Loading...
HomeMy WebLinkAboutSWP2703430PMq boa City of Renton ,�," ��n L)SQ� --�) (�) t its• of r��rr rJ�i :.. Rainier Avenue South Improvement Project — SW Grady Way to S 2nd Street Surface Water Technical Information Report November 2011 The technical information and data included in this report was prepared by or under the direct supervision of the undersigned, whose seal as registered professional engineer licensed to practice as such in the State of Washington is affixed below: 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report Contents 1. Project Overview 1 1.1 Project Description 1 1.2 Background 1 1.3 Threshold Discharge Areas 1 2. Requirements Summary 3 2.1 Project Conditions Affecting Drainage Requirements 3 2.2 Applicability of the Minimum Requirements 4 3. Offsite Analysis 8 3.1 Resource Review 8 3.2 Study Area Mapping 8 3.3 Field Inspection 8 3.4 Downstream Drainage System Descriptions 10 3.5 Upstream Drainage Areas 11 3.6 Existing and Predicted Drainage Problems 12 4. Runoff Treatment and Flow Control Analysis & Design 13 4.1 Runoff Treatment 13 4.2 Flow Control 15 4.3 Existing Facilities 15 5. Conveyance System Analysis and Design 17 5.1 Design Standards 17 5.2 Existing Conveyance System 17 5.3 Proposed Conveyance System 18 5.4 Gutter Flow and Inlet Design 20 5.5 Rainier Avenue Pump Station Performance and Impacts 23 6. Special Reports and Studies 25 7. CSWPPP Analysis and Design 26 7.1 CSWPPP Drawings 26 7.2 CSWPPP Narrative 26 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report Table Index Table 1. Project Area Summary Table 2. Change in 100-year Peak Flow Table 3. Runoff Treatment Areas Table 4. Filterra Sizing Calculations Table 5. Tailwater Elevations Table 6. Pump Station Performance Figure Index Figure 1 Basin Map Appendices A Land Coverage Maps B Flow Control and Runoff Treatment Facility Calculations C Conveyance Analysis D Gutter and Inlet Analysis E Shattuck Avenue Stormwater Diversion Modeling Report 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report 4 7 14 14 20 24 1. Project Overview 1.1 Project Description The Rainier Avenue South Improvement Project is located along Rainier Avenue S in Renton, Washington, between SW Grady Way and SW Sunset Way. The project will improve transit access and reliability, general purpose traffic flow, and develop a more pedestrian friendly urban designed street. This report addresses preparation of the storm water site plans to accommodate preliminary roadway improvements. Per direction from the City of Renton, stormwater management facilities have been evaluated using the Department of Ecology's February 2005 Stormwater Management Manual for Western Washington (SMMWW). Conveyance facilities have been designed in accordance with the 2009 King County Surface Water Design Manual. 1.2 Background The City of Renton plans to improve the roadway by adding traffic lanes, protected turn pockets, and planted (raised) medians along the roadway. New frontage improvements will consist of wider sidewalks, irrigated planter strips, curb and gutter. The existing roadway to remain will be resurfaced. Stormwater drainage and other franchise utilities will be modified or relocated to accommodate roadway improvements. Project limits are the roadway length by the width of the right-of-way. The distance from SW Grady Way and SW Sunset Way is approximately 3,700 feet and the existing right-of-way width varies from 82 feet to 115 feet. Additional right-of-way will be acquired in some areas to accommodate roadway improvements. 1.2.1 Existing Conditions The existing right-of-way is fully developed with commercial properties adjacent to the roadway. The roadway width is approximately 78 feet and narrows down to 68 feet north of S 3rd Street. The existing frontage consists of curb, sidewalk, and planter strips. Planter strips exist in some areas and separate the sidewalk from parking lots in the private, commercial properties. 1.2.2 Developed Conditions Proposed improvements will widen the existing roadway to accommodate additional travel lanes, left turn lanes, and median. The new roadway width is 97 feet and narrows down to 76 feet north of S 3rd Street. Frontage improvements will include curb and gutter, 5-foot planting strip, and 8-foot sidewalk. 1.3 Threshold Discharge Areas Threshold discharge areas (TDAs) are defined for projects with multiple storm drainage discharge points. A TDA is defined as an onsite area that drains to a single natural discharge location, or multiple natural discharge locations that combine within one -quarter mile downstream (as determined by the shortest flow path). Drainage requirements with thresholds are applied to each TDA separately. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report The Rainier Avenue project has four TDAs as described below. TDA naming is based on the basin naming used for previous drainage studies of this area. These TDAs are used for determining the ' applicability of the 10 minimum requirements of the SMMWW (see Chapter 2). Project TDAs are shown on Figure 1 in Chapter 3. More detailed descriptions of the drainage systems located downstream from each TDA are contained in Chapter 3. ' 1.3.1 TDA A TDA A is the northern portion of the project area that drains into the Hardie Avenue SW drainage system , that flows south from SW Sunset Boulevard. This storm drain joins the SW 7"' Street storm drain at Lind Avenue SW, and then flows west to the Black River Forebay. 1.3.2 TDA V ' TDA V is the central portion of the project area that drains to the existing pump station located south of the BNSF railroad crossing. The pump station discharges to the west, joining runoff from TDA A at Hardie Avenue SW. 1.3.3 TDA I TDA I is the portion of the project area near SW 7`h Street that discharges into the storm drainage system that flows west along SW 7`I' Street. Drainage from TDA I joins runoff from TDAs A and V near Lind I Avenue SW. 1.3.4 TDA GW The Grady Way (GW) TDA is the southern portion of the project area that drains into the Grady Way conveyance system that flows west, eventually draining into Springbrook Creek and the Black River Forebay. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Z Surface water Technical Information Report H 2. Requirements Summary The Department of Ecology's February 2005 SMMWW, as interpreted by the City of Renton, was used to determine mitigation requirements for this roadway project. Depending on the type and size of the project, different combinations of these minimum requirements apply. The minimum requirements are: 1. Preparation of Stormwater Site Plans 2. Construction Stormwater Pollution Prevention 3. Source Control of Pollution 4. Preservation of Natural Drainage Systems and Outfalls 5. On -Site Storm Management 6. Runoff Treatment 7. Flow Control 8. Wetlands Protection 9. Basin/Watershed Planning 10.0peration and Maintenance 2.1 Project Conditions Affecting Drainage Requirements Chapter 2.4 in Volume I of the SMMWW identifies thresholds that determine the applicability of each requirement to the project. These thresholds are based on: i The area of new impervious surface. The definition for impervious surface contained in the SMMWW does not identify which impervious surfaces on a project are considered "new"; therefore the definition is determined by the local jurisdiction. Renton defines new impervious surface as existing pervious surfaces converted to impervious surface. o The percentage of existing impervious surface. P The percentage of added impervious surface. Table 1 summarizes existing and new impervious surface areas within the project area, and the resulting percentage of additional impervious surface. Also included in Table 1 is the area of new pollution - generating impervious surface (PGIS), which is used for determining the runoff treatment requirement (see Section 2.2.6). Removed impervious surface and net -new impervious surface area have been used in assessing applicability of the Flow Control requirement (see Section 2.2.7). New impervious areas within the project area are shown on the land coverage maps in Appendix A. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 3 Surface Water Technical Information Report Table 1. Proiect Area Summa TDA A TDA V TDA I TDA GW Total Project Area (SF) 114,500 195,400 101,900 129,100 540,900 Existing Impervious 104,500 173,100 86,700 119,800 484,100 Surface (SF) Percent Existing 91% 89% 85% 93% 89% Impervious New Impervious 6,022 15,550 11,526 6,216 39,314 Surface Area' (SF) Percent Added 5.8% 9.0% 13% 5.2% 8.1 % Impervious New PGIS2 (SF) 1.644 7,946 7,628 1,583 18,801 Removed Existing 4,039 12,591 6,384 9,437 32,451 Impervious3 (SF) Net New Impervious Surface 1,983 2,959 5,142 -3,221 13,305 Area (SF) Notes: 1. Area converted from pervious to impervious as a result of roadway widening 2. New pollution -generating impervious surface within the New Impervious Surface Area 3. Area converted from impervious to pervious as a result of landscaped median areas 2.2 Applicability of the Minimum Requirements The applicability of the Minimum Requirements differs for new development and redevelopment projects. Redevelopment projects are defined as projects occurring on sites that are already substantially developed, with 35% or more existing impervious coverage. Since the Rainier Avenue right-of-way between Grady Way and S 2nd Street has 90% existing impervious coverage (see Table 1), the proposed roadway improvements are classified as a redevelopment project. Application of the 10 Minimum Requirements to redevelopment projects is determined using Figure 2.3 in Volume I of the SMMWW. Navigating the flow chart using this project's conditions results in the following conclusions regarding applicability of the Minimum Requirements: P The project will add more than 5,000 square feet of new impervious surfaces; therefore, Minimum Requirements #1 though #10 apply to the new impervious and converted pervious surfaces. No additional requirements are necessary for replaced impervious surfaces because this is a road related project that does not add 50% or more of new impervious surface to the existing impervious surfaces (only approximately 8% of new impervious surfaces will be added). The following sections describe the applicability of the individual Minimum Requirements for this project, and how the requirements will be met: 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report 2.2.1 Minimum Requirement #1: Preparation of Stormwater Site Plans This Surface Water Technical Information Report (TIR) satisfies the requirement for Minimum Requirement #1. Required elements for a Stormwater Site Plan, as outlined in the SMMWW, are contained in this report as follows: P Determine Applicable Minimum Requirements (Chapter 2) P Offsite Analysis (Chapter 3) o Prepare a Permanent Stormwater Control Plan (Appendix A) o Prepared a Construction Stormwater Pollution Prevention Plan (Chapter 7) 2.2.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP) The 12 SWPP elements were addressed during design of the roadway improvement plans. A Stormwater Pollution Prevention Plan Narrative has been included in Chapter 7 that addresses each of the 12 SWPP elements. The 12 SWPP elements are as follows: Element 1: Mark Clearing Limits Element 2: Establish Construction Access Element 3: Control Flow Rates Element 4: Install Sediment Controls Element 5: Stabilize Soils Element 6: Protect Slopes Element 7: Protect Drain Inlets Element 8: Stabilize Channels and Outlets Element 9: Control Pollutants Element 10: Control De -Watering Element 11: Maintain Best Management Practices (BMPs) Element 12: Manage the Project 2.2.3 Minimum Requirement #3: Source Control of Pollution All projects are required to apply all known, available, and reasonable source control BMPs to prevent stormwater from coming into contact with pollutants. BMPs come in two categories: structural and operational. Structural source control BMPs should be identified in the storm drainage plans. The following recommended pollution control approach for Urban Streets is described in Volume IV of the SMMWW: "Conduct efficient street sweeping where and when appropriate to minimize the contamination of stormwater. Do not wash street debris into storm drains." Recommended operation BMPs consist of different approaches to street cleaning. No structural BMPs are identified that would need to be incorporated into the drainage plans. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 5 Surface Water Technical Information Report 2.2.4 Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls The proposed storm drainage conveyance system has been designed to maintain existing drainage patterns. The project site area has four Threshold Discharge Areas with downstream paths that recombine further than % mile downstream from the site. All four of the downstream paths flow into storm sewers. The location and area of the four Threshold Discharge Areas will be maintained between the existing and redeveloped conditions. 2.2.5 Minimum Requirement #5: On -Site Stormwater Management On -site stormwater BMPs are required to infiltrate, disperse, and retain stormwater runoff onsite to the maximum extent feasible without causing flooding or erosion impacts. The purpose of these BMPs is to reduce the disruption of natural hydrologic characteristics resulting from development. Due to Rainier Avenue's existing condition as a fully -developed urban corridor with limited opportunity for effective infiltration or dispersion, and due to the project's minimal change to hydrologic conditions, on -site BMPs have not been included in the scope of this project. 2.2.6 Minimum Requirement #6: Runoff Treatment Runoff treatment is required for Threshold Discharge Areas in which the total of effective PGIS is 5,000 square feet or more. As described previously, Minimum Requirements 1 - 10 only apply to the "new" impervious surface areas of the project. As shown in Table 1, within the new impervious surface areas, the amount of new PGIS exceeds 5,000 square feet in TDA V and TDA I. As a result, runoff treatment facilities are required for these two threshold discharge areas. The sizing and design of the required facilities is described in Section 4.1. Runoff treatment facilities for this project are required to be chosen from the Enhanced Treatment Menu because the Annual Average Daily Traffic counts for Rainier Avenue exceed 7,500. Three intersections within the project area are classified as "high -use" because Rainier Avenue S has an Average Daily Traffic (ADT) count of greater than 25,000, and the intersecting roadway ADTs exceed 15,000 (based on City of Renton 2006 Traffic Flow Map). These intersections are SW Sunset Boulevard, SW 7th Street, and SW Grady Way. High -use intersections are required to apply the Oil Control Menu per the SMMKW. However, oil control facilities are not required for this project because the new PGIS areas requiring treatment are not within the high -use intersection areas. 2.2.7 Minimum Requirement #7: Flow Control Flow control is required for TDAs in which the total of effective impervious surfaces is 10,000 square feet or more or for TDAs where the 100-year flow frequency peak flow will increase by 0.1 cfs or more. As described previously, Minimum Requirements 1 - 10 only apply to the "new" impervious surface areas of this project because it is classified as a roadway redevelopment project. The City of Renton applies flow control thresholds to net new impervious surfaces. This gives credit for new pervious surfaces that will be created by the project, such as landscaped medians. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report As shown in Table 1, the net new impervious surface for each threshold discharge area is less than 10,000 square feet. In addition, the change in 100-year peak flow has been calculated for the net new impervious surface and found to be less than 0.1 cfs for all four TDAs (see Table 2; see Appendix B for calculations). As a result, flow control facilities are not required for this project. Table 2. Change in 100-year Peak Flow TDA A TDA V TDA I TDA GW Existing 100-yr peak flow rate (cfs) 1.18 1.98 0.98 1.34 Proposed 100-yr peak flow rate cfs 1.20 2.00 1.05 1.32 Change in 100-yr peak flow rate (cfs) 0.02 0.02 0.07 -0.02 2.2.8 Minimum Requirement #8: Wetlands Protection Additional requirements apply to projects that drain to wetlands, either directly or indirectly through a conveyance system. Discharges to wetlands are required to maintain hydrologic conditions, hydrophytic vegetation, and substrate characteristics necessary to support existing and designated uses. The Rainier Avenue project drains via conveyance systems to the Black River Forebay, located approximately one mile downstream from the site. Although the Black River Riparian Forest surrounding the forebay contains wetlands, discharge from Renton's storm drainage system follows a stream channel and does not flow through the wetlands. As a result, Minimum Requirement #8 does not apply to this project. 2.2.9 Minimum Requirement #9: Basin/Watershed Planning There are no known basin or watershed plans that would impose additional requirements to the drainage system for the Rainier Avenue Improvements project. 2.2.10 Minimum Requirement #10: Operation and Maintenance Components of the drainage systems proposed for the Rainier Avenue Improvements project are consistent with other drainage facilities currently operated and maintained by the City of Renton. As a result, a project -specific Operations and Maintenance Manual will not be provided. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report I Offsite Analysis This offsite analysis has been prepared to comply with one component of Minimum Requirement No. 1: Preparation of Stormwater Site Plans. The purpose of the offsite analysis is to recognize existing upstream areas that pass through or connect to the project and investigate downstream areas that may have existing or potential drainage issues. The task determines if any mitigation is necessary by identifying and evaluating drainage impacts that may be caused or aggravated by the proposed redevelopment project. The required offsite analysis components are outlined in Section 2.6.2 of the 2005 SMMWW, and consist of defining the mapping of the study area, reviewing all available information on the study area, a field inspection, and description of the drainage system and its existing and predicted problems. 3.1 Resource Review The following information was used as the basis of the offsite analysis: P Storm System Inventory Book (City of Renton, April 2007) Ill, SW 7th Street/Hardie Avenue SW/Lake Avenue S Drainage Investigations (RW Beck, November 1998) P SW 7th Street Storm Drainage Improvement Project Pre -Design Analysis (Gray & Osborne, February 2003) 11 30% Storm Drainage Memorandum, Rainier Avenue S/BNSF Improvements, S. 4th Place to S. 7th Street (RoseWater Engineering, January 2006) P City of Renton Shattuck Avenue Stormwater Diversion Modeling Report (Draft) (RoseWater Engineering, February 2008) 3.2 Study Area Mapping Figure 1 shows the study area, on -site threshold discharge areas, upstream drainage basins, and downstream drainage paths. 3.3 Field Inspection Since the downstream drainage system within the study area consists entirely of enclosed storm drains that are operated and maintained by the City of Renton, field inspection of the interior of these facilities was limited. 86/1415914577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report 3.4 Downstream Drainage System Descriptions Downstream drainage system descriptions begin where project stormwater discharges into the existing downstream drainage system. The following descriptions are based on City mapping, prior studies, and limited field investigation. The described systems extend downstream at least one -quarter mile from the project discharge points. 3.4.1 Downstream TDA A The downstream system from TDA A begins at a storm drain manhole in the parking lot of the Fred Meyer shopping center located near the southwest corner of the Rainier Avenue S and SW Sunset Boulevard intersection. An 8-foot by 10-foot box culvert under Rainier Avenue S discharges upstream and project flows to the downstream system via a 24-inch by 42-inch arched corrugated metal connector pipe. The downstream conveyance system continues west and parallel to SW Sunset Boulevard towards Hardie Avenue SW. Prior to heading south on Hardie Avenue SW, pipe flow from SW Langston Road converges into the system. The conveyance system continues south and collects roadway runoff from Hardie Avenue SW, SW 5th Place, Maple Ave SW, and the Fred Meyer shopping center. The quarter mile investigation ends 140 feet south of the Hardie Avenue SW and SW 5th Place intersection. The system eventually combines with drainage from TDA V on the south side of the railroad overpass on Hardie Avenue SW. 3.4.2 Downstream TDA V The downstream system from TDA V begins on the south side of the railroad overpass on Rainier Avenue S. A pump station at this location conveys upstream and project flows west along the railroad right-of- way to Hardie Avenue SW. Flows from TDA V combine with TDA A on the south side of the railroad overpass at Hardie Avenue SW. The storm drain system gravity flows west along the railroad then southwesterly to SW 7th Street. The quarter mile investigation ends prior to the drainage system crossing between two commercial properties located at 300 and 440 SW 7th Street. The drainage system ultimately converges into the SW 7th Street drainage system near Lind Avenue SW where it combines with drainage from TDA I. 3.4.3 Downstream TDA I The downstream system from TDA I begins on the west side of the Rainier Avenue S and SW 7th Street intersection. Upstream and project flows discharge into the SW 7th Street drainage system that consists of two existing 24-inch and 60-inch storm drain pipes that convey stormwater flow west towards the Black River Forebay. The two pipes run parallel to each other and share stormwater flows, with stormwater manholes and vault structures connecting the two systems. The 24-inch conveyance increases to 36- inch west of Hardie Avenue SW and to 54-inch before Lind Avenue SW. The quarter mile investigation ends 270 feet east of the intersection with Lind Avenue SW. At this point, upstream project flows from TDA V and TDA A converge into the SW 7th Street drainage system. The 54-inch and 60-inch conveyance pipes continue west to a vault on the west side of the intersection with Lind Avenue SW. The vault outlet is a 60-inch pipe that continues west along the roadway, eventually discharging to the Black River Forebay at Naches Avenue SW. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 10 Surface Water Technical Information Report 3.4.4 Downstream TDA GW The downstream system from TDA GW begins at the northwest corner of the intersection of SW Grady Way and Rainier Avenue S. Upstream and project flows connect to a 52-inch underground pipe conveyance system that flows west along the north side of Grady Way SW, eventually discharging to Springbrook Creek near Oakesdale Avenue SW. 3.5 Upstream Drainage Areas 3.5.1 Upstream TDA A The upstream area for TDA A consists of a mix of residential neighborhood and commercial properties. The approximate size of the upstream area is 55 acres. The Lake Avenue S conveyance system collects most of the upstream flows for the area. Project flows from north of S 2nd Street connect to the offsite system at Lake Avenue S and S 2nd Street. The system then flows in a southwesterly direction towards the Rainier Avenue S and S 3rd Street intersection. Offsite flows pass through the project area in an 8- foot by 10-foot concrete box culvert. Project and offsite flows combine at existing manholes upstream and downstream of the box culvert. 3.5.2 Upstream TDA V The upstream area for TDA V consists of a mix of residential neighborhood and commercial properties. The approximate size of the upstream area is 11 acres, with runoff from this area entering the Rainier Avenue conveyance system at several connection points along the roadway. An additional 54 acres was previously tributary to TDA V, but was diverted to TDA I by construction of the Shattuck Avenue Stormwater Bypass Project in 2010. The Shattuck Avenue project consisted of a new 48-inch storm drain pipe constructed between S 4th Place and S 7th Street. 3.5.3 Upstream TDA I The upstream area for TDA I consists of a mix of residential neighborhood and commercial properties. ' The Shattuck Avenue Stormwater Bypass Project increased the upstream area from 104 acres to approximately 158 acres by diverting 54 acres from TDA V. Upstream flows pass through the project area at the Rainier Avenue S and SW 7th Street intersection in existing 24-inch and 60-inch storm drainage pipes. Project flows will combine with upstream flows at the intersection. 3.5.4 Upstream TDA GW The upstream area for TDA GW consists of commercial properties, including Les Schwab, Walker's Renton Subaru, and Sound Ford. The approximate size of the upstream area is 12.7 acres. Runoff from approximately 3.5 acres of this area enters the Rainier Avenue S conveyance system at several existing connection points along the roadway. Runoff from the remaining 9.2 acres is conveyed by an existing 27-inch concrete storm drain from the east that connects to the Rainier Avenue drainage system approximately 200 feet north of the intersection of Grady Way and Rainier Avenue. This drainage system extends approximately 1,300 feet to the east, and collects runoff from portions of Sound Ford, Renton Mazda, and properties north of Lithia Hyundai. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report cl�HDI Although this drainage system passes through the South Renton Park and Ride lot, drainage from that facility is not connected. A map of this drainage system and contributing basin areas has been included in Appendix C. 3.6 Existing and Predicted Drainage Problems Prior drainage investigations for the study area document past flooding problems in several locations. Some of these problems have been corrected by construction of a new storm drainage system along S 7th Street. The two remaining drainage problems known to exist downstream from the Rainier Avenue S Improvement Project are described below: o Flooding along Hardie Avenue SW below the railroad overpass occurs during large storm events when the hydraulic grade line of the drainage system is higher than the low-lying street surface below the railroad. This flooding will not increase as a result of the Rainier Avenue project because the change in hydrologic conditions within the project area will be negligible. Although construction of the Shattuck Avenue Stormwater Bypass (Phase 1 of the Rainier Avenue Improvements) diverted runoff from 54 acres away from the Hardie Avenue SW flooding area, it is not expected to noticeably improve flooding conditions at Hardie Avenue because that problem appears to be caused primarily by tailwater conditions in the downstream storm drainage system along S 71h Street. o Flooding under the Rainier Avenue S underpass occurs occasionally during power outages that affect the downstream pump station (reported by City staff during meetings held on 8/29/05 and 10/20/05). More recently, City staff have reported occasional flooding at other times during heavy rain. Recent construction of the Shattuck Avenue Stormwater Bypass (Phase 1 of the Rainier Avenue Improvements) redirected runoff from approximately 54 acres away from the pump station, which is expected to reduce flooding during heavy rain, and reduce the severity of flooding during a pump failure or power outage. Additional analysis of this project's impacts on the pump station is discussed in Section 5.5. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 12 Surface Water Technical Information Report 4. Runoff Treatment and Flow Control Analysis & Design The applicability of Runoff Treatment and Flow Control requirements for this project is described in Sections 2.2.6 and 2.2.7. The following sections document the analysis and design of required runoff treatment and flow control facilities. 4.1 Runoff Treatment As described in detail in Section 2.2.6, runoff treatment facilities are required for TDA V and TDA I because the amount of new PGIS in both of these TDAs exceeds 5,000 square feet. The runoff treatment menu applicable to this project was determined from Chapter 2 in Volume III of the SMMWW. Enhanced treatment facilities are required for this project because Rainier Avenue is a within the Urban Growth Management Area and has an Annual Average Daily Traffic count greater than 7,500. The Enhanced Treatment menu options are specified in Section 3.4 in Volume III of the SMMWW. Allowable Enhanced treatment facility options include infiltration with pretreatment, sand filters, sormwater treatment wetlands, compost -amended filter strips, and several two -facility treatment trains. In addition to these options, the Americast Filterra has received a General Use Level Designation (GULD) from the Washington State Department of Ecology for Basic, Enhanced, and Oil Control Treatment. 4.1.1 Runoff Treatment BMP Selection Americast Filterra tree box filter units have been chosen as the runoff treatment BMP for this project. Because Filterra units are not listed as an approved Enhanced runoff treatment BMP in the Department of Ecology's February 2005 SMMWW, or in the City of Renton's current drainage manual, a standards adjustment is needed. The justification for a standards adjustment is documented Section 4.1.3 Because the Filterra units include vegetation, appropriate locations are constrained by landscaping and urban design concepts. Other constraints include driveways, utilities, maintenance accessibility, and appropriate storm drain and gutter geometry. Filterra units cannot be located at a sag in the gutter profile, and another catch basin needs to be placed downstream from each unit to serve as an overflow. After analyzing these constraints, no suitable locations were found for treating PGIS in TDA I. As a result, for this project Renton Stormwater has approved constructing Filterra units TDA V to mitigate for new PGIS created in TDA I. This approval was made because runoff from both TDAs recombines a short distance downstream in 7th Street SW, prior to discharge from the City's piped drainage system to the Black River Forebay. Table 3 below summarizes the amounts of new PGIS and proposed PGIS treatment within TDAs V and I, and the totals for the two TDAs. Facility sizing is described in Section 4.1.2. