Loading...
HomeMy WebLinkAboutSWP272264 JAN-15-'93 FRI 02:05 ID: DEPT OF FISHERIES TEL NO:206-506-6551 #503 P01 T , F om: Ken Bates (206) 902-2545 Habitat Management Engineering Fax: (206) 902-2946 Washington Department of Fisheries POB 43155 01 is WA 98504-3155 7 T : D^&--.- 0R : o� Fax No. 2-1S- �- �`�' � Pages Following: �- r JAN-15-'93 FRI 02:06 ID: DEPT OF FISHERIES TEL N0:206-506-6551 #503 P02 - I �o� �;s Wri► � 1 , .....--•-- JAN-15-'93 FRI 02:06 ID: DEPT OF FISHERIES TEL NO:206-506-6551 #533 P03 lJ 9 I J V s - I1r 1 a 't r. �Jk - f6 R F�s� Qli1s�j� �o i Z, r r,2 A", e y. �IJ�O--��ir �b ,( ✓ter.l7 _fjt2f_ _ ' �' '� ' l�2 .��� - �o /A - - P7 —P J 4c C- J`o r t Ct"7 t- rt�/fA �lc� — NV i r���Y V-Nv��s Yes P �j¢/�- 'f`N �'I__ ,�f.�Jl!► L � (,v��r Jl�r,�,�(c �2 (�rw 1'�I�K Ad-�r1 b� V Z V (-,4 C k r�G r�y �J'� -it it 4 i CITY OF RENTON FAX TRANSMITTAL Department of Planning/ Building/ Public Works 200 Mill Avenue South Renton, Washington 98055 - 2189 Date: FAX: (206) 235-2541 To: D(,4 . o-1 K L N Q ATC<5 FAX # 9 D 2 - 2 9L� 6 jJA 4 From: D a C r Phone # 277 9� SUBJECT: S 1 --IfG� P4 SJk7� C� �y�rf Number of pages ( not including cover sheet) '7 COMMENTS I have looked at the following potential designs for the fish passage culvert: 1. 6 x 3 Box with V-Notch as designed by INCA 2. 8 x 3 Box with V-Notch for entire width 3. 8 x 3 Box with a 1.5' deep notch 4. 8 x 3 Box with a 1.25' deep notch Please check over my calculations for maximun flow capacity and let me know if you would analyze the designs any differently. It appears that a 8 x 3 box will be needed to obtain a flow up to the 40 cfs that you would prefer. It is up to you and the DOT to determine what the weir configuration will be. From my preliminary calculations for the stream and control structure at the future sedimentation basin I do not want the peak flow for the 100-year, 24-hour storm to exceed 55 cfs for the fish channel. Apparently the capacity of the weir will be less than this and will be the limiting factor for flow in the entire system. The elevation of the golf course next to the culvert location ranges from 66.4 to 66.8, therefore I prefer that the culvert only be 3 feet high, and that the maximum water level does not exceed elevation 65.5. This will allow for a 1-foot freeboard on the stream through the golf course, and gives us some leeway if the actual elevations on the golf course are lower in some areas than show on the topographic map. Please give me a call for FAX me your comments. We also need to convey this information to INCA and the DOT when we have determine the design requirements and constraints. S qI Is H WA D. Clore C HELV wETR CAPACITY Des I" .SGi,K,r of /Z-/S- 2 SG.� f� !, 6x3 Box ^ W W W G 4VL, ^ V{ �o0 62.H ..N MACV IN(4 C1 o FI C s� Wei(• �i 5B/C lSn r lzn "A e,:A fo � V -/✓c�rl� ivi//�� G� re r�.r✓N (Ar CArlA- 6o✓L ! � •✓ Ti/ f� li�d/JroXi .,rfC br � C✓i ✓«�� / C r'sJ -se t �/u A V�/Uc�cG7/7 W� j1� '`Z SGYYJ� �CrJI /f7` �Y+�! e �k n ' �i✓CSJ-J�c o,, a rc 6t rc Q = C, s/z Ta M 2 3 &' 1 � I an IX = L•-5�.6 SS. 2 0 2 C, Q = 2. 4 .3 A �� �tIT ` or S �tbv+alr�t � WLI� �SSa�t }�C�?�m O �nity Q �i`JL J LA" /z 2, 5 Q5 = ( �S• � ���) 1 -` /2,$) 2 3�2 3 :6 i z 03 = ( o. 83 + I.2s/7 3/t 31 3 ;7. � { Li oc 2 FZ1477 0.6, 2,1 N N N xxx O �/ = 91i -26,6 = 63.�! N N N coo N O O w r 5 Li evcvr aan �n C r TIC = 2� .J r� •L = 1,. � 1 SGr�v QJ rO�GV/�K.f G. KJ CkJ �- 531 = 2 3. li c-Fs V-N-1 4 Dr, 1/ i E pwY41 f Wt;r A = 2A 2—�) h 2. S 2. 5 u, Al �r4) (C .SClfivy i i 1 i I i I Z t '0 ^, 8 4 t7 � C5 T C � nt 0 s lz/Ls� o ss 'z = B 'z9 - (ssZ + 8' Z � ) _ � N rf� s 8/-7 _ �7 �► 'hr = � IL y zi£(h0 z hS 'I ) = cb z 7W 1;11 oil :7 ,1 i ►NJNN N- 000 h 9 mmm mmm N-4 N 8'l9 S 'I ZiE� 17 s� >C04 x $ XO C y,l /' / ��.=7 �j U 1,f 1 / i7/ /r ,�y0 d 1 i D. CQ Z VISc MCrL Flow 5 WWW +,Q7 , 2.13 t/1 Vf f/1 coo %m C 0 �N n CV C;M C C1 Cr C L +3�Z '/ + (. 4 �/Z — ..i. v ✓ 2 31 .c 03 2 3 _ `I �I i I ��` Z - 2 9�/� FILE CITY OF RENTON MEMORANDUM DATE: February 8, 1993 TO: David Jennings FROM: Daniel Carey SUBJECT: Maplewood Creek- Peak Flow Values The peak flows predicted for Maplewood Creek vary significantly between the Draft Cedar River Current And Future Conditions Technical Report, prepared by King County, and the Draft Maplewood Creek Basin Plan, prepared by Parametrix, Inc. for the City of Renton. The Cedar River Report used the Hydrological Simulation Program-Fortran ( HSPF ) model, while the Maplewood Plan used the Hydraulic Engineering Center HEC-1 model. For the existing conditions in the Maplewood basin the reports gave the following values (see attached tables for complete results): Existing Conditions Maplewood Report - Peak Flow_ Cedar River Report- Peak Annual Flow 2-Year Storm 118 cfs 51 cfs 2-Year Return Period 10-Year Storm 202 cfs 81 cfs 10-Year Return Period 25-Year Storm 251 cfs 97 cfs 25-Year Return Period 100-Year Storm 300 cfs 120 cfs 100-Year Return Period The two models use different techniques to develop their results. It may not be correct to equate the results from the 2-Year Storm, based on precipitation, with the results for a 2-Year Return Period, based on river flow. The main question is which model provided results that more closely approximate actual flow conditions. In November of 1990 intense rains caused Maplewood Creek to overflow its banks and flood the Maplewood Golf Course. The rainfall records from the City shops, located approximately 1 mile northeast of the golf course, show 0.75 inches of rain on November 8th and 1.88 inches of rain on November 9th. The rainfall for one day is less than the rainfall for the 2-year event, and the total rainfall of 2.63 inches lies between the rainfall for the 2-year and 10-year storm events (2.0 inches and 2.9 inches). Title February 8, 1993 Page 2 Photographs taken during the flooding on the golf course showed that Maplewood Creek was within its banks at the clubhouse and cart bridge, and left its banks at the crossing about 150 to 200 feet beyond the cart bridge. We surveyed the existing cross-section of the stream at two points near the cart bridge and used the photographs to estimate the water level during flooding. Using the Manning Equation for open channel flow and water level portrayed in the photograph we estimated the flow under the cart bridge at 160 cfs. Depending on the variables used in the Manning Equation, the flow may have ranged between 140 to 180 cfs. The flow estimate of 140 to 180 cfs falls between the flows predicted by the HEC-1 model for the 2- year and 10-year storm events. This result corresponds well with the actual amount of rainfall recorded. In comparison, the peak flows predicted by the HSPF model for the 2 and 10 year return periods was 51 and 81 cfs. The actual flow observed was significantly greater than that predicted by the HSPF model. These observations and calculations seem to indicate that in this case the HEC-1 model provided a better estimate for peak flow events than the HSPF model. The differences between the models for the 100-year event is even more pronounced, 300 cfs versus 120 cfs ( HEC-1, HSPF ). Stormwater control and transport structures would be grossly underdesigned if the results from the HSPF model were used. Table 3.4 — HEC-1 Model: Runoff Hydrograph Summary HYDROGRAPH CHARACTERISTICS AT MAPLEWOOD GOLF COUSE Total Existing Land Use Conditions Future Land Use Conditions Precipitation Peak Flow Time of Peak Runoff Volume Peak Flow Time of Peak Runoff Volume Storm (inches) (cfs) (hours) (acre-feet) (cfs) (hours) (acre-feet) 2-Year 2.0 118 8.58 119 173 8.75 157 10-Year 2.9 202 8.58 199 275 8.92 247 25-Year 3.4 251 8.67 247 333 8.92 298 100-Year 3.9 300 8.67 297 392 8.92 351 tAAP1P `vOOo C RBG �ffiSIN V,,A�j pFA F_r) Par° 64r x Oo4. I 9 both future conditions are given in Table 4- 6. Forested Conditions: Under forested or 'natural' conditions, human impacts associated with land development are removed and Fit variations among the subbasins are largely a function of variations in geology, soils, slopes, rainfall, the distribution of lakes, and other natural factors. Under forest conditions, the subbasins in the BPA can be divided into J three categories, depending on their Fit values: high, medium, and low. The high category includes Cedar Grove, Orting Hill, Madsen, Summerfield, and Molasses with forest Fit values greater than 50 cfs/square mile. These subbasins do not have lakes to buffer flood runoff and they are strongly dominated by till soils, which exhibit much 4 higher storm runoff than outwash soils. 4 The medium group includes Ginger Creek, Dorre Don, Taylor, Peterson, and Maplewood with values between 30 and 50. In this group, Peterson flood intensities are moderated by the presence of Lake Desire, Otter Lake, Shady Lake, and Peterson Lake accounting for about 9% of the subbasin area. Taylor Creek Subbasin has a similar percentage of its area in wetlands as well as 23% outwash soils. There are no obvious physical differences between the subbasins in the high group and Ginger Creek, Dorre Don, and Maplewood Subbasins of the middle group; however, simulation results supported by field data indicate that they do in fact have lower flood peaks. Table 4- 5 Peak Annual Flow Quantiles of BPA Tributaries RETURN PERIOD 2 5 10 25 50 100 GINGER CREEK FOREST 17 27 35 47 57 69 CURRENT 63 86 101 121 137 152 FUT/MIT 63 85 101 123 140 157 FUT./UN 69 93 111 134 152 172 73 MAPLEWOOD CREEK CURRENT NT 5 01 69 81 97 109 120 FUT/MfT 65 82 94 109 121 133 FUT./UN 98 125 143 168 187 207 MOLASSES CREEK FOREST 35 56 72 96 116 138 (FAIRWOOD) CURRENT 96 131 153 180 200 220 FUT/MIT 99 132 154 183 205 227 FUT./UN 130 171 200 238 268 299 MADSEN CREEK FOREST 48 75 96 127 153 182 CURRENT 132 182 217 262 297 331 FUT/MIT 145 199 236 284 321 360 Draft Chapter 4: Hydrology 4- 20 C ED,42 R lvL,/L 8A5 r'I DRAF7- C-0"Ir- AL REPoRr Kirj Ca. J per. 1113 c TRANSMITTAL-`**, January 31, 1995 To: DEB j Albert Liou Harza 2352 130th Ave NE Suite 200 Bellevue, WA 98005 From: Ken Bates Washington Department of Fish & Wildlife 600 Capitol Way N. phone: ( 360) 902-2545 Olympia, WA 98501-1091 fax: ( 360 ) 902-2946 e-mail : bateskmb@dfw.wa.gov Attached are some habitat ideas for Maplewood Creek as you requested. I see several keys to the design: I . Channel roughness for stability at slopes up to about 2 . S% use cobble and/or boulders scattered for roughness II . Grade control . . log controls needed up to slopes of 5 . 0% . . no channel gradient greater than that III . Gravel bed low flow channel shaped into pools and riffles low flow channel meandering through wider flood channel that also meanders . . I have suggested previously an 8 ' low flow channel in a 20 ' flood channel . . IV. diversity in channel throughout . . boulders, root wads, cribs, log projecting from banks, overhanging vegetation V. Banklines supported by buried debris and vegetation VI . "Live" channel . . low flow channel not fixed within wider flood channel . . debris in banks keeps channel from eroding through flood channel . . gravel buried in floodway so when channel moves, it still is in gravel . . flood channel might consist of levees Give me a call if you have any questions . cc: Fisher Ia WADD REVETMENTS ARE EFFECTIVE FOR STREAMBANK PROTECTION WHEN RE-ESTABLISHING MEANDER PATHS ASOTIN CREEK D3TOC30RD4TOC4 Root Wadd Revetments I v ' Willows, Alders, Cottonwoods Old Channel �0 WSW Old Channel MEMO WON . �.� '� 11,11,1111101d Gravel Bar getate Point Bar \ Point Bar — ew Channel r �o, Floodplaln woo" searm ee"m teem.., , New Pond �Q Electric Fence r - l FLOODPLAIN gANKF V BASEFLOW ! - (Ok,' f 4 FLOODPUUN 1 = 1 BAN KFULL NATURAL CHANNEL 1 1 s 1 - BASEFLOW --,►.: FLOODPLAIN - j KFULL BANKFULL f BASE-FLOW � _ _ � +� FLOOOPL.AIN CHANNELIZED DESIGNED" CHANNEL �R p1 .�: � .!� N ,'!• :, t�qsy+ r,..';I'r1� ,. fjtr � G.. r '_ .� ��,���,e �� , .t •�a err+trr r iv!�Zrs�; 1 1•► ,a��� v .,hVr�'.:•lnt� " 'i 'a a.1 :t.�,� ► f t?F� � � R yp'i n. t� �« •� 41t1`':r w '1 I j tl.,t w r T s it�.i 1 t+�tti►.���`T�j� ��\Jlj�` ell G�' r •r t.a...� a..• •• :� -.• :� .� s '•/�Jt/1! a G i��Y �� i '�Ry •� !V •r •G,G!y� . �p • •••yj, .. . •r` r:g .•l r 1 ♦ !"3�_"'SSS,• G� I ltt'J': �i �t,. '4 t•fit. /�•••• '`.' .;' .t'�tl�v, lb1 '•����yK.� �' t J�S ;�ns�,ttt}},,,,,,i .y 5q 'w�`ru a'' 7/� f I ►� r .d� "�' ,1.. '�•A L s 4ft f// ! •'f .T 1`i,�� �ui�'�)t' !S s�,7• i{iii��lyyy';: �`�,,�5• ��,�. M, _.,.,.,` �„' ^i. •rM �. •�� r •1 !M S Y Ic I �t !j. I. w•i' r •"y,� .l ?•'� ;.r,4 ".vt ::I ♦I •�• ; t f t��r*� 1), •a} ..{' far I•�w,�Rr,••G:'i w �l`iR. �-�:51 ••� •`i� •a T= 7.i., t ti sarl�. ;�l••;. Nii... 1. l\.�fy a !�,L,.�sSL`•1,,cY, ' `'Z.fir'. ► 1' r. • •�'1:�'�nt t, � f,/r•t„, a- t,`vn;y i�F �;• `'iRy1, '`'r'• fr •.;,;'✓,jFy'YrM:.F P • r .•t.. y r � �.n��y �'• •f 1:,rls•• j R,t�; R..�:T'.�1'�`�G'�j/ d ,y{{•�L�''l «�•�M :«.•.1�j•"�• • •I ��,�. .�. •=fT a ya,,•!.'",.11jSft"q;1:;r7i`1.` `' ��k ��i�•. '! ,'1r�9y`•', 5 J •M„�r.vr.tf �c. t. }'i►;w�';. .•�%.. :. •, 1 ./ }•.�61r`s,n, "7!�'{/ a.:�; '�'.51y••, i r ••.c ,•; '{�1� ��(ti•s��,y ,G d'�'� a L .�. ��•;w, S!, i t.,iy,. i • r• [ 'f,,.�I`► . J. �1j I l�L.i�. ♦y.J.'�,���r•`y�,� ,fi1•. ,• ' . ,.ap . �ir J' ♦ �., w.. y'�•! .:.t t .,r i ,tr F�.Mt•�u • 'r•�~}. 1t1^�+�'�'q'r�1yt•. '•ti w i �'il,I M •► 1k` r } /la r ,{•.t ,r�� y ��- �`r .•+ n� +y t ••t�t�ili;`e1jr., 1�q tb,1i' }•,�, t ♦'G' Jb..,I'a` ��jpy{��`,�r'�.!` ��RYA.'yt:'.�'•t��,' uh.•.G,.s. j�G .irl�lV ff��i rr�l .� .. '}'p �I.I l I )y�+�"'7.51 r,•f ' J ir,..v Y� . r,,r ta: � �I � i,�, �i ty� • �a�� i �'►.',t �' ,, ••.r••�N.�;�•IA�GVt►y .I � M,.li• !:!�►;/,,�..�,�,Y,.ni�Y',�1'f.'l� .f:;•.i1!•��tIfIG+ �i. ct w•.if •r•, •I '��!� :M'p "�•1'^: :w� 5 r .y r f/t.�Y'•! l...,� �!Y 5 1 w �''tf �l{ t�Si�� '�iSl`.7y 4�a• T'. ',} � y i.lw'l r" � �! �iyh�' :IQt4 ` ,Nj►•i c c ts+1•�: �j••t:.t� J.''r�tfitfr�i, lt ;.t..".` 4y rS.uy r I '!•f.L4 .,�'71'� ..v •. ••e' Q, ".• w [' t .� ,,a. y�r �•.,�j�r~ v7r !�l•' S� �Y• ng � xp I?y r•�•w!•" a' A }•., 1 '�KEN G; y"i1�• D.' `l_�+ "rs.,?,..[a'l �r�,:" •v ',riN► TTTT7"''y�t? >i► �f ftr"'�i+�'• %`.:.i:1't•4•'G1� r' • h�•�p•�,^•C+ :� q . r,{•:ar�*�I�.t'tl� n •1'i�f of �`{ k ,, rt i � � F1 '' i y `s w � G:IY� '�;�y>t.�l!S i ,f/y^I,.,'s.s.'.s,�'I.i'Z t"�;tt�I;�y�ak��r `�i� .'�•.,5„" ��), � •� ►�+, •wl •'/r�•+ � ..Vy} 1 ►. r �`` •,� � + !.•t•• s ,y�•'ty,,t aq eu.r�F�'rai`F2r,7f1• M y"!' •r ' t rl L�y1' t i.� .'� - atl ',K,t.`�fraT•►tj, .?3'A� 'v r�d,:t^�b[t,^ •l_rV,r•� rl r j'•D. wM +'. 1 f f .c •. i' •i *1t&•,.jai rL�'SSY�r tY' t Y ''Fv '9f` •.', •` � ', ',r� } r i t •' x !t�,+ t ff 7 r M,at" �r••�'r ���. I ,.!, , `.. . / 4�'t•�. ,.: � Y,f•Yyi�t+;1��XS IJ.�1� ��r }'`5�tfn� '1�(••G V. pt �� { a`�tG+�I=,, �►i r�.:ct�R��r wx`•}S°������ t'�"'.tl�t7�F'' . , X r 4 •i A,�•'cl�„KF,�',�e t�•Iwt{Y;a1r07sF A- ,rl 7j. :.7 �� "�� r,/a. ��rr � 5�r���-`�itt�'1+'ik'FFtg'G'!',rf•�/�!'•"a ."+ G`+� ,♦y. �. 1•r>+ �..� !hl :/ la ott �t jS rjr�t`,•R hJ i'!'{ .,� n-w�.7• � . .a 1�7 ►'rj r y�x L�•�t-i oi'., t 1 'p C .� j'.� ,, .. ,�NQy�±.'� rG •i.,• r*'t_�a,� R�m•�'S�'r. II a �:• ��•t111 1 ...iti• Gam..•.•. , .� P R'"��'�` 71 RE�•1•� � . ���4 K �7 ,: •a �,• llJ���.sJ'., ^ y5.