Loading...
HomeMy WebLinkAboutCA_Stamped_Engineering_Calculations_240829_v1ASCE Hazards Report Site: 5424 NE 10th St, Renton, WA 98059Plan: Bull ADU Job: 240237City of Renton Standard:ASCE/SEI 7-16 Latitude:47.499723 Risk Category:II Longitude:-122.146298 Soil Class:D - Default (see Section 11.4.3) Elevation:417.8257823107133 ft (NAVD 88) Wind Results: Wind Speed 98 Vmph 10-year MRI 67 Vmph 25-year MRI 74 Vmph 50-year MRI 78 Vmph 100-year MRI 83 Vmph Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Date Accessed: Fri Jul 19 2024 Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Page 1 of 4https://ascehazardtool.org/Fri Jul 19 20241 of 46 SS : 1.395 S1 : 0.478 Fa : 1.2 Fv : N/A SMS : 1.674 SM1 : N/A SDS : 1.116 SD1 : N/A TL : 6 PGA : 0.594 PGA M : 0.713 FPGA : 1.2 Ie : 1 Cv : 1.379 Seismic Site Soil Class: Results: Data Accessed: Date Source: D - Default (see Section 11.4.3) USGS Seismic Design Maps Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8. Fri Jul 19 2024 Page 2 of 4https://ascehazardtool.org/Fri Jul 19 20242 of 46 Flood Results: Data Source: Date Accessed: FIRM Panel: Insurance Study Note: Flood Zone Categorization: X (unshaded) Base Flood Elevation: FEMA National Flood Hazard Layer - Effective Flood Hazard Layer for US, where modernized (https://msc.fema.gov/portal/search) Fri Jul 19 2024 If available, download FIRM panel here Download FEMA Flood Insurance Study for this area here Page 3 of 4https://ascehazardtool.org/Fri Jul 19 20243 of 46 The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided “as is” and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard. In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool. Page 4 of 4https://ascehazardtool.org/Fri Jul 19 20244 of 46 Hodge Engineering, Inc. John E. Hodge P. E. 3733 Rosedale St, Suite 200, Gig Harbor, WA 98335 (253) 857-7055 ASCE 7-16: Snow Loading Calculation Site: 5424 NE 10th St, Renton, WA 98059 Plan: Bull ADU Job: 240237 Roof Snow Load: 25 PSF as determined below Four resources for determining snow load: 1. Snow Load Analysis for Washington; 2nd Edition by the Structural Engineers Association of Washington (SEAW). “This edition provides a large color map for each half of the state, with normalized ground snow load isolines and elevation contours to help readily determine the ground snow load anywhere in the state”. o Ground Snow Load pg: (ASCE 7-16 7.2 Extreme value statistical analysis using 2% annual probability of being exceeded) Normalized ground snow load (NGSL) = 0.050 Lot Elevation = 420 ft. from Google Earth Ground snow load = NGSL x elevation = 0.050 * 420 = 21 psf = pg 2. WABO/SEAW White Paper #8 “Guidelines for Determining Snow Loads in Washington State” available on www.seaw.org/publications o SEAW Snow Load Analysis for Washington Appendix A = Renton – 20 PSF (@15 FT) 3. ASCE 7-16 Chapter 7 Snow Loads o Roof Snow Load pf: ASCE 7-16 7.3 Flat roof snow load pf = 0.7CeCtIspg ASCE 7-16 7.3.1 Ce is the exposure factor = 1.0 for partially exposed structure (table 7.3-1) ASCE 7-16 7.3.2 Ct is the thermal factor = 1.1 for heated residences (table 7.3-2) ASCE 7-16 7.3.3 Is is the importance factor = 1.0 for residences (table 1.5-1) ASCE 7-16 7.4 Sloped roof snow loads - no roof slope reduction Cs taken unless noted otherwise ASCE 7-16 7.6 Trussed roof or slope exceeding 7:12 – no unbalanced snow loading pf = 0.7CeCtIpg = 0.7 * 1.0 * 1.1 * 1.0 * 21 pg = 16 psf Flat Roof Snow Load 4. Local Jurisdiction’s Determination o Minimum roof snow load 25 psf., U.N.O. “Snow load to be approved by the authority having jurisdiction…” ASCE 7-16 7.2 5 of 46 TABLE OF CONTENTS Project and Site Information ........................................................................................................... -Engineering Methods Explanation (2021 IBC Lateral and Gravity Engineering Calculations Package For Plans Examiner) -Wind Speed Determination - Applied Technology Council -Seismic1 Spectral Response - Applied Technology Council -Satellite Image of Building Site and Surrounding Area -Snow Load Calculation (with Normalized Ground Snow Load Chart if Over 30 psf) Lateral Analysis ................................................................................................................................ -Project Lateral Information - Design Settings and Site Information -Woodworks® Shearwall Lateral Analysis - Layout and Uplift by Floor -Design Summary - Shear Wall Design and Hold Downs -Shear Results for Wind - Critical Response Summary -Shear Results for Seismic - Critical Response Summary -Simpson Strong Wall Design Criteria and Anchorage Calculations (if specified) -Plan Specific Lateral Items Gravity Load Analysis ..................................................................................................................... -Forte® Job Summary Report - List of Beams and Headers -Member Reports - Individual Beams and Headers -Plan Specific Gravity Items Foundation ........................................................................................................................................ -1500 PSF Reinforced Concrete Pad Calculations -Continuous Concrete Footing with Stem Point Load Engineering -Restrained Retaining Walls if Present -Unrestrained Retaining Walls if Present -Plan Specific Foundation Items 1 2021 International Building Code (IBC) 6 of 46 2021 IBC Lateral and Gravity Engineering Calculations Package For Plans Examiner This engineering calculations package contains the lateral and gravity load engineering as noted in the engineering scope. All engineered load bearing structural members are specified on the full size engineering sheets. The enclosed engineering calculations document the engineering analysis. The engineering calculations are not required to be referenced onsite for construction. These calculations are to demonstrate to the Plans Examiner that the engineering was completed following the 2021 IBC. The cover sheet of the engineering specifies the engineering scope as lateral and gravity load engineering. LATERAL ENGINEERING: Lateral engineering involves determining what the seismic and wind loads are according to ASCE 7-16. Applying these loads to the structure, and determining the design of the lateral structural elements to resist these loads. The structural elements are sheathing, nailing, holdowns, and the connections between loaded members and shear resisting elements. Lateral load modeling was completed with Wood Works Design Office 13 (www.woodworks-software.com 800-844-1275). Wood Works was developed in conjunction with the American Forest & Paper Association. The AF&PA is the same professional organization that produces the National Design Specification (NDS) for Wood Construction, the Allowable Stress Design (ASD) manual for engineered wood construction, Wood Frame Construction Manual (WFCM) for one-and two-family dwellings, and the Load and Resistance Factor Design (LFRD) manual for engineered wood construction. The AF&PA "wrote the manuals" all engineers use. Seismic: Seismic load engineering follows the ASCE 7-16 12.8 equivalent lateral force procedure. Per ASCE 7 the analysis consists of the application of equivalent static lateral forces to a linear mathematical model of the structure. The total forces applied in each direction are the total base shear. Refer to ASCE 7-16 12.8 for a detailed description of this procedure. The engineering calculations include a USGS determination of the seismic spectral response accelerations. These numbers, S1 and Ss, are used in the lateral model to determine seismic loading to the shearwalls. Woodworks Design Office was used to make the linear mathematical model specified by ASCE 7-16 section 12.8. Wind: Wind load engineering follows the ASCE 7-16 Directional method for all heights. The wind loading is determined from the wind exposure and wind speed. This loading is applied to surfaces of the structure as modeled. Total loadings for each shear line, wall line, and full height shearwall are determined. Required shear strengths for each shearwall are calculated then sheathing and nailing patterns are chosen to resist design loads. Holdowns are applied where the nailing of the OSB sheathing to the mudsill or lower floor is not adequate to resist shear panel overturning. GRAVITY LOAD ENGINEERING: Gravity loads from snow, structure, occupants, etc. meeting the requirements of the 2021 IBC have been traced through the structure. Refer to the legend on the engineering sheets showing how the point and line loads are depicted. All loads are supported and traced through the structure. Load supporting members have been numbered for reference back to the engineering calculations. Loads to the foundation or soil have reinforced footings specified where required. 