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 13 Surface Water Technical Information Report Table 3. Runoff Treatment Areas TDA V TDA 1 TDA V + TDA I New PGIS 7,946 sf 7,628 sf 15,574 sf Proposed PGIS to be treated 21,155 sf 0 sf 21,155 sf % of treatment requirement provided 266% 0% 136% Treatment Facility (4) 4'x4' Filterra Units 4.1.2 Filterra Unit Sizing Calculations As shown in Table 3, the total required water quality treatment in TDA V and TDA I is 15,574 sf. The GUILD for Filterra dated December 2009 (Revised May 2010) stipulates the sizing methodology. For Enhanced Treatment, the GUILD says: Each Filterra unit shall be sized for Enhanced Treatment using a filter hydraulic conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as listed in the TER)using the sand filter module in the latest version of the WWHM or other Ecology -approved continuous runoff model. The model must indicate the unit is capable of processing 91 percent of the influent runoff file. MISS Flood, an Ecology -approved hydrologic software, has been used to model the proposed Filterra units as sand filters, in accordance with the GUILD. Site maps showing the tributary areas for each of the four Filterra units, and MGS Flood project reports, are attached in Appendix B. Table 4 below shows the tributary area for each Filterra unit. The site maps and calculations were submitted to Filterra in December 2010 for their review as required by the conditions of the GUILD. An email from Filterra dated December 14, 2010 has been included in Appendix B that documents their concurrence with the submitted calculations. Table 4. Filterra Sizing Calculations Structure No. Tributary Areas Required Roadway PGIS Other Imp. Area Pervious Area Unit Size 200 5,930 1,632 2,703 4'x4' 201 5,357 1,123 4,132 4'x4' 202 4,198 933 641 4'x4' 203 5,670 1,113 483 4'x4' Total 21,155 4.1.3 Standards Adjustment for use of Filterra Units for Runoff Treatment A standards adjustment is needed for the proposed use of Americast Filterra tree box filter units for Enhanced runoff treatment on the Rainier Avenue S improvements project, because Filterra units are not listed as an approved Enhanced runoff treatment BMP in the 2005 SMMWW, the drainage standard being used for this project. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 14 Surface Water Technical Information Report Per Section 1.4.3 of the City's drainage manual, in order for a standards adjustment request to be approved, it must: • Produce a compensating or comparable result that is in the public interest, and • Meet the objectives of safety, function, appearance, environmental protection, and maintainability based on sound engineering judgement. Justification for this standards adjustment consists of the following: 1. Americast Filterra tree box filters received a General Use Level Designation (GULD) from the ' Department of Ecology in December 2009 for Enhanced Treatment. A copy of the GULD is attached in Appendix B. 2. Detailed sizing calculations have been prepared in accordance with the Department of Ecology's GULD. These calculations include detailed site plans and hydrologicthydraulic calculations using MGS Flood (an Ecology -approved continuous runoff model) that demonstrate each unit treats 91 percent of the influent runoff. Filterra representatives have reviewed the sizing information and expressed concurrence in an email dated December 14, 2010. Copies of the site plans, calculations, and Filterra's concurrence email are attached in Appendix B. 3. The plans and specifications for the Rainier Avenue project specify Filterra media conforming to the specifications submitted to and approved by Ecology as part of the GULD approval process. In a memo dated October 17, 2011, Renton Surface Water Utility approved the standards adjustment request with conditions (see Appendix B). Conditions of approval 1, 2, and 6 have been addressed by the sizing calculations and Filterra review documentation included in this report. The remaining conditions, concerning Filterra media, inspection and maintenance requirements, have been addressed in the construction plans and specifications. 4.2 Flow Control As described in detail in Section 2.2.7, flow control facilities are not required for this project because the net new impervious surfaces in each TDA are less than 10,000 square feet. 4.3 Existing Facilities There are several private stormwater facilities that will be affected by the newly widened roadway. These facilities will now be located inside of the proposed right-of-way limits. Conveyance facilities will be reconstructed as needed to fit the proposed project configuration. Water quality facilities will be replaced by equivalent facilities as described in the following sections. 4.3.1 Existing Offsite Water Quality Facilities There is one known water quality facility that will be affected by the proposed project: an oil/water separator at the Shell gas station (300 Rainier Ave S). This structure provides high -use site oil/water separation for the pavement area outside the fueling island. The existing structure is located in a planter strip behind the existing sidewalk, and appears to treat runoff from up to approximately 13,600 square feet. 86/1415914577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 15 Surface Water Technical Information Report The existing oil/water separator will be replaced with two oil/water separators providing 110 gpm process flow each, which exceeds the capacity of the existing system. A second existing oil/water separator that treats drainage from under the fuelling island canopy prior to discharge to the sanitary sewer will not be affected by construction. 4.3.2 Existing Offsite Flow Control Facilities There are no known storm detention systems that will be affected by the proposed project. 86114159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 16 Surface water Technical Information Report 5. Conveyance System Analysis and Design 5.1 Design Standards As discussed in Chapter 1, conveyance elements for this project are being designed in accordance with the requirements of the 2009 King County Surface Water Design Manual (KCSWDM) because Department of Ecology's 2005 SMMWW does not contain specific requirements for conveyance. In addition, gutter and inlet calculations have been performed in accordance with the requirements of the WSDOT Hydraulics Manual, as referenced by the 2009 KCSWDM. 5.2 Existing Conveyance System Existing drainage from offsite properties adjacent to the roadway must be maintained by reconnecting private systems to the new conveyance lines. A majority of the offsite flows are generated from existing parking lots and driveways associated with the commercial properties along Rainier Avenue S. Following is a description of existing storm drainage conveyance systems in the vicinity of the project: 5.2.1 Existing Conveyance -TDA A The project area between S 2nd Street and S 3rd Street is conveyed by gutter flow towards the south. An existing conveyance system begins midway along the west side as the roadway transitions from a crowned to a superelevated road section. The system continues south to S 3rd Street and is connected to a manhole downstream of the box culvert. An inlet is located near the northwest corner of the Rainier Avenue S and S 3rd Street intersection to collect roadway runoff from the east side of the roadway and is connected to a manhole upstream of the box culvert. The project area between S 3rd Street and S 3rd Place is conveyed by an existing pipe system along both sides of the roadway. 5.2.2 Existing Conveyance - TDA V The project area between S 3rd Place and the BNSF Railroad Bridge is collected and conveyed by an existing pipe drain system along both sides of the roadway. Both systems flow south along the curb line towards the railroad bridge that crosses Rainier Avenue S. The two systems are combined at a manhole approximately 40 feet south of the bridge on the west side of the roadway. The manhole is located at the low point of the sag curve and discharges to an existing pump station. The roadway is superelevated between the railroad bridge and the south border of TDA V. The project area is collected and conveyed north along the west side of the roadway. The first inlet in the system is located in the vicinity of the Brown Bear Car Wash and Lithia Car Dealership property line. A storm drain pipe along the east side of the roadway collects off -site runoff from adjacent commercial properties and conveys it to the pump station. See Section 5.5 for additional description regarding the existing pump station and impacts to it resulting from this project. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 17 Surface Water Technical Information Report 5.2.3 Existing Conveyance - TDA I The project area on Rainier Avenue S approximately 350 feet north of SW 7th Street and south to the intersection is collected and conveyed south by an existing pipe drain system along the west side of Rainier Avenue S. The stormwater is conveyed west on S 7th Street. The west half of the roadway from SW 7th Street to Hardie Avenue SW is collected and conveyed north by an existing pipe drain system to SW 7th Street. The west half of the roadway from Hardie Avenue SW to approximately 160 feet north of Grady Way SW is conveyed north by gutter flow and collected at Hardie Avenue SW. The collected runoff is piped north on Hardie Avenue SW to SW 7th Street. 5.2.4 Existing Conveyance - TDA GW The project area (east side of Rainier Avenue S) between SW 7th Street to Grady Way SW is collected and conveyed south by an existing pipe drain system along the east side of the roadway. The west side of the roadway is in TDA I. The conveyance system is under the sidewalk and the storm drainage inlets along the curb tie into the main line. A portion of the system is located in the Sound Ford parking lot. The system flows south and crosses the roadway at Grady Way SW then flows west. 5.3 Proposed Conveyance System 5.3.1 Conveyance System Description The proposed storm drainage conveyance system typically has one pipe on each side of Rainer Avenue S to collect and convey stormwater within each TDA, generally maintaining the existing flow patterns described in Section 5.2. Several raised concrete medians are proposed, which require additional drainage along the median in superelevated areas. Video inspections performed during the design phase revealed several locations where private drainage systems are connected into the existing street drainage system using tee fittings. The new conveyance system will replace all tee connections with connections at catch basins to facilitate inspection and cleaning. Some existing components of the conveyance system will remain in place to reduce utility relocation and in offsite areas where existing easements have been established. Video inspections of these systems have been performed to verify serviceable condition. Following is a list of existing conveyance elements that are proposed to remain in service following construction of roadway improvements, including a discussion of inspections/investigations findings. o The existing 24-inch and 60-inch concrete storm drains in S 7th Street will remain in service. These systems were not video inspected as part of this project. The 60-inch storm drain was constructed and the 24-inch pipe repaired in 2004 as part of the SW 7th Street Drainage Improvement Project, Phase 2. The existing 18-inch diameter concrete storm drain crossing under Rainier Avenue at 4th Place will remain in service. The pipe is approximately 8.5 feet deep. The video inspection performed on 2/1/10 revealed the existing concrete storm drain to be in very good condition. The pipe was cleaned for the video inspection. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 18 Surface Water Technical Information Report i The existing 8-foot by 10-foot box culvert at 3rd Street/Sunset Way will remain in service. The video inspection performed on 12/23/09 revealed the existing cast -in -place structure to be in good condition, although in need of cleaning. Groundwater infiltration into the structure was noted at four locations. Access improvements are proposed at the west end of the culvert as part of this project and at the east end as part of the Lake Avenue storm drain replacement project. ' 5.3.2 Conveyance System Analysis/Sizing Core Requirement #4 of the 2009 KCSWDM requires new conveyance systems to have adequate ' capacity to handle runoff from a 25-year storm, and to not create or aggravate a severe flooding problem during a 100-year storm. Existing onsite conveyance systems with no change in flow characteristics are not required to be analyzed. ' Per Table 3.2 of the 2009 KCSWDM, Rational Method hydrology is required for conveyance analysis of drainage basins less than 10 acres in size. For drainage basins larger than 10 acres, either the Rational Method, or the King County Runoff Time Series (KCRTS) method, with 15-minute time steps, may be used. The Rational Method has been used for conveyance system analysis on this project, with the exception of a tailwater elevation analysis for TDA GW (see Table 4) and for an analysis of the Rainier ' Avenue pump station (Section 5.5). For sizing new conveyance pipes, the method of the 2009 KCSWDM (as documented in KCSWDM 4.2.1.2) is to perform preliminary sizing using a uniform flow analysis and final sizing using a backwater ' analysis. In lieu of the KCSWDM approach, the Renton Public Works Department, Surface Water Division has approved the use of XP-SWMM for conveyance analysis for this project. The following Rational Method input parameters were used for the conveyance system sizing: o Impervious C=0.9 P Pervious C=0.25 ii Time of Concentration Tc=6.3 minutes (10 minutes used for large off -site basins) i Percent Impervious=90% (from Table 1) 0 P25=3.4" 1 P100=3.9" XP-SWMM supports rational method hydrology, but not King County's specific method for calculating peak rainfall intensity IR based on the total 24-hour precipitation. To incorporate the 2009 KCSWDM Rational Method approach into XP-SWMM, an Intensity -Duration -Frequency (IDF) table was prepared for specific precipitation conditions in Renton, using the aR and bR coefficients found on Table 3.2.1 B of the KCSWDM. Because the Rational Method flows generated by XP-SWMM were found to be 12% higher than flows directly calculated using the KCSWDM method, a correction factor was applied to the OF Table. A copy of the original and modified IDF tables, and a separate spreadsheet calculation of the peak flows, has been included in Appendix C. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 19 Surface Water Technical Information Report Within XP-SWMM, the calculated Rational Method flows were treated as peak flows for the hydraulic routing, resulting in minor flow attenuation within the system due to the travel time within the conveyance system. The calculations were performed using both 25-year and 100-year hydrology. Separate models were run for each TDA. Tailwater condition assumptions used in these analyses are described below in Table 4. Model input and output tables have been included in Appendix C. The conveyance system has been sized so that no catch basins overtop during the 25-year Rational Method design storm. During a 100-year storm, the calculations indicate minor overtopping at CB 62 in TDA V and at CB 11 in TDA GW. It should be noted that the Rational Method hydrology calculations are very conservative with short times of concentration, with flows approximately 2.7 times higher than KCRTS using 15-minute time steps. As a result, it is unlikely that the predicted overtopping would actually occur due to undersized pipes within Rainier. If overtopping were to occur, the cause would most likely be due to a downstream tailwater conditions exceeding the design values listed in Table 5. Table 5. Tailwater Elevations Outfall Location Design Source Tailwater Elevation (ft) Sunset Way/3rd Street (TDA 26.35 25-year TW based on XP-SWMM modeling performed for A) — Box Culvert 7th Street and Shattuck Avenue projects (see Shattuck Avenue Stormwater Diversion Modeling Report — Scenario 2A, Node 80A ABACAP, in Appendix E) Pump Station (TDA V) — 18.75 25-year TW from pump station modeling (see Section 5.5 Exst pump station wetwell and Appendix C) SDMH 30682 7th Street (TDA 1) — Exst 22.28 25-year water elevation based on XP-SWMM modeling SDMH 32050 performed for 7th Street and Shattuck Avenue projects (see Shattuck Avenue Stormwater Diversion Modeling Report — Scenario 2A, Node CB40 (17+97)). Grady Way (TDA GW) — 21.65 Assumed 25-year backwater elevation calculated at CB Exst SDMH 28226 28226 based hydraulic modeling from CB 5 downstream to Lind Ave, using KCRTS 15-minute peak flows from a 20.6-acre tributary basin (see analysis in Appendix C) 5.4 Gutter Flow and Inlet Design Section 4.2.1.2 of the 2009 KCSWDM references Chapters 5 of the WSDOT's Hydraulics Manual for performing inlet grate capacity calculations when capacity is a concern. Inlet capacity is a concern for Rainier Avenue due to the width of the roadway, low longitudinal gutter slopes, and limited width available for gutter flow spread outside of the travel lanes. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 20 Surface Water Technical Information Report Section 5-4 of the Hydraulics Manual specifies the design gutter flow spread widths and corresponding design frequencies, based on various roadway classifications. As a high -volume roadway with a posted speed of less than 45 mph, the gutter spread design requirements for Rainier Avenue are as follows: o Continuous grade gutter spread (1 0-year): Shoulder + 2' 0 Sag point gutter spread (50-year): Shoulder + 2' Based on these requirements, the allowable 10-year gutter flow spread was determined to be 4 feet (2' shoulder + 2') along the outside roadway gutters. In superelevated areas where the flow travels along the median curb, the allowable 10-year gutter flow spread was determined to be 3 feet (1' shoulder + 2'). A larger gutter flow spread is allowed for collector roadways with a posted speed of less than 45 mph, with design gutter flow to spread across half the driving lane. This standard would allow up to 6' of gutter flow spread and could be applicable to the turn lanes of the Rainier Avenue project. WSDOT's standard calculation spreadsheets were used to perform gutter flow and inlet design ' calculations for continuous grades and at sag locations. These worksheets can be found in Appendix D. The proposed conveyance system was initially laid out based on where catch basins (CBS) were needed at junctions for connecting off -site pipes, sag locations, and at curb returns. Additional CBS were added to reduce gutter flow spread where the calculations indicated it was necessary. However, due to the narrow allowable spread widths and relatively flat gutter slopes, it was not possible to achieve the allowable flow spread in all areas of the roadway without excessive closely -spaced inlets. Section 5-4 of the Hydraulics Manual acknowledges that in urban situations it is not always feasible to achieve the recommended design gutter flow spreads. It should also be noted the WSDOT Hydraulic Manual is more restrictive than the FHWA's Hydraulic Engineering Circular No. 22, Urban Drainage Design Manual, on which the WSDOT requirements are based. FHWA's requirements typically allow 1' more gutter spread than WSDOT's. Following is a description of the areas where the design gutter flow spread cannot be feasibly achieved, and a discussion of the conditions in each case that could justify minor deviations from these standards: o Southbound outer curb, Station 11+00 to 13+00 (north of Grady Way): In this section, the 10-year gutter flow spread reaches 6', which exceeds the allowable 4', and the 50-year spread at CB 101 reaches 6'. This exceedance of the standards is not expected to create a hazard due to slower traffic in the right -turn lane. P Southbound median curb, Station 13+00 to 18+00 (between Grady Way and 7th Street): In this section, the 10-year gutter flow spread is approximately 4', which exceeds the allowable 3', and the 50-year spread at the CB 21 sag location is 4.6'. However, half of this length is within a left -turn pocket where 6' of flow spread is justifiable (see discussion above). The remainder, between Station 15+00 and 17+00, already has closely -spaced inlets at a sag location (CBS 20, 21, and 22). Achieving a maximum S gutter spread would require two additional catch basins, with approximate 50-foot spacing. o Northbound outer curb, Station 20+50 to 22+00 (south of 7th Street): In this section, the 10-year gutter flow spread reaches approximately 5.3', which exceeds the allowable 4'. This exceedance of the 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 21 Surface Water Technical Information Report I standards is not expected to create a hazard due to slower traffic in this section of the Business Access and Transit (BAT) lanes and in the right turn lane. o Northbound median curb, Station 23+80 to 24+50 (north of 7th Street): In this section, the 10-year gutter flow spread reaches approximately 5' at CB 38, which exceeds the allowable 3'. This isolated exceedance of the standards is not expected to create a hazard. o Sag inlets at the BNSF railroad crossing: At this location, the sag inlet analysis for the southbound lanes at CB 70 shows a 50-year spread of 5.1', and 6.6' at CB 61 along the northbound median. Reduction of these spread widths does not appear feasible without excessive closely -spaced inlets. The 50-year 5.1' flow spread within the southbound roadway is not expected to create a hazard due to slower traffic and heavier vehicle use in this section of the BAT lane. The identified 6.6' 50-year flow spread in the northbound lanes will not create a hazard due to its location within a left turn lane for S 4th Place. o Sag inlet along the northbound median at Station 26+00 (CB 39): At this location, the sag inlet analysis shows a 50-year spread of 3.6', which exceeds the allowable 3'. This minor exceedance of the standards is not expected to create a hazard. Flanking inlets have not been included at this location because this sag in the curb line is very slight (only 0.2') so if the inlet became plugged, any overflows would flow north to CB 50 before any significant ponding would occur. P Northbound outer curb, Station 41+80 to 45+00: In this section, the 10-year gutter flow spread of 4.5' to 5' slightly exceeds the allowable spread at CBS 98, 99, 102, and 103. The 50-year spread at the CB 100 sag location was calculated to be 6.5 feet. This exceedance of standards is not expected to create a hazard due to slower traffic in the BAT lane. o Southbound outer curb, Station 34+00 to 39+00 (between S 4" Place and S 3rd Street): In this section, the 10-year gutter flow spread reaches approximately 4.5', which slightly exceeds the allowable 4', and the 50-year spread at CB 80 and CB 89 (northbound) sag locations is 47. This slight exceedance of the standards is not expected to create a hazard due to slower traffic in this section of the BAT lanes. P Northbound outer curb, Station 43+50 to 46+00: In this section, the 10-year gutter flow spread reaches approximately 5.3', which exceeds the allowable 4', and the 50-year spread at the CB 100 sag location is 5.6'. This exceedance of the standards is not expected to create a hazard due to slower traffic in this section of the BAT lanes and in the right turn lane. o Southbound median curb, Station 47+00 to 51+00 (between S 3rd Street and S 2nd Street): In this section, the 10-year gutter flow spread reaches 4.7 feet upstream from CB 118, and 4.1 feet for the rest of this length, which exceeds the allowable 3'. However, the majority of this length is within a left -turn pocket where 6' of flow spread could be justified (see discussion above). For the remainder of this length, between Station 50+00 and 51+00, the minor exceedance of the standards is not expected to create a hazard. Achieving a maximum 3' gutter spread would require at least one additional catch basin, with a spacing between catch basins of approximately 50 feet. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 22 Surface Water Technical Information Report 5.5 Rainier Avenue Pump Station Performance and Impacts As discussed in Section 5.2.2, Basin V drains to an existing stormwater pump station adjacent to the railroad crossing. This pump station was constructed in 1960, and over time the tributary basin appears to have increased from approximately 17 acres to 71 acres. Phase 1 of the Rainier Avenue improvements included constructing a 48-inch gravity storm sewer along Shattuck Avenue between 41h Place and 71h Street, which diverts runoff from approximately 54 acres away from the pump station. The reduction in peak flows to the pump station resulting from the diversion has been modeled to be approximately 8 cfs during a 25-year storm. The Shattuck Avenue Stormwater Diversion Modeling Report (see Appendix E) was prepared prior to construction of the 48-inch storm sewer in Shattuck Avenue, which updated an existing XP-SWMM model of the area and evaluated alternative configurations for the diversion. Alternative 2 of the Shattuck Avenue analysis was chosen, and construction was completed in 2010. Additional analysis has been performed as part of the current phase of the Rainier Avenue Improvements project to predict pump station performance changes resulting from the Shattuck Avenue Stormwater Diversion and the proposed Rainier Avenue roadway geometry and conveyance system. This additional analysis was performed using an XP-SWMM hydraulic model of the proposed conveyance system in the vicinity of the pump station, using KCRTS with 15-minute time steps for hydrology calculations. 2, 10, 25, and 100-year storms have been evaluated for this analysis. The capacity of the existing pump station used for this analysis is the same as was used for the previous Shattuck Avenue modeling-6.9 cfs for one pump operating and 13.5 cfs for both pumps. Renton Public Works staff have indicated that the actual capacity of the pump station may be significantly lower, possibly due to degraded impellers, insufficient pump submergence, modified on/off set points, and prior modifications to the valves and piping system. However, since there is no data from direct metering of the pumped flows, the previously -calculated capacities have been used for this analysis. Public Works upgraded the pump station in 2010 with refurbished pumps and motors, which may improve the capacity of the system somewhat. If flow monitoring is performed following those upgrades, the pump performance can be re -analyzed at that time. A second pipe connection to the pump station wetwell is proposed as part of this project, and has been included in this modeling. This is needed to increase flow capacity into the wetwell from the roadway storm drainage system, which is currently restricted by a single 18-inch diameter pipe. Removal of this restriction will increase the effective storage of the wetwell by adding the volume of upstream pipes and drainage structures. Additionally, reducing the headloss between the roadway conveyance system and pump wetwell could potentially allow for adjusting the pump on/off set points to operate the pumps with greater submergence. Documentation of the KCRTS hydrology modeling and the XP-SWMM hydraulic model is found in Appendix C. Table 6 below presents the results of the analysis. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 23 Surface Water Technical Information Report Table 6. Pump Station Performance 2-year 10-year 25-year 100-year Peak Inflow 7.2 cfs 9.8 cfs 13.9 cfs 18.6 cfs Max Pump Flow 13.5 cfs 13.5 cfs 13.5 cfs 13.5 cfs Low Point Ground Elevation 19.4 ft 19.4 ft 19.4 ft 19.4 ft Maximum Water Elevation 17.7 ft 17.7 ft 18.8 ft 20.3 ft Freeboard 1.7 ft 1.7 ft 0.6 ft -0.9 ft As illustrated in Table 6, this analysis shows the pump station providing enough capacity to handle runoff from a 25-year storm, and a 0.9-foot depth of flooding during a 100-year storm. This represents a significant improvement over conditions prior to construction of the Shattuck Avenue Bypass. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 24 Surface Water Technical Information Report 6. Special Reports and Studies P Geotechnical Report - Rainier Avenue Improvements Project — Phase I Jacobs Associates 2/10/2010 P Geotechnical Report Addendum — Rainier Avenue Improvements Project — Phase 2 — Jacobs Associates 6/22/2010 P Geotechnical Supplementary Recommendations — Rainier Avenue Improvements Project — Phase 2 — Jacobs Associates 2/8/2011 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 25 Surface Water Technical Information Report 7. CSWPPP Analysis and Design A Construction Stormwater Pollution Prevention Plan (CSWPPP) consists of drawings and details, and a narrative describing how each of the 12 SWPP Elements have been evaluated and incorporated into the plans. 