•�*r �tJ`Y Iy'Ail� �ir r %ry •., ' 17 • t}. I ', I1� �Y 1Y� J Y ..yi•• J ,r+fe 4' ,• 'qs t ti ,. _- �/'f�•I `Tr.I �•�,� ����� ���ayLO•G .. .,•,•r �a" G. .�';S9ir �. .'I,1 F'►•���I y'� -';+ h' 3 s f"" l'{.lyf y� •5 ,`� �!1'• '�►rlt.,.� ��, .t.•. r " •faF• c,M+,`•#,e � ..:.. 1 t: 3„`t •: P„ �,�i 1 n�"••tilwr�,���M � •t�„✓y /.. ,r N �. h.7:•:�1� • • 't':�"�`t'y:t �ty G•• . r 4� � i�".ri. �?� a.i a r.�' � ... • :i 'r' �t�lltay z t �9x ••wx�•i•/.iA�.•�.i .• G Jr{�}:lI 'F�•,I15 r.l. "�,'l�v. ••l`f {.'1i.E"�"�..v'r••:' •'�+..• • ~~Ci/,!•*•• g `F.r,'xv:i.r.- .•ryGv Iyi.�. ' %i�rL�•I ,,�•••"G,. . �.' •^t o.r��A •,. �� rA jR•V� ' �'hif��� f pFA•'Iy'1+i4`� .).: !L.;?'Ttt,Va�!"','..MWiY•�iV:o'h � • :'uJ. 1 1t111f�'�'••�.Y• �tJwr i rrrG� [iy `� 16 G' 1 t ;, • the �3^.1�� ,7� wtArSf .1s�� _,� ;1NN,1a ;•F 1!1�'<' t •" t/ • P`M3.-I��'I m6•M �:• -�►,//f, •fLhd 4 11'r �-Mrrt' � •Gw�i•�"�. /�G 1:.t•„Y 1, ♦l\; '•. ,'.. t. .r a-! <!� , '!•;,v :: w �i,.{ N• • 't11���. ,4r11�1��t ti'�i'L +..•.r..r...... � tom• ♦ •wr ......" I Y'S n �.. ./ a�.. .�,' t.' 1 w.y S �+� : '.., ",. .r' �'"�i7w � • t-• l �.1'A :, ri t,. ,�7 ,i,: .t.r.� :h- .r N, t �"�%�• r,•e•k.�+«.�.r'r. +� ttS, 7 Ft.°�Jir. a'^}�y. ':M• :it,.t�j'er � v ,.p.:,t t 4 .. 1 y .��� �,• 1•t� �R., a. <• '•ai� .4 •' ... .� a •. +• , w• •.��` a v,' s ••X►{• g.',, r��. ''. • • r f �a h •. .. y .•y � r r 1. T, { 1 `i r^,, - '' r t: 1 .. , ,.. :I. , of •i v Y•.'�;� F. r•.: • -i�, i f st.'i:' : • tr�.1 • a a '< a.1'a.+. ',t' ��• <�!'_,, ... �, t�r t , k t'1 rr �Clf!` <,„• •'r ,�+t i � yr-p'~~�... - - ti ! .C� �r t1P ,r t�3,��?� •� 9 a a,t'^•�"Pta„✓ie•r r�'•1 A M1 1�. .x s r} !,�• t l yM 1FR3` �u r 1 rrt a i;.1, .• p•cd��r r s 4 -S �• 1 'r r1�1ar {S{�"�r'•.n`1rrKJ;"t.�',v}s ,iG.r. �ir ra t1i t r „a/+rfGrr a,i."uY r , wt'7+iA tl�i•/{i3^N. �r.49W+y1�1yt q. ti,t. J• t "F 1,. ilk, its'i;i�,t•.64L7''rl` r .fir'i(/4• art t•S•'R I a1•:t., y' �Zlyrrfs,0• ry�ai ;r Yx rt��'•(r'ti;. t a 'ia I.t •^pT� �•-'14Y c•.+f�.�?Pr•t(.J}'t' 1 ,a�•/ a^ .tly :i" . 7.D»'� •�{`•y,. r 4 4 t i}s3th. _ . a•• �; 'y, :a re.a t s t•..ti •arCII rhs}}�'1•;�',��� ( �i. •I 9 . ��,�a K rp�<yl�.a , s �i:L rC•i• +' ; . .�, r a - s Ts r ems,• I'1 •ii��,MY•�',.Mt�r'�•11'�41ff.. b 1 ..� ,78.l�i? ,tt •!^x�• �*r+.°t'r.a. ivy!•••• i ,r�n ... .- �M •r�i i.w ^ t• r A t'+" .Y.�L's'� �4?ra"'t ... i i �ar,„.1�•t�,i (-q j. '�. �., r ' .�: .:` w � r.� , �; r. t r t •�N�7,•,C��,rb �.ft;�i a IG•ts{ - � „ f t 1.•,.' s "tj< r w� rfl �..tja t o.e;Yr'.Y',r ... }�`. it.J� r' •' -.Ctra r l•';y ir9 'rt;.�,�1 ,t. ,. �t•�(qn}'•++�� wr!'' - .' aw At'•sr.rR•S^a .t : ti'lrl !,bYi h�l� n t+l'• irty r •'+' v �r. r� !rt.++;r w �'}S'"a-°x•'s4/'':'�v+a_ r ,,r ••... yy"Jt Mrt,�(+� "�1C"�i�J rs!{•n 3GvtY��'..a+t rt •�trr� t,-. i `.�l`'f•,•,.t.j 9'tiry.�jf,T r 'r'y ,�rNr avr.,•rp�a";1cS ht•I �'vi� �`�•'kv M - $�w ��r •,,r �) T: f "'. {r+Y w..4rx.��i r n+r^.•rr rl,Yn"I��.jr7►;Nr t f ,cf ..G,r M''•�'.rr`s , ...a _•, <.e^ ~ 4 )! , io s I:1/11r�•� , ♦ '!,Y 71 / !. r �:il 1• r ' 1 - •�.51•I.r.. �t'M! ,•i - iy . .t 1 L,.,•! r a ti,1 it .;J•';'N,:Ya'•.•.••' Y,t•,•'i' �`•riY{.��FMR- ALr. �.•��� r r'.�.►. 'Yr`.. ♦-.1'7�•.'I� tr�•t I.M r... •" �rY�lr'�,r r i S ,»1 t r w,� 7..,�yT�,, ry.+ ` tr t •• :L�.,,/;� •` 4•• ..'r .1��•., . r i` ...4`1ni'.r,�.Yr• •�,•71, �...•'tL tli�' rf`rYI%.i�` • la•4.. ,r .r .r":— :.♦ .�,..•..�� �}!r ar .. ,i, ���!'1Vt. •i r rs}( R .1^. i.: �.1,o£ya.'•ipti'SS�a./ rf 1 �.. •ft •r �..•� ,�• •Iw f .��.. .I r t� {'"' � .. , t�.rtit}. •.yam, t n '�� ♦t� �.ir :r. •t. A.r t. 2, f i�t'T,1' � I.Q r ..'l' .1 !g•«,r?y!',':rs•4s' S 'f� i •'r' •'•" :fit•�. �• �.. S'. � i '(r' ( ,� �•' ' , S 't�M.a,i ••�3r.�� :. r. �yr�. .R !jtl '(r' A,' fir• f!s•'�yi; 1 1• `+.) �'~' ` •� .i�r,+�{•i r.it w� l��h'�!R+it[i ��f• ��"' ��' • '.>,` y'��. ..•y. C"�ict'• �'••`rrw• .d••'• �f *f'r l •': ,�i �( :t f:'t i�t. t •!' •. •s �. 'I t1 •4 3i`t,•, °emu.;s F.. •v1�t •.9 ��� ��� i��ryr•� � y.d •�h •t�•� F �'+ 4, . �i ♦�w,'4,,�it ��,�t�' y�����n •���� .s.�.. ..i �•. •.•. ..ram,, <./1?,.t 'fj.��'G•x�?''I,(�{{yy':��•l�'1,�� . +,, .�4fj:..�� ! r.s:r' 1 c' s 5 , 3� �2����• �s t'�'•,ii. ,1 f ! .•1`4,' wt': /.RT4rar4 t-!: Olr•w ,t�} •�... •.•!fr+� A�,.Y ,�. -�•''PPf�� M'4,s' S •► rtV �,!Y,*r•4 '� ''•t. .f.13'!0"'r'r:"^.t6. �Y tY ,,'•s}.• 1 .str 'w F •r . �`. rnn.• �d.) ;�l:l►. i. t'4'(:• ;.r t„'' 4� '.1 ,R+�'�:''�, •:4 ,� !t11•tt�u'� •,�.•l F:•! .a$v ,,�r.•�-. ,1- .t: •7i,�i�.r:'{: � m t;:.,.,:f'afA�% t...%itt�,r ��,•�-�� i ..J�. :M, ar ./::� a'F '�C .; ,� '�rr 't•.:.•f••;!•.�, .!� , • r.�•n r-:ls���I;{f` 1" �.i '}°�:awy •��, .r r.,. • ;?� .• tel: .r .r. .'",-.ti•[. '^! J F:r' 1' •y.t ,�,t d �I.f. rv.,��.. %. •.�.r j�. �•t•s.r..w..r. } t;,^,..,i �t* r{• ( .:• 1" .•- t r: i': ! ^1 , f�� ��� 11/i:u5 !/mot' mot, ; !5. r yG'7( �,a�. u�... .r tR'/, w. t,. + n R 11:.. ... ,•}a/ • � + •:�e� ` t, , R .li,,d:h't wJ r �� tia'• �`•�Fl �. t.%' ''r • r.. / rMsn•G.,; rrv- �.aya- , .• �•tr •• .i7�a.•`'w .f'i'.,•; r t iF,. :al•.;r.r�• .t r4 �.�'ir ,} � :'•�" ..1'g•ti�r��..T1,"\�';•tin;•',,r�A1�iJC�1)!. :itJ.•.'r •'� .�:.• :: :. ''tt�.''t'F / �. ��. s •.. ,,... .�. 'd a'�. G: ��f ,� .`fit• •.,:� • 1 •i.,, •••, ri'���;P•`•';•t' P'��.� .� r.,•\ta. ^.:v. ., f *• r• •�K ' �,r � R = /�%✓•., , '•�'.1,, 3 r , .�'ti, t , .T, ••ZP.1 �.•'ti ��.::�'!• �'^"•t�R'►•i • •• / .� .ti:«.... � r. I .i t 1'� I• .t, a '1 'i. Z ,t• ••►se i. y'•. .f' 1 r; /. a t,4... fir, '11.9: 1 t♦ � •��'; },r. ! .. , urn,w•' y"1•"1N f ! .. cif`yi•,'7 �a,�, .a - >� •— .� v. ai y t! .rt. .r• :'.�s.� ,••1• J` i •••� �, r'`y'• 'i� ��.N .P}t• •�•rtt•1.!•"�wY i r i,••:• t` r.Yt ,,� .:a'. p •a.jf.las�,/a i�,w .4�.. i j :t . � lti ':� Jrtr:r +�f. 4>: �•li `�f� '1 r'r?r ti\, •�1� 1i1,4� ! ` '•. y,it •��fj � ��i� Y r •��. . '` ••,� d,f;.j j^•• !f• `•� .;y�, !•. ,• •, "•, L;. r h, r41�;J ��jt.d'h .t! ;I' •' •• * 1 .w F ��7 t� r I, '1 / l' e !tl•,L�►�i t•r1„1'. ,.. .�1. 7�;�Y� .t 11 \ j , r 3 s .. : •J t'.RI •� 1 � ' !.. ', a it , .i•.� t •r !�{'''t,•% , \. f4 r �,,,,., w 11 •.. .. . L. f• 'n F'` •y1 �, .f f,a• t ��► �1 ...(r q: +4 $. .•r•`.•1•��• '1( pt,`. • ! wt �� ( i,,•" , . Top Log Diameter 15" to 18 ' FLOW wm � Drill 1-1/8" Dia. Hole 6 300 FLOW Drive 1" Dfa. Rebar Throu h W Centerline 2X4 Wood Cleat (Im' O.C.) imbed in Stream Bottom Full Log Length UPS Bed a Minimum of 3 Ft. 4' Sea I Gap With 2X4 S Line Pool With Riprapp Fill Over "GEOTEXTILE" # Uhere Sper-Med on 5fte Plan W F (base Flow) Flowing full 0 With 6" Quarry Spalls t. ' or Select Pit Run - Plunge Pool LOW FLOW NOTCH DETAILS Seal Log Czeotextile <Nicolon 5-im Location Defined B Center ine of or Equa i> Attach to Z- 5 Ft. m In- L Entire Length of Top Log op Loe Chain to Hold SECTION Loqq to Concrete Anchor. Upper Log Elevation Toe of Channel O Use Class iii Riprap to 3/4" Bolts or Wood Shims Plunge Pool Hold Toe 2 Ft. Inside All thread Rods For Leveling Toe of Channel on Downstream Face. 12"to 24" Rfprap Sank Concrete Ballast Block Protection at d Around (Use Equation Below to Excavated Area. Fill fr+ Low Flow Notch l;` Determine Size of Block) Voids Between Largeks k s;ti t t SECTION .�-,�r Roc with Smaller Roc Place a Minimum of 18" Depth. J_ Top Log O ii ID.29D2 X (2L-lm) = Concrete Anchor Volume , FLAN AM 2 Needed at each end, (Cubfc Feet). Ba nkl fne �jA�//� ��� Where: ����///` LD= - l�fn th of Lo ameter oF oig In Feet- Minimize 1112 (Ma x.> �� ' 9 9 n Minimize Excavation Channel Toe Width ) Rtprap Extend Geotext le Above a Low Flow Notch STATE OF WASHINGTON Min, of 2Ft. Above r s (See Detail) 6" Minus Quarry Spa11s Top of Upper Lo f J L or Select Pitrun. DPT OF FISH t U11LD�iF Ba ckFf l l Between Log = - f-A51 TAT PROGRAM 4 Riprapp With 6" Minus Quarry Spails or Select Limit of Excavation Pitrun Material. LOCH CONTROL Place Concrete BaIlas Concrete Precast Blocks as Near to End Ballast Block Sea I Lo to be OF Seal Lo as PossibleAPPROVED DRAWN DATE g - NATION Channel -Toe Width APPROVED DATE SCALE: An NOiCd I LOGCONTRISHEET DF POOL o1c�eP Loy 501L- POG+C MIX 4150 8-10' FLOW =-- FLOW MMM)MO- 77 T PLAN VIEW_ Nor ro scnd-f NOTCS; ,�- 1 GON51rpo-or5 ro PC f 4lr-m Ar rnC CND Or VOU r10Lr5 NO PIN L065,1 OP 2 DCPCDING ON A P/rrLC Lri1DING/MrO A POOL. rOGCrrfCP W"PCDi1P DW1rrCR, 18-24"COUAI.VIA PCOUIPCD Z GON57TO-OP5 5r10UL0 PCDLC.0 G7M/NCL WIDrr1 7-0 MPPOZ 4-V M10 5ri0UL0 rri1VC h TOP PPO Fur LOW rNo"rrrltr ovrP roPPING rrr-.7rt �i MOW5 lWr NOr IHPi1GTCD,(APPPDX 2'). F,z fr�o�wit5tflNGrON U lNrO DCD / or FIS� WII�-MONL wIrlirf RIOc-7p/Y 5GT I D N B STucry Nor ro 5cn�e -ME l l Gt'MNM OW GON5TPr,-.,TOP DESIGN BY DRAW BY (217 APPROVED DATE 0 A SCALE: ` T r O / Place One Rock at Center j of Wefr 4" Lower Than the Rema fnfng Creat of the Wefr. Use 24"-30" OUJ �j Boulders for Weir. Seal U/P Side of Weir 2' With Pft Run. A. WDFIU Class It Rfprap on Banks. varies STATE OF WASHINGTON DEPT OF FISH i WILDLIFE OC HA51TAT PROGRAM FLAN VIEU,U ROCK UJEIR DE7,4IL DESIGN BY B_ HsfnCr ORAwN BY N APPROVED DATE mb/°fd APPROVED OATS scAu: Ae Noted I ROCKUlEIR I SIEET of t i D D Government Gouvernement of Canada du Canada Province of British Columbia Fisheries Peches Ministry of and Oceans et Oceans Environment wd.b.lister&associates ltd. KERR WOOD LEIDAL ASSOCIATES LTD. BIOLOGNUL CONSULTANTS CONSUL 7ING ENGINEERS Vancouver, British Columbia • March 1980 1 2. STREAM CHANNEL well as an understanding of stream geometry and flow. Natural streams are seldom straight over a distance grea- IMPROVEMENTS ter than 10 channel widths. Three general terms are used Physical conditions within stream channels can be mod- to define the basic types of stream forms: ified to improve or increase particular habitat for sal- Straight —applies mainly to relatively straight or monids. However, if such modifications of the channel non-meandering channels. are to have any degree of permanence and success, they Braided —channels which successively meet and must incorporate the principles of stream hydraulics. The redivide. end result will also depend on correct identificaton of the iVieandering —single channels with a high degree of factors limiting freshwater production of the species in sinuosity or an S-shaped channel pat- question. For example, there would be no benefit frorn tern. increasing spawning area for a coho salmon or steelhead The sinuosity of a meandering channel is defined as the trout population if the stream's juvenile rearing capacity ratio of the distance measured along the centreline of the ,,were the factor actually restricting production. channel to the distance measured in a straight line across the bends (Fig. 12.1). Streams with sinuosities of 1.5 or In British Columbia, experience in stream channel im- more are classed as meandering, those below 1.5 are provernent for salmonids has been somewhat limited.The classed as straiglt. most common activities have been log jarn and debris removal, restoration of obstructed side channels, and measures to stabilize unstable reaches of streams affected by floods. However, several channel improvement con- Meander Length 10. cepts developed for eastern North American conditions h (7 to/O Chanel Widths) are currently being evaluated and adapted to suit the more rugged environment of coastal British Columbia. T -- Physical Processes in Streams The two principal forces acting on water in a stream a rm channel are gravity and friction. Gravity causes -,yater to v move downstream, while friction between.rater and the Q stream bed and banks resists this downstream movement. , The velocity of the water depends not only on slope and go°� roughness of the strearnbed, but also on the depth of flow. `Point of Crossover A large, deep river with the same gradient as a small, _L /Poo/ shallow stream will normally have a much greater yeloc- Point it'' Corso K Bar Resistance to flow, in either natural or man-made water e°� courses, is influenced by the following factors: s to7Channel Widths ter/ — size of material which makes up the bottom and banks PLAN OF YEA CHANNEL of the stream; i i Point — amount and type of vegetation along the stream banks, ► j including vegetation within the wetted area; Riffle t — degree of curvature and the frequency of.pools and I rapids, all of which affect the uniformity of the stream ` Tho/wep bottom; and — obstructions to flow, such as rock outcrops and log rm-Mean Radius of Curvature 7 jams. 2 to Channel Widths As water velocity increases, these factors provide prog- Poo/ ressively more resistance to the flow. This causes eddy- rho/wep�Poo/ Riffle Poo/ ing, local reverses in flow, hydraulic jumps, chutes and waterfalls, which may dislodge and move the resisting object downstream. Resistance to flow tends to increase as the square of the velocity, a factor which applies to all turbulent flow conditions. For example, as the flow dou- . 51o7 Channel -Pool bles the drag forces on an object will increase by a factor of Widths four. In this regard, it is the peak or dominant dischar,e PLAN OF STRAIGHT CHANNEL that governs the physical processes in streams. To appreciate the capabilities and limitations of a particu- lar stream enhancement technique, one should have a Figure 12.1 Elements Of carious channel forms and fundamental knowledge of the factors described abo"e, as their physical relationships. Table 4. Transport velocities for various classes of streambed materials. Transport Material Diameter Velocity Silt 0.005 - 0.05 mm 15 - 20 cm/sec (0.00002 - 0.002 in.) (0.49 - 0.66 ft/sec) Fine to Coarse Sand 0.25 - 2.5 mm 30 - 65 cm/sec (0.01 - 0.10 in.) (0.98 - 2.13 ft/sec) Fine to Coarse Gravel 5.0- 15 mm 80 - 120 cm/sec (0.2 to 0.6 in.) (2.62 -3.94 ft/sec) Fine to Coarse Stone 25 - 75 mm 140 - 240 cm/sec (1.0-3.0 in.) (4.59- 7.87 ft/sec) Cobbles 100 - 200 mm 270 -390 cm/sec (4.0 - 7.8 in.) (8.86 - 12.80 ft/sec) the natural bank material or due to reinforcement by man, same average size of particle, the sample with less un- the hydraulic forces of the stream will scour a deeper iform particle size will be more stable, because the smal- ' channel. In general, the shape of the the cross-section of a ler particles will fill the voids and thus lock the lar,,er stream channel is determined by the discharge and the grains in place. Summarized in Table 4 are the minimum characteristics of the materials that make up the bed and transport velocities for various sizes of particles. banks of the channel, as well as the type of vegetation .within and adjacent to the channel. Table 4 can also be used to estimate the velocities that As discharge increases in a stream channel, not only does usually occur in a river channel, simply by inspecting the the water level rise at a specific point, but the streambed river bed materials. If the channel consists of cobbles with may be lowered due to scour. For gravel streambeds, the very little gravel or sand, the stream regularly has vel- scour depth may be only minor. However, in streams ocities in excess of 200 to 800 cm/sec(8-10 ft/sec). Alterna- with sandy bottoms the streambed scour will be much tively, if the maximum velocity of a specific section of greater relative to the rise in water surface level. Stream- channel is known, a rough estimate of the size of bed beds with sandy bottoms will often scour to a depth of material that will be relatively stable in that section can be about