1 Most of the site was relatively level, consisting of fill that had been placed prior to this investigation. Loosely dumped fill existed near the northern part of the site. An existing railroad embankment ran along approximately the southern and western sides of the ' site, which was approximately 8 to 10 feet higher than the site. There was an existing bank along the eastern side of the site. The bank consisted of cut and fill slopes varying ' from approximately 20 to 30 feet in height. Most of the site was unvegetated except for a dense stand of trees on the eastern margin. The northwest corner of the site was ' generally covered with trees with an understory of blackberry bushes, ferns, and weeds. There was an existing scale house located near the southeast corner of the site. 3.2 Subsurface Conditions The subsurface conditions were evaluated from 16 through 20 November 1990 and 19 ' through 21 June 1991. The subsurface conditions for the proposed project were evaluated by 18 hollow-stem auger borings ranging in depth from 15 to 60 feet below the existing ground surface. The general soil conditions encountered at the test borings are described below. All subsurface exploration procedures and specific interpretive logs of each boring are presented in Appendix A. The subsurface conditions across the site were relatively consistent. Our borings generally encountered between 5 to 10 feet of medium dense to dense, silty, sandy crushed gravel fill, below which was a 15 to 25 foot thick, very soft to medium stiff fill consisting of a sandy clayey silt to clayey silty sand. The clay and sand content of the lower fill soils varied across the site apparently originated from previous settling lagoons (wash ponds) which had reportedly been located on the site. A medium dense sand was generally encountered below the fill. The sand layer varied in thickness from approximately 30 feet (in the vicinity of the previous wash ponds), thinning to 0 feet Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 4 ' towards the northwest part of the site. Below the fills and sand, bedrock was encountered across the site. The bedrock was a moderately hard sandstone, which ' varied from approximately 60 feet deep (elevation - 30 feet) near the southwest corner of the project to 13 feet deep (elevation + 35 feet) near the northeast corner of the site. ' Borings B-11 and B-12, located in the northeastern portion of the site, encountered no fill ' at their locations. Boring B-11 encountered approximately 6 feet of sandy clayey silt above a silty gravelly sand. The silty gravelly sand was then encountered to a depth of ' approximately 14-1/2 feet. Below the silty gravelly sand bedrock was then encountered. Boring B-12 encountered approximately 10 feet of silty gravelly sand to sandy gravel, below which was a approximately a 4-foot layer of a silty sand. Below the silty sandstone ' bedrock was then encountered. ' Boring B-17 encountered an obstruction at 14 feet. The boring was relocated (B-17-A), and practical refusal was encountered at 10 feet. On a third attempt at a nearby location ' (B-17-B), the fill was penetrated at 28 feet, by medium dense sand to termination in bedrock at 49 to 50 feet. Historic air photos indicate 8-17 was the former location of a ' road into this former gravel pit. This boring is thought to be representative of conditions beneath the southern about one third of the container storage pad site. ' 3.3 Groundwater Conditions The groundwater conditions during drilling were generally observed to vary between approximately 12 to 15 feet below existing ground surface. At the time of drilling, 2 piezometers were installed to observe the groundwater condition. The piezometers were installed in borings B-3 and B-7. The groundwater conditions observed in boring B-3 on 5 December 1990 was approximately 15 feet below existing ground surface ' (approximately elevation 14 feet). The groundwater in boring B-7 was noted to range from approximately elevation 15 feet to elevation 4 feet. B-3 was not accessible during our July field work, apparently buried under newly placed fill piles. Groundwater conditions as indicated by these readings, including quantity and duration of flow may vary, based upon changes in precipitation, site utilization, and other factors. 1 Rabanco, Ltd. W-7250-1 19 September 1991 Page 5 4.0 ENGINEERING DESIGN CONSIDERATIONS We understand the Black River Waste Reduction Center is to consist of a main transfer building roughly 115 feet in a north-south direction by roughly 175 feet in an east-west direction. The transfer building will include a tipping pad on the east, with a retaining wall ' separating the tipping pad from the main floor area. The elevation of the main floor is to be roughly 18 feet below the tipping pad, sloping up gently to the container loading area ' on the west. Dock height walls are planned for container truck loading bays on the west. Concrete pushing walls (18 feet high) are planned along the north and south side of the ' main floor area. The roof and walls of the main transfer facility are to be of steel frame construction with metal skin. ' A relatively lightly loaded office building is planned to the south of the transfer building. Moderately high, settlement sensitive loading is anticipated for much of the remainder of ' the site, including the container storage pad, the scales, and associated areas to be paved. ' Our explorations disclosed the site to be generally underlain by a variable deposit of soft ' compressible soils atop medium-dense to dense sands and bedrock. Based upon our borings, we estimate the elevation of the bedrock surface to be approximately as shown on Figure 5. The approximate distribution and thickness of compressible soils is presented as Figure 6. We understand remaining cuts and fills vary considerably, from minor cuts to only a few feet of fill in some areas, to as much as about 30 feet at the west ' edge of the tipping pad in the main building. ' Significant long term settlement is anticipated on this site as a result of current and proposed fill placement alone. We would anticipate settlements of as much as 1 to 2 feet may occur over the next few years or more. The remaining fills should be placed and compacted in a controlled manner above current site grades, so as to provide a fairly ' uniform subgrade for the railroad spur, container pads and other areas to be paved. We would anticipate that long term settlement of these areas would occur as broad gentle warping rather than sharp discontinuous breaks. This condition may be improved in the ' more settlement-sensitive areas by preloading and/or by installation of wick drains as part of site preparation. However, long term maintenance consisting of releveling and resurfacing, should still be anticipated. For the highly concentrated loading of the main 1 ' Rabanco, Ltd. W-7250-1 19 September 1991 Page 6 ' building and the scales, the differential settlements would be severe. We have therefore recommended pile support for all such highly loaded areas. The net allowable pile tcapacities on this site. are greatly reduced by the effect of soil downdrag. The compacted fill soils (ranging from 0 to 30 feet in thickness) placed atop compressible soils will gradually settle and impose a downward load on the piles. In addition, the compressible soils at depth will gradually gain strength, imposing a greater load on the ' piling as the adhesion forces between the pile and soil increase. This downdrag load must be carried by the pile foundation in addition to the structural building loads. ' Depending on the configuration of the grade beams, as well as your tolerances for floor settlement and cracking, it may be necessary to provide a structurally supported slab for tthe tipping pad and the main floor. If a floating slab is possible, which can be completely detached from column footings and walls, wick drains should be installed in advance of ' construction to reduce post construction settlement and cracking of the slab. Overall settlement of the slab area would be expected to be negligible at the northeast corner, ' but substantial in other areas where fill depths are greater. Retaining walls, especially the heavily loaded pushing wall, will require pile support not only due to anticipated settlement, but also if sufficient lateral resistance to sliding cannot be provided. Alternatively, where sizeable fills are required for wall construction, and the use of a retained earth fill may be considered as a means of providing higher sliding resistance, lower contact pressures and reduced differential settlements. We have also ' considered the use of a pile supported retaining wall tied back to deadman anchors. Each of these design items are discussed more fully in the following sections of this report. Construction considerations are presented in Section 6.0. ' 4.1 STRUCTURAL FILL We understand that grades are to be raised by roughly 0 to 15 feet across most of the site, but up to 20 feet at the tipping pad area. We understand Merlino Construction Company is to import fill material to raise site grades. Fill brought to site to date has ' consisted of a fairly silty, sandy, crushed rock fill. This material contains a significant fines content and will, therefore, be somewhat moisture sensitive. We would recommend that all fill placed above present site grades be placed in lifts no thicker than ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 7 ' 12 inches. Each lift should be compacted to at least 90 percent density, using ASTM:D 1557 as the standard. If density testing cannot be performed (due to gravel contents in excess of about 50 percent), we recommend a performance specification be used. We suggest that hauling equipment be routed across the fill and that the entire lift be compacted by at least 2 passes with a large self-propelled vibratory roller, as a minimum. To facilitate wintertime grading, we would recommend use of a clean material for all ' future filling. As a minimum, the uppermost 2 feet across the site should consist of a cleaner fill (less than 5 percent fines), so that construction can proceed during wet ' weather. The fill in the upper 2 feet should be placed in 8-inch lifts, with each lift compacted to at least 95 percent density. 4.1.1 Railroad Fills For areas to receive the railroad spur embankment, we recommend placement of a ' crushed rock ballast in accordance with railroad construction guidelines. We understand two compacted 6-inch layers are recommended, and that the track grades can be adjusted to accommodate future settlements. The railroad subgrade should be prepared in accordance with our site preparation recommendations, Section 5.1. ' 4.2 Preloading ' As discussed previously, total fill thickness of 10 to 15 feet (and locally as great as 30 feet) will impose substantial surcharge loads on the underlying compressible fill soils. We estimate long term (about 3 to 5 years) post construction settlements as a result of fill ' placement alone will be on the order of 1 to 2 feet. Because of the fine-grained nature of these compressible fill soils, consolidation and settlement is expected to be a slow ' process. For the overall hard-surfaced areas, such long term settlement is expected to occur as broad gentle warping rather than sharp discontinuous breaks. An asphalt paved surface which undergoes such distress could be resurfaced after a few years or, as a minimum, any local problem repaired as required. For the more settlement-sensitive areas, such as the container storage pads or concrete slabs on grade, it would be more difficult and expensive to maintain such settlement and cracking. ' For these areas, it would be possible to accelerate consolidation of the compressible soils by improving drainage in advance of construction. Wick drains consist of an about 4 inch wide by 1/2 inch thick performed plastic drainage strip sandwiched between two ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 8 layers of geotextile, which is inserted into the ground on a regular spacing across the area to be drained. We estimate that approximately 90 percent consolidation could be ' achieved if the wick drains are installed 6 months in advance of construction. We have calculated that the wick drains would need to be installed from the ground surface to the base of the compressible fill, on an equilateral spacing of 7 feet across the area in question. This would result in total long term settlement of about 2 to 3 inches, with differential settlements on the order of 1/2 of the total. Differential settlements between compressible soil areas and native soil areas would approach total settlement. ' We have recommended that wick drains be installed as far in advance of construction to achieve the maximum benefit with respect to reducing long term differential settlement. iIn order of priority, we would expect the most benefit would be realized from wick drains installed; 1) in the transfer building footprint; 2) for the ramp area on the south side of the building; and 3) in the container storage pad area. We obtained preliminary costs from Nilex Corporation of Vancouver Canada for wick drain installation. We estimated ' approximately 2300 wick drains (total of 60,000 feet of wick drain) would be required to cover the above mentioned portions of the site, with 7 feet of predrilling required for each hole. A unit cost of $1 per foot for predrilling and 50 cents per foot for wick drain ' materials (installed) was quoted. A mobilization cost estimate of approximately $15,000 ' resulted in a total cost of approximately $65,000. Settlement plates should be installed across the ground surface after wick drain 1 installation and prior to additional filling. In this way, the progress of primary consolidation of the fill could be monitored. A settlement plate detail is included as ' Figure 8. t 4.3 Foundation Recommendations Because of the considerable thickness of compressible fill soils (see Figure 6), pile ' foundation support will be required for the main transfer facility building and scales. Lightly loaded structures, including the office building and the scale house could be floated on the compacted fill soils. ' Rabanco, Ltd. W-7250-1 19 September 1991 Page 9 ' 4.3.1 Shallow Foundations For relatively lightly loaded structures such as the office building and scale house, ' foundations could be constructed upon the soils used to raise grades, if these soils are placed and compacted as structural fill, as described previously, and the risk of some long-term settlement is acceptable. We could recommend using an allowable bearing capacity of 1500 pounds per square foot. Footings should be embedded at least 18 ' inches below grade for frost protection. Footing widths are assumed to be at least 16 inches in width. We estimate differential settlements would not exceed about 1 to 2 inches. Differential settlements would greatly increase where shallow foundations bear ' on material of dissimilar bearing capacity. Therefore, in areas where footings would span between native and fill soils, the underlying fills should be removed, or at least 2 ' feet of native soil excavated and replaced with a compacted structural fill. ' 4.3.2 Deep Foundations Our subsurface exploration confirmed the presence of roughly 0 to 25 feet of soft, ' compressible fill beneath the granular fill soils. Long term consolidation of these compressible soil deposits due to the loading from the overlying fill soils is expected to ' be on the order of 1 to 2 feet or more with even further settlements over short distances due to footing loads. In order to minimize building settlements due to consolidation, we would recommend utilizing pile foundations bearing in the underlying dense sands or ' sandstone bedrock. ' Suitable end-bearing pile types would include driven steel H-piles, closed-end pipe piles subsequently filled with concrete, or cast-in-place (Augercast) concrete piles. Important considerations regarding the selection of the most appropriate pile foundation type at this site are allowable load capacity, depth to bearing soil stratum, ability to penetrate the ' upper dense, gravelly fill, and possible obstructions in the fill, as well as possible boulders on a sloping bedrock surface. Downdrag forces would develop along the pile shaft as the settling soils above the consolidating soft fill layer move down along the rigid piles. We estimate that downdrag loads could approach 50 to 60 tons per pile at this site. Due to the relatively high working capacities that may be required for the proposed structure, it is considered critical to reduce the effect of downdrag forces. Augercast concrete piles typically ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 10 develop higher downdrag forces than steel piles due to the high concrete/soil frictional resistance in fill soils and overburden loads on the grout "bulb" which commonly ' develops from pressure grouting in soft soils. ' The design recommendations presented subsequently in this report consider driven steel H-piles as the most appropriate type of deep foundation for the proposed building ' at this site. Both steel H-piles and concrete-filled pipe piles would obtain high end- bearing capacity, to allow moderate working capacity after consideration of downdrag ' loading. Steel H-piles would be preferable to pipe piles due to their lower downdrag effect and greater ability to penetrate the upper dense, gravelly soils than steel pipe piles with equivalent load capacity. The H-piles may need to be provided with hardened ' driving tips, depending on actual driving conditions. ' 4.3.3 Pile Capacities The following recommendations for vertical, uplift and lateral pile capacities are provided ' for the design of a foundation system utilizing driven H-beam or steel pipe piles. Figure 5 provides an indication of our interpreted depths of the bearing layer (bedrock) across the site. To estimate typical pile lengths, penetration of 1 to 2 feet into bedrock could be assumed for pipe and H-piles, respectively, although variations should be expected, with some piles possibly being terminated in the overlying dense sands. If determination of ' pile length is critical, a program of pile test-driving may be appropriate. 1 Piles should be driven to an apparent capacity of 50 tons higher than working capacity and should be structurally sized for compressive working stresses by this same criteria. ' This would account for the downdrag loading plus the working pile capacity. For -- example, 100-ton H-pile working pile capacity would require sizing the H-pile steel for ' 150 tons stress, and driving to 150 tons apparent capacity. Pipe piling should be driven close-ended, and should be predrilled through the granular fill soils in order to reduce ' downdrag and hard driving conditions. We recommend that all pile foundation support be utilized for the heavily loaded ' components of the main transfer building, as well as the scales. Concrete obstructions were only disclosed by our boring B-17 made in the container storage pad site, however, such obstructions should be anticipated in existing fills across the site. Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 11 1 We have evaluated the use of steel H-piles and steel pipe piles, to provide the vertical ' bearing capacities contemplated for the site. We have found the following values: Working Capacity Ultimate Apparent Capacity Net of Downdrag Pile Types tons) tons) HP 14x102 180 120 ' HP 14x89 157 100 HP 14x73 128 70 HP 12x74 130 80 ' HP 12x53 90 40 HP 10x57 100 60 ' HP 10x42 74 35 HP 8x36 64 30 ' 12" Concrete-filled pipe pile 125 60 ' These values assumed nominal embedment into bedrock or dense site soils and for this site are limited by the maximum allowable compressive stress on the steel pile. These are purely vertical capacities, and depending on structural design requirements may ' need to be reduced further. Uplift pile capacity develops as a result of the side friction between the pile and the adjacent soil. Uplift load resistance can be provided by a combination of downdrag forces and side friction within the portion of the pile embedded within the crushed gravel fill soils above the silt fill layer. Allowable uplift capacities of 35 tons, including a factor of ' safety of approximately 1.5, can be assumed for design. With the expected embedment depths mostly on the order of 40 to 60 feet, the ultimate resistance to an applied lateral load would be governed primarily by the strength characteristics of the pile and not the strength of the soil. Based on the use of a 14-inch H-pile or 12-inch diameter concrete filled steel pipe, we estimate that allowable lateral pile capacities of 15 to 20 kips can be utilized. A limiting deflection of 0.5 inches at the ' ground surface has been assumed in these lateral load capacity calculations. These Rabanco, Ltd. W-7250-1 19 September 1991 Page 12 ' recommended values are based on the assumption that all pile caps will be at or below the ground surface and pile cap connections will be designed rigidly. Higher lateral ' capacities can be obtained for increased deflections. ' Batter piles may be driven to resist lateral forces exerted on the wall by the backfill. We recommend that the batter piles be driven no steeper than a slope of 1H:1V (Horizontai:Vertical). ' 4.4 Slabs on Grade We estimate that the long term consolidation of the 10 to 25 foot silt fill layer could be on the order of 2 to 3 inches or more even with wick drain preconsolidation. A slab-on- grade could experience significant cracking and warping due to both overall and differential settlement resulting from this anticipated peat consolidation. If the risk of such settlement is not tolerable, we recommend utilizing a structural floor slab for the main building, as well as the scales and the container storage pads. Because the slab ' areas will span between soft fills relatively competent native soils (northeast corner of site), and elsewhere between dense subgrade and soft fills (south one-third of south container storage pad), consideration must be given to providing a uniform bearing surface to reduce differential settlement. In the northeast corner of the site (north container storage pad), overexcavation of the soft fills may be feasible. Elsewhere, the ' soft fills are very deep, and it would help to remove the upper 2 feet of dense soil and replace with a compacted structural fill. The floor subgrade areas should be prepared as described in the Site Preparation section of this report, and structural fill should be placed and compacted as described in the Structural Fill sections. We recommend that the floor slab be underlain by a 4-inch minimum thickness of clean ' sand and gravel, washed rock, or pea gravel to serve as a capillary break. The capillary break material should contain at least 40 percent (by weight) gravel-sized particles retained by the U.S. No. 4 Sieve. The fines content (that portion passing the US No. 200 Sieve) should be limited to 3 percent or less, based on the soil fraction passing the U.S. No. 4 Sieve. Also, an impervious moisture barrier should be placed between the slab ' and the capillary break material. Based on the soil and groundwater conditions encountered in our test pits, we do not at this time anticipate that an extensive below- slab drainage system would be required, provided a perimeter drain is installed as 1 ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 13 described in the Drainage Considerations section of this report. The final decision regarding the need for such a system should be made based on a field evaluation of on- site groundwater seepage patterns at the time of construction. We would be able to offer additional design recommendations should such a drainage system become ' necessary. ' 4.5 Retaining Walls Walls constructed within the granular site fill soils, designed to allow some deflection (on ' the order of 0.1 percent of the wall height) during backfill placement may be designed to resist a lateral force equivalent to a fluid unit weight of 35 pcf (pounds per cubic foot). Walls that are structurally restrained from lateral movement at the top during backfill, ' such as by interior floors, braces, or diaphragms, should be designed to resist and equivalent fluid weight of 50 pcf. These recommended values are based on a horizontal, ' unweighted backfill surface. Surcharge due to traffic, equipment or sloping ground should be added to these values. All backfill placed behind walls should be placed as ' recommended in the structural fill section (5.3) of this report. A minimum of 2 feet of clean granular backfill that can freely communicate with the wall footing drain should be ' placed immediately behind the wall, extending upward from the base of the wall to within 1 foot of the ground surface. This drainage backfill is intended to preclude the buildup of hydrostatic forces. For retaining walls that would be supporting lateral loads imposed by ' the soft silts at depth, earth pressures would be greater, on the order of 45 pcf for yielding and 60 pcf for non-yielding conditions. Given the current design grades, we do not anticipate that this higher lateral loading condition will occur. ' Lateral forces on wall footings can be resisted by a combination of passive earth pressure and basal friction. An allowable passive earth pressure, expressed as an ' equivalent fluid unit weight, of 300 pcf may be assumed for each foot of penetration below the ground surface, neglecting the first foot. An allowable basal friction coefficient of 0.35 is recommended. These passive earth pressure and basal friction values incorporate a factor-of-safety of 1.5 or more. 1 ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 14 ' To prevent the build-up of hydrostatic pressures, the backfill immediately adjacent to the wall should consist of clean, free-draining sand a gravel having no more than 5 percent fines (based on the portion passing the U.S. No. 4 sieve). All backfill placed against the wall should be compacted as per our recommendations previously given in the Structural Fill section of this report. To minimize lateral earth pressures, the backfill should be compacted to approximately 90 percent of the maximum Modified Proctor dry density (ASTM:D-1557). Additional compaction immediately adjacent to the wall would increase lateral pressures, whereas a lesser degree of compaction may permit excessive post-construction settlement in the backfill. 