7.1 CSWPPP Drawings Temporary Erosion and Sedimentation Control (TESC) plans for this project have been prepared and incorporated into the Contract Plans, which will serve as the CSWPPP drawings for this project. In accordance with Section 8-01.3 of the 2010 WSDOT Standard Specifications for Road, Bridge, and Municipal Construction (Standard Specifications), the contractor will have the option to adopt the TESC plans included in the Contract Plans, or submit modified TESC plans for approval. The Contractor is required to designate an ESC Lead who has a current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved by the Washington State Department of Ecology. The ESC Lead is responsible for installing, inspecting, and maintaining BMPs included in the TESC Plan, and updating the TESC plan to reflect current field conditions. 7.2 CSWPPP Narrative The following CSWPPP Narrative describes how each of the 12 SWPP Elements have been evaluated for this project and provides a summary of the BMPs that should be employed during construction. 7.2.1 Introduction Site and Soil Conditions The project site is a heavily developed urban arterial with some landscaping. Site topography is generally flat, with the exception of slopes in the vicinity of the railroad bridge. As described by the project geotechnical report, the existing project area is underlain by 2-5 feet of fill soils with varying properties ranging from medium dense, medium to coarse silty sand or loose to medium dense, fine to coarse silty, sandy to very sandy gravel. Alluvium soils encountered beneath the fill layer generally consist of interbedded layers of soft, silty clay to clayey silt; very loose to medium dense, fine to coarse sand and silty fine sand; and very loose to medium dense silt. Erosion Potential Improvements to the roadway will require clearing existing landscaped parking strips and medians, and removing portions of the existing pavement. The total area of soils expected to be exposed within the 13.6 acre project area is approximately 8 acres over the course of an 18-month construction period. The potential for erosion and sediment control problems during construction is reduced due to relatively flat topography, the linear configuration of the project, and because exposed soils are spread out along the length of the project and separated by pavement that will remain. Regardless, BMPs will be used during construction to ensure that the City of Renton is meeting State water quality standards (i.e. preventing 86114159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 26 Surface Water Technical Information Report sediment from mixing with stormwater runoff and discharging into the storm sewer system and waters of the State). Primary Water Quality Risks BMPs will be used to prevent: i Turbid construction runoff from entering storm sewer systems that discharges to Springbrook Creek, the Black River Forebay, and eventually to the Green River. o Mixing of offsite runoff from adjacent properties with construction runoff, increasing turbidity and erosion. i Increased turbidity in stormwater leaving the site. Ill Construction equipment from tracking sediment and mud onto adjacent paved roadway surfaces that would discharge to downstream waters. TESC Plan Concept The TESC plan provides a proactive approach to managing and controlling erosion and sediment. I establishes when, where, and how specific BMPs will be implemented to prevent erosion and the transport of sediment from the project during construction. BMPs have been identified in the plan to reduce the possibility of construction runoff transporting sediment into surface waters. The following list summarizes project specific BMPs and construction issues addressed in the plan: P Inlet protection inserts will be installed in all new and existing stormwater catch basins and inlets within the project area. Inserts filter stormwater runoff and provide a primary or secondary method of preventing sediment from entering the storm sewer system. o High visibility fence will be used to protect vegetation and delineate the limits of clearing and grading. i Silt fence will be used in areas where project runoff could sheet flow off site. Several types of BMPs will be applied to protect disturbed areas and slopes from erosion. Specific soil covering areas and practices have not been shown on the TESC plans due to the variable nature of roadway improvement construction. Soil covering practices will be implemented by the Contractor in accordance with the requirements of the WSDOT Standard Specifications and as required by the Engineer. i Temporary curbs maybe needed in some areas to prevent runoff from existing pavement from entering disturbed soils in widening areas. The location of temporary curbs would be implemented when determined to be needed by the Engineer and ESC Lead. The following section provides a more detailed analysis of the project risks associated with each of the 12 TESC elements and the BMPs selected to mitigate these risks. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 27 Surface Water Technical Information Report 7.2.2 Analysis of TESC Elements TESC Element 1: Mark Clearing Limits Risk Analysis: The associated risks for clearing include the potential to clear vegetated areas beyond the areas needed for construction. The Rainier Avenue work will not occur directly adjacent to natural resources (e.g. wetlands/streams/lakes) so the risk of directly disturbing sensitive areas is low. BMPs Identified: o High Visibility Fence, Standard Specification 8-01.3(1) High visibility fence will be installed adjacent to work areas not bounded by existing pavement or curbs. The high visibility fencing will delineate clearing and grading limits to protect existing vegetation and buffer areas. High visibility fencing will be installed prior to any construction activities. The fencing will be inspected periodically and immediately replaced if damaged. TESC Element 2: Establish Construction Access Risk Analysis: The associated risks for establishing construction access are reduced by plans to retain much of the existing pavement. Haul vehicles will be able to remain on paved surfaces in many areas; however, other construction equipment will have access to exposed soils. BMPs Identified: i Stabilized Construction Entrance, Standard Specification 8-01.3(7) D Street Cleaning, Standard Specification 8-01.3(8) Tire Wash, Standard Specification 8-01.3(7) Tire wash facilities will be constructed in conjunction with new construction entrances. Tire wash water will be disposed of so that it does not violate water quality standards or any permit conditions. If sediment is transported onto a road surface, the road will be cleaned thoroughly at the end of each day. Sediment will be removed from roads by shoveling or sweeping and transported to a controlled sediment disposal area. Street washing will be allowed only after sediment is first removed in this manner. The approach for stabilizing construction access points will be refined during final design once construction staging and traffic control plans have been prepared. TESC Element 3: Control Flow Rates Risk Analysis: The amount of new impervious surface proposed to be constructed within each TDA within the project area is small compared to the existing impervious surface (less than 2% increase). As a result, the post - development flow rates for each TDA will not increase significantly from existing conditions. Therefore, risks associated with flow rates downstream from the construction zone are negligible. Erosion risks 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 28 Surface Water Technical Information Report resulting from flow rates within the construction area will be mitigated by the BMPs proposed to address the other TESC elements. TESC Element 4: Install Sediment Control Risk Analysis: The risks associated with sediment erosion are moderate. There is a potential risk of offsite runoff discharging onto disturbed work areas, which would cause sediment and stormwater to enter the storm sewer system. However this risk is reduced by the fact that the exposed soils for pavement replacement will typically be lower in elevation than the adjacent pavement and catch basins, and will tend to collect and infiltrate runoff. BMPs Identified: o Inlet Protection, Standard Specification 8-01.3(9)D Silt Fence, Standard Specification 8-01.3(9)A Temporary Curb, Standard Specification 8-01.3(13) Existing vegetation will be preserved and protected with fencing prior to construction. Inlet protection inserts will be installed prior to the start of construction in existing stormwater inlets within and down gradient from the project work areas. Inlet protection inserts will be installed in new stormwater inlets as they are constructed. Silt fence will be installed adjacent to the down gradient edge of disturbed areas not bounded by pavement or retaining walls. Temporary curbs may be used in some area on the upstream side of the work area to direct runoff from adjacent pavement into existing catch basins Widening areas that are cut down to sub -grade below adjacent pavement and inlets will provide informal sediment trapping. TESC Element 5: Stabilize Soils Risk Analysis: Some soils within the project area have a high risk potential for erosion because of high silt content and low infiltration rate. The project will disturb up to approximately eight acres of soil over the course of 18 months, including one wet season. However, the potential for erosion is reduced because soil disturbance will be staged to occur at separate, smaller construction areas over the duration of the project rather than all at once. BMPs Identified: P Stabilized Construction Entrance, Standard Specification 8-01.3(7) P Temporary Mulching, Standard Specification 8-01.3(2)D P Erosion Control Blanket, Standard Specification 8-01.3(3) 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 29 Surface Water Technical Information Report All exposed and unworked soils will be stabilized according to the following criteria: From October 1 to April 30, no exposed and unworked soils shall remain unstabilized (exposed) for more than two days. Construction activities should never expose more than five acres during this time period. From May 1 to September 30, no exposed and unworked soils on slopes will remain unstabilized (exposed) for more than seven days. Construction activities should never expose more than 17 acres during this time period. TESC Element 6: Protect Slopes Risk Analysis: The roadway widening will use retaining walls and small cut/fill slopes in limited areas to match existing grades. However, as the majority of site topography is relatively flat, the risk of severe erosion from these disturbed slopes is limited. In addition, the slopes that exist are short in length. BMPs Identified: i Erosion Control Blanket, Standard Specification 8-01.3(3) Although it is not anticipated that slopes will be left unworked prior to final stabilization, erosion control blankets should be used if short-term slope protection is needed. TESC Element 7: Protect Drain Inlets Risk Analysis: Associated construction activities of this project have a high risk of potentially affecting water quality. Several catch basins within the project area collect stormwater which is conveyed through storm sewer pipes and discharged directly to Lake Washington and its associated waterways. BMPs Identified: i Inlet Protection, Standard Specification 8-01.3(9)D All catch basins within the project area that collect stormwater from the construction site will be protected so that sediment is contained by the catch basin before it is discharged to Springbrook Creek or the Black River Forebay. Inlet protection BMPs will be installed in all stormwater inlets within and down gradient from the construction work areas. TESC Element 8: Stabilize Channels and Outlets Risk Analysis: The risk of erosion to channels and outlets is low because neither of these drainage features are proposed as part of the Rainier Avenue Improvements project. BMPs Identified: Since this project does not include channels and outlets, no specific BMP's have been identified. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 30 Surface Water Technical Information Report GHD TESC Element 9: Control Pollutants Risk Analysis: The risk associated with pollutants generated from construction activities within the project area is relatively high. During construction, organic and inorganic pollutants from construction activities could potentially enter the stormwater system, which conveys runoff to the Black River Forebay and the Green River. Saw cutting and pouring of concrete will be part of this project; BMPs must be implemented to keep construction waste separate from stormwater. A detailed plan for containing concrete during cutting and pouring and storing hazardous waste and fuel at the staging area will be provided in the Contractor's Spill Prevention, Control, and Countermeasures (SPCC) Plan and the Concrete Contaminant and Disposal Plan (CCDP). Due to the urban nature of the Rainier Avenue corridor, there is the potential for existing hazardous materials within the project area. BMPs Identified: P Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B P Spill Prevention, Control and Countermeasures Plan, Standard Specification 1-07.15(1) The ESC Lead shall implement and update the TESC plan when necessary to prevent pollutants and sediment associated with construction activities from entering the storm sewer system. These changes will be documented and shown on the TESC Plan. All pollutants, including construction materials, waste materials, and demolition debris must be handled and disposed of in a manner that does not cause contamination of stormwater, soil, or groundwater. All other potential pollutants will be properly disposed of off -site. Methods for controlling pollutants that can be considered hazardous materials, such as hydrocarbons and pH -modifying substances, will be described in the Contractor's SPCC plan. Handling of concrete, concrete slurry, dust, and pH -modifying substances will be specifically addressed in the CCDP. TESC Element 10: Control Dewatering Risk Analysis: The associated risk from dewatering for construction activities associated with the project is moderate Due to relatively high groundwater, dewatering may be required for some activities. BMPs Identified: When groundwater is encountered in an excavation, it should be treated and discharged per Standard Specification 8-01.3(1)C. Dewatering devices shall discharge into a sediment trap or portable tank (e.g. Baker Tank). The rate of dewatering discharge shall not exceed the design capacity of the sediment trap. The Contractor will responsible for developing a plan for dewatering and properly disposing of collected ground water. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 31 Surface Water Technical Information Report TESC Element 11: Maintain BMPs Risk Analysis: The associated risk from sediment entering the existing drainage system that leads to Springbrook Creek and the Black River Forebay is high. The limited work areas and access routes, as well as extended periods of precipitation, could result in destabilization of BMPs during construction activities. In addition, changes in construction staging and conditions may require modifications to the TESC elements. BMPs Identified: o Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B o Maintenance Standard Specification 8-01.3(15) The Contractor shall identify an ESC Lead at preconstruction discussions. The ESC Lead must have a current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved by WSDOT's Statewide Erosion Control Coordinator. The ESC Lead is responsible for implementing and updating the TESC plans. All temporary and permanent erosion control BMPs must be inspected at least once every five working days and each day there is a runoff -producing storm event. BMPs must be maintained as needed to assure their continued performance. Any BMP deficiencies identified during inspections will be immediately corrected and documented. A TESC inspection report will be prepared for each inspection and included in the Site Log Book. The inspection report will include, but not be limited to: It When, where, and how the BMPs were installed, maintained, modified, and removed. P Repairs needed and repairs made. o Observations of BMP effectiveness and proper placement. o Recommendations for improving the performance of BMPs. TESC Element 12: Manage the Project Risk Analysis: The associated risks for managing this project are low. There are no unique circumstances that would make the ESC Lead unable to follow and implement the specifications identified in 8-01.3(1)B. BMPs Identified: D Contractor's TESC Plan Modifications and Schedule, Standard Specification 8-01.3(1)A o Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B Plan Implementation: 1. Contractor Adopts or Modifies Plan at Pre -Construction Meeting Because the Contractor determines the construction methods and schedule for the project, the Contractor is responsible for reviewing the TESC plan included in the contract documents and either adopting it or modifying it for better compatibility with the proposed construction approach. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 32 Surface Water Technical Information Report Standard Specification 8-01.3(1) requires the Contractor to provide the following at the Pre -Construction Meeting: P Proposed modifications to the TESC plan. P Schedule for TESC plan implementation incorporated into the Contractor's progress schedule. o Name of ESC Lead. 2. ESC Lead Implements the Plan During Construction The ESC Lead is responsible for implementing the TESC plan throughout construction. This includes installing and maintaining BMPs, performing BMP inspections, maintaining the TESC file with current plans and inspection reports, and working with the Engineer. Implementing the plan often includes making modifications in the field and documenting these modifications. The ESC Lead must coordinate with the WSDOT Engineer to modify the plan as needed. The Contractor must identify an ESC Lead at the Pre -Construction Meeting. The ESC Lead must have a current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved by the Washington State Department of Ecology. The ESC Lead shall maintain a copy of the TESC file. The file should include, but not be limited to 0 TESC inspection reports. o Stormwater site plan. o Temporary erosion and sediment control (TESC) plan. o National Pollutant Discharge Elimination System (NPDES) construction permit (Notice of Intent). o Other applicable permits o SPCC Plan o CCDP Plan. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 33 Surface Water Technical Information Report fD Q x D Appendix A Land Coverage Maps Land Coverage Maps Al-A3 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report ✓ /0Q' Oy �,q y 1 4 r ,r 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 t [`1 T 1206 4419385 \� F 1206 448 6922 W www.ghd.com TIR LEGEND NEW IMPERVIOUS SURFACE NEW POLLUTION GENERATING IMPERVIOUS SURFACE (PGIS) 1 NEW PERVIOUS SURFACE J (FROM EXISTING IMPERVIOUS SURFACE) _ BASIN I THRESHOLD DISCHARGE AREA BOUNDARY BASIN GW PLAN 0 25 50 100 SCALE: IN FEET RAINIER AVENUE S Al LAND COVERAGE wzvm„ 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com TIR LEGEND NEW IMPERVIOUS SURFACE NEW POLLUTION GENERATING IMPERVIOUS SURFACE (PGIS) NEW PERVIOUS SURFACE (FROM EXISTING IMPERVIOUS SURFACE) _ BASIN I _ THRESHOLD DISCHARGE AREA BOUNDARY BASIN V PLAN RAINIER AVENUE S LAND COVERAGE 0 25 50 100 SCALE: IN FEET /_X oasrso„ P4 Blqsw 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com TIR LEGEND NEW IMPERVIOUS SURFACE NEW POLLUTION GENERATING IMPERVIOUS SURFACE (PGIS) NEW PERVIOUS SURFACE (FROM EXISTING IMPERVIOUS SURFACE) BASIN — THRESHOLD DISCHARGE AREA BOUNDARY BASIN V 025 50 1 T11 PLAN SCALE- IN I'Ll I RAINIER AVENUE S A3 LAND COVERAGE CD a Appendix B Flow Control and Runoff Treatment Facility Calculations Documentation of Flow Control Threshold Calculations Filterra Site Plan/Tributary Area Maps 131 & B2 Ecology GULD for Americast Filterra Filterra Detail Filterra Project Information Form Filterra Review Email MGS Flood Sizing Calculations Standards Adjustment Approval Memo 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report PEAK FLOW CALCULATIONS FOR EVALUATION OF MIN. REQUIREMENT #7 PREDEVELOPED TDA A AREA (ACRES) 0.00 Till Forest 0.00 Till Pasture 0.23 Till Grass 0.00 Outwash Forest 0.00 Outwash Pasture 0.00 Outwash Grass 0.00 Wetland 2.40 Impervious Flow Frequency Analysis Time Series File:predev-a.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.602 7 2/09/01 2:00 1.18 1 100.00 0.990 0.523 8 1/05/02 16:00 0.877 2 25.00 0.960 0.730 3 12/08/02 18:00 0.730 3 10.00 0.900 0.603 6 8/26/04 2:00 0.716 4 5.00 0.800 0.716 4 10/28/04 16:00 0.643 5 3.00 0.667 0.643 5 1/18/06 16:00 0.603 6 2.00 0.500 0.877 2 10/26/06 0:00 0.602 7 1.30 0.231 1.18 1 1/09/08 6:00 0.523 8 1.10 0.091 Computed Peaks 1.08 50.00 0.980 DEVELOPED TDA A AREA (ACRES) 0.00 0.00 0.18 0.00 0.00 0.00 0.00 2.45 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Impervious Flow Frequency Analysis Time Series File:dev-a.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.610 7 2/09/01 2:00 1.20 1 100.00 0.990 0.532 8 1/05/02 16:00 0.894 2 25.00 0.960 0.740 3 12/08/02 18:00 0.740 3 10.00 0.900 0.614 6 8/26/04 2:00 0.730 4 5.00 0.800 0.730 4 10/28/04 16:00 0.652 5 3.00 0.667 0.652 5 1/18/06 16:00 0.614 6 2.00 0.500 0.894 2 10/26/06 0:00 0.610 7 1.30 0.231 1.20 1 1/09/08 6:00 0.532 8 1.10 0.091 Computed Peaks 1.10 50.00 0.980 Page 1 of 4 PREDEVELOPED TDA V AREA (ACRES) 0.00 Till Forest 0.00 Till Pasture 0.51 Till Grass 0.00 Outwash Forest 0.00 Outwash Pasture 0.00 Outwash Grass 0.00 Wetland 3.97 Impervious Flow Frequency Analysis Time Series File:predev-v.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.01 6 2/09/01 2:00 1.98 1 100.00 0.990 0.871 8 1/05/02 16:00 1.45 2 25.00 0.960 1.22 3 12/08/02 18:00 1.22 3 10.00 0.900 0.999 7 8/26/04 2:00 1.19 4 5.00 0.800 1.19 4 10/28/04 16:00 1.08 5 3.00 0.667 1.08 5 1/18/06 16:00 1.01 6 2.00 0.500 1.45 2 10/26/06 0:00 0.999 7 1.30 0.231 1.98 1 1/09/08 6:00 0.871 8 1.10 0.091 Computed Peaks 1.81 50.00 0.980 DEVELOPED TDA V AREA (ACRES) 0.00 Till Forest 0.00 Till Pasture 0.44 Till Grass 0.00 Outwash Forest 0.00 Outwash Pasture 0.00 Outwash Grass 0.00 Wetland 4.04 Impervious Flow Frequency Analysis Time Series File:dev-v.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.02 6 2/09/01 2:00 2.00 1 100.00 0.990 0.883 8 1/05/02 16:00 1.48 2 25.00 0.960 1.23 3 12/08/02 18:00 1.23 3 10.00 0.900 1.02 7 8/26/04 2:00 1.21 4 5.00 0.800 1.21 4 10/28/04 16:00 1.09 5 3.00 0.667 1.09 5 1/18/06 16:00 1.02 6 2.00 0.500 1.48 2 10/26/06 0:00 1.02 7 1.30 0.231 2.00 1 1/09/08 6:00 0.883 8 1.10 0.091 Computed Peaks 1.83 50.00 0.980 Page 2 of 4 PREDEVELOPED TDA I AREA (ACRES) 0.00 Till Forest 0.00 Till Pasture 0.35 Till Grass 0.00 Outwash Forest 0.00 Outwash Pasture 0.00 Outwash Grass 0.00 Wetland 1.99 Impervious Flow Frequency Analysis Time Series File:predev-i.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 0.502 6 0.435 8 0.604 3 0.498 7 0.591 4 0.537 5 0.723 2 0.983 1 Computed Peaks DEVELOPED TDA I AREA (ACRES) 0.00 0.00 0.23 0.00 0.00 0.00 0.00 2.11 2/09/01 1/05/02 12/08/02 8/26/04 10/28/04 1/18/06 10/26/06 1/09/08 2:00 16:00 18:00 2:00 16:00 16:00 0:00 6:00 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Impervious Flow Frequency Analysis Time Series File:dev-i.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 0.532 6 2/09/01 2:00 0.461 8 1/05/02 16:00 0.644 3 12/08/02 18:00 0.530 7 8/26/04 2:00 0.631 4 10/28/04 16:00 0.568 5 1/18/06 16:00 0.772 2 10/26/06 0:00 1.05 1 1/09/08 6:00 Computed Peaks ----Flow Frequency Analysis- - - Peaks - - Rank Return (CFS) Period 0.983 1 100.00 0.723 2 25.00 0.604 3 10.00 0.591 4 5.00 0.537 5 3.00 0.502 6 2.00 0.498 7 1.30 0.435 8 1.10 0.896 50.00 -----Flow Frequency Analysis- - - Peaks - - Rank Return (CFS) Period 1.05 1 100.00 0.772 2 25.00 0.644 3 10.00 0.631 4 5.00 0.568 5 3.00 0.532 6 2.00 0.530 7 1.30 0.461 8 1.10 0.955 50.00 Prob 0.990 0.960 0.900 0.800 0.667 0.500 0.231 0.091 0.980 Prob 0.990 0.960 0.900 0.800 0.667 0.500 0.231 0.091 0.980 Page 3 of 4 PREDEVELOPED TDA GW AREA (ACRES) 0.00 Till Forest 0.00 Till Pasture 0.21 Till Grass 0.00 Outwash Forest 0.00 Outwash Pasture 0.00 Outwash Grass 0.00 Wetland 2.75 Impervious Flow Frequency Analysis Time Series File:predev-gw.tsf Project Location:Sea-Tac ---Annual Peak Flow Rate Rank (CFS) 0.686 7 0.597 8 0.832 3 0.689 6 0.819 4 0.732 5 1.00 2 1.34 1 Computed Peaks DEVELOPED TDA GW AREA (ACRES) 0.00 0.00 0.28 0.00 0.00 0.00 0.00 2.68 Flow Rates --- Time of Peak 2/09/01 1/05/02 12/08/02 8/26/04 10/28/04 1/18/06 10/26/06 1/09/08 2:00 16:00 18:00 2:00 16:00 16:00 0:00 6:00 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Impervious Flow Frequency Analysis Time Series File:dev-gw.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 0.675 6 2/09/01 2:00 0.585 8 1/05/02 16:00 0.817 3 12/08/02 18:00 0.673 7 8/26/04 2:00 0.801 4 10/28/04 16:00 0.721 5 1/18/06 16:00 0.980 2 10/26/06 0:00 1.32 1 1/09/08 6:00 Computed Peaks -----Flow Frequency Analysis -- - - Peaks - - Rank Return Prob (CFS) Period 1.34 1 100.00 0.990 1.00 2 25.00 0.960 0.832 3 10.00 0.900 0.819 4 5.00 0.800 0.732 5 3.00 0.667 0.689 6 2.00 0.500 0.686 7 1.30 0.231 0.597 8 1.10 0.091 1.23 50.00 0.980 -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 1.32 1 100.00 0.990 0.980 2 25.00 0.960 0.817 3 10.00 0.900 0.801 4 5.00 0.800 0.721 5 3.00 0.667 0.675 6 2.00 0.500 0.673 7 1.30 0.231 0.585 8 1.10 0.091 1.21 50.00 0.980 Page 4 of 4 CLIENTS IPEOPLE 1PERFORMANCE 1201 m,d Ave—, Sulb 1500, Seattle NYsh Vl0 98101 USA T 1 206 441 9385 i 1 206 NB 6922 E eeama109hd — W www.0ne.00m 0 5 10 20 40 60 SCALE IN FEET l ROADWAY POLLUTION GENERATING IMPERVIOUS SURFACE SIDEWALK AND DRIVEWAY IMPERVIOUS SURFACE PLANTING STRIP AND MEDIAN PERVIOUS SURFACES FILTERRA TRIBUTARY AREAS_ B1 ENHANCED WATER QUALITY TREATMENT USING FILTERRA TREE BOX FILTERS ICLIENTS IPEOPLE IPERFORMANCE 1201 Thnd Ave S... 1500, Seattb Washlnpbn 88101 USA T 1 206 441 F 1 206 "8 6922 E-...I®phd.mm W—.ghd.mm j ROADWAY IIMPERVIOUS SURFACE SIDEWALK AND DRIVEWAY IMPERVIOUS SURFACE PLANTING STRIP AND MEDIAN PERVIOUS SURFACES FILTERRA TRIBUTARY AREAS B2 ENHANCED WATER QUALITY TREATMENT USING FILTERRA TREE BOX FILTERS WA SXIN 6T0N STATE 0EPANTNE I OF E C O L O G Y December 2009 (Revised May, 2010) GENERAL USE LEVEL DESIGNATION FOR BASIC (TSS), ENHANCED, & OIL TREATMENT CONDITIONAL USE LEVEL DESIGNATION FOR PHOSPHORUS TREATMENT For Americast's Filterra® Ecology's Decision: Based on Americast's submissions, including the Final Technical Evaluation Report, dated December, 2009 and additional information provided to Ecology dated October 9, 2009, Ecology hereby issues the following use level designations: 1. A General Use Level Designation for Basic, Enhanced, and Oil Treatment. 2. A Conditional Use Level Designation for Phosphorus Treatment. The Conditional Use Level Designation expires on December 1, 2011 unless extended by Ecology, and is subject to the conditions specified below. Ecology's Conditions of Use: Filterra® units shall be designed, installed, and maintained to comply with these conditions: 1. Each Filterra® unit shall be sized for Basic and Oil Treatment using a filter hydraulic conductivity of 35.46 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as listed in the TER) using the sand filter module in the latest version of the Western Washington Hydrology Model (WWHM) or other Ecology -approved continuous runoff model. The model must indicate the unit is capable of processing 91 percent of the influent runoff file. The Filterra® unit is not appropriate for oil spill -control purposes. 2. Each Filterra® unit shall be sized for Enhanced Treatment using a filter hydraulic conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as listed in the TER) using the sand filter module in the latest version of the WWHM or other Ecology -approved continuous runoff model. The model must indicate the unit is capable of processing 91 percent of the influent runoff file. 3. Each Filterra® unit shall be sized for Phosphorus Treatment using a filter hydraulic conductivity of 35.46 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as listed in the TER) using the sand filter module in the latest version of the WWHM or other Ecology -approved continuous runoff model. The model must indicate the unit is capable of processing 91 percent of the influent runoff file. 4. Each site plan must undergo Filterra® review before the unit can be approved for site installation. This will ensure that site grading and slope are appropriate for use of a Filterra® unit. 5. Filterra® media shall conform to the specifications submitted to and approved by Ecology. 6. Maintenance includes removing trash, degraded mulch, and accumulated debris from the filter surface and replacing the mulch layer. Inspections will be used to determine the site -specific maintenance schedules and requirements. Maintenance procedures should follow those given in the most recent version of the Filterra® Installation, Operation, and Maintenance Manual. 7. Filterra® commits to submitting a QAPP by May 15, 2010 for Ecology review and approval of a new test site that meets the TAPE requirements for attaining a GULD for phosphorus treatment. The QAPP must be submitted for a minimum of one site where the unit is to be used for phosphorus treatment. 8. Filterra® shall submit a TER for Ecology review for phosphorus treatment by December 1, 2011. 9. Filterra® units come in standard sizes. The minimum size filter surface -area is determined by using the sand filter module in the latest version of WWHM or other Ecology approved continuous runoff model. Model inputs include a. Filter media depth: 1.8 feet b. Effective Ponding Depth: 0.75 feet (This is equivalent to the 6-inch clear zone between the top of the mulch and the bottom of the slab plus 3-inches of mulch.) c. Side slopes: Vertical d. Riser height: 0.70 feet e. Filter Hydraulic Conductivity: Must be back -calculated assuming a target infiltration rate of 35 inches per hour (enhanced treatment) or 50 inches per hour (Basic, oil, or phosphorus treatment). Hydraulic conductivity in the WWHM includes the effective ponding depth as well as the filter media depth. 