one third the overall rise in water level. This factor determined. This is particularly important where gravel or cobbles are being added to a stream channel to improve is very important when carrying out stream enhancement work, particularly in stream channels formed in silt,sand spawning conditions or to modify stream characteristics. or other fine materials. Rock weirs and bank revetments, The average velocity for any given length of channel can gabion wing dams and other structures described in later be readily estimated by placing a small,nearly submerged sections of this manual, will be unstable if located on float in midstream and timing its passage over a measured sandv stream bottoms.There will be a tendency for struc- distance. This will give a slightly high estimate of average tures to be undermined, resulting in the lowering, velocity. One can then estimate stream discharge or flow breakup and downstream movement of the various com- by multiplying the average velocity by the wetted \%idth Jponents of the installation. of the stream times the average depth. Also, pools which are incorrectly located will fill with The foregoing information on bedload transport velocities bedload material. Structures such as diversion weirs. sc- and approximate methods for determining river flow and reening facilities, sumps and other portions of facilities velocity can be used to make a cursory assessment of any within the stream may become buried or partially filled as section of channel prior to carrying out stream enhance- a result of bedload deposition. In British Columbia, bed- meni .work. load deposition commonly causes either complete loss or Also, stream improvement structures should be planned reduced performance of an instream structure. and designed so they do not create the undesirable hyd- Streams subject to large freshets or fluctuations in \rater raulic conditions discussed in the section on obstructions levels will have higher rates of erosion and greater sedi- to adult migration (Section 11). A man-made weir and ment transport.The basic premise that a particle requires pool installation often works well for one season, but as considerably more force to initiate its movement than to sand and gravel from upstream fill in the pool area, a keep it in motion is evident in any stream .with widely hydraulic jump may form and create an undesirable situa- fluctuating flows.The extreme peak flows initiate particle tion for fish. movement, while the lower flows have sufficient carrying Improvement of Rearing Habitat power(transport velocity) to keep the particle moving. juvenile salmonids that rear in the stream require physi- Uniformity of particle size is also a key factor in bedload cal habitat which satisfies three basic requirements: (1) a movement. For two samples of bed material with the feeding location with suitable water velocity, near a 1 S general guidelines must be considered before modifying existing features of the stream. 1=rno/wey --rnotweg (1) Pool and riffle areas repeat at approximately 5 to 7 channel widths, regardless of whether the stream PENINSUL AR ' has a meandering or straight configuration. This natural stream form must be maintained, and the Incorrect WING i addition of any devices to improve the rearing habitat must compliment the natural stream config- Erosion uration. (2) Devices in streams must be located to avoid backflooding the section immediately upstream. j Riffles can be flooded out and pools can be reduced PENINSULAR {Erosion to a velocity which is no longer acceptable to rearing food„eC1 ; WING salmonids. In general, stream devices should guide ! ;.WITH cHUrE i the current rather than dam the flow. (3). All stream devices must be constructed in low profile to permit free passage of drifting logs and debris. (4) All structures should be built solidly, and of suffi- TRIANGULAR l '. cient size to withstand the normal flood flows.Thev Preferred WING � must also be effective during low flow conditions. (5) Construction materials should be natural,wherever possible, should be durable enough to withstand freeze-thaw cycles and hvdraulic forces, and must NORMAL be reasonably resistant to decay. STREAMFLOW FLODD (6) Devices to improve a specific section of stream must be installed in a manner which will not damage adjacent areas of high value to fish. When heavy Figure 12.4 Performance of carious kinds of icing de- equipment is used, it is especially important to Hectors under normal stream-floe; and flood conditions. avoid traversing good,stable areas of natural stream Water course is straightened to simplify the diagram to reach the section being improved. To destroy 30 (Adapted from White and Brynildson, 1967). metres of stream in order to enhance 10 metres is obviously not prudent. (7) All stream work, particularly where heavy equip- A few general rules must be considered when installing a ment is involved, must be timed to avoid conflict wing deflector to create pools and runs: with the spawning and incubation periods of the (1) Avoid installations in unstable floodplain or braided various salmonid species. channel reaches of stream. In these areas structures (8) Stream banks must be well protected(reveted) if a may rapidly become ineffective or may.add to exist- stream device accelerates the flow or turns the flow ing instability. toward a bank. This is particularly important where there is a possibility of damaging existing fish (2) Locate the deflector well down the riffle to avoid impounding water upstream. habitat or private property. (3) Deflectors should form an angle with the stream In the following sections, various types of stream devices bank of 45 degrees or less. Experience indicates that for enhancing salmonid rearing habitat are described. this improves their performance. The appropriate However, the general guidelines noted above must be angle and length of wing will be specific to each site, kept in mind when locating and constructing the various and should generally conform to the natural mean- installations. der sequence of the stream. Creating Pools Runs (4) Boulders and/or rock-filled gabions are best suited 9 or for construction of wing deflectors. When individual Wing-deflectors are a common device for modifying or rocks are used, the size of individual boulders will improving stream channels. They are installed along the depend on the characteristics of the stream. Gener- upstream edge of a point bar as an erosion-resistant lead- ally, rocks for wing deflector construction should not ing edge. A well-constructed system of wing deflectors, be less than 0.6 m in diameter. alternating from one side-to the other, will maintain the (5) Where the wing deflector connects to the river bank, normal meander pattern(Fig. 12.4). Due to the resultant the point of connection must be protected by rip-rap concentrations of flow, pools at bends will become or gabions to above the flood level, so as to prevent deeper, the banks v.-ill undercut more, and the resulting the river from washing around the end of the deflec- sands and silts will be deposited at the downstream end of for(Fig. 12.6). Similarly, the bank opposite the de- the wing deflectors as point bars (Figs. 12.1 and 12.5). flector must also be protected to eliminate erosion � 5 +� � - �/• �C'JR �i( E�_-� C - } -`dam-.. ->i� _�_ =��/�. "•LC.� _ •' \ `WSJ - ` /f� i -.•_ =tiff" -,�rti�i'1-' * = Figure 12.6 Cabion tcing defector (upper) The oabion Fizure 12.7 Boulder i�roupm,s with foatin-c, lor., curer, revetment orr the far hank should hat e been car•ricd ! "_-:?,d >n the outside oja stream bend. This is one ojthe further dorc'rrstr'cam to prevent nrrc'ontrvlled scour, mint produc•tice irnprore,rtc•rtt devices for iute•nile coho which could render the device ineffective ( n,! , cellicad. The rtpstream e'nels of tilt, log) should he Boulder win, deflector witli ffatin-g log cot er(lotreri. .At W *rlr••Irt cabled to tilt' dotcrtstrearrt face of the• lar,est high flotcs water trill be diverted around the bank-end of b,mider. tilt-d(flector. thus reducing the ejfrciency ojan otherwise vie ice rues the principle that pater fillip, freer user a ,,00d stream device. Cabled lo,, cover attached to the boulder- revetment iinpr-ove.s habitat for lartuer-fish such led,e tends to sure back and scour beneath the ledge. us steclliead parr. T hwi,h the Hewitt Ramp permits this hydraulic action. it is constnteted to present escessi%e undermining_ •ind col- lapse. T-he plunge pool formed is self-scouring and pro- not be essential for steelhead juveniles ill 's ideal conditions fOr fish to leap the obstacle. Helicopters h:ne also been used suc'ces;full',' to place 'I"w I{e.vitt Ramp is usltalk constructed on a relan\el% boulders in reaches of the stream that are inaccessible to st,tl,l.•. steep ;radient stre:un %%ith a firm Cli,utnel hc; o;n land-based construction equipment Damage to stream Fig 1 S". It is usuc111. made of looms and timber. The lo- banks and fish cover can be avoided entirely and in man`. forming the ramp crest must be securel\ anchored into cases the stream area available for enhancement Ilia% be the, hanks on both side; of the stream and ballasted %�ith substantially increased. Direct costs of helicopter installa- rack Since logs and timher ha,e a limited life. par'icu- tion call be• comparable to those incurred with comer- Ltrk kthen portions of the structure are not continuously tional equipment. hmrrged, an altercate 1,11111) constructed of seiCcted lnother pool fanning deyic'e, the 11%•rcitt Ramp, should nx: shape; can he it;ecl Fi-, 1'.T. With 'iris t.,>e of unk Iw employed in small, high ,r.idww she.uns This r,tr,p. it is important to en;un that the rock: t,rr'nri:1_ the dt ice i; e;;cntially an inclined r:urtp 1yrth a plunge pool lt,..nstream \.weir are phial; III shape. to niara'•1in sz_lhil- at the do,ynstreani edge. The He;%itt R,tmp must be tt. , n %.hell one 'hirvl nl the r,c is undcrill red O,ten located so.is to nlinirnize•pondingand coosequent deposi- ah:utdoned rock quarries hay ;elected pieec; of rock two of sand, silt and bedload upstream of the ramp. This rdc.ull suited for this application 53 blanketing and destroying riffle areas which are important for spawning and aquatic insect production. In addition, timber and logs exposed to both air and water soon decay Anchor Logs into Bank to a process known as dry rot. The term dry rot is a (use Large Rocks to misnomer,because the decay is caused by a fungus grow- Bollost Ends) ing in moist wood. When exposed to air, the fungus soon reduces a wood structure to a soft pulp. Green woods used - slope in any of the applications described in this guide would be more susceptible to dry rot than seasoned wood. In coas- Loy Completely tal British Columbia, cedar is the most durable.wood and ,; , r Submerged and '�• Anchored to Bottom is recommended for use in streams. (Sloped Down Another type of device used to create pools is a digger log. . . ' Towards outside It consists of floatingto anchored to the stream banks at Bonk) g right angles to the flow (Fig. 12.11). The action of the J Shaded Area d' Indicates Deepened current against the log forms a depression or pool below / ;.'.. it. Though these devices work satisfactorily in controlled gal streams, thev are not recommended for natural streams, as the log will trap floating logs, roots and debris, eventu- ally damming the channel. V-deflectors and mid-channel or A-deflectors have also been used to scour pools (Fig. 12.11). In the case of A-deflectors, the narrow passages located on each bank Rock Reverment will often clog and widen the stream, or the stream flow (Typical) %will be diverted around and over the bank protection. Similarly, V-deflectors(also known as V-notch weirs)can also plug and dam the stream,causing bedload deposition and flooding around the rip-rap abutments. Though they can be effective in creating rearing area for salmonids, these deflectors are relatively expensive to construct and tend to break down rapidly if the boulders are undersized. The beds of some streams in British Columbia are formed entirely in bedrock. Some success has been achieved by blasting pools in the bedrock to form pockets for rearing salmonids.The location of the pool must be selected so as ver an L O oys ror Overhang Cove to use stream velocities to avoid deposition of bedload. In (Optional) slope ' addition, the pool must be constructed and located to ,t avoid undesirable hydraulic conditions such as the crea- tion of a swirling vortex or high velocity flow in.which fish �/ Submerged Rock or are unable to rear. ,>•f;;'. Gobion weir, (sloped aY Down Towards Outside In the sedimentary bedrock deposits of interior British Bank) Columbia the alternating layers of soft and hard rocks can Shaded Area Indicates be utilized to create fish habitat b initially excavating the }� Deepened Pool Y g .� R: soft rock laver and then concentrating the flow to promote further erosion. The harder rock lavers would then form '' = the erosion resistent edge or boundary of the improved stream section. A good rule to follow when creating pools in a rock section of stream is to improve and enlarge existing natural areas of pool development, rather than attempt to create an entirely new pool area which may conflict with the natural stream processes. Rock Revetments Rock or rip-rap revetments are a simple method of pro- Figure 12.10 Submerged inclined tceirs, ichen located tecting stream banks from erosion.The outside curve of a upstream of a curve, create larger and deeper pools. meander can be protected with broken rock, to minimize Logs, rocks, gabions and concrete hightcay curbs are bank erosion and improve fish cover. This often results in common materials used for constructor (Adapted from deepening of natural pools by increased bottom scour. White and Brynildson, 1967). Log Corer \ High WL--h Abrma/ WL------ --.,RooJ Wad aC Poo/ Brace ROOT WAD COVER -�_ Sand Bar C�Yti�� Cabled /o Tree Trunks ` / �- --'� � � � \ .• 0 1 '' r�\ �_Rock / / �_ __ � \\ \ \ � > ° \ � \ Anchor (IYp1 Ic o \ \ Riffle + . (rapids) GENTLY Stump \ SLOPING _ —- \BANK Sand Buried_ i. Logs \\� Poo/ Jam---- .i \ Y Slump Root—� Wad o. _ - '.-0 • STEEP — •� BANK C ''•C o c� ' TREE ,COVER. -,� o � -`� :-.`•.cp � . Figure 12.12 Examples of where trees,logs and root toads can be located to provide cover for rearing salmonids. These devices are secured to the bank with cable. Stiunps, trees, large rocks and buried logs can be used for anchors. Butt ends of trees /nest be kept above flood level to avoid snagging debris. Cable should be kept as short as possible, but approximately 0.6 in.should be provided for free play and changes in water level. Regular maintenance and replacement are required for all items shotcn above due to natural decay(Adapted from White and Brynildson, 1967). 