4.5.1 Retained Earth Fill Wall ' Given the relatively great fill thickness required for the tipping pad, as well as the container loading bays at the west end of the sorting floor, a retained earth fill may serve ' to economically resist the lateral earth pressures. Typically, reinforcement extends back into the fill by a horizontal distance of about 70 percent of the wall height. A preliminary ' design analyses indicates the 18-foot high tipping pad wall would require 5 layers of Tensar SR-2 extending 11 feet behind the wall face. This particular wall design we ' evaluated required an allowable bearing capacity of 3000 psf, which would only be feasible following the shear strength gain afforded by wick drain installation, as previously recommended. Installing the reinforcement to create a vertical to near vertical wall (by providing a wall facing system or wrap-around fabric) would have the advantage of eliminating the lateral earth pressures acting against the load-bearing tipping pad wall. Settlement of the retained earth fill relative to the load-bearing wall would still be expected to occur. As discussed previously, the recommended wick drain installation (required to provide 3000 psf allowable bearing) would serve to reduce the magnitude of differential settlement between the retained earth fill and the load bearing wall. For proprietary wall design, we recommend using a phi angle of 35 degrees, cohesion of 200 psf, and a unit weight of 125 pcf for backfill and soil behind the reinforced backfill. A phi of 25 degrees, cohesion of 300 psf, and an allowable bearing pressure of 3000 psf ' may be assumed for the foundation soils. tRabanco, Ltd. W-7250-1 ' 19 September 1991 Page 15 4.5.2 Tied Back Deadman Anchor Wall Another design approach to reduce the lateral pressures to be resisted by the piles would be the use of deadman anchors attached near the top of the wall. The resulting forces acting on the wall are given in Figure 7. The active force on the well would be resisted by the tension force of the anchor rod and the passive force of the piles and wall grade beam. It should be noted that the active and passive soil pressures are given per foot of wall and the anchor rod force would carry the wall pressure acting over their spacing (contributory area). Therefore, a wall section equal to the anchor rod spacing ' should be used for analysis. The grade beam should be continuous to develop full passive resistance along the wall's base, not just at the separate pile caps, neglecting the uppermost 2 feet of embedment. The lateral resistance of the vertical piles below the wall is assumed to act over 2 pile diameters. A nominal surcharge equal to 2 feet of soil ' is included. This may need to be modified depending on the proximity of truck loads to the wall face. An iterative analysis procedure is given on Figure 7. Generally, it involves choosing an anchor rod location and spacing, and estimating a combined wall grade beam depth and ' pile spacing. For that given configuration, the moments about the tie rod location are summed to check that the passive resistance is adequate. Horizontal force equilibrium is then used to find the load in the anchor rod. An appropriate factor of safety should be included in the analysis of the wall stability. ' The anchor block or continuous grade beam tied to the wall should be located such that the zone contributing to passive resistance does not interact with the active zone causing pressure acting on the wall, as shown on Figure 7, Deadman Anchor Location. The ultimate capacity of the deadman anchor can be calculated as shown on Figure 7, Deadman Capacity. The backfill around and in front of the anchor block, should be a granular, select, clean, free-draining material compacted to at least 90 percent of the modified Proctor dry density (ASTM:D-1557). Drainage should be provided around the anchor block and anchor rod system. The drainage system should be installed to ' discharge downslope by gravity. ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 16 ' Provisions should be made to protect the portion of the anchor extending beyond the face of the wall from corrosion. High yield strength steel is more susceptible to the adverse effects of stress corrosion. The use of the mild steel.anchor rod should be considered. The entire rod should be adequately protected against corrosion. t Additionally, as the existing soft and loose fill settles, soil movement will increase the stresses induced in the anchor rod. To allow for some settlement of the fill to take place ' without adversely affecting the anchor rod, the anchor rod should be located in the bottom of a rigid PVC pipe or equivalent. We recommend that the exterior protective pipe be on the order of 12 inches in diameter. This will allow settlement of approximately ' 11 inches before the anchor rod is affected. The use of a waler along the wall is recommended to provide a degree of redundancy and avoid a progressive failure should ' a wall element yield. ' For the tipping pad wall, a retained earth fill may be considered in lieu of a conventional retaining wall since considerable fill is to be placed behind the wall. Typically, ' reinforcement extends back into the fill by a horizontal distance of about 70 percent of the wall height. The strength of the reinforcing strips and the vertical spacing varies with ' the surcharge and lateral loading applied, as well as the allowable bearing capacity of the underlying site soils. A variety of facing options are available. We can provide more detailed recommendations as the design develops. 4.6 Drainage Considerations ' The drainage from the preload application and possible wick drain installation would be fairly low volumes, which could be drained through the overlying cleaner granular fill. -' Excavations are expected to be minimal. We would anticipate that site drainage would ' be routed into the newly installed storm drainage system. For planning, perimeter footing drains would be recommended for all the buildings. Site grades should be adjusted to slope away from all structures. ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 17 ' 4.7 Pavement Subgrade Recommendations Our shallow borings in the proposed areas to be paved disclosed the near-surface ' portion of the existing fill soils to be loose, medium dense, crushed gravel, sand with varying amounts of silt and sand. To minimize the risk of future pavement settlements, we would recommend compacting the upper 1 foot of the existing fill soils (at 2 feet below subgrade elevation) to 90 percent of the maximum Modified Proctor dry density -' (ASTM:D-1557). Any soft, wet or yielding areas observed during this prerolling operation should be locally overexcavated and replaced with structural fill. A clean fill as described in Section 4.2, compacted to 95 percent of the maximum dry density should by used ' within 2 feet of subgrade elevation. The prepared subgrade surface should be proofrolled within areas to be paved in order to confirm that the soils are in a firm and ' unyielding condition. Assuming this subgrade preparation is accomplished, we would recommend utilizing a modulus of vertical subgrade reaction of 200 pounds per cubic ' inch. As discussed previously, long-term settlement and cracking of the paved surfaces will likely occur due to the presence of compressible soils at depth, and the high loads anticipated consideration may be given to a fiber reinforced concrete or silica fume additions to increase the concrete strength. ' 5.0 CONSTRUCTION CONSIDERATIONS The following recommendations should be considered regarding construction at the site. The presence of the near-surface granular fills will provide an adequate staging area for construction. However, these soils will make pile installation more difficult, and H-piles ' with driving points have, therefore, been recommended. Installation of wick drains would _ require predrilling through the upper fill at each location. 5.1 Site Preparation Initial site preparation will include leveling existing fill piles, as well as removal of existing ' debris and deleterious materials identified on the surface of the existing site fills. Building Y areas, pavement areas, and any other areas to receive structural fill should then be stripped of existing brush, vegetation, topsoil and other deleterious material. We estimate up to 1 foot of topsoil will be encountered in those areas not already filled. Both the surface native deposits below the topsoil layer and the existing loose, waste crushed ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 18 ' rock fill soils are predominantly silty in nature. These materials are very susceptible to disturbance in the presence of site or surface water. Although presently suitable for an adequate base prior to structural fill placement these soils can be readily disturbed and rendered unsuitable for support unless special construction procedures are employed. ' These measures may include the use of tracked equipment and excavation using large trackhoes equipped with smooth-bladed buckets. Should stripping be done while the t ground surface is wet, the volume of soft, wet soils and disturbed materials to be removed can be greatly increased. A substantial increase in excavation depths could be ' necessary should construction proceed at any time except following periods of extended dry weather. ' After stripping and removal of debris, those areas which are excavated to design grade or below subgrade elevations or those areas to receive structural fill should be prerolled ' and compacted if possible, to achieve at least 90 percent density using ASTIVI D 1557 as the maximum density requirement. If overexcavation of soft, compressible soils is ' attempted, excessive prerolling could readily disturb otherwise suitable subgrade soils. In this case, at the discretion of the geotechnical engineer, the subgrade should be ' cleaned as much as possible and a layer of quarry spalls or gravel may be placed prior to subsequent fill placement and compaction. This initial fill layer may be as much 18 inches in loose thickness. Subsequent fill placement should be accomplished as outlined in the Structural Fill Placement section 5.3 of this soils report. ' 5.2 Temporary Slopes Temporary slope stability is a function of many factors, including the following: 1. the presence and abundance of groundwater; ' 2. the type and density of the various soil strata; 3. the depth of cut; 4. surcharge loadings adjacent to the excavation; 5. the length of time the excavation remains open. 1 "i Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 19 ' It is exceedingly difficult under the variable circumstances to pre-establish a safe and "maintenance-free" temporary cut slope angle. Therefore, it should be the responsibility ' of the contractor to maintain safe slope configurations since the contractor is continuously at the job site, able to observe the nature and condition of the cut slopes, ' and able to monitor the subsurface materials and groundwater conditions encountered. It may be necessary to drape temporary slopes with plastic or to otherwise protect the slopes from the elements and minimize sloughing and erosion. We do not recommend vertical slopes or cuts deeper than 4 feet if worker access is necessary. The cuts should ' be adequately sloped or supported to prevent injury to personnel from local sloughing and spelling. The excavation should conform to applicable Federal, State, and local regulations. ' We generally recommend all permanent slopes be designed at a 2H:1V inclination or ' flatter. From a stability standpoint, the dense to very dense soils could actually be graded to 1'/2H:1 V provided that groundwater was not a particular problem. However, it ' has been out experience that the soils will tend to ravel and slough to a flatter inclination. In addition, with the steeper slopes, topsoil erodes readily and it is more difficult and ttakes longer to establish vegetation for slope protection against erosion. 5.3 Structural Fill Placement All fill placed in the building pad locations, under areas to be paved and for the backfill of subsurface walls and utility trenches should be placed in accordance with the recommendations herein for "structural fill." Prior to placement of structural fill, all surfaces to receive fill should be prepared as previously recommended. Structural fill ' should be placed in loose lifts not exceeding 8 inches in thickness. Individual lifts should be compacted such that a density of at least 95 percent of the modified Proctor ' maximum density (ASTM:D 1557) is achieved. We recommend that a representative from our firm be present during placement of structural fill to observe the work and perform a representative number of in-place density tests. In this way, the adequacy of earthwork may be evaluated as grading progresses. Utility trench backfill should also meet any more stringent compaction requirements of the local water or sewer utility. ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 20 ' Existing topsoil at the site (near surface sandy soils with a heavy root accumulation) is not considered suitable for structural fill application but could be stockpiled for later use ' in landscaped areas. The non-organic soils that would be available for fill would primarily be a silty, sandy gravel (crushed rock). These soils should be useable as structural fill for most of the year, however, some delays in grading may occur due to high precipitation or the presence of surface or ground water. If inclement weather occurs, ' the upper wetted portion of the site sols may need to be scarified and allowed to dry to continue earthwork. We recommend the upper 2 feet of fill consist of a clean granular fill (less than 5 percent fines) to allow site work to proceed over a wider variety of weather ' conditions and to serve as a capillary break. This upper, clean fill should contain less than 5 percent passing the U.S. No. 200 sieve, based on the portion of the sample ' passing the U.S. No. 4 sieve. Soils used for structural fill should contain no particles greater than 6 inches in diameter and they should be free of organics and other ' deleterious materials. ' 5.4 Piling Installation We recommend that pile spacing within groups or rows be no less than 3 pile widths center-to-center. Steel piles should be driven with a diesel, air, or steam hammer having ' a rated energy of not less than 20,000 foot pounds. The actual pile capacity should be verified in the field based on an appropriate dynamic pile driving formula. For H-piles, predrilling would likely not be required, however, hardened steel driving points should be provided. Prior to ordering steel for production pile driving, a test driving program is recommended to confirm pile capacity and anticipated pile ' penetration. With the test pile program, pile driving conditions (i.e., hammer, pile wall thickness and diameter, cushion, etc.) should conform to production driving. The installation of all piles should be observed by an experienced geotechnical engineer or engineering geologist. Observation of pile handling, pile hammer operating characteristics, and pile penetration resistance would make it possible to confirm the _ recommended penetration depth, monitor variations in subsurface conditions and evaluate the pile capacity using appropriate dynamic pile driving criteria. We recommend that the vertical capacity of the driven piles be verified in the field based on ' dynamic pile-driving criteria. Any such criteria should allow for variations in physical ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 21 ' factors such as the pile hammer energy, size, type and length of piles, and modulus of elasticity of the pile materials. Appropriate criteria could be developed based on a wave ' equation analysis or other dynamic drivability criteria. Once a pile section has been selected, recommendations for hammer energy can be provided. Locally dense zones ' within the fill soils above the bearing horizon may present difficult driving conditions. It is recommended that a minimum factor of safety of 2.0 be applied to ultimate capacity as determined by the dynamic pile-driving criteria during initial driving. If a factor of safety of 2.0 is not achieved at the anticipated bearing depth during initial driving, a number of piles should be redriven for a short distance following a waiting period. Dynamic pile capacity for the redriven piles should be evaluated using a minimum factor ' of safety of 2.5. We recommend that pile groups be driven starting at the middle of the pile group working outwards. We recommend that jetting not be allowed except under ' the specific recommendation of the geotechnical engineer at the time of construction. Jetting can significantly reduce the allowable side friction available on the piles and ' lateral capacity. 6.0 CLOSURE ' The conclusions and recommendations presented in this report are based on the explorations accomplished for this study. The number, locations and depth of the explorations were completed within the site and proposal constraints so as to yield the information to formulate the recommendations herein. The integrity of the foundations and pavement will depend on proper construction and site preparation. It should be noted that the use of wick drains or preload fill placement will not eliminate all settlement ' effects. Rittenhouse-Zeman & Associates, Inc. would be available to provide geotechnical engineering services during earthwork, pile driving, and preload phases of ' the project construction. We would also be available to monitor preload settlement readings to check actual settlement performance. Should variations be observed at that time, RZA would be able to provide geotechnical recommendations as to minimize delays as the project develops. 1 ' Rabanco, Ltd. W-7250-1 ' 19 September 1991 Page 22 ' It has been our pleasure to provide you with this information. Should you have any questions or require further information, please do not hesitate to call at your earliest ' convenience. ' Respectfully submitted, tRITTENHOUSE-ZEMAN & ASSOCIATES, INC. ' Larry A. Boge, P.E. Project Engineer s ' James S. Dransfield, P. x\ � '.' � - Associate �� `'°7 F, '! LAB:gc 1 1 1 v y' 98118 L a k e IGxiw �Myp.0 r \ S BOND n ST 4 [S ^ yM :�ll!$T Q p) N� 54~ _ W a s h i g t c ' S -r•,` n S NU6L T gfyri ITI �r. ` B vvFril Si O i..I VY �tv UNN VCg s f( t � ]y wl m+X ar CRESTON$T _1..�—= cm-� � � $ ..�.1.. v�'f�?[s'➢ �o-0 rfq ------ - --_ Hip In en ° a. T��i T n �o m c'S' � � Oym•`'r h S u ixa BT Y FOUNTAIN m B } . 9 J' 'V'I �`P • 9 'h DR E J°+ XY� �5 -•v: 'r "1 `-N FOIIMAIN y^�n7�" Si'm 0 ' S, �< cI °. y 11r - I'1• 5/��S IIIT'llI 5 unrw< ST �—:~ ST O± flY n \ e5 N1 •'i_r l` � I �X 51 WITL� O OI G FS II]Txm Si /nIA $ u5T• 51 \. ST cis fs'& _ N5'=15 ❑ s s 'I 6.• s n.r. a \• $ II] 5- p ) +flx• 6 5 Ilr.n 5 e5� ]r•II]S S ^ F - mQ' XD IIn N m�ST\\\ •\�' \ c\•'g el°.� �N iimi 'a �I •l R�Q c a w�.�. .l�.... PawS� •12,Y $17 AIX: t S � IS}1T5 r I li z i \• °' c s n S v m o r ,n s.r'J.�. 5 5 '}}NO m Gl�•_ 123°D ST S -~- s .i'Y Z'nY YI 12J"o cL .1-r- s zl • 1 i a a 5 q 51 a 1� mis } .�4�, ST Sr \ w ' ViL� ` ' I r S ,i 1 S 1 qF+t a1 1 5 SO \ T ' S w F x ^ sn a \ , !`�.. (r✓ NFg, KI/y ss ay° ea.sli I r 7;£ \ s \ RIVES EARL] O-TO 1 ros i ^�of I�i•�, v 5 <g'p 5' qr ' ....I i ..c PROPOSED BLACK RIVER TRANSFER STATION MONSTER ROAD ' RENTON WASHINGTON VICINITY MAP ' FIGURE 1 ' A R17TENHOUSE-ZEMAN& R � W.O. W-7250-7 ASSOCIATES, INC. j a BY LAB Geotechnical& Environmental 3/-" DEC 1990 Consultants ' DATE 1400140rh Avenue N.E. SCALE N•T•5• Bellevue, WA 98005 WARM LEGEND ` ' B j 8 BORING NUMBER AND APPROXIMATE LOCATION 30 — GROUND SURFACE ELEVATION CONTOURS / _ J ' B B' PROFILE DESIGNATION AND APPROXIMATE LOCATION L J z B: u o � � 1 2 U � B-g j.'.Z KERN a / B 14 v -3O��? N Np PgT ¢R �x �NGTOIG O° / ''', A ' 1 ?44 B- • , 07'I B-8 s0 I • ' 20 �' w B-11 ° a • • C. "I Zee k 9-16 8-13 / Q �130 • i 1 20 �� 8-176 • B-2 by \ \`'`-1 / 6° B-17A • _ •� '� , /1 / i ice/ Ao —— J i , r7o �/ y ��,� —60 MpNTERR010 i B-4/ g `<<�'� / / °° / STEEL yilt�"CAS10 q ° PROPERTY 0 1 GX �\NG PROPOSED BLACK RIVER TRANSFER STATION j RZA-AGRA W.D. W-7250-1 MONSTER ROAD 0 100 200 ENOMEERING&EWPK)NMEMALSEWCES DESIGN LAB__ RENTON, WASHINGTON SCALE IN FEET 11335N.E. 122ndWay DRAWN MjZ W_ Sulrs too ATE SEP 1991 SITE & EXPLORATION PLA14 Kirkland. WaaAlnpfon 98034-BD18 SCALE 1"=foo• FIGURE 2 i I i A' A I 80 I 80 I PROPOSED STRUCTURE I I PROPOSED y B-1 _ _ _ _ _ _ B-16 - - --- - B-7 B-15 FINISHED GRADE OFFSET OFFSET OFFSET OFFSET 40 tu 40 \ 40' RIGHT 25' LEFT 15' RIGHT 125' LEFT W ?\ T-�q�_� Medium deo�e to dense, moist to wet, Drown, silty, gravelly SAND - --`----- -------- - -- -- --� _ �7 Z z �,_ Soft to medium stiff, saturated. ~7 T with Cobbles d debris (FILL) 0 0 7_?