10. Filterra® may request Ecology to grant deadline or expiration date extensions, upon showing cause for such extensions. Lack of funds to complete the monitoring will not be viewed by Ecology as sufficient cause. 11. Discharges from the Filterra® units shall not cause or contribute to water quality standards violations in receiving waters. Applicant: Americast Applicant's Address: 11352 Virginia Precast Road Ashland, VA, 23005 Application Documents: • State of Washington Department of Ecology Application for Conditional Use Designation, Americast (September 2006) • Quality Assurance Project Plan Filterra® Bioretention Filtration System Performance Monitoring, Americast (April 2008) • Quality Assurance Project Plan Addendum Filterra® Bioretention Filtration System Performance Monitoring, Americast (June 2008) • Draft Technical Evaluation Report Filterra® Bioretention Filtration System Performance Monitoring, Americast (August 2009) • Final Technical Evaluation Report Filterra® Bioretention Filtration System Performance Monitoring, Americast (December 2009) • Technical Evaluation Report Appendices Filterra® Bioretention Filtration System Performance Monitoring, Americast, August 2009 Draft) • Memorandum to Department of Ecology Dated October 9, 2009 from Americast, Inc. and Herrera Environmental Consultants Applicant's Use Level Request: General Level Use Designation for Basic, Enhanced, and Oil Treatment and Conditional Use Level for Phosphorus Treatment. Applicant's Performance Claims: Field-testing and laboratory testing show that the Filterra® unit is promising as a sormwater treatment best management practice and can meet Ecology's performance goals for basic, enhanced and oil treatment and has the potential to meet Ecology's goal for phosphorus treatment. Findings of Fact: 1. Field-testing was completed at two sites at the Port of Tacoma. Continuous flow and rainfall data collected during the 2008-2009 monitoring period indicated that 89 storm events occurred. Water quality data was obtained from 27 storm events. Not all the sampled storms produced information that met TAPE criteria for storm and/or water quality data. 2. During the testing at the Port of Tacoma, 98.96 to 99.89 percent of the annual influent runoff volume passed through the POT1 and POT2 test systems respectively. Stormwater runoff bypassed the POT1 test system during nine storm events and bypassed the POT2 test system during one storm event. Bypass volumes ranged from 0.13% to 15.3% of the influent stone volume. Both test systems achieved the 91 percent water quality treatment -goal over the I -year monitoring period. 3. Infiltration rates as high as 133 in/hr were observed during the various stones. No paired data that identified percent removal of TSS, metals, oil, or phosphorus at an .instantaneous observed flow rate was provided. 4. The maximum storm average hydraulic loading rate associated with water quality data is <40 in/hr, with the majority of flow rates < 25 in/hr. The average instantaneous hydraulic loading rate ranged from 8.6 to 53 inches per hour. 5. The field data showed a removal rate greater than 80% for TSS with an influent concentration greater than 20 mg/1 at an average instantaneous hydraulic loading rate up to 53 in/hr (average influent concentration of 28.8 mg/l, average effluent concentration of 4.3 mg/1). 6. The field data showed a removal rate generally greater than 54% for dissolved zinc at an average instantaneous hydraulic loading rate up to 60 in/hr and an average influent concentration of 0.266 mg/1 (average effluent concentration of 0.115 mg/1). 7. The field data showed a removal rate generally greater than 40% for dissolved copper at an average instantaneous hydraulic loading rate up to 35 in/hr and an average influent concentration of 0.0070 mg/1 (average effluent concentration of 0.0036 mg/1). 8. The field data showed a average removal rate of 93% for total petroleum hydrocarbon (TPH) at an average instantaneous hydraulic loading rate up to 53 in/hr and an average influent concentration of 52 mg/1(average effluent concentration of 2.3 mg/1). The data also shows achievement of less than 15 mg/1 TPH for grab samples. Limited visible sheen data was provided due to access limitations at the outlet monitoring location. 9. The field data showed low percentage removals of total Phosphorus at all storm flows at an average influent concentration of 0.189 mg/1 (average effluent concentration of 0.171 mg/1). The relatively poor treatment performance of the Filterra® system at this location may be related to influent characteristics for total phosphorus that are unique to the Port of Tacoma site. It appears that the Filterra® system will not meet the 50 percent removal performance goal when the majority of phosphorus in the runoff is expected to be in the dissolved form. 10. Laboratory testing was performed on a scaled down version of the Filterra® unit. The lab data showed an average removal from 83-91 % for TSS with influents ranging from 21 to 320 mg/L, 82-84% for total copper with influents ranging from 0.94 to 2.3 mg/L, and 50-61 % for orthophosphate with influents ranging from 2.46 to 14.37 mg/L. 11. Permeability tests were conducted on the soil media. 12. Lab scale testing using Sil-Co-Sil 106 showed percent removals ranging from 70.1% to 95.5% with a median percent removal of 90.7%, for influent concentrations ranging from 8.3 to 260 mg/L. These laboratory tests were run at an infiltration rate of 50 in/hr. 4 13. Supplemental lab testing conducted in September 2009 using Sil-co-sil 106 showed an average percent removal of 90.6%. These laboratory tests were run at infiltration rates ranging from 25 to 150 in/hr for influent concentrations ranging from 41.6 to 252.5 mg/l. Regression analysis results indicate that the Filterra system's TSS removal performance is independent of influent concentration in the concentration rage evaluated at hydraulic loading rates of up to 150 in/hr. Contact Information: Applicant: Larry Coffman Americast 301-580-6631 lcoffman@filterra.com Applicant's Website: http://www.filterra.com Ecology web link: http://www.ecy.wa_gov/programs/wg/stormwater/newtech/index.htmi Ecology: Douglas C. Howie, P.E. Water Quality Program, (360) 407-6444, dou glas.howie2ecy.wa.gov A INLET SHAPING A (BY OTHERS) 4 SDR-35 PVC COUPLING CAST INTO PRECAST BOX WALL BY AMERICAST (OUTLET PIPE LOCATION VARIES) -F� CURB (BY OTHERS) PLAN VIEW TREE FRAME PLANT AS SUPPLIED CLEANOUT COVER & GRATE BY AMERICAST GALVANIZED CAST IN TOP SLAB CAST IN (NOT SHOWN TOP SLAB FOR CLARITY) ANGLE NOSING TOP SLAB CURB AND GUTTER INTERLOCKING (BY OTHERS) 00 JOINT (TYP) STREET 0 N I DOWEL BARS d z ® 12" O.C. UNDERDRAIN STONE PROVIDED BY AMERICAST PERFORATED MULCH PROVIDED BY AMERICAST UNDERDRAIN SYSTEM BY AMERICAST FILTER MEDIA PROVIDED BY AMERICAST SECTION A -A DESIGNATION L w TREE GRATE OUTLET QTY & SIZE PIPE 4 x 4 4'-0" 4'-0" (1) 3x3 4" SDR-35 PVC 6 x 6 6'-0" 6'-0" (1) 30 4" SDR-35 PVC MODIFICATIONS OF DRAWINGS ARE ONLY PERMITTED BY WRITTEN AUTHORIZATION FROM FILTERRA DRAWING AVAILABLE IN TIF FILE FORMAT. DATE: 12-09-09 DWG: WWA FIST-3 PRECAST 1� 'UNIT �`"���a�'-' STANDARDFCONFIGURATION Werra" CopyrightC2007byAmericast WESTERN WASHINGTON US PAT 6.277.274 AND 6,569,321 32 Filterrao Project Information Form Complete & send to Americast by email, fax or mail. Project Information Project Name/Number: lzA,1 W 6lt- A,4 5 Pt-tA.F's 31 / 4.w No. & 1'159 Regulatory Municipality and State (City, County, etc.): P-e-r f o rl IL..1 W its Gott"'-*Y f WA, - Target Treatment Rate: WA- EGot.C" sv-titAcgc7 v4Q It c- e Mfrs Ftcdo •► PLEASE PRINT AND FAX OR EMAIL THIS FORM Address: 11352 Virginia Precast Road Toll Free: (866) 349-3458 Ashland, VA 23005 Fax: (804) 798-8400 Email: design@filterra.com Engineering Contact Information Engineering Firm: C-AIk%21 lgc, Contact: Email: n gpr(. E 17EZP.ti1t-1(� �. Go e-�1 Current Date: I2 08 2-0to Phone: Fax: Filterra@ Details (Email, mail or fax plans to Americast - Acceptable formats are AutoCAD or pdf) Plans sheets should include (1) cover, (2) grading, (3) drainage areas, (4) stormwater schedules or profile, (5) landscaping & (6) Filterra@ details. 12/09-v01- Western WA 0 filterra Bioretention Systems Filterra Structure # 20,0 Zo 1 202 Z0 3 Filterra Size (ID ft) Throat L x W t �4 q If>4If It It �fx Lf Impervious Drainage Area Acres .1109 , 152. .119 153 Pervious Drainage Area Acres , 0(0(p . 092. . o1$ Olt Percent Filtered gt, (� qQ, 93.2/d g� S�r 9✓'• 2/p Filterra Spot Elevation TC 23.35 2149r 26.39 2(0-5b FL 22.(Ar Zo.BI Z5.72' 25.99f INV OUT 19 , S S Ills, 02 .ec/ 2-.3.0(10 Bypass Spot Elevation TC 23.27� 21 .11 / 2(0.15 �.}p FL 22-1� 20.(pl, 25-V5' 2-6-1Di Bypass or Effluent INV IN 19.72. Ito .42 `-1. So 21. $o Modified Structure Y/N? Grate or Top Options Y/N? Y Y 10 TC = Top Curb, FL = Flow Line FLP Detail on plans (Y/N)0 CGT Detail on plans (Y/N)0 FT Plan Notes shown (Y/N)0 From: "Dean Baddorf" <dbaddorf@fi[terra.com> on 12/14/2010 10:19:31 AM Repository: 8614159 Rainier Ave - Grady Way to S 2nd St Final Design To: <Ray.Edralin@ghd.com> cc: "Peter Evans" <pevans@filterra.com> Subject: RE: Renton Ave - Renton, WA - Rainier Ave South - Phase 2 Ray Thank you for choosing Filterra to treat your projects stormwater needs. I have taken a look at the plan set you sent in for the Rainier Ave South— Phase 2 project and would make the following comments: We find the following specified Filterra units' placement and sizing in accordance to our specifications and in compliance with DOE's 91 % filtered requirements: 200: 4x4 201: 4x4 202: 4x4 203: 4x4 Please do not hesitate to contact me if you should have any questions Thanks Dean Baddorf Filterra® Bioretention Systems Direct: (804) 752 1454, Fax: (804) 798 8400, Web:- www.filterra.com From: Peter Evans Sent: Friday, December 10, 2010 1:36 PM To: Dean Baddorf Subject: Renton Ave- Renton, WA- Rainier Ave South- Phase 2 \\V:\Filterra\Projects\WA\Rainier Ave South Phase2\Plans\2010-12-10 Plan review please Peter Evans From: Ray.Edralin@ghd.com <Ray. Edralin@ghd.com > To: Peter Evans Sent: Fri Dec 10 12:55:43 2010 Subject: Renton Ave- Renton, WA Peter, Attached are the design documents for Filterra Review. The purpose of this submittal is to verify that we have sized and placed the Filterra Units per recommendations. We are proposing four (4) 4' x 4' tree box units for Department of Ecology's Enhanced Water Quality Treatment. I have included the following: - Filterra Plan Review Form - Figure - Tributary Area (for each unit) - 60% Roadway Profiles and Section - Draft Drainage Plans, Profiles & Detail - MGS Floodv4 Report and Filterra Sizing Example Please let me know if you have any questions Regards WM Ray Edralin, PE, LEED AP Project Engineer GHD T: 206 441 9385 1 V: 868565 1 E: ray.edralin@ghd.com 1201 Third Avenue Suite 1500SeattleWashington98101USA1 www.and.com WATER I ENERGY & RESOURCES I ENVIRONMENT I PROPERTY & BUILDINGS I TRANSPORTATION Please consider our environment before printing this email This email and all attachments are confidential. For further important information about emails sent to or from GHD or if you have received this email in error, please refer to http://www.ghd.com/emaildisclaimer.html . This e-mail has been scanned for viruses by MessageLabs. MGS FLOOD PROJECT REPORT Program Version: MGSFIood 4.08 Program License Number: 201010004 Run Date: 12/08/2010 9:24 AM Input File Name: Rai nier-Filterra-200.fId Project Name: Rainier Avenue South Analysis Title: Filterra Tree Box Calculations Comments: Computational Time Step (Minutes) PRECIPITATION INPUT 15 Extended Precipitation Timeseries Selected Climatic Region Number: 13 Full Period of Record Available used for Routing Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097 Evaporation Station 961040 Puget East 40 in MAP Evaporation Scale Factor 0.750 HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default ********************** WATERSHED DEFINITION *********************** ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Subbasin : 200 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious -------Area(Acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.235 Subbasin Total 0.235 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Subbasin : 200 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious Subbasin Total -------Area(Acres) 0.000 0.000 0.066 0.000 0.000 0.000 0.000 0.000 0.000 0.169 0.235 LINK DATA ***************************** ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 *********************** LINK DATA *********«******************** ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 Link Name: Filterra No. 200 Link Type: Structure Downstream Link: None Prismatic Pond Option Used Pond Floor Elevation (ft) 100.00 Riser Crest Elevation (ft) Max Pond Elevation (ft) 102.00 Storage Depth (ft) 0.75 Pond Bottom Length (ft) 4.0 Pond Bottom Width (ft) 4.0 Pond Side Slopes (ft/ft) : L1= 0.00 Bottom Area (sq-ft) 16. Area at Riser Crest El (sq-ft) 16. (acres) 0.000 Volume at Riser Crest (cu-ft) 12. (ac-ft) 0.000 Area at Max Elevation (sq-ft) 16. (acres) 0.000 Vol at Max Elevation (cu-ft) 34. (ac-ft) 0.001 100.75 L2= 0.00 W 1= 0.00 W2= 0.00 Massmann Infiltration Option Used Hydraulic Conductivity (in/hr) 0.00 Depth to Water Table (ft) : 100.00 Bio-Fouling Potential : Low Maintenance : Average or Better Riser Geometry Riser Structure Type : Circular Riser Diameter (in) : 100.00 Common Length (ft) : 0.000 Riser Crest Elevation : 100.75 ft Hydraulic Structure Geometry Number of Devices: --- Device Number 1 --- Device Type : Sand Filter Elev of Filter Top (ft) 100.00 Filter Surface Area (sq-ft) 16. Filter Thickness (ft) 1.80 Permeability (in/hr) 24.82 **********************FLOOD FREQUENCY AND DURATION STATISTICS******************* ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1 ********** Link: Filterra No. 200 WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) WSEL Peak (ft) -------------------------------------- -------------------------------------- 1.05-Year 100.753 1.11-Year 100.754 1.25-Year 100.754 2.00-Year 100.756 3.33-Year 100.757 5-Year 100.758 10-Year 100.760 25-Year 100.762 50-Year 100,765 100-Year 100.767 ***********Water Quality Facility Data ************* ********** Link WSEL Stats ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 ********** Link: Filterra No. 200 Basic Wet Pond Volume (91% Exceedance): 816. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 1224. cu-ft Infiltration/Filtration Statistics -------------------- Total Runoff Volume (ac-ft): 89.04 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 81.55, 91.59% Percent Treated (Infiltrated+Filtered)/Total Volume: 91.59% ***********Compliance Point Results ************* Scenario Predeveloped Compliance Subbasin: 200 Scenario Postdeveloped Compliance Link: Filterra No. 200 *** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position Predevelopment Runoff Postdevelopment Runoff Tr (Years) ----------------------------------------------------------------------------------------------------------- Discharge (cfs) Tr (Years) Discharge (cfs) 2-Year 0.088 2-Year 0.069 5-Year 0.114 5-Year 0.088 10-Year 0.128 10-Year 0.106 25-Year 0.161 25-Year 0.144 50-Year 0.205 50-Year 0.167 100-Year 0.237 100-Year 0.209 200-Year 0.246 200-Year 0.211 ** Record too Short to Compute Peak Discharge for These Recurrence Intervals **** Flow Duration Performance According to Dept. of Ecology Criteria **** Excursion at Predeveloped '/2Q2 (Must be Less Than 0%): -67.4% PASS Maximum Excursion from'/2Q2 to Q2 (Must be Less Than 0%): -62.8% PASS Maximum Excursion from Q2 to Q50 (Must be less than 10%): -20.0% PASS Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS POND MEETS ALL DURATION DESIGN CRITERIA: PASS MGS FLOOD PROJECT REPORT Program Version: MGSFIood 4.08 Program License Number: 201010004 Run Date: 12/08/2010 1:42 PM Input File Name: Rai nier-Filterra-201.fId Project Name: Rainier Avenue South Analysis Title: Filterra Tree Box Calculations Comments: Computational Time Step (Minutes): PRECIPITATION INPUT 15 Extended Precipitation Timeseries Selected Climatic Region Number: 13 Full Period of Record Available used for Routing Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097 Evaporation Station 961040 Puget East 40 in MAP Evaporation Scale Factor 0.750 HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default ********************** WATERSHED DEFINITION *********************** ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Subbasin : 201 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious -------Area(Acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 Subbasin Total 0.244 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Subbasin : 201 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious Subbasin Total -------Area(Acres) 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.000 0.000 0.152 0.244 ************************ LINK DATA ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 ************************* LINK DATA ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 Link Name: Filterra No. 201 Link Type: Structure Downstream Link: None Prismatic Pond Option Used Pond Floor Elevation (ft) 100.00 Riser Crest Elevation (ft) Max Pond Elevation (ft) 102.00 Storage Depth (ft) 0.75 Pond Bottom Length (ft) 4.0 Pond Bottom Width (ft) 4.0 Pond Side Slopes (ft/ft) : L1= 0.00 Bottom Area (sq-ft) 16. Area at Riser Crest El (sq-ft) 16. (acres) 0.000 Volume at Riser Crest (cu-ft) 12. (ac-ft) 0.000 Area at Max Elevation (sq-ft) 16. (acres) 0.000 Vol at Max Elevation (cu-ft) 34. (ac-ft) 0.001 100.75 L2= 0.00 W 1= 0.00 W2= 0.00 Massmann Infiltration Option Used Hydraulic Conductivity (in/hr) 0.00 Depth to Water Table (ft) : 100.00 Bio-Fouling Potential : Low Maintenance : Average or Better Riser Geometry Riser Structure Type : Circular Riser Diameter (in) : 100.00 Common Length (ft) : 0.000 Riser Crest Elevation : 100.75 ft Hydraulic Structure Geometry Number of Devices: --- Device Number 1 --- Device Type : Sand Filter Elev of Filter Top (ft) 100.00 Filter Surface Area (sq-ft) 16. Filter Thickness (ft) 1.80 Permeability (in/hr) 24.82 **********************FLOOD FREQUENCY AND DURATION STATISTICS******************* ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1 ********** Link: Filterra No. 201 WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) WSEL Peak (ft) -------------------------------------- -------------------------------------- 1.05-Year 100.753 1.11-Year 100.754 1.25-Year 100.754 2.00-Year 100.756 3.33-Year 100.757 5-Year 100.758 10-Year 100.760 25-Year 100.762 50-Year 100.764 100-Year 100.767 ***********Water Quality Facility Data ************* ********** Link WSEL Stats ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 ********** Link: Filterra No. 201 Basic Wet Pond Volume (91 % Exceedance): 768. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 1152. cu-ft Infiltration/Filtration Statistics -------- ----------- Total Runoff Volume (ac-ft): 86.65 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 80.80, 93.24% Percent Treated (Infiltrated+Filtered)/Total Volume: 93.24% ***********Compliance Point Results ************* Scenario Predeveloped Compliance Subbasin: 201 Scenario Postdeveloped Compliance Link: Filterra No. 201 *** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position ********** Predevelopment Runoff Postdevelopment Runoff Tr (Years) Discharge (cfs) Tr (Years) Discharge (cfs) ------------------------------------------------------------------------------------------------------------ 2-Year 0.091 2-Year 0.065 5-Year 0.118 5-Year 0.082 10-Year 0.133 10-Year 0.103 25-Year 0.167 25-Year 0.139 50-Year 0.213 50-Year 0.166 100-Year 0.246 100-Year 0.206 200-Year 0.255 200-Year 0.207 ** Record too Short to Compute Peak Discharge for These Recurrence Intervals **** Flow Duration Performance According to Dept. of Ecology Criteria **** Excursion at Predeveloped'/2Q2 (Must be Less Than 0%): -78.3% PASS Maximum Excursion from'/2Q2 to Q2 (Must be Less Than 0%): -75.2% PASS Maximum Excursion from Q2 to Q50 (Must be less than 10%): -40.0% PASS Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS POND MEETS ALL DURATION DESIGN CRITERIA: PASS MGS FLOOD PROJECT REPORT Program Version: MGSFlood 4.08 Program License Number: 201010004 Run Date: 12/08/2010 11:39 AM Input File Name Project Name: Analysis Title: Comments: Rai nier-Filterra-202.fId Rainier Avenue South Filterra Tree Box Calculations Computational Time Step (Minutes): PRECIPITATION INPUT 15 Extended Precipitation Timeseries Selected Climatic Region Number: 13 Full Period of Record Available used for Routing Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097 Evaporation Station 961040 Puget East 40 in MAP Evaporation Scale Factor 0.750 HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default ********************** WATERSHED DEFINITION *********************** ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Subbasin : 202 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious -------Area(Acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.132 Subbasin Total 0.132 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 ---------- Subbasin : 202---------- -------Area(Acres)-------- Till Forest ' 0.000 Till Pasture 0.000 Till Grass 0.013 Outwash Forest 0.000 Outwash Pasture 0.000 Outwash Grass 0.000 Wetland 0.000 Green Roof ' 0.000 User 2 0.000 Impervious 0.119 Subbasin Total 0.132 LINK DATA ----------------------SCENARIO: PREDEVELOPED , Number of Links: 0 ************************* LINK DATA ---------------------SCENARIO: POSTDEVELOPED Number of Links: 1 Link Name: Filterra No. 202 Link Type: Structure Downstream Link: None Prismatic Pond Option Used Pond Floor Elevation (ft) 100.00 Riser Crest Elevation (ft) Max Pond Elevation (ft) 102.00 Storage Depth (ft) 0.75 Pond Bottom Length (ft) 4.0 Pond Bottom Width (ft) 4.0 Pond Side Slopes (ft/ft) : L1= 0.00 Bottom Area (sq-ft) 16. Area at Riser Crest El (sq-ft) 16. (acres) 0.000 Volume at Riser Crest (cu-ft) 12. (ac-ft) 0.000 Area at Max Elevation (sq-ft) 16. (acres) 0.000 Vol at Max Elevation (cu-ft) 34. (ac-ft) 0.001 100.75 L2= 0.00 W1= 0.00 W2= 0.00 Massmann Infiltration Option Used Hydraulic Conductivity (in/hr) 0.00 Depth to Water Table (ft) : 100.00 Bio-Fouling Potential : Low Maintenance : Average or Better Riser Geometry Riser Structure Type : Circular Riser Diameter (in) : 100.00 Common Length (ft) : 0.000 Riser Crest Elevation : 100.75 ft Hydraulic Structure Geometry Number of Devices --- Device Number 1 --- Device Type : Sand Filter Elev of Filter Top (ft) 100.00 Filter Surface Area (sq-ft) 16. Filter Thickness (ft) 1.80 Permeability (in/hr) 24.82 **********************FLOOD FREQUENCY AND DURATION STATISTICS******************* ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1 ********** Link: Filterra No. 202 WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) -------------------------------------- WSEL Peak (ft) -------------------------------------- 1.05-Year 100.752 1.11-Year 100.752 1.25-Year 100.753 2.00-Year 100.754 3.33-Year 100.755 5-Year 100.756 10-Year 100.757 25-Year 100.759 50-Year 100.761 100-Year 100.763 ***********Water Quality Facility Data ************* ********** Link WSEL Stats ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 ********** Link: Filterra No. 202 Basic Wet Pond Volume (91% Exceedance): 538. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 807. cu-ft Infiltration/Filtration Statistics -------------------- Total Runoff Volume (ac-ft): 55.97 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 54.00, 96.48% Percent Treated (Infiltrated+Filtered)/Total Volume: 96.48% ***********Compliance Point Results ************* Scenario Predeveloped Compliance Subbasin: 202 Scenario Postdeveloped Compliance Link: Filterra No. 202 *** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position ********** Predevelopment Runoff Postdevelopment Runoff Tr (Years) Discharge (cfs) Tr (Years) Discharge (cfs) ------------------------------------------------------------------------------------------------------------ 2-Year 0.049 2-Year 0.045 5-Year 0.064 5-Year 0.058 10-Year 0.072 10-Year 0.068 25-Year 0.090 25-Year 0.087 50-Year 0.115 50-Year 0.107 100-Year 0.133 100-Year 0.128 200-Year 0.138 200-Year 0.131 ** Record too Short to Compute Peak Discharge for These Recurrence Intervals **** Flow Duration Performance According to Dept. of Ecology Criteria **** Excursion at Predeveloped'/Q2 (Must be Less Than 0%): -30.2% PASS Maximum Excursion from to Q2 (Must be Less Than 0%): -25.5% PASS Maximum Excursion from Q2 to Q50 (Must be less than 10%): 0.0% PASS Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS POND MEETS ALL DURATION DESIGN CRITERIA: PASS MGS FLOOD PROJECT REPORT Program Version: MGSFIood 4.08 Program License Number: 201010004 Run Date: 12/08/2010 1:45 PM Input File Name: Rainier-Filterra-203.fid Project Name: Rainier Avenue South Analysis Title: Filterra Tree Box Calculations Comments: PRECIPITATION INPUT Computational Time Step (Minutes): 15 Extended Precipitation Timeseries Selected Climatic Region Number: 13 Full Period of Record Available used for Routing Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097 Evaporation Station 961040 Puget East 40 in MAP Evaporation Scale Factor 0.750 HSPF Parameter Region Number: 1 HSPF Parameter Region Name : USGS Default ********************** WATERSHED DEFINITION *********************** ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Subbasin : 203 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious -------Area(Acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167 Subbasin Total 0.167 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Subbasin : 203 Till Forest Till Pasture Till Grass Outwash Forest Outwash Pasture Outwash Grass Wetland Green Roof User 2 Impervious Subbasin Total -------Area(Acres) 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.153 0.167 ********************* LINK DATA ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 **«********************** LINK DATA ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 Link Name: Filterra No. 203 Link Type: Structure Downstream Link: None Prismatic Pond Option Used Pond Floor Elevation (ft) 100.00 Riser Crest Elevation (ft) Max Pond Elevation (ft) 102.00 Storage Depth (ft) 0.75 Pond Bottom Length (ft) 4.0 Pond Bottom Width (ft) 4.0 Pond Side Slopes (ft/ft) : L1= 0.00 Bottom Area (sq-ft) 16. Area at Riser Crest El (sq-ft) 16. (acres) 0.000 Volume at Riser Crest (cu-ft) 12. (ac-ft) 0.000 Area at Max Elevation (sq-ft) 16. (acres) 0.000 Vol at Max Elevation (cu-ft) 34. (ac-ft) 0.001 100.75 L2= 0.00 W1= 0.00 W2= 0.00 Massmann Infiltration Option Used Hydraulic Conductivity (in/hr) 0.00 Depth to Water Table (ft) : 100.00 Bio-Fouling Potential : Low Maintenance : Average or Better Riser Geometry Riser Structure Type : Circular Riser Diameter (in) : 100.00 Common Length (ft) : 0.000 Riser Crest Elevation : 100.75 ft Hydraulic Structure Geometry Number of Devices --- Device Number 1 --- Device Type : Sand Filter Elev of Filter Top (ft) 100.00 Filter Surface Area (sq-ft) 16. Filter Thickness (ft) 1.80 Permeability (in/hr) 24.82 **********************FLOOD FREQUENCY AND DURATION STATISTICS******************* ----------------------SCENARIO: PREDEVELOPED Number of Subbasins: 1 Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Subbasins: 1 Number of Links: 1 Link: Filterra No. 203 WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) WSEL Peak (ft) -------------------------------------- -------------------------------------- 1.05-Year 100.753 1.11-Year 100.753 1.25-Year 100.754 2.00-Year 100.755 3.33-Year 100.756 5-Year 100.757 10-Year 100.758 25-Year 100.761 50-Year 100.763 100-Year 100.765 ***********Water Quality Facility Data ************* ********** Link WSEL Stats ----------------------SCENARIO: PREDEVELOPED Number of Links: 0 ----------------------SCENARIO: POSTDEVELOPED Number of Links: 1 ********** Link: Filterra No. 203 Basic Wet Pond Volume (91% Exceedance): 689. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 1034. cu-ft Infiltration/Filtration Statistics -------------------- Total Runoff Volume (ac-ft): 71.41 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 66.56, 93.20% Percent Treated (Infiltrated+Filtered)/Total Volume: 93.20% ***********Compliance Point Results ************* Scenario Predeveloped Compliance Subbasin: 203 Scenario Postdeveloped Compliance Link: Filterra No. 203 *** Point of Compliance Flow Frequency Data *** Recurrence Interval Computed Using Gringorten Plotting Position ********** Predevelopment Runoff Postdevelopment Runoff Tr (Years) Discharge (cfs) Tr (Years) Discharge (cfs) --------------------------------------------------------------------------------------------------------- 2-Year 0.062 2-Year 0.058 5-Year 0.081 5-Year 0.075 10-Year 0.091 10-Year 0.087 25-Year 0.114 25-Year 0.111 50-Year 0.146 50-Year 0.137 100-Year 0.168 100-Year 0.162 200-Year 0.175 200-Year 0.167 ** Record too Short to Compute Peak Discharge for These Recurrence Intervals **** Flow Duration Performance According to Dept. of Ecology Criteria **** Excursion at Predeveloped'/2Q2 (Must be Less Than 0%): -26.8% PASS Maximum Excursion from'/zQ2 to Q2 (Must be Less Than 0%): -22.4% PASS Maximum Excursion from Q2 to Q50 (Must be less than 10%): 0.0% PASS Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS POND MEETS ALL DURATION DESIGN CRITERIA: PASS PUBLIC WORKS DEPARTMENT �Mf�O� M E M O R A N D U M DATE: October 17, 2011 TO: Bob Hanson, Transportation Design Supervisor FROM: j��{�— Ron Straka, Surface Water Utility Supervisor, x7248 (X Richard Marshall, Surface Water Maintenance Manager, x7400 STAFF CONTACT: Hebe Bernardo, Surface Water Utility Engineer, x7264 SUBJECT: Rainier Avenue South Improvement Project — SW Grady Way to S 2°d Street — Filterra® Adjustment 2011-05 The City of Renton Surface Water Utility has completed review of the adjustment request for the Rainier Avenue South Improvement Project — SW Grady Way to S 2nd Street in accordance with the 2005 Stormwater Management Manual for Western Washington. Our review of the information leads us to understand that the project proposes the implementation of the Filterra® Bioretention System for Enhanced Basic Water Quality. This is the first application of such system in the City of Renton. The Washington State Department of Ecology has approved the Filterra® Bioretention System for General Use Level Designation for TSS, oil and grease, and enhanced dissolved metals. Based on these understandings, the adjustment to use the Filterra® Bioretention System for Enhanced Basic Water Quality and Oil Treatment is approved with the following conditions: 1. Each Filterra® unit shall be sized for Enhanced Treatment using a filter hydraulic conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as listed in the TER) using the sand filter module in the latest version of the WWHM or other Ecology -approved continuous runoff model. The model must indicate the unit is capable of processing 91 percent of the influent runoff file. 2. Each site plan must undergo Filterra® review before the unit can be approved for site installation. This will ensure that site grading and slope are appropriate for use of a Filterra® unit. 3. Filterra® media shall conform to the specifications submitted to and approved by Ecology. Mr. Hansen Page 2of2 October 17, 2011 4. The facility shall be inspected every six months by the supplier during the first year of operation as offered with the purchase of the Filterra® system. Inspections will be used to determine the site -specific maintenance schedules and requirements. Maintenance of the facility shall include removing trash, degraded mulch, and accumulated debris from the filter surface and replacing the mulch layer. Maintenance procedures should follow those given in the most recent version of the Filterra® Installation, Operation, and Maintenance Manual. During the first year of operation of the facility, written records of the inspections and maintenance shall be submitted to Ron Straka, Surface Water Utility Engineering Supervisor. 5. The Transportation Division shall have the Filterra® Bioretention System maintained by the supplier or approved contractor during the first year of operation as offered by the supplier with the purchase of the Filterra® system. Prior to maintenance of the Filterra® Bioretention System, the Surface Water Utility shall be notified and allowed to inspect the facility and observe the maintenance of the Filterra® Bioretention System by the supplier or approved contractor. 6. The final project Technical Information Report must be revised to include the use of the Filterra® Bioretention System and this adjustment approval. This is a conceptual approval for using the Filterra® Bioretention System for Enhanced Basic Water Quality. Further analysis and design calculations shall be included in the TIR for final approval. 7. This adjustment approval does not authorize the use of the Filterra® Bioretention System on future City Transportation projects. Please note that the approval of this adjustment does not relieve the applicant from other city, state, or federal requirements. If you have any questions about this adjustment, please contact Hebe Bernardo or me. cc: Richard Perteet, Deputy Public Works Administrator -Transportation Lys Hornsby, P.E., Utility Systems Director Derek Akesson, Transportation Engineer H:\File Sys\SWP -Surface Water Projects\SWP-27 - Surface Water Projects (CIP)\27-3129 Renton Stormwater Manual\ADIUSTMENTS\2011-5 Rainier Ave S - Filterra.doc\HBah iz cc CL x n Appendix C Conveyance Analysis Conveyance Basin Maps Cl-C3 Rational Method XP-SWMM Modeling Documentation Grady Way Tailwater Calculation Grady Way Upstream Basin Map C4 Pump Station Modeling Documentation 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report 0.20 AC 30 23 0.32 AC 0.11 AC 22 0.13 AC _ - 12 218 11 0.10AC 0.16AC 0.16 AC 20 10 0.15 AC 0.22 AC 11 � 18 9 U v 0.15 AC 0.13 AC 8 19 0.11 AC 0.14 AC J 7 .J 0.10 AC 101 1.88 AC 021AC 6 0.11 AC 0.62 AC 2 _ 0.11 AC 0.09 5AC � 1 0.15 AC 4 0.06 AC 3 0.08 AC 27787 �aj 0.08 AC J< �J P Qom`\17 sCR9 Y O � -9y 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com OFFSITE BASIN TDA GW TDA TDA V TDA A 0.32 AC4AC AC 13 50.10AC 0.20 AC 0.99 AC 35 124 a10AC 0.16AC 37 38 0.08 AC 0.11 AC 17 36 )9 AC 0.35 AC S, 'QF F� PLAN 0 25 50 100 SCALE: IN FEET RAINIER AVENUE S C1 BASIN DELINEATION FOR HYDRAULIC MODELING ................ 10, i 1201 Third Avenue, Suit( Seattle, Washington 9811 T 1206 4419385 F 1206 448 6922922 W www,ghd.com m OFFSITE BASIN TDA GW TDA I TDA V TDA A C2 (\tltf\141Jtl\I:NUU\UNNVVINijJ\IIHWE>>U-IIXi:l i:9 M V1 awg 1 O/24=11 1201 Third Avenue, Suite 1500 0.69 AC Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com 80 0.23 AC 89 0.20 AC ys 0.13 AC 116 0.50 ac OFFSITE BASIN TDA GW TDA TDA V PLAN TDA A 0 25 50 100 SCALE: IN FEET RAINIER AVENUE S C3 BASIN DELINEATION FOR HYDRAULIC MODELING G186\14159\CADD\DRAWNGS\TIR10655D-TIRGl REV10vq 10/24/2011 3.2.1 RATIONAL METHOD TABLE 3.2.1.A RUNOFF COEFFICIENTS - "C" VALUES FOR THE RATIONAL METHOD General Land Covers Single Family Residential Areas* Land Cover C Land Cover Density C Dense forest 0.10 0.20 DU/GA (1 unit per 5 ac.) 0.17 Light forest 0.15 0.40 DU/GA (1 unit per 2.5 ac.) 0.20 Pasture 0.20 0.80 DU/GA (1 unit per 1.25 ac.) 0.27 -� Lawns 0.25 1.00 DU/GA 0.30 Playgrounds 0.30 1.50 DU/GA 0.33 Gravel areas 0.80 2.00 DU/GA 0.36 -� Pavement and roofs 0.90 2.50 DU/GA 0.39 Open water (pond, lakes, 1.00 3.00 DU/GA 0.42 wetlands) 3.50 DU/GA 0.45 4.00 DU/GA 0.48 4.50 DU/GA 0.51 5.00 DU/GA 0.54 5.50 DU/GA 0.57 6.00 DU/GA 0.60 Based on average 2,500 square feet per lot of impervious coverage. For combinations of land covers listed above, an area -weighted "C,:x A," sum should be computed based on the equation C,: x A, = (Cl x .41) + (C2 x A2) + ...+(C,, x A„ ), where A. = (A, + A2 + ...+A„), the total drainage basin area. TABLE 3.2.1.B COEFFICIENTS FOR THE RATIONAL METHOD "iR" EQUATION Design Storm Return Frequency aR bR 2 years 1.58 0.58 5 years 2.33 0.63 10 years 2.44 0.64 ->' 25 years 2.66 0.65 50 years 2.75 0.65 ->100 years 2.61 0.63 TABLE 3.2.1.0 kR VALUES FOR T, USING THE RATIONAL METHOD I Land Cover Category kR Forest with heavy ground litter and meadow 2.5 Fallow or minimum tillage cultivation 1 4.7 Short grass pasture and lawns 1 7.0 Nearly bare ground 10.1 Grassed waterway 15.0 Paved area (sheet flow) and shallow gutter flow 20.0 2009 Surface water Design Manual 1/9/2009 3-13 SECTION 3.2 RUNOFF COMPUTATION AND ANALYSIS METHODS FIGURE 3.2.1.(' 25-YEAR 24-110UR ISOPLUVIALS --+OMISN COUNTY ----� -� - WING COUNTY ?8 1 ° 0 32 ( , 5.0 T m s i Pzs=4 !I o m m v CO m M co M "D` KING COUNTY /13• PIERCE COUNTY WESTERN KING COUNTY 25-Year 24-Hour co r- Precipitation �� ^ ; 4 in Inches �-- Miles I ! QUO') 2009 Surface Water Design Manual 3-16 v .6, FIGURE 3.2.1.D 100-YEAR 24-HOUR ISOPLL VIALS 33 3 3. 3S 4ga 0 4� 43 O 0 91 m m `\ �®_—�•_o.L N G COUNTY iE CE COUNT WESTERN KING COUNTY �o 100-Year 24-Hour Precipitation in Inches`-= ;.1.1 RATIONAL METHOD C u NTl IN— 5D 0 _ 6.5 6.0 5.5 �h 2009 Surface Water Design Manual 1/9/2009 3-17 Created by: K.Smith 7/9/10 Checked by: R. Edralin 7/26/10 OF Table for use in XP-SWMM, based on approach of 2009 KCSWDM, Section 3.2.1 25 r 100 r aR bR aR bR aR, bR 2.66 0.65 2.61 0.63 PR (in.) P25= 3.4 P1u-= 3.9 125 125 i100 1100 Duration (min.) 6.3 0.8041 2.7339 0.8186 3.1924 10 0.5955 2.0247 0.6118 23862 15 0.4575 1.5556 0.4739 1.8483 20 0.3795 1.2903 0.3954 1.5419 25 0.3283 1.1161 0.3435 1.3397 30 0.2916 0.9914 0.3062 1.1943 35 0.2638 08968 0.2779 1.0838 40 0.2418 08223 0.2555 0.9963 45 0.2240 0.7617 0.2372 0.9251 50 0.2092 0.7113 0.2220 08657 55 0.1966 0.6685 0.2090 0.8152 60 0.1858 0.6318 0.1979 0.7717 65 0.1764 0.5997 0.1882 0.7338 70 0.1681 0.5715 0.1796 0.7003 OF Table for use in XP-SWMM, based on approach of 2009 KCSWDM, Section 3.2.1 (Modified with Correction Factor for use in XP-SWMM) Factor = 0.89525 25 r 100yr aR bR aR bR aR, bR 2.66 0.65 2.61 0 63 PR (in.) P25= 3.4 P-- -= 3 9 125 125 i100 1100 Duration (min.) 6.3 0.8041 2.4476 0.8186 2.8580 10 0.5955 1.8126 0.6118 2.1362 15 0.4575 1.3927 0.4739 16547 20 0.3795 1.1551 0.3954 1.3804 25 0.3283 09992 0.3435 1.1994 30 0.2916 08875 0.3062 1.0692 35 0.2638 0.8029 0.2779 0.9703 40 0.2418 0.7361 0.2555 0.8920 45 0.2240 0.6819 0.2372 0.8282 50 0.2092 0.6368 0.2220 0.7750 55 0.1966 05985 0.2090 0.7298 60 0.1858 05656 0.1979 06909 65 0.1764 05369 0.1882 0.6569 70 0.1681 0.5117 0.1796 0.6270 TDA GW - Conveyance Basin Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient (Pervious) Max Flow cfs 02 25- ear 1 0.110 90.000 6.300 6.300 0.250 0.251 03 25-year 1 0.080 90.000 6.300 6.300 0.250 0.183 04 25-year 1 0.060 90.000 6.300 6.300 0.250 0.137 05 25-year 1 0.090 90.000 15.000 15.000 0.250 11.953 05 2 9.200 90.000 06 25-year 1 0.110 90.000 10.000 10.000 0.250 1.203 06 2 0.620 90.000 07 25 ear 1 0.100 90.000 6.300 6.300 0.250 0.228 08 25- ear 1 0.110 90.000 6.300 6.300 0.250 0.251 09 25-year 1 1 0.130 90.000 6.300 6.300 0.250 0.297 10 25-year 1 0.220 90.000 6.300 6.300 0.250 0.502 11 25-year 1 0.170 90.000 6.300 6.300 0.250 0.388 12 25 ear 1 0.100 90.000 10.000 10.000 0.250 3.312 12 2 1.860 90.000 13 25- ear 1 0.100 90.000 6.300 6.300 0.250 0.228 14 25-year 1 0.170 90.000 10.000 10.000 10.250 1.912 14 2 0.990 90.000 15 25-year 1 0.200 90.000 6.300 6.300 0.250 0.457 16 25-year 6.300 6.300 0.000 0.457 17 25-year 1 0.090 90.000 6.300 6.300 0.250 0.205 18 25 ear 1 0.150 90.000 6.300 6.300 0.250 0.342 19 25 ear 1 0.140 90.000 6.300 6.300 0.250 0.320 20 25-year 1 0.150 90.000 6.300 6.300 0.250 0.342 21 25- ear 0.000 0.000 0.250 0.000 22 25 ear 0.000 0.000 0.250 0.000 23 25-year 1 0.110 90.000 6.300 6.300 0.250 0.251 101 25-year 1 0.210 90.000 6.300 6.300 0.250 0.479 146 25-year 0.000 0.000 10.000 0.000 218 25- ear 1 0.150 90.000 6.300 6.300 0.250 0.342 222 25-year 0.000 0.000 0.000 0.000 26802 25- ear 0.000 0.000 0.000 0.000 28226 25-year 0.000 0.000 0.000 10.00, 10/24/11 15:11:26 1/1 TDA GW - Conveyance Basin Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient (Pervious) Max Flow cfs 02 1 00-ear 1 0.110 90.000 6.300 6.300 0.250 0.293 03 100-year 1 0.080 90.000 6.300 6.300 0.250 0.213 04 100-year 1 0.060 90.000 6.300 6.300 0.250 0.160 05 100-year 1 0.090 90.000 15.000 15.000 0.250 14.201 05 2 9.200 90.000 06 100-year 1 0.110 90.000 10.000 10.000 0.250 1.416 06 2 0.620 90.000 07 1 00ear 1 0.100 90.000 6.300 6.300 0.250 0.267 08 1 00-ear 1 0.110 90.000 6.300 6.300 0.250 0.293 09 100-year 1 0.130 90.000 6.300 6.300 0.250 0.347 10 100-year 1 0.220 90.000 6.300 6.300 0.250 0.586 11 100-year 1 0.170 90.000 6.300 6.300 0.250 0.453 12 1 00-ear 1 0.100 90.000 10.000 10.000 0.250 3.900 12 2 1.860 90.000 13 1 00ear 1 0.100 90.000 6.300 6.300 0.250 0.267 14 100-year 1 0.170 90.000 10.000 10.000 0.250 2.250 14 2 0.990 90.000 15 100-year 1 0.200 90.000 6.300 6.300 0.250 0.533 16 100-year 6.300 6.300 0.000 0.533 17 100-year 1 0.090 90.000 6.300 6.300 0.250 0.240 18 1 00ear 1 0.150 90.000 6.300 6.300 0.250 0.400 19 1 00ear 1 0.140 90.000 6.300 6.300 0.250 0.373 20 100-year 1 0.150 90.000 6.300 6.300 0.250 0.400 21 1 00-ear 0.000 0.000 0.250 0.600 22 1 00-ear 0.000 0.000 0.250 0.000 23 100-year 1 0.110 90.000 6.300 6.300 0.250 0.293 101 100-year 1 0.210 90.000 6.300 6.300 0.250 0.560 146 100-year 0.000 0.000 0.000 0.000 218 1 00ear 1 0.150 90.000 6.300 6.300 0.250 0.400 222 100-year 0.000 10.000 10.000 0.000 26802 1 1 00-ear 0.000 10.000 10.000 10.000 28226 1 100-year 0.000 10.000 10.000 10.000 10/24/11 15:26:55 1 /1 TDA GW - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope pe ess ess Max Flow cfs Max Velocity ft/s P02 25-year 02 28226 Circula 2.000 50.160 2.456 0.012 0.730 4.710 P03 25 ear 03 04 Circula 1.000 44.950 1.001 0.012 0.180 2.360 PO4 25- ear 04 222 Circula 1.000 44.410 0.851 0.012 0.320 2.740 P05 25 ear 05 26802 Circula 3.000 112.000 0.000 0.012 18.620 3.800 P06 25-year 06 05 Circula 2.000 85.000 0.156 0.012 7.890 2.540 P07 25 ear 07 06 Circula 2.000 85.000 0.160 0.012 6.770 2.220 P08 25 ear 08 07 Circula 2.000 92.000 0.160 0.012 6.700 2.280 P09 25-year 09 08 Circula 1.500 99.000 0.160 0.012 6.090 3.430 P10 25-year 10 09 Circula 1.500 58.000 0.160 0.012 5.980 3.380 P11 25- ear 11 10 Circula 1.500 67.000 0.200 0.012 5.790 3.270 P12 25 ear 12 11 Circula 1.500 78.160 0.200 0.012 5.640 3.180 P13 25-year 13 218 Circula 1.500 106.890 0.199 0.012 2.300 1.480 P14 25-year 14 13 Circula 1.500 61.000 0.507 0.012 2.120 12.600 P146 25 ear 146 26802 Circula 1.000 42.310 0.740 0.012 0.320 0.630 P15 25- ear 15 14 Circula 1.000 116.000 0.259 0.012 0.640 1.510 P16 25-year 16 15 Circula 1.000 100.000 0.500 0.012 0.400 1.560 P17 25-year 17 16 Circula 1.000 85.000 0.506 0.012 0.210 2.050 P18 25- ear 18 08 Circula 1.000 38.000 1.711 0.012 0.830 2.510 P19 25- ear 19 18 Circula 1.000 96.000 2.448 0.012 0.320 2.600 P20 25- ear 20 18 Circula 1.000 110.000 0.300 0.012 0.370 1.430 P21 25-year 21 20 Circula 1.000 27.000 0.296 0.012 0.170 0.880 P218 25 ear 218 12 Circula 1.500 60.400 0.200 0.012 2.780 1.510 P22 25- ear 22 21 Circula 1.000 27.000 0.333 0.012 0.180 1.320 P222 25-year 222 05 Circula 1.000 66.640 1.433 0.012 0.320 3.360 P23 25-year 123 22 Circula 1.000 149.340 10.301 0.012 0.250 1.780 P26802 25 ear 26802 28226 Circula 3.000 121.550 -0.165 10.012 118.600 4.300 P37 25 ear 1101 02 Circula 1.000 172.160 10.485 10.012 10.480 2.380 10/24/11 15:13:41 1 /1 TDA GW - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Roughn ess Max Flow cfs Max Velocity ft/s P02 100-year 02 28226 Circular 2.000 50.160 2.456 0.012 0.850 4.940 P03 1 00ear 03 04 Circular 1.000 44.950 1.001 0.012 0.210 2.480 PO4 100 ear 04 222 Circular 1.000 144.410 0.851 0.012 0.370 2.870 P05 1 00-ear 05 26802 Circular 3.000 112.000 0.000 0.012 22.330 4.110 P06 100-year 06 05 Circular 2.000 85.000 10.156 0.012 10.190 3.100 P07 1 00-ear 07 06 Circular 2.000 85.000 0.160 0.012 8.820 2.680 P08 1 00-ear 08 07 Circular 2.000 92.000 0.160 0.012 8.660 2.640 P09 100-year 09 08 Circular 1.500 99.000 0.160 0.012 7.840 4.420 P10 100-year 10 09 Circular 1.500 58.000 0.160 0.012 7.660 4.310 P11 1 00-ear 11 10 Circular 1.500 67.000 0.200 0.012 7.410 4.170 P12 1 00ear 12 11 Circular 1.500 78.160 0.200 0.012 7.170 4.030 P13 100-year 13 218 Circular 1.500 106.890 0.199 0.012 2.830 1.590 P14 1 00ear 14 13 Circular 1.500 61.000 0.507 0.012 2.690 1.520 P146 1 00-ear 146 26802 Circular 1.000 42.310 0.740 0.012 -0.030 0.020 P15 100- ear 15 14 Circular 1.000 116.000 0.259 0.012 0.710 1.180 P16 100-year 16 15 Circular 1.000 100.000 0.500 0.012 -0.790 1.340 P17 100-year 17 16 Circular 1.000 85.000 0.506 0.012 -0.690 2.080 P18 100- ear 18 08 Circular 1.000 38.000 1.711 0.012 0.870 1.110 P19 100- ear 19 18 Circular 1.000 96.000 2.448 0.012 0.370 2.350 P20 100- ear 20 18 Circular 1.000 110.000 0.300 0.012 0.570 0.870 P21 100-year 21 20 Circular 1.000 27.000 0.296 0.012 0.450 0.790 P218 1 00-ear 218 12 Circular 1.500 60.400 0.200 0.012 3.270 1.840 P22 100- ear 22 21 Circular 1.000 27.000 0.333 0.012 0.370 0.860 P222 100-year 222 05 Circular 1.000 66.640 1.433 0.012 0.370 3.530 P23 100-year 23 22 Circular 1.000 149.340 0.301 10.012 10.260 1.520 P26802 100- ear 26802 28226 Circular 3.000 121.550 -0.165 10.012 122.380 4.640 P37 100- ear 101 02 Circular 1.000 172.160 0.485 10.012 10.560 2.490 10/24/11 15:26:26 1 /1 TDA GW - Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest) ft Max Water Elevation ft Freeboard ft 02 25 ear None 24.565 28.612 24.757 3.860 03 25- ear None 23.780 28.000 23.928 4.070 04 25 ear None 23.330 28.091 23.539 4.550 05 25-year None 20.000 28.419 21.980 6.440 06 25 ear None 20.133 26.911 22.119 4.790 07 25- ear None 20.269 25.556 22.172 3.380 08 25-year Allowed 20.416 24.443 22.222 2.220 09 25-year Allowed 20.574 23.680 22.493 1.190 10 25 ear Allowed 20.667 23.538 22.656 0.880 11 25- ear Allowed 20.801 23.646 22.831 0.810 12 25-year Allowed 20.957 24.198 23.026 1.170 13 25- ear Allowed 21.291 24.586 23.087 1.500 14 25- ear None 21.600 24.901 23.099 1.800 15 25- ear None 21.900 25.490 23.109 2.380 16 25-year None 22.400 26.048 23.139 2.910 17 25-year None 22.830 25.141 23.186 1.950 18 25 ear None 21.250 25.825 22.231 3.590 19 25 ear None 23.600 27.078 23.756 3.320 20 25- ear None 21.580 24.878 22.230 2.650 21 25-year None 21.660 24.821 22.229 2.590 22 25 ear None 21.750 24.831 22.229 2.600 23 25 ear None 22.200 25.100 22.432 2.670 101 25-year None 25.400 28.429 25.716 2.710 146 25-year None 21.000 23.700 21.813 1.890 218 25- ear Allowed 21.078 24.452 23.052 1.400 222 25- ear None 22.952 28.995 23.130 5.860 26802 25-year None 20.000 28.567 21.811 6.760 28226 25-year None 20.200 27.410 21.740 5.670 10/24/11 15:14:29 1 /1 TDA GW - Node HGL Name Scenario Type g Type Invert Elevation tt Ground Elevation (Spill Crest) Max Water Elevation ftft Freeboard ft 02 1 00-ear None 24.565 28.612 24.771 3.840 03 1 00-ear None 23.780 28.000 23.940 4.060 04 100-year None 23.330 28.091 23.556 4.540 05 100-year None 20.000 28.419 22.177 6.240 06 1 00-ear None 20.133 26 911 22.444 4.470 07 1 00ear None 20.269 25.556 22.544 3.010 08 100-year Allowed 20.416 24.443 22.646 1.800 09 100-year Allowed 20.574 23.680 23.118 0.560 10 1 00ear Allowed 20.667 23.538 23.377 0.160 11 1 00-ear Allowed 20.801 23.646 23.649 0.000 12 100-year Allowed 20.957 24.198 23.964 0.230 13 100-year Allowed 21.291 24.586 24.084 0.500 14 1 00ear None 21.600 24.901 24.115 0.790 15 1 00ear None 21.900 25 490 24.119 1.370 16 100-year None 22.400 26.048 24.137 1.910 17 100-year None 22.830 25.141 24.145 1.000 18 1 00ear None 21.250 25.825 22.672 3.150 19 1 00ear None 23.600 27.078 23.768 3.310 20 100-year None 21.580 24.878 22.695 2.180 21 100-year None 21.660 24 821 22.699 2 120 22 1 00ear None 21.750 24.831 22.702 2.130 23 1 00-ear None 22.200 25.400 22.716 2.680 101 100-year None 25.400 28.429 25.741 2.690 146 100-year None 21.000 23.700 21_993 1710 218 1 00-ear Allowed 21.078 24.452 24.015 0.440 222 1 00-ear None 22.952 28.995 23.144 5.850 26802 100-year I None 20.000 28.567 21.990 6.580 28226 100-year INone 20.200 27.410 21740 5.670 10/24/11 15 25:42 1/1 TDA I - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 27 25-year 1 0.140 90.000 6.300 6.300 0.250 1.050 27 2 0.320 90.000 28 25- ear 0.000 0.000 0.000 0.000 29 25 ear 0.000 0.000 0.000 0.000 30 25 ear 1 0.320 90.000 6.300 6.300 0.250 1.175 30 2 0.200 90.000 31 25 ear 0.000 0.000 0.000 0.000 32 25- ear 0.000 0.000 0.000 0.000 34 25-year 1 0.110 90.000 6.300 6.300 0.250 0.251 35 25-year 1 0.100 90.000 6.300 6.300 0.250 0.228 36 25- ear 1 0.050 90.000 6.300 6.300 0.250 0.114 37 25 ear 1 0.080 90.000 6.300 6.300 0.250 0.183 38 25-year 1 0.110 90.000 6.300 6.300 0.250 0.251 39 25-year 1 0.200 90.000 6.300 6.300 0.250 0.457 EX SDMH 25 ear 1 0.090 90.000 6.300 6.300 0.250 0.205 SDMH 23099 25- ear 0.000 0.000 0.000 0.000 SDMH 23791 25-year 0.000 0.000 0.000 0.000 SDMH 30900 25-year 0.000 0.000 0.000 0.000 SDMH 30901 25- ear 0.000 0.000 0.000 0.000 SDMH 30902 25 ear 0.000 0.000 0.000 0.000 SDMH 32050 25-year 0.000 0.000 0.000 0.000 10/24/11 15:36:46 1 /1 TDA I - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 27 100-year 1 0.140 90.000 6.300 6.300 0.250 1.226 27 2 0.320 90.000 28 100 ear 0.000 0.000 0.000 0.000 29 100 ear 0.000 0.000 10000 0.000 30 100-year 1 0.320 90.000 6.300 6.300 0 250 1 372 30 2 0.200 90.000 31 100- ear 0.000 0.000 0.000 0.000 32 1 00-ear 0.000 0.000 0.000 0.000 34 100-year 1 0.110 90.000 6.300 6.300 0.250 0.293 35 100-year 1 0.100 90.000 6.300 6.300 0.250 0.267 36 1 00ear 1 0.050 90.000 6.300 6.300 0.250 0.133 37 1 00ear 1 0.080 90.000 6.300 6.300 0.250 0.213 38 100-year 1 0.110 90.000 6.300 6 300 0.250 0.293 39 100-year 1 0.200 90.000 6.300 6.300 0.250 0.533 EX SDMH 1 00ear 1 0.090 90.000 6.300 6.300 0.250 0.240 SDMH 23099 1 00ear 0.000 10.000 0.000 0.000 SDMH 23791 100-year 0.000 0.000 0.000 0 000 SDMH 30900 100-ye2r 0.000 0.000 0.000 0.000 SDMH 30901 1 00ear 0.000 0.000 0.000 0.000 SDMH 30902 1 00ear 0.000 0.000 0.000 10,000 SDMH 32050 100-year 0.000 0.000 0.000 10000 10/24/11 15:4339 1 /1 TDA I - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Roughn ess Max Flow cfs Max Velocity ft/s P23099 25-year SDMH 23099 SDMH 30900 Circular 6.000 113.450 0.353 0.012 1.140 0.050 P26 25- ear 27 EX SDMH Circular 1.000 65.990 1.212 0.012 2.230 2.800 P28 25-year 28 27 Circular 1.000 85.870 0.500 0.012 1.180 11.490 P29 25- ear 29 28 Circular 1.000 49.600 0.500 0.012 1.180 1.490 P30 25-year 30 29 Circular 1.000 15.000 0.500 0.012 1.180 1.490 P30900 25-year SDMH 30900 SDMH 30901 Circular 1.000 84.600 0.355 0.012 1.120 1.390 P30901 25- ear SDMH 30901 SDMH 30902 Circular 1.000 14.410 2.776 0.012 1.120 1.390 P30902 25 ear SDMH 30902 SDMH 32050 Circular 6.000 69.617 0.000 0.012 3.510 0.120 P31 25 ear 31 30 Circular 1.000 10.010 0.799 0.012 -0.110 0.080 P32 25-year 32 31 Circular 1.000 61.762 0.988 0.012 -0.060 0.050 P32050 25-year SDMH 23791 SDMH 32050 Circular 1.000 39.121 2.045 0.012 0.2 00 0.440 P34 25- ear 34 SDMH 23791 Circular 1.000 44.500 0.225 0.012 0.260 0.540 P35 25-year 35 SDMH 30900 Circular 1.000 40.030 8.743 0.012 0.230 2.390 P36 25 ear 36 37 Circular 1.000 18.353 1.003 0.012 -0.900 2.410 P37 25-year 37 SDMH 23099 Circular 1.000 10.604 33.949 0.012 1.670 3.600 P38 25- ear 38 37 Circular 1.000 58.620 0.571 0.012 0.730 2.410 P39 25-year 39 38 Circular 1.000 216.320 0.585 0.012 0.450 2.520 P-EX 25-year EX SDMH SDMH 30902 Circular 1.000 43.440 2.000 0.012 2.430 3.030 10/24/11 15: 38:34 1 /1 TDA I - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Roughn ess Max Flow cfs Max Velocity ft/s P23099 100-year SDMH 23099 SDMH 30900 Circular 6.000 113.450 0.353 0.012 2.100 0.100 P26 100-year 27 EX SDMH Circular 1.000 65.990 1.212 0.012 2.590 3.260 P28 100-year 28 27 Circular 1.000 85.870 0.500 0.012 1.370 1.720 P29 1 00ear 29 28 1 Circular 1.000 49.600 0.500 0.012 1.370 1.730 P30 100-year 30 29 Circular 1.000 15.000 0.500 0.012 1.370 1.730 P30900 100-year SDMH 30900 SDMH 30901 Circular 1.000 84.600 0.355 0.012 1.240 1.540 P30901 100-year SDMH 30901 SDMH 30902 Circular 1.000 14.410 2.776 0 012 1.240 1.540 P30902 1 00-ear SDMH 30902 SDMH 32050 Circular 6.000 69.617 0.000 0.012 4.020 0.140 P31 100-year 31 30 Circular 1.000 10.010 0.799 0.012 -0130 0.110 P32 100-year 32 31 Circular 1.000 61.762 0.988 0.012 -0.070 0 060 P32050 100-year SDMH 23791 SDMH 32050 Circular 1.000 39.121 2.045 0.012 0.300 0.510 P34 1 00ear 34 SDMH 23791 Circular 1.000 44.500 0.225 0.012 0.300 0.620 P35 100-year 35 SDMH 30900 Circular 1.000 40.030 8.743 0.012 0 270 2.570 P36 100-year 36 37 Circular 1.000 18.353 1.003 0.012 -0.890 2.330 P37 100-year 37 SDMH 23099 Circular 1.000 10.604 33.949 0.012 1.780 3.560 P38 1 00-ear 38 37 Circular 1.000 58.620 0.571 0.012 0.820 2.410 P39 100-year 39 38 Circular 1.000 216,320 0.585 0.012 0.530 2.620 P-EX 100-year EX SDMH SDMH 30902 Circular 1.000 43.440 2.000 0.012 2.830 3.530 10/24/11 15 43:11 1/1 TDA I - Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest Max Water Elevation ft Freeboard ft 27 25-year None 19.700 24.849 22.659 2.190 28 25-year None 20.129 24.385 22.737 1.650 29 25- ear None 20.377 24.044 22.782 1.260 30 25 ear None 20.452 24.016 22.796 1.220 31 25 ear None 20.532 24.030 22.796 1.230 32 25-year None 21.142 24.642 22.798 1.840 34 25 ear None 21.700 24.646 22.290 2.360 35 25- ear None 22.900 25.141 22.962 2.180 36 25-year None 21.884 25.014 22.575 2.440 37 25-year None 21.700 25.590 22.420 3.170 38 25 ear None 22.035 26.389 22.456 3.930 39 25 ear None 23.300 26.460 23.564 2.900 EX SDMH 25-year None 17.880 25.610 22.445 3.160 SDMH 23099 25-year None 18.100 25.540 22.393 3.150 SDMH 23791 25- ear None 21.600 24.490 22.284 2.210 SDMH 30900 25- ear None 17.700 25.940 22.391 3.550 SDMH 30901 25-year None 17.400 24.700 22.322 2.380 SDMH 30902 25-year None 13.800 125.260 22.281 2.980 SDMH 32050 25- ear None 113.800 125.290 22.280 3.010 10/24/11 15:38:57 1 /1 TDA I - Node HGL Name Scenario Ponding Type yP Invert Elevation ft Ground Elevation (Spill Crest Max Water Elevation ft Freeboard ft 27 100-year None 19.700 24.849 22.794 2.060 28 100-year None 20.129 24.385 22.899 1.490 29 100 ear None 20.377 24.044 22.960 1.080 30 100 ear None 20.452 24.016 22.979 1.040 31 1 00ear None 20.532 24.030 22.979 1.050 32 100-year None 21.142 24.642 22.980 1.660 34 1 00-ear None 21.700 24.646 22.292 2.350 35 1 00-ear None 22.900 25.141 22.978 2.160 36 100-year None 21.884 25.014 22.564 2.450 37 100-year None 21.700 25.590 22.433 3.160 38 1 00-ear None 22.035 26.389 22.498 3.890 39 1 00ear None 23.300 26.460 23.587 2.870 EX SDMH 100-year None 17.880 25.610 22.504 3.110 SDMH 23099 100-year None 18.100 25.540 22.422 3.120 SDMH 23791 100 ear None 21.600 24.490 22.285 2.210 SDMH 30900 1 00-ear None 17.700 25.940 22.413 3.530 SDMH 30901 100-year None 17.400 24.700 22.330 2.370 SDMH 30902 100-year I None 13.800 25.260 22.281 2.980 SDMH 32050 1 1 00ear I None 13.800 25.290 22.280 3.010 10/24/11 15:42:26 1 /1 TDA V - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 124 25-year 1 0.160 90.000 6.300 6.300 0.250 0.365 40 25-year 1 0.120 90.000 6.300 6.300 0.250 0.274 400 25- ear 0.000 0.000 0.000 0.000 41 25 ear 1 0.120 90.000 6.300 6.300 0.250 0.274 42 25-year 1 0.120 90.000 6.300 6.300 0.250 0.274 43 25-year 1 0.160 90.000 6.300 10.000 0.250 4.663 43 2 2.600 90.000 44 25 ear 1 0.160 90.000 6.300 6.300 0.250 0.365 45 25-year 1 0.140 90.000 6.300 6.300 0.250 0.662 45 2 0.150 90.000 46 25 ear 1 0.190 90.000 6.300 6.300 0.250 0.434 49 25 ear 1 0.170 90.000 6.300 6.300 0.250 0.388 50 25-year 1 0.090 90.000 6.300 6.300 0.250 0.205 51 25-year 1 0.060 90.000 6.300 6.300 0.250 0.137 52 25- ear 1 0.120 90.000 6.300 6.300 0.250 0.274 53 25 ear 1 0.150 90.000 6.300 6.300 0.250 0.342 55 25-year 1 0.980 90.000 6.300 6.300 0.250 2.238 56 25-year 1 1.370 90.000 6.300 6.300 0.250 3.128 57 25 ear 0.000 0.000 10.000 0.000 58 25- ear 0.000 0.000 0.000 0.000 59 25 ear 1 0.360 90.000 6.300 6.300 0.250 0.822 60 25-year 1 0.380 90.000 6.300 6.300 0.250 0.868 61 25 ear 1 0.080 90.000 6.300 6.300 0.250 0.183 62 25 ear 1 0.090 90.000 6.300 6.300 0.250 0.205 63 25-year 1 0.130 90.000 6.300 6.300 0.250 0.297 65 25 ear 0.000 0.000 0.000 0.000 66 25- ear 1 0.110 90.000 6.300 6.300 0.250 0.251 67 25- ear 0.000 0.000 0.000 0.000 68 25-year 1 0.030 90.000 6.300 6.300 0.250 1.790 68 2 0.750 90.000 69 25- ear 0.000 0.000 0.000 0.000 70 25 ear 1 0.190 90.000 6.300 6.300 0.250 0.776 70 2 0.150 90.000 71 25-year 1 0.150 90.000 6.300 6.300 0.250 0.342 72 25- ear 1 0.180 90.000 6.300 6.300 0.250 0.845 72 2 0.190 90.000 73 25-year 0.000 0.000 0.000 0.000 74 25-year 1 0.120 90.000 6.300 6.300 0.250 0.274 76 25 ear 1 0.110 90.000 6.300 6.300 0.250 1.187 76 2 0.410 90.000 77 25-year 1 0.190 190.000 6.300 6.300 0.250 1.490 77 2 0.460 90.000 78 25- ear 1 0.130 90.000 6.300 6.300 0.250 1.644 78 2 0.590 90.000 79 25-year 0.000 0.000 0.250 0.000 80 25-year 1 0.230 90.000 6.300 6.300 0.250 0.525 81 25 ear 0.000 0.000 0.000 0.000 83 25- ear 1 0.150 90.000 6.300 6.300 0.250 0.342 84 25 ear 1 0.060 90.000 10.000 10.000 0.250 4.282 84 1 2 2.460 90.000 85 1 25 ear 1 0.030 90.000 6.300 16.300 10.250 2.215 10/24/11 15:51:13 1 /2 TDA V - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 85 2 0.940 90.000 86 25-year 1 0.110 90.000 6.300 6.300 0.250 0.251 87 25- ear 1 0.070 90.000 6.300 6.300 0.250 0.160 88 25- ear 1 0.140 90.000 6.300 6.300 10.250 0.320 89 25-year 1 0200 90.000 6.300 6.300 0.250 0.457 90 25-year 1 0.240 90.000 6.300 6.300 0.250 0.548 91 25 ear 1 0.120 90.000 6.300 6.300 0 250 0.274 92 25- ear 1 0.250 90.000 6.300 6.300 0.250 0.731 92 2 0.070 90.000 93 25-year 0.000 0.000 0.000 0.000 SDMH 301 25 ear 0.000 0.000 .0000 0.000 SDMH 801 25 ear 1 10000 10000 10000 Jam 10/24/11 15:51 13 2/2 TDA V - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 124 100-year 1 0.160 90.000 6.300 6.300 0.250 0.427 40 100-year 1 0.120 90.000 6.300 6.300 0.250 0.320 400 100- ear 0.000 0.000 0.000 0.000 41 100- ear 1 0.120 90.000 6.300 6.300 10.250 0.320 42 1 00ear 1 0.120 90.000 6.300 6.300 0.250 0.320 43 100-year 1 0.160 90.000 6.300 10.000 0.250 5.491 43 2 2.600 90.000 44 100 ear 1 0.160 90.000 6.300 6.300 0.250 0.427 45 100-year 1 0.140 90.000 6.300 6.300 0.250 0.773 45 2 10,150 90.000 46 1 00ear 1 0.190 90.000 6.300 6.300 0.250 0.506 49 100 ear 1 0.170 90.000 6.300 6.300 0.250 0.453 50 100-year 1 0.090 90.000 6.300 6.300 0.250 0.240 51 100-year 1 0.060 90.000 6.300 6.300 0.250 0.160 52 1 00-ear 1 0.120 90.000 6.300 6.300 0.250 0.320 53 1 00ear 1 0.150 90.000 6.300 6.300 0.250 0.400 55 100-year 1 0.980 90.000 6.300 6.300 0.250 2.612 56 100-year 1 1.370 90.000 6.300 6.300 10.250 3.652 57 1 00-ear 0.000 0.000 0.000 0.000 58 1 00ear 0.000 0.000 0.000 0.000 59 100-year 1 0.360 90.000 6.300 6.300 0.250 0.960 60 100-year 1 0.380 90.000 6.300 6.300 0.250 1.013 61 100 ear 1 0.080 90.000 6.300 6.300 0.250 0.213 62 1 00-ear 1 0.090 90.000 6.300 6.300 0.250 0.240 63 100-year 1 0.130 90.000 6.300 6.300 0.250 0.347 65 1 00-ear 10.000 10.000 0.000 1.557 66 1 00-ear 1 0.110 90.000 6.300 6.300 0.250 0.293 67 100- ear 0.000 0.000 0.000 0.000 68 100-year 1 0.030 90.000 6.300 6.300 0.250 2.090 68 2 0.750 90.000 69 1 00ear 0.000 0.000 0.000 0.000 70 1 00-ear 1 0.190 90.000 6.300 6.300 0.250 0.906 70 2 0.150 90.000 71 100-year 1 0.150 90.000 6.300 6.300 0.250 0.400 72 1 00-ear 1 0.180 90.000 6.300 6.300 0.250 0.986 72 2 0.190 90.000 73 100-year 0.000 0.000 0.000 0.000 74 100-year 1 0.120 90.000 6.300 6.300 0.250 0.320 76 100- ear 1 0.110 90.000 6.300 6.300 0.250 1.386 76 2 0.410 90.000 77 100-year 1 0.190 90.000 6.300 6.300 0.250 1.739 77 2 0.460 90.000 78 1 00-ear 1 0.130 