7 of 46 WoodWorks® Shearwalls SOFTWARE FOR WOOD DESIGN WoodWorks® Shearwalls 2019 (Update 3)240237 - LATERAL ANALYSIS.wsw Aug. 6, 2024 12:09:48 0'1.67'3.33'5'6.67'8.33'10'11.67'13.33'15'16.67'18.33'20'21.67'23.33'25'26.67'28.33'30'31.67'33.33'35'36.67'38.33'40'41.67'43.33'45'46.67' -6.67' -5' -3.33' -1.67' 0' 1.67' 3.33' 5' 6.67' 8.33' 10' 11.67' 13.33' 15' 16.67' 18.33' 20' 21.67' 23.33' 25' B-1 2-1A-11-12405 60025972608269321016002767265026062577252354567667670454576667675314701311753676766704 237111992153215311091199215321992289215311092558241724172417117611762417Loads: Seismic (Qe); Forces: 0.7E + 0.6D; E = pQe + 0.2 Sds D; p(NS) = 1.0; p(EW) = 1.0; Sds = 0.93; Flexible distribution Vertical element required C Compression force exists Factored holddown force (lbs) Factored shearline force (lbs) Applied point load or discontinuous shearline force (lbs) Unfactored dead load (plf,lbs) Unfactored applied shear load (plf) Level 1 of 2 8 of 46 WoodWorks® Shearwalls SOFTWARE FOR WOOD DESIGN WoodWorks® Shearwalls 2019 (Update 3)240237 - LATERAL ANALYSIS.wsw Aug. 6, 2024 12:09:48 0'1.67'3.33'5'6.67'8.33'10'11.67'13.33'15'16.67'18.33'20'21.67'23.33'25'26.67'28.33'30'31.67'33.33'35'36.67'38.33'40'41.67'43.33'45'46.67' -6.67' -5' -3.33' -1.67' 0' 1.67' 3.33' 5' 6.67' 8.33' 10' 11.67' 13.33' 15' 16.67' 18.33' 20' 21.67' 23.33' 25' B-1 2-1A-11-11634 6116096086006116096086001751545676704545676704 1599119921531109119921531109178624172417Loads: Seismic (Qe); Forces: 0.7E + 0.6D; E = pQe + 0.2 Sds D; p(NS) = 1.0; p(EW) = 1.0; Sds = 0.93; Flexible distribution Vertical element required C Compression force exists Factored holddown force (lbs) Factored shearline force (lbs) Applied point load or discontinuous shearline force (lbs) Unfactored dead load (plf,lbs) Unfactored applied shear load (plf) Level 2 of 2 9 of 46 WoodWorks® Shearwalls SOFTWARE FOR WOOD DESIGN WoodWorks® Shearwalls 2019 (Update 3)240237 - LATERAL ANALYSIS.wsw Aug. 6, 2024 12:09:48 0'1.67'3.33'5'6.67'8.33'10'11.67'13.33'15'16.67'18.33'20'21.67'23.33'25'26.67'28.33'30'31.67'33.33'35'36.67'38.33'40'41.67'43.33'45'46.67' -6.67' -5' -3.33' -1.67' 0' 1.67' 3.33' 5' 6.67' 8.33' 10' 11.67' 13.33' 15' 16.67' 18.33' 20' 21.67' 23.33' 25' B-1 2-1A-11-118661866 2651868189119281630265194319091890184118861886231286286298231572286563871804563286573298 38623862118021192119109111802119286729562119109139573957225922592259181918192259Loads: Directional Case 1 Wind (W); Forces: 0.6W + 0.6D; Flexible distribution Vertical element required C Compression force exists Factored holddown force (lbs) Factored shearline force (lbs) Applied point load or discontinuous shearline force (lbs) Unfactored uplift wind load (plf,lbs) Unfactored dead load (plf,lbs) Unfactored applied shear load (plf) Level 1 of 2 10 of 46 WoodWorks® Shearwalls SOFTWARE FOR WOOD DESIGN WoodWorks® Shearwalls 2019 (Update 3)240237 - LATERAL ANALYSIS.wsw Aug. 6, 2024 12:09:48 0'1.67'3.33'5'6.67'8.33'10'11.67'13.33'15'16.67'18.33'20'21.67'23.33'25'26.67'28.33'30'31.67'33.33'35'36.67'38.33'40'41.67'43.33'45'46.67' -6.67' -5' -3.33' -1.67' 0' 1.67' 3.33' 5' 6.67' 8.33' 10' 11.67' 13.33' 15' 16.67' 18.33' 20' 21.67' 23.33' 25' B-1 2-1A-11-1722722270269269265270269269265742742231286298231286298157415741180211910911180211910911669166922592259 Loads: Directional Case 1 Wind (W); Forces: 0.6W + 0.6D; Flexible distribution Vertical element required C Compression force exists Factored holddown force (lbs) Factored shearline force (lbs) Applied point load or discontinuous shearline force (lbs) Unfactored uplift wind load (plf,lbs) Unfactored dead load (plf,lbs) Unfactored applied shear load (plf) Level 2 of 2 11 of 46 WoodWorks® Shearwalls SOFTWARE FOR WOOD DESIGN WoodWorks® Shearwalls 2019 (Update 3) 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Project Information DESIGN SETTINGS Design Code IBC 2018/AWC SDPWS 2015 Wind Standard ASCE 7-16 Directional (All heights) Seismic Standard ASCE 7-16 Load Combinations For Design (ASD) 0.70 Seismic 0.60 Wind For Deflection (Strength) 1.00 Seismic 1.00 Wind Building Code Capacity Modification Wind Seismic 1.00 1.00 Service Conditions and Load Duration Duration Factor - Temperature Range - Moisture Content Fabrication Service 19% (<=19%)10% (<=19%) Max Shearwall Offset [ft] Plan (within story) 4.00 Elevation (between stories) 1.33 Maximum Height-to-width Ratio Wood panels Wind Seismic Fiberboard Lumber Wind Seismic Gypsum Blocked Unblocked 3.5 3.5 - - - - - Ignore non-wood-panel shear resistance contribution... Wind Seismic when comb'd w/ wood panels Always Forces based on... Hold-downs Applied loads Drag struts Applied loads Shearwall relative rigidity: Wall capacity Perforated shearwall Co factor: SDPWS Equation 4.3-5 Non-identical materials and construction on the shearline: Not allowed Deflection Equation: 4-term from SDPWS C4.3.2-1 Drift limit for wind design: 1 / 500 story height Force-transfer strap: Continuous at top of highest opening and bottom of lowest SITE INFORMATION Risk Category Category II - All others Wind ASCE 7-16 Directional (All heights) Seismic ASCE 7-16 12.8 Equivalent Lateral Force Procedure Design Wind Speed 100 mph Exposure Exposure B Enclosure Enclosed Structure Type Regular Building System Bearing Wall Design Category D Site Class D Topographic Information [ft] Shape - Height - Length - Site Location: - Elev: 420ft Rigid building - Static analysis Spectral Response Acceleration S1: 0.480g Ss: 1.390g Fundamental Period E-W N-S T Used 0.207s 0.207s Approximate Ta 0.207s 0.207s Maximum T 0.290s 0.290s Response Factor R 6.50 6.50 Fa: 1.00 Fv: 1.82 Case 2 N-S loadsE-W loads Eccentricity (%)15 15 Loaded at 75% Min Wind Loads: Walls Roofs 16 psf 8 psf Serviceability Wind Speed 99 mph 1 12 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Structural Data STORY INFORMATION Hold-down Story Floor/Ceiling Wall Length subject to Bolt Elev [ft]Depth [in]Height [ft]shrinkage [in]length [in] Ceiling 22.67 0.0 Level 2 13.67 1'-4.0 9.00 19.8 20.5 Level 1 2.33 4.0 10.00 7.8 8.5 Foundation 2.00 BLOCK and ROOF INFORMATION Block Roof Panels Dimensions [ft]Face Type Slope Overhang [ft] Block 1 2 Story E-W Ridge Location X,Y =0.00 0.00 North Side 22.6 2.00 Extent X,Y =44.00 22.00 South Side 22.6 2.00 Ridge Y Location, Offset 11.00 0.00 East Gable 90.0 2.00 Ridge Elevation, Height 27.25 4.58 West Gable 90.0 2.00 Block 2 2 Story E-W Ridge Location X,Y =44.00 14.17 North Side 22.6 2.00 Extent X,Y =6.08 7.83 South Side 22.6 2.00 Ridge Y Location, Offset 18.08 0.00 East Gable 90.0 2.00 Ridge Elevation, Height 24.30 1.63 West Joined 90.0 2.00 2 13 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 SHEATHING MATERIALS by WALL GROUP Sheathing Fasteners Apply Grp Surf Material Ratng Thick GU Ply Or Gvtv Size Type Df Eg Fd Bk Notes in in lbs/in in in 1 Ext Struct Sh OSB 24/16 7/16 --Vert 83500 8d Nail N 3 12 Y 1,2,3 2 Ext Struct Sh OSB 24/16 7/16 - -Vert 83500 8d Nail N 6 12 Y 1,3 3 Ext Struct Sh OSB 24/16 7/16 --Vert 83500 8d Nail N 4 12 Y 1,2,3 Legend: Grp – Wall Design Group number, used to reference wall in other tables (created by program) Surf – Exterior or interior surface when applied to exterior wall Ratng – Span rating, see SDPWS Table C4.2.2.2C Thick – Nominal panel thickness GU - Gypsum underlay thickness Ply – Number of plies (or layers) in construction of plywood sheets Or – Orientation of longer dimension of sheathing panels Gvtv – Shear stiffness in lb/in. of depth from SDPWS Tables C4.2.2A-B Type – Fastener type from SDPWS Tables 4.3A-D: Nail – common wire nail for structural panels and lumber, cooler or gypsum wallboard nail for GWB, plasterboard nail for gypsum lath, galvanised nail for gypsum sheathing; Box - box nail; Casing – casing nail; Roof – roofing nail; Screw – drywall screw Size - Common, box, and casing nails: refer to SDPWS Table A1 (casing sizes = box sizes). Gauges: 11 ga = 0.120” x 1-3/4” (gypsum sheathing, 25/32” fiberboard ), 1-1/2” (lath & plaster, 1/2” fiberboard); 13 ga plasterboard = 0.92” x 1- 1/8”. Cooler or gypsum wallboard nail: 5d = .086” x 1-5/8”; 6d = .092” x 1-7/8”; 8d = .113” x 2-3/8”; 6/8d = 6d base ply, 8d face ply for 2-ply GWB. Drywall screws: No. 6, 1-1/4” long. 5/8” gypsum sheathing can also use 6d cooler or GWB nail Df – Deformed nails ( threaded or spiral), with increased withdrawal capacity Eg – Panel edge fastener spacing Fd – Field spacing interior to panels Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o) Apply Notes – Notes below table legend which apply to sheathing side Notes: 1.Capacity has been reduced for framing specific gravity according to SDPWS T4.3A Note 3. 