�� silty SAND yeame I Fey SILT with —?T 7-9 EXISTING ( ILL) GROUND SURFACE 0 J �7` ? W w0 Medium dense to dense, saturated, ray, slightly silty SAND SANDSTONE BEDROCK I B.N.R.R. 40 -40 R.O.W. MONSTER ROAD R.O.W. I I 1 I —�- 0 40 80 120 160 200 240 280 320 360 400 440 460 DISTANCE IN FEET 1 0 40 60 B-16 INDICATES BORING NUMBER AND 1 APPROXIMATE LOCATION HORIZONTAL SCALE IN FEET 0 40 80 VERTICAL SCALE IN FEET NOTES: THE STRATA ARE BASED UPON INTERPOLATION BETWEEN I BORINGS AND MAY NOT REPRESENT ACTUAL SUBSURFACE CONDITIONS. SIMPLIFIED NAMES ARE SHOWN FOR SOIL DEPOSITS. BASED ON GENERALIZATIONS OF SOIL DESCRIPTIONS. SEE BORING ILOGS AND REPORT TEXT FOR SOIL DESCRIPTIONS. PROPOSED BLACK RIVER TRANSFER STATION RZA-AGRA W.O. W-7250-1 MONSTER ROAD ENGINEERING&ENVIRONMENTAL SERVICES DESIGN LAB RENTON, WASHINGTON ! 11335N.E. 122ndWay DRAWN DMW GENERALIZED sue 1d, DATE ES P 1991 SUBSURFACE PROFILE A—A' Kirkland, Washington 9e034-ee18 SCALE NOTED FIGURE 3 1 1 B B' ' i------- 60 So— I I PROPOSED PROPOSED STRUCTURES - I FINISHED GRADE j 1 w 40 B-18 B-17B B-3 16(- ---- -- ---- B-8 EXISTING 40 I I I --- GROUND SURFACE LLI w -- ------ ---- -- -- -- -- _ 11 LL LL —1 I —J I 1 Z Medium dense to dense. moist, brown. ? ? ? ?- ? Z� O silty, sandy GRAVEL with cobbles & boulders debris (FILL _�� ? off to stiff, saturated. gray. F Medium dense to dense, wet to \T clayey SILT with sand saturated, gray, silty, SAND with \ seams (FILL) lavev SILT (FILL) ' Medium dense to dense, saturated, ?_ ud gray, slightly silty SAND —��— SANDSTONE BEDROCK -40 -40 1 1 1 1 1000 1100 1200 1300 0 100 200 300 400 500 600 700 800 9D0 ' DISTANCE IN FEET ' LEGEND 0 too 200 B-16 INDICATES BORING NUMBER AND mammon APPROXIMATE LOCATION HORIZONTAL SCALE IN FEET 0 40 80 ' VERTICAL SCALE IN FEET ' NOTES: THE STRATA ARE BASED UPON INTERPOLATION BETWEEN BORINGS AND MAY NOT REPRESENT ACTUAL SUBSURFACE ' CONDITIONS. SIMPLIFIED NAMES ARE SHOWN FOR SOIL DEPOSITS, BASED ON GENERALIZATIONS OF SOIL DESCRIPTIONS. SEE BORING LOGS AND REPORT TEXT FOR SOIL DESCRIPTIONS. 1 ' RZA AGRA W.D_ w-7zso-1 PROPOSED BLACK RIVER TRANSFER STATION MONSTER ROAD ENGINEERING d ENVIRONMENTAL SERVICES DESIGN LAB RENTON, WASHINGTON 11335 N.E. 122nd Way DRAWN DMW GENERALIZED ' Suite 100 DATE SEP 1991 SUBSURFACE PROFILE B—B' Kirkland, Washington 98034-6e1e SCALE NOTED FIGURE 4 ' LEGEND ' B.1S BORING NUMBER AND APPROXIMATE LOCATION - -- 30 — GROUND SURFACE ELEVATION CONTOURS v30— BEDROCK CONTOURS (APPROXIMATE) 1 Z. �O B• D It O j o /3 0 ° •B-e R / 20 'Z / y/ 6 Q 0 h ' FSNE�Ra B-1a �30��? NG Sa / / / OY G.\pN 0� Bv�4 PPGIFIG 0 LU B_ / B / / 50� -2"S� 4 2 Bye � 1 B-fie ,'8-13 / so 30 gee \ / \ '00 --3 / 20 • B-176 • B- 0� \ 60 B-2A ,_\ \ � �Gp AO 1 `-1 • 1 i v 80Rpp,DB-4 �• a°� iy $jEE1. }11L1-'C�0 DS MO y � Y `INE ry PRoPERT PROPOSED BLACK RIVER TRANSFER STATION 1 ' RZA-AGRA W.O. W-7250-1 MONSTER ROAM I 0 100 200 EN INEERING{EWIRONMENT LSEWCES DESIGN I.9@_ RENTON, WASHINGTOt+ j SCALE IN FEET 11335N.E. 122nd way DRAV7N MIL— APPROXIMATE 's ' suite 100 DATE SEP 1991 BEDROCK ELEVATION CONTOUR MAI" X/rklAnd WeeA/npton va03s eves SCALE 1'=100' FIGURE 51 iLEGEND 8�18 BORING NUMBER AND APPROXIMATE LOCATION - i 4 30 — GROUND SURFACE ELEVATION CONTOURS APPROXIMATE THICKNESS OF COMPRESSIBLE FILL i 5.. ..... 2' •. _. o i ,....30 G(O14 NNOPSS IR- m�s1 • 0�� / Y • • r (/ i ,.• 1 ,• -.- J B-11 p •.•• •e 1� a-18 ryO• ryh • :.yB-'13' 30 •• 20 :••• f/ ' B-17B B•3 •••B-2 •' ` �5 '•'p�• '• / 60�/i / 5 •10•• ''\ 8�17 •t t•"T�J' •.X j• y11Q•1•, / i t :s r' . C� ONgTER ROW P• •i �......• •..... .. ..... SSEE 10.. .......... _.... Y UNE - • 7 ••' fff lJ i V EN��N OF v ' PROPOSED BLACK RIVER TRANSFER It f RZA-AGRA W.O. w-72so-1 MONSTERR ROA ROAi) O 100 200 EIIGINEERING A ENVIRONMENTAL SERVICES DESIGN L6@__ RENTON, WASHINGTOiO SCALE IN FEET 11335N.E. 122ndWay DRAVM MAW APPROXIMATE THICKNESS O!- E i Suite 100 DATE SEP 1991 COMPRESSIBLE FILL PLAN Kkkland ftshlnalon 98au-ea18 SCALE 1'=100' FIGURE F ; ' SCHEMATIC EARTH PRESSURE DIAGRAM DEADMAN ANCHOR LOCATION ' 70 sr 30° 60' ' PASSIVE WEDGE A TIE ROD 'T' DEADMAN A ' 35 ANCHOR TIE ROD !�+ H 1 ' ACTIVE GRANULAR FILL ��'E NOTE LOCATE DEADMAN ANCHOR SO THAT PASSIVE AND ACTIVE WEDGES DO NOT INTERFERE FOR 2 FULL PASSIVE PRESSURE TO APPLY. 35ps1 (H+2) = 70psf 1 ' 180 SOFT SOIL ' DEADMAN CAPACITY (ASSUMES CONTINUOUS WALL) SANDSTONE ' h, ' NOTES: h' (1) BELOW THE BASE OF THE RETAINING WALL, ACTIVE T = 265 (h=- h2) PRESSURES ACT ON EACH PILE DIAMETER. (2) PASSIVE PRESSURES ARE EXPRESSED AS ULTIMATE SECTION A—A' VALUES, AND ACT OVER 2 PILE DIAMETERS. (3) ACTIVE PRESSURES INCLUDE 2-FOOT SURCHARGE FOR TRAFFIC AND EXTEND 2 FEET BELOW GRADE. �\ NOTE: T IS AN ULTIMATE VALUE, ASSUMING MINIMUM 90% ' 12'DIA. (4) NEGLECT PASSIVE CONTRIBUTION FOR UPPER 2 FEET SCHEDULE 80 \ COMPACTION WITHIN PASSIVE ZONE BELOW GRADE. PVC PIPE --�- TIE ROD RZA-AGRA WO w-7250- PROPOSED BLACK RIVER TRANSFER MONER ROAD ENGINEERING A ENVIRONMENTAL SERVICES DESIGN ,ISD RENTON, WASHINGTON 11335N.E. 122ndWay DRAWN DMW PILE SUPPORTED TIE BACK Suite 100 DATE SEP 199f ANCHOR WALL CRITERIA Kirkland, Washington 98034-se18 SCALE N.T.S. FIGURE 7 1 ' ADDITIONAL PIPE S COUPLING AS INSTALL PLATE AND 6' PIPE REQUIRED RISER TO THIS POINT BEFORE ' PLACING FILL ' SEE DETAIL EXISTING GROUND' BELOW SURFACE 6' ^• � ••:� CLEAN SAND 2' STANDARD' PIPE PIPE COUPLING 2'x2'x1/4' PLATE i WELD ALL AROUND 4-1/40- HOLES 1 PROPOSED BLACK RIVER TRANSFER STATION ' RZA-AGRA W.O. W-7250_i MONSTER ROAD `"00WERW" "`M""KZS DESIGNJSD RENTON. WASHINGTON 11335 ME 122nd Way DRAwN M� W SuNe 100' DATE SEP 199� SETTLEMENT PLATE DETAIL lorkw)a Washington �0`u 8°1g SCALE *4T.S. FIGURE 8 1 1 1 1 1 ' APPENDIXA SUBSURFACE EXPLORATION PROCEDURES AND LOGS FIELD EXPLORATION The field exploration program conducted for this study consisted of advancing 18 hollow-stem auger borings. The approximate locations are illustrated on the Site and ' Exploration Plan, Figure 2. The exploration locations were obtained in the field by pacing and taping from site features shown on a plan provided to us prior to the exploration. The location of the explorations should be considered as accurate a the degree implied ' by the method used. ' Hollow Stem Auger Borings The borings were drilled on 16 and 20 November 1990, and again on 19 to 21 June 1991 ' by a local exploration drilling company under subcontract to our firm. Each boring consisted of advancing a 4-inch inside diameter, hollow-stem auger with a truck- mounted drill rig. During the drilling process, samples were generally obtained at 5 foot depth intervals. The borings were continuously observed and logged by an experienced ' geotechnical engineer from our firm. Undisturbed samples were obtained by pushing a 3-inch outside diameter, seamless ' steel Shelby tube into the soil by the hydraulic system on the drill rig in accordance with ASTM:D-1587. Since the thin wall tube was pushed rather than driven, the sample ' obtained is considered relatively undisturbed. The samples were classified in the field by examining each end prior to sealing with a plastic cap. The samples were then transported to our laboratory where they were extruded for further classification and laboratory testing. Disturbed samples were obtained by using the Standard Penetration Test procedure as described in ASTM:D-1586. This test and sampling method consists of driving a standard 2-inch outside diameter split barrel sampler a distance of 18-inches into the soil with a 140 pound hammer free falling a distance of 30 inches. The number of blows required to drive for each 6-inch interval is recorded. The number of blows required to 1 drive the sampler the final 12 inches is considered the Standard Penetration Resistance ' ("N") or blow count. The blow count provides a measure of relative density of granular soils or the relative consistency of cohesive soil. The blow count is presented graphically on the boring logs in this appendix. The soil samples obtained through the split-barrel sampler were classified in the field and ' representative portions placed in plastic containers. The samples were then transported to our laboratory for further visual classification and laboratory testing as deemed ' necessary. ' Subsurface water conditions observed while advancing the test borings are indicated on the boring logs in this appendix by a triangular symbol and the designation "ATD" (At Time of Drilling). These subsurface water conditions were evaluated by observing the ' moisture content of the samples of the wetted level on the drilling rods. ' Groundwater observation wells were installed at B-3 and B-7. Each well consisted of a slotted length of PVC pipe placed in the bottom of the boring. A blank PVC riser ' extended from the lower slotted section to the ground surface. Granular material was utilized as backfill around the slotted section to allow entry of water into the observation ' well. The subsequent to completion of the boring and well installation is indicated by a triangular symbol on the appropriate boring log along with the date of the measurement. PROJECT Black River Transfer Station W.0. #r-7250 BORING NO. B-1 SOIL DESCRIPTION as a STANDARD PENETRATION RESISTANCE Blo-s per fool M Approximate ground surface elevation: JJ.7 feel F. W 0 10 20 30 40 Veo'lilln dense, wet, brown, sz76v sonol CRAIIfZ withoebns (Fzv .............. ....... ...............--------------- ........ ............... - - - - -- - - -- ...... ....... ...... ---------- ....................... ....... ....... ...... ....... ........ ............ .......................... 5 — --------------- ------------------------------------------- .............. . ...... ............ Loose to soft, wet to schlroted brown to .. ... ....... ......... ....................... ................ gray. --/a�yey sll�v 54NO to cloye SIZ 7'(,rIV ...................................... ............... ----------------------------------------------------------- 5-2 001Y soft to medium SlIff SoAlroleo,10 'Wel, ...... ....... ....................... .. 10 ........ ....... .............. clo T .yey 51Z 7 with interbeddedinterbeddedsAll SANG - seams with orqonhcs and Ifee SILIMPS (/_1V ....... ....... ...... ....... ............. ........ ............... ..... ..... ...................... ........ ....... ........ .............. ................................. ............... 5-1 ....... ....... ........ ............... 15 ....... ............... .............................................. ...... ....... .. .............................. ............... .. ............ ....... ....... ...................... ....... .. ....... ....... .............................. .............. 20 - ....................... ................ ....... ....... .... ...................... ....... ........:........ ...... ..... ..... ..................... ....... ............... 5-5 .............. ....... ....... ............... ....... ............... 25 ..... ....... ....... . . ........ ............... ............... ....... ....... ....... ....... ..................... .............. ............. ............................. ....... ............... 30 10 20 w Zo to LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-Inch OD split-spoon sample RZA 120K.".4.00"'.—Om""' J-faO If&hAve NE Bellevue. #'&shjqgtw 98005 Drilling started: 16kovember 1990 Drilling completed: 16Alovember 1990 Logged by: ZA,9 PROJECT BJaek River Transfer Station w.o. ffr-7250 BORING NO. B-1 % SOIL DESCRIPTION o' STANDARD PENETRATION RESISTANCE M = Blows per root - 30 - Approximate ground surface elevation: J-1.7 feet V) U) Z U to 20 30 40 1'ely S011 10 Me01iM SlIff S97111TOted to wet, a cloye 5/LT with mlerbeelded silly SAND --------....... ......... ............................ ....... ........... seams with orgon1cs and free stumps (F11V ....... ............ ....................I.......... ...... ..... 5-7 ............... ....... ....... ........ ....... ...... ...... -larol gray, moist, sj16, 54,'10570,41f ....... ....... .............................. .. 35 S-8 - 80rh7g /e/m1;701ed t7pproximclp/y 95.0 feel ....... ....... ....... ....... ............... ............ . ....... ...... ....... ....... ............... ......... ....... ..... ....... ....... ....................................... ....... ............... - 40 ....... ....... ....... ...... ....... ....... ....... ....... ............... .............................. ............... ......... ............... .............................. ....... ....... .. . .............................. ....... ....... - 45 ....... ....... ....... ........:......................................... a ....... ............... .............. ............... ............... ...... ...... ...... .. . ............... ....... ....... ............... ...... ....... ......z...... ............... 50 - ....... ............... .............................. ............... ............ . ....... ....... ..................... ..... ........... .............. ............... -------............... ...... ............................. .............. ....................... ....... ...... ...... 55 ................ .............. ................................................ ....... ....... ...................................... ............... .............................. ........ ............... ........ ...... ...... 60 10 11 30 40 SO LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch 01) split-spoon sample R Z A ASSOCIATES, IWO i7eolechnic& 02firziizmevitaii CoRsullants 1,f00 14f&b Ave NE Bellevue. ftshqetow 969005 Drilling started: 16 November 1990 Drilling completed: 16 November 7990 Logged by: LAB PROJECT Blach- River Transfer Station w.o. #r—7250 BORING NO. B-2 SOIL DESCRIPTION a a a m a STANDARD PENETRATION RESISTANCE z Blows per foot' vi Approximate ground surface elevation: 34.5 lee! M W Z 0 10 20 30 40 50 E_ Dense lo wevy dense, mots( to wet, brown, sandy01?WL (KIV ............... .............................. ....... ....... ............... ....... ....... .............. ....... ....... ............... .. ......... .. ....... ....... ------- ....... ....................... ... ...... ... ....... 5 ................ ... ............... ....... ..... ..... ....................... ................. ........ ..... ....... ....... ........................... T 5_2 Arocfii7o/rig refusol at qpprozhnolo 9.0 feet a a a ....... ....... .............................. ....... ....... ....... .............................................. .............. ....... ................................................................. ....... ....... ............... .................. ...... ....... - 15 ................ ...................................... ....... ............... ...................... ....................... ........ .............. ....... ....... ........................ ....... ....... .... ....... ............................ ...... ............... - 20 - a ....... ....... ....... ............... ................ ....... ..... ...................... ....... ....... ....... ....... ....... ............................... ............... ............... ....... ....... ...................... ....... ....... .......... 2t ....... ....... a ....................... ............... ....... ....... .................................... a a ....... -­-- ............... ....... ....... a ................ ------- .............................. ....... ....... a 30 - 6 10 20 30 40 SO LEGEND MOISTURE CONTENT i Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A '4".770",,',',OEls-p,,—,z."v4v K7.),mossm.. Geolechimca.1 & 14W 140a.4ve NT BeWeme. FamVWIon 9W05 Drilling started: 15 November 1990 Drilling completed: 15 November 1990 Logged by: LAB PROJECT Black River Transfer Station w.o. #r—7250 BORING NO. B-2a nj I I STANDARD PENETRATION RESISTANCE aSOIL DESCRIPTION C-, , W F= W .0, E_ e <[_ W 0 Approximate ground surface elevation: J5.5 feel A Blows per foot ' 0 V) to U 10 20 30 40 ,WcoI&In dense, brown, rnohd, sIZ11 scnoly GRAVEL with debris (FIZV ...... ....... .......I............................... ....... ............ ...... ....... ...................................4....... ............... ....... ..................... ............. ....... ....... ... ....................... — ----------------------------------------------------------- .............. ....... ... . . .... Soft, wet to 501mrated gray, A son d ry C 7 y 5/LT wilh sond lenses and debris 11f2V ........ ...... ....... ....... ....... ................... ... . ....... ....... ....... .......a...................... ........ ...... ....... .............. 10 A....... ............... ..................... ....... ............... ...... ........ ....... ....... ....... ............... a .. ....... .... . .. ...................... ...... ...... ........ 15 ............ . ..... ...... .............................. ------........ .......................... --------------------------- Medl2lm dense, brown, wet, SIZ11 S41V0 with ........t....... .......,...............:....................... ................ some, grovel(411V ................ ...... .......................1....... ............... S-4 ....... . ........ ...... ...... ....... ................ 20 - ---------------------------- ----------------------- 50/7 10 medium SW gray, Wel 10 SO/Mr,71ed sandy SILT with logs (FtIV ...................................... ........ .............................. ....... ............... . ............ ............... F- ....... ....... ....... ..... 25 ..... .. .............................................................. ..... ....... ...............I.......................... ........ ..... ....... .............................. ....... ....... S-6 ....... ...........z...... ....... .... .. 30 1 10 20 3u 40 50 LEGEND MOISTURE CONTENT Plastic limit Natural liquid limit 2-inch OD split-spoon sample R Z A Ceolechnrcal & Environments/Cbnsullwls 1,1X1401hAve NE Bellevue, IrashvY.-low 98005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT Black River Transfer Slalkj7 W.0. #r- 72,50 BORING No. B-2a SOIL DESCRIPTION 2.a a.a. Cn STANDARD PENETRATION RESISTANCE 2 = W W ZE X 2or A� Blows per foot 11� � Approximate ground surface elevation: .4 ;D � W 30 - 35.5 feel �W to z U 10 70 30 AD 50/1 to medlilm S114f, proy, wet to soluroleo" sandy Z T with logs (KIV 5-7 ........::�...... ....... .............. ........ ...... .............. ....... ...................... ....... ...... ....... ...... ...... . ....... .............. ...... ............... ...................................... ................... Harol q,-qy, wet, silly 54NDSTONE .......i...... ....... ............................... ...... ....... ....... 35 - Frcclh7cl f47 f0fVS01 01 o0proXim01e6V 35.0 f6&1 ..... ............... ....... ....... .......................... ....... ....... ....... .............................. ....... ....... ....... ....... ....... ................................ ............... - 40 ....... ....... .................. ............... ................ ....... ....... ...................... ............... ............... ....................... ............... ............... ....... ....... ...............- - - -- - ....... ............... 45 ...... ....... ............... ......... ....... ............... ............... . . ............. ............... .............................. ...... ............. 50 — ....... ....... .............. ....................... ....... ....... .................... ....... .......?..................................................... a ....... ........................ .......... ....... ....... 55 ................ .............. ............................... ............... ................ ....... .............................. ....... ........ .. ............... ...... ....... ....... ....... ------- ...................... ....... ....... ............... 60 - 10 20 30 AD 5.0 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A ASSOC/ATF.S; INC. Oeotechwca/ 07;7.ro,7me,71a,1 CoDSVJ1&BtS V00 AfOlh 4ve NB Bellevue, lfamhlnftoa 98005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: JA,6 PROJECT MaeJf River transfer Slalioj2 w.o. 7250 BORING NO. B-3 SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE - 0 � 0 — Approximate ground surface elevation: Blows per foot 0 10 20 30 40 Dense to very .y dense, brown, wet, s1111 sandy OR4 kFZ lo AN9 wilh cobbles and ....... .......1....... ....... ....... grovvl�,5 ....... debris ....... ....... ....... .... . . ............. ............... ....... ....... .... ........ .. ............... ....... ....... ....... ........ ...... .. . ........ .............. ...... ....... ....... ........ ....... ....... .......... ............. ....... ....... .............................. E7' 77 5_2 ....... ..............................................I ........ - 10 . ................. ------------------------------------- ............... ............................ ...... ....... ....... ------- Zoose to medium sfiff, wet to salyrolee 61,own to gray, sandy cloyev 5/17 with silly ... ....... SAND seams with organics �fl'IV 5--T T T .............. ....... ....... ....... - 15 - ...... .............................................. ..... ....... ....... ........................................ ............... .......................... ............... .............................. ....... ....... ....... _ 20 - ...... .............................................. ............... ...... ....... ...... ..... ............... ....... ............... ... .. ....... .............................. ....... -------........ 5_5 .............................. ....... -25 - ....... ........ ............................... ...... ...... ....... ...... .............. ....... ............... ......... .to we4 sliphf .......: ....... ......... ---------------------------------------- 5-6 Medium dense, gray, saturated �, ........ . ......... .............. ....... ...... 30 silly SAND 10 20 N 0 4 0 50 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A XSSOC14= INO ....... .... .14M M Oth Ave JVE Bellevue. Xeshljytow 98005 Drilling started: 20 November /990 Drilling completed: 20 November 1990 Logged by: LAB PROJECT Black RiVeP transfer 71,91ion W.0. #r-7250 BORING NO. B-3 SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE Approximate ground surface elevation: 2g.g leel Blows per foot En LO In 0 10 20 30 40 50 1 w 30 - - E_ ,Wedlilm dense, gro.y, saturaleol to wel, sllgbl,�,x/?/v 54M9 ............... N ........ .............................. ...... . . ............... ...... ....... ....... ....... a 5-7 ............... ..... ............... --- ------- ....... 35 Boring terminated 0P,0r0x'mo1e6` -Tf 0 feel ............... .......................................?....... ....... ....... ....... ....... ............ ... ....... ................................ .. ....... ....... ....... .................... ....................... ....... ...... - 40 ....... ....... ........... ....... ....... ....... ............................... ....... ...... ...... ....... .............................. ............... ............... .......j........ ... ...... ...... - 45 ............... ....... ...............-............................. ....... ..............I...... ........................ ............... ....................................... . ......... ........................ a ............... ....... ........ . .......... ........ .............. 50 - ....... ............... ..... ............... ....... ............... ....... ............... ............... ............... .............. ................ ....... .. . ...................... ........ ................ ....... ....... .. ..... ............... ........ ............... 55 ....... ....... ..................................... ............. ....... ....... ....................................... ....... ....... ....... ........................................ ....... .. ........ Li 10 20 ........... ....... ............... LEGEND MOISTURE CONTENT Plastic limit Natural liquid limit 2-inch OD split-spoon sample R Z A F�vjmnmewlal ChosaWeSts 14W 14&b.4ye VE Bevue. Fasbingl lle oD 98005 Drilling started: 20 November 1990 Drilling completed: 20 November 1990 Logged by: LAB PROJECT BJa4 RfVer jT8.nSfeP Stal.1ors w.o. ff-7250 BORING NO. .8-5( SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE z >M- Ak Blows per foot Approximate ground surface elevation: 28.5 fee/ j- 10 20 30 40 0 Medium dense to very dense gray to 6rown1sh groy, wet to solvloled si7ty sandy 67RAIEZ ............. ............... ..................... . ....... ....... a wilh wood debris (FIYV .... ....... .................................. ................ ............... ------- ....... ....... ....................... 5 a ...... .............. ...... ....... ....... ...................................... ... ............ ............... ..................... ............... ....... - 10 - ............... ....... ...... .......................------- -------........ ............ ....... ...................................... ................ ....... ... ....... ..... ............... ....... ...... .............................. .......I - ---------------------------------------------------------- Pedium sllfl,' brown with rust coloring, wet to S01afOI&O! S97ndl clayey S11 7 with sIA5, 541VO ............... ....... ............... yerr with wood oebr& (f-lyv ....................... ................ . .. ................................ ....... ....... ....... .............. 20 - ....... .............................. ............... ............... .... ...... ...... ............... ...... ....... ............ ....... .............. ...... 5-5 ................. ....... 25 ....... .. ........... .............................. ............... a ....... ...... ........................................ ............... .......... . ............................................... Mediumdense 10 loose, gray, SG1UrGj&0,' ..................................... ............... slightly silly SANG .5-5 • a ................ . .......................... ....... ...... s a 30 - I-1E G IE N 3::> MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch 01) split-spoon sample R Z A Ceolerhmeal 1400 1401h Ave NE we. FBShJ1)g'10.7 .9800,5 Drilling star-Led: 20 November 1990 Drilling completed: 70 November 1990 Logged by: LAB PROJECT Black River Transfer Slalion W.0. W--7.250 BORING NO. B-4 ' SOIL DESCRIPTION N W a c STANDARD PENETRATION RESISTANCE i m a w o R - Blows per foot o Approximate ground surface elevation: 2B.5 feel y z o to 20 x .o e 30 Medium dense to /Dose, gray, sa(uroled, shgh(r silly SMNO ....... ....... ..... e................;...............;....... ....... ....... ....... ..................... ....................... ............... 1 ..... ..... S-7 ........ ......._...............,....................... ....... ' 35 Boring ferminoled approximolely 34.5 fee( ......_....... .......i........................................ ............... -' ....... ....... ............................. ....... ............................. 40 ....... ....... .......>..................... 45 ......_........ ....... ...................... _ . 1 50 ' ................i....... ... ....... ............._....._ 55 ....... ....... ..............................>....... ................ 60 10 70 30 40 SD LEG E N D MOISTURE CONTENT ' Plastic limit NaLural liquid limit -. = 2-inch OD split-spoon sample R/7TE11HDUSB-ZBM4N& ' R Z A ASSOC/9TES; INC. Environ .4 Consu/tents J400!40th/h Avve NE' Bellevue, NeshioBlon 9B005 Drilling started: 20 November 1990 Drilling completed: 20 November 1990 Logged by: LAB PROJECT Black River Transfer Station w.o. W--7.250 BORING NO. B-5 ' SOIL DESCRIPTION `��c. a © _ STANDARD PENETRATION RESISTANCE z �- Approximate ground surface elevation: 21„J Blows per foot /ee% y e- y z 10 zo ao ao D Dense, brown, wet, si/1y sonoy GRAkTZ with j I cobbles and debris (FWV .............. .......;...............................;........................ ....... .......i............................ .......... S_/ 4....... .......i................,....................... . I .....q....... S ------- ------------------------------------------------ Loose, brown, wet to saturated, silly gravelly S4N0 to silly S4N0 (F/J .............. ............... ...... ............... .......i....... ............... .............. .............................. ....... ....... ....... I .S-2 1 .......i....... ......................; ............... ....... ....... ....... 10 1 ...............................,....... ............... ................:........ ' S-3 Boring terminoled of aporoximolely 74.0 feel 15 .............. ....... 1 20 ....... ....... .............. ....... 25 ....... .......................,............... ....... ....... ........ ' 0 10 so w .o so LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit I2-inch OD split-spoon sample R/TTBNHOUSb'l"' , R�7'-+A� ASSOC/rITBS, /NC. c��� Cealechnica/ & F✓�nranmenla/Consu/tents 1400 1401h Ave NB Bellevue. Wesbw7gton 969003 Drilling started: 20 November 1990 Drilling completed: 20 November 1990 Logged by: LAB PROJECT IaCA-_HV&.r FrdflSfeT Station W.0. #-7250 BORING NO, B-6 SOIL DESCRIPTION !j W� STANDARD PENETRATION RESISTANCE 0. M =z W X 0 Approximate ground surface elevation: 2 Xc Alk Blows per f"t' Ln W 0 1 1 feet 10 20 30 40 Pbly dense, grayi sh brown, MOIS1, SCI&I Z with cobbles, possible boillolers, GRA VZ ....... ............................. .............. o'ebrIs (FlIv ....... ....... ............. .................. -----_4....... S-1. .............. ....................... ....... ....... ........................................ IS ....... .................... ....................... -- ----------------------------------------------------------- 50/51 to medium Stiff, grc), to block, we/ to ........ ...... ............... ............ ....... ....... soliloteo cloyel Slff with orgonks to sanojr SIZ TV ................ .................. ....... ....... (fZ S-2 .......... ............... ....... .............. 10 - ................ ..... ... ........ . .................... .. ............... .......... ... ....... ....... T Boring fermi;7oleol of qpprorimolej, 74.0 feet 15 .............. ...... ...... ...................... ....... ............... ....... ....... ....... ...................... ........ .............. . .... ............... ... ....... .... .............. 20 — ....... ....... .............. ...... ...... ....... a a ....... ------- .................................... ............... a ....... ------- .............................. ...... .......... ....... ....................................... ........ ...... 25 *........ ....... .. ........ ........ ....... ..... ........ ....................... ....... ....... ....... ...... ...................... .... .............. .............. ....... ...... ............... .. ................ 30 - 1 1 1 6 10 20 30 40 SO 1_1E G�E:1�j 1�0 MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample RZA 4SS0014TES INC JiO00.14'01h.4ve NE Bev'leme. Fashmeto.7 Y8005 Drilling started: 20 November 1990 Drilling completed: 20 November 1990 Logged by: LAB PROJECT Black h'iver Transfer Station w.0. W--7,250 BORING NO. B-7 c SOIL DESCRIPTION G a m z STANDARD PENETRATION RESISTANCE i Bloxa per fool V) Approximate ground surface elevation: y5..j/eel y y z s 10 20 30 .0 so f 1 Dense, brown, wet, si%ly grave//y SAND with cobbles and debris (Fr%/J -------. ....... ...............:............... ....... ....... ....... ......_....... .......i................................5....... ............... 1 IS . ....... ....... ................ ...... . ....... . is .......................... .. ........... S-Z • 1O ..... _______________________________ Soft to medium sli)r, gray, wef fa safurofed ;1 sandy cloyey S/L T(Fi//f .. ................'........ 1 ...... ... . ........................ 15 i ............... .............. ....... ............... 1 ..... .. .. ......................:...............p. : ....... ....... ....... .......J.............. .......P. 20 i ....... .......: .... ............... 2/91 1 ....... ....... .... _ I S-5 1 25 1 -- - ------- ----- S-6 ............. ..... ........Aledium dense, gray, saturaolvro ted, s/igh!/y si//y SAND to si%!y SAND ............... ....... ............s........_..... ....... . 1 30 10 20 w 40 so LEGEND MOISTURE CONTENT 1 I • Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A /!/9TBNHOUSE-ZEMAN& 1 ASSOC/ATE$ INC Ceolechnica% & Ebviroamenla/Consu/tents .&00 'fOLb Ave NE 1 OeWevve, Washington 99005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT Black liver Transfer Stafior2 W.0. W--7,250 BORING NO. B-7 ' v SOIL DESCRIPTION a a © STANDARD PENEIRA71ON RESISTANCE z Blo-s per loot ' ti c Approximate ground surface elevation: 25.,E/eel y w Z U 10 20 30 40 F 30 Medium deflSe, groy, soluro(ed, s/igh!/y si//y i S4NO /o silly S4N0 i....... .......:.............................. ....... ........`;...-... ....... ....................... ......... S_7 .............. ... >. ....... ' 35 1 ....... ....... .......'...............i...............„....... .............. . S-B s....... .................. ....... ......._....... ...............;....... _ ' 40 S-9 ............................................. ....... ....... 45 oring termmaled opproximotef, 49.0 feet ! i 50 ....... ...................... ....... ............................. ' 55 _ ........ .......;...............:.........I..... ....... .......,........ ' 60 10 20 30 40 50 LEGEND MOISTURE CONTENT ' PlasLic limit NaLural Liquid limit - = 2-inch OD split-spoon sample lN9TNHMAN& ' R Z A ASSOCB/ATBS,OUSs-ZB INC. c'� Ceo/echnice/ & .1400 1 menla/ConsWlenfs 1A00 190[h Ave Bellevue, A"eshingtan 98005 Drilling sLarted: 19 November 1990 Drilling completed: 79 November 1990 Logged by: LAB V- 11�- PROJECT .87 J490jjr River I afls fe'r Station W.0. #r-7250 BORING NO. B-8 SOIL DESCRIPTION R , STANDARD PENETRATION RESISTANCE Q !-� Blows per foot M Approximate ground surface elevation: 10 20 30 1 0 W 40 5 O A(ediivin dense, brown, wet, gl-cs,&161 silty 54#29 ....... ............... ...................... ....... ............... ....... ................ ...................... ....... ....-.1....... S-1 ....... ....... ....... ...... a S -------------------------------------------- medium stiff, grog, wet to schlroled sandy cloyey All with silly MAW seams with ...... .......-------- .............. ------ ....... ............ logs and other debris (fIZV -------- ------- . .. ...... ............... ................ ............... ...... ...... ....... ....... ....... ....... ...... ....... ....... .............. ............ . ....... a ............... ....... ....... .............. ....... ............... 7...... ................. ...... ....... ............... .............. S—j ...... ....... ....... .............. ....... ........ 15 ...... ....... .............................. ....... ....... ....... .......... ... ....... ............... ............... ....... ............... ------ ------- S-4 .. .... ....... ........................... ....... ............. 20 - ....................................... a .............. ....... ...................... ....................... a ....... ...................... ....................... S-5 ................. .... ..................... ... ............... 25 .......... .............................. ....... ..... ........ ............................ ....... ....... ....... a ............... ...... ............. ill 20 30 40 7 1-3E C;1E N D MOISTURE CONTENT Plastic limit NOWT&I Liquid limit 2-inch 01) split-spoon sample )?=ENH011SE-ZPdV41V R Z A 4SS0MTES INC CeolechWC41 F-9wrowmewlel Chnsalleflis hfW 1401b Ave iVE Bellevue. Feshinglon 98,905 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PRoJECT Black River Transfer Station W.0. W--7.250 BORING NO. B—B 1 d ; SOIL DESCRIPTION aIN 0. 0 = W STANDARD PENETRATION RESISTANCE i W 3 S O < - Blows per foot' W Approximate ground surface elevation: 29..9/eel y y z o � �o so w .o f ' 30 -- - - - Hord, groy, wet, silty S kINDSTONE ....... .......:................i....... ... 1 . . S-7 Boring fermhv/ed opproximofely 33.0 feet 35 1 140 ....... . 1 ....... .......t........................ 45 1 ...... ....................... . .................. ................ ..........:..............._....... ......._....... 1 ......¢.. .............. 50 1 ....... ..... 1 1 �5 1 ..................... 1 o ao ao +0 so LEGEND MOISTURE CONTENT 1 Plastic limit Natural Liquid limit _ I 2-inch OD split-spoon sample /?/7TF,NHOfISE—ZB.IL4N& 1 R Z A ASSOC/AYES, INC� Ceolechnice/ & Consultants 1400 1401h Ave NE 1 Bellevue, Aeshmgloo 98005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT Black River Transfer Station w.0. #r 7250 BORING NO. B-9 ' v SOIL DESCRIPTION a`' a m I =W STANDARD PENETRATION RESISTANCE z w a s o f - Blows per fool y Approximate ground surface elevation: pB.1!ee/ y y z M, la xo So ao F D Loose to medium dense, brown, wet, grovel, silty 54NO(Fi//J .......................;...................................... ....... ....... 1 ZS 5 ------------------------------------------------------- Medium dense 10 sillf gray, wel to sohlroled, :....................... .......v....... ' layered si/!y S4N0 to sandy clayey S/LT with togs and debris (Fi%/J .......:....... .................................... Z S-z ,D 1 ZS-3 . .. N ....... .......`...... ............... ....... 75 ............... ...... .. ..... S-4 ....... ....... ........:.......... ...i..............b....... .......%........ 20 1 .... ' S-5 l ....... ....... ......._..................... ....... ............... ' 25 - -------------------------------------- ------- ............... .......'........... .... ........... ................ .............. . LI Medium dense, gray, soluroled, silly SAND ....... ......_...... ............................. ....... ................ Z S-6 ...... .... w 4o so LE G E N D MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R17Tf.NIIOIISE--ZE04N& ' R Z A .4MOCUMS; INC Ceolechnica/ & salmi ` 6�viranmenla/Consultants 1900 190(h Ave NE' Be/%vue. Wash wfloo 95005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT Black River Transfer StaliStationw.o. 7250 BORING NO. B-9 SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE 0z r to AL Blows per foot' 0 — Approximate ground surface elevation: 28.2 yeel M 30 - W Z 0 10 20 30 40 kedlum dense gray, saluraW silly 54,VV ....... ....... ....... ------- ------ ...... ....... ....... ...... ........................ ............... .... ........ --------5-7 .. -- ....... .... ........ ..... ....... ............... ..... -------- a T ....... ....... .... ............... .......I....... ....... ....... 35 -----------------------------------------------------------— Ilard gray, mots!, silly SANDSTONE ................ ....................................... . . ......... ....... ....... ...................................... .... ....... T1 901-1129 lerm1noleol approynnale/y 39.0 leel ....... ....... ............... ................... ............... - 40 ....... ................. ............... ....... ............... 4....... ........ .......................I....... ....... ....... ....... a a ------- .......;....................................... ....... ....... ....... ....................................... ....... ....... ...... - 45 - ....... ....... ................................. -------........ ....... ........ ....................................... ................ a ....... .... ............... ................ ....... ............... ............... .............. ....... ....... ....... ....... ............................. ....... ....... ....... ................ .......?.............................. ....... ................ ....... ..................... ............... ....... ............... ....... ....... .............................. ....... ............... 55 ....... ....... ...................... .... ....... ................ .............I.. .............. ........ ...... ....... . ..............- a I........ ....... ...................... . .. ....... ....... .......... 7...................... ....... ....... .... 60 .... 10 20 30 40 5;0 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A 14M 1401h Ave N-P Bellevue. NeshingLon M005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT BlaeJr River Transfer Station W.0. #,-7250 BORING NO. B-10 % SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE o. 0 E- X M � Blows per foot W — Approximate ground surface elevation: _;76.0 feel E_ < :D Ak Z 20 3D 40 0 Dense, brown, wet slYLy sandy CAAYEZ with some cobbles and debrls (fi11) ....... ....... ............... ...... ........... .................................t....... ....... S-1 ........i....... ....... .. ................. .............. ....... .................... ...................... ....... ....... 5 ....... ..... ............_F...................... ....... ....... ..... ....... ............. ....... .............. 50fl, gray, solivroled 10 Wel, sandy C/,?Ye/ .... .................... ....... ............... - 10 - ................ .... ....... ....... .......... ..... .................................. ....... ...................................................... Baring lerrnhwled of qpproAwnale/y 74 feel ....... ... ............... .............. ....... ............... ....... .................. ....................... ................ ... ...................... ..... ............... ....... ....... ............. .......... 20 — ............... ....... .............. ............... ....................... ....... ....... ............... ....... ....... .... .. . . ....... .............. ....... ....... ...... ........... ........... 25 ....... .... ...... ...... ....... ............... a . .. .............. ........ L....... ....... ............................. ....... ............... 'o 3 0 40 50 LEGEND MOISTURE CONTENT 2-inch OD split-spoon sample X Sample not reco•ered Plastic limit Natural Liquid limit AVTEYIIOUSE-27"�4Y RZA .45=14TES INC tents 14,90 If&b 4ve A(E Oelleive. FashiRZloo 98006 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT" Blaclr River Transfer Station W-0. W--7250 BORING NO. B-JI ' SOIL DESCRIPTION a o STANDARD PENETRATION RESISTANCE z y Approximate ground surface elevation: Blows per foot 55.0 feel ra O in i to za w .o f o soi iog s an or ............. Stilf dark brown to ion, moist to wet sondy . - .... ....... ...... .......••••.•......... ....... ......'....... c/o yey S/LT ............... .................. . ....... . .. ......... S Medium dense to very dense, brown, wet with ........{....... soluroled seams, silly grovel/y SAND wilh ' cobbles :............. .:....................... ................ ................. .................... ................ S-2 ....... ....................._........ 0 ...........:...... ....... ....... ....... ........................ I S-� 15 -------------------------------------- ------------------ Hord, gray, moist, silly SANDSTONE L ......_.............. ............... .. Boring leiminoled of apprarimolely 17 feel . .......>....... ... .....>..... ... ....... . 20 ....... ....... .............. ....... ....... .......d............... 25 _ ! ....... ....... ....... .............. 30 10 so aD .o to LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit -- I 2-inch OD split-spoon sample X Sample not recovered BlITBNH011S8'ZEWN If R Z A ASSOC/A= INC. Crolrohaice/ & Brie nla/Consu/tents 1900 140L-1901h Are NE Bellevue. Nash/nglon 9B005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT Black River Transfer Station W.O. W--7.250 ' BORING NO. B-12 ' % SOIL DESCRIPTION art a o z� STANDARD PENETRATION RESISTANCE z .�. c Frn c Approximate ground surface elevation: j0.7 feel AL Blows per fool r�i� ni z ,o ao er so so D o P-.soi ioo s on or Dolts----- ----•-- -•••• - -.� ' Dense, brown, wel to wfilroled, shyhl/y silly ............... ......................................-'........ .......:........ grove//y 541V9 to sondy CRAYEL with some cobbles ...... ....... .......t...............i................-...... ....... ..... ZS_> _. .... .i ._ 5 . . ... ....i....... . ........i....... ......:........ ..................... ....... ...... ....... S-2 : 10 ------------------ Dense grey, soluroled, silly S4N0 t ............... ....... .............................. .........[....... Ha s--ill-y--SANDSTON-- -- --E---------------•• S-I rd gray, moist, 15 Proclico/ng refusal o/ 74 fee/ ........i....... ......._...............i............... ....... .......;........ ...................................... .......... ....... .......4.............. .... 2D ....... ......._.............. .... ....................................... ....... ............... 25 ....... .......;...............;....................... ................ ..... ...................... ....... 30 o zo ao 40 so LEG E N D MOISTURE CONTENT Plastic limit Natural Liquid limit 1 2-inch OD split-spoon sample R/TTENHOUSE--ZBMAN 1 Z A ASSOCIATES, INC. Bnviro .4 l Consu/lenLr l900!10a 90[h Ave NE Bellevue. Weshinglao 99005 Drilling started: 19 November 1990 Drilling completed: 19 November 1990 Logged by: LAB PROJECT `B18i 1k 1Ziver Transfer A86On W.O. W-7250-1 BORING NO. B-13 a SOIL DESCRIPTION N w IN m m STANDARD PENETRATION RESISTANCE z m a =o < . Blows per fool vi Approximate ground surface elevation: ,jj0 reel y y = u► io 20 so 40 so a�- D Medium dense /o dense, mois/, brown, silly ` gravelly S4NO with cobbles, boulders, ono' +....... ....... .............-;...............,...... ..... ....... debris (Fi%V ....... .......>...............;................;....... ......_i....... .......i...............................5....... .......o....... ........i....... ....... :................i....................... ............... 5 S-1 I ................ .......:.................... ,o ................. ............ ....... I5-2 ....... ....... ................... . . Hord, gray, mois/, SANDSTONE ......;....... ............................................... ............. 15 ' S-3 ..... ....... .............................. .. ... ..J"... 20 - 5-4 Boring lermmoled o/ opproximotely 21 feel 3N ................ .......;.............. ' 25 ............... ....... .............................. ....... ............... 30 io 20 so m so LEGEND MOISTURE CONTENT Plastic limit Nature] Liquid limit I2-inch OD split-spoon sample X Sample not recovered D R/TTPNHOUSE-ZEMAN"- 1RZA� ASSOCIATES /NC. cA�� Cea/echnice/ & �, 1, 00 onmenlel Consu/lenls ��� /900 1901h Ave' et Bellevue. Washington 99005 Drilling started: 21 June 1991 Drilling completed: 21 June 1991 Logged by: LAB PROJECT- Black River Dansfer Aatkj7 w.o. Y-7250-1 BORING NO. B-14 !J SOIL DESCRIPTION STANDARD PENETRATION RESISTANCE B10.3 per toot- Approximate ground surface elevatJon: 2g.0 feet w W 0 Z 0 10 20 30 40 0 IledIUM dense to dense, brown, Wet, S111.Y S07df OtMEZ with cobbles and debris (fj"IV .......4....... ................ ............... ....... ............... ....... .................................... ....... ...... ...................................... ....... ....... ....... ...... .............. .............. ....... ............... 5 . .................................................. -------- ...... ....... ....... ....... ....... ....... ....... ....... 5111f to very sfiff, gray, wet to salal-oleo, sandy Slff with silty 54MO seams with wood .............. ....... ...... ....... ....... ....... ....... debits (Fill) .... ............................. ..................... ....... ....... .......I/........................... ....... ...... ....... S-2 ... ... ................................------- ....... .............................. ....... ...... ....... ............... ........ ............... ....... ...................................... ....... ......... S__T .......... .............. ................ ........................ ....... ......4....... ... .... ........................9....... ................ .............. ...................... ------ ....... ................ 