90.000 6.300 6.300 10.250 1.919 78 2 0.590 90.000 79 100-year 6.300 6.300 0.250 0.634 80 100-year 1 0.230 90.000 6.300 6.300 0.250 0.613 81 1 00ear 0.000 0.000 0.000 0.000 83 100 ear 1 0.150 90.000 6.300 6.300 0.250 0.400 84 100 ear 1 0.060 90.000 10.000 10.000 0.250 5.044 84 2 2.460 90.000 85 100 ear 1 0.030 90.000 16.300 16.300 10.250 2.586 10/24/11 15:58:26 1 /2 TDA V - Conveyance Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 85 2 0.940 90.000 86 100-year 1 0.110 90.000 6.300 6.300 0.250 0.293 87 1 00-ear 1 0.070 90.000 6.300 6.300 0.250 0.187 88 1 00-ear 1 0.140 90.000 6.300 6.300 0.250 0.373 89 100-year 1 0.200 90.000 6.300 6.300 0.250 0.533 90 100-year 1 0.240 90.000 6.300 6.300 0.250 0.640 91 1 00ear 1 0.120 90.000 6.300 6.300 0.250 0.320 92 1 00ear 1 0.250 90.000 6.300 6.300 0.250 0.853 92 2 0.070 90.000 93 100-year 0.000 10.000 10.000 0.000 SDM 1 00-ear 0.000 10.000 10.000 0.000 SDM 1 00-ear 6.300 16.300 10.000 2.230 10/24/11 15:58:26 2/2 TDAV - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Rough Hess Max Flow cfs Max Velocity ft/s P124 25-year 124 46 Circ 1.000 117.615 0.500 0.012 0.370 2.420 P40 25- ear 40 400 Circ 1.500 83.790 0.501 0.012 7.380 4.150 P400 25 ear 400 SDMH 30682 Circ 1.500 13.490 1.100 0.012 16.980 9.550 P41 25- ear 41 40 Circ 1.500 71.430 2.002 0.012 7.170 3.920 P42 25-year 42 41 Circ 1.500 88.990 0.697 0.012 6.940 4.690 P43 25- ear 43 42 Circ 1.500 51.310 1.228 0.012 6.220 5.810 P44 25 ear 44 43 Circ 1.000 85.650 0.934 0.012 1.790 4.000 P45 25-year 45 44 Circ 1.000 83.870 0.715 0.012 1.450 3.900 P46 25-year 46 45 Circ 1.000 77.080 0.778 0.012 0.790 3.250 P49 25 ear 49 42 Circ 1.000 58.530 6.800 0.012 0.590 14.160 P50 25 ear 50 49 Circ 1.000 141.060 0.503 0.012 0.200 1.950 P51 25-year 51 400 Circ 1.500 46.490 0.645 0.012 10.040 5.630 P52 25 ear 52 51 Circ 1.000 50.110 2.993 0.012 0.630 0.800 P53 25- ear 53 52 Circ 1.000 100.240 2.494 0.012 0.340 2.250 P55 25 ear 55 51 Circ 1.500 42.030 2.855 0.012 6.860 3.860 P56 25-year 56 55 Circ 1.000 68.980 1.682 10.012 4.650 5.860 P57 25-year 57 56 Circ 1.000 80.030 2.224 0.012 1.780 12.710 P58 25 ear 58 57 Circ 1.000 50.410 1.904 0.012 1.680 5.700 P59 25- ear 59 58 Circ 1.000 61.000 1.902 0.012 1.690 6.000 P60 25 ear 60 59 Circ 1.000 49.520 1.898 0.012 0.870 4.700 P61 25-year 61 51 Circ 1.000 25.120 0.518 0.012 2.620 3.290 P62 25 ear 62 61 Circ 1.000 24.890 0.522 0.012 2.430 3.050 P63 25- ear 63 62 Circ 1.000 50.060 2.159 0.012 2.210 2.790 P65 25-year 65 63 Circ 1.000 46.670 0.984 0.012 1.940 2.450 P66 25-year 66 65 Circ 1.000 107.860 1.391 0.012 1.900 3.670 P67 25 ear 67 66 Circ 1.000 29.320 1.364 0.012 1.730 3.760 P68 25 ear 68 67 Circ 1.000 32.710 6.114 0.012 1.790 8.120 P69 25-year 69 SDMH 30682 Circ 1.500 13.250 1.130 0.012 14.360 8.080 P70 25-year 70 69 Circ 1.500 13.980 0.143 0.012 14.360 8.070 P71 25 ear 71 70 Circ 1.500 25.080 0.200 0.012 13.820 7.760 P72 25- ear 72 71 Circ 1.500 135.230 0.200 0.012 13.590 7.580 P73 25-year 73 72 Circ 1.500 82.330 0.267 0.012 12.950 7.200 P74 25-year 74 73 Circ 1.000 34.170 1.756 0.012 -0.620 3.140 P76 25 ear 76 73 Circ 1.500 48.950 2.000 0.012 4.870 7.670 P77 25- ear 77 76 Circ 1.500 133.120 1.801 0.012 3.910 5.890 P78 25-year 78 77 Circ 1.000 70.570 0.555 0.012 2.450 5.150 P79 25-year 79 78 Circ 1.000 130.890 0.451 0.012 0.840 2.740 P80 25 ear 80 79 Circ 1.000 20.020 0.450 0.012 0.840 2.920 P8082 25 ear SDMH 8082 73 Circ 1.500 75.510 0.300 0.012 8.660 4.810 P81 25 ear 81 80 Circ 1.000 19.970 0.601 0.012 0.350 2.210 P83 25 ear 83 81 Circ 1.000 174.250 0.689 0.014 0.340 2.310 P84 25- ear 84 SDMH 8082 Circ 1.500 30.080 2.000 0.012 8.600 8.520 P85 25- ear 85 84 Circ 1.000 22.770 1.800 0.012 2.190 5.000 P86 25-year 86 84 Circ 1.000 22.800 2.193 0.012 2.820 5.170 P87 25-year 87 86 Circ 1.000 92.520 0.919 0.012 2.320 4.730 P88 25 ear 88 87 Circ 1.000 99.190 0.504 0.012 2.240 3.910 P89 25 ear 89 88 Circ 1.000 129.470 0.502 0.012 1.950 3.690 P90 25- ear 90 89 Circ 1.000 172.240 0.500 0.012 1.530 3.530 P91 25-year 91 90 Circ 1.000 133.690 0.643 0.012 1.000 3.350 P92 25- ear 92 91 Circ 1.000 24.430 0.491 0.012 0.730 2.780 P93 f 25 ear 93 92 Circ 1.000 IT300 0.591 0.012 -0.070 0.650 10/24/11 15:52:10 1!1 TDAV - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Rough ness Max Flow cfs Max Velocity ft/s P124 100-year 124 46 Circ 1.000 117.615 0.500 0.012 0.430 2.520 P40 1 00-ear 40 400 Circ 1.500 83.790 0.501 0.012 8.510 4.780 P400 100 ear 400 SDMH 30682 Circ 1.500 13.490 1.100 0.012 19.610 11.020 P41 100 ear 41 40 Circ 1.500 71.430 2.002 0.012 8.280 4.670 P42 100 ear 42 41 Circ 1.500 88.990 0.697 0.012 8.030 4.770 P43 100 ear 43 42 Circ 1.500 51.310 1.228 0.012 7.290 5.900 P44 100-year 44 43 Circ 1.000 85.650 0.934 0.012 2.030 4.060 P45 100-year 45 44 Circ 1.000 83.870 0.715 0.012 1.690 4.010 P46 100-year 46 45 Circ 1.000 77.080 0.778 0.012 0.930 3.370 P49 100-year 49 42 Circ 1.000 58.530 6.800 0.012 0.690 4.210 P50 100-year 50 49 Circ 1.000 141.060 0.503 0.012 0.240 2.040 P51 100-year 51 400 Circ 1.500 46.490 0.645 0.012 11.560 6.480 P52 1 00-ear 52 51 Circ 1.000 50.110 2.993 0.012 0.740 0.950 P53 1 00ear 53 52 Circ 1.000 100.240 2.494 0.012 0.410 2.650 P55 1 00ear 55 51 Circ 1.500 42.030 2.855 0.012 7.900 4.440 P56 100-year 56 55 Circ 1.000 68.980 1.682 0.012 5.320 6.680 P57 100-year 57 56 Circ 1.000 80.030 2.224 0.012 2.130 4.710 P58 1 00-ear 58 57 Circ 1.000 50.410 1.904 0.012 2.020 5.630 P59 100-year 59 58 Circ 1.000 61.000 1.902 0.012 1.970 6.140 P60 1 00ear 60 59 Circ 11.000 49.520 1.898 0.012 1.010 4.900 P61 100-year 61 51 Circ 11.000 25.120 0.518 0.012 2.990 3.740 P62 100-year 62 61 Circ 1.000 24.890 0.522 0.012 2.780 3.480 P63 100-year 63 62 Circ 1.000 50.060 2.159 0.012 2.640 3.310 P65 100-year 65 63 Circ 1.000 46.670 0.984 0.012 2.310 2.910 P66 100-year 66 65 Circ 1.000 107.860 1.391 0.012 2.310 3.750 P67 1 00ear 67 66 Circ 1.000 29.320 1.364 0.012 2.020 3.760 P68 1 00ear 68 67 Circ 1.000 32.710 6.114 0.012 2.090 8.320 P69 100-year 69 SDMH 30682 Circ 1.500 13.250 1.130 0.012 14.570 8.200 P70 100-year 70 69 Circ 1.500 13.980 0.143 0.012 14.570 8.190 P71 100- ear 71 70 Circ 1.500 25.080 0.200 0.012 13.950 7.830 P72 100- ear 72 71 Circ 1.500 135.230 0.200 0.012 15.270 8.500 P73 100-year 73 72 Circ 1.500 82.330 0.267 0.012 14.540 8.060 P74 100-year 74 73 Circ 1.000 34.170 1.756 0.012 0.570 3.180 P76 100- ear 76 73 Circ 1.500 48.950 2.000 0.012 5.480 7.740 P77 100-year 77 76 Circ 1.500 133.120 1.801 0.012 4.530 5.970 P78 100-year 78 77 Circ 1.000 70.570 0.555 0.012 2.870 5.290 P79 100-year 79 78 Circ 1.000 130.890 0.451 0.012 0.990 2.810 P80 100- ear 80 79 Circ 1.000 20.020 0.450 0.012 0.990 3.020 P8082 100- ear SDMH 8082 73 Circ 1.500 75.510 0.300 0.012 9.410 5.220 P81 100-year 81 80 Circ 1.000 19.970 0.601 0.012 0.410 1.940 P83 100 ear 83 81 Circ 1.000 174.250 0.689 0.014 0.400 2:400 P84 100- ear 84 SDMH 8082 Circ 1.500 30.080 2.000 0.012 9.290 8.320 P85 100- ear 85 84 Circ 1.000 22.770 1.800 0.012 2.510 5.150 P86 100-year 86 84 Circ 1.000 22.800 2.193 0.012 3.540 5.630 P87 100-year 87 86 Circ 1.000 92.520 0.919 0.012 3.090 5.010 P88 100- ear 88 87 Circ 1.000 99.190 0.504 0.012 2.430 3.930 P89 100-year 89 88 Circ 1.000 129.470 0.502 0.012 2.220 3.740 P90 1 00ear 90 89 Circ 1.000 172,240 0.500 0.012 1.790 3.620 P91 100-year 91 90 Circ 1.000 133,690 0.643 0.012 1.170 3.470 P92 1 00-ear 92 91 Circ 1.000 124.430 0.491 0.012 0.850 2.880 P93 100-year 93 92 Circ 1.000 120.300 10.591 0.012 -0.080 0.720 10/24/11 15:57:51 1 /1 TDA V - Node HGL Name Scenario Ponding Type Invert Elevation Ground Elevation Max Water Elevation Freeboard ft 124 25 ear None 21.688 25.012 21.945 3.070 40 25- ear Allowed 16.420 20.606 19.379 1.230 400 25-year Allowed 16.000 19.988 19.047 0.940 41 25-year None 17.850 21.961 19.660 12.300 42 25- ear None 18.470 22.755 19.946 2.810 43 25- ear None 19.100 23.140 20.067 3.070 44 25- ear None 19.900 23.549 20.429 3.120 45 25-year None 20.500 23.990 20.973 3.020 46 25- ear None 21.100 24.433 21.434 3.000 49 25 ear None 22.700 25.764 22.864 2.900 50 25-year None 23.410 26.449 23.603 12.850 51 25 ear Allowed 16.300 20.783 19.895 0.890 52 25- ear None 18.300 21.520 19.906 1.610 53 25 ear None 20.800 23.756 20.961 2.800 55 25-year None 17.500 21.150 20.038 1.110 56 25-year None 19.160 22.952 21.560 1.390 57 25 ear None 20.940 24.984 21.668 3.320 58 25 ear None 21.900 25.909 22.302 3.610 59 25 ear None 23.060 26.803 23.504 3.300 60 25-year None 24.000 27.337 24.348 2.990 61 25 ear None 16.430 20.560 20.000 0.560 62 25- ear None 16.560 20.499 20.091 0.410 63 25-year None 17.641 21.444 20.247 1.200 65 25- ear None 18.100 21.539 20.360 1.180 66 25- ear None 19.600 24.350 20.618 3.730 67 25- ear None 20.000 24.910 20.717 4.190 68 25-year None 22.000 25.259 22.568 Z690 69 25- ear None 16.040 19.444 18.959 0.480 70 25- ear Allowed 16.060 19.539 19.180 0.360 71 25- ear Allowed 16.110 19.539 19.540 0.000 72 25-year None 16.380 22.841 21.424 1.420 73 25-year Sealed 16.600 25.137 22.455 2.680 74 25- ear None 21.000 25.245 22.453 2.790 76 25- ear None 21.800 25.900 22.563 3.340 77 25 ear None 23.200 27.081 23.802 3.280 78 25-year None 23.900 28.056 24.485 3.570 79 25- ear None 24.490 28.606 24.889 3.720 80 25- ear None 24.580 28.512 24.975 3.540 81 25-year None 24.700 28.610 24.986 3.620 83 25-year None 25.900 28.983 26.137 2.850 84 25- ear None 21.300 25.429 23.042 2.390 85 25- ear None 21.700 25.197 23.077 2.120 86 25-year None 21.800 25.665 23.133 2.530 87 25-year None 22.650 27.135 23.401 3.730 88 25 ear None 23.150 27.830 23.838 3.990 89 25 ear None 23.800 28.129 24.432 3.700 90 25-year None 24.700 28.269 25.231 3.040 91 25-year None 25.560 28.667 25.951 2.720 92 25 ear None 25.680 28.783 26.046 2.740 93 25- ear None 25.800 28.897 26.046 2.850 SDMH 30682 25 ear None 15.890 20.000 18.750 11.250 SDMH 8082 25-year Sealed 16.400 24.440 22.852 11.590 10/24/11 15:54:18 1 /1 TDA V - Node HGL Name Scenario Ponding Type Invert Elevation Ground Elevation Max Water Elevation Freeboard ft 124 1 00-ear None 21 688 25.012 21.966 3.050 40 1 00ear Allowed 16.420 20.606 19.585 1.020 400 100-year Allowed 16.000 19.988 19.136 0.850 41 100-year None 17.850 21.961 19.949 2.010 42 100 ear None 18.470 22.755 20.390 2.360 43 100 ear None 19.100 23.140 20.552 2.590 44 100-year None 19.900 23 549 20 662 2.890 45 100-year None 20.500 23.990 21.021 2.970 46 100 ear None 21.100 24.433 21.465 2.970 49 100- ear None 22.700 25.764 22.877 2.890 50 100-year None 23.410 26.449 23.618 2.830 51 100-year Allowed 16.300 20.783 20.254 0.530 52 1 00-ear None 18.300 21.520 20.269 1.250 53 1 00-ear None 20.800 23.756 20.972 2.780 55 100-year None 17.500 21.150 20.453 0.700 56 100-year None 19.160 22 952 22 434 0.520 57 1 00ear None 20.940 24.984 22.601 2 380 58 1 00ear None 21.900 25.909 22.667 3.240 59 100-year None 23.060 26.803 23.540 3 260 60 100-year None 24.000 27.337 24.374 2.960 61 1 00ear None 16.430 20.560 20 389 0.170 62 1 00-ear None 16.560 20.499 20.499 0.000 63 100-year None 17.641 21.444 20.728 0.720 65 100-year None 18.100 21.539 20.894 0.640 66 100- ear None 19.600 24.350 21.278 3.070 67 1 00-ear None 20 000 24.910 21.458 3 450 68 100-year None 22.000 25.259 22.634 2.630 69 100-year None 16.040 19.444 18.956 0.490 70 1 00-ear Allowed 16.060 19.539 19.183 0 360 71 1 00-ear None 16.110 19.539 19.539 0.000 72 100-year None 16.380 22.841 21.915 0.930 73 100-year Sealed 16.600 25.137 23.209 1.930 74 1 00-ear None 21.000 25.245 23.211 2.030 76 100 ear None 21.800 25.900 23.299 2.600 77 100-year None 23.200 27.081 23.899 3.180 78 100-year None 23.900 28.056 24.550 3.510 79 1 00ear None 24.490 28.606 24.931 3.670 80 1 00-ear None 24.580 28.512 25.014 3.500 81 100-year None 24.700 28.610 25.022 3 590 83 100-year None 25.900 28.983 26.156 2.830 84 1 00ear None 21.300 25.429 23.895 1.530 85 100 ear None 21.700 25.197 23.944 1.250 86 100-year None 21.800 25.665 23.978 1.690 87 100-year None 22.650 27.135 24.263 2.870 88 1 00ear None 23.150 27.830 24.528 3.300 89 1 00-ear None 23.800 28.129 24.777 3.350 90 100-year None 24.700 28.269 25.289 2.980 91 100-year None 25.560 28.667 25.988 2.680 92 1 00ear None 25.680 28.783 26.080 2.700 93 1 00ear None 25.800 28.897 26 080 2.820 SDMH 30682 100-year None 1115.890 20.000 18.750 1.250 SDMH 8082 100-year Sealed 116A00 24.440 23.696 0.740 10/24/11 15:57 09 1/1 TDA A (South) Conv.Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 100 25-year 1 0.170 90.000 6.300 6.300 0.250 0.822 100 2 0.190 190.000 102 25 ear 1 0.090 90.000 6.300 6.300 0.250 0.822 102 2 0.270 90.000 103 25- ear 1 0.090 90.000 6.300 6.300 0.250 0.205 104 25-year 1 0.060 90.000 6.300 6.300 0.250 0.137 105 25- ear 1 0.070 90.000 6.300 6.300 0.250 0.160 106 25 ear 1 0.080 90.000 6.300 6.300 0.250 0.183 107 25-year 1 0.090 90.000 6.300 6.300 0.250 0.457 107 2 0.110 90.000 108 25- ear 6.300 6.300 0.000 0.365 109 25- ear 1 0.240 90.000 6.300 6.300 0.250 1.548 109 2 0.450 90.000 110 25-year 1 0.180 90.000 6.306 6.300 0.250 0.411 95 25 ear 1 0.120 90.000 6.300 6.300 0.250 0.822 95 2 0.240 90.000 98 25-year 1 0.150 90.000 6.300 6.300 0.250 0.342 99 25-year 1 0.130 90.000 6.300 6.300 0.250 0.753 99 12 0.200 90.000 SDMH 12357 1 25 ear I 1 10.000 10.000 0.000 0.000 10/24/11 16:30:39 1 /1 TDA A (North) Conv Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 114 25-year 0.000 0.000 0.000 0.000 115 25-year 1 0180 90.000 6.300 6.300 0.250 0.411 116 1 25- ear 1 0.500 90.000 6.300 6.300 0.250 1.142 117 1 25 ear 1 10,000 10.000 10000 0.000 118 1 25-year 1 1 10.130 190,000 16.300 16,300 10250 0.297 10/24/11 16:49:49 1 /1 TDA A (South) Conv Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 100 100-year 1 0.170 90.000 6.300 6.300 0.250 0.960 100 2 0.190 90.000 102 1 00ear 1 0.090 90.000 6.300 6.300 0.250 0.960 102 2 0.270 90.000 103 1 00ear 1 0.090 90.000 6.300 6.300 0.250 0.240 104 100-year 1 0.060 90.000 6.300 6.300 0.250 0.160 105 1 00ear 1 0.070 90.000 6.300 6.300 0.250 0.187 106 100-year 1 0.080 90.000 6.300 6.300 0.250 0.213 107 100-year 1 0.090 90.000 6.300 6.300 0.250 0.533 107 2 0.110 90.000 108 100 ear 6.300 6.300 0.000 0.427 109 1 00-ear 1 0.240 90.000 6.300 6.300 0.250 1.807 109 2 0.450 90.000 110 100-year 1 0.180 90.000 6.300 6.300 0.250 0.480 95 1 00-ear 1 0.120 90.000 6.300 6.300 0.250 0.960 95 2 0.240 90.000 98 100-year 1 0.150 90.000 6.300 6.300 0.250 0.400 99 100-year 1 0.130 90.000 6.300 6.300 0.250 0.880 99 2 0.200 90.000 SDMH 12357 100- ear 10.000 10.000 10.000 0.000 10/24/11 16:34:49 1 /1 TDA A (North) Conv Basins Name Scenario Subcatchm ent Area ac Impervious Percentage % Impervious Tc mins Pervious Tc mins Runoff Coefficient Pervious Max Flow cfs 114 100-year 0.000 0.000 0.000 0.000 115 100-year 1 0.180 90.000 6.300 6.300 0 250 0.480 116 1 00ear 1 0.500 90.000 6.300 .6300 0.250 1.333 117 1 1 00ear 1 10.000 10.000 10.000 0.000 118 1 100-year 1 1 10.130 190.000 16.300 16.300 10.250 10.347 10/24/11 16:46:58 1 /1 TDA A (South) - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Roughn ess Max Flow cfs Max Velocity ft/s P100 25- ear 100 99 Circular 1.000 43.140 0.533 0.012 2.120 2.670 P102 25- ear 102 100 Circular 1.000 122.450 0.563 0.012 1.340 1.690 P103 I 25- ear 103 1102 Circular 1.000 70.770 0.579 0.012 0.600 0.760 P104 25- ear 104 103 Circular 1.000 16.200 1.235 0.012 0.370 0.470 P105 25-year 105 104 Circular 1.000 16.500 1.212 0.012 0.190 0.240 P106 25- ear 106 95 Circular 1.000 68.130 0.881 0.012 2.590 3.240 P107 25- ear 107 106 Circular 1.000 36.700 0.518 0.012 2.400 3.010 P108 25-year 108 107 Circular 1.000 91.910 0.500 0.012 1.950 2.440 P109 25-year 109 108 Circular 1.000 99.290 0.755 0.012 1.950 2.460 Pilo 25 ear 110 109 Circular 1.000 83.900 0.596 0.012 0.420 0.530 P95 25- ear 95 SDMH 12357 Circular 1.500 114.000 1.667 0.012 6.590 3.690 P98 25-year 98 95 Circular 1.500 110.380 0.921 0.012 3.190 1.790 P99 25-year 99 98 Circular 1.000 82.120 0.467 0.012 2.850 3.590 10/24/11 16:09:18 1/1 TDA A (North) - Links Diameter Max Max Name Scenario Upstream Downstream Shape (Height) Length Conduit Roughn Flow Velocity Node Name Node Name ft ft Slope ess cfs ft/s P115 25-year 115 117 Circular 1.000 21.030 0.323 0.012 1.850 2.850 P116 25 ear 116 115 Circular 1.000 23.434 0.572 0.012 1.440 1.750 P117 25 ear 117 114 Circular 1.000 12.973 0.902 0.012 1.850 3.160 P118 25-year 118 116 Circular 1.000 32.774 6.102 0.012 0.300 2.270 10/24/11 16AI1 57 1/1 TDA A (South) - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope ope ess ess Max Flow cfs Max Velocity ft/s P100 100-year 100 99 Circular 1.000 43.140 0.533 0.012 2.460 3.090 P102 100-year 102 100 Circular 1.000 122.450 0.563 0.012 1.560 1.960 P103 I 100-year 103 1102 Circular 1.000 70.770 0.579 0.012 0.730 0.920 P104 100-year 104 103 Circular 1.000 16.200 1.235 0.012 0.450 0.570 P105 100-year 105 104 Circular 1.000 16.500 1.212 0.012 0.230 0.360 P106 1 00-ear 106 95 Circular 1.000 68.130 0.881 0.012 3.010 3.760 P107 1 00ear 107 106 Circular 1.000 36.700 0.518 0.012 2.800 3.500 P108 100-year 108 107 Circular 1.000 91.910 0.500 0.012 2.270 2.840 P109 100-year 109 108 Circular 1.000 99.290 0.755 0.012 2.270 2.850 P110 1 00ear 110 109 Circular 1.000 83.900 0.596 0.012 0.510 0.640 P95 1 00-ear 95 SDMH 12357 Circular 1.500 114.000 1.667 0.012 7.680 4.300 P98 100-year 98 95 Circular 1.500 110.380 10.921 0.012 13.720 2.090 P99 100-year 99 98 Circular 1.000 82.120 10.467 10.012 13.320 14.160 10/24/11 16:11:48 1 /1 TDA A (North) - Links Diameter Max Max Name Scenario Upstream Downstream Shape (Height) Length Conduit Roughn Flow Velocity Node Name Node Name ft ft Slope ess cfs ft/s P115 100-year 115 117 Circular 1.000 21.030 0.323 0.012 2.160 3.050 P116 1 00ear 116 115 Circular 1.000 23.434 0.572 0.012 1.680 2.130 P117 1 00ear 117 114 Circular 11,000 12.973 0.902 0.012 2.160 3.330 P118 100-year 118 116 Circular 11.000 32.774 6.102 0.012 0.350 2.610 10/24/11 16:47:30 1 /1 TDA A (South) - Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest Max Water Elevation ft Freeboard ft 100 25-year None 24.400 29.532 27.383 2.150 102 25-year None 25.090 29.426 27.521 1.910 103 25- ear None 25.500 29.078 27.533 1.540 104 25 ear None 25.700 29.027 27.534 1.490 105 25 ear None 25.900 29.010 27.535 1.480 106 25-year None 23.400 30.323 27.021 3.300 107 25- ear None 23.590 30.050 27.159 2.890 108 25- ear None 24.050 30.019 27.388 2.630 109 25-year None 24.800 29.422 27.636 1.790 110 25 ear None 25.300 29.225 27.646 1.580 95 25 ear None 22.550 30.814 26.726 4.090 98 25 ear None 23.567 30.167 26.814 3.350 99 25-year None 24.170 29.746 27.255 2.490 SDMH 1235 25-year None 17.600 30.570 26.350 4.220 10/24/11 16:09:46 1 /1 TDA A (North) - Node HGL Ponding Invert Ground Max Water Freeboard Name Scenario Type Elevation Elevation Elevation ft ft (Spill Crest ft 114 25-year None 26.500 30.600 27.003 3.600 115 25-year None 26.766 31.000 27 961 3.040 116 25- ear None 26.900 29.890 28.039 1.850 117 25 ear I None 126,617 131,316 127.337 13.980 118 25-year I None 128.900 132,124 129.062 13,060 10/24/11 16:4220 1/1 TDA A (South) - Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest Max Water Elevation ft Freeboard ft 100 100-year None 24.400 29.532 27.742 1790 102 100-year None 25.090 29.426 27 926 1.500 103 1 00-ear None 25.500 29.078 27.942 1.140 104 1 00ear None 25.700 29.027 27 943 1.080 105 100-year None 25 900 29.010 27.944 1.070 106 100-year None 23.400 30.323 27.259 3.060 107 1 00ear None 23.590 30.050 27.446 2 600 108 1 00ear None 24 050 30.019 27.753 12.270 109 100-year None 24.800 29.422 28.087 1.330 110 100-year None 25.300 29.225 28100 1120 95 1 00ear None 22.550 30.814 26.859 3 950 98 1 00ear None 23.567 30.167 26.977 3190 99 100-year None 24170 29.746 27.572 2170 SDMH 12357 100-year None 17.600 130,570 26 350 4.220 10/24/1 1 16 11 16 1 /1 TDA A (North) - Node HGL Ponding Invert Ground Max Water Freeboard Name Scenario Type yP Elevation Elevation Elevation ft ft (Spill Crest ft 114 100-year None 26.500 30.600 27.052 3.550 115 100-year None 26.766 31.000 28.043 2.960 116 1 00ear None 26.900 29.890 28.158 1.730 117 1 00ear I None 126.617 131.316 27.413 13.900 118 100-year I None 128.900 132.124 129.082 11040 10/24/11 16:47:57 1 /1 Created by: K.Smith 7/9/10 Checked by: R. Edralin 7/26/10 Updated: K. Smithl0/18/11 TDA GW Tailwater Calculation Notes/Assumptions: 1. No existing hydraulic model is available for the drainage system between Rainier Avenue CB 5 and Springbrook Creek. 2. Since the existing section of Rainier Avenue between Grady Way and 7th Street does not experience significant flooding, and because the project will not increase flows to the downstream system, a hydraulic anlaysis downstream to Springbrook Creek is not warranted or required by the the KCSWDM. 3. This tailwater elevation calculation is intended only for sizing the storm drain pipes for the Rainier Avenue Improvements. Approach: 1. An XP-SWMM hydraulic model was created for the drainage system between CB 5 and Lind Avenue. 2. Since the area contributing runoff to this system exceeds 10 acres, KCRTS with 15-minute time steps was used for calculating peak flows. 3. The analysis was run using varying tailwater conditions at Lind Avenue to determine the elevation at which tailwater conditions downstream from Lind Avenue begin to impact the water elevation at CB 5--the resulting water elevation at CB 5 has been used for the design TW condition. Contributing Areas (See attached fioure): Rainier Avenue & Adjacent Off -site tributary area: Sound Ford/Renton Mazda: Area north of Lithia Hyundai: Renton Honda KCRTS Hvdroloov: See attached KCRTS output. Peak rate results: (Total Tributary to CB 5) (Tributary to SDMH 28310) CB 5 SDMH 28310 XP-SWMM Model: See attached model schematic and input/output tables. Results/Conclusions: Lind TW (approx. IE 17.7) 17.7 (54" Pipe IE) 19 20 21 22.2 (54" Pipe Crown) 6.4 ac 4.7 ac 4.5 ac 15.6 ac 5.0 ac Q25 12.66 cfs 4.16 cfs CB 5 HGL CB 28226 HGL 21.89 21.50 21.87 21.47 21.88 21.49 21.97 21.65 22.57 22.43 A design TW elevation of 21.65 for CB 26802 has been used for TDA GW conveyance analysis, corresponding to the likely water elevation due to upstream flows, assuming no additional influence from conditions downstream from Lind Ave. 10/18/11 Revision note: Tailwater analysis point moved downstream to CB 28226 since the existing 30" storm drain between CB 5 and CB 26802 will be replaced with a 36" storm drain as a part of this project, and the roadway conveyance analysis has been extended downstream to that point. 16,F8-�1,4 ,ca,,— SW 7th St i8,E8-1 ]61�8-8 16,Ezs 16,E8-10 6,E8-11 16,F8-14 6 Eg-211116,F8- 1 6,F8- 16, 8-18 16,E 6 lL 16,E8-4 1�,E8-"2f-i / 2t;F -2 Rainier 6.4 AC Q 4.7 AC Sound Ford a KS�apED CB ZF CBEC _.- h,f: 3- 9 CB 26802 E 1 E CB 28226 -1,E3- Renton CB 28310 Honda '21,F 5.0 AC1;1^3-6 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1 206 4419385 F 1 206 448 6922 W www ghd.com Renton Mazda Grady \Nay ] 6,F-pt-� 7 cn, j \1(6 F 8 16,F8 > � Q1F�3-` ;- , ? iIC.C�3~ C) Nq�7'78- m 16,F--1 16f6--1 South Renton Park & Ride S 6th St S 7th St` 21;G3=4\� 21,H4-16 RAINIER AVENUE S GRADY WAY UPSTREAM BASIN C4 ' 3` `,P �• 1 i 1q.-r Air hi a"PAY7i66, .- a cOf 15 4f,!�Stl 1 A 1 i'l. VA�ayy Y.I:�i+,, a /'+N'� tF''s 20' WIDE WATER LING EASEMENT TO CITY OF RENTON 1 -aar WIDE TRAA nor-3 `EASEMENT TO car-Q •.. ex. PR'' ` td'LG /T4a It"IA, S .1 � F. � .... "f ...,... �-rl R'.",• ,,..,,.,n ew .qs•..T .. r 1-_.,.., .... - NO y 1 a• t 1 / dkF,+'t 1 ,� j ��bC1Yi_ ;'Vt.'t'r;"'° ; + t :i(`7•, Y/''' grit Ir 't:,� `:.Kt a; (�4'w�,t/y+wy.. Y..�ilSrit'1 t.1. t'4 y4 _' �,t jY"ri :f}i fl r :':;1L'`.,•��1'�i.1' .y W.r:x C�A,ea•11t+L f1 ,�i` e I p. ylt, I'ft�.�,];j�'�y' �.F,S 1J. 1, , �.prr .�,: :� �s�,.J� L;. .ty•,l �r �1 /' •'+1 `%1�`.N �fl k.N'���YYY,: V4 plltY 'L.i.' ��..•� Itdrr'yy-'��IGli,�,l �4fcr.�� `Y 'N "�.ti.' {�,5 �' .. '�.'�µ � ,1 .�+,�' RC .� U I J,I > }"lr'.i,j�._�$'S Sy•�R:� ,r � :f t� A•, I/14-. S6'CT. !8 ,TWP. P3K, I I r s i Y oI dn•:eXrliuYa'i&r:I•.+, t' ... , •.Y. ,,,.,r .4:1},, :4 ,� .v^_ ,,��� RENTON HONDA „ i f a.`1hy 1O A 7ION 'I r � a IRANl� s NION VOLTAO1 . j� CATION �'• t n' " \ 1 6p r , :'% I YNP4 naeND YNClaONOOMO / r eONan9IAOLa for "E DRAINAGE EASEMENT sOMeN OAOt, �t S"1E J l.' 87 rip /J/I :,;,^ �: ;.:i. :,te.^rau...... :'F.r_:.. •._1:°,[ri;'L•^d".il''N!fTln ','19J. �F'[ •...4i�. ,",. ,I �4n1, ,'/ylI'•,: Ih".'dir•!.:N� J � SO W. p ✓, 1 ,ti xI �• Y^ . ,x, tltt , •r ...h N d,•,1 • „i' FETTER WQ t •.t' . I• tF�C� ���yl 4 (1�� ' 7v�� t v 15 TOP OF FIRE�6 "A ! yyI txx(r .tl,• / '•�,!hy�t1ar "•^�'' I /1•7';�L1i1 �( I11 •,.�' i',1Y. Ne''�•k j(r �•{ v'I��u :Y�' `� �iar'M!� It.� 1, I." �; 1 v;! �•y •� •�r �r h'' •4'�� t �/ �'�ti�;ltll7'k 'A'{ /� .>F G',��9 I :.;. 1...1 I ,I Q r�lr 't''.`7��+ {{jj,�^»�X..', 1 ,!'•.•. "fU .._�tiuhl:_- _._ • t- ., . - (V.':"wla1 �' + ., ... ' '6"Ju`n.:A:,i'F1 `:icY:lic.► 0 f 2 J 4 D 6 7 M ap 144,o N �ly�h A o+�o�W p�41Q�� K I'• U 8 y9� UC• t Q I P 'Ip,u yl�W vI'n' :' A�CEW.1k'A�S NT FOR LOTS 2. 4- . R 9 NOTF.'.d'I NAA_HOLE R!M AND CRA7F ---'�e,..�.. . I' t r'i' .. It • ; yv .dAG 'S./•,Y>�•�1(QPeA�..Rl4/)l t 1 TYp hll d ' :PPNFR/ L1'• L _ 1 ovisdsE T. WAY . r • I•'i^i••.• rN i I �fy to $!><+iu� G sl1 va? 1. r • Ir.�,�`, »:•^i, }s"t";•1' p i / ; •:+e,I.'�.1 e,'�', .. ?:•St • li.��' a ..'.c ��Y :;'t.!3��7tt•, I � �, :niPl;.t;%,.yt # ta' .1•x •r �+'�Oti I i � a,:. l 3. /0 !/ 12 /3 /4 NCONNACTORSHRLL CALL PS.P6 bls Z A r U' z I1J n N C 3 U Q a w 2 cc c w p Q r W W W ¢ T a w 1 O U7 ac n' 2 0 F 2 J 4t . - X 1 17.25 N '9' yn pnuyavn[ 7, S//e Plan And Ctod/ng. 0 V �pN GWr / - W - . / Ll 2-exisl/ng 3S"dlamelarcontwe slam aYoinp/pas (01 Assumed csih of 4 airlt p tale will bo �� I NOT£: ,a i.l. wstee N•,N tlES1GN ASSUMPT1aN/COMPUr4T10NS m ✓ leave the site hers, westerly 1lmlla. independency darn/q^ad, d EX / F f4 Ha fAn eapocify or the prop fad 54"d/omaler alotm dials provides for (ware L Site 6enerohd RuAo/!; 0 ,Av Give'); 0.36"and assum/ng n • 0.0018 /bl Maximum homier at #goers reel or Aai/ding = COORORVAT£S Dewar rm I S1AT/oel OEAwive O(STAN(.-c X Y Nil • 4 114.1.1 M -t O+OP /r4 laB./0 /Bab aY0.9a S 4 Oa E IOF.00 MN-•t liar else fesed N7T'48?B E _ 5l e.00 612r tr4 rao.aa t BaT o a,Ra Nr7. 48 ae e 1 ,21,00. 4M-4 l3I'I2 frA 9l q I .1 B5776:.. 4 I MH- t4♦ d1n st!•00 1e F 10704 17 08 al a08,Ae M �� potential b,clo(fallon of: 1 a) As&mirg oxtsf1po ouNa/I We siraWs, (4-36"5,0.) which ham a 0 • Alc A•SAr. I . /00 YQm Storm. Inlet Concealrolfon r • 4.0!/a Q ' 28• •' •1°' (el edl any fill 010,7 s, (L�c'ruding dflch l/fll (d1 n finish S. o 0 IV A copdelty et 56.4ole. Thon a 24"dlamoler conmely p/pe constructed i • 2.5 77me. 10. 9mies. Or+rllaw • P 12R.5)• S7c/s. City of elborklgoe irdme (el City of Renton eNbod raq,4fcM@ I{ al a slope of 0..JN% and having a dopaalry of 0. 9,Sela MAY At e • 0.77 (Sea WSOOTI Highway • • (!) CH, 1. per portf/p/ raqu/ emeMs. One pork- 3 oeeomoa'olod. 0•(5/(Y.5) (O_r7/•9.6eis. Nydra/ie Manuo6 CnorfiJ/ 9, Rrgy4od Copoy!!y 0/Oulldl. t 11 /np stall per YUO aq.IL or ouaamg. OR (b) Assum/ng /ho 0.110#V oulfo/l system Is supplemented by /As c • Slla Co✓oroq'B Roof 22 % Onstls t EalfrAV site A6Cfs tss.4 P19 • 9d.Oc1i 'CapaCily < , I r oatdll/on n/ 1-,'1 s" dtomo l...... mt. pips 6-je cld .1 a slope el "didmeler Paremded 56 % on OF Oaf Abw • S7.O eta " 0. f¢x and having d capaifly of 0.28cfs. Then a 42 C04FOIR Pipe a Ruracled�! III slope of0.1d% and havlaga capdrity pp Landsi'gvs 23 % CoJleYrloled Campof/ls C•O.TT 5.CalevblBd Required COnersta Phse Site TO Accomadato 45c/s Al A S/ape Of 0,18%And w w a 0 of p • 4£ c/a. NAI' AO oceomaddfed, _ Calndalad /allow Potential Franm Easl 1Haliiler Avenllel n . 2 ) OR (c 2. D r 92" r • 9.7 //a -42" O 0 7� l Assvmlrlo- ens at Me oxfstia� J6"Mamete, eoaerace p/pea /a rup lead 2-ox1fling 3O"dial»ter Zone the ltmfte, storm aiofp P1Pu5 enler 6.Caftlated De/oalloo iOT NpUIn�A PAOJ81062 by q 46"d7dmoler eoacrslap/pn rorofryehd eta slope a/0.16 and having' a ao Nty of 0%34els. Then a 42adiameter eonci Ja Seto al Beastly 0 • AI� Sivan: D• 30" and 0aaaming n • 0.00/6 1/1 Assume Na Mddllfearloo Ta Exisrfog Wt.. And ppN aCVlelcxa Or1Ll I 81 O 6 2 oN.ro t r7 a r salae .da PIP4 construued a! a.slop#,O/ 0.18% 4ad having ocapacity of v • 3,¢./As •%idle/ caaudltas: r t DAWN! NOR/1,' x.e . O• IfRds., MAY he aCCPANQvIBd, O. 17.7cfe silo Daleallea• VD•trRL-firL TT • / B,L.. Inflow • 2 /17.7/ • 35.4c/e• • 1f L !R'Le') t a VSRT,' C/TY OF RENTON N 4t f VO• A(M431 (4) 4 Psi ao• 0 0 /00' •760 /L' _ t - 1 OF 2 . I I �II,I .I,I III I j II ILI'..y III, :III yl III. II III I'�IIIIIIIIIIIIIII�IIIILII Ilu, lu. •I� „II ' I: t'.�:I' •! :•) I1 I I, I' �. I I .IIII III II III I' :II I. ,I'.II I'llll'.III I:.:1.111", 1'III II •II 'I' ..] •,I II „ ( fill 11 .fI I I I ,I"II ,I ,II II : I II„I tl ll'll,.,�III .I II, II I,I II......I•II••' I•. , .�I I•, I'lI I1. IIlI,r Iltl IIIII I'11. ,1 I�II 1, 71 ,III,I, III . I1: �t I I' III !.I „ I Q l "M .91 41A.11_.ICI,.Le1I-LI'm... 151 �,11.41-1,f d�,,,1,7llynhi H�I�IM, �ilnf1"" Id-113Iul�ml4 J.5.1lll,dl1 T Renton Honda CB 5 SDMH 26802 •� ;C7 D_ Z m D m ,02 SDMH 28310 ,SD/MH 28226 n GRADY WAY Sound Ford XP-SWMM Model Schematic For TDA GW Tailwater Calculation Scale 1 : 1781.30 Grady Way - CB 5 - 15.6 ac Flow Frequency Analysis Time Series File:grady-e.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 6.53 6 8/27/01 18:00 16.92 1 100.00 0.990 4.55 8 9/17/02 17:45 12.66 2 25.00 0.960 12.66 2 12/08/02 17:15 8.91 3 10.00 0.900 5.26 7 8/23/04 14:30 7.40 4 5.00 0.800 7.00 5 10/28/04 16:00 7.00 5 3.00 0.667 7.40 4 10/27/05 10:45 6.53 6 2.00 0.500 8.91 3 10/25/06 22:45 5.26 7 1.30 0.231 16.92 1 1/09/08 6:30 4.55 8 1.10 0.091 Computed Peaks 15.50 50.00 0.980 Grady Way - Renton Honda - 5.0 ac - SDMH 28310 Flow Frequency Analysis Time Series File:grady-w.