2. Framing at adjoining panel edges must be 3" nominal or wider with staggered nailing according to SDPWS 4.3.7.1.4 3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS T4.3A Note 2. FRAMING MATERIALS and STANDARD WALL by WALL GROUP Wall Species Grade b d Spcg SG E Standard Wall Grp in in in psi^6 1 Hem-Fir Stud 1.50 5.50 16 0.43 1.20 2 Hem-Fir Stud 1.50 5.50 16 0.43 1.20 3 Hem-Fir Stud 1.50 5.50 16 0.43 1.20 Legend: Wall Grp – Wall Design Group b – Stud breadth (thickness) d – Stud depth (width) Spcg – Maximum on-centre spacing of studs for design, actual spacing may be less. SG – Specific gravity E – Modulus of elasticity Standard Wall - Standard wall designed as group. Notes: Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs. 3 14 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 SHEARLINE, WALL and OPENING DIMENSIONS North-south Type Wall Location Extent [ft]Length FHS Aspect Height Shearlines Group X [ft]Start End [ft] [ft] Ratio [ft] Line 1 Level 2 Line 1 2 0.00 0.00 22.00 22.00 12.00 - 9.00 Wall 1-1 Seg 2 0.00 0.00 22.00 22.00 12.00 - - Segment 1 -- 0.00 3.25 3.25 - 2.77 - Opening 1 -- 3.25 8.25 5.00 - - 5.00 Segment 2 -- 8.25 14.00 5.75 - 1.57 - Opening 2 -- 14.00 19.00 5.00 - - 5.00 Segment 3 -- 19.00 22.00 3.00 - 3.00 - Level 1 Line 1 3 0.00 0.00 22.00 22.00 22.00 - 10.00 Wall 1-1 FT 3 0.00 0.00 22.00 22.00 22.00 - - Segment 1 -- 0.00 3.25 3.25 - 1.54 - Opening 1 -- 3.25 8.25 5.00 - - 5.00 Segment 2 -- 8.25 14.00 5.75 - 0.87 - Opening 2 -- 14.00 19.00 5.00 - - 5.00 Segment 3 -- 19.00 22.00 3.00 - 1.67 - Line 2 Level 2 Line 2 2 44.00 0.00 22.00 22.00 9.42 - 9.00 Wall 2-1 Seg 2 44.00 0.00 22.00 22.00 9.42 - - Segment 1 -- 0.00 2.50 2.50 - 3.60 - Opening 1 -- 2.50 8.50 6.00 - - 5.00 Segment 2 -- 8.50 17.92 9.42 - 0.96 - Opening 2 -- 17.92 20.92 3.00 - - 5.00 Segment 3 -- 20.92 22.00 1.08 - 8.31 - Level 1 Line 2 Seg 2 44.00 0.00 22.00 22.00 22.00 - 10.00 Wall 2-1 Seg 2 44.00 0.00 22.00 22.00 22.00 0.45 - East-west Type Wall Location Extent [ft]Length FHS Aspect Height Shearlines Group Y [ft]Start End [ft] [ft] Ratio [ft] Line A Level 2 Line A 2 0.00 0.00 44.00 44.00 25.25 - 9.00 Wall A-1 Seg 2 0.00 0.00 44.00 44.00 25.25 - - Segment 1 -- 0.00 5.25 5.25 - 1.71 - Opening 1 -- 5.25 11.50 6.25 - - 5.00 Segment 2 -- 11.50 17.17 5.67 - 1.59 - Opening 2 -- 17.17 23.17 6.00 - - 5.00 Segment 3 -- 23.17 29.17 6.00 - 1.50 - Opening 3 -- 29.17 35.67 6.50 - - 5.00 Segment 4 -- 35.67 44.00 8.33 - 1.08 - Level 1 Line A 1 0.00 0.00 44.00 44.00 12.08 - 10.00 Wall A-1 Seg 1 0.00 0.00 44.00 44.00 12.08 - - Segment 1 -- 0.00 3.00 3.00 - 3.33 - Opening 1 -- 3.00 12.00 9.00 - - 8.00 Segment 2 -- 12.00 15.08 3.08 - 3.24 - Opening 2 -- 15.08 24.67 9.58 - - 8.00 Segment 3 -- 24.67 27.75 3.08 - 3.24 - Opening 3 -- 27.75 36.25 8.50 - - 8.00 Segment 4 -- 36.25 39.17 2.92 - 3.43 - Opening 4 -- 39.17 42.17 3.00 - - 8.00 Segment 5 -- 42.17 44.00 1.83 - 5.45 - Line B Level 2 Line B 2 22.00 0.00 44.00 44.00 24.50 - 9.00 Wall B-1 Seg 2 22.00 0.00 44.00 44.00 24.50 - - Segment 1 -- 0.00 3.42 3.42 - 2.63 - Opening 1 -- 3.42 13.42 10.00 - - 5.00 Segment 2 -- 13.42 29.92 16.50 - 0.55 - Opening 2 -- 29.92 39.42 9.50 - - 5.00 Segment 3 -- 39.42 44.00 4.58 - 1.96 - Level 1 Line B 2 22.00 0.00 44.00 44.00 34.00 - 10.00 Wall B-1 Seg 2 22.00 0.00 44.00 44.00 34.00 - - Segment 1 -- 0.00 8.08 8.08 - 1.24 - Opening 1 -- 8.08 13.08 5.00 - - 5.00 Segment 2 -- 13.08 31.00 17.92 - 0.56 - 4 15 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 SHEARLINE, WALL and OPENING DIMENSIONS (continued) Opening 2 -- 31.00 36.00 5.00 - - 5.00 Segment 3 -- 36.00 44.00 8.00 - 1.25 - Legend: Type - Seg = segmented, Prf = perforated, FT = force-transfer, NSW = non-shearwall Location - Dimension perpendicular to wall FHS - Length of full-height sheathing used to resist shear force. For perforated walls, it is based on the factored segments Li defined in SDPWS 4.3.4.3 Aspect Ratio – Ratio of wall height to segment length (h/bs), for force-transfer walls, the aspect ratio of the central pier Wall Group - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall If two wall group numbers listed, they are for rigid diaphragm and flexible diaphragm design. 5 16 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Design Summary SHEARWALL DESIGN Wind Shear Loads, Flexible Diaphragm All shearwalls have sufficient design capacity. Seismic Loads, Flexible Diaphragm All shearwalls have sufficient design capacity. HOLDDOWN DESIGN Wind Loads, Flexible Diaphragm All hold-downs have sufficient design capacity. Seismic Loads, Flexible Diaphragm All hold-downs have sufficient design capacity. Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.2D) for walls that otherwise pass. 6 17 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads SHEAR RESULTS N-S W For ASD Shear Force [plf]Asp-Cub Allowable Shear [plf]Resp. Shearlines Gp Dir v vmax/vft V [lbs]Int Ext Int Ext Co C Cmb V [lbs]Ratio Line 1 Level 2 Ln1, Lev2 - Both - - 1574 - - - 339 - - 3418 - Wall 1-1 2 Both - - 1574 - 1.0 - 339 - - 3418 - Seg. 1 - Both 112.6 0.0 366 - .72 - 244 - 244 795 0.46 Seg. 2 - Both 155.9 0.0 896 - 1.0 - 339 - 339 1946 0.46 Seg. 3 - Both 103.9 0.0 312 - .67 - 226 - 226 677 0.46 Level 1 Ln1, Lev1 - Both - - 3862 - - - 495 - - 10885 - Wall 1-1 3^Both - - 3862 - 1.0 - 495 - - 10885 - Seg. 1 - Both 273.1 78.0 887 - 1.0 - 495 - 495 1608 0.55 Open. 1 - Both - 351.1 1755 - - - 495 - 495 2474 0.71 Seg. 2 - Both 373.4 -22.3 2147 - 1.0 - 495 - 495 2845 0.75 Open. 2 - Both - 351.1 1755 - - - 495 - 495 2474 0.71 Seg. 3 - Both 275.8 75.2 828 - 1.0 - 495 - 495 1484 0.56 Line 2 Level 2 Ln2, Lev2 - Both - - 1669 - - - 339 - - 3188 - Wall 2-1 2 Both - - 1669 - 1.0 - 339 - - 3188 - Seg. 1 - Both 0.0 0.0 0 - 1.0 - 339 - 339 - - Seg. 2 - Both 177.3 0.0 1669 - 1.0 - 339 - 339 3188 0.52 Seg. 3 - Both 0.0 0.0 0 - 1.0 - 339 - 339 - - Level 1Ln2, Lev1 2 Both 179.9 - 3957 - 1.0 - 339 - 339 7447 0.53 E-W W For ASD Shear Force [plf]Asp-Cub Allowable Shear [plf]Resp. Shearlines Gp Dir v vmax/vft V [lbs]Int Ext Int Ext Co C Cmb V [lbs]Ratio Line A Level 2 LnA, Lev2 - Both - - 722 - - - 339 - - 8548 - Wall A-1 2 Both - - 722 - 1.0 - 339 - - 8548 - Seg. 1 - Both 28.6 0.0 150 - 1.0 - 339 - 339 1777 0.08 Seg. 2 - Both 28.6 0.0 162 - 1.0 - 339 - 339 1918 0.08 Seg. 3 - Both 28.6 0.0 172 - 1.0 - 339 - 339 2031 0.08 Seg. 4 - Both 28.6 0.0 238 - 1.0 - 339 - 339 2821 0.08 Level 1 LnA, Lev1 - Both - - 1866 - - - 638 - - 4660 - Wall A-1 1 Both - - 1866 - 1.0 - 638 - - 4660 - Seg. 1 - Both 153.3 0.0 460 - .60 - 383 - 383 1148 0.40 Seg. 2 - Both 157.6 0.0 486 - .62 - 393 - 393 1213 0.40 Seg. 3 - Both 157.6 0.0 486 - .62 - 393 - 393 1213 0.40 Seg. 4 - Both 149.1 0.0 435 - .58 - 372 - 372 1085 0.40 Seg. 5 - Both 0.0 0.0 0 - 1.0 - 638 - 638 - - Line B Level 2 LnB, Lev2 - Both - - 742 - - - 339 - - 8015 - Wall B-1 2 Both - - 742 - 1.0 - 339 - - 8015 - Seg. 1 - Both 23.8 0.0 81 - .76 - 257 - 257 878 0.09 Seg. 2 - Both 31.3 0.0 517 - 1.0 - 339 - 339 5586 0.09 Seg. 3 - Both 31.3 0.0 144 - 1.0 - 339 - 339 1552 0.09 Level 1 LnB, Lev1 - Both - - 1886 - - - 339 - - 11510 - Wall B-1 2 Both - - 1886 - 1.0 - 339 - - 11510 - Seg. 1 - Both 55.5 0.0 448 - 1.0 - 339 - 339 2736 0.16 Seg. 2 - Both 55.5 0.0 994 - 1.0 - 339 - 339 6065 0.16 Seg. 3 - Both 55.5 0.0 444 - 1.0 - 339 - 339 2708 0.16 Legend: W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group. For Dir - Direction of wind force along shearline. v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS) vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.4.3 Force-transfer walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these 7 18 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 piers. V - ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.3.2. For segment or force-transfer pier: Aspect ratio adjustment from SDPWS 4.3.3.4.1 Int - Unit shear capacity of interior sheathing; Ext - Unit shear capacity of exterior sheathing. For wall: Unfactored. For segment: Include Cub factor and aspect ratio adjustments. Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-5. C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using SDPWS 4.3-3. Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co. V – Total factored shear capacity of shearline, wall or segment. Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the wind design criterion was critical in selecting wall. Notes: Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,4. 8 19 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Flexible Diaphragm Seismic Design SEISMIC INFORMATION Level Mass Area Story Shear [lbs]Diaphragm Force [lbs] [lbs][sq.ft]E-W N-S E-W:Fpx Design N-S:Fpx Design 2 27166 968.0 4836 4836 3524 3524 3524 3524 1 22220 968.0 2205 2205 2883 2883 2883 2883 All 49386 - 7041 7041 - - - - Legend: Mass – Sum of all generated and input building masses on level = wx in ASCE 7 equation 12.8-12. Story Shear – Total unfactored (strength-level) shear force induced at level x, = Fx in ASCE 7 equation 12.8-11. Diaphragm Force – Minimum ASD-factored force for diaphragm design, used by Shearwalls only for drag strut forces, as per Exception to 12.10.2.1. Fpx is from Eqns. 12.10-1, -2, and -3. Design = The greater of the story shear and Fpx + transfer forces from discontinuous shearlines, factored by overstrength (omega) as per 12.10.1.1. Omega = 2.5 as per 12.2-1. Redundancy Factor p (rho): E-W 1.00, N-S 1.00 Automatically calculated according to ASCE 7 12.3.4.2. Vertical Earthquake Load Ev Ev = 0 for Seismic Design Category A as per ASCE 7 12.4.2.2. 