20 - 5-4 .............. ............................................. ............... .... ............... ............. ...... ....... ....... ....... ....... .................... ....... ....... ....... ....... ....... ....... .. ........................... ....... .......4....... 25 S-5 ....... ... ........ ....... ....... ....... ....... ....... ............ ....... ....... ....... ....... ....... ....... . ... ....... ....... ...... ...... --------- ------------ ....... ....... Aledium dense to se -qroy, sawateo, ......... ... ....... ....... ........ silly54W 30 10 20 30 40 60 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit —1 2-inch OD split-spoon sample IT Shelby Tube RZA INROW14TONS'PROP"k Eni7ranmeotal Consultants 1400 140Zo Ave XE Bellevue. 1Fas&,qg,1a,7 9,9005 Drilling started: 19,lLlne /991 Drilling completed: 19.1une 1991 Logged by: LAB PROjEcT Black River Transfer ,71alian W.O. BORING NO. B-14 SOIL DESCRIPTION m N 4 STANDARD PENETRATION RESISTANCE Blows per toot Wo - 30 - Approximate ground surface elevation: ?5.0 feel Z 1 10 20 30 40 Medium dense to dense, gray, saturated slYIyS4,V,9 ..................... ....... ...... ....... ....... ........... ....... .............. ............... ......... . ....... ....... ....... ....... ....... -------........ ..... . ...... ....... ....... ....... ....... ....... ....... ...... ....... ....... 35 - S-7 ............... . ........... ...... ...... ....... ....... .......4....... .............. ....... ...... ....... ............ ................................ ....... ....... ....... ........ .............. .... .............. ............... 40 S-8 ....... ....... . ................ .............. ............................ - ....... ....... ....... ...... I fiaro .1"alst s114v-1UN,95)'0NZ- ....... ....... .............................. ...... T BaringlerwfflGled OppfOXIM,710 44.0 feet 45 ............... ....... .............................. . ............... ......... ...................................... ....... ............... ....... ....................................I....... .............. ....... ....... ............................... ....... ............... 50 - j....... ............... .............. ............................... ....... ....... ....... .............. ....... ........ ............... a ....... ....... ....... .............. ....... ........ ................ ....... ....... ....... ............... ....... ........ ............... - 55 ....... ------- .............................. ....... ............... ....... ....... ....................................... ............... a ....... ....... .....................-............... ....... ....... ....... ....... ....... ........I..................... 10 70 30 40 50 1-,1E C];1E Ili ID MOISTURE CONTENT F----------0 Plastic limit Natural Liquid limit 2-inch CD split-spoon sample )WITENVOUSE-MR41V R Z A .4SSOMTES INC CeolechniceJ & I400 I101h Ave NE Drilling started: 19,1,vne 1991 Drilling completed: 19 jvl;e 1991 Logged by: (AS PROJECT Blacir River Transfer Station w.o. #r-7250-1 BORING NO. B-15 SOIL DESCRIPTION !2" N M 1141 STANDARD PENETRATION RESISTANCE zu CL o A Blows per foot Approximate ground surface elevation: 25.0 eel 6.- � :D / 10 20 30 •0 0 befl$0 brown moist, sIlly sandy ORMU with wood, cobbles and possible boulders ........ ....... ....... ........................... . (117V ......... ....... ....... ...... .. ..........4....... .............. ....... ....... ....... .............. ....... ....... ...... ....... ------ ....... ...................... ...................... 5 IS ....... ....... ........ ....... ....... .... ......... ....... ........ ....................... .... .... ...... ....... ............... ....... ... . .............. ....... ....... — ------------------------------------------------------------ ....... r....... ....... ......... ...................1....... ....... ....... Sofl, gray, solaraled sandy cloyey 51Z 7 with S4#0 seams with wood debris (flIV S-2. ...... . ....... ............... ... . ....... ....... ............... ..... ....... ...............1....................... ............... ...... .......T­.................... .......i....... ....... ...... ....... ...................... ....... ..... ....... ....... 15 - .............. ....... ....... ....... .... ....... ................ TT ....... .............................. ....... ....... . ...... ..... ....... ...................... . ............... ....... ------- ....... ...................... ...... ....... 20 - S-4. ... ............... ....... .... ............... ... ....... ............................... ............... ....... ............................. ................ ....... 25 ,!tedium dense to dense, prof, solurated s111f_'UMV with sandy SILT seams 5-5 ....... ....... ....................... ............... ...... ....... .............7....... ............... ....... ....... ...... ............. ....... ............... 30 10 20 30 4T,50 1-:E--G E T-Z 3D MOISTURE CONTENT Plastic limn Nelural Liquid limit 2-inch OD split-spoon sample IT Shelby Tube RZAR1j7M1011SE-ZM4jV,& .4swavrEs mc Ceolechmeal & 16MMUMeRtAl COPSUMMIS 1.100 1901b Ave)VF Bellevue. hyash,&w1ow MW5 Drilling started: 19.121ne 1991 Drilling completed: 19 June 1991 Logged by: LAB PROJECT BjocA- River Transfer Station w.o. Y-7250-1 BORING NO. B-15 SOIL DESCRIPTION �w % STANDARD PENETRATION RESISTANCE C� M = r :w ;'E 0 � Blows per foot Approximate ground surface elevation: 25.0 feel C =) M w & - 30 - to Z 10 20 30 keadvI77 dense to dense gray saturated, — silly S41V0 wlfh sandy SIZ 7 seams ....... ....... ....... .............. .......?....... .............. ....... ....... . . ....... ..... ........ ....... ....... ............. ............... ....... 7 Y ....... ....................... .. ............... ....... ....... 35 - ......................... ............... ....... ....... ....... ....... ....... ..... ............... ....... ....... . ............ ....... ............. ........ ... .............. ....... ....... ....... 40 - ...........------ ............... ....... ...........-........ ....... ............ ............... ................ . ........ ..... ......... ..... ....... ................ ........... ... ... ............4 . ............... - 45 - ....... ............... ............... ....... ....... ....... ....... .... ............. ....... ........ ...... .... ....................... ............... .......... .... ........................e--- - - - 50 - 5-8 ....... ........ ...... ....... ............... .... ........ ........... ....... ............... a ....... ............... . ..... ........ ................ ............. ....... ..... ........ 55 - ....... ............... ........ .............. ........ ....... ....................... ....... .......... ........... ............ ....... ....... ---g-rwy,---- -M--D-1-S-f---S-,1-6-,--5-4--N-,9-S- 701&' ....... ..................................... ....... \7 9b,,h7v terminated at approxt�nole4, 50.0 feet M 5-9 60 9 lu 2 1 v LEGEND MOISTURE CONTENT Plastic limit Natural liquid limit 2-inch 01) split-spoon sample RZA ','f57.7OsC,",,OE".s'-",,-VzE"4v g' C. M, EvnroRme,74#1 ConswIle,7is 1900 I60Lb Ave YE Belleme. Yeshm.-Ion 98M.5 Drilling started: 19,121ne 1991 Drilling completed: 19 June 1991 Logged by: LAB PROJECT Black River ))-ansfer Slaljoi2 w.o. Y-7250-1 BORING NO. B-16 SOIL DESCRIPTION aW ,=W I STANDARD PENETRATION RESISTANCE 0< A Blows per loot 0 — Approximate ground surface elevation: 2g.0 feel V) V) Z U 10 70 30 40 50 0 .Medium dense, brown, moist to keiy wet, silly SkVO with sonai,SIZ 7 seams oilh some grovel ....... ....... ....... ............... ....... .............. and cobbles (fllv ............... ....... ....................... ... ....... ....... ....... ............... ....... .............................. ....... ....... ....... ...................................... ....... ....... ...... ......... ...... ...... ................ - ....... .... ......... ....... ............... ....... ....... ....... ...... . .............. ....... ....... ....... ....... 10 - ....... ...... ..................... ............... - ------------------------------------- -------- ............. ....... ..............................4....... ....... Stiff, gray, solaraleo.' sandy clay ey 51ff with silty.SAND seams (,rllV ............... ....... ...... .............. ..... i............................... ....... ..... ........ - 15 - ....... .............. ...................... ....... ............... ------- -------....................... ....... ...... a ............... ..... ....... ... ...............?....... ........ ------ ....... ...... ....... ..................... ....... ............... 20 - 5-4 .......... ........ ............... ............... ............... ....... ....... .............. ........................ .......... ....................... ....... ...... . .............. ....... ............... 25 ....... ............... .... ........ ......... ....... ....... ......... .......I....... .. ................. ...... . -" Medium dense to dense, gray, so/ura/ed---•-.--- .............. ....... ...... .. ...... ....... ... 30 silo,SAND with sandy SIZr seams 6 ID 20 30 40 so ISJ MOISTURE CONTENT i 0 a Plastic limit Natural Liquid limit 2-inch 01) split-spoon sample Shelby Tube -z)4?IS7STOECNlh4FToELISsEIVCEAulv R Z A OeolechfiXOI D)wroomeotal ConsvJ18,71s 14M I-f0th Ape NE' BeWeme. Meshing-lon .98005 Drilling started: 20,41ne 1991 Drilling completed: 20.1ane 1991 Logged by: LAB - - PROJECT Staijac- W.O. XL7250-1 BORING NO. B-19 SOIL DESCRIPTION c N STANDARD PENETRATION RESISTANCE z P" 0 — Approximate ground surface elevation: 2.9.a feel Blows Got . 30 - In z 0 10 20 30 40 50 ,We,Yl,vm dense lo dense groy, sal&rajed sA!y 54,V0 with sand.y 5/1,r seams 5-6 ....... ....................................I.?............. ....... ...... ....... ................. ............ ............ ....... ....... ....... ......... ....... ...... ........... ....... ....... ....... ....... ... 35 - 5-7 . .... ............... ............... ....... ....... ........ .... .. ....... ......... ....... ....... ..... ........ ...... ....... .............. ....... ....... ....... ....... a ....... .... ....... .............. ............... .............. 4D 5-8 ............... ....... ....... ....... ............... ............... ....... ....... ....................... ....... ....... ....... ------- ......................... brown, 5 --------------T - 45 L 901'h7g lefMin0jeO'of 45.0/e&j ........................ ............... a ....... ....... .............................. ....... .............- ............ . .................... ............... ....... ------- ........................ ...... ..... .......-------- 50 .... ....... .............................. .. ............... a .................. ....... ............... ................: ............. .. ................ ....... ....... .................................. ............... ...... ............................. ....... ............... ....... ....... ....................... .. ....... ................ .............. ....... ...... ................ ....... .............................. ....... 11 10 10 40 13 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R Z A INC Ceolechnical & jD2;vo,7meo1aJ ConsullaRts 1400 11&b Ave NE Bellevue, #&s6wefou .98005 Drilling started: 20 June 1991 Drilling completed: 20 June 1991 Logged by: LAB PROJECT Black Hver 7t-ansfnr Station W.O. X-7250-1 BORING NO. B-17 SOIL DESCRIPTION a s a o aSTANDARD PENETRATION RESISTANCE z Approximate ground surface elevation: 27 i-0 lee/ < m w Blows per foot 0 0 U 10 20 30 40 WedMIM 0'&Ue /0 dense, &OW17, lnosl, SM61 z sumO, GRAkF1 16 s171 ......j....... .......: y ....... ...................... ....... ....... ....... pfoveh�,S4N,9 with cobbles, 401//ders and debris fiflt/) ...... ....... ...... ..................... ...... ............... ....... ....... ...................... ....... ............... ... ....... .... ...................... ..... ....... .......... ....... ....... ...................... ....... ....... ... ............... .;........ ...... ...... ................ .. .................. ....... ....... 10 - ............................... a ....... ....... ....... .. .......... ....... ...... ....... ....... ....... ............... ...... ...... . E5 15 RWk-01 rig /eIVS01 Of 14 lee/ ....... ....... .............................. ....... ....... .. . ........................................... ....... ....... a ....... ............... ...................... ........ ............... ....... .............................. ....... ............. 20 ....... ....... ..... ---........... ....... ....... ............... ....... ... ....... .............. ..... ....... ............... 4 .. ....... ... ....... ....... ....... ....... ........ ............... .............. ....... ....... ................ - 25 ....... ........... ...... ...................... ............... ....... ....... ...... .................. ........ ....... ....... ....... ....... ...............A.............. ...... ...... ...... ....... ....... ............................... 30 - 0 10 20 30 40 50 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch 01) split-spoon sample R Z A cz ANC Oeolech,%'M' D7jwozjmeo1B1 Consultants .1400 Af&b Ave NE Bellevue. XB-vh%Wto,7 960495 Drilling started: 20,1une 1991 Drilling completed: 20,1vne 1991 Logged by: ZA,6 PROJM 0.8 River 7fansfer Station w.o. X 250-1 BORING NO. B-17A W �20 = = U SOIL DESCRIPTION ti W = - STANDARD PENETRATION RESISTANCE z Blo-s per foot W W W X owl 10 20 30 40 Approximate ground surface elevation: 270 feel W kedlilln dense to dense, brown, moist, sA6, i son*, GROR wilh cobbles, boulders and .............. ....... .............................. ....................... debris �/-,V ............................. ........ .... ........ .. .............................. ---------------........ .. ....... ............................. ............... ...... .............................. ....... .............. ....... ....................................... ------- .......1........ ....... .................................I............ ... .............................. ------- --- ProCtli7ol rig refusal 01 10/e,-j ....... .......................V. ...................... ....... ...... ................ ....... ......I.............. .. ............... I...........4.......................... ....... ....... ...... ....... ....................................... .... ....... ...... 15 ........... ...................................... ....... ................ ....... ............................................ ................. ............................ ............... ....... .................. ............... .............. - 20 - ....... ....... .......... ............................ ........ ....... ....... .................... - - - ....... ............... ....... ...................................... ....................... ....... ....... ................4.............. ....... .... - 25 ....... ...... ........... ....... ....... ....... ............... ......................4....... ....... ...............?-- ............... ............... ..................... ....... 30 - 3D Y 40 LEGEND MOISTURE CONTENT Plastic limit Natural Liquid limit 2-inch OD split-spoon sample R1172AOM-z A"NRZA 4.. , NANE JmfOO I-f0th fpe NE Bellevue. #'axhJz&1,w A8005 Drilling started: 20Ane /.991 Drilling completed: 20.1une 1991 Logged by: LAB PROJECT Black River Dwnsfer Station w.o. #r—7250-1 BORING NO. B-17B SOIL DESCRIPTION a o Z = 1 STANDARD PENETRATION RESISTANCE z 0 , Alk Blows per fool Approximate ground surface elevation: 27,9 fee( W 0 10 20 30 40 Dense to very dense, brownish gray, SXY sand .. .............. ,y 6R*FL �IWV ............... ....... .................................. a a ....... ...................................... ...... ....... ....... .............................. ....... ....... ....... ....... .............................. ....... ............... 5 ....... ....... ................ ........ ..... ....... ....... -.... ........... ....... .... -W............... ............... ....... ...... ............................. ........ ....... ....... 10 — ------------------------------------------------------------ ............... .... ....... ------- ....... ....... 51/ft to very sllff gray, wet lo saturaleDf sandy cloyev SILT with silly .54N,9 seams wl?h ...... ....... ...... . ..... ....................... ....... ..... ........ or§1017/cs and W000,Debl-Is ....... ...... ... ....... ............... ....... -----......... ....... ....... .............................. ....... ..... ........ 15 ............... .................... ...................... ....... ............... ....... ....... ....... ....... ....... ............... ............... ....... ....... ..................... ........ 5-4 ...... ......... ............... ...... ....... ....... ....... .............. ------- ....... ..... ......... ................ ....... ....... ....... ..... ....... ... ... ................ ....... .............. .............. ............ ....... 25 ....... ....... .............................. ... ........ ....... ....... ...................... ..... ...... ........ Afedium .......................... ....... ............. ....................... ....... ---............ dense, gray, Wilh she//S ....... ..... ...... ....................... 30 - 1 1 0 so w 10 I-JE C;IE 1%q ID MOISTURE CONTENT -inch OD split-spoon sample Plastic limit Natural Liquid limit 2 R Z A K/2R Environmental Consultants 1100 19Oth Ave WC i5elleme. Washington 9800 Drilling started: 21 Iv,7e 1991 Drilling completed: 71 June 1991 Logged by: LAB PROJECT w.o. Y-7250-1 BORINrNO. B-17B SOIL DESCRIPTION a m i s x STANDARD PENETRATION RESISTANCE Aj Blows per toot Approximate ground surface elevation: 270 feet o'W _ 30 - 0 Z U 10 20 30 40 Medium dense, gray, 50101-01&d s,10,S4NO T7 shells ....... ....... ..................... ....... ....... ............... .............. ....... ..... ...... ...... ....... ....... ....... ....... ............. ....... ....... ....... - - - ....... ........... ....... ....... 35 - S_j ....................... ...... ..................... .... ...... ....................... ....... ....... ....... ....................... .... ............... 40 ........ ....... ...... ............... ....... . .. ...................................... ....... ............... . ....... ... .................... ........ ............ 45 ....... ....... ....... ....... ....... ..... ....... ............... —------------------------------------------------------------ ...... ....... ...... 1-1,71-d brown, wet, 54NOSAOIVe ....... ....... .............................. ....... -....... ....- 50 - T5_10 L 90fl;7g 1&1n7h701ed01 0,D,0/VXAnG1,9/y 50.0 fee! ...... ..... ....... ............... ....... ....... .............................. ....... .............. ..... ... ....... ...... ....... ............... ...................... ............ - 55 ....... ............... .. ............... ............... ....... ....... ....... .. ............... ....... ...... ...... ....... .. . ....... ... .............. ... . ....... ....... ...... 10 20 30 40 60 I—JE:G IE I%T n MOISTURE CONTENT Plastic limit Natural liquid limit 2-inch OD split-spoon sample R Z A , INC B7wtvwmeRfal Consultants .14W Pf&b.4ve NZ Bnlleme. #'Bshvnftv,7 .98005 Drilling started: 21 14,17e 1991 Drilling completed: 21 June 1991 Logged by: LAB PROJECT Black River^Df nskr Station w.o. W-7250-1 BORING NO. B-19 a u SOIL DESCRIPTION a m a A =a STANDARD PENETRATION RESISTANCE z r o AL Blowsper fool- w G 0�- Approximate ground surface elevation: 1B.0/eel y F' y z U• tb 70 w 40 ii°- I 1'ery dense, 9roy, very wet 10 soluroled, silly sandy 0FAPEL with cobbles and boulders (fl//J ............................. ....... ....... ....... ....i....... ................. ..:....... ......4....... Z S A 10' ............... ....... ........................ ' 10 Z5-2 .............. ...................... ........ dledium dense, 9roy, soluroled, silly SAND ' with sandy S/LT seems �Fi%/J 15 i 1 ....... ....................................._ . ...P....... . - 20 - 5-4 ....... ....... ............................... ....... ............... ....... .....................-.............. ....... ............... ' 25 _ I S-5 ....... ......._............... ...... dfediiiin dense, gray, soluroled, silly SANO ....... ...... ....................... ............... ................ 1 ....... .......<...........................-.. ....... ............... ....................._.... .........i....... ............... 3D 10 10 30 40 s0 LEGEND MOISTURE CONTENT ' Plastic limit Natural Liquid limit 2-inch OD split-spoon sample � Shelby Tube B19TBNH011SE MWN& R Z A .4=14TBS, INC Ceolechnice/ & ✓ ` Ebvironmenla/Consu/len[s � 19a0 l9alh Ave NE Bellevue. Mashigelon 98W6 ' Drilling started: 20✓une 1991 Drilling completed: 20 June 1991 Logged by: LAB PROJECT -BIBCII Riney 73 nsfer Station W.O. W-7,2SD-1 BORING NO. B-IB v SOIL DESCRIPTION N w d o z STANDARD PENETRATION RESISTANCE z w r o . Blo*s per fool [Fig �- Approximate ground surface elevation: ZB.O feel v4i F' ra z 01 W to xo w so [w- 30 Medium dense, groy, soluroled, silly S4ND with shells S-6 i ....... ....... .......i........ ...:..�....................... . 1 ......_�....... ....... ... .........i....... .............. .......................................!....... . ....... 35 S-7 ._' ....._.......... ....:...................... _ ....... ....... ...............:...............;....... _...... ....... ' 40 S-B ..................... ......._....... .......<....... ............... ............... ....... 45 S-9 ....... ...... .:......... .....:...............,........ ....... ....... ....... .... ... .......<............_�............ 50 ............................................. ............... .......r............................... ..... .......j...._.. Hord, brown, wel, silly SANDSTONE tBoring lerrnhwled of opproximole/y 57.0 feet 10 20 30 - 40 50 LE G E N D MOISTORE CONTENT I � Plastic limit Natural liquid limit I2-inch OD split-spoon sample R/T76NHOUSB-ZSMAN& Z A ASSOC/AYES; INC Ceo[echniceJ & £✓00.1-men4v Consu/fanls IIE BeWe e. N Ave el Bellevue, MeshinBlon 9B005 Drilling started: 20 June 1991 Drilling completed: 20✓une 1991 Logged by: LAB 1 1 1 1 1 .71 APPENDIX B W-7250-1 LABORATORY TESTING PROCEDURES ' Laboratory tests were performed during the course of this study to evaluate the index and geotechnical engineering properties of the subsurface soils. Descriptions of the ' types of tests performed (and where results are presented) are given below. ' Visual Classification Samples recovered from the exploration location were visually classified in the field ' during the exploration program. Representative portions of the sample were carefully packaged in water tight containers and transported to our laboratory where the field classifications were verified or modified as required. Visual classification was done in ' general accordance with the Unified Soil Classification System. Visual soil classification includes color, relative moisture content, soil type based on grain size, and accessory ' soil types included in the sample. Soil classifications are presented in the exploration logs in Appendix A. ' Moisture Content Determination ' Moisture determinations were performed on representative samples obtained from the explorations in order to aid in identification and correlation of soil types. The determinations were made in general accordance with the test procedure described in ' ASTM:D-2216. The results of the tests are shown on the exploration logs in Appendix A. Atterberg Limits Atterberg limits are used primarily for classification and indexing of cohesive soils. The liquid and plastic limit are two of the five atterberg limits and are defined as the moisture ' content of cohesive soil at arbitrarily established limits for liquid and plastic behavior, ' respectively. Liquid and plastic limit were established for selected samples in general accordance with ASTM:D-423 and ASTM:D-424, respectively. The results of the Atterberg Limits are presented on a plasticity chart in this appendix with a plastic index (liquid limit minus plastic limit) is related to the liquid limit. The plastic limit and liquid limits are also presented adjacent to the appropriate sample in the exploration log in Appendix A. Grain Size Analyses The grain size analyses indicates the range in diameter of soil particles included in a particular sample. Grain size analyses were performed in the representative samples in ' general accordance with ASTM:D-422. The results of the grain size determinations for the sample were used in classification of the soils, and are presented in this Appendix. 