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 2.14 6 8/27/01 18:00 5.56 1 100.00 0.990 1.50 8 9/17/02 17:45 4.16 2 25.00 0.960 4.16 2 12/08/02 17:15 2.93 3 10.00 0.900 1.73 7 8/23/04 14:30 2.43 4 5.00 0.800 2.30 5 10/28/04 16:00 2.30 5 3.00 0.667 2.43 4 10/27/05 10:45 2.14 6 2.00 0.500 2.93 3 10/25/06 22:45 1.73 7 1.30 0.231 5.56 1 1/09/08 6:30 1.50 8 1.10 0.091 Computed Peaks 5.09 50.00 0.980 Grady TW Calc - Nodes Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest) ft Max Water Elevation ft Freeboard ft SDMH 28226 Base Scenario None 20.000 27.410 21.653 5.760 SDMH 28226 Lind TW=17.7 21.496 5.910 SDMH 28226 Lind TW=19 21.472 5.940 SDMH 28226 Lind TW=20 21.490 5.920 SDMH 28226 Lind TW=21 21.653 5.760 SDMH 28226 Lind TW=22.2 22.425 4.990 SDMH 26802 Base Scenario None 20.000 28.450 21.897 6.550 SDMH 26802 Lind TW=17.7 21.800 6.650 SDMH 26802 Lind TW=19 21.787 6.660 SDMH 26802 Lind TW=20 21.797 6.650 SDMH 26802 Lind TW=21 21.897 6.550 SDMH 26802 Lind TW=22.2 22.530 5.920 SDMH 28310 Base Scenario None 19.900 28.700 21.509 7.190 SDMH 28310 Lind TW=17.7 21.268 7.430 SDMH 28310 Lind TW=19 21.225 7.480 SDMH 28310 Lind TW=20 21.258 7.440 SDMH 28310 Lind TW=21 21.509 7.190 SDMH 28310 Lind TW=22.2 22.383 6.320 LindMH Base Scenario None 17.700 28.700 21.000 7.700 LindMH Lind TW=17.7 21.000 7.700 LindMH Lind TW=19 21.000 7.700 LindMH Lind TW=20 21.000 7.700 LindMH Lind TW=21 21.000 7.700 LindMH Lind TW=22.2 22.200 6.500 CB5 Base Scenario None 20.000 28.440 21.969 6.470 CB5 Lind TW=17.7 21.885 6.550 CB5 Lind TW=19 21.874 6.570 CB5 Lind TW=20 21.882 6.560 CB5 Lind TW=21 121,969 16.470 C135 Lind TW=22.2 122.566 15.870 10/18/11 15:42:31 1 /1 Grady TW Calc - Links Name Scenario Upstream Node Name Downstream Node Name Shape Diameter (Height) ft Length ft Conduit Slope Rough ness Max Flow cfs P28226 Base Scenario SDMH 28226 SDMH 28310 Circular 4.333 39 200 0 000 0.012 12.700 P28226 Lind TW=17.7 12.660 P28226 Lind TW=19 12.660 P28226 Lind TW=20 12.660 P28226 Lind TW=21 12.700 P28226 Lind TW=22.2 12.880 P26802 Base Scenario SDMH 26802 SDMH 28226 Circular 3.000 121.000 0 000 0.012 12.680 P26802 Lind TW=17 7 12.660 P26802 Lind TW=19 12.660 P26802 Lind TW=20 12.660 P26802 Lind TW=21 12.680 P26802 Lind TW=22 2 12.800 P28310 Base Scenario SDMH 28310 LindMH Circular 4.500 1235 000 0 178 0.012 17 070 P28310 Lind TW=17 7 16.820 P28310 Lind TW=19 16.820 P28310 Lind TW=20 16.830 P28310 Lind TW=21 17.070 P28310 Lind TW=22.2 17.940 Link38 Base Scenario CB5 SDMH 26802 Circular 3.000 121 000 0 000 0 012 12.670 Link38 Lind TW=17 7 12.660 Link38 Lind TW=19 12.660 Link38 Lind TW=20 12.660 Link38 Lind TW=21 12.670 Link38 I Lind TW=22.2 12.700 10/18/11 15:43:31 1/1 2yr Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft 40 Base Scenario Sealed 16.420 20.610 20.167 0.440 40 Post -Diversion 17.752 2.860 51 Base Scenario Sealed 16.500 20.460 20.164 0.300 51 Post -Diversion 17.705 2.750 59B U Base Scenario Allowed 15.330 21.380 16.580 4.800 59B_U Post -Diversion 16.164 5.220 69 Base Scenario Sealed 16.040 19.400 20.279 -0.880 69 Post -Diversion 17.700 1.700 70 Base Scenario Sealed 16.060 19.430 21.021 -1.590 70 Post -Diversion 17.700 1.730 71 Base Scenario Sealed 16.110 19.540 21.274 -1.730 71 Post -Diversion 17.713 1.830 72 Base Scenario Sealed 16.380 22.830 22.663 0.170 72 Post -Diversion 17.768 5.060 73 Base Scenario Sealed 16.550 24.600 24.014 0.590 73 Post -Diversion 17.734 6.870 MH2063 Base Scenario None 16.810 28.400 28.400 0.000 MH2063 Post -Diversion 17.889 10.510 PUMP OUT Base Scenario Sealed 22.020 24.500 23.271 1.230 PUMP OUT Post -Diversion 22.855 1.640 SDMH 30682 Base Scenario Sealed 14.700 25.600 20.149 5.450 SDMH 30682 Post -Diversion 17.700 7.900 SDMH 30683 Base Scenario Sealed 16.000 19.530 20.154 -0.620 SDMH 30683 Post -Diversion 17.700 1.830 SDMH 8082 Base Scenario Sealed 16.400 124.440 25.754 -1.310 SDMH 8082 Post -Diversion 17.820 6.620 SDMH 8628 Base Scenario Sealed 16.600 24.190 24.936 -0.750 SDMH 8628 Post -Diversion 17.770 6.420 07/29/10 19:09:20 1 /1 10yr Node HGL Name Scenario Ponding Type Yp Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft 40 Base Scenario Sealed 16.420 20.610 20.781 -0.170 40 Post -Diversion 18.755 1.850 51 Base Scenario Sealed 16.500 20.460 20.775 -0.320 51 Post -Diversion 18.736 1.720 59B U Base Scenario Allowed 15.330 21.380 16.580 4.800 59B U Post -Diversion 16.331 5.050 69 Base Scenario Sealed 16.040 19.400 20.871 -1.470 69 Post -Diversion 18.663 0.740 70 Base Scenario Sealed 16.060 19.430 21.584 -2.150 70 Post -Diversion 18.775 0.660 71 Base Scenario Sealed 16.110 19.540 21.832 -2.290 71 Post -Diversion 18.813 0.730 72 Base Scenario Sealed 16.380 22.830 23.220 -0.390 72 Post -Diversion 19.018 3.810 73 Base Scenario Sealed 16.550 24.600 24.638 -0.040 73 Post -Diversion 19.209 5.390 MH2063 Base Scenario None 16.810 28.400 28.400 0.000 MH2063 Post -Diversion 19.446 8.950 PUMP OUT Base Scenario Sealed 22.020 24.500 23.271 1.230 PUMP OUT Post -Diversion 23.024 1.480 SDMH 30682 Base Scenario Sealed 14.700 25.600 20.750 4.850 SDMH 30682 Post -Diversion 18.643 6.960 SDMH 30683 Base Scenario Sealed 16.000 19.530 20.758 -1.230 SDMH 30683 Post -Diversion 18.675 0.860 SDMH 8082 Base Scenario Sealed 16.400 24.440 26.405 -1.960 SDMH 8082 Post -Diversion 19.448 4.990 SDMH 8628 Base Scenario Sealed 16.600 24.190 25.576 -1.390 SDMH 8628 Post -Diversion 19.335 4.850 07/29/10 19:08:00 1 /1 25yr Node HGL Name Scenario Ponding Type Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft 40 Base Scenario Sealed 16.420 20.610 20.779 -0.170 40 Post -Diversion 18.947 1.660 51 Base Scenario Sealed 16.500 20.460 20.767 -0.310 51 Post -Diversion 18.913 11.550 59B_U Base Scenario Allowed 15.330 21.380 16.580 4.800 59B_U Post -Diversion 16.551 4.830 69 Base Scenario Sealed 16.040 19.400 20.840 -1.440 69 Post -Diversion 18.785 0.620 70 Base Scenario Sealed 16.060 19.430 21.585 -2.160 70 Post -Diversion 19.004 0.430 71 Base Scenario Sealed 16.110 19.540 21.856 -2.320 71 Post -Diversion 19.076 0.460 72 Base Scenario Sealed 16.380 22.830 23.442 -0.610 72 Post -Diversion 19.460 3.370 73 Base Scenario Sealed 16.550 24.600 25.009 -0.410 73 Post -Diversion 19.822 4.780 MH2063 Base Scenario None 16.810 28.400 28.400 0.000 MH2063 Post -Diversion 20.301 8.100 PUMP OUT Base Scenario Sealed 22.020 24.500 23.271 1.230 PUMP OUT Post -Diversion 23.248 1.250 SDMH 30682 Base Scenario Sealed 14.700 25.600 20.723 4.880 SDMH 30682 Post -Diversion 18.747 6.850 SDMH 30683 Base Scenario Sealed 16.000 19.530 20.735 -1.200 SDMH 30683 Post -Diversion 18.803 0.730 SDMH 8082 Base Scenario Sealed 16.400 24.440 26.975 -2.540 SDMH 8082 Post -Diversion 1 20.268 4.170 SDMH 8628 Base Scenario Sealed 16.600 124.190 26.051 -1.860 SDMH 8628 Post -Diversion 1 20.061 14.130 07/29/10 19:07:00 1 /1 100yr Node HGL Name Scenario Ponding Type Yp Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft 40 Base Scenario Sealed 16.420 20.610 21.701 -1.090 40 Post -Diversion 20.459 0.150 51 Base Scenario Sealed 16.500 20.460 21.695 -1.230 51 Post -Diversion 20.413 0.050 59B U Base Scenario Allowed 15.330 21.380 16.580 4.800 59B U Post -Diversion 16.580 4.800 69 Base Scenario Sealed 16.040 19.400 21.774 -2.370 69 Post -Diversion 20.256 -0.860 70 Base Scenario Sealed 16.060 19.430 22.418 -2.990 70 Post -Diversion 20.510 -1.080 71 Base Scenario Sealed 16.110 19.540 22.636 -3.100 71 Post -Diversion 20.612 -1.070 72 Base Scenario Sealed 16.380 22.830 24.088 -1.260 72 Post -Diversion 21.259 1.570 73 Base Scenario Sealed 16.550 24.600 25.698 -1.100 73 Post -Diversion 21.888 2.710 MH2063 Base Scenario None 16.810 28.400 28.400 0.000 MH2063 Post -Diversion 22.657 5.740 PUMP OUT Base Scenario Sealed 22.020 24.500 23.271 1.230 PUMP OUT Post -Diversion 23.271 1,230 SDMH 30682 Base Scenario Sealed 14,700 25.600 21.664 3.940 SDMH 30682 Post -Diversion 20.217 5.380 SDMH 30683 Base Scenario Sealed 16.000 19.530 21.674 -2.140 SDMH 30683 Post -Diversion 20.278 -0.750 SDMH 8082 Base Scenario Sealed 16.400 24.440 27.703 -3.260 SDMH 8082 Post -Diversion 22.668 1.770 SDMH 8628 Base Scenario Sealed 16.600 124.190 26.762 -2.570 SDMH 8628 Post -Diversion 1 22.306 1.880 07/29/10 19:04:46 1 /1 598U PUMP —OUT -- 4.-- PHPplP&T*---- KCRTSINPUT V1-C SDMH 8628 SDMH 8082 ---asea2— P8 28 4TH PLACE 73 P 3 72 P2 W Q ry W 71 Z Q P 1 70 +69 SDMH 30682 P3 83 SDMH 30683 40 �` KCRTS INPUT V 1-A 51 KCRTSINPUT V1-B MH20,73, KCRTS INPUT V1-D (Base Scenario Only) XP-SWMM Model Schematic For TDA V Pump Station Analysis with KCRTS Scale 1 : 2530.62 Hydrology Created by: K.Smith 7/21/10 Checked by: R. Edralin 8/3/10 TDA V Pump Station Analysis Notes/Assumptions: 1. Pump station capacity has been assumed to be 6.9 cfs `or a single pump operating, and 13.5 cfs with both pumps operating (same as Shattuck Ave analysis, based on pump station original design). City of Renton public works staff indicate the current pump capacity is significantly less as reported by SCADA. However, since direct flow monitoring data is not available, the original capacity values have been used for the purposes of this analysis. 2. Pump on/off elevations used in this analysis are based on the original design, as follows: Bottom of Wetwell: 14.7 Pumps off: 15.7 1st Pump on: 17.7 2nd Pump on: 18.7 Public works staff indicate that set points have been changed from the original design. 3. The pump station will be upgraded in 2010 with refurbished pumps and new motors. This analysis could be revised if accurate pump capacity and on/off set point data is obtained as part of that effort. Approach: 1. An XP-SWMM hydraulic model has been created for the portion of the Rainier Avenue drainage system adjacent to the pump station (see attached model schematic). 2. Since the area contributing runoff to this system exceeds 10 acres, KCRTS with 15-minute time steps was used for hydrograph inputs into XP-SWMM, input as gauged inflow in the hydraulics layer. The tributary area was split into four sub -basins, with one basin representing the diversion area (see below). 3. Model scenarios were run for each storm frequency, with and without the upstream diversion. 4. Wetwell storage is based on the pump station original design and has been included in the model at Node SDMH 30682. Roadway surface storage is based on Rainier Avenue proposed (60% design) roadway geometry. Roadway storage volumes are included in the model in Node 69. Contributin Areas: Name Description Area % impervious Model Node V1-A Southern portion of TDA V trib. to west -side 4.52 ac 90 40 SD pipe from south. V1-B East/central portionof TDA V trib. to SD 4.61 ac 90 51 pipe crossing near RR bridge. V1-C Northern portion of Basin V trib. to west -side 7.60 ac 90 SDMH 8082 SD pipe. V1-DIV Area diverted to Shattuck Avenue 48-inch 54.37 ac 78.8 MH 2O63 SD system (areas AG, AL, AN, & VZ) KCRTS H droloav Results see attached KCRTS printoutsi. 2r 10r 25r 100r V1-A 1.94 2.64 3.77 5.03 V1-B 1.98 2.7 3.84 5.13 V1-C 3.26 4.45 6.33 8.45 V1-DIV 20.4 28.08 41.12 56.36 Created by: K.Smith 7/21/10 Checked by: R. Edralin 8/3/10 Roadwav Saq Surface Storage Geomet Node 69 Elevation Stage Surf. Area (sf) 19.4 0.0 0 19.9 0.5 1570 20.4 1.0 5367 20.9 1.5 11838 21.4 2.0 17520 21.9 2.5 21956 22.4 3.0 26203 22.9 3.5 30506 XP-SWMM Modeling Results/Conclusions: With the assumed pump station capacity, the modeling shows 25-year flood protection. See Section 5.5 for additional discussion. V1-A - 4.52 ac Fiow Frequency Analysis Time Series File:vl-a.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 1.94 6 8/27/01 18:00 1.35 8 9/17/02 17:45 3.77 2 12/08/02 17:15 1.56 7 8/23/04 14:30 2.08 5 10/28/04 16:00 2.20 4 10/27/05 10:45 2.64 3 10/25/06 22:45 5.03 1 1/09/08 6:30 Computed Peaks V1-B - 4.61 ac Flow Frequency Analysis Time Series File:vl-b.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 1.98 6 8/27/01 18:00 1.38 8 9/17/02 17:45 3.84 2 12/08/02 17:15 1.59 7 8/23/04 14:30 2.12 5 10/28/04 16:00 2.24 4 10/27/05 10:45 2.70 3 10/25/06 22:45 5.13 1 1/09/08 6:30 Computed Peaks V1-C - 7.60 ac Flow Frequency Analysis Time Series File:vl-c.tsf Project Location:Sea-Tac -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 5.03 1 100.00 0.990 3.77 2 25.00 0.960 2.64 3 10.00 0.900 2.20 4 5.00 0.800 2.08 5 3.00 0.667 1.94 6 2.00 0.500 1.56 7 1.30 0.231 1.35 8 1.10 0.091 4.61 50.00 0.980 -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 5.13 1 100.00 0.990 3.84 2 25.00 0.960 2.70 3 10.00 0.900 2.24 4 5.00 0.800 2.12 5 3.00 0.667 1.98 6 2.00 0.500 1.59 7 1.30 0.231 1.38 8 1.10 0.091 4.70 50.00 0.980 ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 3.26 6 8/27/01 18:00 8.45 1 100.00 0.990 2.28 8 9/17/02 17:45 6.33 2 25.00 0.960 6.33 2 12/08/02 17:15 4.45 3 10.00 0.900 2.62 7 8/23/04 14:30 3.69 4 5.00 0.800 3.49 5 10/28/04 16:00 3.49 5 3.00 0.667 3.69 4 10/27/05 10:45 3.26 6 2.00 0.500 4.45 3 10/25/06 22:45 2.62 7 1.30 0.231 8.45 1 1/09/08 6:30 2.28 8 1.10 0.091 Computed Peaks 7.74 50.00 0.980 V1-DIV - 54.37 ac Flow Frequency Analysis Time Series File:vl-d.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Flow Rate Rank Time of Peak - - Peaks (CFS) (CFS) 20.40 6 8/27/01 18:00 56.36 14.23 8 9/17/02 17:45 41.12 41.12 2 12/08/02 17:15 28.08 16.42 7 8/23/04 14:30 23.59 22.32 5 10/28/04 16:00 22.32 23.59 4 10/27/05 10:45 20.40 28.08 3 10/25/06 22:45 16.42 56.36 1 1/09/08 6:30 14.23 Computed Peaks 51.28 Frequency Analysis------- - - Rank Return Prob Period 1 100.00 0.990 2 25.00 0.960 3 10.00 0.900 4 5.00 0.800 5 3.00 0.667 6 2.00 0.500 7 1.30 0.231 8 1.10 0.091 50.00 0.980 m m Q Appendix D Gutter and Inlet Analysis Gutter Analysis Maps D1-D3 Inlet Spacing — Curb and Gutter Spreadsheets (for Continuous Grade Gutters) Sag Inlet Design Worksheets 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report SAG ANALYSIS CB NO. 21 34 SAG ANALYSIS CB NO. 30 SAG ANALYSIS CB NO. 23 23 32 28 RAINIER AVENUES 35 124 11 22 -� - 30 SAG ANALYSIS CB NO. 101 20 21 12 216 t3 14 15 / 38 10 s>�y 9 18 31 19 17 7 146 0-1, SAG ANALYSIS CB NO. 13 101 /111 6 y SAG ANALYSIS CB NO. 10 29 5� y, 2 222 4 1 3 �J RP,� f �qr 25 50 100 i SCALE: IN FEET PLAN 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 D 1 F 1 206 448 6922 RAINIER AVENUE S W www.ghd.com GUTTER FLOW ANALYSYS 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com SAG ANALYSIS CB NO, 39 ANALYSIS CB NO. 89 SQ FILTERRA UNIT ry�p� 203 / SAG ANALYSIS CB NO. 88 FILTERRA UNIT SAG ANALYSIS CB NO. 61 0 25 50 100 SCALE: IN FEET PLAN RAINIER AVENUE S GUTTER FLOW ANALYSYS D2 1024 201 SAG ANALYSIS CB NO. 109 SAG ANALYSIS CB NO. 110 S 3RO p` SAG ANALYSIS CB NO. 83- S -31 SAG ANALYSIS CB NO. 80 1201 Third Avenue, Suite 1500 Seattle, Washington 98101 T 1206 4419385 F 1206 448 6922 W www.ghd.com SAG ANALYSIS CB NO. 107 �l ANALYSIS CB NO. 100 SAG ANALYSIS CB NO. 115 *40 0 zs so 100 I rALE IN FEET PLAN RAINIER AVENUE S GUTTER FLOW ANALYSYS D3 G \Ml 41591CADDIDRAIMNGS106550-TIR-0i-04_REV1.M9 10R4/2011 INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS) T c = 5.00 C = 0.90 2.39 m= 5.62 n= 0.53 Allowable Zd= 4.00 Project Name Rainier Avenue S Roadway Improvements EAST ROADWAY/NORTHBOUND TRAFFIC Project #: GHD-8614159 S.R.: Designed By: WIRE Checked By: KRS Date: AUG 2010 Updated: OCT 2011 CB Station Distance Width N Q E Q Slope L SuperT G.W. G.L. d Zd Qb •• Vcontinuous' Vside" E. Re E Q, Qbp" Zd Check Velocity Check Qbp Check Comments (UR) 11+69 -- --- -- -- - --- Grad Wa I/S NE Corner 4 11+06 63.34 36.00 0.11 0.11 0.028 0.028 1.45 1.25 0.06 2.14 0.01 1.82 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 3 10+75 30.422 36.00 0.05 0.06 0.007 0.028 1.45 1.25 0.06 2.14 0.00 0.92 0.94 0.95 0.26 0.96 0.05 0.00 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 0.1 CFS 11+41 ---- - - - - Hi h Dint on utter line 5 12+15 73.56 36.00 0.13 0.13 0.012 0.036 1.45 1.25 0.08 2.22 0.01 1.56 1.52 0.94 0.16 0.95 0.12 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 61 13+02 1 87.44 36.00 0.161 0.17 0.014 0.0461 1.45 1.25 0.091 1.96 0.00 1.971 1.74 0.97 0.16 0.98 0.16 0.00 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 7 13+92 89.78 36.00 0.161 0.16 0.013 0.052 1.45 1.25 0.10 1.92 0.00 1.77 1.80 0.98 0.17 0.98 0.16 0.00 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 8 14+89 96.99 36.00 0.17 0.17 0.011 0.038 1.45 1.25 0.09 2.37 0.01 1.76 1.55 0.92 0.16 0.93 0.16 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 9 15+93 104 36.00 0.19 0.20 0,005 0.033 1.45 1.25 0.11 3.33 0.04 1.26 1.19 0.78 0.21 0.83 0.17 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 0A CFS See sag anal - for CB 10, 16+55 RT 22+56 ---- ---- H, n pt along utter at 7th Street 15 21+57 99.22 47.00 0.23 0.23 0.005 0.019 1.45 1.25 0.09 4.74 0.09 1.30 1.04 0.62 0.16 0.68 0.16 0.07 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Slightly exceeds allowable Zd, see report 14 20+41 116.17 47.00 0.27 0.34 0.005 0.021 1.45 1.25 0.11 5.24 0.14 1.44 1.20 0.58 0.141 0.64 0.22 0.121 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC NEED TO REDUCE Cbp See sag anal - for CB 13. 18+80 RT 19+42 - -- - - -- --- ---- H, h pt et utter W. CB218 end C1313 218 18+72 69.8 47.00 0.16 0.16 0.005 0.022 1.45 1.25 0.08 3.64 0.04 1.28 0.96 0.74 0.21 0.80 0.13 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 12 18+23 49.21 42.00 0.10 0.13 0.005 0.029 1.45 1.25 0.09 3.10 0.02 1.08 1.04 0.81 0.23 0.86 0.11 0.02 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 11 17+26 97.35 42.00 0.20 0.22 0.005 0.036 1.45 1.25 0.11 3.06 0.04 1.48 1.20 0.82 0.22 0.86 0.19 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 0 1 CFS See sag analysis for CB 10, 16+55 RT 24+88 -_- --- -- - - - - High point on utter line 38 23+85 103.26 36.00 0.18 0.18 0.005 0.014 1.45 1.25 0.07 5.00 0.07 1.24 0.88 0.60 0.16 0.66 0.12 0.061 NEED TO DECREASE Zd VELOCITY <5 FT/SEC Qbp <0. t CFS Zd exoeedance see r t. 26+70 --- -- -- ---- -- Hi h point on gutter line 50 27+41 70.75 36.00 0.13 0.13 0.005 0,033 1.45 1.25 0.09 2.73 0.02 1.18 1.04 0.87 0.25 0.90 0.12 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 49 28+79 138.17 36.00 0.25 0.26 0.005 0.038 1 A5 1.25 0.12 3.16 0.05 1.58 1.26 0.81 0.22 0.85 0.22 0.04 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 53 30+02 122.71 36.00 0.22 0.26 0.016 0.033 1.45 1.25 0.09 2.73 0.03 2.35 1.86 0.87 0.11 0.88 0.23 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 52 31+50 148.37 36.00 0.26 0.29 0.023 0,022 1.45 1.25 0.081 3.64 0.07 2.32 Zd ALLOWABLE > Zd DESIGN VELOCITY < 6 FT/SEC Qbp < 0.1 CFS See sag analysis for CB 61, 31+75 RT 51 31+01 49.4 36.00 0.09 0.16 0.010 0,015 1.45 1.25 0.06 4.00 0.05 1.62 1.12 0.70 0.121 0.74 0.12 0.04 Zd ALLOWABLE - Zd DESIGN VELOCITY < 5 FT/SEC See sag analysis for CB 61. 31+75 RT 36+23 --- ---- ----- -- - --- - High point on gutter line 87 35+51 71.5 36.00 0.13 0.13 0.020 0.028 1.45 1.25 0.07 2.50 0.01 1.63 1.76 0.90 0.10 0.91 0.12 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY <5 FT/SEC 202 34+83 67.64 36.00 0.12 0.13 0.010 0.027 1.45 1.25 0.07 2.59 0.01 1.60 1.25 0.89 0.17 0.91 0.12 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY <5 FT/SEC Filtsrra LIM 86 34+58 24.89 36.00 0.04 0.05 0.010 0.026 1.45 1.25 0.05 1.92 0.00 1.13 0.99 0.98 0.23 0.98 0.05 0.00 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 01 CFS 43+25 -- -- ---- High point on gufter line 102 42+53 72.44 48.00 0.17 0.17 0.005 0.015 1.45 1.25 0.07 4.67 0.06 1.25 0.88 0.63 0.17 0.69 0.12 0.05 NEED TO DECREASE Zd VELOCITY <5 FT/SEC Zd exceadance seer t 103 41+82 70.73 36.00 0.13 0.18 0.005 0.022 1.45 1.25 0.09 4.09 0.06 1.17 1.04 0.69 0.19 0.75 0.14 0.051 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Qbp < 0 1 CFS Zd exceedence , see rpt 40+41 -- - - --- ---- ---- -- ---- - ------- - ------- High pointon gufter line 91 40+84 42.71 48.00 0.10 0.10 0.005 0.028 1.45 1.25 0.08 2.86 0.02 0.98 0.96 0.85 0.25 0.89 0.09 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 6 FT/SEC Qbp < a 1 CFS 48+50 --- - ---- -- --- - -- -- - - nd o1 Trans,bon 118 47+21 128.97 25.00 0.161 0.16 0.007 0.026 1.45 1.25 0.081 3.08 0.03 1.47 1.14 0.82 0.19 0.85 0.14 0.02 2d ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC OD <0.1 CFS +58 --- ------ - - - --- --- - -- - --- - - - --- --- ------- Su erel abon transition 63 32+50 108 47.00 0.25 0.25 0.033 0.007 1.45 1.25 0.05 7.14 0.14 1.74 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Exceeds allowable Zd, see report 62 32+00 50 47.00 0.12 0.26 0.018 0.012 1.45 1.25 0.06 5.00 0.10 2.06 1.51 0.60 0.06 0.62 0.16 0.10 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Qb <0.1JCFee sa anal sis for CB 61, 31+75 RT 45+66 -- -- - - --- - -- -- - unset BWd/3rd $t 98 45+00 65.75 60.00 0.20 0.20 0.005 0.020 1.45 1.25 0.09 4.62 0.07 1.15 1.04 0.63 0.17 0.70 0.14 0.06 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC xceeds allowable Zd, see report 99 44+18 82.11 60.00 0.24 0.30 0.005 0.021 1.45 1.25 0.10 4.76 0.11 1.52 1.12 0.62 0.16 0.68 0.21 0.10 NEED TO DECREASE Zd VELOCITY <6 FT/SEC Qbp< 0,1ee sag analysis for CB 100. 43+75 RT 52+50 ---- - -- upset BNd2nd St 116 47+21 529.12 27.00 0.71 0.71 0.010 0.044 1.45 1.25 0.17 3.86 0.20 2.53 2.26 0.72 0.10 0.74 0.53 0.18 Zd ALLOWABLE >Zd DESIGN VELOCITY <5FT15EC 115 46+96 24.51 27.00 0.03 0.21 0.005 0.0371 1.25 0.11 2.97 0.04 1.46 1.19 0.83 0.23 0.87 0.18 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY <5 FT/SEC Qbp <0.1 CFS See sal; analysis for CB 115, 47+01 RT "FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vslde, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontlnuous AND Qbp (COLUMN L) FOR COMPLIANCE. PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT. G:\86\14159\TECH\Drainage Report\03 - DevelopmenhApp D - Gutter Analysis\QC RAINIER East Inlet Spacing_October2011.x1s 1024/2011 11:52 AM INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS) Tc -= 5.00 C = 0.90 I 2.39 m= 5.62 n= 0.53 Allowable Zd= 4.00 Project Name Rainier Avenue S - Roadway Improvement WEST ROADWAY/SOUTHBOUND TRAFFIC Project #: GHD No. 8614159 S.R.: Designed By: WRE Checked By: KRS Date: AUG 2010 Updated: OCT 2011 CB Station I Distance Width - a Slope L Super T G.W. G.L. d Z Qbp" Vcontinuous' Vside" Ec Rs E Q, Qb •• Zd Check Velocity Check Qb Check Comments (UR) 13+00.00 __________ ___________ _____________ ____-__ _-______ ------- ----- ________ ______ ------------- ------------- ___ ___ _______ _______ _-_____ ____ __ ________ _ ____ _________ ________ _________ _________ High Point 19 13+91.99 91.99 58.00 0.26 0.26 0.016 0.018 1.45 1.25 007 3.89 0.07 2.24 1.58 0.71 0.08 0.74 0.19 0.07 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 18 14+88.90 96.91 58.00 0.28 0.35 0.013 0.025 1.45 1.25 0.10 4.00 0.10 2.05 1.80 0.70 0.09 0.73 0.25 0.10 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Obp < 0.1 CFS 23+50.00 -- -- -- - - _- -- --- -- ---- --- - -- - - -- _- ---_- - -- - --- -- --- -------- --- -- -------- ---- - -- -- -_--- - - -- High Point 124 24+40.01 90.01 60.00 0.27 0.27 0.005 0.039 1.45 1.25 0.13 3.33 0.06 1.43 1.33 0.78 0.21 0.83 0.22 0.05 Zd ALLOWABLE > Zd DESIGN VELOCITY <5 FT/SEC 46 25+57.621 117.61 60.00 0.35 0.40 0.005 0.039 1.45 1.25 0.15 3.851 0.11 1.61 1.47 0.72 0.18 0.77 0.30 0.09 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 45 26+41.91 84.29 60.00 0.25 0.34 0.005 0.044 1.45 1.25 0.14 3.18 0.07 1.75 1.40 0.80 0.21 0.84 0.29 0.05 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 44 27+35.21 93.3 60.00 0.28 0.33 0.005 0.047 1.45 1.25 0.15 3.19 0.07 1.59 1.47 0.80 0.21 0.84 0.28 0.05 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FTISEC 200 28+73.77 138.56 36.00 0.25 0.30 0.005 0.050 1.45 1.25 0.14 2.80 0.04 1.72 1.40 0.86 0.23 0.89 0.27 0.03 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Mena Und 42 28+86.00 12.23 36.00 0.02 0.05 0.005 0.050 1.45 1.25 0.08 1.60 0.00 0.84 0.96 1.00 0.37 1.00 0.05 0.00 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 201 30+32.27 146.27 36.00 0.26 0.26 0.012 0.031 1.45 1.25 0.10 3.23 0.05 1.84 1.73 0.80 0.11 0.82 0.21 0.05 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Fiherra Unit 40 30+61.84 29.57 36.00 0.05 0.10 0.012 0.031 1.45 1.25 0.07 2.26 0.01 1.31 1.36 0.94 0.16 0.95 0.09 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Obp < 0.1 CFS See sag analysis for CB 70, 31+77 LT 34+62.00 ____-__ __-__ _____- ________ -_-_- __--_ _______ __-- --- ---- ___---- _____-- High Point 72 33+37.27 124.73 36.00 0.22 0.22 0.030 0.033 1.45 1.25 0.08 2.42 0.02 2.47 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 71 32+02.00 135.27 36.00 0.24 0.26 0.013 0.023 1.45 1.25 0.09 3.91 0.08 1.73 1.68 0.71 0.09 0.74 0.19 0.07 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FTISEC Qbp < 0.1 CFS See sag analysis for CB 70, 31+77 LT 37+81.00 ____________ __------- __ ________ __-__- ___-___ _-_-__ �____ ___--------- __________ _______-_ ---- -------- ________ ________ ______ ______ - High Point 78 36+72.54 108.46 37.00 0.20 0.20 0.007 0.018 1.45 1.25 0.08 4.44 0.071 1.34 1.141 0.65 0.14 0.701 0.14 0.061 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Zd slightly excceds allowable, see report 77 36+02.00 70.54 48.00 0.17 0.23 0.010 0.026 1.45 1.25 0.09 3.46 0.05 1.71 1.50 0.77 0.12 0.79 0.18 0.05 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 202 34+82.45 119.55 48.00 0.28 0.33 0.011 0.018 1.45 1.25 0.091 5.00 0.13 1.76 1.57 0.601 0.08 0.63 0.21 0.12 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Fiherra Unit 76 34+68.35 14.1 48.00 0.03 0.15 0.011 0.018 1.45 1.25 0.071 3.89 0.04 1.30 1.32 0.711 0.11 0.74 0.11 0.04 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 0 1 CFS 46+50.00 ___-____ ---- __----- ______ __._____ ___-__ ________ _____-_ ___-_ --___ _- _ -___-_ _____- __ __________ ________ _ High Point 95 45+54.90 95.1 36.00 0.17 0.17 0.013 0.027 1.45 1.25 008 2.96 0.03 1.62 1.55 0.83 0.12 0.85 0.15 0.02 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC 106 44+86.82 68.08 36.001 0.12 0.14 0.008 0.026 1.45 1.25 0.08 3.08 0.03 1.34 1.22 0.82 0.17 0.85 0.12 0.02 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp <0.1 CFS See sag analysis for CB 107, 44+50 LT 17+24.02 ___-____ ________ _____________ ------- _-_ __________ _________ __------- __ ___-__ _-____ ________ -_____ ________ ------- ___ ______ -_-__ - _ High Point 231 18+00.00 75.98 36.00 0.14 0 14 0.013 0.014 1.45 1.25 0.06 4.29 0.05 1.29 1.28 0.67 0.09 0.70 0.10 0.04 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Obp < 0.1 CFS Zd slightly excceds allowable, see report 18+31.32 -- ---- --- ------- --- - --- ---- ---- -- - _ -- ------ -- --- ------ --- -- - _ _- -------- -- -- ----------- ------------- - - - High Point 32 18+87.00 55.68 36.00 0.10 0.10 0.013 0.024 1.45 1.25 0.06 2.50 0.01 1.46 1.28 0.90 0.15 0.92 0.09 0.01 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Qbp < 0.1 CFS 21+07.50 ______-_ __ ____ _________ ______- -_-__ ________ _________ ____-__ ------- ________ _-_-__ ___-_-___-- -_-- _____- ________ ______- ___ __ ____ __ _____ High Point 28 20+24.28 83.22 36.00 0.15 0.15 0.0081 0.030 1.45 1.25 0.09 3.00 0031 1.26 1.28 0.83 0.18 0.86 0.13 0.02 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Obp < 0,1 CFS 23+50.00 _-__-_ _______ _______ ____________ ______ _-__-_ _______ ___-_ ____-_- _______ ___-------- _____________ _______ -____- -___-_ ------ ---- -' High Point 35 22+86.50 63.5 60.00 0.19 0.19 0.005 0.025 1.45 1.25 0.09 3.60 0.05 1.36 1.04 0.75 0.21 0.80 0.15 0.04 Zd ALLOWABLE > Zd DESIGN VELOCITY < 5 FT/SEC Obp < 0.1 CFS 11+75.00 ___________ _________ _____________ --_ _-______ ------------- __--- _----- -______ ------ -_- _ ____ ------- _---- ________ _________ --------- __ ____ _ _ _ High Point 29 12+12.50 37.5 60.00 0.11 0.11 0 008 0.010 1.45 1.25 0.05 5.00 0.04 1.06 0.86 0.60 0.13 0.65 0.07 0.04 NEED TO DECREASE Zd VELOCITY < 5 FT/SEC Zd slightly excceds allowable, see report 31 12+50.00 37.5 60.00 0.11 0.15 0 008 0.010 1.45 1.25 0.06 6.00 0.07 1.01 0.97 0.52 0.10 0.57 0.081 0.061 NEED TO DECREASE Zd VELOCITY < 5 FTISEC Obp<0.1 CFS Zd slightlyslighfly excceds allowable, see report 11+75.00 ------ _--- _ ____ _________ ___-__ _________ _____-_-- __________ --------- I___-___ ______ ________ -______ ______ _____- High Point 2 11+09.08 65.92 58.00 0.19 0.191 0.0081 0.019 1.45 1.25 0.081 4.21 0.061 1.34 1.18 0.68 0.14 0.72 0.14 0.05 NEED TO DECREASE Zd VELOCITY < 5 FTISEC Qbp < 0.1 CFS Zd slightly excceds allowable, aee r ort FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vside, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontinuous AND Qbp (COLUMN L) FOR COMPLIANCE. PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT. G:\86\14159\TECH\Drainage Report\03 - Development\App D - Gutter Analysis= RAINIER West Inlet Spacing_Revised_0Ctober2011.x1s 10/24/2011 4:59 PM SAG INLET DESIGN WORKSHEET - CB 10 Combination inlet at low point OQ1 ZQ Z�Q2 Li L2 QBP Inlet A Inlet C QBP �. dA dB �dC M � N O t+D M .0+ N > C fn y O = y to W O .—O W m N O N � d U to > m U c d wLU c in m U � c Transverse Slope ST Allowable Zd Allowable dB Time of Concentration To 50 yr. rainfall r m coefficients L n Rainfall Intensity Isar, Distance between last inlet and low point L1 Width of catchment area W, Bypass from last inlet QBP,° Discharge of catchment area Q1 0.033 ft/ft 4.00 ft 0.132 ft 5.0 min 7.88 0.545 3.28 in/hr M ft ft cfs cfs QTntal = QBP1 + Q1 + QBP2 + Q2 QTotal = 0.06 + 0.16 + 0.09 + 0.18 = 0.49 CfS Shoulder Width 2.00 ft Lane Width 11.00 ft WA = do = 0.066 ft allowable) (for 5 minute duration) L2 71.00 ft W2 36.00 ft Q1124 0.09 cfs Q2 0.18 cfs Combination' or Grate Inlet for sag PB (C/G)--► C Effective Perimeter of PA Flank 0 ft Width 0 Grate Inlets (reduced by PB a 15 ft Width 1.45 50% for plugging) Pc Flank ft ft Widthl 0 b EQ = QA + QB + QC 2 EQ = CWAPA(0.5dB)1.5+ CwaP,dal.5+ CwcPc(0-5ds), 5 0.60 cfs rEQ 12/3 _ dB — I CWAPA0.3536 + CW8P8+ Cwo+ CwcPc0.3536 J ft If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated Designed by WRE 10/2011 Checked by KRS 10/2011 i--� Face of Curb all Len_Ith idth See Figure 5-5 Hydraulics Mar for nrntp rlimec Length 0 Length 1.25 Length 0 Capacity is adequate, design is complete. Check calculated do against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. " Qbp1 and Qbp2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 13 Combination inlet at low point L,Q1 ZQ AQ2 L1 L Q BP Inlet A Inlet C QBP2 \� 1 F Inlet B � f/ 7 dA dB dC N T. T N N N O O C N C N > > O O 0 d ca r O W N tv O « :O W _ C y d Cn A y j T d O W d m C a W U 2 U Transverse Slope ST 0.031 ft/ft Allowable Zd 4.00 ft Allowable de 0.124 ft Time of Concentration To 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity I50.y, 3.28 n/hr Distance between last inlet and low point L, 38.