1 �� (5) Trees,large branches and floating logs anchored along the stream bank must drag parallel to the flow. Boll Cover and (6) Floating log cover must be placed adjacent to a steep toShowvegetation Removed A,"embankment to avoid the logs hanging-up on the snow Logs bank when high waters recede. (7) Cut trees, branches and floating logs have limited life because of decay and physical damage. These devices / must be replaced and maintained on a regular basis. / Cedar is the preferred species. Fast-rotting species R , Cable such as alder should be avoided. (8) Ensure that streamside trees are only used with the permission of the B.C. Forest Service or the private I landowner involved. An indirect form of cover, suited primarily for adult sal- monids in a relatively stable stream, is the simple foot bridge across a stream(Fig. 12.16). In addition to provid- ing cover for the fish, the foot bridge improves public 1 access. Many types of floating cover have been used in streams and artificial spawning channels. Floating cover often consists of cedar logs lashed together or formed into a T simple raft made from timber or split cedar slabs. Filter Fabric Plywood rafts, supported by Styrofoam floats, have also been used. As these latter devices look artificial, they are best suited to man-made s �.vnin or rearing channels. P g a - _— wooer Level In concluding this section on rearing habitat improve- ment, it must be stressed that the choice of a particular approach to enhancement must take into account the cedar Logs physical conditions and the availability of materials at each site. Examination of some streams may indicate that Larger Rocks'- ..' Placed to support there 1S either n0 opportunity Or need t0 create rearing cobble Backfill habitat. It is therefore often necessary to obtain advice from experienced fisheries agency personnel before going ahead with a project. The key point to remember.when undertaking any stream channel improvement is that a Figure 12.15 Bank overhang cover fora sharp bend in a conservatiue approach should prevail until adequate ex- stream. Device consists of 2 or 3 cedar logs lashed to- perience is gained. gether and well anchored at each end. For species such as steelhead, .with a long freshwater rearing phase, improvement efforts should usually be other hand, chum and pink salmon enter the ocean as fry focused on habitat for the older and larger pre-migrant with little or no freshwater rearing. For these species, fish, ie. 1 and 2 year old parr, .which are more likely to improvements to the spawning habitat can be beneficial. experience habitat limitations and will have a higher sur- There are also a number of lakes in British Columbia with vival to the smolt stage. The following table, based on underutilized rearing capability for species such as soc- information from the Keogh River on northern Vancouver keye salmon, because of limited spawning area in the Island, provides a rough guide to survival rates .which tributary streams. In these cases, expansion or improve- might be expected for steelhead at various life stages in ment of the spawning area .would lead to increased fry freshwater: input to the lake rearing area and, subsequently, greater Egg to fry Fry to 1+ parr Parr to smolt production of adults. 4 - 18% 5 -2.5170 50% Salmonids usually spawn in the shallow riffles.The female t Improvement of Spawning Habitat fish typically spawns at the crest of the riffle, depositing 1 her eggs in several pockets, under 15-20 cmtor more of Before embarking on a project to improve spa..-ning gravel (Fig. 12.17). The spawning nest, or redd, usually habitat one must first determine if it is .warranted. For covers an area of 2-3 square metres. Water flo.yin9 i manv salmonids, the availability of rearing habitat is usu- through the gravel serves two essential functions for the j ally the kev factor affecting their production. Any effort to developing embryo: delivery of dissolved oxygen and re- increase fry production, through improvement of spawn- moval of waste products. If the eggs or alevins are not ing habitat, may be completely negated by the lack of killed or scoured from the gravel by floods or dug out by suitable rearing area to support the additional fry. On the spawning fish, their survival will depend on(1) the.water 59 Table a. Average size composition of gravel in redds of three Pacific salmon species (Adapted from Andrew and Geen, 1960 and Burner, 1951). Approximate average weight of each species shown in brackets. Gravel Fall-run Coho Sockeye Size Chinook (diam.) (9 kg) (4 kg) (1.5 kg) �7c �7c cic Fines 10 8 12 3 - 12mm 19 23 23 12 - 50 mm 38 43 51 50 - 100 m m 21 23 12 100 - 150mm 12 3 2 screened. from moving downstream, the additional gravel%vill often Certain races of salmonids spawn in areas fed by ground- be deposited in pools and around rocks and log jams, to water, rather than surface water. This is quite common the detriment of salmonid rearing habitat. In a typical among chum salmon populations which frequently spawn small stream with a maximum width of 10 to 14 in, slopes in sloughs and blind channels with low surface water in excess of 0.3% produce velocities that during freshets velocity. In these cases, the fish choose discrete areas of will readily move spawning gravel,particularly after it has upwelling flow. been loosened by spawning salmonids. The following sections outline a variety of measures for The key,therefore,is to improve stream areas which have improving spawning area. The approach taken will de- relatively stable flows. Some typical examples are: Pend on the characteristics of the stream and intended life (1) Stream outlets of lakes with limited inflow are often of the project. In planning spawning area improvement stable owing to the storage effect of the lake. During a projects, one should also be aware of the potential for storm, the lake will have sufficient storage capacit}'to negative side effects on salinonid rearing habitat, particu- buffer the high inflows, resulting in relatively stable larly when heavy machinery is utilized.Avoid overzealous flows at the outlet. Clearing of forest debris and jams, and filling in small �. pools,all of which provide coverforrearingjuvenilefish. (�) Stream side channels .with an adequate and stable base flow, and not subject to flooding out each year Salmonids spawn in stream riffle areas primarily because and filling with silt,are also a good prospect for spawn- of the good exchange of water between the intragravel and ing ground improvements for some species. surface flow (Fig. 12.18). High water velocity in a riffle (3) Streams with a degree of man-made or natural flow ensures that there will be little accumulation of fine mate- control can be ideal for spawning area improvement. rial to interlock with the large particles. The gravel in the An example would be a stream which drains a series of riffle in therefore relatively unstable. Because of this, lakes. addition of screened spawning gravel to a natural, uncon- (4) Groundwater-fed streams receiving limited surface trolled stream is often unsuccessful. Unless prevented runoff often have sufficiently stable flows to permit v O1- 0 a u 0 Figure 12.17 A typical salinonid spawning nest or redd, shoicing egg deposition in a series of pockets tchich the female covers successively kith gravel. Egg size is exaggerated for purposes of illustration(Adapted from White and Brynildson, 1.967). 61 r spa��Inn,,, area I ltl pr off(°Int'nt- at not just any stream can be enhanred It is apparent th h� nrpI% addint,spa%k-iIim-T graveI and attempting to stai)iIizt- thy material in place. In fact, this technique %%ould Iha\e limited application in most British Columbia streams. •, i� \kitlu their widely fiuctuating flo\ks. However, for those streams and side channels which are suitable, a number of- techniques are available to stabilize the stream bed and -- minimize the gravel movement. As outlined in earlier sections of this wide, one of the best materials to use for stream enhancement-work is selected -r pieces of natural stone or quarry rock. A simple %�eir can be constructed across the channel, using carefully placed . stone. The abutments or ends of the «eir must be prom ---�r `z'�t tected bv rip-rap to at least 0.6 in abo,,e the maximum hi<,h eater mark to pre%ent eater from washing around the ends of the weir and rtulShlrl gravel, sand and silt -- `3- do\%nstream. The crest of the weir should be relati%ely level, %%ith only the natural irregularities of each rock _'`" � _ 9r =• pro\iding passages for fish to s.vim through. «here sub ,.; stantial grade must be eliminated, a double drop can be used (Fig 12.19). The techniques shown for the double drop,�eir��ould alsu appls to the sin,le\keir installatit.,n It has been noted at se.eral ruck vkeir installations that . most fish swim rather than jimip o%er the �%eir. Tl-iis oce.trs particularl\ during lo\k stream discharge. \�hen Fil-ttre 12.20 Rock rceir-c•ontrolliit the ,radc m ,r rn; c r must )I,the How is concentrated in the notches�betti%et°n channel. Photo,raph wits taken at uery to u jltrc, f-i,h rocks Fig 13.20!. Spa\%-nin<, fish Wins cause Qra\el to (f;ually s(rim upstream crrer the weir at the paint, mope downstream and partially fill the pool belov% the jlo(c concentrates bc•tucco rocks_ 0.3 m x / 0 m Gabions Filled With l00 - 200 mm Stone (tie individual gabions together with gclvanlzed wire Flow to —�� i 0 p,l 20 mm Rein!orcrng 1 .i� 9or 150 - 200 mm Cobb/es Anchor Figure 12.21 (:abrnn u'';r ire• rl to �tobili-c rctcrl „ mlltu;,t tiprr,,• ran In. (Of bcttc,',�u „ %• ., •i ;;rtbioas to plot irh pu;,a 1,,r u�t �rutin!t srtbnunirl, .1!urrni� nt� aural lr. /rrutry trrl tr itlt nl'-rap fu prrrrr(t nrtall pout rr Kith /urtm trrrr rnn,, r -t,i lt�ui�r . 63 the surface.The fine material is then washed downstream ing banks, bridges and log jams that will provide protec- bv the current to eventually collect in such areas as point tion from predators and interference by man. Some bars, backeddies and pools. This method is preferable to species, such as chum salmon, may only be in the river using heavy construction equipment because existing to 10 days before they ripen, spawn and die. If the fish are spawning and rearing habitat is less likely to be disturbed delayed, or constantly frightened and driven off the or impaired. spawning areas, the females may die unspawned. Other species, such as the chinook salmon and steelhead trout, Several government agencies have experimented -,vith may be in the stream for several months before spawning' specialized hydraulic equipment for removing the fines These fish are particularly susceptible to predation and from gravel. This equipment has been used primarily to injuries which can result in prespaw-ning mortality. clean gravel in artificial spawning channels. Because of In a freshwater environment injured salmon deteriorate the complex and specialized nature of the equipment, this rapidly. Wounds become fungused, resulting in death type of operation is beyond the scope of this guide. before spawning. The importance of protected resting Resting pools and cover are also important for the protec- pools and adequate cover for spawners cannot be over- � tion of salmonids which must hold and ripen in streams emphasized. Accordingly, the techniques described ear- prior to spawning. Holding fish will search out natural and lier for increasing pool area and cover apply just as-,yell to man-made pools, and overhead cover such as overhang- enhancing the fish's spawning habitat. oil ift I L V 66 11 r VORTEX ROCK WEIR DESIGN The objective of this structure is to:- Provide instream cover in the riffle reach. 2. Deepen the feeding areas in the rifle reach of the channel. 3. Provide a wider range of velocities for holding water at high flow without creating backwater and sediment deposition. 4. Act as a grade control structure without upstream lateral migration, bank erosion and aggradation which is characteristic of rock and log dams. 5. Maintain the low/width depth ratio which will reduce the liklihood of bar deposition and maintain the sediment transport capacity of the stream. These structures were designed by Wildland Hydrology and have been installed primaril:''for high bedload streams to maintain sediment transport capacity and low width/d"epth ratios. It has worked well on the East Fork San Juan River, Weminuche River, and Blanco Rivers in Colorado; on Wolf Creek, San Lorenzo, Bull Creek and Big Sur Rivers in California; and Quail'Creek in Maryland(Rosgen, 1991): The details of the design are shown in Figure 11. If flat or angular rocks, and/or very large rocks are used,.the footer rocks are generally not required. Rosg en D.L. 1991. Personal Communication. From implementation of the Vortex Rock • Weir Design in Colorado, California, and Maryland streams. Wildland Hydrology consultants, Pagosa Springs, Colorado. E23 i PLAN VIEW �s pi�tcF v 16Wpgr JAI EteV0,11 � v ref i,- (Awro 40 Lo 'o Ot :,3,fw xL 17Epofl> TOO 11 Y' DIRECTION OF FLOW �ZoIX DlK�i4n�. Ul N / ER ROCK rock datmeiir up -ro Goi M,txlMuwk VORTEX ROCK WEIR Fes- C R'J CR h- '•k� �;>Crt:�' "t r'�:8: �,*i,,;��'.t � '� �T"+'�.a,'NTr'.. ,"v{�i�jl�.{i�rl�J3�d'�'`'"�ty k+�7�'� a r,,�,'jl' �.,� J'"T;7'�1'i'r4�.R�f����•�f-"1�E'��t.�'.•+J��'t'M�y; fII�Y",,,�• - ... ..}C'.4i� .Y' .l..as .4"'b_p�+..�.y.. �i �� i, r' ..:aSr..r �•11.�{..f,..- •�� �� r,i-. 7;• .,F-. ,I..a. u � rX"`,� . r ; � .. � ��Y °PSG°- t...? r._ i �Sv � .r;. . .,]r!._ i�. .{a' ��''r.'^ k..•�•t� •`-Ta� .'ht. ..•I � >.C�;� _�•-e 1 �-�)�', i V b anti ������• t��� `� \� Ra CROSS-SE.CTION_VIEW- -__-� _' �� 4CK rl�M(,�1j1_ �/,,k 10- 24, i N � BAN ( O .._ OCK � .�n ; -VORTEX ROCK WEIR . J SANKFULL STAGE FLOW DIRkTION r f) 11 J III - 11� LOW FLOW STAGE m III � )f f :�• "� �'"�' �-. _ .• '�}..-�,,, �4�_.._. _ N I// �. �� ',^ ?h.• ►, EXCAVATION DEPTH. fit FOO 1 TER ROCK� ' .-=: ,•= VORTEX ROCK WEIR PROFILE VIEW D 1,4 C6n)C, PIPE • 5 bl✓G rI 1-re✓nS,...I/r � Y1 r ti wwu M »»» .M.80. Atfuww. pt 2 rv�ti�°w 103. 17 w�-O N t=/JyW W ¢¢ = 380 ft p v� z �frri� �(j eqr 1- J! 4- J- �Z t -p-L. d- V2 Z9 w Zj 9 Frictio., Loss — a cr CJc�s d��ti �f V,2 D 2j E N . 00.5 -Ft t E/v = ,00S _ . 00083 Rcyhol�l (Z = v D = (1Z �/s )( 6 f ) = 5, xto 6 N Uwl FYum M06d/ DiAjre,,., 7� r E /p, f ^N' 0. 0 / Fric+i'*a , Loss kf = f = _ , 019 2 9 0 20 V2 9 04►vV1- L6Sscs , E Yl4-rA-(t SCE•//j k,J kN 0.S0 Ex l�cr�►akjlj 24 , 67 = N2� 1 + / 2� + 3, V-1 2 2� V= 2y,d} X2rt 32, 2 /2 = 20.E 4�s Q6 = z0.� x 28. 2 = Se c�s 3.� --- -- ---- L . C r T RY .s ' D)A, V 1g Fric+to„ L�sJ E/� _ 00 j _ 60 «a oaooaa 41; X 5 = 8. 8 X/v 6 LLww � ww /,Ll x iv-s N ywwwUU =I=ww Q t�NVI¢¢ Di(�jr(, -, Jr �lb (R Fr; ozv 360 v� _ /, s2 V2 S .2jy y z 2 �cr&io-Ili wl ',7IIc1 21-1, 67 - V2 � � + �. SZ f �I Sr ��o� S y 02 nVzz 2� 29 V x 32. 2 C y, o 2 1 • Q = V� _ �y. 9 n 1 �. � 3 = .3 1� ohs • • w wuwww II N.I T t Pt j aaaaaa »»» 00009.0 ¢LiLiLiww FNwivivoLL10 Pi 2. W ml, .w.. S2 t=IfNNQQ gas 1 0 3.I1 <4ae I L SS.a r n L .3$o �i r1S t� 2 - 3 6� C,,, k- �iper Rr 13 Z _ z 2 r h Ow�) j �� h �� t �' ,� v, R_ �Z r z V w Zy w 2, Bern . �H . 6 � �+ V1.-1 + Lo fJll 2y Fri" 47[.�, l�°S f — /�G Y A✓7 — ti✓t iS ,0 21 C- ;z- . 005 61D = .ODS = 00 16 7 3 28 tlS 3 y'f� v /. o x/o-S �Plje, F y Y� G y r o, ,, -To r C, //Z w bovr— f x O, D 2 3 3 f+ / z9 2-5 MiNon Los,sE-s • Lh �IanCG nL= k Z K ^ !/. 50 y wwwwww 066000 �y aaaa »»» + 2. 