9 20 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 SHEAR RESULTS (flexible seismic design) N-S W For ASD Shear Force [plf]Asp-Cub Allowable Shear [plf]Resp. Shearlines Gp Dir v vmax/vft V [lbs]Int Ext Int Ext Co C Cmb V [lbs]Ratio Line 1 Level 2 Ln1, Lev2 - Both - - 1599 - - - 242 - - 2442 - Wall 1-1 2 Both - - 1599 - 1.0 - 242 - - 2442 - Seg. 1 - Both 114.4 0.0 372 - .72 - 175 - 175 568 0.66 Seg. 2 - Both 158.4 0.0 911 - 1.0 - 242 - 242 1390 0.66 Seg. 3 - Both 105.6 0.0 317 - .67 - 161 - 161 484 0.66 Level 1 Ln1, Lev1 - Both - - 2371 - - - 353 - - 7775 - Wall 1-1 3 Both - - 2371 - 1.0 - 353 - - 7775 - Seg. 1 - Both 167.6 47.9 545 - 1.0 - 353 - 353 1149 0.47 Open. 1 - Both - 215.5 1078 - - - 353 - 353 1767 0.61 Seg. 2 - Both 229.2 -13.7 1318 - 1.0 - 353 - 353 2032 0.65 Open. 2 - Both - 215.5 1078 - - - 353 - 353 1767 0.61 Seg. 3 - Both 169.3 46.2 508 - 1.0 - 353 - 353 1060 0.48 Line 2 Level 2 Ln2, Lev2 - Both - - 1786 - - - 242 - - 2277 - Wall 2-1 2^Both - - 1786 - 1.0 - 242 - - 2277 - Seg. 1 - Both 0.0 0.0 0 - 1.0 - 242 - 242 - - Seg. 2 - Both 189.7 0.0 1786 - 1.0 - 242 - 242 2277 0.78 Seg. 3 - Both 0.0 0.0 0 - 1.0 - 242 - 242 - - Level 1 Ln2, Lev1 2 Both 116.3 - 2558 - 1.0 - 242 - 242 5320 0.48 E-W W For ASD Shear Force [plf]Asp-Cub Allowable Shear [plf]Resp. Shearlines Gp Dir v vmax/vft V [lbs]Int Ext Int Ext Co C Cmb V [lbs]Ratio Line A Level 2 LnA, Lev2 - Both - - 1634 - - - 242 - - 6105 - Wall A-1 2 Both - - 1634 - 1.0 - 242 - - 6105 - Seg. 1 - Both 64.7 0.0 340 - 1.0 - 242 - 242 1269 0.27 Seg. 2 - Both 64.7 0.0 367 - 1.0 - 242 - 242 1370 0.27 Seg. 3 - Both 64.7 0.0 388 - 1.0 - 242 - 242 1451 0.27 Seg. 4 - Both 64.7 0.0 539 - 1.0 - 242 - 242 2015 0.27 Level 1 LnA, Lev1 - Both - - 2405 - - - 456 - - 3329 - Wall A-1 1^Both - - 2405 - 1.0 - 456 - - 3329 - Seg. 1 - Both 197.6 0.0 593 - .60 - 273 - 273 820 0.72 Seg. 2 - Both 203.1 0.0 626 - .62 - 281 - 281 866 0.72 Seg. 3 - Both 203.1 0.0 626 - .62 - 281 - 281 866 0.72 Seg. 4 - Both 192.1 0.0 560 - .58 - 266 - 266 775 0.72 Seg. 5 - Both 0.0 0.0 0 - 1.0 - 456 - 456 - - Line B Level 2 LnB, Lev2 - Both - - 1751 - - - 242 - - 5725 - Wall B-1 2 Both - - 1751 - 1.0 - 242 - - 5725 - Seg. 1 - Both 56.2 0.0 192 - .76 - 184 - 184 627 0.31 Seg. 2 - Both 74.0 0.0 1220 - 1.0 - 242 - 242 3990 0.31 Seg. 3 - Both 74.0 0.0 339 - 1.0 - 242 - 242 1108 0.31 Level 1 LnB, Lev1 - Both - - 2523 - - - 242 - - 8221 - Wall B-1 2 Both - - 2523 - 1.0 - 242 - - 8221 - Seg. 1 - Both 74.2 0.0 600 - 1.0 - 242 - 242 1955 0.31 Seg. 2 - Both 74.2 0.0 1330 - 1.0 - 242 - 242 4332 0.31 Seg. 3 - Both 74.2 0.0 594 - 1.0 - 242 - 242 1934 0.31 Legend: W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group. For Dir – Direction of seismic force along shearline. v - Design shear force on segment = ASD-factored shear force per unit length of full-height sheathing (FHS) vmax/vft - Perforated walls: Collector and in-plane anchorage force as per SDPWS eqn. 4.3-9 = V/FHS/Co. FHS is factored for narrow segments as per 4.3.4.3 Force-transfer walls: Shear force in piers above and below either openings or piers beside opening(s). Aspect ratio factor does not apply to these piers. V - ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.3.2. For segment or force-transfer pier: Aspect ratio adjustment from SDPWS 4.3.3.4.1 10 21 of 46 WoodWorks® Shearwalls 240237 - LATERAL ANALYSIS.wsw Aug. 8, 2024 12:29:18 Int - Unit shear capacity of interior sheathing; Ext - Unit shear capacity of exterior sheathing. For wall: Unfactored. For segment: Include Cub factor and aspect ratio adjustments. Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-5. C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using SDPWS 4.3-3. Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co. V – Total factored shear capacity of shearline, wall or segment. Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterion was critical in selecting wall. Notes: Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,4. 11 22 of 46 522) )5$0,1* 0HPEHU 1DPH 5HVXOWV 0D[ 87,/  &XUUHQW 6ROXWLRQ &RPPHQWV 53DVVHG  0  SLHFH V  [  ') 1R 53DVVHG  5  SLHFH V  [  ') 1R 53DVVHG  0  SLHFH V  [  ') 1R 53DVVHG  0  SLHFH V  [  ') 1R 833(5 )/225 )5$0,1* 0HPEHU 1DPH 5HVXOWV 0D[ 87,/  &XUUHQW 6ROXWLRQ &RPPHQWV 83DVVHG  5  SLHFH V  [  ') 1R 83DVVHG  5  SLHFH V   [  )9 ') *OXODP 83DVVHG  5  SLHFH V   [  )9 ') *OXODP 83DVVHG  5  SLHFH V  [  ') 1R 83DVVHG  0  SLHFH V  [  +) 1R 83DVVHG  0  SLHFH V  [  +) 1R   %($0 &$/&8/$7,216 -2% 6800$5< 5(3257 )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ  MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y )LOH 1DPH   %($0 &$/&8/$7,216 Page 1 / 11 23 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   6 $OO 6SDQV 0RPHQW )WOEV  #    3DVVHG    '   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)      1RQH   7ULPPHU  +)      1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\:LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522) :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 522) )5$0,1* 5  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 2 / 11 24 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   6 $OO 6SDQV 0RPHQW )WOEV  #    3DVVHG    '   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)      1RQH   7ULPPHU  +)      1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\:LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522) :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 522) )5$0,1* 5  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 3 / 11 25 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   6 $OO 6SDQV 0RPHQW )WOEV  #     3DVVHG    '   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)      1RQH   7ULPPHU  +)      1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\:LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522) :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWV GRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 522) )5$0,1* 5  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 4 / 11 26 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   / $OO 6SDQV 6KHDU OEV  #  3DVVHG    '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG    '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #    3DVVHG /   '   / $OO 6SDQV 7RWDO /RDG 'HIO LQ  #    3DVVHG /   '   / $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  'URS %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 ‡ %ORFNLQJ 3DQHOV DUH DVVXPHG WR FDUU\ QR ORDGV DSSOLHG GLUHFWO\ DERYH WKHP DQG WKH IXOO ORDG LV DSSOLHG WR WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)      %ORFNLQJ   6WXG ZDOO  +)      %ORFNLQJ /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\:LGWK   &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR   7RS   )/225 :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 522) )5$0,1* 5  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 5 / 11 27 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   /   6 $OO 6SDQV 0RPHQW )WOEV  #     3DVVHG    '   /   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)       1RQH   7ULPPHU  +)       1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\:LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522)   8QLIRUP 36)  WR    )/225   8QLIRUP 3/)  WR  1$ :$// :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 6 / 11 28 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #     3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   /   6 $OO 6SDQV 3RV 0RPHQW )WOEV  #   3DVVHG    '   /   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ &ULWLFDO SRVLWLYH PRPHQW DGMXVWHG E\ D YROXPHVL]H IDFWRU RI  WKDW ZDV FDOFXODWHG XVLQJ OHQJWK /   ‡ 7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ ‡ 7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)       1RQH   7ULPPHU  +)       1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522)   8QLIRUP 36)  WR    )/225   8QLIRUP 3/)  WR  1$ :$// :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V   [  )9 ') *OXODP )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 7 / 11 29 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #      3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   /   6 $OO 6SDQV 3RV 0RPHQW )WOEV  #     3DVVHG    '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ &ULWLFDO SRVLWLYH PRPHQW DGMXVWHG E\ D YROXPHVL]H IDFWRU RI  WKDW ZDV FDOFXODWHG XVLQJ OHQJWK /   ‡ 7KH HIIHFWV RI SRVLWLYH RU QHJDWLYH FDPEHU KDYH QRW EHHQ DFFRXQWHG IRU ZKHQ FDOFXODWLQJ GHIOHFWLRQ ‡ 7KH VSHFLILHG JOXODP LV DVVXPHG WR KDYH LWV VWURQJ ODPLQDWLRQV DW WKH ERWWRP RI WKH EHDP ,QVWDOO ZLWK SURSHU VLGH XS DV LQGLFDWHG E\ WKH PDQXIDFWXUHU ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)       1RQH   7ULPPHU  +)       1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522)   8QLIRUP 36)  WR    )/225   8QLIRUP 3/)  WR  1$ :$//   3RLQW OE  1$/LQNHG IURP 56XSSRUW    3RLQW