1 Consolidation Testing ' A one-dimensional consolidation test was performed in general accordance with ASTM:D 2435 on a selected sample of the site soils to provide data for developing settlement estimates. The undisturbed soil sample was carefully trimmed and fit into a ' rigid ring. Porous stones were placed on both the top and bottom of the sample to allow drainage. Vertical loads were then applied to the sample incrementally, in such a way ' that the sample was allowed to consolidate under each load increment. The rebound of the sample during unloading was also measured. The results of the consolidation test ' are presented in this Appendix as a plot of percent consolidation (strain) versus applied load (stress). ' GRAIN SIZE DISTRIBUTION ' SIZE OF OPENING IN INCHES U.S. STANDARD SIEVE SIZE HYDROMETER r 1. 11/r 3/4. a/r a IC i0 .0 M tw 200 1 100 90 e0 F- 2 ` 70 �1 t ED ED L Z 50 z a0 Z W W 3D d 20 1 10 ' 0 1000 10O 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS ' COBBLES c..,. n.. I c...+. e.ewm It's SIR cl.r GRAVEL SAND FINE GRAINED ' Sample Type Sample Number Depth (FL) Moisture Fines roil Description -- � a-! -- 2.5' 11a 22a �-a-.-4- 12.5' as 21a o... a-7 7.5' 17• 29e 8-7 -- 37.5' !Oe !e B - Boring Tp - Teetpit Ha - Hand Auger Gb - Grab Bet X - Other Project: Black River Transfer Station RZA — -AGRA ' Work Order. W-7250-1 ENGINEERING t ENVIRONMENTAL SERVICES Dote: 9/17/91 11335 N.E. 122nd Way 55'uite 100 Kirkland, Washington 98034-6918 ' GRAIN SIZE DISTRIBUTION ' SIZE OF OPENING IN INCHES U.S. STANDARD SIEVE SIZE HYDROMETER r r 1 t/r a/a• ap• . 1e ae w a 1m aro ' 100 90 80 F C7 W 70 3 ' m 50 CC z 50 _ W Z a0 W U ' W 30 a ' 20 10 ' a 1000 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COBBLES Coors. n�. c.an. uwWm m. s1x Clay GRAVEL SAND FINE GRAINED Sample Type Sample Number Depth (FL) Moisture Fines Boil Description 32.5- 22s 31s ♦-a-a-1-y .. a B — Boring Tp — Testpit Ha — Hand Auger Cb — Crab Bag X — Other Project: Black River Transfer Station RZA - AGRA Work Order: W-7250-1 ENGINEERING 3 ENVIRONMENTAL SERVICES Doie: 9/17/91 11335 N.E. 122nd Way Ouite 100 Kirkland, Washington 98034-6918 PLASTICITY CHART ' so 50 / 40 / LLI Z / ' U 30 F in J / O ' a / 20 e to 10 --4/ ' a D ' 0 10 20 30 40 50 60 70 80 so 100 110 LIQUID LIMIT Symbol Sample Type Sample Number Depth (rt.) MaMlurs Liquid Limit Plastic Limit Plastic Inds O 8-1 12.5' 32. 49 25 24 ❑ e-1 27.5' 45a 44 30 14 G e-21, -- 22.5' sot 54 35 19 0 e-3 17.5' 33t NP O e-0 27.5' 79. 64 44 20 7} 8-6 -- 12.5- 36s 35 27 e ® e-0 -- 17.5' 62t 71 31 40 B - Boring Tp - Testpit He - Hand Auger Gb - Crab Bag % - Other Project: Black River Transfer Stclion RZA — AGRA ' Work Order: W-7250-1 ENGINEERING t ENVIRONMENTAL SERVICES Date: 9/17/91 11335 N.E. 122nd Way Suite 100 Kirkland, Washington 98034-6918 t PLASTICITY CHART 60 - / / v ux6 •4-ux6 50 40 / ' X / W / 0 / Z ' U 30 H V) / a�a wren J / 1 a / 20— / tr ' / Q 10— 0 tt-a' ( 0 rra. O 0 10 2D 30 40 50 60 70 50 90 100 110 LIQUID LIMIT Srmbol Som to Tree Semple Number Depih (rf.) WoIsWre Liquid Lime Plo4fic LJmll Plaefie Index 0 B-9 _- 11.5' 39a -- -- NP ❑ 0-14 15' 49e 44 29 15 B-15 -- 15' 32. -- -- NP 0 B-15 20• 36. 31 26 5 6 B-16 15' 42B 34 31 3 �[ B-16 -- 20' 44. 45 29 is e B-15 -- 20' 37.3. 36 26 10 B - Boring Tp - Testpit Ha - Hand Auger OD - Grob Bag X - Other Project: Black River Transfer Station RZA - AGRA ' Work Order: W-7250-1 ENGINEERING t ENVIRONMENTAL SERVICES Date: 9/17/91 11335 N.E. 122nd Way $wife 100 Kirkland, Washington 98034-6918 Consolidation Test 1/8 1/4 1/2 1 4 16 2 64 0 5 C 01 ' O 0) d C_ ' •C O 1 D IN ' C O O t O IA C O ' U 15 20 0.1 1 10 100 Stress in Tons Feet 0.0 v 1.0 2.0 > U 3.0 0.1 1 10 100 Project: Black River Transfer Station RZA - AGRA Work order: W-7250-1 ENGINEERING t ENVIRONMENTAL SERVICES Dais: 9/24/91 11335 N.E. 122nd Way 8-15 Depth: , 15' Suite 100 Moisture: 32Z Density: 89pcf Kirkland, Washington 98034-6918 LL: 34 PL: 31 1 t Consolidation Test I1/e 1/4 1/2 1 t is 2 6� D 5 C m . 01 C_ 1 = O Ln 10 N C O O V ' O 0 C O U 15 ' 20 0.1 1 10 100 Stress in Tons / Feet2 ' 0.0 ry ` 2.0 U S.0 0.1 1 10 100 Project: Block River Transfer Station RZA - AGRA Work Order. W-7250-1 ENGINEERING ! ENVIRONMENTAL SERVICES Dais: 9/24/91 11335 N.E. 122nd Way B-16 Depth: 15' ,5'uite 100 M olsiurs: 42% Density: 80pcf Kirkland, Washington 98034-6918 LL: 45 PL: 29 Consolidation Test 1/s 1/4 1 1/2 1 1 4 is (2 64 5— CIL O to - LO .0 6 0 0 C 0 20 0.1 1 10 100 Stress in Tons Fe et2 0 1.0 2.0 -- > 3.0 0.1 1 10 100 Project: Block River Transfer Station RZA AGRA Work Orlon W-7250-1 ENGINEERING & ENVIRONMENTAL SERVICES Dole: 9/24/91 I1335 N.E. 122nd Way B-18 Depth: 20' $uite 100 Moisture: 371s Density: 84pcf Kirkland, Washington 98034-6918 LL: 36 PL- 26 TABLE 8-1 . . ._.. .. ._ SUMMARY OF LABORATORY TEST RESULTS BLACK RIVER TRANSFER STATION ' u-7250-1 ' SAMPLE NATURAL ATTERBERG PERCENT LOCATION MOISTURE LIMITS PASSING CONTENT No. 200 SOIL Boring Depth LL PL PI SIEVE DESCRIPTION (feet) 1 12.5 32.2 49 25 24 75 sandy silty clay 1 27.5 44.6 44 30 14 99 clayey silt 2A 7.5 38.4 79 sandy clayey silt ' 28 22.5 60.4 54 35 19 97 clayey silt 3 2.5 11.0 22 silty sand 8 gravel ' 3 17.5 33.3 NP 76 sandy silt 3 27.5 79.1 64 44 20 95 silt 4 12.5 7.9 21 gravelly silty sand ' 4 27.5 26.7 3 gravelly sand 6 12.5 35.7 35 27 8 78 sandy clayey silt ' 7 7.5 22.2 29 silty sandy gravel 7 22.5 56.1 97 clayey silt 7 37.5 30.4 4 sand 8 7.5 30.9 68 clayey sandy silt a 17.5 65.2 71 31 40 99 silty clay ' 9 12.5 39.0 NP 74 sandy silt 9 32.5 21.6 30 gravelly silty sand 10 7.5 41.5 86 sandy silt ' 14 15.0 48.5 44 29 15 99 clayey silt 15 15.0 31.7 NP 93 silt 15 20.0 36.0 31 26 5 98 clayey silt 16 15.0 42.1 34 31 3 97 clayey silt ' 16 20.0 43.8 45 29 16 99 silt __. 18 20.0 37.3 36 26 10 94 clayey silt 1 III. OFF-SITE ANALYSIS 1 OFF-SITE ANALYSIS The storm water exits the site through an existing 12 inch culvert and enters an existing Class III Wetland at the extreme north end of the property. Storm water passes through the wetland, then through a 24 inch diameter steel pipe that passes under the railroad right-of-way and empties into the Duamish River. This point ' is about 300 feet downstream from the subject property. The Duamish flow is northerly and westerly from this point to Elliott Bay. For at least 1,000 feet ' downstream from the 24 inch outfall the river banks appear to be stable, either in their natural condition or with rip rap protection. 1 ' No evidence of erosion, siltation, or bank sloughing was evident at the time of the site visit. There was no physical indication of lack of capacity of the Duamish River. The Black River Waste Reduction Center Draft E.I.S., Para. 3.3.1.3 FLOODING states that the wetland at the north end of the site is hydrologically connected to the Duamish River and would be subject to flooding during a 100 year event for the river. The paragraph further states that the property is located in a zone "C" ' according to Panel numbers 326D and 328D and is in an area of minimal flooding and is not considered to be in the 100 year floodplain. ' The site consists of 17.6t acres and at a point one-quarter mile downstream the ' site the site is less than 0.1%a of the total drainage basin which includes the Green River drainage basin. AREA UNDISTURBED & UNDETAMED S WETLANDS - 0.47 ACRES BRUSH k GRASS = 0.67 ACRES •`'+ 8502 SQUARE FEET `yam 0.20 ACRES Ap .1 S� SR 1 1 dp �e 1 1 L 1 1 \\ AREA SQUARE \ \ ' 321908 SQUARE FEET \ 7.39 ACRES ' 1 1563D SQUARE FEET \ 0.36 ACRES AAy ' \ 70012 SQUARE FEET 1.61 ACRES AREA DEV-3 AREA -2 a 67954 90UARE FEET 280037 SQUARE FEET O 1.16 ACRES 6.43 AC ES , ' DEVELOPED CONDITIONS SCALE 1"=200' 1 1 1 1 1 1 IV. DETENTION ANALYSIS 1 AND DESIGN 1 1 1 1 1 1 1 1 1 1 AREA SUMMARY EXISTING CONDITIONS BASIN AREA SCS SOILS HYD SOILS AREA CN AREA CN TC FILE NAME ACRES CLASS. GROUP PERVIOUS PERVIOUS IMPERV. IMPERV. NAME EX-1 226 BEAUS=, C 2.26 81 0 -- 18.7 Sec Note EX-2 11.2 URBAN D 11.15 91 0.05 98 14.7 Sec Note EX-3 0.75 URBAN D 0.75 91 0 -- 5 See Note EX-4 0.20 PAVING -- 0 -- RM 98 5 See Note EX-5 0.36 PAVING -- 0 -- 0.36 98 5 See Note EX-6 1.76 BEAUSITE C 1.76 81 0 -- 5 See Note P213 =0.67 P2=2.0 PIO=2.9 P100=3.95 NOTE:All file names will incorporate basin names with a.002,.010 or.100 extension for a 2, 10 or 100 year rainfall respectively. An extension of.333 is used for the P2/3 Rainfall. ' AREA UNDISTURBED AND UNDETAINED WETLANDS - 0.47 ACRES BRUSH AND GRASS = 0.67 ACRES AREA EX-4 8502 SQUARE FEET \ 0.20 ACRES n .\\ A a ' • t ,\ \ TOTAL EXISTING CONDITIONS ' \ 4 DRAINAGE BASIN - 15.07 ACRES AREA EX-S \ \ _ 1563D SQUARE FEET 6q \�� �O.36 ACRES AR E 2 \\ 1� 8.7 20`ACR b \\ \ \ \ \ \ \\\\ \ ` \ NNN 2896 SQoUARE E \\\ 1 \ \\ 0-57\ACRES\\ v \ vA 8 Voo\A Ed161 .:� .02 EXISTING CONDITIONS SCALE 1"=200 y ' TiMa OF CO�1GE �lT2RTiOt.1 ��k_ I� ' ns j z o ,42(o,npxi� p�o,$ 11 C� Nj I IV m � (Z)o,S N N N 000 " as "gin V = k � S I< - Z7 ® V= 27 0,043 L = Z9O' tT = s 6gC)o = o , a m , �, , ' is = I-7.� -f 0 , 8 = 18 ,7 MIN (�X15Ti�..1G CON�iT}oN' 1 Tt = 0,4� Io 9Dx130�o a = Ic},3MiN L = 130, o n, = b, 4.O �( = 6.C; FP5 l = Igo 1-7 o 'T- = MAN ro,6)C GO T� = 14.3 + p, 4 = 14 ,-7 M1N 13s( I NSPEC't i at l EX- 3 ( 4 lS , C. PReA,S W11LL HAV F- LE55 ' THAhI S N}��1uS Tr, 1 1 ' RMAEX-1.333 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHY➢ 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ******************** S C S TYPE-lA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** .67" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.3 2 .3 81.0 .0 98.0 18.7 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .01 23 .83 129 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP t ' RMAEX-1.002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) S.C.S. TYPE-IA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** 2.00" TOTAL PRECIP. ********* --------------------------------- ------------------ ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2 .3 2.3 81.0 .0 98.0 18.7 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .19 7.83 4944 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMAEX-1.010 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' xxxxxxxxxxxxxxxxxxxr S.C.S. TYPE-1A DISTRIBUTION **xxxxxxxxxxxxxxxxxx ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2 .3 2 .3 81.0 .0 98.0 18.7 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .51 7 .83 10122 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-1.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM t 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ******************** S.C.S. TYPE-lA DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 2.3 2.3 81.0 .0 98.0 18.7 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .96 7 .83 16992 ' ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-2.333 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: t SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' xzzxzxxxxxxxxzzzzzzz S.0 S. TYPE-lA DISTRIBUTION *xxxxxxxxxxxxxzzxzxz � ********* 2-YEAR 24-HOUR STORM **** .670 TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.2 11.1 91.0 .1 98.0 14.7 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .19 7 .83 6252 ENTER [d: ) [pathjfilename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-2 .002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ***x*x************** S C.S. TYPE-lA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** 2.00' TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.2 11.1 91.0 .1 98.0 14.7 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2.97 7 .83 47317 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-2.010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) S.C.S. TYPE-lA DISTRIBUTION **#**###**########*# ********* 10-YEAR 24-HOUR STORM **** 2.900 TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: t AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.2 11.1 91.0 .1 98.0 14.7 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 5.26 7.83 80394 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 RMAEX-2.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) *****+***********--- S.C.S. TYPE-IA DISTRIBUTION **********xxxxxxxxxx 24-H0UR STORM **** 3.95' TOTAL ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 11.2 11.1 91.0 .1 98.0 14.7 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 8.00 7.83 120644 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP t 1 RMAEX-3 .333 1 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 1 2 - SSUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: I - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' xxxxxxxxxxxxxxxxxxxx S.C.S. TYPE--- DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM ****------ ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: 2, ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) J A CN A CN .8 .8 91.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .02 7 .83 415 ENTER [d:3 [path)filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE ALREADY EXIST; OVERWRITE (Y or N) ? ' RMAEX-3.002 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4 .20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ******+************* S.C.S. TYPE-lA DISTRIBUTION **xxxxxxxxxxxxxxxxxx ********* 2-YEAR 24-HOUR STORM **** 2.00' TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .8 .8 91.0 .0 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .23 7 .67 3167 ENTER [d: ] [path]filename[ •ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE ALREADY EXIST; OVERWRITE (Y or N) ? ' RMAEX-3 .010 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ******************** S.C.S. TYPE-lA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .8 .8 91.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .42 7.67 5385 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE ALREADY EXIST; OVERWRITE (Y or N) ? ' RMAEX-3 .100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' 5BUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ******************** S.C.S. TYPE-lA DISTRIBUTION *****************xxx xxxxxxxxx 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .8 .8 91.0 .0 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .64 7 .67 8084 ENTER [d:] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE ALREADY EXIST; OVERWRITE (Y or N) ? RMAEX-4.333 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) --------------------------------------------------------------------- ******************** S.C.S. TYPE-IA DISTRIBUTION ********* 2-YEAR 24-HOUR STORM **** .67' TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: -�, AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .2 .0 .0 .2 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .03 7.67 344 ENTER [d:] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-4.002 t ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ******************** S.C.S. TYPE-lA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** 2.00• TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .2 .0 .0 .2 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .10 7.67 1288 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMAEX-4.010 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ******************** S.C.S. TYPE-lA DISTRIBUTION ***********xxxxxxxxx ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .2 .0 .0 .2 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .15 7.67 1937 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMAEX-4.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ******************-- S.C.S. TYPE-lA DISTRIBUTION **++**************** 24-H0UR STORM **** 3.95' TOTAL PRECIP. *****+**• ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .2 .0 .0 .2 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .21 7 .67 2697 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 1 ' RMAEX-5.333 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC t 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ********"*********** S.C.S. TYPE-lA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** .67" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: r AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN - .4 .0 .0 .4 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .05 7.67 620 ENTER [d:] fpath]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 1 1 ' RMAEX-5.002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ' xxxxxxxxxxxrtrtrtxrtrtrtxx S C.S. TYPE-IA DISTRIBUTION xxrtxxxxxxxxxxxxxxxxx ********* 2-YEAR 24-HOUR STORM **** 2.00" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .4 .0 .0 .4 96.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .18 7.67 2318 ' ENTER [d:] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP RMAEX-5.010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division 1 HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ------------------------------------------------------------- S.0 S. TYPE-lA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: t AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .4 .0 .0 .4 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .27 7 .67 3487 ENTER [d: ) [path)filename[ .ext) FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 RMAEX-5.100 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) S.C.S. TYPE-lA DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .4 .0 .0 .4 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .37 7 .67 4855 ' ENTER [d:] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMAEX-6.333 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) x******************* S.C.S. TYPE-lA DISTRIBUTION ****************+x** ********* 2-YEAR 24-H0UR STORM **** . 67' TOTAL PRECIP. *x*w*.**. 1 ----------------"------------------- ---------'-------------- ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: R /n AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.8 81.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .00 23 .83 101 ENTER [d: ] [path] filename( .ext) FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 t ' RMAEX-6.002 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-1A 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ' ******************** S C.S. TYPE-lA DISTRIBUTION ******************** ********* 2-YEAR 24-HOUR STORM **** 2.00" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.8 81.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .20 7 .83 3862 ' ENTER [d:] [path] filename( .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMAEX-6.010 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) -------------------- S.C.S. TYPE-IA DISTRIBUTION *******w*****•xs,xz** ********* 10-YEAR 24-HOUR STORM **** 2.95" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.8 81.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .53 7 .83 8146 ' ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 RMAEX-6.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-1A 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) x xxxxxxxxxxxxxxxxxxx S.C.S. TYPE-IA DISTRIBUTION **xxxxxxxxxxxxxxxxxx ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.8 1.8 81.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .94 7 .67 13285 ' ENTER [d: ] [path] filename( .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP HYDEXADD.333 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 2 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1: PEAK-Q= .01 CPS T-PEAK= 23 .00 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= .19 CPS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= .19 CPS T-PEAK= 7.83 HRS ' TOTAL VOLUME: 6288CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d:] [path]filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= .19 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3 : PEAK-Q= .03 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= .22 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 6912CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 4 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 4 DATA PRINT-OUT: ' HYDROGRAPH S: PEAK-Q= .22 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 4: PEAK-Q= .03 CFS T-PEAK= 7.67 HRS TT= 0 MINUTES ' HYDROGRAPH SUM: PEAK-Q= .25 CFS T-PEAK= 7 .83 HRS TOTAL VOLUME: 7158CU-FT ' SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d: ] [path]filename[ .ext1 OF HYDROGRAPH 5 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 5 DATA PRINT-OUT: ' HYDROGRAPH S: PEAK-Q= .25 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 5: PEAK-Q= .05 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= .30 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 7950CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 6 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 6 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= .30 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES ' HYDROGRAPH 6: PEAK-Q= .00 CFS T-PEAK= .00 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= .30 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 7950CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: FILE ALREADY EXIST; OVERWRITE (Y or N) ? SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' HYDEXADD.002 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC I 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 2 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1: PEAK-Q= .19 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= 2.97 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 3 .16 CFS T-PEAK= 7 .83 HRS TOTAL VOLUME: 52200CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path)filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 3 .16 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3 : PEAK-Q= .36 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 3 .51 CFS T-PEAK= 7.83 HRS ' TOTAL VOLUME: 57132CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 4 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 4 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 3 .51 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 4: PEAK-Q= .10 CFS T-PEAK= 7.67 HRS TT= 0 MINUTES ' HYDROGRAPH SUM: PEAK-Q= 3 .60 CFS T-PEAK= 7.83 HRS TOTAL VOLUME: 58410CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 5 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 5 DATA PRINT-OUT: ' HYDROGRAPH S: PEAK-Q= 3 .60 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 5: PEAK-Q= .18 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 3 .77 CFS T-PEAK= 7.83 HRS ' TOTAL VOLUME: 60780CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 6 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 6 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 3 .77 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 6: PEAK-Q= .20 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 3 .97 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 64626CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP HYDEXADD.010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 2 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1: PEAK-Q= .51 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= 5.26 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 5.77 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 90522CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP tENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 5.77 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES ' HYDROGRAPH 3: PEAK-Q= .64 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 6.38 CFS T-PEAK= 7 .83 HRS TOTAL VOLUME: 98670CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 4 1 i ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 4 DATA PRINT-OUT: ' HYDROGRAPH S: PEAK-Q= 6.38 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 4: PEAK-Q= .15 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES t. HYDROGRAPH SUM: PEAK-Q= 6.52 CFS T-PEAK= 7 .83 HRS TOTAL VOLUME: 100554CU-FT ' SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 5 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 5 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 6.52 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 5: PEAK-Q= .27 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 6.77 CPS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 104196CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 6 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 6 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 6.77 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES 1 HYDROGRAPH 6: PEAK-Q= .53 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 7 .30 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME. 112326CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP 1 HYDEXADD.100 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 1 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 2 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1: PEAK-Q= .96 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= 8. 