91 t 0. s" +- �• v/ �WW WSS K 77 t-u wwww y2==wm UU sgNg¢ �� RS Z� a222 �=a V= C2N.67x zn 32.2 l%Z L . SG J y 34 = VA = 19. 4x 3.07 = 1 31 c fs For 2 - 36" P;ptf �r = 2 RCviJC I� "F� r �/Clott`Iy gSfuar� �v 7 .S IR = zox 3 V, 2xiv6 6, M dr 023 17 �liyru E/� : � 00� � � (Gtav�. ) � � � , No ck (,,Ve ih reiu 1f ( yr /oe-ty • IJ h k r7nc ( LO o Weir .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. " .. .. .. .. .. .. .. .. .. .. . .......... . . . . . . . .. . . . . . . . . : . . �. .. .. .. .. .. .. .. .. .. .. .. .. .. .................. .... .. ... . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . ............................... .. .. .. .. .. .. .. ................... .s �� .. .. .. .. .. :.......................................:................... ... .... ... ... ...................................... .. ...1 .. .........�... :.........:.........:.........€........................... .........�....... ..—r....... ... . . .. .. .. .. ........:.........:.........:.........:............. ........ ... ........ ... ...................:....................................... ... ... ... .. � �. ME .. .. .. .. .. .. .. .. .. :h .Q..:3 'S. .. .. .. .. S.... Qua�.. A ��u�- - �-. .. For kul �.� ..- .. 1. .��P.. .................... .. .. .. .. .. .. .. .. C '3. 33 — 333 :. ..:.........:..................................x. .........i..........x....... ... ............................. 1.. b .. ... : .. �s. = /3. .3 ,. ...................................... ....1.5...f..9.............x.2........~.........3... :... ....... .. .:. :. ..�. .. ...........:.................. .. .. .. .. .. .. .. .. Q. -.y. - 3 .33 .:X .:� ..X .. C.>.s�.r. ... �. Iz" xH =. :.Zy. .. 1: 3 � .s. ....... ........: ....... :_ 3 : _ ............................................ .... ................."...... 3.....x:...�...:.....X......�................1. , .. ..s.................... .........`... .. .. _ Q 3 " :3.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. /-30-,'/ l�'1fIPLt r,�0o0 CR��-k l'llG �/ /=LUG //- ZS- g8 • � Cow► l7h/�vJ I�cn IY/e1 o eve y ��l 6,-/A r Ctrr��� v vbr h'Ja%n j/JIl/o"�� /h _reJ, 6.t/i`! wwwww Z� ¢L68 � 9 �HM�:i !TT�Gr tvinf CYC r'r%J /!1G 12,yt fb cS{� 7q �/1. Nwwwoo ====°w S�;l/c�,7 G' /I2, 6 8 - //2. = D . 22 ' o r 2. 6 " AWWWUU 52mtn rn¢¢ //�� / L /J17 F ow 8-sTIM14TE A. "n S/,-// !w/ay ^i /21 X 2y(x2) ti O v.�r f(v w �.tl cr'r .S�f rho C r{i 1c d 60 , h� • 3 Q = G L H 1Z R' !,,P v1 e,.- 3. 33 L N��Z Z 4' 3/2 y= 3 " (o,25 Q = 2s cal VJV L op�r v 21 Ac+j as an Or,'f/'cc C A 2y H 2 —109.6� H = 112.68 + 0. 2q ' — ( l0`l.62r .33) _ .3, 02 ' C N 0, 6 Q = d, � (, 3 q 1 12x.72.2 x.3, 02. C . S �UNrt No �c � � Trc4 rj &,, A, /'-9�� x / '-9 ,, • 'l1 = 112. 65 f o, 2°! — ( 112. 69 - C ti 0, 6 A 3.OG sf / e (9HEET 7) 1 a �" "A66 4' PVC IRRIGATION� [E PIPE. AM OATS ] DETAIL 1, SHEET 7 x BLOCI(pUT FOR MAIN HANDRAIL. INSTALL WI7HM CHANNEL LOW FLOW NOR (MAX CLEAR OPE?NMG) OF - _ CHAIN LINK FENCE x E TY CHAIN LINK BANlIp L FENCE AND OATS. 7EE 3K T E LOW FLOW WEIR PLATE s X 3' X 3' X 3/6' ALUMINUM E5 UWGLE NTH 1/2' X 3' LONG EXPANSION ANCHOR I. _-7N-- ----------------- ------_ 6' ALL AROUND, TYP. F y 23 1/2' WIDE X 24' MOH x 6/6' THICK ALUMINUM PLATE WALKWAY AND N 170040.31 HANORAI., x i E 1311601. SEE SNIFFY 9 ' w-Amoo MAR DIRECTION i FLOW --x-- F------------------ ------- ti APPROX LOCATION OF PI X FOR CHAIN LINK BARRIER CONTRACTOR TO COMM y WITH FENCE FAIRICATO& r x Ir-or L 6' SUBDRA Q � AND GATT 2r-G' •I 11-0' 6' BYPASS DRAM GATE, WATERMAN C-20 CANAL I 72' CHAIN LINK 6 T-HANDLE OPERATOR GATE (EAL.V.} PROVIDE X 5'-0' LG. GATE FRAME 2' OW T.O. WAIL FENCE, SEE SHEE TYP. BOTH SIDES � N' 10► OF f11.L AT 14'-0' SPILLWAY, M 11E TYP. x 3' x 3' x 3/6' AL$1CSt 100-M FL000 MAX NTH 1 X 3' LON •6' ALL POOL LS 114.17 SEE DETAIL 4 /6•6 EF. lPLLMMY CRES (SHEET O) A •12 112.67 DRU 7/16.0 HO •12 THROUGH 3/I1' N 3 ANGLES FOR 3/ 5-23 /6 •12 •6 EF. ALUM. LOCK BOLLIL 1 BLOCKOUT FOR 06.676Al11 60TTd1 CHA NEL LOW FLO 106.67 ------------ ------------------------------------------- / -- 6' PVC SUBORARI / FIELD FIT PVC /6 DFII •12 PIPE WALL(WEST / / LINER OVER RCP ONLYN DWA.•12 i NTH 4' MM. I.E. 106.3 CLEARANCE EL 105.30 PVC LINER r60u ouTs+oE wAus 1 #5E12EF. 05 0 12 f6 DWl 9 14 WRAP ORAVEL IN 6'4 PVC PERFORATED PIPE, {A!M 60TTOM GEOTE"E FABRIC PERFORATIONS FACING DOWN F111D FIT PVC VIER AROUNI0 EL. 106.67 OVERLAP SEAM 18106.67 OVEIILAP SEAM MIN�COMPACTED FILL PIPE WITH 4' MIN. CLEAR /6•iT i 1 1 1/2 INCH NOMINAL DIAMETER NOTES J WASHED GRAVEL 1. FOR PIPE WALL PENETRATIONS RE11 OEDTEXTIF FABRIC REINFORCEMENT AROUND W 2. ALL PIPE SECTIONS SHALL BE BELL 6• CLEAN SAND RUBBER O-RING GASKETS. r-� PVC BASH LNER 3. FOR BASIN /CO�T� E - E 4, PVC BASIN LINO NOT SHOWN IN A (SHEET S) SEDW@1TAT ION POND BUBDRAN NOT TO SCALE �o F D. Care 3- C HECK ON LATEST Do T/ l Nc,4 wL�TR D'e-s/61V • WP,iel OL1 s�o�n yr � I��1 seh Do ? 3-/6-`j3 /e NNN (J 6, 7 WWW WWW / NN1=/l G6 coo 6S.S aaa rrr /S-urkt,(, O,f--id o� GN — o VvIT CoarjG a •i Grn�L 6z.ti 8 ' • 5 0 VG �y se t4ivns 4,t a rewG;/ 1 z 3 L4 G L N '/zC N 3. 33 �5 Ste- /� . oallA � us'} for S I7 otr2eIluf�r 6q.2 62.0 + 2,6 L2a � LS�� 1,1' 1,2' 1.2' I = y• 6 ciev. 0,385 ( 3.32) ) ( 0 .S) 2.0 - 6. 18 V1 = 1 B 0,-42 S. Of 1,S 2 ) Q2= (3. 33 ) (I, 1 ) 2.33) - 13. 0 1 0•32 7.36 2 15 3� (3. 33) C1 - 2) ( 1.37) — `�,14 f 1 0 ��81 �, 60 • i. r.S y) Qy = (3. 33 0. 12 TO-(A L F L 0 FoR t-fidTfI?E WEAR 2 6- 7Y c-�t Sk 167 'Sr �, C.��e -z 6-�3 C 1 / U —5' f T� l`+ Z-L ,3. 6 o fPf l� c k CO4A W W W W W W xxx N O O �r I ' aaa Grta ��w„1 �y� Qj S f-� Oil �i✓t;/ ' C� AAA cv cv w •n F • • 1 Wo 00 C C rc FL_ O w 013 Sz-l� vA / DN N 1 Q F�bw �CP �✓1 ^ .3 . B � r W _ 3 3 1M . N N N H F F W W W coo I f co� Qy � b u �w avo 5Y�,,rnrS�c Y (� VA 3. 3,*,, /yl%NZ • ti d o Q • 9osf 1. S6 t o 2 . 3 s c--Fs . wo vD G A �' I� � ei l=L v I/v o 9-5 CX U,4 T/6)Av 72 • N 32 i� ( 0, 21 f+ ) L 3. os ft ) coo C L I H v1 O O �r aav C— A A A acvo+ 3� = 2 . 7 ( 3.0 8 ) 0, 2 9 ) Z L 3 o c�s No A c4 Q • Sin cc wa 4-c r / lows d,>wr, lh G �(�� bG �src� �o��J 0vir N� — SeB,rrrG d H kr .. • Ft Lt CITYOFRENTON - MEMORANDUM 22 DATE: December 1V, 1997 TO: Dana Postlewait - HARZA FROM: Daniel Carey lz--� SUBJECT: Maplewood Creek Fish Channel Projects Groundwater Levels and Buried Conduit Information Attached is the following information for your use: 1. March 22, 1996 memo to Albert containing my notes on the potholing and utilities encountered, and the surveyor's coordinate printout and field notes. 2. Two sketches showing the coordinate points as I located them. 3. Water Level information for MW-36S, 37S, and OBW-1S. 4. Well Logs and location drawings for the above wells. 5. Excerpt from the Final Geologic Report For PW-11 and PW-17, January 31, 1990, by Pacific Groundwater Group. 6. Excerpts from Predesign Report For PW 10 & 12, August 1993, by RH2. 7. Excerpts from Hydrologic Report For PW 10 & 12, November 23, 1994, by RH2. The excerpts provide some general information on the soils and groundwater conditions, however the focus of the reports was the deeper aquifer and installation of production wells. The groundwater level information and general descriptions in the reports may allow us to reduce or eliminate the geologic work proposed. I could not find the draft profile that we discussed in our meeting on December 10th. Please call me at (425) 277-6193 if you have any questions. c: MEM1215.DOC Page 1 q Maplewood Water Level Information 11-Dec-97 LCL_NM DT_MEAS W_LEVEL 4c MW-36S 5/9/95 11:15:00 AM 13.81 MW-36S 6/6/95 3:33:00 PM 14.01 MW-36S 7/12/95 2:34:00 PM 14.37 MW-36S 8/23/95 10:53:00 AM 14.42 MW-36S 9/19/95 3:14:00 PM 14.37 MW-36S 10/17/95 11:28:00 AM 13.62 MW-36S 12/5/95 11:42:00 AM 8.93 MW-36S 1/9/96 2:49:00 PM 11.28 MW-36S 2/14/96 3:46:00 PM 9.66 MW-36S 3/13/96 11:05:00 AM 12.95 MW-36S 4/24/96 9:06:00 AM 11.93 MW-36S 5/28/96 2:00:00 AM 12.87 MW-36S 6/5/96 7:58:00 AM 13.25 MW-36S 6/12/96 7:38:00 AM 13.55 MW-36S 6/19/96 8:03:00 AM 13.6 MW-36S 6/26/96 8:50:00 AM 13.78 MW-36S 7/3/96 10:56:00 AM 13.87 MW-36S 7/10/96 9:59:00 AM 13.93 MW-36S 7/19/96 8:28:00 AM 13.9 MW-36S 7/23/96 2:56:00 PM 13.92 MW-36S 7/25/96 10:43:00 AM 13.93 MW-36S 7/26/96 10:30:00 AM 13.91 MW-36S 7/30/96 8:48:00 AM 13.9 MW-36S 8/2/96 2:07:00 PM 14.03 MW-36S 8/5/96 2:57:00 PM 14.2 MW-36S 8/8/96 8:38:00 AM 13.73 #- DeP4t, To Wi,�-cr From FP a( R-Pe— 1 LCL NM DT MEAS W_LEVEL MW-36S 8/13/96 9:23:00 AM 14.58 MW-36S 8/14/96 2:35:00 PM 14.72 MW-36S 8/19/96 11:48:00 AM 13.92 MW-36S 8/20/96 2:00:00 PM 13.99 MW-36S 8/28/96 2:40:00 PM 14.05 MW-36S 8/30/96 2:10:00 PM 14.07 MW-36S 9/3/96 4:02:00 PM 14.08 MW-36S 9/5/96 8:13:00 AM 14.04 MW-36S 9/6/96 8:43:00 AM 14.07 MW-36S 9/12/96 11:52:00 AM 13.95 MW-36S 9/20/96 2:20:00 PM 13.95 MW-36S 9/24/96 11:12:00 AM 13.86 MW-36S 10/2/96 11:15:00 AM 13.77 MW-36S 10/5/96 3:02:00 PM 13.64 MW-36S 10/17/96 3:50:00 PM 13.69 MW-36S 10/30/96 2:23:00 PM 12.93 MW-36S 11/6/96 9:08:00 AM 12.81 MW-36S 11/15/96 3:40:00 PM 12.24 MW-36S 12/3/96 1:59:00 PM 11.96 MW-36S 12/13/96 3:00:00 PM 36.57 MW-36S 1/2/97 2:00:00 PM 0 MW-36S 1/9/97 3:30:00 PM 19.98 MW-36S 1/27/97 1:14:00 PM 19.2 MW-36S 1/29/97 10:50:00 AM 18.95 MW-36S 2/13/97 9:03:00 AM 12.12 MW-36S 2/17/97 2:27:00 PM 12.02 MW-36S 2/21/97 10:45:00 AM 11.73 MW-36S 2/28/97 10:18:00 AM 11.88 2 LCL NM DT MEAS W_LEVEL MW-36S 3/7/97 7:55:00 AM 12.1 MW-36S 3/17/97 8:04:00 AM 11.84 MW-36S 3/21/97 9:55:00 AM 36.57 MW-36S 3/31/97 3:20:00 PM 11.55 MW-36S 4/7/97 8:36:00 AM 12.24 MW-36S 4/11/97 10:15:00 AM 12.55 MW-36S 5/7/97 9:06:00 AM 0 MW-36S 6/10/97 11:26:00 AM 19.94 MW-36S 7/23/97 12:50:00 PM 14.36 MW-37S 12/5/95 12:08:00 PM 21.78 MW-37S 1/9/96 2:37:00 PM 22.48 MW-37S 2/14/96 3:34:00 PM 21.35 MW-37S 3/13/96 10:53:00 AM 24.07 MW-37S 4/24/96 9:53:00 AM 23.45 MW-37S 5/28/96 1:49:00 PM 24.02 MW-37S 6/5/96 7:40:00 AM 24.86 MW-37S 6/12/96 7:23:00 AM 25.15 MW-37S 6/19/96 7:30:00 AM 23.72 MW-37S 6/26/96 8:34:00 AM 25.09 MW-37S 7/3/96 10:20:00 AM 25.45 MW-37S 7/10/96 9:45:00 AM 25.61 MW-37S 7/19/96 8:16:00 AM 25.16 MW-37S 7/23/96 2:46:00 AM 253 MW-37S 7/25/96 10:28:00 AM 25.68 MW-37S 7/26/96 10:15:00 AM 25.21 MW-37S 7/30/96 8:32:00 AM 25.61 MW-37S 8/2/96 1:52:00 PM 25.26 MW-37S 8/5/96 2:43:00 PM 25.21 3 LCL NM DT MEAS W_LEVEL MW-37S 8/8/96 8:15:00 AM 25.49 MW-37S 8/14/96 2:22:00 PM 25.48 MW-37S 8/19/96 11:33:00 AM 25.62 MW-37S 8/20/96 1:53:00 PM 25.61 MW-37S 8/28/96 2:17:00 PM 25.6 MW-37S 8/30/96 1:57:00 PM 25.44 MW-37S 9/3/96 3:51:00 PM 25.49 MW-37S 9/5/96 8:02:00 AM 25.35 MW-37S 9/6/96 8:32:00 AM 25.31 MW-37S 9/12/96 11:40:00 AM 25.3 MW-37S 9/20/96 2:05:00 PM 25.15 MW-37S 9/24/96 11:00:00 AM 25.11 MW-37S 10/2/96 11:02:00 AM 25.11 MW-37S 10/15/96 2:52:00 PM 24.91 MW-37S 10/17/96 3:40:00 PM 24.96 MW-37S 10/30/96 2:10:00 PM 24.02 MW-37S 11/6/96 8:59:00 AM 24.16 MW-37S 11/15/96 3:25:00 AM 23.52 MW-37S 12/3/96 1:48:00 PM 23.15 MW-37S 12/6/96 2:11:00 PM 22.86 MW-37S 12/13/96 3:05:00 PM 22.87 MW-37S 1/2/97 1:48:00 PM 20.48 MW-37S 1/9/97 3:20:00 AM 22.23 MW-37S 1/23/97 1:05:00 PM 22.35 MW-37S 1/29/97 10:40:00 AM 22.98 MW-37S 2/13/97 8:51:00 AM 23.22 MW-37S 2/17/97 2:15:00 PM 23.11 MW-37S 2/21/97 10:35:00 AM 22.93 4 LCL NM DT MEAS W_LEVEL MW-37S 2/28/97 10:06:00 AM 22.99 MW-37S 3/7/97 7:45:00 AM 22.99 MW-37S 3/17/97 7:55:00 AM 22.9 MW-37S 3/21/97 9:43:00 AM 21.45 MW-37S 3/31/97 3:09:00 PM 22.72 MW-37S 4/7/97 8:26:00 AM 23.28 MW-37S 4/11/97 10:05:00 AM 23.41 MW-37S 7/23/97 12:45:00 PM 29.45 MW-39 12/5/95 12:28:00 PM 8.77 MW-39 1/9/96 2:27:00 PM 9.09 MW-39 2/14/96 3:28:00 PM 8.22 MW-39 3/13/96 10:43:00 AM 13.1 MW-39 4/22/96 2:22:00 PM 15.18 MW-39 5/28/96 1:40:00 PM 12.95 MW-39 6/5/96 7:30:00 AM 14 MW-39 6/12/96 7:15:00 AM 14.53 MW-39 6/19/96 7:27:00 AM 15.08 MW-39 6/26/96 8:23:00 AM 15.41 MW-39 7/3/96 10:33:00 AM 15.58 MW-39 7/10/96 9:36:00 AM 15.57 MW-39 7/19/96 8:07:00 AM 15.28 MW-39 7/23/96 2:37:00 AM 15.19 OBW-1S adjacent to PW-10 12/5/95 4:18:00 PM 5.22 OBW-IS adjacent to PW-10 1/9/96 2:18:00 PM 6.98 OBW-IS adjacent to PW-10 2/14/96 3:19:00 PM 6.02 OBW-1S adjacent to PW-10 3/13/96 10:36:00 AM 8.83 OBW-1S adjacent to PW-10 4/24/96 8:34:00 AM 7.9 OBW-IS adjacent to PW-10 5/28/96 2:21:00 PM 8.85 5 LCL NM DT MEAS W_LEVEL OBW-IS adjacent to PW-10 6/5/96 7:18:00 AM 9.64 OBW-1S adjacent to PW-10 6/12/96 7:07:00 AM 9.95 OBW-IS adjacent to PW-10 6/19/96 7:12:00 AM 10 OBW-1S adjacent to PW-10 6/26/96 8:10:00 AM 9.77 OBW-1S adjacent to PW-10 7/3/96 10:24:00 AM 10.15 OBW-1S adjacent to PW-10 7/10/96 9:19:00 AM 10.26 OBW-1S adjacent to PW-10 7/19/96 7:53:00 AM 9.68 OBW-1 S adjacent to PW-10 7/23/96 2:28:00 PM 9.95 OBW-IS adjacent to PW-10 7/25/96 10:15:00 AM 10.38 OBW-I S adjacent to PW-10 7/26/96 10:05:00 AM 9.81 OBW-1 S adjacent to PW-10 7/30/96 8:18:00 AM 10.32 OBW-1 S adjacent to PW-10 8/2/96 9:06:00 AM 9.86 OBW-1S adjacent to PW-10 8/5/96 2:33:00 PM 9.8 OBW-1S adjacent to PW-10 8/8/96 8:03:00 AM 10.21 OBW-1S adjacent to PW-10 8/13/96 9:07:00 AM 10.04 OBW-1S adjacent to PW-10 8/14/96 2:09:00 PM 10.15 OBW-1S adjacent to PW-10 8/19/96 11:20:00 AM 10.31 OBW-1S adjacent to PW-10 8/20/96 1:44:00 PM 10.23 OBW-1 S adjacent to PW-10 8/28/96 2:02:00 PM 10.22 OBW-1 S adjacent to PW-10 8/30/96 1:43:00 AM 10 OBW-1S adjacent to PW-10 9/3/96 3:36:00 PM 10.11 OBW-1 S adjacent to PW-10 9/5/96 7:48:00 AM 9.88 OBW-1S adjacentto PW-10 9/6/96 8:22:00 AM 9.89 OBW-1S adjacentto PW-10 9/12/96 11:30:00 AM 9.86 OBW-1 S adjacent to PW-10 9/20/96 2:35:00 PM 9.61 OBW-1S adjacent to PW-10 9/24/96 10:51:00 AM 10.65 OBW-1S adjacent to PW-10 10/2/96 10:52:00 AM 9.6 OBW-1S adjacent to PW-10 10/15/96 2:43:00 PM 9.4 6 LCL NM DT MEAS W_LEVEL OBW-1S adjacent to PW-10 10/17/96 3:25:00 PM 9.18 OBW-1S adjacent to PW-10 10/30/96 1:56:00 PM 8.47 OBW-IS adjacent to PW-10 11/6/96 8:35:00 AM 8.78 OBW-1S adjacent to PW-10 11/15/96 3:15:00 PM 7.92 OBW-1S adjacent to PW-10 12/3/96 1:34:00 PM 7.9 OBW-1S adjacent to PW-10 12/6/96 2:07:00 PM 7.55 OBW-1S adjacent to PW-10 12/13/96 3:22:00 PM 7.62 OBW-1S adjacent to PW-10 1/2/97 2:17:00 PM 6.06 OBW-1 S adjacent to PW-10 1/9/97 3:48:00 PM 6.87 OBW-1S adjacent to PW-10 1/23/97 1:30:00 PM 7.17 OBW-1S adjacent to PW-10 1/29/97 10:23:00 AM 7.75 OBW-1S adjacent to PW-10 2/13/97 8:42:00 AM 8.01 OBW-IS adjacent to PW-10 2/17/97 2:06:00 PM 7.81 OBW-IS adjacent to PW-10 2/21/97 10:26:00 AM 7.56 OBW-IS adjacent to PW-10 2/28/97 9:56:00 AM 7.67 OBW-1S adjacent to PW-10 3/7/97 7:31:00 AM 7.82 OBW-1S adjacent to PW-10 3/17/97 7:39:00 AM 7.65 OBW-1S adjacent to PW-10 3/21/97 9:32:00 AM 6.29 OBW-1S adjacent to PW-10 3/31/97 3:03:00 PM 7.47 OBW-1S adjacentto PW-10 4/7/97 8:08:00 AM 8.12 OBW-1S adjacent to PW-10 4/11/97 10:30:00 AM 8.32 7 MW-3�a - , 01, : I I I G b• , / t - I - I S /a OF T ISE /a OF SECTION 16,E � •- -'.'. ' - '•- •-.•• -'-. -_. • '��-� .. - `s _ . - T. 23 N. RI 5 E., W.M.Zm_ - - a .�• , _ f P� f- ♦ z \ f / I� _ <w .f. •yt - �w 1 _ - I f' Y '9 i _ / INa I ,♦.S. pI%'.... ! .. f. .., ...... .........- 4... .. ! ,r/ .... ....... - :. y%<'-A ice•":� / il'.�,• �y VAV F. - .:..T,. ...._.... �\ -._.... .:... ,a f •'w, ,'yam` ti sue` ,`Z. . �" .. ;� .+. . �:... :-<._.•:.. .:..:- :.. ...__...:.. n;.•�- 1. .P,� CD '•ti••• ! -12 •fit:. y:, - •/.'�••`' - , TER ��r�!. �' o Q(3L? &T STATION', `' B.Ul G Y4 OF SECTION 22, _ \:_• ;" .. T. 23 N., R. 5 W.M. , ,.. t`.. PW-10 I GOL CO R_ T-1 P CITY OF RENTON v Pw 1 m -11 $~.'