OE  1$/LQNHG IURP 5 6XSSRUW    8QLIRUP 3/)  WR  1$ :$//   8QLIRUP 36)  WR    522) :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65 DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V   [  )9 ') *OXODP )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 8 / 11 30 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #   3DVVHG    '   /   6 $OO 6SDQV 0RPHQW )WOEV  #     3DVVHG    '   /   6 $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  :DOO 0HPEHU 7\SH  +HDGHU %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   7ULPPHU  +)       1RQH   7ULPPHU  +)       1RQH /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 7ULEXWDU\:LGWK    &RPPHQWV   6HOI :HLJKW 3/)  WR  1$   8QLIRUP 36)  WR    522)   8QLIRUP 36)  WR    )/225   8QLIRUP 3/)  WR  1$ :$// :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LVUHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW :H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V  [  ') 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 9 / 11 31 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #    3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #     3DVVHG    '   / $OO 6SDQV 0RPHQW )WOEV  #     3DVVHG    '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #     3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK     6\VWHP  )ORRU 0HPEHU 7\SH  )OXVK %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 ‡ 5LP %RDUG LV DVVXPHG WR FDUU\ DOO ORDGV DSSOLHG GLUHFWO\ DERYH LW E\SDVVLQJ WKH PHPEHU EHLQJ GHVLJQHG %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   6WXG ZDOO  +)         5LP %RDUG   &ROXPQ &DS  VWHHO          5LP %RDUG /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\:LGWK    &RPPHQWV   6HOI :HLJKW 3/)   WR   1$   8QLIRUP 36)  WR   7RS   '(&. :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V  [  +) 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 10 / 11 32 of 46 'HVLJQ 5HVXOWV $FWXDO # /RFDWLRQ $OORZHG 5HVXOW /')/RDG &RPELQDWLRQ 3DWWHUQ 0HPEHU 5HDFWLRQ OEV  #     3DVVHG    '   /   6 $OO 6SDQV 6KHDU OEV  #  3DVVHG    '   / $OO 6SDQV 0RPHQW )WOEV  #   3DVVHG    '   / $OO 6SDQV /LYH /RDG 'HIO LQ  #   3DVVHG /   '   /   6 $OO 6SDQV 7RWDO /RDG 'HIO LQ  #   3DVVHG /   '   /   6 $OO 6SDQV 0HPEHU /HQJWK    6\VWHP  )ORRU 0HPEHU 7\SH  'URS %HDP %XLOGLQJ 8VH  5HVLGHQWLDO %XLOGLQJ &RGH  ,%&  'HVLJQ 0HWKRGRORJ\  $6' ‡ 'HIOHFWLRQ FULWHULD // / DQG 7/ /  ‡ $SSOLFDEOH FDOFXODWLRQV DUH EDVHG RQ 1'6 ‡ $W KDQJHU VXSSRUWV WKH 7RWDO %HDULQJ GLPHQVLRQ LV HTXDO WR WKH ZLGWK RI WKH PDWHULDO WKDW LV VXSSRUWLQJ WKH KDQJHU ‡ ï 6HH &RQQHFWRU JULG EHORZ IRU DGGLWLRQDO LQIRUPDWLRQ DQGRU UHTXLUHPHQWV %HDULQJ /HQJWK /RDGV WR 6XSSRUWV OEV 6XSSRUWV 7RWDO $YDLODEOH 5HTXLUHG 'HDG )ORRU /LYH 6QRZ )DFWRUHG $FFHVVRULHV   +DQJHU RQ   +) EHDP  +DQJHUï      6HH QRWH ï   +DQJHU RQ   +) EHDP  +DQJHUï      6HH QRWH ï /DWHUDO %UDFLQJ %UDFLQJ ,QWHUYDOV &RPPHQWV 7RS (GJH /X &RQWLQXRXV %RWWRP (GJH /X (QG %HDULQJ 3RLQWV &RQQHFWRU 6LPSVRQ 6WURQJ7LH 6XSSRUW 0RGHO 6HDW /HQJWK 7RS )DVWHQHUV )DFH )DVWHQHUV 0HPEHU )DVWHQHUV $FFHVVRULHV   )DFH 0RXQW +DQJHU +8&1$G[G   )DFH 0RXQW +DQJHU +8&1$G[G ‡ 5HIHU WR PDQXIDFWXUHU QRWHV DQG LQVWUXFWLRQV IRU SURSHU LQVWDOODWLRQ DQG XVH RI DOO FRQQHFWRUV ‡ 6LGH ORDGV DUH DVVXPHG WR QRW LQGXFH FURVVJUDLQ WHQVLRQ 'HDG )ORRU /LYH 6QRZ 9HUWLFDO /RDGV /RFDWLRQ 6LGH 7ULEXWDU\ :LGWK    &RPPHQWV   6HOI :HLJKW 3/)   WR   1$   8QLIRUP 36)  WR   7RS   '(&. :H\HUKDHXVHU ZDUUDQWV WKDW WKH VL]LQJ RI LWV SURGXFWV ZLOO EH LQ DFFRUGDQFH ZLWK :H\HUKDHXVHU SURGXFW GHVLJQ FULWHULD DQG SXEOLVKHG GHVLJQ YDOXHV :H\HUKDHXVHU H[SUHVVO\ GLVFODLPV DQ\ RWKHU ZDUUDQWLHVUHODWHG WR WKH VRIWZDUH 8VH RI WKLV VRIWZDUH LV QRW LQWHQGHG WR FLUFXPYHQW WKH QHHG IRU D GHVLJQ SURIHVVLRQDO DV GHWHUPLQHG E\ WKH DXWKRULW\ KDYLQJ MXULVGLFWLRQ 7KH GHVLJQHU RI UHFRUG EXLOGHU RU IUDPHU LV UHVSRQVLEOH WR DVVXUH WKDW WKLV FDOFXODWLRQ LV FRPSDWLEOH ZLWK WKH RYHUDOO SURMHFW $FFHVVRULHV 5LP %RDUG %ORFNLQJ 3DQHOV DQG 6TXDVK %ORFNV DUH QRW GHVLJQHG E\ WKLV VRIWZDUH 3URGXFWV PDQXIDFWXUHG DW:H\HUKDHXVHU IDFLOLWLHV DUH WKLUGSDUW\ FHUWLILHG WR VXVWDLQDEOH IRUHVWU\ VWDQGDUGV :H\HUKDHXVHU (QJLQHHUHG /XPEHU 3URGXFWV KDYH EHHQ HYDOXDWHG E\ ,&&(6 XQGHU HYDOXDWLRQ UHSRUWV (65 DQG (65DQGRU WHVWHG LQ DFFRUGDQFH ZLWK DSSOLFDEOH $670 VWDQGDUGV )RU FXUUHQW FRGH HYDOXDWLRQ UHSRUWV :H\HUKDHXVHU SURGXFW OLWHUDWXUH DQG LQVWDOODWLRQ GHWDLOV UHIHU WR ZZZZH\HUKDHXVHUFRPZRRGSURGXFWVGRFXPHQWOLEUDU\ 7KH SURGXFW DSSOLFDWLRQ LQSXW GHVLJQ ORDGV GLPHQVLRQV DQG VXSSRUW LQIRUPDWLRQ KDYH EHHQ SURYLGHG E\ )RUWH:(% 6RIWZDUH 2SHUDWRU :H\HUKDHXVHU 1RWHV 'UDZLQJ LV &RQFHSWXDO $OO ORFDWLRQV DUH PHDVXUHG IURP WKH RXWVLGH IDFH RI OHIW VXSSRUW RU OHIW FDQWLOHYHU HQG  $OO GLPHQVLRQV DUH KRUL]RQWDO W\S  0(0%(5 5(3257 3$66(' 833(5 )/225 )5$0,1* 8  SLHFH V  [  +) 1R )RUWH:(% 6RIWZDUH 2SHUDWRU -RE 1RWHV   30 87&-RH *UHHQILHOG+RGJH (QJLQHHULQJ   MRH#KRGJHHQJLQHHULQJFRP )RUWH:(% Y (QJLQH 9 'DWD 9 )LOH 1DPH   %($0 &$/&8/$7,216 Page 11 / 11 33 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:24" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Hodge Engineering Foundation CalculationsEngineer:John HodgeProject ID:Project Descr:Foundation Calculations Code References Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : IBC 2021 General Information Material Properties Soil Design Values 1.50 Analysis Settings 250.0 ksi No ksfAllowable Soil Bearing = = 2.50 60.0 3,122.0 145.0 =0.30Flexure=0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure Yes Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Soil Density =110.0 pcf # Dimensions Width parallel to X-X Axis 2.0 ft Length parallel to Z-Z Axis = 2.0 ft =Pedestal dimensions... px : parallel to X-X Axis in pz : parallel to Z-Z Axis in Height == in Footing Thickness = 8.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 4 Number of Bars = 2.0 Bars parallel to Z-Z Axis Reinforcing Bar Size =4 Number of Bars =2.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 2.50 3.0 D Lr ksf L S P : Column LoadOB : Overburden =k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = 34 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:24" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Hodge Engineering Foundation CalculationsEngineer:John HodgeProject ID:Project Descr:Foundation Calculations PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 0.9813 Soil Bearing 1.472 ksf 1.50 ksf +D+S PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.2505 Z Flexure (+X)1.074 k-ft/ft 4.288 k-ft/ft +1.20D+1.60S PASS 0.2505 Z Flexure (-X)1.074 k-ft/ft 4.288 k-ft/ft +1.20D+1.60S PASS 0.2505 X Flexure (+Z)1.074 k-ft/ft 4.288 k-ft/ft +1.20D+1.60S PASS 0.2505 X Flexure (-Z)1.074 k-ft/ft 4.288 k-ft/ft +1.20D+1.60S PASS 0.1707 1-way Shear (+X)20.770 psi 121.644 psi +1.20D+1.60S PASS 0.1707 1-way Shear (-X)20.770 psi 121.644 psi +1.20D+1.60S PASS 0.1707 1-way Shear (+Z)20.770 psi 121.644 psi +1.20D+1.60S PASS 0.1707 1-way Shear (-Z)20.770 psi 121.644 psi +1.20D+1.60S PASS 0.5289 2-way Punching 79.334 psi 150.0 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom Left Top Left Top Right Bottom Right RatioLoad Combination... , D Only 0.000, 0.0 deg CCW 1.50 0.72170.7217 0.7217 0.7217 0.4810.00.0, +D+S 0.000, 0.0 deg CCW 1.50 1.4721.472 1.472 1.472 0.9810.00.0, +D+0.750S 0.000, 0.0 deg CCW 1.50 1.2841.284 1.284 1.284 0.8560.00.0, +0.60D 0.000, 0.0 deg CCW 1.50 0.43300.4330 0.4330 0.4330 0.2890.00.0 Rotation Axis & Overturning Stability Load Combination...StatusOverturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination...StatusSliding Force Resisting Force Stability Ratio Footing Has NO Sliding Flexure Axis & Load Combination in^2 in^2 in^2 k-ft As Req'd Footing Flexure Tension k-ft Actual As StatusMuSide Surface Gvrn. As Phi*Mn X-X, +1.40D 0.5254 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.40D 0.5254 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D 0.4503 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D 0.4503 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+0.50S 0.6453 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+0.50S 0.6453 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+1.60S 1.074 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+1.60S 1.074 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+0.70S 0.7233 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +1.20D+0.70S 0.7233 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +0.90D 0.3377 +Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK X-X, +0.90D 0.3377 -Z Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +1.40D 0.5254 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +1.40D 0.5254 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +1.20D 0.4503 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +1.20D 0.4503 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +1.20D+0.50S 0.6453 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK 35 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:24" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Hodge