00 CFS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 8.96 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 137640CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 8.96 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3: PEAK-Q= .98 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 9 .88 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 149964CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d: ] [path] filename[ .ext) OF HYDROGRAPH 4 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 4 DATA PRINT-OUT: ' HYDROGRAPH S: PEAK-Q= 9.88 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 4: PEAK-Q= .21 CPS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 10.07 CFS T-PEAK= 7.83 HRS TOTAL VOLUME: 152622CU-FT ' SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d:] [path] filename[ .ext] OF HYDROGRAPH 5 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 5 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 10.07 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 5: PEAK-Q= .37 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 10 .41 CPS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 157368CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP tENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 6 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 6 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 10 .41 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 6: PEAK-Q= .94 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 11.34 CFS T-PEAK= 7.83 HRS ' TOTAL VOLUME: 170640CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP 1 BLACK RIVER CDL ' EXISTING CONDITION HYDROGRAPHS 12 ' 10 Q ' O U g Ln a 6 W w U 4 W U 2 - p 0 5 10 15 20 25 ' TIME HOURS t 2-YEAR RETURN STORM t 10 YEAR RETURN STORM 100-YEAR RETURN STORM SCS RUNOFF HYDROGRAPH USING KING COUNTY "HYD" PROGRAM CLIENT NAME: REGIONAL DISPOSAL COMPANY PROJECT NAME: BLACK RIVER CDL COMPUTER FILE NAME: EXISTHYD DATE: MAY 7, 1992 TITLE: BLACK RIVER WASTE REDUCTION FACILITY 2 YEAR 10 YEAR 100 YEAR PEAK= 3.97 PEAK= 7.3 PEAK= 11.34 STEP= 10 STEP= 10 STEP= 10 159 No. STEPS= 158 No. STEPS= 159 No. STEPS= Z£'O £8'Z 60'0 £8'Z £0'O £8Z VZ'o L9Z GO'0 L97r 60'0 L9'Z LL'0 9Z £0'O 9'Z Zo'0 9Z £L'0 ££'Z £0'0 ££Z ZO'O ££'Z 60'0 L L'Z £0'O L L'Z ZO'O L L'Z 90'0 Z £0'0 Z LO'O Z 90'0 £8'L £0'0 £8'L L 0'0 £8'L £0'O L9'L 7,0'0 L9'L L 0'0 L9'L £o'O 9'L 60'0 9'L 0 9'L £O'O ££'L ZO'O ££'L 0 ££'L £0'O LL' L LO'O Ll'l 0 LL'l ZO'O L LO'O l 0 L ZO'O £8'0 0 £8'0 0 £8'O LO'O L9'0 0 L9'0 0 L9'0 0 9'0 0 9'0 0 9'0 0 ££'0 0 ££'O 0 ££'0 0 L L'0 0 L L'0 0 0 0 0 0 0 0 LZ'Z ££'9 6Z'L ££'9 99'0 ££'9 VL'Z LL'9 ZZ'L LL'9 99'0 LL'9 90'6 9 9L'L 9 Z9'0 9 V6'L £8'9 60'L £9'9 8V'0 £8'9 LL'L L9'9 960 L9'9 ZV'0 L9'9 V9'L 9'9 6TO 9'9 8£'0 9'9 L9'L E£'9 178'0 ££'9 9E'0 6£'9 617'L L L'9 6L'0 L L'9 £E'0 L L'9 ZV't 9 ZL'0 9 E'0 9 L£'L £9'17 L9'0 £8'V 9Z'0 E9'17 9 L'L L917 99'0 L917 L Z'O L917 VO'L 9'17 Z9'0 917 9L'O S'V 96'0 E£'V 9V'O ££'V V L'0 ££'V 6'0 LL'V VV'O LLT ZL'O LLT ZS'O V 6£'0 V L'0 V 9L'0 £8'E 9£'O £8'£ 90'0 £8'£ 99'0 L9'£ 6Z'O L9'£ 90'0 L9'£ 99'0 9'E £Z'0 9'£ VO'0 9'£ LTO ££'£ Z'O £E'£ EO'O £E'£ VV'0 LIT 9L'O L IT £0'0 L LT 6E'0 £ 6L'0 E £0'0 E ZO'£ M6 ZO'Z £8'6 81'1 £8'6 ZO'£ L9'6 10'Z L9'6 81'1 L9'6 ZO'£ 9'6 ZO'Z 9'6 9L'L 9'6 VO'£ ££'6 £0'Z ££'6 6L'L ££'6 LL'£ LL'6 LO'Z L1'6 LZ'L LL'6 9Z'£ 6 9L'Z 6 9Z'L 6 £9'£ £8'8 ££'Z £8'8 V£'L £8'8 9Z'V L918 Z8'Z L9'8 Z9'L L9'8 9617 9'8 LZ'£ 9'8 98'L 9'8 8V'9 ££'8 69'£ ££'8 £0'Z ££'8 L'9 LL'8 8£' 7 LL'8 9V'Z LL'8 9L'8 8 89'9 8 ZL'£ 8 V£'L L £8'L £'L £8'L L6'£ £8'L 8Z'OL L9'L V9'9 L9'L 6V'£ L9'L 9Z'9 9'L Z6'£ 9'L 170'Z 9'L Z917 ££'L 6L'Z ££'L ZV L ££'L 98'£ LL'L 9£'Z LL'L 9L'L LL'L V£'£ L LO'Z L 860 L 60'£ £8'9 V8'L £8'9 68'0 £8'9 V9'Z L9'9 99'L L9'9 9L'O L9'9 8Z'Z 9'9 9£'L 9'9 L9'0 9'9 807 ££'£L £7'1 ££'EL 98'0 ££'£L 80'Z LL'£L 77'L LL'£L 98'0 LL'£L ZL'Z £l 97'L £L 88'0 £L Z'Z £871 Z9'L £8'ZL 60 £871 7'Z L9'ZL 79'L L971 LO'L L9'ZL 997 97L 9L'L 97L 90'L 97L 79'Z ££'ZL 9L'L ££'ZL 90'L ££'ZL 79'Z LL'ZL 9L'L LL'ZL 90'L LL'ZL 79'Z ZL 9L'L ZL 90'1 ZL £9'Z £8'L L 9L'L £8'L L 90'L £8'L L £97 L9'L L 7L'L L9'L L 90'L L9' L L £9'Z 9'LL 7L'L 9'11 90'1 9'LL 79'Z MI L 7L'L ££'L L 90'L ££'L L 99'Z LL'LL ZL'L LULL 90'1 LL'LL 697 L L 9L'L L L 90,1 11 L9'Z £8'01 8'L £8'OL 60'1 £8'OL 67 L9'OL 96'L L9'OL 91'1 L9'OL 90'£ 9'01 907 9'OL ZZ'L 9'0l 90'£ ££'OL 90'Z ££'OL ZZ'L ZO'£ LL'OL 707 LL'OL LZ'L LL'OL ZO'£ oL £o'Z 01 6L'L 0L L9'L £8'91 L'L £9'9L 69'0 E8'91 ZL'L L9'91 Z'L L9'91 7L'O L9'9L ES'L 9'91 83'1 9'9L 6L'O 9'9L ES'l £E'9L 9Z'L EE'9L 6L'0 EE'9L ML LL'9L LZ'L LL'9L 8L'0 LL'9L Z9'L 9L LZ'L 91 SL'0 91 L9'L W9L LZ'L M91 SL'0 M9L L9'L L9'9L LZ'L L9'91 9L'0 L9'9L Z9'L 9'9L LZ' L 9'91 SL'0 9'91 N'L E£'9L 9Z'L EE'9L SCO Mg £8'L LL'91 8Z'L LL'9L 8L'0 LL'9L 99'1 91 6Z'L 91 6L'0 91 99'L ES'7L LE'L £9'7L L9'0 £917L Z L9171 WL L9'7L 78'0 19'7L LO'Z 9171 E7'L TV 99'0 917L LO'Z E£'7L E7'L £E'7L 9TO ££'7L 90'3 LL'bL Z7'L LL'7L 9TO LL'7L 90'Z 7L Z7'L 7L 98'0 7L 90'Z £S'£L Z7'L E9'£1 98'0 E8'£L 90'Z L9'£L Z7'1 L9'EL 99'0 L9'EL 90'Z 9'EL 67'1 9'E1 99'0 9'EL r m 67'l ££'OZ 70'L ££'OZ 99'0 ££'OZ 67'L L L'OZ 70'L L L'OZ 99'0 L L'X 67'L OZ 70'L OZ 99'0 OZ 67'L £8'6 L £0'L £8'6 L 99'0 £8'6 L 87'L L9'61 £0'L L9'6L 99'0 L9'61 L7'L 9'61 £0'L 9'6L 99'0 9'6L L7'L ££'6L £0'L ££'& 99'0 ££'6L L7'L LL'6L £0'L LL'6L 99'0 LL'6L L7' 1 6L £0'L 6L 99'0 6L L7'L £8'8 L £0'L £8'8 L 99'0 £8'8 L L7'L L9'8L £0'L L9'8L 99'0 L9'8L L7'L 9'8L £0'L 9'8l 99'0 9'13L L7'L Mg £0'L ££'8L 99'0 ££'8L 97'L LL'8L ZO'L LL'8L 99'0 LL 'SL 97'L 8 L ZO'L 8 L 99'0 8 L 97'L £8'LL ZO'L £8'LL 99'0 £8'LL 97' L L9'LL ZO'L L9'LL 99'0 L9'LL 97'L 9'L L £0'L 9'L L 99'0 9'L L 87't ££'LL £0'L ££'LL 99'0 ££'LL 67'L LL'LL 90'L LULL 99'0 LL'LL LTL LL 90'L LL L9'0 Ll ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! S'L £8'£Z 90'1 £9'£Z L9'0 £9'£Z 9,1 L9'£Z 90,1 L9'£Z L9'0 L9'£6 S'L S'£Z 90,1 S'£Z L9'0 S'£Z S'L ££'£Z 90'1 ££'£Z L9'0 ££'£Z 6V'L LL'£Z 90'L LL'£Z L9'0 LL'£Z 6V L £Z 90'L £Z L9'0 £Z 6V L £8'ZZ 90'L £8'7 L9'0 £8'ZZ 6V'L L9'6Z 90' 1 L9'ZZ L9'0 L9'ZZ 6V'L S'ZZ 90'L SU 19'0 S'ZZ 6V'L ££'ZZ 90'L ££'ZZ L9'0 ££'ZZ 6V'L LL'ZZ 90'L LL'ZZ L9'0 LL'ZZ 6V'L ZZ 170'L ZZ L9'0 ZZ 617'1 £8'LZ VO'L £9' LZ L9'0 £8'LZ 6V'L L9'LZ VO'L L9' LZ L9'0 L9' LZ 6V'L S' L Z VO'L S'L Z L9'0 S'L Z 6V'L CC*LZ 170'L ££'LZ L9'0 ££' LZ 6V'L LL' LZ VO'L LL'LZ L9'0 LL'LZ 617' 1 LZ VO'L I L9'0 I 6V L £8'OZ VO'L £8'OZ L9'0 £8'0Z 67'L L9'0Z VO'L L9'0Z L9'O L9'OZ 6V'L 9'0Z VO'L 9'0Z 99'0 S'OZ 0 ££'9Z 0 ££'9Z 0 L l'9Z 0 L 1'9Z 0 L l'9Z 0 9Z 0 9Z 0 9Z 0 £8'SZ 0 £8'9Z 0 £9'4Z 0 L9'SZ 0 L9'9Z 0 L9'9Z 0 S'SZ 0 9'9Z 0 9'9Z 0 ££'SZ 0 ££'SZ 0 ££'SZ 0 L l'96 0 L L'SZ 0 L l'9Z 0 9Z 0 9Z 0 9Z 0 £8'V3 0 £8'VZ 0 £8'VZ 0 L9'VZ 0 L9'VZ 0 L9'VZ 0 917Z 0 S'VZ 0 S'VZ 0 ££'VZ £0'O ££'VZ ZO'O ££'VZ 9V'0 L l'VZ Z£'O L l'VZ Z'0 L l'VZ SO'l VZ VL'0 VZ 9V'0 VZ ZMA ZI-9D-D3'Z- Co6-OL}- 13LgcK 21VETZ GpL � 4 S? 'D��/EL.O'P>=7� GOt�1'DIT1U1�! 5 r71ME OF G�11G�f fT2A1 IOh! `DEl/ -I) �+� L� o,a P2= , 0 4z ' Tt � � 50 = 0.33 J) n5= 0140 txx"" Tt = 0 42�D.LtOxyl l\O\�o18 �✓,� MI N NOO G J1 n nv as trriry nnn 5 = O, OIq ' V = 1 , { T = zoo = 3 ,d MIN I , I xG6 i1MC �`; G�1.10E1`1T2A T 1OlJ C��y- 2� --�- _ 0,42 LC ,( llx3polols _311 MIDI pz =z10 ' L = 300/ 1"15 = O,OI I S= o,O1O ' V= Z I Olply T= ��' = S ,� M1N ' z,IX6p L3Y INSP�G'r1O►�! 7C�/ 3 �4 A��As w��� >�+��� �.�ss MN\ TES `ro USNE s MI � , 1 AREA SUMMARY DEVELOPED CONDITIONS BASIN AREA SCS SOILS HYD SOILS AREA CN AREA CN TC FILE NAME ACRES CLASS. GROUP PERVIOUS PERVIOUS IMPERV. IMPERV- NAME DEV-1 7.39 BEAUSITE C 7.09 86 0.20 98 12.1 See Nate DEV-2 8.40 URBAN D 9-3 90 6.79 98 9.3 See Note DEV-3 1.16 URBAN D 1.16 90 0 -- 5 Sec Note P2=2.0 P10=2.9 P100=3.95 / �., NOTE: File names will incorporate basin names with a .002,.010 and.100 extension for a 2, 10 or 100 year rainfall respectively. . --1y (�,3�0<,W v>ldt` ' RMADEV-1.002 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: , SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ' xxxxxxxxxxx********* S.C.S. TYPE-IA DISTRIBUTION ***x*xx*x*xx*xxxxxx* ********* 2-YEAR 24-HOUR STORM **** 2.00" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 7 .1 6.9 86.0 .2 98.0 12.1 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 1.31 7 .83 22469 ' ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP t RMADEV-1.010 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA ' 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) -------------------------------------------------------------------- ' xxxxxxxxxxx********* S.C.S. TYPE-lA DISTRIBUTION ****xxxxxxxxxxxxxxxx ********* 10-YEAR 24-HOUR STORM **** 2 .90" TOTAL PRECIP. ********* -------- ------------------------------------------ ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 7 .1 6.9 86.0 .2 98.0 12.1 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 2 .66 7 .83 41329 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMADEV-1.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD ' 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-lA ' 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: ' S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- S.C.S. TYPE-IA DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 7.1 6.9 86.0 .2 98.0 12. 1 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 4.38 7.83 65173 ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP RMADEV-2.002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD ' 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW ' 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ------------------------------------------------------------------- ******************** S.C.S. TYPE-IA DISTRIBUTION ******************** 2-YEAR 24-HOUR STORM **** 2.00" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 8.4 1.6 90.0 6.8 98.0 9.3 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 3 .54 7 .83 50107 ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMADEV-2.010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD ' 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-IA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- xxxxxxxxxxxxxxx+xx++ S C S. TYPE-IA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2.90" TOTAL PRECIP. ********* ----------------------------------------------- --------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 8.4 1.6 90.0 6.8 98.0 9.3 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 5.39 7.83 76808 ENTER [d: ) [path)filename[ .ext) FOR STORAGE OF COMPUTED HYDROGRAPH: ' SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 RMADEV-2.100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUH/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- S C S TYPE-lA DISTRIBUTION ******************** ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ---------------------------- --------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 8.4 1.6 90.0 6.8 98.0 9.3 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 7 .56 7 .83 108315 ' ENTER [d: ] [path) filename( .ext) FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP 1 ' RMADEV-3 .002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: ' SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: ' S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ' xxxxxxxxxxxxxxxxxxxx S.C.S. TYPE-IA DISTRIBUTION ************xxxxxxxx ********* 2-YEAR 24-HOUR STORM **** 2.0P TOTAL PRECIP. ********* ---------------------------------------------------------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.2 1.2 90.0 .0 98.0 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .33 7 .67 4606 ENTER [d:] [path)filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMADEV-3 .010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-IA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE ' SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- S C.S. TYPE-IA DISTRIBUTION ******************** ********* 10-YEAR 24-HOUR STORM **** 2 .90• TOTAL PRECIP. ********* ----------------------- --------------------- ' ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.2 1.2 90.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .61 7 .67 7968 ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' RMADEV-3 .100 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: SBUHISCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH STORM OPTIONS: ' 1 - S.C.S. TYPE-lA 2 - 7-DAY DESIGN STORM 3 - STORM DATA FILE SPECIFY STORM OPTION: S.C.S. TYPE-lA RAINFALL DISTRIBUTION ENTER: FREQ(YEAR) , DURATION(HOUR) , PRECIP(INCHES) ---------------------------------------------------------------------- ' zxxxxzxxxxxxzzzzzxxx S.C.S. TYPE-lA DISTRIBUTION **************xxzxzz ********* 100-YEAR 24-HOUR STORM **** 3 .95" TOTAL PRECIP. ********* ---------------------------------------------------------------------- ENTER: A(PERV) , CN(PERV) , A(IMPERV) , CN(IMPERV) , TC FOR BASIN NO. 1 DATA PRINT-OUT: ' AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN 1.2 1.2 90.0 .0 98.0 5.0 ' PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .95 7 .67 12092 ' ENTER [d: ) [path)filename[ .ext) FOR STORAGE OF COMPUTED HYDROGRAPH: SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP ' HYDADDEV.002 ' KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division ' HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 2 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1: PEAK-Q= 1.31 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= 3 .54 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 4.85 CFS T-PEAK= 7.83 HRS TOTAL VOLUME: 72582CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 4.85 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3 : PEAK-Q= .33 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 5.17 CFS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 77286CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER [d: ] [path]filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: ' HYDADDEV.010 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM ' 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: (d:] [path]filename[ .ext] OF HYDROGRAPH 2 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: HYDROGRAPH 1: PEAK-Q= 2.66 CPS T-PEAK= 7 ,13 HRS TT= 0 MINUTES HYDROGRAPH 2: PEAK-Q= 5.39 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 8.05 CPS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 118140CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER: [d: ] [path]filename[ .ext] OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 8.05 CPS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3: PEAK-Q= .61 CPS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 8.63 CPS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 126006CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: HYDADDEV.100 KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD ' 6 - BASEFLOW 7 - PLOTHYD 8 - DATA 9 - RDFAC ' 10 - RETURN TO DOS ENTER OPTION: ' ROUTINE FOR ADDING HYDROGRAPHS ENTER: [d: ] [path)filename[ .ext] OF HYDROGRAPH 1 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 1 ENTER: [d: ] [path] filename[ .ext) OF HYDROGRAPH 2 ' ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 2 DATA PRINT-OUT: ' HYDROGRAPH 1 : PEAK-Q= 4.38 CPS T-PEAK= 7.83 HRS TT= 0 MINUTES HYDROGRAPH 2 : PEAK-Q= 7 .56 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 11.94 CFS T-PEAK= 7 .93 HRS ' TOTAL VOLUME: 173472CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ' ENTER: [d: ] [path] filename[ .ext) OF HYDROGRAPH 3 ENTER: TRAVEL TIME (MINUTES) OF HYDROGRAPH 3 ' DATA PRINT-OUT: HYDROGRAPH S: PEAK-Q= 11.94 CFS T-PEAK= 7 .83 HRS TT= 0 MINUTES ' HYDROGRAPH 3 : PEAK-Q= .95 CFS T-PEAK= 7 .67 HRS TT= 0 MINUTES HYDROGRAPH SUM: PEAK-Q= 12.84 CPS T-PEAK= 7 .83 HRS ' TOTAL VOLUME: 185412CU-FT SPECIFY: C - CONTINUE, N - NEWJOB, F - FILE, P - PRINT, S - STOP ENTER [d: ] [path)filename[ .ext] FOR STORAGE OF COMPUTED HYDROGRAPH: BLACK RIVER CDL ' DEVELOPED CONDITION HYDROGRAPHS 15 Ca z ' o w 10 rA w a w ' w U 5 ' U p 0 5 10 15 20 25 ' TIME HOURS t 2-YEAR RETURN STORM r- 10-YEAR RETURN STORM ' 100-YEAR RETURN STORM SCS RUNOFF HYDROGRAPH USING KING COUNTY "HYD" PROGRAM CLIENT NAME: REGIONAL DISPOSAL COMPANY PROJECT NAME: BLACK RIVER CDL W.O.#: COMPUTER FILE NAME: DEVHYD DATE: MAY 6, 1992 TITLE: BLACK RIVER WASTE REDUCTION FACILITY 2 YEAR 10 YEAR 100 YEAR PEAK= 5.17 PEAK= 8.63 PEAK= 12.84 STEP= 10 STEP= 10 STEP= 10 No. STEPS= 155 No. STEPS= 155 No. STEPS= 155 Z8'O £8'Z To £8'Z 8Z'0 £8'Z ZL'0 L9'Z b17'0 L97 9Z'0 L9'Z 99'0 97 Vo 97 ZZ'0 9'Z L9'0 ££'Z 8£'O ££'Z Z'0 ££'Z 89'0 L L'Z 9£'0 L L'Z L L'0 L L'Z 99'0 Z ££'0 Z 9 L'o Z To £8'L 6Z'O £8'L £t'o £8'L Z17'0 L9'L bZ'O L9'L L'0 L9'L 9£'o 9'L Z'O 9'L LO'O 9'L Z£'0 ££'L 9 L'O ££'L 90'0 ££'L 8Z'0 LL'L £L'0 Ll'L GO'0 LL'L £Z'O L 60'0 L ZO'O L 9L'O £8'O 90'0 £8'0 0 £8'O 60'0 19'0 ZO'0 L9'0 0 L9'0 £0'O To 0 9'0 0 TO 0 ££'0 0 ££'o 0 £E'O 0 L L'O 0 L L'0 0 L L'0 0 0 0 0 0 0 Z9'Z ££'9 89'L ££'9 £6'0 ££'9 89'Z L L'9 79'L L L'9 L6'0 L L'9 Z9'Z 9 9'L 9 L8'0 9 £7'Z £8'9 £9'L £8'9 78'O £8'9 £Z'Z 179 7'L L9'9 9L'0 L9'9 90'Z 9'9 6Z'l 9'9 69'0 9'9 ZO'Z ££'9 7Z'L ££'9 99'0 E£'9 96'L LL'9 LZ'L LL'9 770 LL'9 L6'L 9 LL'L 9 L9'0 9 Z8'L £8't7 L'L £8'7 69'0 £8'7 79'L L917 66'0 L917 Z9'0 L917 L9'L 9'7 6'0 9'7 87'0 9'7 97'L ££'7 98'0 ££'7 L7'0 ££'7 L7'L LL'7 £8'0 LLT 97'0 LLT 9£'L 7 6L'0 7 £7'0 7 LZ'L £8'£ 71-'0 £8'£ L7'0 £8'£ £L'L L9'£ L9'0 L9'£ L£'O L9'£ ZO'L 9'£ 170 9'£ 7£'0 9'£ L6'0 ££'£ 69'0 ££'s ££'0 ££'£ Z6'0 L L'£ L9'0 L L'£ Z£'O L L'£ 88'0 £ £9'O £ £'0 6 L'£ £8'6 £L'Z £9'6 ££'L £9'6 L'£ L9'6 £L'Z L9'6 ££'L L9'6 60'£ 9'6 £L'Z 9'6 L£'L 9'6 60'£ ££'6 £L'Z ££'6 L£'L ££'6 ZL'£ LL'6 VIZ LL'6 Z£'L LL'6 Z'£ 6 Z'Z 6 V£'L 6 VV'£ £8'8 9£7 £8'8 VV'L £9'9 9 L'V L9'9 99Z ZV l VL' L L9'9 9917 9'8 L£'£ 9'9 ZO'Z 9'8 6Z'9 ££'9 9'£ ££'8 9 L Z ££'9 V9'9 L L'8 6V'V L L'9 L L'Z L L'8 £Z'6 9 VZ'9 9 VL'£ 9 V9ZL £9'L £9'9 £8'L LL'9 £8'L 96'L L L9'L LO'9 L9'L LL'V L9'L ZZ'L 91 9'V 9'L NZ 9'L 6L'9 ££'L ZV'£ ££'L 66'1 ££'L LV'V LL'L £6'Z LL'L 69'1 LL'L 99'£ L £9'Z L 9V'1 L 99'£ £9'9 9£'Z £9'9 V£'L £9'9 IT L9'9 Z L9'9 VL'L L9'9 L9'Z 9'9 L L'L 9'9 L6'0 9'9 m m m m m 807 ££'£t 9V'L MC 86'0 ££'EL L'Z Ll'£t LV'L LL'£L £6'0 LLTL ZL'Z £L 8V'L £L V6'0 £L Z'Z £87L VS'L £8'Zl L6'0 £87L £V'Z L9'Zt L't L9'Zl 80'l L9'ZL 19'Z TZL Z8'L S'ZL 9t'L 971 L9'Z ££'ZL Z8'L ££'ZL 91'1 E£'ZL L9'Z LL'ZL Z8'L LL'ZL 9L'L LL'ZL 9'Z ZL L8'L ZL 9L'L ZL 9'Z £8'LL L8'L £8'LL VL'L £8'LL 97 L9' LL L8'L L9'tL VL'L L9'LL 9'Z 9' 1L LT 5'11 £L'L 9'LL 97 ££' LL 9'L ££' LL £L'L ££'LL 97 LL' LL l8'L LULL £L'L LL'LL £9'Z LL Z8'L L1 VL'L LL LL'Z £8'OL L8'L £8'OL LL'L £8'OL 96'Z L9'0L VO'Z L9'01 8Z'L L9'OL VL'£ TO 9L7 TO 9£'L TO £L'£ ££'OL LL'Z ££'OL 9£'L ££'Ol ZL'£ LL'OL LL'Z LL'OL 98'L LL'0L LL'£ OL 9L'Z OL 98'l OL m S m L9'1 £8'91 L'L £8'9L ZL'0 £8'9L VL'L L9'9L ZZ'L L9'9L 8L'0 L9'9L 98'1 9'9L L£'L 9'9L 178'0 9'9L 98'1 ££'9L L£'L ££'91 V8'0 ££'9L 98'L L1'9L L£'L LL'9L V8'0 LL'9L 98'L 91 L£'t 91 V8'0 9L 99'L £8'9L L£'L £8'9L V8'0 £8'9L 99'L L9'9 L L£'L L9'9 L V8'0 L9'9 L 98'L 9'9L L£'L 9'9L V8'0 9'91 98'L Mg L£'L Mg £8'0 ££'9L 98'L LL'91 L£'L LL'9L V8'0 LL'9L 98'L 9 L L£'L 9 L 98'0 9 L 6'L £8'VL ££'L CST L 98'0 £8'VL L 0'Z L9'V l LV L L9'V L L 6'0 L917 L L'Z 917L LV'L 9'VL V6'0 9'VL 60'Z ££'VL LV'L ££'VL V6'0 ££'VL 60'Z LL'VL LV'L LL'VL 176'0 LL'VL 60'Z VL 917'L VL V6'0 VL 80'Z £8'£L 9V'L £8'£L £60 COT L 80'Z L9'£L 917'L L9'£L £6'0 L9'£L 80'Z 9'£L 917'L 9'£L £6'0 9'£L 67'L ££'OZ 90'L ££'OZ 69'0 £B'OZ 67'L LL'OZ 90'L Ll'OZ 69'0 LL'OZ 67'L OZ 90'L OZ 69'0 OZ 67'L £8'61 90'L £8'61 69'0 £8'6L 67'L L9'61 90'L L9'61 69'0 L9'6L 67'L 9'6L 90'L S'6L 69'0 S'6L 67'L ££'6L 90'L ££'6L 69'0 6£'6L 67'L LL'6L 90'L LL'6L 69'0 LL'6L 67'L 61 90'L 61 69'0 61 67'L Mg 90'L £8'8L 69'0 MR 6Tl L9'8L 90'1 L9'8L 69'0 L9'8L 67'L 9'8L 90'L 9'8L 69'0 S'8L 67'L ££'8L 90'L ££'8L 69'0 ££'8L 67'L L1'81 90'L L1'81 69'0 LL'81 67'L 8 L 90'L 8 L 69'0 8 L 67'L £8'L L 90'L £8'L L 89'0 £8'L L 67'L L9'LL 90'L L9'LL 99'0 L9'LL 67'L S'L L 90'L S'L L 89'0 67'L ££'LL 90'L ££'LL 89'0 67'L LL'LL 90'L LLIL 69'0 LL'Lt L9'L LL LO'L LL 69'0 LL 9'L £8'£Z LO'L £8'£Z L'0 £8'£Z 9'L L9'£Z LO'L L9'£Z L'0 L9'£6 9'L 9'£Z LO'L 9'£Z L'0 9'£Z 9'L ££'£Z LO'L ££'£Z L'0 ££'£Z 9'L LL'£Z LO'L LL'£Z L'0 LL'£Z 9'L £Z LO'L £Z CO £Z 9'L £8'ZZ LO'L M66 Co £8'ZZ 9'L L9'ZZ LO'L L9'6Z L'0 L9'7 9'l 9'ZZ LO'L 9'Z6 Co 9'66 9'L ££'ZZ LO'L ££'ZZ L'0 ££'ZZ 9'L LL'ZZ LO'L LL'ZZ L'0 LL'ZZ 9'L ZZ LO'L ZZ CO ZZ 9'L £8' LZ LO'L £ffLZ L'0 £8'LZ 9'L L9' LZ LO'L L9'LZ L'O L9'LZ 9'L 9' L Z LO'L 9'L Z L'0 9'L Z 9'L CC' LZ LO'L ££'LZ L'0 ££'LZ 9'L LL'LZ LO'L LL' LZ 69'0 LL'LZ 9'L LZ LO'L LZ 69'0 LZ 9'L £8'OZ L0'L £8'0Z 69'0 £8'OZ 9'L L9'0Z LO'L L9'0Z 69'0 L9'OZ 9't 9'OZ LO'L 9'0Z 69'0 9'OZ 0 L9'9Z 0 L9'9Z 0 L9'9Z 0 9'9Z 0 9'9Z 0 9'9Z 0 ££'9Z 0 ££'9Z 0 ££'9Z 0 L L'9Z 0 L L'9Z 0 L L'9Z 0 9Z 0 9Z 0 9Z 0 £9'7Z 0 UTZ 0 £9'7Z 0 L9'7Z 0 L9'7Z 0 L9'7Z 0 9'7Z 0 9'7z 0 9'76 0 ££'7Z 0 ££•7Z 0 ££'7Z 7£'0 L L'7Z £Z'0 L L'7Z 9 L'0 L L'7Z 1 76 ZL'0 7Z 97'0 7Z SZ1'1A21•DO-n z-oor.- T2nVE Qt�) L- S ' WFm7pC)Nt�> - M1N IM U ( - 030 cFs) QP�A K Wl,TE2 SU2F,Ac5 - M 1NIMUM OF I % of 'fNt Impev-vI0U5 5U2FAcL (jr- siTF , ' \/oLLAt-J - MINIMUNI OF -TOTAL- VOL.LIMC-E OF ZUF:OFTZ 1=20M of T"E W� 2 YEAr2, 24 1-1c�U2 ?TLEGIPt"f'At 14 N , W W N N N WA-rSIZ Su2FACE MINkMUM = 3 ,04S SF aaa ' �� MINIMUM ?0O _iD Vcl-u a- = -7 F-7 IF MINIMUM noun t> p i�4 = 3 ? i + I TT At�l ' S7p2AC-�, U`C � G �.LLS — 15j CE..LL IC7�" �10 ��51�,N WA-ra 2 SUfz>^A� 0 - zNpCE.LL 4Sf �c n�si �i� wAT5,P- SUP-FAc c 1 ' CDLPOND KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division HYDROGRAPH PROGRAMS Version 4.20 1 - INFO ON THIS PROGRAM 2 - SBUHYD 3 - ROUTE 4 - ROUTE2 5 - ADDHYD 6 - BASEFLOW 7 - PLOTHYD ' 8 - DATA 9 - RDFAC 10 - RETURN TO DOS ' ENTER OPTION: R/D FACILITY DESIGN ROUTINE SPECIFY TYPE OF R/D FACILITY: ' 1 - POND 4 - INFILTRATION POND 2 - TANK 5 - INFILTRATION TANK 3 - VAULT 6 - GRAVEL TRENCH/BED ' ENTER: POND SIDE SLOPE (HORIZ. COMPONENT) ENTER: EFFECTIVE STORAGE DEPTH(ft) BEFORE OVERFLOW ' ENTER [d: ] [path]filename[ .ext] OF PRIMARY DESIGN INFLOW HYDROGRAPH: PRIMARY DESIGN INFLOW PEAK = 8.63 CPS ENTER PRIMARY DESIGN RELEASE RATE(cfs) : ENTER NUMBER OF INFLOW HYDROGRAPHS TO BE TESTED FOR PERFORMANCE (5 MAXIMUM) : ENTER [d: ] [path] filename[ .ext] OF HYDROGRAPH 1: ENTER TARGET RELEASE RATE(cfs) : ENTER [d: ] [path] filename[ .ext] OF HYDROGRAPH 2 : ENTER TARGET RELEASE RATE(cfs) : ' ENTER: NUMBER OF ORIFICES, RISER-HEAD(ft) , RISER-DIAMETER(in) RISER OVERFLOW DEPTH FOR PRIMARY PEAK INFLOW = .58 FT ' SPECIFY ITERATION DISPLAY: Y - YES, N - NO SPECIFY: R - REVIEW/REVISE INPUT, C - CONTINUE ' INITIAL STORAGE VALUE FOR ITERATION PURPOSES: 36639 CU-FT BOTTOM ORIFICE: ENTER Q-MAX(cfs) ' DIA.