- NATIVEuG MAPLEWOOD GOLF COURSE : �.' �. :\., " : ABANDONED RAILROAD RIGHT -OF-WAY WAY_ _... _ _. ... w..., . .... ..d..:.,.. _ MAPLE VALLEY HIGHWAY SR 169 c� SE 149th ST CITY OF RENTON LEGEND -- PRODUCTION WELLS 10 & 12 DEVELOPMENT a Proposed Water Production Existing Water Production AF, Well Site and 100' Radius 0 Well Site and 100' Radius ` SCALE: 1" = 300' SITE PLAN Sanitary Control Area.nANNM Sanitary Control Area.scaNnm � FIGURE 2 0 Monitoring Well — — Section Line FLE: +nm2S[zowc MARCH 16 1993 0 150' 300' 600' 0 Irrigation Well Golf Course Boundary RENTON MONITORING WELL LOG OBW-1 DEPTH BELOW GEOLOGIC LOG WELL CONSTRUCTION DETAILS CL GROUNSURFACE D N (AS BUILT) (FEET) Top portion of hole (to 140 feet) LOCKAELE STEEL logged by John E. Armstrong I YONUuENT 0 Brown to blue silty CLAY Cloybound SAND & GRAVEL making o lithe wcler of 22r woUr L•.•1e Sonl o y SvrToc. Yeo...r•d S.ol 10-N-Df 2 PU:KETS SAND, GRAVEL & COBBLES, voter I EUToNnE PELLETS PEA cFAVIL r Sch. b0 SINE, rA:K msh Thr.oa.d 50 Pvc Pip. -ilk 1 PUC:K[T SAND with Silt binder, blue-green 20 Slel Sc,..n EEN10N;7E PELLETS P:A 66avCL Fine to medium SAND 1 eu:e[t with Silt binder cnd Icyers cf SrN10N;T[ rtLLE75 blue-green CLAY PEA GRa VEL i c'0 c:I "IVEL Pu0Y1 SEN•LN;T[ PCLL:75 Silty SAND with some Grovel, -cod (Loose), grcy, Gravelly 10 very Grc.elly �-�10 SAID 11 I c_NTc,:.t t rc::_'S _ 15D 3. �:A GGavCL I 7 NIZ%'S R Zone of thin SILT be=s ��-- c:nY`c-[ PLt'S Ito 17 Zone with thin SI�T/C'J.Y bEds �?� cint_n.7C PELLRS 1 2DD f (loose), grog, very Scndy GRAV=L 74 , Ifo very Gravelly SANG 7E (Soft), gray, Silty CLAY / Clayey SILT 27 (Dense) gray, cobbly, grove'ly SAND -dh Silt cnd Cie binder 2e 2! (Loose), grcy, fine to medium SAND Hearing) Encounter numerous Cloy bolls in to-er porticn 250 Slightly gravelly SAND to sandy GRAVEL (Stiff), grcy, SILT and CLAY 300 Bottom of Eoring at 312 !eet Completed 9-2!-E8 350 .rc IT1: La.. Myf•.,r-. s rN .n•—�.. ^.r .s /..�•Lr` ..•I,,I N IM es�.I..:r•I.e sn(^•r .I/.r^t O•a..r..r..O•u.• a JPbbGS No.s^t.r, lib! rev. � MW-39 I I N MAPLEW OD GOLF COURSE CLUB HOUSE I I 1 I I PP PP h PP x 16 15 - - - - - - - 21 22 - - - I � x I � I x m x � N I 1 1 x I h 1 � I � x� MW-37 fs. ss � ` f VICINITY All A P FEBUARY 21,-1994 ENGINEERS VICINITY V T V /`1 SCALE: 1 - 40 PLANNERS SCIENTISTS �I W-39 FILE: MW39-VIC M 1 RENTON MONITORING WELL LOG REN-MW-39 S & D MONITORING PVC CASING DEPTH TO WATER GROUNDWATER GROUND ELEVATION = XX ft. WELL ELEVATION (2/6/94) ELEVATION DRILLING METHOD: HSA DRILLER: HOLT DRILLING, INC. XX.XX ft. 15.24 ft. XX.XX ft. PUYALLUP, WASHINGTON GEOLOGIST: GEOFFREY CLAYTON RH2 ENGINEERING, P.S. DEPTH GEOLOGIC LOG MONITORING WELL (FEET) CONSTRUCTION DETAIL FLUSH MOUNTED 8" MONUMENT CASING 0 LARGE COBBLES AND SANDY GRAVEL BENTONITE SURFACE SEAL 10 15.0 20 COLORADO SILICA SAND BOTTOM OF HOLE AT 25' 25.0 30 COMPLETED 4/28/92 Z' DIAMETER BLANK PVC CASING (SCHEDULE 40) WITH 10 FEET OF 20 SLOT SCREEN - NO TAIL PIPE 40 50 60 70 80 90 100 110 120 130 FILE: MW39-LOG.DWG RH2 ENGINEERING, P.S. MAP WOOD GOLF COURSE \ CLUB HOUSE i i i �r PP pp PP 16 15 21 22 - 7- - - - 1. N 17 5 -7 llO, 7 E 1311 209 ,191 ' EL. 79' 77 FT rq Y , N -75 MW-37 9 t t � � t t t s t t t t t , f~ BUSH, ROED & HITCHINGS, INC. CIVIL ENGINEERS & LAND SURVEYORS 2009 MINOR AVENUE EAST SEATTLE, WASHINGTON 98102 PHONE: 206 323-4144 RENTON MONITORING WELL LOG REN-MW-37 S & D DEPTH GEOLOGIC LOG 61 MONITORING WELL CONSTRUCTION DETAIL 0. GROUND ELEVATION: 79.8 ft. a 0 '^ FLUSH MOUNTED SURFACE MONUMENT Gray—brown, slightly sandy, very siltbound, BENTONITE SURFACE SEAL GRAVEL k COBBLES 20 2" DIAM[TER BLANK PVC CASING (SCH. 40 WITH 5' OF 20 SLOT SCR EN COLORADO SILICA SAND 40 7 Red—brown, slightly sandy GRAVEL t COBBLES — if 8-12 3//4' PVC TUBING (SCH. Gray—brown siltbound GRAVEL o 0 0 8b); BOTTOM 2' SLOTTED Red—brown, slightly sandy GRAVEL R COBBLES 0 000000 2' TAILPIPE 60 0 0 0 0 Grayish—brown/brownish—gray sandy SILT with 00000 0 some thin bed: of clayey SILT/silty CLAY °o 0000000 Grading to Crayfish—brown silty tine SAND 0000000 80 7 with some Interbedded CLAY and clayey SILT 0 0000000 0 0000000 0-0-0-0 100 Brown silty fine SAND 0 00000000 Gray, slightly sandy, clayey SILT grading to 0 0000000 Gray sandy SILT 0 00°0°0° 0 0 0 0 120 Grayish—brown, silty, fine to medium SAND ° 0°00000 Gray, very silty, fine SAND 0 00 o ° O 000000 0 °000000 B" BOREHOLE 140 0 0000000 0 0 0000 Brown k Gray—brown, silty tine SAND O 000000 0000000 0 °00 ° ° 160oUou BENTONITE SEAL 0 0000000 PEA GRAVEL 00000 Brown, well graded. very gravelly. fine to 0 0°00000 180 coarse SAND grading to slightly gravelly SAND 0 0-0-0-0 3//4' PVC TUBING (SCH. Bb); BOTTOM 2' SLOTTED Brown tine to medium SAND with chunks of wood (Silty SAND bed at 190 feet) o O000°o° 2" DIAME�TTER BLA K PVC 200 n ° 0000000 CASING SCH. 80 WITH 5' Gray sandy GRAVEL k gravelly fine to medium 0 0000000 OF 20 SLOT SCR EN �c SAND 30 0000000 220 7 Gray, gravelly and very gravelly SAND & very COLORADO SILICA SAND sandy GRAVEL / 8-12 2' TAILPIPE 0000000°00-0 BACKFILL/PEA GRAVEL 240 7 Gray GRAVEL k fine to coarse (?) SAND with some Interbedded siltbound layersJouovouououou 300000000000 0o0 0 0 0 00000000000 260 0 0 0 0 0 0 0 Gray, gravelly, silty SAND (grovel decreasing3000000000000 000000000000 toward bottom of Interval) o 0 0 0 0 0 grave n 00 00000 00 020 0 0 0 0 280 7 Cray, silty fine SAND with Interbedded SILT 0°0000000°00 Brownish—gray SILT; trace GRAVEL °O°O°0°00000 300 00000OO 0000°0° °o°o°o°o o O BACKFILL/PEA GRAVEL 000000000000 320 00000000000o DRIVE SHOE AND REMNANT 000000000000 8' STEEL CASING 0°0°0°o°o°o° 340 BOTTOM OF HOLE AT 337' COMPLETED 11/25/91 360 PROJECT NAME: Renton Monitoring Well Installation LOCATION: NWY NW% Sec. 22, T23N, R5E WELL INDENTIFICATION NUMBER:MW-37 DATUM:NGVD 1929 DRILLING METHOD: Cable Tool WATER LEVEL ELEVATION: DRILLER: Richard "Lorry" La Rance INSTALLED:12/05/91 FIRM:Half Drilling DEPTH M Pacific CONSULTING FIRM: Pacific Groundwater Group, Inc. PVC ELEV. (12/05/91)GW ELEV. Groundwater REPRESENTATIVE:Nancy Rlcclo 85.64' 24.29' 61.35' Shallow m Group 85.59' 23.54' 62.05' Deep CONCRETE j CART PLAT OF PAD PATH MAPLEWOOD I x � t i r / r i GATE �,'� GRAVEL u~'• AREA •1• t t TEE \ \4, MW-3k N4ol x 111 1 -75IDgq, 51 +- E 131002 z, . 3A CART 9' LL 59 , IUD PATH x I i 1 / � x BUSH, ROED & HITCHINGS, INC. BRH CIVIL ENGINEERS & LAND SURVEYORS 2009 MINOR AVENUE EAST SEATTLE, WASHINGTON 98102 PHONE: 206 323-4144 RENTON MONITORING WELL LOG REN-MW-36 S & D DEPTH GEOLOGIC LOG MONITORING WELL CONSTRUCTION DETAIL GROUND ELEVATION: 59.1 fl. FLUSH MOUNTED SURFACE MONUMENT O Brown silty SAND BENTONITE SURFACE SEAL Brown silly SAND and GRAVEL 2" DIAM�TER BLA K PVC 2O CASING SCN. 40 WITH 5' OF 20 SOT SCR EN Brown SAND and GRAVEL COLORADO SILICA SAND / B-12 40 =00 3/4' PVC TUBING (SCH. 0 0 0 800); BOTTOM 2' SLOTTED 0 ° 00o0000 2' TAILPIPE 6O Brownish-gray silty fine SAND 0 0000000 O 00000Q0 Gray clean fine SAND O °O°O°O° 80 30 0000000 O O0000o0 Croy silty fine SAND ° 0000000 100 ° 0°0°0°0 Gray fine to medium SAND and GRAVEL 0 OOoO 0000000 0 0°0°0°0 120 Cray fine to medium SANG 000 Gray slightly silty fine SAND with wood chips ° O°0°000 0 0000000 8" BOREHOLE 140 O 0000000 Gray medium SAND and GRAVEL o 0000000 O O O O O O O 0 160 Gray slightly silty to silty fine SAND, with o 0000000 gravelly layers, wood chips o °o°o° ° PEA GRAVEL 30 0 0 0 Cray fine to medium SAND with trace gravel, o °o°o°o° 180 silt o 0000000 Gray silty very fine to fine SAND with wood BENTONITE SEAL chips O0 0000 41 200 o 000000° Cray tine to coarse SAND and GRAVEL o 0000000 Do.ia 000000 ° 0000000 22O Gray silty fine to medium SAND with trace wood ° 0-0-0-0 00 chips; occasional gravelly layers 0 0000000 30 o °o°°°o° Gray silty fine to medium SAND with occasional 0 O 00 o 240 layers of SILT or sandy SILT 00 000000 0 3/4" PVC TUBING (SCH. o °o°000° 8 ); BOTTOM 2' SLOTTED 260 7 Gray silty fine to medium SAND with wood chips; occasional gravelly layers O 00o0o0° o ° °O°O O° 0 0000000 0 0000000 O O O 0 Gray silty fine to coarse SAND with trace gravel, ° 0000000 wood 30 0000000 Croy gravelly fine to coarse SAND; thin silt beds 300 Gray sillbound GRAVEL and fine to coarse 00 0�00000 silty SAND 0 000066 2" DIAMETER BLANK PVC CASING CH. 80 WITH 5' Gray silly fine to medium SAND grading into 00006006 O o0 o OF 20 SOT SCR EN 320 silty Cur Cray sandy silty CLAY with occasional layers of ° 0°0°0°0 sillbound SAND and GRAVEL COLORADO SILICA SAND 340 Gray silly fine to coarse SAND and GRAVEL — / B-12 2' TAILPIPE :-Cr—aysilty fine SAND and GRAVEL. BOULDERS BACKFILL/PEA GRAVEL BEDROCK BENTONITE 360 BOTTOM OF HOLE AT 354' DRIVE SHOE AND REMNANT 8" STEEL CASING COMPLETED 08/05/91 PROJECT NAME: Renton Monitoring Well Installation LOCATION: SE Y SE Y Sec. 16, T23N, R5E WELL INDENTIFICATION NUMBER:MW-36 DATUM:NGVD 1929 DRILLING METHOD:Cable Tool WATER LEVEL ELEVATION: DRILLER: Richard Miller INSTALLED;8/15/91 FIRM:Holt Drilling DEPTH Pacific CONSULTING FIRM: Pacific Groundwater Group, Inc. PVC ELEV. (8/19/92) GW ELEV. Groundwater REPRESENTATIVE:Nancy Ricclo 64.61' 13.53' 51.08' Shallow m Group 64.64' 10.54' 54.10' Deep r Boring Log and Well As-Built DEPTH BELOW GEOLOGIC LOG t 1' WELL CONSTRUCTION DETAILS GROUND CL SURFACE (AS BUILT) (FEET) Top portion of hole (to 140 feet) A°°"'d" +' cra"� D logged by Armstrong Driliing Personnel surf". Elevatlon: 79 rT As-Built Screen Assembly PW-11 Topsoil Brown SAND tc GRAVEL 250 - 250 Gray SAND do GRAVEL t � Sanl+ary surface e soot 16-Inch Production Casing Cobbles ' 50 3 Clay-bound SAND do GRAVEL 260 - 20.4 ft Stainless Steel change to Silty, blue-gray, CLAY Riser Pipe 270 270.4 3.2 ft .100' Slot Pressure 100 Gray Silty, CLAY open hole 273.6 Relief Screen 275.5— 16—Fnch Production Caving Gray, Silty CLAY 280 - 11.0 ft Stainless Steel to gray, Silty, SAND Riser Pipe 284.E - t50 gradational contact Clean, gray, fine to medium SAND 1 290 - slightly Gravelly zone 2 (Soft), gray, CLAY 4 17 ft .040' Slot Screen (Loose), gray, fine to medium SAND 7 -with some slightly Gravelly and ==EZ= a 300 - - -- 200 coarse Sandy zones y 301.6 - 10 Wood fragments in bailings Wetd Rrtp tt _ 12 (Soft), gray, CLAY bed =xEi= 13 310 — 15.2 ft .080' Slot Screen 14 15 250 16 316.8 — (Hard), greenish-gray, Silty CLAY 17 8 ft .030' Slot Screen with trace coarse SAND 1s 320 - - and fine Gravel — 19 Weld RM Gray, very Gravelly SAND with thin beds of SILT1CLAY and zo 324.8 - Gravelly SILT 21• 23 328.6 — 3.8 ft .030' to .075' Slot Screen 300 25 S► ;f0—im P"080 steel�e 330 — -- 5 ft .075' Slot Screen —�—� Sa Assembly — ----- FIGURE 1 Gray, SAND and GRAVEL with ,N• Toter eel 333 6 --�— Gravelly SAND layers — — (M feet 29e fD'' — °s` on 'r' A-3) BORING LOG AND AS-BUILT --- 8.2 ft .150• Slot Screen PRODUCTION WELL NO. 11 Gray, Cobbly, Sandy, GRAVEL• �— 340 - 3b• 341.8 — iy_ 36 Tight Wrap Screen 350 Gray, Gravelly SAND 37 345 - Gra , fi to SAND (tarts $oe d-101——WO.W aW o.t"olwngee met Y ne o co ttre be¢oh,d. water N"le f•r doh Y,dkoW one mar D:�Ioba�iG�D�Pw 1711.dwg Brown, Cobbly, Gravelly, SILT _t fh'_ 'Ye pbt scale: 1=20 . a,ah sw Ana/ . Bottom of B.H" of 364 reel fic Completed 7_7_99 PHCI AIIIIIIIIII Groundwater ter MAPLEWOOD PnoDucnoN wEfua m Group RENTON PRODUCTION WELL LOG PW-17 A� �5 NAs=Built Screen Assembly PW-17 DEPTH ' . e �» BELOW GEOLOGIC LOG d WELL CONSTRUCTION DETAILS Fl 3 GROUND SURFACE < t " ' N (AS BUILT) (FEET) r • , t✓- Approxh o er—d Surl— D.—tin. 79 Fr 2 r x� 0 soil TO f r .� c �` ed*vi p 1 20-inch Production Casing Brown, silty SAND a 260 Gray, silty, very gravelly SAND zd �a 29.3 ft Stainless Steel senifry s � a 5 Riser Pipe (.250 walU Gray (?), cobbly, sandy GRAVEL • > 50 FJ 27� ---- Gray, silty SAND Hand Sawn Pressure Ralpf Slots (1/4') Gray, slightly sandy, silty CLAY- .r4 276.5 z. 280 y ,,., t'lei c"'• _ 100 286 Production oawng - 4T 290 • Gray, sandy SILT fl �� Yrtc Ring 150 ` r 300 Gray, silty, gravelly SAND �y4� t 25.5 ft .030' Slot Screen Gray, silty SAND µsr x Gray, sandy CLAY 310 — 200 312 � Ve;c; Ring Gray, silty, flne to course SAND 109 ft .015` Slot Screen 320 — 3235- 3.a ft .030' Slot Screen 250 327— Ve.c Ring 330— 10.0 ft .060' Slot Screen Gray, sandy SILT and CLAY with c •(1•� layers of siltySAND and sand GRAVEL 337— Grey, slightly gravelly SAND s. :`• e+ 340— 300 with varying amounts of clay binder 14 Moh % sw 7.L ft A00' Slot Screen _ 4• x..: 5� Stolniw SMI Gray SAND and GRAVEL (gravel sor..n X—n.by 344— .t Is fine Crained) a• Total L—gth Gray, slightly gravelly SAND 9• 903 f..t 347— TlEht Vrap Screen 10 11. _��SILT 12 Gray, cobbly, sandy GRAVEL 13' sltfler toward the bottom 14 _ 1s 350 Gray ? , cla bound, 17 ( ) y gravelly SAND and sandy GRAVEL Bottom of 8ortng of 355 F..t PeoMo Groundwater Group compi.f.d 9-1s-89 .j ,b,Up�03�p>r1711.dw9 - P&oMo GrofnOwater Grncp b. 'o wA,d- W.I.,I...I�L M ed.hf.vf.1 m.d� PI of w:a1K 1a20 JP8803 November, 1989 .,on.w ss.�.,.►. Figure 6 NORTHWEST, INC. Engineers and Scientists PROJECT: ��,p� x/ BY:�'a� DATE: / CLIENT: r/ JOB CHKD. BY: DATE: �fU✓ ��,� 5 9-�- PAGE: OF Mat jle+ Cree k SUBJECT: of /�/g�f/,t'o,�CE,D�s' � ,�.brdtcss i �/►�Ax�+�in N f, o r 3=o oz ` ✓�� Coi1c,ZETr-'Ei'oc.oGy &OcK a � Ec�«GyQI KK -17 Cff/hmli :lam 1o7271*z 57LY0O Lp/n,,, 30 Qul�,t,2Y S�q[4S , • i ` r•� R 3 i 'ir a ' r`• AN Al vi AS i r • r _ _ , �.s . 1 111 f • LOW, + - Jv xv low JA AA 44 w v. �� ..�q � ��-- ��`- + � c fr..�M �, �•i,�'" • • - • • •- • '• • i i ` �1 .1 r F +�';. _ ,�'•�n� fs.% i'r� �'+ :,r,� '. , c � r.. � r{ �; _ !• � *ems at- - � 1 .q 3 � • n,,,.•o•/t1M�a.,t ry •,.wfVr•Y.IWia llJur. 1'•nr.e r�7/,r/r! nr ,.,rn Vrr Nr A NN p 1• 11; 11 STA:0+00.00 I V 1 STA. 0+24.91 _ ._.»_ .....,...... ......... .._-_. / 1 I I Il i - g j i �C•1 �•r STA.-1+00.00 i • 1 I I 11 , O t. \� � ! t�S1rJj11 I a... / ri 1 STA. 2+02.49- i / r i 1•,';;: a I. ::::. lar <;is 1 I I r I I 1 . ice• 1 1 STA:-3+00. — _ r.. _. _.—,• .. 1 Q I I _.-..._.� IU \ C1 / •� LII r '1 .: ::'Y •[4. 1 At Il I ••'' ,::Y S n i i:i�. .1 11•� r ' ' 1 I ' o • 1r'� 1• V � � ,.rrrr,r,,,,,,r„r � � � �� b I11111111111111i I11 f� �`� 1111111111111111111 � „ s b '1 L 111111111111111111 y ( V y \••� 111111111111111111 () y� I11111111111111111 _ •\Y 1111111111111111111 111111111111111111 I1111111111111111, • ' rr,.r.r r.,....,,�, M U) r A O D p } ar Yy °n 'I D Ly op c Z IM r, S m •- a I a � pN O O — IinilTililininii ✓" 14 unnnunu„n t. F s ys }• • illllll111111111111 � / \ n O rti a �� f i 1! 1111111111111111111 � ,�„ i' uRl 1111111111111111111 ,, :i 0. t ai 1 iri::;:'::•'•:•.v::: .. 1111111111111111111 •':::.•:.::.:::;.;: 1111111111111111111 , I O n a N fig• OO •' I ; � CY Q ...... t f i....... Ir 1 ..j.., Z IM i � ti t ! _ ... .... ..... .. n / + 1 •...... 1..I -............. .... ............. 00+ ;. \ 1 f 1 I_ ;.. . .. .; .tip' I 1 •• .... .�. ... 9 � I 11 1 • I r• ..i..... ... . ...... i'•� a 00+9 •Vls 1 1 � 1 1)• I 00 Nis I t : II %• t I 1 I - ... . . .... .. �S\ Al IIH •Z �••� j ' dv I 11 I , ; ,.•„.r.r,•�na•n unat+,.nr.o •,.nnnr..acnrnnevl,•,'n •.mq mJtt/•M rnw LEGEND 1 � i •`I I ' 1 �� O STA. 12+ UPPER 1/2 SLOPE p .. MNE MAPLE •}• _ - ORECOM CRAPE SALAL In ✓� �'A • �� ::.h tip`` _ -. LOWER 1/2 SLOPE . . MOCK ORANGE _ x BLACK rfANBERRY Ze ✓ 1 ".' % {' Rootwad \IQ IQx Log weir �i Log deflector Boulder/boulder cluster SITE PLAN C •��-_- _ SCALE 0 10 20 40 FEET - .