Engineering Foundation CalculationsEngineer:John HodgeProject ID:Project Descr:Foundation Calculations Flexure Axis & Load Combination in^2 in^2 in^2 k-ftAs Req'd Footing Flexure Tensionk-ft Actual As StatusMuSideSurfaceGvrn. As Phi*Mn Z-Z, +1.20D+0.50S 0.6453 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OKZ-Z, +1.20D+1.60S 1.074 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OKZ-Z, +1.20D+1.60S 1.074 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OKZ-Z, +1.20D+0.70S 0.7233 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OKZ-Z, +1.20D+0.70S 0.7233 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK Z-Z, +0.90D 0.3377 -X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OKZ-Z, +0.90D 0.3377 +X Bottom 0.1728 ACI 7.6.1.1 0.20 4.288 OK One Way Shear X Vu @ +XLoad Combination...Vu @ -X Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 10.16 10.16 10.16 121.64 0.08psipsipsipsi OK +1.20D 8.71 8.71 8.71 121.64 0.07psipsipsipsi OK +1.20D+0.50S 12.48 12.48 12.48 121.64 0.10psipsipsipsi OK +1.20D+1.60S 20.77 20.77 20.77 121.64 0.17psipsipsipsi OK +1.20D+0.70S 13.98 13.98 13.98 121.64 0.12psipsipsipsi OK +0.90D 6.53 6.53 6.53 121.64 0.05psipsipsipsi OK One Way Shear Z Load Combination...Vu @ -Z Vu @ +Z Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 10.16 10.16 10.16 121.64 0.08psipsipsipsi OK +1.20D 8.71 8.71 8.71 121.64 0.07psipsipsipsi OK +1.20D+0.50S 12.48 12.48 12.48 121.64 0.10psipsipsipsi OK +1.20D+1.60S 20.77 20.77 20.77 121.64 0.17psipsipsipsi OK +1.20D+0.70S 13.98 13.98 13.98 121.64 0.12psipsipsipsi OK +0.90D 6.53 6.53 6.53 121.64 0.05psipsipsipsi OK Vu / Phi*Vn Two-Way "Punching" Shear All units k StatusVuPhi*VnLoad Combination... +1.40D 38.80 150.00 0.2586 OKpsipsi+1.20D 33.25 150.00 0.2217 OKpsipsi+1.20D+0.50S 47.65 150.00 0.3177 OKpsipsi+1.20D+1.60S 79.33 150.00 0.5289 OKpsipsi+1.20D+0.70S 53.41 150.00 0.3561 OKpsipsi+0.90D 24.94 150.00 0.1663 OKpsipsi 36 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:30" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : IBC 2021 General Information Material Properties Soil Design Values 1.50 Analysis Settings 250.0 ksi No ksfAllowable Soil Bearing = = 2.50 60.0 3,122.0 145.0 =0.30Flexure=0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure Yes Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Soil Density =110.0 pcf # Dimensions Width parallel to X-X Axis 2.50 ft Length parallel to Z-Z Axis = 2.50 ft =Pedestal dimensions... px : parallel to X-X Axis in pz : parallel to Z-Z Axis in Height == in Footing Thickness = 8.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 4 Number of Bars = 3.0 Bars parallel to Z-Z Axis Reinforcing Bar Size =4 Number of Bars =3.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 3.0 5.50 D Lr ksf L S P : Column LoadOB : Overburden =k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = 37 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:30" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 0.9713 Soil Bearing 1.457 ksf 1.50 ksf +D+S PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.3349 Z Flexure (+X)1.706 k-ft/ft 5.095 k-ft/ft +1.20D+1.60S PASS 0.3349 Z Flexure (-X)1.706 k-ft/ft 5.095 k-ft/ft +1.20D+1.60S PASS 0.3349 X Flexure (+Z)1.706 k-ft/ft 5.095 k-ft/ft +1.20D+1.60S PASS 0.3349 X Flexure (-Z)1.706 k-ft/ft 5.095 k-ft/ft +1.20D+1.60S PASS 0.2323 1-way Shear (+X)30.030 psi 129.266 psi +1.20D+1.60S PASS 0.2323 1-way Shear (-X)30.030 psi 129.266 psi +1.20D+1.60S PASS 0.2323 1-way Shear (+Z)30.030 psi 129.266 psi +1.20D+1.60S PASS 0.2323 1-way Shear (-Z)30.030 psi 129.266 psi +1.20D+1.60S PASS 0.8526 2-way Punching 127.890 psi 150.0 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom Left Top Left Top Right Bottom Right RatioLoad Combination... , D Only 0.000, 0.0 deg CCW 1.50 0.57670.5767 0.5767 0.5767 0.3850.00.0, +D+S 0.000, 0.0 deg CCW 1.50 1.4571.457 1.457 1.457 0.9710.00.0, +D+0.750S 0.000, 0.0 deg CCW 1.50 1.2371.237 1.237 1.237 0.8250.00.0, +0.60D 0.000, 0.0 deg CCW 1.50 0.34600.3460 0.3460 0.3460 0.2310.00.0 Rotation Axis & Overturning Stability Load Combination...StatusOverturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination...StatusSliding Force Resisting Force Stability Ratio Footing Has NO Sliding Flexure Axis & Load Combination in^2 in^2 in^2 k-ft As Req'd Footing Flexure Tension k-ft Actual As StatusMuSide Surface Gvrn. As Phi*Mn X-X, +1.40D 0.6560 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.40D 0.6560 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D 0.5623 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D 0.5623 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+0.50S 0.9198 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+0.50S 0.9198 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+1.60S 1.706 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+1.60S 1.706 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+0.70S 1.063 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +1.20D+0.70S 1.063 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +0.90D 0.4217 +Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK X-X, +0.90D 0.4217 -Z Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +1.40D 0.6560 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +1.40D 0.6560 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +1.20D 0.5623 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +1.20D 0.5623 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +1.20D+0.50S 0.9198 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK 38 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:30" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: Flexure Axis & Load Combination in^2 in^2 in^2 k-ftAs Req'd Footing Flexure Tensionk-ft Actual As StatusMuSideSurfaceGvrn. As Phi*Mn Z-Z, +1.20D+0.50S 0.9198 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OKZ-Z, +1.20D+1.60S 1.706 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OKZ-Z, +1.20D+1.60S 1.706 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OKZ-Z, +1.20D+0.70S 1.063 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OKZ-Z, +1.20D+0.70S 1.063 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK Z-Z, +0.90D 0.4217 -X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OKZ-Z, +0.90D 0.4217 +X Bottom 0.1728 ACI 7.6.1.1 0.240 5.095 OK One Way Shear X Vu @ +XLoad Combination...Vu @ -X Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 11.55 11.55 11.55 129.27 0.09psipsipsipsi OK +1.20D 9.90 9.90 9.90 129.27 0.08psipsipsipsi OK +1.20D+0.50S 16.19 16.19 16.19 129.27 0.13psipsipsipsi OK +1.20D+1.60S 30.03 30.03 30.03 129.27 0.23psipsipsipsi OK +1.20D+0.70S 18.70 18.70 18.70 129.27 0.14psipsipsipsi OK +0.90D 7.42 7.42 7.42 129.27 0.06psipsipsipsi OK One Way Shear Z Load Combination...Vu @ -Z Vu @ +Z Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 11.55 11.55 11.55 129.27 0.09psipsipsipsi OK +1.20D 9.90 9.90 9.90 129.27 0.08psipsipsipsi OK +1.20D+0.50S 16.19 16.19 16.19 129.27 0.13psipsipsipsi OK +1.20D+1.60S 30.03 30.03 30.03 129.27 0.23psipsipsipsi OK +1.20D+0.70S 18.70 18.70 18.70 129.27 0.14psipsipsipsi OK +0.90D 7.42 7.42 7.42 129.27 0.06psipsipsipsi OK Vu / Phi*Vn Two-Way "Punching" Shear All units k StatusVuPhi*VnLoad Combination... +1.40D 49.17 150.00 0.3278 OKpsipsi+1.20D 42.14 150.00 0.281 OKpsipsi+1.20D+0.50S 68.94 150.00 0.4596 OKpsipsi+1.20D+1.60S 127.89 150.00 0.8526 OKpsipsi+1.20D+0.70S 79.66 150.00 0.531 OKpsipsi+0.90D 31.61 150.00 0.2107 OKpsipsi 39 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:36" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: Code References Calculations per ACI 318-19, IBC 2021, ASCE 7-16 Load Combinations Used : IBC 2021 General Information Material Properties Soil Design Values 1.50 Analysis Settings 250.0 ksi No ksfAllowable Soil Bearing = = 2.50 60.0 3,122.0 145.0 =0.30Flexure=0.90 Shear = ValuesM 0.00180 Soil Passive Resistance (for Sliding) 1.0 = Increases based on footing plan dimension Add Pedestal Wt for Soil Pressure No: Use Pedestal wt for stability, mom & shear No: Allowable pressure increase per foot of depth =ksfwhen max. length or width is greater than =ft : = Add Ftg Wt for Soil Pressure Yes Yes:Use ftg wt for stability, moments & shears when footing base is below ft pcf Increase Bearing By Footing Weight =pcf Min. Overturning Safety Factor = : 1 Increases based on footing Depth0.750 = Soil/Concrete Friction Coeff. Ec : Concrete Elastic Modulus = =Footing base depth below soil surface ft =Allow press. increase per foot of depth ksf = : 11.0Min. Sliding Safety Factor = = Concrete Density = Min Allow % Temp Reinf. ksif'c : Concrete 28 day strength fy : Rebar Yield ksi Min Steel % Bending Reinf. Soil Density =110.0 pcf # Dimensions Width parallel to X-X Axis 3.0 ft Length parallel to Z-Z Axis = 3.0 ft =Pedestal dimensions... px : parallel to X-X Axis in pz : parallel to Z-Z Axis in Height == in Footing Thickness = 12.0 in= Rebar Centerline to Edge of Concrete...