= 6.69 INCHES MIDDLE ORIFICE: ENTER Q-MAX(cfs) , HEIGHT(ft) DIA.= 9.11 INCHES TOP ORIFICE: ENTER HEIGHT(ft) ' DIA.= 9.03 INCHES ' ITERATION COMPUTATION BEGINS. . . TRIAL BOTTOM-AREA STOR-AVAIL STOR-USED PK-STAGE PK-OUTFLOW t 1 10178.8 31639 22115 1.93 3 .73 2 7986.5 29402 19611 2.12 4.12 3 6519.3 24506 17375 2.25 4.80 4 5461.4 20941 15436 2.33 5.27 5 4652.E 18188 13841 2.41 5.6E 6 4020.5 16017 12609 2 .47 5.88 7 3529 .0 14313 11580 2.53 6.06 8 3138.1 12946 10725 2.59 6.22 9 2823 .1 11836 10051 2.64 6.38 ' 10 2571.6 10943 9484 2.69 6.52 11 2367 .7 10214 9006 2.73 6.62 12 2200.0 9610 8578 2.75 6.69 13 2057 .5 9094 8204 2.78 6.74 14 1935.3 8649 7875 2 .80 6.79 15 1829 .5 8262 7583 2.82 6.84 16 1737 .2 7922 7327 2.83 6.88 17 1656.6 7624 7100 2.85 6.92 18 1585.9 7362 6898 2.86 6.95 19 1523 .6 7130 6717 2.87 6.98 20 1468.3 6923 6554 2.88 7 .01 21 1419.1 6738 6407 2.89 7 .03 ' 22 1375.1 6573 6274 2 .90 7 .05 23 1335.5 6423 6153 2.91 7 .07 24 1299.8 6288 6042 2.92 7 .09 25 1267 .5 6165 5942 2.92 7 .10 ' 26 1238. 1 6053 5849 2.93 7 .12 27 1211.4 5951 5764 2.93 7 .13 28 1187 .0 5858 5687 2.94 7 .14 29 1164.7 5772 5615 2.94 7 .15 ' 30 1144.2 5693 5548 2 .95 7.16 31 1125.3 5621 5487 2 .95 7 .17 32 1108.0 5554 5430 2.95 7 .18 33 1091 .9 5492 5377 2.96 7 .19 ' 34 1077 . 1 5435 5328 2.96 7 .20 35 1063 .4 5381 5283 2.96 7 .20 36 1050.7 5332 5240 2.96 7 .21 37 1038.9 5286 5201 2.97 7 .21 ' 38 1027 .9 5243 5164 2.97 7.22 39 1017 .6 5204 5129 2 .97 7 .22 40 1008.1 5166 5097 2 .97 7 .23 41 999.2 5132 5067 2.97 7 .23 42 990.9 5099 5038 2.97 7 .24 43 983 .1 5069 5012 2.98 7 .24 44 975.9 5040 4987 2.98 7.24 45 969 .0 5014 4964 2.98 7 .25 ' 46 962.7 4989 4942 2.98 7.25 47 956.7 4965 4921 2.98 7 .25 48 951.1 4943 4902 2 .98 7 .26 49 945.8 4922 4883 2.98 7 .26 ' S0 940.8 4903 4866 2.98 7 .26 51 936.2 4884 4850 2.99 7 .26 52 931 .8 4867 4835 2.99 7.27 53 927 .7 4851 4821 2.99 7 .27 ' 54 923 .8 4836 4808 2.99 7 .27 55 920.3 4822 4796 2.99 7 .27 56 917 .0 4809 4785 2 .99 7 .27 57 913 .9 4797 4775 2 .99 7 .28 ' 58 911.1 4786 4765 2.99 7 .28 59 908.5 4775 4756 2.99 7 .28 60 906.1 4766 4748 2.99 7 .28 61 903 .9 4757 4741 2.99 7 .28 1 ' 62 901.8 4749 4733 2.99 7 .28 63 899 .8 4741 4727 2.99 7 .28 64 898.0 4734 4721 2.99 7.29 65 896.4 4727 4715 2,19 7 .29 66 894.8 4721 4710 2.99 7.29 67 893 .4 4716 4705 3.00 7 .29 68 892.1 4710 4701 3.00 7 .29 69 890.8 4715 4696 3 ,11 7 .29 70 889.7 4701 4692 3 .00 7 .29 71 888.6 4697 4689 3 .00 7 .29 72 887 .6 4693 4685 3 .00 7.29 ' 73 886.7 4689 4682 1,11 7 .29 74 885.8 4686 4679 3 .00 7 .29 75 885.0 4682 4676 3 .00 7 .29 76 884.3 4679 4674 3 .00 7 .29 ' 77 883 .6 4177 4672 3 ,10 7 ,29 78 882.9 4674 4669 3 .00 7 .29 79 882.3 4672 4667 3 .00 7 .30 ' PERFORMANCE: INFLOW TARGET-OUTFLOW ACTUAL-OUTFLOW PK-STAGE STORAGE DESIGN HYD: 8. 63 7 .30 7 .30 3 .00 4667 TEST HYD 1: 5. 17 3 .97 4 .43 2.18 2940 TEST HYD 2: 12.84 11 .34 12 .84 3 .39 5730 ' SPECIFY: D - DOCUMENT, R - REVISE, A - ADJUST ORIF, E - ENLARGE, S - STOP ENLARGEMENT OPTION: ALLOWS FOR INCREASING STORAGE AT A SPECIFIED STAGE HEIGHT, TO PROVIDE A FACTOR OF SAFETY. ' ENTER: STORAGE-INCREASE($) , STAGE-HEIGHT(ft) PERFORMANCE: INFLOW TARGET-OUTFLOW ACTUAL-OUTFLOW PK-STAGE STORAGE ' DESIGN HYD: 8.63 7 .30 7 . 12 2.93 5866 TEST HYD 1: 5.17 3 .97 4. 18 2.13 3780 TEST HYD 2: 12.84 11.34 12.84 3 .39 7330 ' SPECIFY: D - DOCUMENT, R - REVISE, A - ADJUST ORIF, E - ENLARGE, S - STOP PERFORMANCE: INFLOW TARGET-OUTFLOW ACTUAL-OUTFLOW PK-STAGE STORAGE DESIGN HYD: 8.63 7 .30 7 .12 2.93 5866 ' TEST HYD 1: 5.17 3.97 4 .18 2.13 3780 TEST HYD 2 : 12.84 11 .34 12.84 3 .39 7330 ' STRUCTURE DATA: R/D-POND (3.0:1 SIDE SLOPES) RISER-HEAD POND-BOTTOM-AREA TOP-AREA(@1'F.B. ) STOR-DEPTH STORAGE-VOLUME 3.00 FT 1243 .4 SQ-FT 3614.7 SQ-FT 3 .00 FT 6073 CU-FT TRIPLE ORIFICE RESTRICTOR: DIA(INCHES) HT(FEET) Q-MAX(CFS) BOTTOM ORIFICE: 6.69 .00 2.100 MIDDLE ORIFICE: 9.11 1.10 3 .100 ' TOP ORIFICE: 9.03 2.10 2.100 ROUTING DATA: ' STAGE(FT) DISCHARGE(CFS) STORAGE(CU-FT) PERM-AREA(SQ-FT) .00 .00 .0 .0 .30 .66 393.5 .0 .60 .94 829.4 .0 ' .90 1.15 1309.6 .0 1.10 1.27 1655.3 .0 1.20 2.04 1836.0 .0 1.50 2.91 2410.5 .0 ' 1.80 3 .51 3035.2 .0 2.10 4.01 3711.9 . 0 2.10 4.01 3711.9 -.0 ' 2.40 5.65 4442.7 .0 2.70 6.55 5229.3 .0 3.00 7.30 6073.9 .0 3 .10 8.14 6368.6 .0 ' 3.20 9.49 6670.1 .0 3.30 11.16 6978.3 .0 3 .40 13 .10 7293 .4 .0 3 .50 15.26 7615.4 .0 ' AVERAGE VERTICAL PERMEABILITY: .0 MINUTES/INCH SPECIFY: F - FILE, N - NEWJOB, P - PRINT IF/OF, R - REVISE, S - STOP ' ENTER [d: ] [path] filename[ .ext] FOR STORAGE OF ROUTING DATA: SPECIFY: F - FILE, N - NEWJOB, P - PRINT IF/OF, R - REVISE, S - STOP MA zi- O -o3Z-Cc�6 Bl c 21VE c 5 -c-/ 1 s2 J ' EM E2GL NcY 0\/EZFwW SPILLWAY 0,3' 1W, 0.2' coo N N a 1-- aaa A,+A NN L- 12,% 4 x0.53�z) USE 11 , 0 FF � 1 1 1 i 1 1 1 i 1 1 V. CONVEYANCE SYSTEMS 1 ANALYSIS AND DESIGN i 1 1 Q �} 1 � s � i 1 1 1 1 1 1 PRO1: BLACKRIVERCDL PIPE SIZING TABLE REID MIDDLEPON.INC. WO: 21-W-32-6-4 (Runoff by Rational MshM) 190.3133RD AVENUE W.SPE 301 FILE: BRCDLREV (Pipe Capacity by M..im.Eq..) LYNNWOOD.WA 98006 DATE CREATED: MAY 13,199E (last updme:2(2"0) LASPREVISION: MAY130992 206r775-3434 Storm: 25 YEAR,24 HOUR TOTAL RAINFALL IN INCHES: 3.4 COEFFICIENTS FOR(EQUATION: a: 2.66 b- 0.65 Location Timeof Rein Pipe % Vel. Flow Inc. Rmwff Sum Concen. Irene Runoff n Di.. Slope Length Caps C.P. Full Time RenuAt CAPACITY VELOC From To Area Coef. A-C A'C (min) (infir) (Cf.) Value (in.) (%) (0) Of.) Used (Ohs) (min) CHECK CHECK 10 9 0.23 0.90 0.21 021 630 2.73 057 0.012 12 0500 140.0 2.73 21 3.48 0.67 9 4 031 0.90 0.28 0.49 6,97 256 1.24 0.012 12 2.900 145.0 6.57 19 $37 029 4 3 0.27 0.90 0.24 033 7.26 2.49 1.82 0.012 12 3.460 43U 7.18 25 9.14 0.79 0.00 0.73 8.05 233 1.70 11 12 3.45 025 0.96 0.86 732 2.48 2.14 OAl2 12 0.500 50.0 2.73 78 3.48 024 0.00 0.86 756 2.43 2A9 2 3 1.74 032 036 056 932 2.12 1.18 0.012 12 0500 65.0 2.73 43 3.48 0.31 OAO 036 9.63 2.07 1.16 1 3 0.16 0.62 0.10 0.10 630 2.73 0.27 0.012 12 0300 200.0 2.73 10 3.48 OX 3 5 1101 OX 0.91 2.73 9,63 2.07 5.66 0.012 l8 0500 3140 8.05 70 455 1.10 ADD FLOW FROMCB51,2,4,9,10 5 6 032 0.98 0.28 3.01 10.73 1.93 5.83 0.012 18 0.900 150.0 10.90 54 6.11 0.41 6 7 OA7. 0.84 039 3.41 11.14 1.89 6.43 0.012 21 1,620 130.0 21.95 29 9A8 0.24 7 8 0.50 0.92 0.41 3.92 1138 1.86 7.11 0.01E 21 1.540 130.0 2130 33 8.86 0.24 8 12 0.94 0.90 0.85 4.66 11.62 1.84 856 0.01E 21 IAW 150.0 21.71 39 9.03 0.28 12 13 1.72 0.73 1.26 678 11.90 191 1216 0.01E 33 0500 150.0 4051 30 6.82 037 ADD FLOW FROM CBi 11 13 14 0.29 090 0.26 7.04 1216 1.77 12.48 0.012 33 05M 135.0 4031 31 6.82 033 14 15 0.43 0.00 039 7A3 1259 1.74 12.95 0.012 33 0500 140.0 4031 32 6b2 034 15 WEP PON 0.19 0." 0.17 7.60 12.94 171 13.0E 0.012 33 0500 1A0.0 4031 32 6.82 024 MODIFY AS NECESSARY 0.00 7.60 13.18 1,69 12.86 ' PROJECT: Ct L L IL (2)\/ L1Z„ G D L PAGE OF PIPE DATA FILE NAME C D L_ P t P E ' ROUND/ARCH PIPE INPUT CODING INFORMATION: PIPE TYPE CODING: 4 - CMP ARCH (OLD GEOMETRY) ' 1 - CONC/SMOOTH BORE (n=.012) 5 - CMP ARCH (NEW GEOMETRY) 2 - CORRUGATED METAL (n=.024) 6 - CONC/SMOOTH ARCH (OLD) 3 - HELICAL CMP (n-fac varies) 7 - CONC/SMOOTH ARCH (NEW) ' ARCH PIPE CODING - EQUIVALENT ROUND SIZE MUST BE INPUTTED PER FOLLOWING TABLE: EQUIV-DIAM OLD-ARCH NEW-ARCH * EQU IV-DIAM. OLD-ARCH NEW-ARCH 15" 18"X 11" 17"X 13" * 42. 50"X 31" 490X 33" ' 18" 22"X 13" 21"X 13' * 48" 58"X 36" 57"X 38" 21" 25"X 16" 24"X 18" * 54" 65"X 40" 64"X 43" 24" 29"X 18" 28"X 20" * 60" 72"X 44" 71"X 47" 30" 3611X 22" 35"X 24" * 66" 79"X 49" 77"X 52" t 36" 43"X 27" 42"X 29" * 72" 85"X 54" 83"X 57" INLET TYPE CODING: 1 - CMP/PROD. 4 - CP SOCKET/PROJ 7 - CMAP/PROJ 10 - OTHER (SEE ' 2 - CMP/HDWALL 5 - CP SQ.EDGE/HDWALL 8 - CMAP/HDWALL FHWA REPORT 3 - CMP/MITER 6 - CP SOCKET/HDWALL 9 - CMAP/MITER HDS NO.5) # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' I 2 24 I Zo,ZI Zo'TI S KE = K = M = C = Y = ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO Z4, ZS Q G , 0 ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE Z 7C Z4 I ZQ) Zl . Gi�) S KE = K = M = C = Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO ' 33 45; 4 , IS: o, oz # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' 3 140 24. 1 Zl , 7O ZZAC) S KE = K = M = C = Y = ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 31 , G O 4,S O b6 1 1 ' PROJECT:PAGE Z OF ' 6V/ PIPE DATA FILE NAME cDL P I_P C ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ISS z4- 1 ZZ,54 ZIP 16 � KE = K = M = C = Y ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 30 , -3 0 4 , S 0104 ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE L I S O 24 l Z3,Z8 Z4p3 S KE = K = M = C = Y - OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO ' -aI, S.�p o 4, S o2, s # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' IS C) 1c l 24.. 13 2'7,1.3 S KE = K = M = C = Y OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 3110 O 4, S o+ i8 # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 7 13 0 I cS I Z-7,Z3 Z5, 18 5 ' KE = K = M = C = Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO ' 32 , Zs 0 4 0113 # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 8 130 ) a 1 ZS,Z$ 30,45 KE = K = M = C = Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 34 , 6 O 4 0 , 14 ' PROJECT:PAGE 3 OF PIPE DATA FILE NAME C D L? I r G # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' I S 4 I a I M,s5 31,30 S KE = K = M = C = Y = ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 3-7 ,0 10 4 O,II ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 10 300 I a I 3k 4Q� 32,50 5 ' KE = K = M = C = Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO ' 41 337- 4 O, 4Z. # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 11 3 1 lz 1 _ 4:7, q 5 ' KE = K = M = C = Y = ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO GZ, sa 5 Z4 0,3 ' # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE 12 14S IZ I 4E, Sz ,Z S ' KE = K = M = C = Y = OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO ' S7, O 25 24 0,74 # LENGTH(ft) DIA(in) PIPE-TYPE OUTLET-IE INLET-IE INLET-TYPE ' 1-3 140 1Z I 5z ,3 53 S KE = K = M = C = Y = ' OVERFLOW-ELEV BEND-ANGLE(deg) STRUCT.DIA/WIDTH(ft) Q-RATIO 57, Q) C7 24 O Ic \KC>bw KING COUNTY DEPARTMENT OF PUBLIC WORKS ' Surface Water Management Division BACKWATER ANALYSIS PROGRAM Version 4 . 20 1 - INFO ON THIS PROGRAM ' 2 - BWCHAN 3 - BWPIPE 4 - BWCULV ' S - BWBOX 6 - DATA-FILE ROUTINES 7 - RETURN TO DOS ENTER OPTION tACKWATER COMPUTER PROGRAM FOR PIPES FPECIFY TYPE OF PIPE-DATA INPUT: K - KEYBOARD F - FILE NTER [d: ] [path] filename[ . ext] OF PIPE-DATA FILE dlpipe.bw ----------------------------------------------------------------------------- OUTFLOW CONDITIONS PIPE NO. 1 - TAILWATER DATA: 1) SPECIFY TYPE OF TAILWATER DATA INPUT: S - SINGLE TW-ELEV. F - TW/HW DATA FILE (2) ENTER: TW-ELEV 2 .25 ----------------------------------------------------------------------------- INFLOW CONDITIONS PIPE NO. 13 - OVERFLOW DATA AND UPSTREAM VELOCITY DATA: 1) ENTER: OVERFLOW-ELEV, OVERFLOW-TYPE (NONE=O, BROAD-WEIR=1, SHARP-WEIR=2) 157 , 0 ,2) SPECIFY TYPE OF VELOCITY DATA INPUT: S - SINGLE VELOCITY UPSTREAM V - VARY VELOCITY ACCORDING TO V=Q/A 3) ENTER: VELOCITY(fps) UPSTREAM 1 ------------------------------------------------------------------------------- INTER: QMIN, QMAX, QINCRE, PRINT-OPTION (STANDARD=1, CONDENSED=2, EXPANDED=3) 0, 12 , 2 , 1 41PE NO. 1: 12 LF - 24"CP @ . 50% OUTLET: 20. 21 INLET: 20 . 27 INTYP: 5 JUNC NO. 1: OVERFLOW-EL: 24 .25 BEND: 0 DEG DIA/WIDTH: 6. 0 Q-RATIO: . 00 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* ' 2 . 00 1. 99 22 . 26 * . 012 . 50 . 46 2 . 04 2 . 04 1. 99 1. 99 . 66 4. 00 2 . 00 22 . 27 * . 012 .71 . 66 2 . 04 2 . 04 1.99 2 . 00 .95 6 . 00 2 . 02 22 . 29 * . 012 . 87 . 82 2 . 04 2 . 04 1.99 2 . 02 1. 17 8 . 00 2 . 05 22 . 32 * .012 1. 01 . 96 2 . 04 2 . 04 2 . 00 2 . 05 1. 36 10. 00 2 . 08 22 . 35 * . 012 1. 14 1. 09 2 . 04 2 . 04 2 . 00 2 . 08 1. 53 12 . 00 2 . 13 22 . 40 * . 012 1. 25 1 . 23 2 . 04 2 . 04 2 . 01 2 . 13 1. 69 UPE NO. 2 : 70 LF - 24"CP @ 1. 76% OUTLET: 20 . 37 INLET: 21. 60 INTYP: 5 JUNC NO. 2 : OVERFLOW-EL: 33 . 00 BEND: 45 DEG DIA/WIDTH: 4 .5 Q-RATIO: . 02 ' Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 2 . 00 . 76 22 . 36 * 012 . 50 . 34 1. 89 1. 89 . 64 .76 . 65 ' 4 . 00 . 94 22 . 54 * . 012 . 71 . 48 1. 90 1. 90 .71 ***** . 94 6. 00 1. 18 22 . 78 * . 012 . 87 . 59 1 . 92 1. 92 . 87 ***** 1. 18 8. 00 1. 39 22 .99 * . 012 1. 01 . 68 1 . 95 1. 95 1. 01 ***** 1. 39 ' 10. 00 1. 59 23 . 19 * . 012 1. 14 . 77 1 . 98 1. 98 1. 14 ***** 1. 59 12 . 00 1. 77 23 . 37 * . 012 1. 25 . 85 2 . 03 2 . 03 1. 25 ***** 1. 77 IPE NO. 3 : 140 LF - 24"CP @ . 50% OUTLET: 21. 70 INLET: 22 .40 INTYP: 5 UNC NO. 3 : OVERFLOW-EL: 31. 60 BEND: 0 DEG DIA/WIDTH: 4 . 5 Q-RATIO: . 06 �Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** 1.96 . 65 23 . 05 * . 012 . 49 . 46 . 66 . 66 . 49 ***** . 65 3 .92 . 94 23 . 34 * . 012 . 70 . 65 . 84 . 84 . 70 ***** . 94 5. 88 1. 17 23 .57 * . 012 . 86 . 81 1. 08 1. 08 . 86 ***** 1. 17 7 . 84 1. 36 23 .76 * . 012 1. 00 . 95 1. 29 1. 29 1. 00 ***** 1. 36 ' 9.80 1 . 54 23 . 94 * . 012 1. 13 1 . 08 1. 49 1. 49 1. 13 ***** 1. 54 11. 76 1. 71 24 . 11 * . 012 1. 24 1. 21 1 . 67 1. 67 1. 24 ***** 1.71 tIPE NO. 4 : 135 LF - 24"CP @ . 50% OUTLET: 22 . 50 INLET: 23 . 18 INTYP: 5 UNC NO. 4 : OVERFLOW-EL: 30 . 30 BEND: 0 DEG DIA/WIDTH: 4 . 5 Q-RATIO: . 04 ' Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* 1.85 . 63 23 .81 * . 012 . 48 . 45 . 55 . 55 . 48 ***** . 63 ' 3 .70 . 91 24 . 09 * . 012 . 68 . 63 . 84 . 84 . 68 ***** . 91 5.55 1 . 13 24 . 31 * . 012 . 84 . 78 1. 07 1 . 07 . 84 ***** 1. 13 7. 40 1. 32 24 . 50 * . 012 .97 . 92 1. 26 1 . 26 .97 ***** 1. 32 9 . 25 1. 49 24 . 67 * . 012 1. 09 1. 04 1. 44 1. 44 1. 09 ***** 1.49 11. 10 1. 64 24. 82 * . 012 1. 20 1 . 17 1. 61 1. 61 1. 20 ***** 1. 64 IIPE NO. 5: 150 LF - 24"CP @ . 50% OUTLET: 23 . 28 INLET: 24 . 03 INTYP: 5 LC NO. 5 : OVERFLOW-EL: 28 . 80 BEND: 0 DEG DIA/WIDTH: 4 . 5 Q-RATIO: . 25 �Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** 1.78 . 62 24 . 65 * .012 . 47 . 44 . 53 . 53 .47 ***** . 62 3 . 56 . 88 24. 91 * . 012 . 67 . 62 . 81 . 81 . 67 ***** . 88 ' 5. 34 1. 07 25. 10 * . 012 . 82 . 77 1. 03 1. 03 . 82 ***** 1. 07 7. 11 1.23 25. 26 * . 012 . 95 . 90 1. 22 1. 22 . 95 ***** 1. 23 8 . 89 1. 36 25 . 39 * . 012 1. 07 1. 02 1 . 39 1. 39 1. 07 ***** 1. 36 ' 10. 67 1.48 25 . 51 * . 012 1. 18 1. 14 1. 54 1. 54 1. 18 ***** 1. 48 IPE NO. 6: 150 LF - 18"CP @ 2 . 00% OUTLET: 24 . 13 INLET: 27 . 13 INTYP: 5 UNC NO. 6: OVERFLOW-EL: 31. 00 BEND: 0 DEG DIA/WIDTH: 4. 5 Q-RATIO: . 18 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** 1. 42 . 59 27 . 72 * . 012 . 45 . 31 . 52 . 52 .45 ***** . 59 2 . 85 . 87 28 . 00 * . 012 . 65 . 43 . 78 .78 . 65 ***** .87 ' 4 . 27 1. 10 28 . 23 * . 012 . 80 . 53 . 97 . 97 . 80 ***** 1. 10 5. 69 1 . 31 28 . 44 * . 012 . 93 . 62 1 . 13 1 . 13 .93 ***** 1 . 31 7 . 11 1. 50 28 . 63 * . 012 1. 04 .70 1 . 26 1. 26 1. 04 ***** 1 . 50 ' 8. 54 1. 70 28 .83 * . 012 1. 14 . 78 1. 38 1. 38 1. 14 ***** 1.70 PIPE NO. 7 : 130 LF - 18"CP @ 1. 50% OUTLET: 27 . 23 INLET: 29. 18 INTYP: 5 �UNC NO. 7 : OVERFLOW-EL: 32 . 25 BEND: 0 DEG DIA/WIDTH: 4 . 0 Q-RATIO: . 13 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** 1. 21 . 55 29.73 * . 012 . 42 . 30 . 49 . 49 .42 ***** . 55 2 .41 . 79 29 .97 * . 012 . 59 . 43 . 77 . 77 . 59 ***** . 79 3 . 62 1. 00 30. 18 * . 012 .73 . 53 1. 00 1. 00 . 73 ***** 1. 00 ' 4 .82 1. 17 30. 35 * . 012 . 85 . 61 1 . 21 1. 21 . 85 ***** 1. 17 6. 03 1. 34 30. 52 * . 012 . 95 . 69 1. 40 1. 40 .95 ***** 1. 34 7 .24 1. 50 30 . 68 * . 012 1. 05 . 77 1. 60 1. 60 1. 05 ***** 1. 50 'PIPE NO. 8: 130 LF - 18"CP @ .90% OUTLET: 29 . 28 INLET: 30.45 INTYP: 5 �UNC NO. 8 : OVERFLOW-EL: 34 . 60 BEND: 0 DEG DIA/WIDTH: 4. 0 Q-RATIO: . 14 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* ' 1. 07 . 52 30.97 * . 012 . 39 . 32 . 45 . 45 . 39 ***** . 52 2 . 13 . 75 31. 20 * . 012 . 56 . 46 . 69 . 69 . 56 ***** . 75 3 .20 . 94 31. 39 * . 012 . 69 . 56 . 90 . 90 . 69 ***** .94 ' 4. 27 1. 10 31. 55 * . 012 .80 . 66 1 . 07 1 . 07 . 80 ***** 1. 10 5 . 34 1. 25 31. 70 * . 012 . 90 . 75 1 . 24 1. 24 . 90 ***** 1. 25 6. 40 1. 40 31. 85 * . 012 . 98 . 84 1. 40 1. 40 . 98 ***** 1. 40 LPE NO. 9: 150 LF - 18"CP @ . 50% OUTLET: 30. 55 INLET: 31. 30 INTYP: 5 fUNC NO. 9: OVERFLOW-EL: 37 . 00 BEND: 10 DEG DIA/WIDTH: 4. 0 Q-RATIO: . 11 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* ' 94 . 48 31. 78 * . 012 . 37 . 35 . 42 . 42 . 37 ***** . 48 1. 87 . 70 32 . 00 * . 012 . 52 . 50 . 65 . 65 . 52 ***** .70 2. 81 .87 32 . 17 * . 012 . 64 . 62 . 84 . 84 . 64 ***** .87 ' 3 . 74 1. 02 32 . 32 * . 012 .74 . 72 1. 00 1. 00 .74 ***** 1. 02 4 . 68 1. 16 32 . 46 * . 012 . 84 . 83 1. 15 1. 15 . 84 ***** 1. 16 5. 62 1. 38 32 . 68 * . 012 . 92 . 93 1. 30 1. 30 . 93 1. 38 1. 29 PIPE NO. 10: 300 LF - 18"CP @ . 50% OUTLET: 31. 40 INLET: 32 . 90 INTYP: 5 �UNC NO. 10: OVERFLOW-EL: 41. 00 BEND: 90 DEG DIA/WIDTH: 4 . 0 Q-RATIO: . 42 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* ' 84 . 47 33 . 37 * . 012 . 35 . 33 . 38 . 38 . 35 ***** .47 1. 69 . 69 33 . 59 * . 012 . 49 . 47 . 60 . 60 .49 ***** . 69 2 . 53 . 89 33 .79 * . 012 . 61 . 58 . 77 .77 . 61 ***** .89 ' 3 . 37 1. 09 33 .99 * . 012 . 71 . 68 . 92 . 92 .71 ***** 1. 09 4 . 22 1 . 29 34 . 19 * . 012 . 79 .78 1. 06 1. 06 .79 ***** 1.29 5 . 06 1. 59 34 .49 * . 012 . 87 .87 1. 28 1 . 28 .87 1.59 1 .49 RIPE NO. 11: 431 LF - 12"CP @ 3 . 46% OUTLET: 33 . 00 INLET: 47 . 90 INTYP: 5 JUNC NO. 11: OVERFLOW-EL: 52 . 50 BEND: 5 DEG DIA/WIDTH: 24 . 0 Q-RATIO: . 38 ' Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ******************************************************************************* t59 .42 48 . 32 * . 012 . 33 . 20 . 37 . 37 . 33 ***** .42 1. 19 . 63 48 . 53 * . 012 . 46 . 28 . 59 . 59 .46 ***** . 63 1.78 . 81 48 . 71 * . 012 . 57 . 34 . 79 .79 .57 ***** .81 ' 2 . 38 . 99 48 . 89 * . 012 . 66 . 40 . 99 . 99 . 66 ***** .99 2 .97 1. 17 49 . 07 * . 012 .74 . 45 1 . 19 1. 19 . 74 ***** 1. 17 3 . 56 1. 40 49 . 30 * . 012 . 81 . 50 1 . 49 1. 49 . 81 ***** 1. 40 lIPE NO. 12 : 145 LF - 12"CP @ 2 . 90% OUTLET: 48 . 00 INLET: 52 . 20 INTYP: 5 JUNC NO. 12 : OVERFLOW-EL: 57 . 00 BEND: 25 DEG DIA/WIDTH:24 . 0 Q-RATIO: .74 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** . 43 . 36 52 . 56 * . 012 . 28 . 18 . 32 . 32 . 28 ***** . 36 86 . 53 52 . 73 * . 012 . 39 . 25 . 53 . 53 . 39 ***** . 53 1. 29 . 69 52 . 89 * . 012 .49 . 31 . 71 . 71 . 49 ***** . 69 1. 72 . 83 53 . 03 * . 012 . 56 . 35 . 89 . 89 . 56 ***** . 83 2 . 15 . 97 53 . 17 * . 012 . 63 . 40 1. 07 1. 07 . 63 ***** .97 2 . 58 1. 12 53 . 32 * . 012 . 69 . 44 1. 30 1. 30 . 69 ***** 1. 12 PIPE NO. 13 : 140 LF - 12"CP @ . 50% OUTLET: 52 . 30 INLET: 53 . 00 INTYP: 5 Q(CFS) HW(FT) HW ELEV. * N-FAC DC DN TW DO DE HWO HWI ****************************************************************************** . 25 . 21 53 .21 * . 012 . 21 . 21 . 26 . 26 . 21 -. 08 -. 11 . 49 . 30 53 . 30 * . 012 . 30 . 29 . 43 .43 . 30 ***** . 29 74 . 36 53 .36 * . 012 . 36 . 36 . 59 .59 . 36 . 17 . 11 . 99 .42 53 .42 * . 012 . 42 .42 . 73 .73 . 42 . 26 . 20 1.24 .48 53 .48 * . 012 . 47 . 48 . 87 . 87 . 48 . 35 .28 1.48 . 59 53 . 59 * . 012 . 52 . 53 1. 02 1. 02 . 59 . 42 . 36 �PECIFY: R - REVISE, N - NEWJOB, F - FILE, S - STOP f LPECIFY [d: ] [path] filename[ .ext] FOR STORAGE OF HW-DATA AT INLET OF PIPE NO. 13 : ^C VI. SPECIAL REPORTS ' AND STUDIES 1 1 VII. BASIN AND COMMUNITY ' PLANNING AREAS ��.i w-� i ! F--I w w I--i IX. EROSION/SEDIMENTATION CONTROL DESIGN r � 1 X. BOND QUANTITIES ' WORKSHEET, RETENTION/ DETENTION FACILITY SUMMARY SHEET ' AND SKETCH KING COUNTY, WASHINGTON, SURFACE WATER DESIGN MANUAL ' RETENTION/DETENTION SUMMARY SHEET Development Date ' Location ' ENGINEER DEVELOPER Name Name Finn Firm Address Address Phone Phone • Developed Site acres Number of Lots O ' • Number of Detention Facilities On Site • Detention provided in regional facility F-1 Regional Facility location ' • No detention required 0 Acceptable receiving waters ' • Downstream Drainage Basins Immediate Major Basin Basin DU 74 IZ1 ✓� fZ Basin B Basin C ' Basin D ' TOTAL INDIVIDUAL BASIN Drainage Basin(s) A B C D ' Onsite Area Off site Area Type of Storage Facility W ETR ' Live Storage volume 79 S O ' Predeveloped Runoff Rate 2 year 3 1 97 10year 7, 3D Postdeveloped Runoff Rate 100 year 11 , 34 ' 2year 10year R,G3 Developed O 100 year 12. 84 ' Type of Restriction 1Z I F 1 CIG Size of Ortfice/Restriction Orifice/Restriction No 1 -7 C73 it No.2 6.c2,7 " No.3 ' ?I " No.4 No.5 R Iq0 D-1 UNITED STATES VINES QUADRANGLE'S UNITED OF THE INTERIOR SHINGTON—KING CO. GEOLOGICAL SURVEY i] 1TE SERIES (TOPOGRAPHIC', , p s MI s� 122 5 R.4 E. R. 5 E. S TTTL E CITY P O J fo MI. 2 3Rd II 4 A R 1 _ tK s ' i I 1 • f nY 1 1 1 Y a.. ..4I awe } ) I �I •x. t4 7 * a \ ) � •12� 1 Q 44.... & zs. 1 1� `\ �� 1 — •k •r 1 TON .b Sewa N•�f �• �.p. l t - }V • �. � 'I A R ORT gisposa' /�? �- .�_ -••" •1 ?' � `�~ — +• •. �� AtA tell •� �P .I �9,'T •r :1 'I�, '1 x �'y�.�• BM•: I I •Fiel •Foster courser _ •• B ,F� ;•EMlnalon Goll Cum:�••7 ------ —®1113 � :�, �$Lp Yr. �.Nr�i''.R� a z ✓ I �• F Q' J • it .� \ 1 i•fI — o• 13 - -' r I f a R •I t� •�• O �� 6L \ /24 '• It —I�f\� 11�. a v :/ PB •'•�� r II � �.__ _ •+ 1 1 � 4I ti 9T.sa . '`.,ax. R 4 I �i ABM Ink 1 Tf �1 I e5d';;` �r+l' 4r:a •� •' 1 ♦ n �IIl ra 1 w� r IBM ,29t=.. --_— � }•. � ��, � i 2 I . — -'�• \ i � �J`4 I ' ,y:. • Z Z 1�� S �.q�?S.'�1% .�u.h I "1-fr,�. I,^ .la +� 26 I � o • r I < . f 26 9 25 ( 30 2. 1 1 1 I• •i• ; n ii 1 � y i t � I _ 1 _ Page 1 of 2 King County Building and Land Development Division TECHNICAL INFORMATION REPORT (TIR) WORKSHEET PART I PROJECT OWNER AND PART 2 PROJECT LOCATION AND DESCRIPTION ROJECT ENGINEER Project Owner Project Name1?LkGK ROM QZL_ ' Address Location -Z 3 Phone Township Project Engineer Range Q- ' Section 14 Company Project Size 17� C t AC Address Phone Upstream Drainage Basin Size AC PART 3 TYPE OF • ' 0 Subdivision 0 DOF/G HPA 0 Shoreline Management 0 Short Subdivision 0 COE 404 0 Rockery 0 Grading 0 DOE Dam Safety 0 Structural Vaults ' Commercial 0 FEMAFloodplain 0 Other 0 Other O COE Wetlands O HPA ' AND DRAINAGE Community Drainage Basin 1,4 21 V R1� PART s .srrE CHARACTERISTICS ' 0 River 0 Floodplain ' 0 Stream _ 'J�jg Wetlands (� Critical Stream Reach 0 Seeps/Springs 0 Depressions+Swales 0 High Groundwater Table 0 Lake 0 Groundwater Recharge 0 Steep Slopes 0 Other 0 Lakeside/Erosion Hazard PART 7 SOILS SoiIT c Slopes Erosion Potential Erosive Velocities 3�AurT >; Ike I -7 ,/o uRr1AJ Z �o f 0 Additional Sheets Attatched 1/90 XI. MAINTENANCE AND ' OPERATIONS MANUAL Short Plat (SHPL# ) REQUEST FOR PROJECT H Prelim. Plat (PP# ) CAG# To: Technical Services Date 3� 7WOH $73q-) GreenN From: Plan Review/Project Manager �2 i WL( 5 Project Name �alocrH�o g�ufk Rluel Ulks7e �eclu�7`ovt S tc (70 characws max) Description of Project. CAmSIyuLT sfY uz _Wa7c vl Sewn cwrr� o{ru)I �/ pro urci 7Cn PO100vlc0 nro4� / Circle Size of Waterline: 8" 10" 12" Circle One: New or Extension Circle Size of Sewerline: 8" 10" 12" Circle One: New or Extension Circle Size of Stormline: 12" 15" 18" 24" Circle One: New or Extension Address or Street Name(s) 501 hi(olfsIt✓ Road S U/ Dvlpr/Contractor/Owner/Cnslt: }jhrHGr�/Ulm Guy1,150y (70 duractas max) Check each discipline involved in Project Ltr Drwg !t of sheets per discipline Trans-Storm /_nw-(A Es 1elyl? ✓ -7 (Roadway,Drainage) (offsrte — Z /unprovertkn[s include basin name) (include TESL sheers) 0 Transportation (Sigmlizarion,Chamtef ✓ /1 j�uwuH{,S yS7uuY y Wastewater r2 (Sanitary Sewer Mamy(mcludc basin name) lb Water (MUM,Valvm Hydrants) _ ✓ /� (Include eempeane&Horizontal CW Shx ) TS Use Only `�� _ t+� _ 1 (> _ 10 �L, R � - 41 - aloes i- �i0P- 210 � 5 — oZIC7a?, . sw� - 7/ . a s - q - 93 Approved by TSM Date: fomM/miscJ92-090.DoC/CD/bh I �