-� EXCEPT AS NOTED 90 CREST EL 83.0 - as SITE PLAN LOCATION Um - t-- _ -' ---c�esr-Q-•roo-- _ _ - _. _ r s sX azo 4 -- 75LE --B el - --- --- - - - DRAFT S- 0,787C � � p� LE. ��.o � n-- - ..- RF-if- L� Q� 2 CITI OF RE`T � SCALE 0 10 20 40 FEET • - - = - = 41996 DEPARTMENT OF PUBLIC OWORXS NO - I B�axrvu*. WOshingtOn A MORSZONTAL- 1' — 20'-0' - _ --- 2X3-13M ME W.SURE 2W ti i 8 t2+00 FAA 20�)� -MAPLEW000 CREEK Fl9I CHANNEL PROJECT SCALE o 2 a a FEET g + g I INU (toe)em2-2.ea VEGETATION SITE PLAN C AND PROFILE ILOG uKul. VERTICAL; 1� — 4'-0' It CROSSING #4 9 DROPS O t' � �:. : p•r[: a-:r94 I z-E w,1i:sc:• n N of In n I Jp•xn: _ •.wx nn.•ori: •.rt 3 iP �/i-VV7I- PRCf IL-E • °. . :KCKED: 45,r -rrx gillof I Rn f w gh JAM Ig 6 yg, g, ...G., .........._.1..._.�.__..................... n IQ� a U Z s cc 8' o i W 1 f I � I H � �� •' T r \1 1 r tv / I " . 1 l.. N ". • .• f� J ram}_ 4 y / i f rrvv .vv M -�� vvv ry �.•`. � ..._.. .... ..... ... �..... ... i..... ; gn Q 1 pk - � v , v v••• 1. •.• V, o ` •�f avPavvv +v I \ 1 i O c e ; � J , i v v�v vv�,• 1 z 1;10 I.� v �� • /.v vvv e • v vs• �'••�:.;` \,, •/ {...... - a• } ♦\ vv v v v• \ .I 1 1 .. i ,. , It v e 4v,• i v b/ .. , . •fir � . � .. ....;-.. ..j _ +.. . . �. .i ,•.. w 71, \ ..... . x t 1. r .. ..... i .. . " 1 t r 1 1 _. tI ' + 4 _ ;._J..._ .. _ _.�.. 0 X :•+. 1 , \ } i 00+21 iris t \} 1 .. r , r , 1 . i........ }........ ..1 \ \ _ STA. 14+6 T" . , . . ., d I ' 1 ' I 4. t. 1 1 I : I 3 ,.,, r 7. 1 I ; - r foo+ci vis 1_... I .._. . • ca.r,•r•.r•Ivr •rn cn lvr.\v A•,afdb,l'1, r�rrTr�.���������������������.�.�.�.�.�.�.�.�.— -- 1 ROCKCLUSTER -- DIRECTION OF FLOW_ C 4 TYPICAL MC4.12 WING DEFLECTOR �r ` ' I - �!, END MC LINE 'i m I MC4+38 OVERHANGING COVER STRUCIURE i MQ,4+09.21 PQ STA. 0MC4.80 ROOT WAD DEFLECTOR 1 = m!Co 15 WING DEFLECTOR MC5-52 ROOT WAD DEFL[CTCR M(16,07 WING DEFLECTOR WING DEFLECTOR ° mot' �r TYPICAL NEW6'X3 Z MC61 40 ROOT WAD DEFLECTOR i �• �^_ _ C 4 aJ_ MC6+45 OVERHANGING COVER STRUCTURE ti TURNING ROCKS 3 -A) \ BOX CULVERT MC6+67 ROOT WAD DEFLECTOR DEFLECTOR TYPICAL MC 4 \� m MC7+40 OVVERHANG NG COVER STRUCTURE I I o o 6 DOUBLE LOG DEFLECT R ._ ROOT WAD DEFLECTOR q ' MC7+96 ROOT WAD DEFLECTORi I o _ o c o C 4 TYPICAL C 4 m MCB+45 OVERHANGING E COVER STRUCTURE _ TYPICAL MC8+70 ROCK CLUSTER a OVERHANGING COVER STRUCTURE GRAVELSTREAMBED 1 C 4 TYPICAL MC 4 N TOP OF BANK EDGE OF SHOULDER - :4x SR 169 CENTERLINE o0 o O + o + + O N 0) O � c'J NOTES. 0 m (1)STATION POINT LOCATIONS REFER TO THE BEGINNING OR UPSTREAM POSITION OF EACH STRUCTURE. HABITAT STRUCTURES PLAN M.C.STATION POINT 4+09.21- 9+00.39 (2)EXACT LOCATION OF HABITAT N STRUCTURES TO BE STAKED IN THE 20 — 40 FIELD BY ENGINEER. SCALE INFEET. :E } i'....... .. ... .. ... . .. 1:. .. ...... .. ... .. : .. .... .. : ! .... -... ....... .. .... .. :: .... .. .. .. ...... ... - ....... .... ..... ... ... .... .-. .. ... ....... .. .....-� ... ..... -; .. .. ._. - _-.. - -- .. ....E.... ... ........:: .... ... .... _.....-- - _.._. _...__... �..t_-._. ___...... - .... .. .. ...... .._. _..... _... I i-- .. ... .. ... ....i ..: ....... ...... ...... .. :. .. .. .... .: .. : .. ...... ... .... .. : ...... . .. ... ..... .... ...-....i:. .. .... .. ... ... ... .. ... ... ... I'... 1 . .: : .. .. ..... ...-. ... ... .. :. .. ... .. ... .. .... .. ...... ... - - .. ... ... .....{. ... :i.... : :: ..... { .. _ .. _ ...... ... ..... ... .. ...... ...... ... ...... .. .. .. .. t -..-. ........ ....... f - ... ...... _ .__ ._—__ - .. .... ...... .. .. .. r ..... .. I. ....... i ; .. -..._ ... ....... -. i. - -' ........ ... I _—..___._._ ........___._._..____ _,... _ .. .. .. ..... ::: ..1. .... .. ... .... .. ..... . ... .......: t ... .... .... ..... .... ...... .. .... ... .. {' .... - .. I ... -.. ..... -.. .. .. .. a:-:.:: ... :.... i-..... ..... .. .. .. ... .. .. .. ... .. .. .. ..... ......{........ ...-. ....-. ..... .. .. .. .. .. :i. .-..... ..... ... ..- .. ...... .........:. ... .. .: .-... i .. .. .. .. ......... t.. ... ... ...... o - C :.::::. I _ — ---i--- ._ i . .W� 1 .. _ i _ - . {- - -- -- - ...-. .. ..1.... ... E' .. .... .. -I .. .... .. .. �. ......... ..... ........� .. .. .. ... ....... ... ... .. .. ....... .. ..- .-. .. ..... .. - . .... ...... ... -.... ....... ... ..... :I: ...... ... 1' .. :I: .... .. i- i ..... ...... ....... .... } .. ....... .... ..... .. .. ... .. ... ... .. .... .. ..... }- .... ......... ....... .... ....... ..... .... ... ....... f ...a.. .. I. ....... .... .. ....... ....... ........ ... .. .. ..... ... .. .. ..... .... i' .. I:. .. .. .... _ - -- --- — - i C.LILY �T FILLREOl11BEflrt..._ .... .. ._ _...__ _ _.J.._ APP.AOXIMATEF�SIS S� 'j— -BEGIAlfiX360X r ... .. .. .... i' SSE PLAN i: .. .. ..... ...... }: i.. (: I. TOP OF:BAN K . .. .. .... ..... I'. ..... :�'. ... j....... .. .... -. ...- .... .. ... ..... I t- E —___.-.__ -._ .��. 7. .. .. .... .. .. .... .. ..... ..... ..:. .. ... .. .... .. ... ... .. .. ... ... ... .. .... ... .. :�:. -. .. ...-.-- .... i ...... ....... .... .... .. .. ... .. .... ..... ....... ... .. .. ... .. .. .. .. ...-. ... 1' -..... .... .. .. ....- .1� i' -.... 1 ....... ... ... .. . ...-- .... Wit' ....... ` 1:. .. .. .. I.. .. ... .... .. .. .. _ --t-....... 49].00.L .CHANN� .5:�0.9�G....:...:i:........f j 2 6.TiAINREE BOARD: ...... N FLf?WLINE Sea. }:. ..... i E 1 ....... ....... ......: .... .. I :i: I: ..... 3:0' /.... ... ..... ]NVLRT ELEVATION 9 1 (TOP.OF STREAM BANK) ( ---�—....'}' ..... (T . :i ..... i' :. f: ... ` .. .. .. .... 4' ..... .. .�. .... ... :�: .. .. .... ..... . I' . ... �i ! ....... ... .... 'I.. .. E'. .... ... .. ...... ..... .; .... .. .. 1 .. . - .. ..... ...... i .. .. .. - _ ... ....... .. ... {- _ -._ .. ... ....... ... - —k I i ... :}: ... .. .. ... .. .... .. ... I ..... ....... ... .. } ... .. .. :j... ... .. ... .. .. C ... .... 1 :I: { ... ..... .. ... (: i:.._... . .. .. i- .- ... .. .. I j '1 ...... ..... .......:i .. ....,... .I. ... .. .. .. ....:i:.... .. .... ... .. .... j. .... C ....... l :I — i. --- -- I — .... —----:: .. ,. i _ .._----- — .. ... . ..... ..i:..... i ... .. .. I:. ,. .. ...,. } .. } 4 ...... . _.. .. .... .. ... .I. .. ... .i' ... ..I .. . . .-- . mac~ .. I .... .. .... .. .. { ... 4 ....- s .. :1.. I. .... ... .... .. `it .. .i. I- a..... Tf 1 .. f '1 M.G.STA .I .. `(' t . .... 1 .. ... E .. ..... ... .. . L , - ------- ---- �--* I 1 ! j E ... ... ... ....... ...... ... - i .' .- .-. ..:I. ... ... ... ...... .. .. .... .. .. .. .. -� .. - -.-. .... ... ....... .. ........i. ... ... .. - .. .. ... ... .. .. .0 r I.. ... .. aOs a f.�I: rode- . .... :I ....... ... .. .... ! ..... ...... I i !: .... E .91 A FED.AID rRO�.NO. HIGHWAY DIVISION SR 169 �. c� . ,� WaW tngton State r vraC ��/� MC ORAWN J STENN 10 W 196T" AVE. S,E�Jo1ES-ROIAD _ t of T To jai �U Cl*"Ip B.OAKROCK --11tq ING>R 93VP040 _ BWbmm 0sksock ASLA MadSen Creek: Habitat StruCt Nes UPPer Retch 332 w�j 2 4 ,rn Icrem sor Im Locmm Lo CowroACT s o. Lmomme'Anowi ift As ftloomm HAC1 1 A 1 J I HUU 1 UHtS LtUtN r EXISTING CHANNEL 1 Z; :r x.�. t 1 X-L`Y7 �X zX 7;1•� - Cal - . STATION POINT ITEM SYMBOL STRUCTURE — - --� _ 1397-00(85 RT.) ROOT WAD DEFLECTOR N ' m �-------- - 139%-34(1 15 FIT) RGOT WAD DEFLECTOR —� � - ROCK CLUSTER U m m -I ROOT WAD DEFLECTOR � x JN i S.R.169 CENTERLINE ~ — t---- 0 0 0 \ DOUBLE LOG DEFLECTOR o cQo m / 1J T j STAT ION ION LOCATIONS REFER TO \ TRAIL THE BEGINNING OR UPSTREAM } WING DEFLECTOR POSITION OF EACH STRUCTURE. RIPRAP SLOPE PROTECTION, ROOT WAD DEFLECTOR 4 (2)EXACT LOCATION OF HABITAT BY OTHERS - TYPICAL MC 4 STRUC rLIRES TO BE S LAKED IN THE FIELD BY ENGINEER. TURNING ROCKS DRAINAGE EASEMENT '"b �ntltl���utttt�utttt��tto ntttt���.►, ' .� :. OVERHANGING COVER STRUCTURE Z m HABITAT STRUCTURES PLAN ' �'� � GRAVEL STREAMBED STATION POINT 1396+61-1397+6(1 ` O SCALE IN FEET D - ... �........ j:. ... .... .. i .. ... . .. LIMIT(�F:TOPSOIL' .. . I. . p^.: . S:p : 5 -:0" TYP 2(l ( } ... .. ... . ... ... ..- ... ............... . . . ..- i .. .... .... .. .. .. ... ... .. ..... -.. .. ....... ....... .... ..... .... ... ... .... ..... ... .. .. J .. ... .. .. .. .. .. EL'.91.54 .-.. .... ... .. .. ... ... ....:i.... .. .. I..... .. .. ....... ....... .. .... c� ..... $TR�ANAI3DRA�fEL:: __.f_....... f_lrSEEI FAST -� 15°dEP—TH TYR. . . p N FLOWLIN�ATCULV RT:... p �.. ,j. ;..... . .. . ... E. m. i P ... as 1 ¢ SE6 S.EC AiS: .. .. .. ... .. .... .. .... ....... ....... ... ... ....... ...... .... .... .. ....... .. ...... ... �, ....... .. .. .. ... ........f ..... .. t > t' ..... ( I'... ...�: .. ... t SOP OF�ANk X \: .....i .. d So ... ..... .. _ _ — APPROXIMATE -- .. ....... _ _ i Ilpl ►=td a . . .. _ . _ ..... f I 1�1....:: SLOPEs 3 TyF EXISTING, TIN pRADES --- =---------.....- ..- _... .._.. X S G. ;. ... . . �_ ... J!' :f 5" (11I'T�Lu - I j:... TED'ON pI AP H: _ : ,.. WERfiEAC.. ... - .... .... .. .. .. .. ....... .... .. i. ..... ..... �.- ... -- ------ -- ----- — - Ab FE OUM tD ... :II 0.:.".....'......... ..I{A'SAEO :.D..: T2M--95: TP MENT TYPI AL. EET. ... ..... ... ..- . \ . . .. .. ANNEC. !EXISTING .... ........ ....... '..ii' ....'+'....... ...... .. ...... .. . .. ..4 GRADE :; ... . ..... ....... '......._.... : . . . .. .. .. .... I ... :............. . .. ..-._.._......- — — ... .... .....EXISTING CHANNEL ...... ....... .... . I' . . f.. .... ... ..... . .. .. - .... . ... .. . . .. . .. .. i .. ....... .. .......... i .. ..... .. . .... ...... ....... .. .... ..... .....M E T I N::..bE. k PI ATh MAD PROFI1 .. . ..- : ... .. . . .. NSCAL i .... .. ........STATION POINT 1396+61 1397�D:. . .. '.....� .... ...... ... .... ....... .... .... ....... ... .. .. ....... ....... ..... ... ... ..... ... ... .. ..... .. .. -... ...... ....... .. .. ..... ... .'i. 4F i ... .i�CAE NEE . ......... ............. . ... ... - � .. .. ......-. ....-...- ... ...:1..... .1-. .. ......... . ... .. {I: .. : — ......- ..... .. ' . .. .... . .— ---._._...---- ---- .. .. ... .. .. .... I .I I ... :�:....- .. ..... . ..... ' .. ...... ..... ..... ..... ...... ... .. ... .. . . .. . ..... ....... ...... ...;: ;s . A FED.M6 P00J.wo. 62T I HIGHWAY DIVISIONVON Wwdil iglo1 SR t6§ to WASH 19b'fH'AVCS6F.�JQ' WS-R #& Mt of T TO MAPLE%MW- ENon 93VMW0 - �T• oarr no. _ SwIllws Oakro& AMA n�rs �[v►stew �Y R, a-:.'axv +.�a''�'.',.> lA!I�4INIFE7I1101NFEC7uNEwIC�t/ww9 $@fl CfA@li:Habitat SSfllCtlJf@S SEE DETAIL 7 _ r •V, ......?- •� �—THIS SHEET SET y`an I'�6 �" FOR ELEVATION VIEW AXIS T K0 JE3REES TO CLEAR TOE CF BANK- _ r ----SET t:40F TOTA;.Ni IN '� SPAWNING GRAVEL ------------1 ROCK WIDTH T'YF 1 ` 8> - � m 201 6 CLEAR SECTION SUBGHADE STREAMEED GPAVEL DEPTH iTYF.) t 6*TYP, .I it -II SLE SPECIALS #6 REBAR STAKE(TYP.)@ -\ SECTION 12'O.C. 4 MIN.PER LOG I r---- - --2 ROCK'.-ENGTHS TYP _. t _ OVERHANGING COVER TYP K WIDTHS APART n o o� STRUCTURE i X g ---ONE MAN ROCKS TYP. / APPROX.DIMENSIONS m 1 T-18'LONG ,�•� ® 10'*-12•WIDE ALIGN W!END OF WAD j i t 5'-18'HIGH {� '. TOE OF BANK I TOE OF BANK I I — TOE OF BANK S FIR OR CEDAR LOG WITH OTW 5''-.0• 5,-0„ \9. ///45° SOUR OUND WITH(8-10) CHANNEL BOTTOM +-----� -- 1-2 MAN ROCKS AS SHOWN PLAN CHANNEL BOTTOM PLAN P CHANNELBOTT6m 1 R CK L TER TURNIN R K _ ROOT WAD DEFLECTO NO SCALE NO SCALE NO SCALE _ --- TOE OF BANK a' O'ldl[l_1 7-6'� TYP. CLEAR !''12'MAX k 2*6" _• 2'0= 7-61 _— -- (2)9 LONG 15-DIAMETER �- ALDER OR COTTONWOOD _�,-'p, a —STREAMBED GRAVEL a LOGS. :_L i� -L_ 15'DEPTH(TYP.) �— STRUCTURE SEE SPECIALS -- DOWNSTREAM ON SECTION o l O OPPOSITE BANK FROM _J DEFLECTOR 4r TOE OF BANK O -- 415'LONGtS'DIAMETER CD ---VY k0 -� -� >LDERORCOTTONWOOD 5"TYP m -- I JGS. X n - Z ? �_ --- RECESSED RIPRAP BANK LINING-SINGLE ROW OF SEE SECTION.DETAIL 4 v I ONE-TWO MAN ROCK Z THIS SHEET FOR LOG d BENEATH EACH 9'LOG SET INSTALLATION. lb'IN FROM TOE Or BANK. / o HAND EXCAVATE TO PLACE J RUCK. PLAN _ 6Cp• M6 REBAR STAKE(TYP.)2 15-DIAMETER CEDAR OR _----- "-- {- MIN.PER LOG 6'LENGTH. DOUGLAS FIR LOG(TYP) SURROUND WITH 1-2 MAN ONE TO TWO MAN ROCKS ROCKS 3 iY I� _ PLACE (4-5)2 MAN \ ROCKS AT UPSTREAM _- IITI O ////111T(� EDGE OF DEFLECTOR Imp ' - U u_ PLAN- I _ 5.'0. DEPTH. SET WITHIN S PLAN HANNELBOTT SECTION u t STREAMBANK ONLY.NOT IN 5'-0' 5'-0' HANNEL� STREAMBED. I 97ATE LAM-WOF "S*WNGT JIfTECT OVERHANGING COVER STRUCTURE DOUBLE LOG DEFLECTORS WING DEFLECTOR NO SCALE � NO SCALE � NO SCALE Barbara E. OakrpCk C1TIFIGTE no. 407 �Ea STATE FED.AID PROJ.NO. p"`? TOT" HIGHWAY DIVISION SR 169 � Washington State t96TH AVE. S:E./,ZONES ROAD MC : DRAWN C EVANS 10 WAS Deparhnent of Transportation TO MAPLEWOOD .. CHECKED B.OAKROCK JOB Num"Pt (� PROD.ENGR. 93WO40 DIET.ADM.. 7/27 DELETED DETAIL AND DEVM0 Dews 4�6 tD caETYUYCT YIO. Barbara OfltCrOCIC AStA DATE REVISION SY AA LANDSCAPEMCHrtECTUHE AM warlrlr�c Madsen Creek: Structures Details M _EROSION K F CONTROL MIX 'r F F i F 9p� F. D F -i 1 F a�� F F F A G�p� \\`+ Z \�'y/ m F F SCRUB SHRUB WETLAND TYP. 3 4 -( SEE PLANT SCHEDULE MC5 = f p F SHEET MC 5 (A F N f 4 TRANSITIONAL MIX(TYP BRUSH LAYERING TYP. I F F F I SEE PLANT SCHEDULE MC 5 n1 I„�g SEE PLANT SCHEDULE I F f F f F SHEET MC 5 SHEET MC 5 m / f RIPARIAN TREES ITYP. SEE PLANT SCHEDULE MC5 SHEET MC 5 EDGE OF SHOULDER — SR 169 CENTERLINE o0 0 0 0 0 + o + o 0 O (V m p co M m PLANTING PLAN U 20 40 M.C.STATION POINT 4+09.21-9+30.00 N SCALE IN FEET D n T �Fq � R.O.W. _ me I��r NOTE m EXISTING CHANNEL 1 1. TOPSOIL: THE CREEK RELOCATION CHANNEL SHALL RECEIVE A UNIFORM 3"LAYER OF TOPSOIL TYPE C ACCORDING TO THE LIMITS SHOWN IN \ DETAIL 1 SHEET MC2^DISK TOPSOIL INTO TOP 6" OFSUBGRADE. TRANSITIONAL MIX G m SCRUB-SHRUB WETLANd MIX o S.R.169 CENTERLINE o o 0 0 0 \ + + + \ :' \ \ TRAIL RIPARIAN TREES E TRANSITIONAL MIX � r DRAINAGE EASEMENT 1� c_ O F. m BRUSH LAYERING SCRUB-SHRUB WETLAND MIX ` 0 � D ,` , [TATI OF WETLAND SEED MIX uw CJ3MNaTCJYTaCT • Barbara B. Oakrock CUMFICATE IIO. 407 ".40 STATE FED.AID PROD.NO. sm." ITOT� HIGHWAY @WAY DIVISION AW P.FINE _ Washington State SR 169• MC ,p WASH � 196TH AVE. S.E./JONES P=P_ m.NUMBER A Department of Transportation .TO MAPUN6ou /„m ECKEp B.OAKROCK 189 OJ.ENGR. 93WO40 1ST.ADM.- 1 CO/^^��T Imo. APICHUEcnrRE AND PLANNING Madsen Creek: Planting Plan 333 m.. AD=s>gT FAYE11 " � Barbara Oakrock ASLA DATE REVISION BY APP' On CUT TING 1 -E NOTES: yN °" •` 7 r _ t ����� - -SEE PLAN FOR LENGTH OF �(• �� - f 7 I LI' " k `, BRUSHLAYERS \i;�-.` �• 'C h� a f. ! ' �\ I - -- -tAULCH-FtATr•EH JEPTr. �� :�:�•, , N!S,, __ •y-� i I \� 1 -Tc_!-lJF RA!N&ASIN SHALL I TO STEM 1 , Y -1 •COMPACTED 6RUSH \ i - \ � I ..•v �. _A'v _, CIT'r l �I,� \ 'll - BE,10 LESS THAN X LAYER MAT SHOULD BEA - 14,�� �J 1 WCHESL_'.'JERTttAN \ r ! 11 � MIN OF 4"THICK 1 `V UPHILL RIPA OF PIT -- -MULCH PER St'ECIFrATIOti \ / - -BRAN CHES SHOULD BE t c I11=1 _ _ .� _—j — L'ULCH F L:,THEH DLPTH S,UC.E _:`h._Tj3LIR�' II �� EXPOSED.3aBURIED SEE 1 --..._...'�T MAX i T.,cI— K PLANT SCHEDULE FOR r = - - -FuRM'WATERING SAUCER TYPES AND QUANTITIES —FORM ii:•INo:.S:N OF=�Rt.1, tr K� ,NE ' FCK?T BEYOND EDGE BEFORE AFTER �L ^aTPvE sc! >T LOWER SIDE x y �I r OF PIT _ram TOPSOILING TOPSOIL OF PIT _ ,III! 