=inat Bottom of footing 3.0 Reinforcing # Bars parallel to X-X Axis Reinforcing Bar Size = 4 Number of Bars = 4.0 Bars parallel to Z-Z Axis Reinforcing Bar Size =4 Number of Bars =4.0 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads 4.0 8.0 D Lr ksf L S P : Column LoadOB : Overburden =k W E M-zz V-x = =k V-z k M-xx = k-ft= k-ft H = 40 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:36" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding DESIGN SUMMARY Design OK Governing Load CombinationMin. Ratio Item Applied Capacity PASS 0.9853 Soil Bearing 1.478 ksf 1.50 ksf +D+S PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.2390 Z Flexure (+X)2.492 k-ft/ft 10.424 k-ft/ft +1.20D+1.60S PASS 0.2390 Z Flexure (-X)2.492 k-ft/ft 10.424 k-ft/ft +1.20D+1.60S PASS 0.2390 X Flexure (+Z)2.492 k-ft/ft 10.424 k-ft/ft +1.20D+1.60S PASS 0.2390 X Flexure (-Z)2.492 k-ft/ft 10.424 k-ft/ft +1.20D+1.60S PASS 0.1397 1-way Shear (+X)15.380 psi 110.064 psi +1.20D+1.60S PASS 0.1397 1-way Shear (-X)15.380 psi 110.064 psi +1.20D+1.60S PASS 0.1397 1-way Shear (+Z)15.380 psi 110.064 psi +1.20D+1.60S PASS 0.1397 1-way Shear (-Z)15.380 psi 110.064 psi +1.20D+1.60S PASS 0.3697 2-way Punching 55.457 psi 150.0 psi +1.20D+1.60S Detailed Results Rotation Axis &ZeccXecc Actual Soil Bearing Stress @ Location Actual / Allow Soil Bearing (in)Gross Allowable Bottom Left Top Left Top Right Bottom Right RatioLoad Combination... , D Only 0.000, 0.0 deg CCW 1.50 0.58940.5894 0.5894 0.5894 0.3930.00.0, +D+S 0.000, 0.0 deg CCW 1.50 1.4781.478 1.478 1.478 0.9850.00.0, +D+0.750S 0.000, 0.0 deg CCW 1.50 1.2561.256 1.256 1.256 0.8370.00.0, +0.60D 0.000, 0.0 deg CCW 1.50 0.35370.3537 0.3537 0.3537 0.2360.00.0 Rotation Axis & Overturning Stability Load Combination...StatusOverturning Moment Resisting Moment Stability Ratio Footing Has NO Overturning Force Application Axis Sliding Stability All units k Load Combination...StatusSliding Force Resisting Force Stability Ratio Footing Has NO Sliding Flexure Axis & Load Combination in^2 in^2 in^2 k-ft As Req'd Footing Flexure Tension k-ft Actual As StatusMuSide Surface Gvrn. As Phi*Mn X-X, +1.40D 0.9655 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.40D 0.9655 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D 0.8276 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D 0.8276 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+0.50S 1.348 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+0.50S 1.348 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+1.60S 2.492 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+1.60S 2.492 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+0.70S 1.556 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +1.20D+0.70S 1.556 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +0.90D 0.6207 +Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK X-X, +0.90D 0.6207 -Z Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +1.40D 0.9655 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +1.40D 0.9655 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +1.20D 0.8276 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +1.20D 0.8276 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +1.20D+0.50S 1.348 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK 41 of 46 General Footing LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:36" footing - 1500 psf soil Project File: 2021 General Footing Calculations.ec6 Project Title:Engineer:Project ID:Project Descr: Flexure Axis & Load Combination in^2 in^2 in^2 k-ftAs Req'd Footing Flexure Tensionk-ft Actual As StatusMuSideSurfaceGvrn. As Phi*Mn Z-Z, +1.20D+0.50S 1.348 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OKZ-Z, +1.20D+1.60S 2.492 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OKZ-Z, +1.20D+1.60S 2.492 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OKZ-Z, +1.20D+0.70S 1.556 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OKZ-Z, +1.20D+0.70S 1.556 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK Z-Z, +0.90D 0.6207 -X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OKZ-Z, +0.90D 0.6207 +X Bottom 0.2592 ACI 7.6.1.1 0.2667 10.424 OK One Way Shear X Vu @ +XLoad Combination...Vu @ -X Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 5.96 5.96 5.96 110.06 0.05psipsipsipsi OK +1.20D 5.11 5.11 5.11 110.06 0.05psipsipsipsi OK +1.20D+0.50S 8.32 8.32 8.32 110.06 0.08psipsipsipsi OK +1.20D+1.60S 15.38 15.38 15.38 110.06 0.14psipsipsipsi OK +1.20D+0.70S 9.60 9.60 9.60 110.06 0.09psipsipsipsi OK +0.90D 3.83 3.83 3.83 110.06 0.03psipsipsipsi OK One Way Shear Z Load Combination...Vu @ -Z Vu @ +Z Vu:Max Vu / Phi*VnPhi Vn Status +1.40D 5.96 5.96 5.96 110.06 0.05psipsipsipsi OK +1.20D 5.11 5.11 5.11 110.06 0.05psipsipsipsi OK +1.20D+0.50S 8.32 8.32 8.32 110.06 0.08psipsipsipsi OK +1.20D+1.60S 15.38 15.38 15.38 110.06 0.14psipsipsipsi OK +1.20D+0.70S 9.60 9.60 9.60 110.06 0.09psipsipsipsi OK +0.90D 3.83 3.83 3.83 110.06 0.03psipsipsipsi OK Vu / Phi*Vn Two-Way "Punching" Shear All units k StatusVuPhi*VnLoad Combination... +1.40D 21.49 150.00 0.1433 OKpsipsi+1.20D 18.42 150.00 0.1228 OKpsipsi+1.20D+0.50S 29.99 150.00 0.2 OKpsipsi+1.20D+1.60S 55.46 150.00 0.3697 OKpsipsi+1.20D+0.70S 34.62 150.00 0.2308 OKpsipsi+0.90D 13.82 150.00 0.0921 OKpsipsi 42 of 46 Concrete Beam LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:18" tall by 12" wide grade beam Hodge Engineering, Inc. 3733 Rosedale St. Suite 200 Gig Harbor, WA 98335 Project File: grade beam calc.ec6 Project Title:Engineer:Project ID:Project Descr: CODE REFERENCES Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 General Information 2.50 7.50 145.0 Elastic Modulus 3,122.0 ksi 1 60.0 29,000.0 40.0 29,000.0 3=2 =0.90 0.750 f'c ksi fy - Main Rebar ksi Density 1/2 = fr = f'c *375.0 pcf E - Main Rebar ksi psi =1.0OLtWt Factor Fy - Stirrups ksi == = E - Stirrups ksi E 0.850 == = Shear : Stirrup Bar Size # Number of Resisting Legs Per Stirrup Phi Values Flexure : \ I .Cross Section & Reinforcing Details Rectangular Section, Width = 12.0 in, Height = 18.0 in Span #1 Reinforcing.... 2-#5 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span 3-#5 at 3.0 in from Top, from 0.0 to 6.0 ft in this span Span #2 Reinforcing.... 2-#5 at 3.0 in from Bottom, from 0.0 to 6.0 ft in this span 3-#5 at 3.0 in from Top, from 0.0 to 6.0 ft in this span . Beam self weight calculated and added to loadsLoads on all spans... D = 0.010, L = 0.040 Uniform Load on ALL spans : D = 0.010, L = 0.040 ksf, Tributary Width = 30.0 ft Load for Span Number 1 Point Load : D = 2.50, L = 5.0, S = 5.0 k @ 4.0 ft Load for Span Number 2Point Load : D = 2.50, L = 5.0, S = 5.0 k @ 4.0 ft, (Point Load) .Design OKDESIGN SUMMARY Maximum Bending Stress Ratio =0.601 : 1 Span # where maximum occurs Span # 2 Location of maximum on span 3.992 ft Mn * Phi : Allowable 41.335 k-ft Typical SectionSection used for this span Mu : Applied 24.844 k-ft Maximum Deflection 0 <360.0 21755 Ratio =0 <180.0 Max Downward Transient Deflection 0.002 in 43773Ratio =>=360.0 Max Upward Transient Deflection 0.000 in Ratio = Max Downward Total Deflection 0.003 in Ratio =>=180.0 Max Upward Total Deflection 0.000 in Lr Only L Only Span: 2 : +D+0.750L+0.750S Span: 2 : +D+0.750L+0.750S .43 of 46 Concrete Beam LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:18" tall by 12" wide grade beam Hodge Engineering, Inc. 3733 Rosedale St. Suite 200 Gig Harbor, WA 98335 Project File: grade beam calc.ec6 Project Title:Engineer:Project ID:Project Descr: Load Combination Support 1 Support 2 Support 3 Vertical Reactions Support notation : Far left is #1 Max Upward from all Load Conditions 7.134 10.46831.558 Max Upward from Load Combinations 7.134 10.46831.558 Max Upward from Load Cases 3.533 5.20015.667 D Only 2.594 3.42710.590 +D+L 6.127 8.62726.256 +D+Lr 3.944 4.77715.090 +D+S 5.114 7.61422.881 +D+0.750Lr+0.750L 6.256 8.33925.715 +D+0.750L+0.750S 7.134 10.46831.558 +0.60D 1.556 2.0566.354 Lr Only 1.350 1.3504.500 L Only 3.533 5.20015.667 S Only 2.521 4.18812.292 .Shear Stirrup Requirements Between 0.00 to 1.03 ft, Phi*Vc / 2 < Vu <= Phi*Vc, Req'd Vs = Min per 9.6.3.1, use #3 stirrups spaced at 7.000 in Between 1.05 to 3.99 ft, Vu < Phi*Vc / 2, Req'd Vs = Not Reqd per 9.6.3.1, Stirrups are not required. Between 4.02 to 11.98 ft, Phi*Vc < Vu, Req'd Vs = 2.025, use #3 stirrups spaced at 7.000 in .Detailed Shear Information Load Combination Vu (k)Span Distance 'd'Comment Phi*Vs Req'd Phi*Vnd*Vu/MuMu (ft)(k)(in)(k)Actual (k-ft)Number (k) Spacing (in) Design Phi*Vc +1.20D+L+1.60S 1 0.00 15.00 10.68 10.68 0.00 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.15 15.00 10.16 10.16 1.53 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.29 15.00 9.63 9.63 2.98 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.44 15.00 9.11 9.11 4.36 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.59 15.00 8.59 8.59 5.66 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.73 15.00 8.06 8.06 6.88 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 0.88 15.00 7.54 7.54 8.03 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 1.03 15.00 7.02 7.02 9.10 0.96 13.95 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 1 1.18 15.00 6.49 6.49 10.09 0.80 13.76 Vu < Phi*Vc / 2Not Reqd per 9 13.8 0.0 +1.20D+L+1.60S 1 1.32 15.00 5.97 5.97 11.01 0.68 13.61 Vu < Phi*Vc / 2Not Reqd per 9 13.6 0.0 +1.20D+L+1.60S 1 1.47 15.00 5.45 5.45 11.85 0.57 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 1.62 15.00 4.92 4.92 12.61 0.49 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 1.76 15.00 4.40 4.40 13.29 0.41 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 1.91 15.00 3.88 3.88 13.90 0.35 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.06 15.00 3.35 3.35 14.43 0.29 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.20 15.00 2.83 2.83 14.89 0.24 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.35 15.00 2.31 2.31 15.26 0.19 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.50 15.00 1.78 1.78 15.57 0.14 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.64 15.00 1.26 1.26 15.79 0.10 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 2.79 15.00 0.74 0.74 15.94 0.06 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr 1 2.94 15.00 -0.96 0.96 6.34 0.19 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.09 15.00 -1.44 1.44 11.36 0.16 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.23 15.00 -1.93 1.93 11.11 0.22 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.38 15.00 -2.42 2.42 10.79 0.28 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.53 15.00 -2.91 2.91 10.40 0.35 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.67 15.00 -3.39 3.39 9.94 0.43 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.82 15.00 -3.88 3.88 9.41 0.52 13.50 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+1.60Lr+L 1 3.97 15.00 -4.37 4.37 8.80 0.62 13.55 Vu < Phi*Vc / 2Not Reqd per 9 13.5 0.0 +1.20D+L+1.60S 1 4.11 15.00 -19.97 19.97 11.97 1.00 13.99 Phi*Vc < Vu 5.985 28.1 7.5 +1.20D+L+1.60S 1 4.26 15.00 -20.50 20.50 9.00 1.00 13.99 Phi*Vc < Vu 6.508 28.1 7.5 +1.20D+L+1.60S 1 4.41 15.00 -21.02 21.02 5.95 1.00 13.99 Phi*Vc < Vu 7.031 28.1 7.5 +1.20D+L+1.60S 1 4.56 15.00 -21.54 21.54 2.82 1.00 13.99 Phi*Vc < Vu 7.554 28.1 7.5 +1.20D+L+1.60S 1 4.70 15.00 -22.07 22.07 0.39 1.00 14.57 Phi*Vc < Vu 7.496 28.7 7.5 +1.20D+L+1.60S 1 4.85 15.00 -22.59 22.59 3.67 1.00 14.57 Phi*Vc < Vu 8.020 28.7 7.5 +1.20D+L+1.60S 1 5.00 15.00 -23.11 23.11 7.02 1.00 14.57 Phi*Vc < Vu 8.543 28.7 7.5 +1.20D+L+1.60S 1 5.14 15.00 -23.63 23.63 10.46 1.00 14.57 Phi*Vc < Vu 9.066 28.7 7.5 +1.20D+L+1.60S 1 5.29 15.00 -24.16 24.16 13.97 1.00 14.57 Phi*Vc < Vu 9.589 28.7 7.5 +1.20D+L+1.60S 1 5.44 15.00 -24.68 24.68 17.56 1.00 14.57 Phi*Vc < Vu 10.113 28.7 7.544 of 46 Concrete Beam LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:18" tall by 12" wide grade beam Hodge Engineering, Inc. 3733 Rosedale St. Suite 200 Gig Harbor, WA 98335 Project File: grade beam calc.ec6 Project Title:Engineer:Project ID:Project Descr: Detailed Shear Information Load Combination Vu (k)Span Distance 'd'Comment Phi*Vs Req'd Phi*Vnd*Vu/MuMu (ft)(k)(in)(k)Actual (k-ft)Number (k) Spacing (in) Design Phi*Vc +1.20D+L+1.60S 1 5.58 15.00 -25.20 25.20 21.22 1.00 14.57 Phi*Vc < Vu 10.636 28.7 7.5 +1.20D+L+1.60S 1 5.73 15.00 -25.73 25.73 24.96 1.00 14.57 Phi*Vc < Vu 11.159 28.7 7.5 +1.20D+L+1.60S 1 5.88 15.00 -26.25 26.25 28.78 1.00 14.57 Phi*Vc < Vu 11.682 28.7 7.5 +1.20D+L+1.60S 2 6.02 15.00 21.27 21.27 31.50 0.84 14.30 Phi*Vc < Vu 6.970 28.4 7.5 +1.20D+L+1.60S 2 6.17 15.00 20.74 20.74 28.42 0.91 14.42 Phi*Vc < Vu 6.327 28.6 7.5 +1.20D+L+1.60S 2 6.32 15.00 20.22 20.22 25.41 0.99 14.56 Phi*Vc < Vu 5.660 28.7 7.5 +1.20D+L+1.60S 2 6.47 15.00 19.70 19.70 22.47 1.00 14.57 Phi*Vc < Vu 5.128 28.7 7.5 +1.20D+L+1.60S 2 6.61 15.00 19.17 19.17 19.62 1.00 14.57 Phi*Vc < Vu 4.605 28.7 7.5 +1.20D+L+1.60S 2 6.76 15.00 18.65 18.65 16.84 1.00 14.57 Phi*Vc < Vu 4.082 28.7 7.5 +1.20D+L+1.60S 2 6.91 15.00 18.13 18.13 14.14 1.00 14.57 Phi*Vc < Vu 3.558 28.7 7.5 +1.20D+L+1.60S 2 7.05 15.00 17.60 17.60 11.51 1.00 14.57 Phi*Vc < Vu 3.035 28.7 7.5 +1.20D+L+1.60S 2 7.20 15.00 17.08 17.08 8.96 1.00 14.57 Phi*Vc < Vu 2.512 28.7 7.5 +1.20D+L+1.60S 2 7.35 15.00 16.56 16.56 6.49 1.00 14.57 Phi*Vc < Vu 1.989 28.7 7.5 +1.20D+L+1.60S 2 7.49 15.00 16.03 16.03 4.10 1.00 14.57 Phi*Vc < Vu 1.465 28.7 7.5 +1.20D+L+1.60S 2 7.64 15.00 15.51 15.51 1.78 1.00 14.57 Phi*Vc < Vu 0.9421 28.7 7.5 +1.20D+L+1.60S 2 7.79 15.00 14.99 14.99 0.46 1.00 13.99 Phi*Vc < Vu 1.0 28.1 7.5 +1.20D+L+1.60S 2 7.93 15.00 14.46 14.46 2.62 1.00 13.99 Phi*Vc < Vu 0.4768 28.1 7.5 +1.20D+L+1.60S 2 8.08 15.00 13.94 13.94 4.71 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.23 15.00 13.42 13.42 6.72 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.38 15.00 12.89 12.89 8.65 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.52 15.00 12.37 12.37 10.51 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.67 15.00 11.85 11.85 12.29 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.82 15.00 11.32 11.32 13.99 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 8.96 15.00 10.80 10.80 15.62 0.86 13.83 Phi*Vc / 2 < VuMin per 9.6.3.28.0 7.5 +1.20D+L+1.60S 2 9.11 15.00 10.28 10.28 17.17 0.75 13.70 Phi*Vc / 2 < VuMin per 9.6.3.27.8 7.5 +1.20D+L+1.60S 2 9.26 15.00 9.76 9.76 18.64 0.65 13.59 Phi*Vc / 2 < VuMin per 9.6.3.27.7 7.5 +1.20D+L+1.60S 2 9.40 15.00 9.23 9.23 20.03 0.58 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 9.55 15.00 8.71 8.71 21.35 0.51 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 9.70 15.00 8.19 8.19 22.59 0.45 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 9.84 15.00 7.66 7.66 23.76 0.40 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 9.99 15.00 7.14 7.14 24.84 0.36 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 10.14 15.00 -9.38 9.38 23.63 0.50 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 10.29 15.00 -9.91 9.91 22.22 0.56 13.50 Phi*Vc / 2 < VuMin per 9.6.3.27.6 7.5 +1.20D+L+1.60S 2 10.43 15.00 -10.43 10.43 20.72 0.63 13.56 Phi*Vc / 2 < VuMin per 9.6.3.27.7 7.5 +1.20D+L+1.60S 2 10.58 15.00 -10.95 10.95 19.15 0.71 13.66 Phi*Vc / 2 < VuMin per 9.6.3.27.8 7.5 +1.20D+L+1.60S 2 10.73 15.00 -11.48 11.48 17.50 0.82 13.78 Phi*Vc / 2 < VuMin per 9.6.3.27.9 7.5 +1.20D+L+1.60S 2 10.87 15.00 -12.00 12.00 15.78 0.95 13.93 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 11.02 15.00 -12.52 12.52 13.98 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 11.17 15.00 -13.05 13.05 12.10 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 11.31 15.00 -13.57 13.57 10.14 1.00 13.99 Phi*Vc / 2 < VuMin per 9.6.3.28.1 7.5 +1.20D+L+1.60S 2 11.46 15.00 -14.09 14.09 8.11 1.00 13.99 Phi*Vc < Vu 0.1062 28.1 7.5 +1.20D+L+1.60S 2 11.61 15.00 -14.62 14.62 6.00 1.00 13.99 Phi*Vc < Vu 0.6294 28.1 7.5 +1.20D+L+1.60S 2 11.76 15.00 -15.14 15.14 3.81 1.00 13.99 Phi*Vc < Vu 1.153 28.1 7.5 +1.20D+L+1.60S 2 11.90 15.00 -15.66 15.66 1.55 1.00 13.99 Phi*Vc < Vu 1.676 28.1 7.5 .Maximum Forces & Stresses for Load Combinations Span # Bending Stress Results ( k-ft )Location (ft)Load Combination Mu : Max Stress RatioSegmentPhi*Mnxalong Beam MAXimum BENDING EnvelopeSpan # 1 1 6.000 -31.37 58.43 0.54Span # 2 2 6.000 24.84 41.34 0.60+1.40DSpan # 1 1 6.000 -9.40 58.43 0.16Span # 2 2 6.000 6.87 41.34 0.17+1.20D+0.50Lr+1.60LSpan # 1 1 6.000 -25.68 58.43 0.44Span # 2 2 6.000 19.41 41.34 0.47+1.20D+1.60L+0.50SSpan # 1 1 6.000 -28.46 58.43 0.49Span # 2 2 6.000 22.09 41.34 0.53 45 of 46 Concrete Beam LIC# : KW-06019371, Build:20.24.03.04 HODGE ENGINEERING INC (c) ENERCALC INC 1983-2023 DESCRIPTION:18" tall by 12" wide grade beam Hodge Engineering, Inc. 3733 Rosedale St. Suite 200 Gig Harbor, WA 98335 Project File: grade beam calc.ec6 Project Title:Engineer:Project ID:Project Descr: Span # Bending Stress Results ( k-ft )Location (ft)Load Combination Mu : Max Stress RatioSegmentPhi*Mnxalong Beam +1.20D+1.60Lr+L Span # 1 1 6.000 -22.48 58.43 0.38 Span # 2 2 6.000 16.28 41.34 0.39 +1.20D+1.60Lr Span # 1 1 6.000 -12.29 58.43 0.21 Span # 2 2 6.000 -12.54 58.43 0.21 +1.20D+L+1.60S Span # 1 1 6.000 -31.37 58.43 0.54 Span # 2 2 6.000 24.84 41.34 0.60 +1.20D+1.60S Span # 1 1 6.000 -21.18 58.43 0.36 Span # 2 2 6.000 16.86 41.34 0.41 +1.20D+0.50Lr+L Span # 1 1 6.000 -19.57 58.43 0.33 Span # 2 2 6.000 14.63 41.34 0.35 +1.20D+L+0.50S Span # 1 1 6.000 -22.35 58.43 0.38 Span # 2 2 6.000 17.30 41.34 0.42 +0.90D Span # 1 1 6.000 -6.04 58.43 0.10 Span # 2 2 6.000 4.42 41.34 0.11 +1.20D+L+0.20S Span # 1 1 6.000 -19.89 58.43 0.34 Span # 2 2 6.000 15.25 41.34 0.37 . Location in Span (ft)Load CombinationMax. "-" Defl (in)Location in Span (ft)Load Combination Span Max. "+" Defl (in) Overall Maximum Deflections +D+0.750L+0.750S+D+0.750L+0.750S 1 0.0031 2.829 -0.0000 6.086 +D+0.750L+0.750S 2 0.0033 3.686 0.0000 6.086 46 of 46