'LIICrL -PREVIOUSG?'?tt!ti3LEVE- - P WI,n ' t D AT FINISH GRADE D PLAN N m - •-. I I LEVEL AT FINISH GRADE 1 ";.4 FINISH GRADE _ N _.._ LO"!'-'3 c`CAL O� I • „� "I 1 I�I I I�, I , -BACKFILL PIT I:I MIX DORMANT BRANCHES oi? ` I 1 ;l l -� ,{ NATIVE SOIL EXCAVATE It I= �/ �= �-7/8 x ROOT MASS DEPTH 30 SET IN BANK 8-?2" \`� �, \ .\I`-BACKFILL PIT 1:1 MIX AND SOIL AMENDMENT APART RANDOMLY _ NATIVE SOIL EXCAVATE IJ- -- CRISSCROSSING I rn AND SOIL AMENDMENT ,!_• _ �TEA!S I I— I II11 "X ROOT DIAMETER FERTILIZER PER SPEC �llll \ — MINIMUM SPREAD ROOT"IN ALL 3 X ROOT DIAM. - fill I ___ 2 TIMES DIAM.OF ROOTS - BACKFILL PIT TO TWO Imo! -'•'-:'I•-=?'!'E .MIN MAT -__ ._ FERTILIZE PER SPECIAL INCHES BELOW CROWN - -�' DIRECTIONS ON TOP OF DISTRIBUTE ROOTS GENTLY-- ---- WITH I:I:I MIX SEE NOTE 3 - PROVISIONS MOUND OF COtAPF-.CTED IN ALL DIRECTIONS OVER SHEET GC2. SECTION ;- NATIVE SOIL- COMPACTED MOUND. TOPSOIL MIXTURE,SEE 1 ,EXCAVATEPLANTING PIT L SPREAD ROOTS IN ALL TWO TIMES A--WIDE AS NOTE 2,SHEET GC2 SCARIFY SIDES OF PIT TO. DIRECTIONS ON TOP OF THE ROOT BALL DIAM.AND PREVENT GLAZING MOUND OF COMPACTED SAME DEPTH AS ROOT BALL NATIVE SOIL. HEIGHT to�OSCALE LF COURSE PLANTING DETAIL *__��!!H LAYERING SLOPE PLANTING DETALBARMS OT PLANTI�CU ETAILERGREEN OR DECIDUOUS ) BARE ROOT TREES, SHRUBS AND CUTTINGS TREEHRUBS ANTTINGS NO SCALE NO SCALE PLAN PLA NG PLANT SCHEDULE: MADSEN CREEK SPROUTED ROOTSTOCK A- �-SPROUTED ROOTSTOCK PER TYPE SPECIE SIZE AND PLANT SCHEDULE.THREE SYMBOL OR MIX QUANTITY % BOTANICAL NAME COMMON NAME CONDITION SPACING A-S.N.S.SPECIFICATION' /{! HOOTS PER HILL 5'O C OF MIX NOTES: ALNUS FRAXINUS 1- THE ENTIRE CREEK DRAINAGE \ RIPARIAN 6 - ALNUS RUBRA RED ALDER 18"BAREROOT SEE PLAN 1.1.3.2 TYPE 2 SHADE TREE ' SECTION SEE PLAN i.t.3.2 TYPE 2 SHADE TREE EASEMENT SHALL BE HYDROSEEDED �� /� i h A TREES 81 - FRAXINUS LATIFOCA OREGON ASH 18"BAREROOT WITH THE EROSION CONTROL MIX, j BACKFILL PIT I:1 MIX INCLUDING MADSEN CREEK CHANNEL. I NATIVE SOIL EXCAVATE ` 32 - THUJA PLICATA WESTERN RED CEDAR 2.1 SEEDLING SEE PLAN 3.t.2.4 CONE TYPE EVERGREEN 2 X ROOTSTOCK i, j' ! AND SOIL AMENDMENT THUJA 2.PLANT PIT BACKFILL TO BE A EPTH 1 L t, I:I MIX OF NATIVE SOIL EXCAVATE _- _ _ FINISH GRADE TRANSITIONAL 50 20 ROSA NUTKANA NUTKA ROSE 15"MIN.BAREROOT 8'-0"O.C. 2.1.5.4 AND SOIL AMENDMENT. MIX 50 20 SAMBUCUS RACEMOSA RED ELDERBERRY 15"MIN.BAREROOT 8'-0"0.C. 2.1.5.5 — +1= PLANT ROOTSTOCK SSPROUTED > 50 r-i ILL= ROOTSTOCK SO THAT 20 SYMPHOROCARPUS ALBUS SNOWBERRY t 5"MIN. N1 CONT. 8--0 0"O.C. 2.1.5-5 AND 2.2.2 � - - I GROWING COLLAR!S AT THE 50 20 MAHONIA AOUIFOLIUM OREGON GRAPE 15"MIN. 01 CONT. 8--0"O.C. 2.1.5.5.AND 2.2.2 3 X ROOTSTOCK _I I LII--�Ih111I SURFACE 25 10 THUJA PLCATA WESTERN RED CEDAR 2-t SEEDLING 8' 0"O.C. 3.1.2.4 CONE TYPE EVERGREEN DEPTH 1B• _ DIG PIT 18"DIAM.AND THREE 25 o LNG EN / - - TIMES ROOTSTOCK DEPTH. SCRUB- 70 _1= CORNUSSERICEA RED OSIER DOGWOOD 15"MIN.BAREROOT 5' 0"O.C. 2.1.5.4AGRADE t•2. / SPROUTED ROOTSTOCK PLANTING ^$ -SHRUB 37 20 RUBUS PARVIFLORUS THIMBLEBERRY 15"MIN.BAREROOT 5'-0"O.C. 2.1.5.4;AND 2.2.2 I\ MIX 46 25 SPIREADOUGLASII DOUGLASSPIREA 15"MIN.BAREROOT 5'-0"O.C. 2.1.5.4 AND 2.2.2 WETLAND SPECIES NO SCALE 37 20 SALIX SP. NATIVE WILLOW 15-MIN.CUTTINGS 5'-O"O.C. 2.1.5.5 NATIVE TO PROJECT AREA /��.\ PLANTING HILL 950 60 SALIX SPECIES NATIVE WILLOW SEE PLAN 2.2.2 BARE ROOT ROOTSTOCK BRUSH � PER PLANT SCHED..THREE LAYERING 650 40 CORNUS SERICEA RED OSIER DOGWOOD CUTTINGS 1/4"- AND SPEC. MIX 1"DIAM.,4'-6' I ROOTS PER HILL.h O.C LENGTH 1 Q PLANT ALL ROOTSTOCK WITH EYES OR GROWING POINTS ! FACING UPWARD i PLAN 2 X ROOTSTOCK / DEPTHMIX i EROSION HILL % �-BACKFILL PIT I:I VA CONTROL SEE NOTE SEE SPECIALS �U - NATIVE SOIL EXCAVATE AND SOIL AMENDMENT .' SEED 39,200 SF `� I I II� i� MIX 1�I --- /� �FINISH GRADE -DIG PIT 18-DIAM.AND THREE A."WIT 13 X ROOTSTOCK - SECTION TIMES ROOTSTOCK DEPTH. Lw��� BARE ROOT ROOTSTOCK PLANTING Barbara E. Oakro[k WETLAND SPECIES NO SCALE PER ANSI Z60.1 1986 �nncwn um �oT "■°p" STATE FED.AID PROJ.NO. '"ER .Nam HIGHWAY DIVISION SR 169 DRAWN 10 WASN _ Washington State 196TH AVE. S.E./JOKES R04D MC5 J.STENN DePartment of Transportation TO MAPLEWOOp CHECKED B.OAKROCK �o�NutuEe wr 93W040 191 tea.ENGR. Barbara Oakrock ASLA o. DIST ADM 7,a �oEV"ACM A 9DVMU Lo COMTIIACT NO- LANDSCAPE IWCM1ECTt1RE ANo PLMNINc Madsen Creek Planting Details 333 DATE REVISION sY APP' _ TON BEGIN CONSTRUCTION A� STA. 0+9.35 11,54 51 STq o Asl Xab O /V, N FpG� T hr g o' 2 0 O T.O. HEADWALL : EL. 70.96 4 M A -, NC--1 \ C W iris Cov ►,ei-� HEAD WALL \ �l NET WSDOT F6H LADDER f` qT� - " PVC, (i k tc \ FENCE 40" MAPLE \ 40" MAPLE \ \ � 1 \ 40" DEC./ T SCALE L 0Cf, n -Tl D• C_GreY 2 -6 -98 T— n /A-1 co fC cc Q a � ? i 6'su, o � '� ! � � W � ❑�o W \ 7: ai i � v W W o y a i '0� 0 SuY�0 V),n Si 3 41, ` a�) Q .a y i :: a �c ; M E M O R A N D U M — — — — — — — — ' :' g o E oS O Abdoul Gafour, Utilities at DATE: August 26, 19 a v bb oo B A l z o c a FROM: Randy Berg, Staff Designer SUBJECT: New Sewer - Old Septic Tank at Maplewood Golf Course This memo is to confirm that the Parks Department is aware of and in favor of leaving the existing septic tank system in place at the lViaplewcod Golf Course Clubhouse . With the new sanitary sewer Jane connct�cted to the clubhouse, the old septic tank can serve as a grease trap. Cleaning two or three times a year should be adequate to keep the grease out of the sewer. This will become a regularly scheduled maintenance operation for us. I IQ���WOGoi C?O1.P �OVfI-or T>Q 1w n �t out c) iE a4 Z ; 0 0 o I LIC?vim I, �l ►n �g 4''Y at v MA���twoc�l c.�a�� Ql1r�CG . — u » Glr�n Ncuyc GGhtfCfG Croy 00 Le 15 pup 4,16� fo brown l�G4)� —� j CHANNEL HORIZONTAL CURVE DATA CURVE RADIUS (ft) LENG�(ft) DELTA PI NORTHING t PI EASTING HC-1 30'-0" .97 1'51'9" 175415.66 1310239.49 --- - . HC-2 30'-0" 21.35 40'4718 1-75437.07 1310239.49 -- --- - - HC-3 150'-0" 156.91 59'57'51" 175522.26 t 1310501.68 _. HC-4 125'-0" 49.12 22'31'41" 175414.89 1310621.07 HC-5 75'-0" - - _ 28.97 22 HC-6 100 ------ '-0" 175398.22 l 1310668.31 _ 67.45 38'40'3` 17532107 1310755.28 HC-7 50'-0" -1- -18.31 - - - 21'0'9" 175316.80 1310839.16 _. HC-8 50' 0" 48.89 563'17" 175292 75 I 1310893.40 _ _. I f HC-9 100' 0" 10.22 5 5134 175351 87 13-10987.50 ---------- - - - - - -- _ HC-10 100'-0" ' 88.73_ 50'51'53" 175_414.08_ 1311068.15 HC-11 60-0 97.50 _ 93'9'14" _ 175380.26 _1311219.72 HC-12 100'-0" j 22.12 12'40'53" 175514.44 i 1311242.68 . f HC-13 100'-0" } 33.00 18'S5'12 175571.77 1311266.62 ------- - - - - -- - -- HC-14 95'-0` i 139.71 84'18'8" 17_5668.0-7 1311352.09 HC-15 80'-0" _ 89.07 63'49'39" 175813.25 1311218.04 H9-16 75'-0`-- 37.62 28'45'S" 175946.31 1311269.41 ------------ .......... - ---- - - - - - .... ... - 4 _... HC-17 50'-0` 23.70 2T10'35" 176024.83 1------ .54 SURVEY MONUMENT #1888 BASIS OF BEARING N 89'29'54" W UTILITY LOCATE INFORMATION UTILITY DESCRIPTION 1 NORTHING* EASING* T.O. PIPE EL COND1 T.V. 2"0 WHITE PVC i 175417.68 1310232.70 68.59 COND3 PHONE, 4"� TAN do 1 1/2"0 BLACK 175425.02 1 1310240.86 67.34 COND4 PHONE, 470 GRAY PVC i 175427.59 1310241.90 67.13 - --- -- - - -- UGW1 16"0 WATER MAIN - - - -- --175435.4$ t 1310243.89 66.69 UGW2 12"0 PIPE 175563.66 1311241.38 79.89 UGW3 16"0 PIPE 175571.33 1311255.83 80.64 UGW4 16"0 PIPE I 175567.30 1311248.72 79.95 --- -- - - - - - - - - - - - - - - --- - --- -- ------------------------------------------- SSsZ.16 ���� - - - ---- l3IIZ39,38 NOTE: THE*THE COORDINATES FOR THE UTILITY LOCATIONS ARE APPROXIMATE AND ARE ONLY INTENDED TO HELP THE CONTRACTOR LOCATE THE POSITION OF THE CONDUITS. URVEY MONUMENT #1520 A f Gj rl /L - / _/ I l f LoGa -b:"s 6k.5zj Or, Survey Co°Yc�J. cv M M S 3' N N N N ..noon »»» / 5 L1 3 5 w��� w3'RIP3 o '`'o '°`C is raw ST sf NNiiww �,/ V�.1 S NNQQ e. C \ �% s c y 2 s— ss� •' • i c y • s �?� sr "O-C iss� 3 • L420 — \ 1550 ct •N. . Us /S6/ t • D, Clilec )IV,A7b"P- MA l rJ �- 6 cA -1V ON.S 8 4J,- ') of, ,5 u 2 V L Y • y �y O Q!5 � h �V u•www M �aaa�da 0.0000 �f�6iLiww j W 3 V===UU SZNNf/1QQ �t wz CHer� CuND • � �.5550.DN i)P V\I y 8 y, Sit 7`I . 9 5 VJ 2 a.3, q6 71 '67 c a3, 32 8 J . 34 V 'bdST.QCV OWMN 'A440 -:7-7 'y NC MMLEWOODI GO _F n- OURS AT #8 TEE '-- D INSTALL NEWAIR VACUUM RELEASE VALVE ON EXISTING 40 MAINLINE: ONSUI; lKlQ'i D F 1, e G -&16 �'o q .0 SYSTEM IS DESIGNED TO PROVIDE I-W PRECIPITATION PER SEVEN DAY WEE K I TIME AT 900 GPM DISCHARG.E FOR-FAIRWAYS AND FUTURE'PARK-AR]tA EAST* ;6 . :-SALVAGE EXIST. 1 1/r RIVER.,* FAIRWAYS 010, 011, 012, 017, 019 AND DRIVING RANGE SHALL BE-.,SEll FROM THIS SAME PUMPING SOURCE. PULL CIRCLE ROTIDR SPRINI V VALVE TO OWNER 1-7-17 SPACED AT "PROXIMATELY 65' TRIANGULAR 0. R 60* SQUARE. EACH SPRINKLE) 1-7-15 "PROX 20 MINUTES TOTAL IRRIGATION TIME PER NIGHT DURING THE WAR 8 OLD 0 ... ... Ic .- DRY PART OF . %1-7-20. THE SEASON 0 ., 7-22 1-&2 1-7-14 �o *24 6 1-7-23 . PROPOSED FISH CHANNEL, at A. 1-7-12 0 65.0 feet 0 65.0 feet 0 1-7-8 p 0 -0 JL 0 4 00 1710 EXIST.V MV., 15-46 ol-5-2 EXIST. CLUBHOUSE MAPLEWOOD CREEK - (DEMOLISHED IN FUTURE) OLD 1-7-9 13 EXIST.0(!V.� 4�- lu 00, 1-7-3 -xil to's 1 -7- 1-7-5 1 7 0 * .7-2 I-S-10 %1-9-17 0 . r 0 -9- 0 1-9-15 0 . 6 13!10 I OLD 1-548 0 65.0 feet 1-13- 1 No; 0,- lu 11, n - ) * % .- . 1 1 .1. -20 9 1-13 5- 1 1 MLYAGE 00 .:Of r raxv.7o Typ SPRINKLER - -9-14 FUTURE #9 TEE AREA ICA 00 -3 1-13-17 -RAINBIRD 700-E- 0 1-9-7: 0­1 0, 'A ExisT a-ay. :111 3 00 a, (�h-9-13 SPACIaG 0 MAINLINE -13- (NO SCALE) 24" PIPE 0 L[t 0 io 0 2 OLD 0 -3-5 19-11 6r -3-13 V�Xltll 4 13. - _�d6 0 TM(TO FUTURE #9 TEE) 4 1-3-1 SAND BEDDING -io 1-3-4 0 -1 2 -4- WHERE REQUIRED. EXIST. SUPT. OFFICE (SEE NOTES). (EXIST. CENTRAL LOCATION f:�-17 01-1-4 17,2-1 :1-113:0 4 SIGNAL WIRES, 0 L 2 SPRINKLER CONTROL -0 WIRES AND REMOTE 115V S ATELLITE PC 0 79 -4-1 -2-� OQ 0 e PUMP MONITOR WIRE CRO 4 OLD 0 0-4 AS REQ'D '13 -10 \1-12-12 _0 o 0 o 0 MICAL MAINLINE TRENCH CROSS SECTION .2.4 . 1.Itj 1-1- 6 1210 NO SCALE VL 0 112-3 1-10-6 0 NOTE: '.L. No AEDDING REQUIRED WHERE SOILIS ACCEPrABLI -4-13 1-10-7 -,01D 1-12-io 0 L 1-2- '2. WHERE INSUFFICIENT FINE MATERIAL, IS AVAILABLE -0 S OLD 0 1-12-9 1-12- -4-9 0 BACKFILLING, OWNER SHALL PROVIDE SAND.'BED61NG : 0 1-4-15 10- MINIMUM ALL SIDES. b . -12 1 1-2-20 0 1-10-20 1-10-2 PUMP PLANT SITE PROPOSED FIMCHANNEL 1-12-6 00 0 0 122f -THIS SHEET 0�_ 1-2-17 1-1-18 0 1-2 , SEE DETAL "Am -2 6" 0 1-2-18 \ I I . 1-2-22 AND SHEET 3 OF 4 11-2 0 0 1-10-191 __o 0 'Do <4 k A ljl� 2-15' . 11-2.7 '4�t 41-23-,. 6 co 0 0 - 'TING r 0 EXIS 1-11-6 '14 0 0 1-2- AND CONDUIT 0 1-2- -10-17� -,o . 0 WORK WITHIN THIS BORDER MARKING ' 1-11-44 1-2-6 IS BY OWNER'EXCEPT 0 0 1-10-14 NE/VALVE/DISSIPATOR -0 0 0, / 11-10-15 , 0 4 r NEW LAKE-FILL LI ow LAKE .70.0' HWL 2) 00 1-2- 4� 0 -2-1 0- 0 1-11-13 1-10-12 . 0- NOTE- OWNER SHALL CUT/CAP AND Af' RECONNECT ppE/WIRNG FOR' 0 EXISTING SYSTEM PRIOR To.. 1-11-8 0 141-21; % 0 0 LAKE CONSTRUCTION 3 OLOP 1-10-10 1 1-8-2 ol-8-20 611 . REPER TO OWNER AS-BUILT OR Cf.1-11-.i EXSTING IRRIGATION SYS M 0 0 41-19 PRIOR TO CONSTRUCTION dP o 1-8-5 EXIST.. WATER DEPT. WELLS 60 . 0 80 4 lor EX r 10 . 80 SLEEVE TO PART CIRCLE. SALVAi IR t 4 IST7, CHANGE FULL CIRCLE RoTolt A ONDUIT TO LATER A�W* EXIST. 00 ppa 40 8 ISO. 6- V. 14 RELOCATE AWAY FROM PATH. CHANGE FULL CIRCLE RMR Td PA -7) 2-24-8 40 SALVAGE FULL CIRCLE ROTOR. MAPLEWOOD mv. SEE -7 % 0 PUW PUNT PLAN A RELOCATE FUt&CIRCL&ROTOR. CHANGE TO PART CIRCM SALVA:C BRIDW CROSSING LAKE-FILL ENERG-f ROTOR. 112-710 611 DETAIL 1 2-24- ISONALYE f 2-7-11 4 11 .__ . . I I I CHANGE FULL CIRCLE ROTOR TO PART CIRCLE. 8ALVA6g'nML Clg LEGFNn - MECHANICAL EXISTING 2- -8 L CHANGE FULL CIRCLE ROTOR TO PART CIRCLE. 6ALVA62 Fttt CIR 91 AKE ' I 141-1 74.5- HWI. 0 . RAINBIRD EAGLE 700-E (#16 ELECTRIC VALVE-IN-HEAD FULL CIRCLE ROTOR SPRINKLER 80 PSI,20.8 GPM, 140' DIAMETER .. 11 14- NEW PART CIRCLE ROTOR ADDED TO STATION 2-23-1& _e'2-7.9 ;_, /' 2-2 10 RAINBIRD.EAGLE 750-E (#16) ELECTRIC VALVE-IN-HEAD ADJ. PART CIRCLE SPRINKLER - 2-7-4 -, 6 611 -7-2 CHANGE FULL CIRCLE ROTOR TO PART CIRCLE. SALVAGE FULL dik RADIUS CHANGE STATIONING TOA-14-19 80 PSI,20.8 GPM,66 A 2-24-1 2-8- .1�f - , I 18 - .1 .. . % 171 EXIST 4"' -14-21 2- * EXISTING QUICK COUPLING VALVE� 6'# TO BE SALVAGED AND REPLACED WITH NEW RAINBIRD EAGLE 700-E ( ,,v OR 750-E( ) ASSHOWMONPLAN. RE-INSTALL SALVAGED QUICK COUPLING VA LVE (APPROX. 15 TOTAL) NEW QUICK COUPLING VALVE-LOCATIONS.' -7-s 2-74 \/Iv- v v 2 NEW QUICK COUPLING VALVE (I-) INSTALL 1'-0" FROM ADJACENT.SPRINKLER HEAD OWNER TO"PROVE:ALL LOCATIONS ALL MAINLINE PIPING WORK SHOWN WITHIN BORDER IS EXISTING EXCEPT 4 SEE NOTE 10 PVC MAIN MARKED 4" GATE VALVE IS EXISTING. WORK FOR THIS PROJECT CONSISTS OF 0 TANT. (ON #7 & #8 FAIRWAYS NEW LATERAL VALVE CONNECTIONS SH EXISTIN.G GATE VALVE AT 012 GREEN SHALL BE LOCKE MAN ALL BE MADE INSTALLATION FROM EXISTING ' LATERAL V4LVE -LOCATIONS AND D CLOSEM UAL LATERAL ISOLATION VALVE (2") SPRINKLER, LATERAL & 24 VOLT WIRING1 AT ALL TIMES*(EXCEPT.IN CASE OF EMERGENCY1 ONCR NEW : TO EXISTli4G MAINLINE PIPE) ' COMPLETION OF 4" MAIN MARKED IRRIGATION SYSTEM Pump.pLANT IS OPERATIONAL _'EXIS!hNG MANUAL DRAIN VALVE ' (AT BRIDGE CROSSINGSY NEW SUPT. OFFICE MAINLINE GATE VALVE (SIZE INDICATED) (NEW CENTRAL LOCATIO EXISTIN 0 MAINLINE GATE VALVE (SIZE INDICATEDY,- HERWISE NOTED) a ay. 200 PVG-IATERAL PIPE (r UNLESS OT TFD)' LEGEND NUMNICA1, (COMM 34 MAINLINE PIPE-. CLAM 2W PVC (SIZE INDICATEDY: 'EXISTING CLASS 2 PIPE-, EXISTING CLASS-206 PVC LATERAL PIPE ' (T UNLESS OTHERWISE NOTE 00 PVC MAINLINE ASIZE INDICATED) .0/ EXISTING MANUAL LATERAL ISOLATION-VALVE (2") C STING CAP OR PLUG (THR UST BLOCKEDY. , E3aSTlNG RAINBIRD EAGLE 700-E (#!6) ELECTRIC VALVE-IN- HEAD FULL:CIRCL RAINBIRD PAR 24;9S SATELLITE CONTROLLER (24 STATION CAPACITY) RO"R SPRINKLER 80 PSI,20.8 GPMj,140-DIAMETER '4*5z��RAINBIRDPAR-*jd_SS SATELLITE CO NTROLLER.-_�_ '_ (16 STATION CAPACITYy wWMNGRAINBIRD EAGLE 750-E (016) ELECTRIC VALVE-IN-HEAD ADJ PART CIRC SPRINKLER 80 PSL W.8 GPK 66'RADIUS E113STING RAINBIRD MAXI CE NTRAL COMPUTER CONTROLLER (RE-LOCATED)Omni 4V 4 LE 700.2 0--VALVE-IN-HEAD ROTOR SPRINKLERS ON SAME CON' Z NVIIUMBINTZ110 IN LEGEND 0 TROLLER STATION LAM VffA=SCPtEEN_ AWVACUUM RELEASE,VALVE sm 1"lillw PIM&PEW ,zr r 1-z-13 ; ►♦ `e , - - , ♦ .1-10-22 l-2"Z► /1-2-YP r\ 1-to-19� 1 GICY I-Io-I Qr_ ' l0 i / I-to-12 • � 1 1--to-Ise •� I 1-2-22\ � / I-10-11■ 1 • (t-8-Z2 1 I-Z-ZO4 1 1-10-10 on Cl R ' y 'L • �- 1-10-e . a N \ ■ ■ MAINLINE -NOTE:ONLY Ott MAINLINE � 1 \ \` 1-s-19 • SECTION WAS INSTAL-LW L44PEIZ ^off I-a 3 THIS CDNTRAGT� LOCATIONS OF •A • __,�� ALL Cctl WE &.m? (mxm ONLY. � � �� ♦ / 0 I VALVE 00 00 l ; O PAINE112.L7 -700-E FULL. GleGLE HEAD; • •00,100 • - f2AINBiW -150-E PA12T CI{ZCI.E HEAP ' . 16 Ate. m p 1ZANEII20 PAR-24 COHT9-OLLF, - ,-s-►u 1-8-15 LRTEIAL. LINE X l-ATE�_,AI✓ ISOLATION vALVE l-S-►� - - DQ MAIN L I NE 150LATION VALVE IC IA � 1-s-11 � "I-1 � any -----.___. ►-s-1 n p ELECTRICAL SPLI GE/JL HCTION 13OX nd MAPL�WOOD GOLF COW12SE P EMOI2EL Ed lu I-IOL-E5 # 3 AN o W c A S S C i ^ TES ' " ASEUILT IRp ICTATION MECHANICAL. PLAN Landscape Architecture Planning❑ Construction ❑ Grounds Maintenance SCALD 1 y c (00 t —0 n SEPTEMBF.Iz. 19�5 15WS S17 17Ist tit❑Po 1k)x 58OW❑Renton,WA 98058 Phone 255-5726 I�t 0. IS LIP