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP,4 0.10 cfs Discharge of catchment area Q, 0 10 cfs QTotal = QBP1 + Q1 + QBP2 + Q2 QTotal = 0.10 + 0.10 + 0.12 + 0.16 = 0.48 cfs Combination' or Grate Inlet for sag Pe (C/G�-► M Effective Perimeter of PA Flankft Grate Inlets (reduced by PB ft 50% for plugging) Pc Flankft Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = do = 0.062 ft allowable) (for 5 minute duration) L2 61.00 ft W2 36.00 ft QBP2 0.12 cfs Q2 0.16 cfs Width 0 Length 0 Width 1.45 Length 1.25 Width 0 Length 0 Designed by WRE 10/2011 Checked by KRS 10/2011 ' EQ = CA + QB + QC 2 IQ = CwAPA(0.5d8)15+ Cw,PBd815+ CwcPc(0.5de)' S 0.54 cfs Capacity is adequate, 2/ design is complete. SQ 3 _ de - 0.11 ft Check calculated CwAPA0.3536 + CWBPe+ Ct,,,e+ CwcPc0.3536 d � B against allowable de. If de < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added' and the process repeated. Notes: If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 0 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. QbP, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 21 Combination inlet at low point 1�Q1 ZQ -'LQ2 L L2 Q BP t A Inlet C QBP2 Inlet I F Inlet B � f/ dA dB dC � N pp N � N W n,-� tN00 tto t coO . rNrNr f� 'a+ U C N j _y O C d i+ C W W W <0 l6 O r° .2 a+ to N 2 U) CO > C 0 O U � o uJ a>i m N LLl N w 01 U E m m U c 2 c— Transverse Slope ST 0.032 ft/ft Allowable (Calculated*) Zd 4.50 ft Allowable dB 0.144 ft Time of Concentration Tc 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity Is0-y, 328 in/hr Distance between last inlet and low point L, 136.00 ft Width of catchment area W, 48.00 ft Bypass from last inlet QBP14 0.17 cfs Discharge of catchment area Q, 0.47 cfs QTo131 — QBP1 + Q1 + QBP2 + Q2 QTotal = 0.17 + 0.47 + 0.00 + 0.28 = 0.92 cfs Combination' or Grate Inlet for sag PB (C/G)--► C Effective Perimeter of PA A nk [tft Grate Inlets (reduced by PB ft50% for plugging) Pc Flakft b 10 = QA+QB+QC z LQ = CwAPA(0.5de)1 5+ CwBPBdet e+ CwcPc(0.5dB)1 e Shoulder Width 1.00 ft Lane Width 11.00 ft (dA = do = 0.072 ft allowable) * Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 10300ft 3800W ft QBP24 cfs 02 Q cfs Width 1.45 Width 1.45 Widthl 1.45 0.92 cfs iQ ]2/3 dB — 0.14 ft C,NAPA0.3536 + CWBPa+ CWe+ CwcPc0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Length 1.25 Lengthl 1.25 Length 1 1.25 Designed by WIRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: 1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. 4 QbP1 and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 23 Combination inlet at low point z�Q1 Q O Q 2 Li I L2 Designed by WRE 10/2011 Checked by KRS 10/2011 , Q BP Inlet A Inlet C QBP2 I Inlet B dA dB dC 04 v ,o n ~ + N 00 N O O C !n > C O N 4i > O O O 61 M W R l� O 2 '„O—,, C r In 0a. m c W y m r m y M W W T m _ Super Transition U_ m U U c — Transverse Slope ST 0.020 ft/ft Allowable Zd 4.00 ft Allowable dB 0.08 ft Time of Concentration To 5.0 min 50 yr, rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150_y, 3.28 in/hr Distance between last inlet and low point L, 76.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP,° 0.00 cfs Discharge of catchment area Q1 0.20 cfs QTotal — C61 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.20 + 0.02 + 0.06 = 0.28 efs Combination' or Grate Inlet for sag PB (C/G}-► IN Effective Perimeter of PA Flank ft Grate Inlets (reduced by PB ft 50% for plugging) Pc Flank ft b Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = dc = 0.04 ft allowable) (for 5 minute duration) L2 25.00 ft W2 36.00 Ift �� Face of Curb QBP24 0.02 cfs Q2 0.06 cfs Length idth See Figure 5-5 Hydraulics Mar for grate dimen Width 0 Length 0 Width 1.45 Length 1.25 Widthl 0 1 Length 0 cQ = QA + QB + QC 2 EQ = CWAPA(0.5dB)' 5+ CWBPBdB' S+ C,,,,,P,(0.5dB)' 5 0.28 cfs Capacity is adequate, 2/ design is complete. TQ 3 _ dB 0.08 ft Check calculated d against CWAPA0.3536 + CWBPB+ CWB+ CwcPc0.3536 B 9 allowable dB. If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. " QbP1 and QbP2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 30 Combination inlet at low point z�,Q1 ZQ O Q 2 L1 L2 Q BPl Inlet A Inlet C QBP2 Inlet B / dA dB dC N N N O O O (� > CIA O c N d U m m N > m c w m m U c Coc W m w Super Transition m U � _ Transverse Slope S- Allowable 7d Allowable dB Time of Concentration T, 50 yr. rainfall r m coefficients L n Rainfall Intensity I50.y, Distance between last inlet and low point L, Width of catchment area W, Bypass from last inlet QBP14 Discharge of catchment area Q1 0.036 ft/ft ft ft min in/hr ft ft cfs cfs 3.00 0.108 5.0 7.88 0.545 1 328 72.00 36.00 0.00 0.19 QTotal — QBP1 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.19 + 0.02 + 0.17 = 0.37 cfs Combination' or Grate Inlet for sag PB (C/G)- *, M Effective Perimeter of PA Funkft Grate Inlets (reduced by PBft50% for plugging) PC Flankft b Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = dC = 0.054 ft allowable) (for 5 minute duration) W ft a QBP2 gOOftL2 cfs 02 cfs Designed by WIRE 1012011 Checked by KRS 10/2011 �� Face of Curb Length V See Figure 5-5 Hydraulics Man for rate dimen Width 0 Length 0 Width 1.45 Length 1.25 Width 0 Length 0 IQ = QA+QB+QC 2 IQ = CWAPA(0.5d6)' S+ CWBPedB' S+ CwCPC(0.5d6)' e 0.44 cfs Capacity is adequate, 2/ design is complete. �Q 3 d6 - 0.10 Check calculated d a CwAPA0.3536 + CWBPe+ CWe+ CwCPC0.3536 ft e against � allowable dB. If de < allowable d6, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. ° Qbp1 and QbP2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 39 Combination inlet at low point �Q1 LQ /\Q2 L1 L2 n 1-1— n 11-1— f, Onn O O N t N N C O C m toM > W > d d d 01 W W c m y c U c Designed by WIRE 10/2011 Checked by KRS 10/2011 Transverse Slope ST 0.031 ft/ft Shoulder Width 1.00 ft Allowable Zd 3.64 ft Lane Width 11.00 ft Allowable dB 0.11284 ft (dA = do = 0.05642 ft allowable) Time of Concentration To 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150-yr 3.28 in/hr (for 5 minute duration) Distance between last inlet and low point L, 101.00 ft L2 70.00 ft Width of catchment area W, 36.00 ft W2 36.00 ft �� Face of Curb Bypass from last inlet QBP,a 0.00 cfs Q8P2' 0.00 cfs Discharge of catchment area Q1 0.26 cfs Q2 0.18 cfs QTotal = Q8P1 + Q1 + QBP2 + Q2 Length QTotal = 0.00 + 0.26 + 0.00 + 0.18 = 0.44 CfS See Figure 5-5 idth 5 Hydraulics Man for orate i� Combination' or Grate Inlet for sag PB (C/G) ► C Effective Perimeter of PA Flank ft ft Width 0 Length 0 Grate Inlets (reduced by PB 4.15 ft Width 1.45 Length 1.25 50% for plugging) Pc Flank 0 ft Widthl 0 1 Length 0 b EQ = QA + QB + Qc 2 cQ = CWAPA(0.5d6)15+ CwBPBde' S+ CwcPc(O.5dB)' S 0.47 cfs Capacity is adequate, 2/ design is complete. jQ 3 dB — 0.11 ft Check calculated dB against a CWAPA0.3536 + CwBPe+ Cwe+ CwcPc0.3536 � allowable dB. If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. ° QbP, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 61 Combination inlet at low point LQ1 ZQ AQ2 L1 L2 Q BP Inlet A Inlet C QBP2 �� � � dA dB dC 0 0 M N M N C ^ N = O G O y a>i C O > ca W W fn O �' O > " ++ Uc uJ a>i m U c W W C in W U c Transverse Slope ST 0.015 ft/ft Allowable Za 6.60 ft Allowable dB 0.099 ft Time of Concentration To 5.0 min 50 yr, rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150.Y, 1 3.28 linthr Distance between last inlet and low point L, 25.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP,4 0.08 cfs Discharge of catchment area Q, 0.06 cfs QTotal _ QBP, + Q1 + QBP2 + Q2 QTotal = 0.08 + 0.06 + 0.15 + 0.08 = 0.38 cfs Combination' or Grate Inlet for sag PB (C/G}- C Effective Perimeter of PA Flak 0 ft Grate Inlets (reduced by PB 4.15 ft 50% for plugging) PC Flank 0 ft b 10 = CIA + QB + QC 2 1Q = CwAPA(0.5dB)'S+ CwePBdB15+ CwcPc(0.5dB)' S Shoulder Width F 2.00 ft Lane Width 11.00 ft WA = do = 0.0495 ft allowable) (for 5 minute duration) L2 25.00 ft W2 47.00 ft QBP2" 0.15 cfs Q2 0.08 cfs Width 0 Width 1.45 Width 0 0.39 cfs 2/3 r(,1 _ dB ft CWAPA0.3536 + CWBPB+ CWB+ CwcPc0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Length 0 Length 1.25 Length 0 Designed by WIRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions ° Qtp, and QbP2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 70 Combination inlet at low point OQt Q Z�Q2 Li I L2 Designed by WRE 10/2011 Checked by KRS 10/2011 ' Q BP Inlet A Inlet C QBP2 -___ � Inlet B f `- I N N l0 C t 0 ' C M � r 01 f� i=� to C M > y 2 G) � w+ C U c W > _d to U c co W ' m N 0-W �+ U m y m U � � Transverse Slope ST 0.022 ft/ft Allowable (Calculated') Zd 5.11 ft Allowable de 0.11242 ft Time of Concentration Tc 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity I50_yr 3.28 in/hr Distance between last inlet and low point L1 115.00 ft Width of catchment area W1 36.00 ft Bypass from last inlet QBP14 0.01 cfs Discharge of catchment area Q1 0.30 cfs QTotal _ QBP1 + Q1 + Q8P2 + Q2 QTotal = 0.01 + 0.30 + 0.08 + 0.06 = 0.45 CfS Combination' or Grate Inlet for sag PB (C/GN C Effective Perimeter of PA Flank 2.08 ft Grate Inlets (reduced by PB 4.15 ft 50% for plugging) Pc Flank 0 ft Shoulder Width 1 2.00 ft Lane Width 11.00 ft (dA = dc = 0.05621 ft allowable) ' Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 25.00 ft W2 36.00 ft �� Face of Curb QBP24 0.08 cfs Q2 OA6 cfs Length idth See Figure 5-5 Hydraulics Mar for orate dimpr Width 1.45 Length 1.25 Width 1.45 Length 1.25 Width 0 Length 0 IQ = QA + QB + QC 2 IQ = CWAPA(0.5de)' S+ CWBPede' S+ CwcPc(0.5dB)' S 0.55 cfs Capacity is adequate, z/ design is complete. IQ 3 de - 0.10 ft Check calculated d a ainst CWAPA0.3536 + CWBPB+ CWe+ CWcPC0.3536 B 9 allowable de. If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual), 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. 4 Qop1 and Qop2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 80 Combination inlet at low point Qt L Q Z� Q2 L1 L2 Q BPI Inlet A Inlet C QBP2 Inlet B f dA dB dC M N G M N tD �p + N t C p 'aO r M N M N M N . r M N > c N o > m � c m c w o C d N G>7 N R A C d o c > m aCO c r1 °' y o w m CO rn U c � a U U c S Transverse Slope Sr 0.021 fUft Allowable Zd 4.68 ft Allowable dB 0.09828 ft Time of Concentration T� 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150y, 3.28 in/hr Distance between last inlet and low point L, 44.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP,4 0.00 cfs Discharge of catchment area Q, 0.11 cfs QTOt.1 - QBP1 + Q1 + QBP2 + Q2 QTota, = 0.00 + 0.11 + 0.00 + 0.37 = 0.48 cfs Combination' or Grate Inlet for sag PB (C/G}-► C Effective Perimeter of PA Flank [,Ift Grate Inlets (reduced by PBft50% for plugging) PC Flank ft b cQ = QA+QB+QC 2 _ = CWAPA(0.5de)' S+ CwBPBde15+ CwcPc(0.5de), s Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = do = 0.04914 ft allowable) (for 5 minute duration) L2 W2 QBP2' Q2 144.00 ft ft cfs cfs 36.00 0.00 0.37 Width 1.45 Width 1.45 Width 1.45 0.52 cfs 21 SQ _ d8 - J 0.09 ft CWAPA0.3536 + CwePB+ we+ CwcPc0.3536 If dF < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added' and the process repeated. Designed by WIRE 10/2011 Checked by KRS 10/2011 �� Face of Curb Length idth See Figure 5-5 Hydraulics Mar Length 1.25 Length 1.25 Length 1.25 Capacity is adequate, design is complete. Check calculated dB against allowable de. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. Qbp, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 83 Combination inlet at low point L�,Q1 Q O Q 2 L1 I L2 Q BP Inlet A Inlet C QBP2 \� I Inlet B -1 f/ dA dB dC w o N <D O� O� +� N +� r rn l0 Cl) y O G_�i c y m CO > O LL C E_ a d a t d M W W t _Q1 C m d Q1 = U c 2 Transverse Slope ST 0.027 ft/ft Allowable Zd 4.00 ft Allowable de 0.108 ft Time of Concentration To 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150-yr 3.28 in/hr Distance between last inlet and low point L, 50.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP14 0.00 cfs Discharge of catchment area Q1 0.13 cfs QTotal - QBP1 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.13 + 0.00 + 0.21 = 0.34 cfs Combination' or Grate Inlet for sag PB (C/G)— *. M Effective Perimeter of PA Flankft Grate Inlets (reduced by PB ft 50% for plugging) PC Flankft Shoulder Width 2.00 ft Lane Width 1 11.00 Ift (dA = dC = 0.054 ft allowable) (for 5 minute duration) L2 81.00 ft Designed by WIRE 10/2011 Checked by KRS 10/2011 W2 36.00 ft �� Face of Curb QBP2' 0.00 cfs Q2 0.21 cfs Length idth See Figure 5-5 Hydraulics Mar Width 0 Length 0 Width 1.45 Length 1.25 Width 0 Length 0 IQ = QA + QB + QC 2 EQ = CwAPA(0.5de)15+ CwePedB' S+ CwCPC(0.5de)' S 0.44 cfs Capacity is adequate, 2 design is complete. Q /3 de — 0 09 ft Check calculated dB against CwAPA0.3536 + CwBPB+ Cwe+ CwcPC0.3536 � 9 allowable dB. If dB < allowable de, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. " QbP, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 ' SAG INLET DESIGN WORKSHEET - CB 88 Combination inlet at low point QI L Q ,\ Q2 Li L 2 Q BP Inlet A Inlet C QBP n2 I F Inlet B � � f/ dA dB dC N N + Cf + M M N M N O C O + OD O (n C fn > O y Y C C G7 .. W c0 O ate+ yam-,, W C y 0 CO > c m a c w >> m o c .. 00 W a 4) CO III a, m m °7 tM Transverse Slope ST Allowable Zd Allowable dB Time of Concentration T� 50 yr. rainfall r m Coefficients L n Rainfall Intensity Ie0 y, Distance between last inlet and low point L, Width of catchment area W, Bypass from last inlet QBP1' Discharge of catchment area Q1 0.023 ft/ft ft ft min in/hr ft ft cfs cfs 4.00 0.092 5.0 7.88 0.545 3.28 RO QTotal — QBP1 + Q1 + QBP2 + Q2 QTotal - 0.00 + 0.07 + 0.00 + 0.21 = 0.28 CfS Combination' or Grate Inlet for sag PB (C/%)- C Effective Perimeter of PA Flank ft GrateInlets (reduced by PB ft 50% for plugging) PC FlankL�lft b IQ = %+QB+QC 2 `Q = CwAPA(0.5dB)1 5+ C,,PBd,"+ C,,PC(0.5dB)1 s Shoulder Width 2.00 ft Lane Width 11.00 It WA = do = 0.046 It allowable) (for 5 minute duration) L2 82.00 ft W2 36.00 ft QBP2° 0.00 cfs Qz 0 21 cfs Width 0 Width 1.45 Widthl 0 0.35 cfs IQ ]2/3 dB 0.08 ft CWAPA0.3536 + CWBPB+ CWB+ CWCPC0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Length 0 Length 1.25 Length 0 Designed by WIRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: 1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. Q,v1 and QW2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 89 Combination inlet at low point OQ1 Q Z�lQ2 L1 L2 Q BP Inlet A Inlet C QBP n2 \� I F Inlet B � � f/ dA dB dC + N } CO M N M N C O O (n C M N N > f0 > O O y 10, C C W to > ` ++ (n C W r m m > o m a w m m a c d 00 w w �_ cCO +. m Transverse Slope ST 0.025 ft/ft Allowable (Calculated') Zd 4.66 ft Allowable de 0.1165 ft Time of Concentration T� 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150 yr 3.28 in/hr Distance between last inlet and low point L1 46.00 ft Width of catchment area W, 36.00 ft Bypass from last inlet QBP14 0.00 cfs Discharge of catchment area Q1 0.12 cfs QTotal — QBP1 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.12 + 0.00 + 0.34 = 0.46 cfs Combination' or Grate Inlet for sag Pe (C/G)— * Rd Effective Perimeter of PA Flankft Grate Inlets (reduced by PB ft 50% for plugging) Pc Flankft b Designed by WIRE 10/2011 Checked by KRS 1012011 Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = do = 0.05825 ft allowable) . Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 100.00 ft W2 48.00 ft �� Face of Curb QBP24 0.00 cfs Q2 0.34 cfs P Length See Figure 5-5 Hydraulics Mar Width 0 Length 0 Width 1.45 Length 1.25 Width 0 Length 0 EQ = QA + QB + QC 2 IQ = C,,PA(0.5dB)1 5+ CwBPBd815+ CwcPc(0.5d,,)' S 0.50 cfs Capacity is adequate, 2/ design is complete. (� 3 dB — 0.11 ft Check calculated dB against CwAPA0.3536 + CwBPB+ CwB+ CwcPc0.3536 allowable dB. If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. ' To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. ° Qbp1 and Qbp2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 1 SAG INLET DESIGN WORKSHEET - CB 90 Combination inlet at low point Q> Q Q2 Li L2 Q BP Inlet A Inlet C QBP2 �. 1 F Inlet B ---, 7 f/ dA dB dC + w + o0 I p C + M C O O (/> C > > > O C C� W CIOl0 w O ate+ •. a+ d d U) Cn > C d p a a y CD w L rn E m m m o� U = c 2 Transverse Slope ST 0.033 ft/ft Allowable Zd 4.01 ft Allowable de 0,13233 ft Time of Concentration T� 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity Ieo-y, 3.28 in/hr Distance between last inlet and low point L, 72.00 ft Width of catchment area W, 48.00 ft Bypass from last inlet QBP14 0.00 cfs Discharge of catchment area Q1 0.25 cfs QTotal — QBP1 + Q1 + QBP2 + Q2 Qmtal = 0.00 + 0.25 + 0.00 + 0.31 = 0.56 cfs Combination' or Grate Inlet for sag PB (C/G)--► C Effective Perimeter of PA FlankL!d ft Grate Inlets (reduced by PB ft 50% for plugging) PC Flankft b `Q = QA+QB+QC 2 IQ = C11PA(0.5d8)75+ CIBPBdB15+ CwcPC(0.5de)1 s Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = dC = 0.066165 ft allowable) (for 5 minute duration) L2 91.00 ft W2 48.00 ft QBP24 0.00 cfs Q2 0.31 cfs Width 0 Width 1.45 Width 0 0.60 cfs 2/3 IQ 1 _ de — 1 0.13 ft CWAPA0.3536 + C,Nepe+ CWe+ CWCPC0.3536 If de < allowable dB, the design is complete. If dB > allowable de, additional inlets must be added and the process repeated. Length 0 Length 1.25 Length 0 Designed by WIRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. 4 Qbp, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 100 Combination inlet at low point z�Q1 Y-Q AQ2 L1 L2 Q BP Inlet A Inlet C QBP Inlet B f/ dA dB �dC � o C C + to C C O O M 01 O O Z M > N C C ++ > to d O O C C rq Cs C O W +.+ •+ > �' i.+ yR,, A •0 rn G> tC (n > m d a c w m > m V c r o d w °' ILL! m U — Transverse Slope ST Allowable (Calculated*) Zd Allowable dB Time of Concentration To 50 yr. rainfall r m coefficients L n Rainfall Intensity 150-yr Distance between last inlet and low point L, Width of catchment area W, Bypass from last inlet QBP,4 Discharge of catchment area Q1 0.020 ft/ft 6.50 ft 0.13 ft 5.0 min 7.88 0.545 3.28 in/hr M ft ft cfs cfs QTotal - QBP1 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.19 + 0.17 + 0.18 = 0.55 cfs Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = dc = 0.065 ft allowable) ' Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 W2 ft QBP2 [4g3.00ft cfs Q2 cfs Combination' or Grate Inlet for sag Pe (C/G)- *. RO Effective Perimeter of PA FlankIft ft Width 0 Grate Inlets (reduced by PB ft Width1.45 50% for plugging) Pc Flank Width 0 IQ = QA+QB+Qc 2 IQ = CwAPA(0.5de)' B+ CwBPBde' S+ CwcPc(0.5dB)' aF 0.58 cfs S 2/3 (� 1 _ dB - J 0.13 ft CwAPA0.3536 + CWBPB+ C�,�,B+ CwCPG0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Designed by WRE 10/2011 Checked by KRS 10/2011 �� Face of Curb VLength ee Figure 5-5 in ydraulics Manual for grate dimension Length 0 Length 1.25 Length 0 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. " QbP, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 1 SAG INLET DESIGN WORKSHEET - CB 101 Combination inlet at low point LQl Y-Q AQ2 Li I L QBP Inlet A Inlet C QBP \� I F Inlet B dA dB dC N Y) t OD + <O r N p N N O w .0 r N N O r N ; c r N > d O c w C W W U) A O .2 .. c r W d N a.r m M y O d W lL L U U c c S Transverse Slope ST 0.018 ft/ft Allowable (Calculated') Zd 6.00 ft Allowable dB 0.108 ft Time of Concentration T� 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity I50_yr 3.28 in/hr Distance between last inlet and low point L, 68.00 ft Width of catchment area W, 58.00 ft Bypass from last inlet QBP,° 0.07 cfs Discharge of catchment area Q, 0.27 cfs QTotai — QBP1 + Q1 + QBP2 + Q2 QTo1a1 = 0.07 + 0.27 + 0.00 + 0.18 = 0.51 cfs Combination' or Grate Inlet for sag PB (C/G}— . C Effective Perimeter of PA Flank 2.08 ft Grate Inlets (reduced by PB 4.15 ft 50% for plugging) PC Flank 0 ft b EQ = QA + QB + QC 2 EQ = CwAPA(0.5dB), 5+ CwePed,"+ CwcPc(0.5dB)15 Shoulder Width 1.00 ft Lane Width 11.00 ft WA = dc = 0.054 ft allowable) Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 45.00 ft W2 5&00 ft QBP2 0.00 cfs Q2 0.18 cfs Width 1.45 Width 1.45 Width 0 0.52 Ifs cQ 2/3 dB — 0.11 ft CWAPA0.3536 + CwBPB+ CwB+ Cw,P,0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Length 1,25 Length 1.25 Length 0 Designed by WRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions " QbP, and QCP2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 107 Combination inlet at low point UQt TQ O Q 2 Li Q BPl Inlet A Inlet B dA dB M O N M O C + O � O CO > C O O C A v O y m to a a c w y r d c W 27, a r- = m c U — Transverse Slope ST 0.030 ft/ft Allowable 7d 4.00 ft Allowable dB 0.12 ft Time of Concentration Tc 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity I50 y, 3.28 in/hr Distance between last inlet and low point L, 47.00 ft Width of catchment area W, 37.00 ft Bypass from last inlet QBP,4 0.00 cfs Discharge of catchment area Q, 0.12 cfs QTotal — QBP, + Q, + QBP2 + Q2 QTotal - 0.00 + 0.12 + 0.04 + 0.10 = 0.26 cfs Combination' or Grate Inlet for sag PB (C/Gy -► C Effective Perimeter of PA Flank 0 ft Grate Inlets (reduced by PB 4.15 ft 50% for plugging) PC Flank 0 ft b sQ = QA+QB+QC 2 EQ = C,,PA(0.5dB), 5+ CwBPBdB,s+ CwcPc(0.5dB)'s L2 Inlet C QBP2 dC n O M t 'mod M O r ac+ > C to d y O W d 4) C W m — � U c Shoulder Width 1 2.00 Ift Lane Width 11.00 ft A, = do = 0.06 ft allowable) (for 5 minute duration) Lz Wz QBP2°04 Q2 ft ft cfs cfs .00 [!37.00 10 Width 0 Width 1.45 Width 0 0.52 cfs CQ 2/3 1 dB - J 0.08 ft CWAPA0.3536 + CWBPB+ CWB+ CWCPC0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Designed by WIRE 10/2011 Checked by KRS 10/2011 �� Face of Curb Length idth See Figure 5-5 Hydraulics Mar Length 0 Length 1.25 Length 0 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. QbP, and QbP2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 1 SAG INLET DESIGN WORKSHEET - CB 109 Combination inlet at low point z� Q1 Q "AQ2 L1 1-1-+ A Q d c Transverse Slope ST 0.017 ft/ft Allowable (Calculated*) Zd 6.50 ft Allowable dB 0.1105 ft Time of Concentration To 5.0 min 50 yr, rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150_y, 3.28 in/hr Distance between last inlet and low point L, 34.00 ft Width of catchment area W, 48.00 ft Bypass from last inlet QBP,' 0.00 cfs Discharge of catchment area Q1 0.12 cfs QTotal = QBP1 + Q1 + QBP2 + Q2 QTotal = 0.00 + 0.12 + 0.00 + 0.34 = 0.46 CfS Combination' or Grate Inlet for sag PB (C/G)--► C Effective Perimeter of PA Flank Ldft Grate Inlets (reduced by PB 4ft 50% for plugging) Pc Flank ft EQ = QA+QB+QC 2 I:Q = CwAPA(0.5dB),5+CwBPBdB15+ CwcPc(0.5dB)1.5 T«1— !` L2 .�+ > N 0 w m c .M." Shoulder Width 2.00 ft Lane Width 11.00 ft (dA = do = 0.05525 ft allowable) * Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 99.00 ft W2 48.00 ft QBP2 0.00 cfs Q2 0 34 cfs Width 0 Width 1.45 Width 0 0.46 cfs EQ 2/3 _ dB 1 0.11 CWAPA0.3536 + CwBPB+ Cwe+ CwcPc0.3536 ftJ - If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Length 0 Length 1.25 Length 0 Designed by WIRE 10/2011 Checked by KRS 10/2011 Capacity is adequate, design is complete. Check calculated dB against allowable cl, Notes: 1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. ' Q,p, and Qbp2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 SAG INLET DESIGN WORKSHEET - CB 110 Combination inlet at low point z�Qt T-Q /\Q2 Li Q BpI Inlet A Inlet B dA dB 0 0 t �O � N C C + M . .. O O 6 C C N O O C C W R O O a c W s m o w at 'E = m L) Transverse Slope ST 0.020 ft/ft Allowable (Calculated') Zo 5.50 ft Allowable dB 0.11 ft Time of Concentration T� 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150-yr 3.28 in/hr Distance between last inlet and low point L, 75.00 ft Width of catchment area W, 48.00 ft Bypass from last inlet QBP1a 0.00 cfs Discharge of catchment area Q1 0.26 cfs QTotal = QBP1 + Q1 + QBP2 + Q2 QTotal = &00 + 0.26 + 0.00 + 0.17 = 0.43 cfs Combination' or Grate Inlet for sag PB (C/G)- * C Effective Perimeter of PA Flank 0 ft Grate Inlets (reduced by PB 4.15 ft 50% for plugging) Pc Funk 0 ft £Q = QA + QB + QC 2 £Q = CwAPA(0.5dB)1s+ CwBPBdB1 e+ CwcPc(0.5dB)" L2 Inlet C Q 2 Shoulder Width 2.00 ft Lane Width 11.00 ft WA = do = 0.055 ft allowable) Zd is calculated to show the spread achieved to meet the (for 5 minute duration) SAG analysis criteria L2 W2 QBP24 Q2 50.00 ft ft cfs cfs 48.00 0.00 0.17 Width 0 Width 1.45 Width 0 0.45 cfs £Q 2/3 _ dB 0.11 ft CwAPA0.3536 + CwBPe+ Cwe+ CwcPc0.3536 If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Designed by WIRE 1012011 Checked by KRS 10/2011 w� Face of Curb Length idth See Figure 5-5 Hydraulics Mar Length 0 Length 1.25 Length 0 Capacity is adequate, design is complete. Check calculated dB against allowable dB. Notes: ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. Qbp, and Qbp2come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10124/2011 1 SAG INLET DESIGN WORKSHEET - CB 115 Combination inlet at low point AQ1 LQ /\Q2 LI L2 Designed by WIRE 10/2011 Checked by KRS 10/2011 Q BPI Inlet A Inlet C QBP2 Inlet B f dA dB dC v M a M o O ^ c o 0 ca > m o > 4) o c c c c cn m W R > «— O :+ W to O YG7 fii d ate+ ly6 Vi > C W (1) N � LU m m � � LO LLI y U U m c U c Transverse Slope ST 0.037 ft/ft Shoulder Width 2.00 ft Allowable 4 4.00 ft Lane Width 11.00 ft Allowable de 0.148 ft (CIA = do = 0.074 ft allowable) Time of Concentration To 5.0 min 50 yr. rainfall r m 7.88 coefficients L n 0.545 Rainfall Intensity 150_Y, 3.28 in/hr (for 5 minute duration) Distance between last inlet and low point L, 57.00 ft L2 20.00 ft Width of catchment area W, 28.00 ft W2 28.00 ft �� Face of Curb Bypass from last inlet QsP a 0.00 cfs QBP24 0.53 cfs Discharge of catchment area Q1 0.11 cfs 02 0.04 cfs Length QTotai = QBP1 + Q1 + QBP2 + Q2 QTotai = 0.00 + 0.11 + 0.53 + 0.04 = 0.68 cfs idth See Figure 5-5 Hydraulics Man i it Combination' or Grate Inlet for sag PB (C/G)--► C for or i Effective Perimeter of PA Flank 0 ft Width 0 Length 0 Grate Inlets (reduced by PS 4.15 ft Width 1.45 Length 1.25 50% for plugging) PC Flank 0 ft Widthl 0 1 Length 0 b ZQ = CIA +QB+QC 2 cQ = C,A,APA(0.5dB)' 5+ C,,PBdBt 5+ CwcPc(0.5dB)' S 0.71 cfs Capacity is adequate, 2/ design is complete. �-Q 3 de - 0.15 ft Check calculated d CWAPA0.3536 + CWBPe+ CWe+ CWCPC0.3536 � e against allowable dB. If dB < allowable dB, the design is complete. If dB > allowable dB, additional inlets must be added and the process repeated. Notes.- ' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual). 2 Formulas based on weir flow. See Hydraulic Manual 5-5.2. 3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values. Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions. " QbP, and Qbp2 come from the inlet spreadsheet. XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011 c� CL x m Appendix E Shattuck Avenue Stormwater Diversion Modeling Report Final Report Response to 3/25/08 Review Comments on Draft Report 6/18/08 Response Memorandum to Review Comment #2 86/14159/4577 Rainier Avenue South Improvement Project • SW Grady Way to S 2nd Street Surface Water Technical Information Report CITY OF RENTON SHATTUCK AVENUE STORMWATER DIVERSION MODELING REPORT Prepared For: City of Renton Prepared By: GHD Inc. (Job #8614159) April 2010 (Supersedes February 2008 Draft) SHATTUCK AVENUE STORMWATER DIVERSION MODELING REPORT The technical information and data included in this report was prepared by or under the direct supervision of the undersigned, whose seal as registered professional engineer licensed to practice as such in the State of Washington is affixed below: City of Renton April 2010 Shattuck Avenue Diversion Modeling Report i Table of Contents 1.0 INTRODUCTION...............................................................................................................1 1.1 PROJECT DESCRIPTION............................................................................................1 1.2 BACKGROUND............................................................................................................1 1.3 SCOPE OF WORK.......................................................................................................2 2.0 HYDROLOGIC MODELING..............................................................................................3 2.1 BASIN MODIFICATIONS.............................................................................................3 2.2 KCRTS MODELING.....................................................................................................6 3.0 HYDRAULIC MODELING.................................................................................................7 3.1 MODIFICATIONS TO XP-SWMM HYDRAULIC MODEL..............................................7 3.2 MODEL SCENARIOS...................................................................................................7 4.0 MODELING RESULTS....................................................................................................12 4.1 SUMMARY OF RESULTS..........................................................................................12 4.2 MODELING FINDINGS...............................................................................................16 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report ii w List of Tables Table 1. Basin Area Revisions.............................................................................. Table 2. Basin V1 Sub -Basins use for Scenarios 3-5............................................ Table 3. KCRTS Modeling Results....................................................................... Table 4. 25-year Modeling Results — Shattuck Avenue ......................................... Table 5. 25-year Modeling Results — 7th Street ..................................................... Table 6. 25-year Modeling Results — Out of System or Ponded Volume (ac-ft)..... Table 7. 25-year Modeling Results — Rainier Ave Sag & Pump Station ................ Table of Figures .3 Figure1. Basin Map...............................................................................................................5 Figure 2. Model Schematic — Scenario 1................................................................................9 Figure 3. Model Schematic — Scenarios 2 and 5...................................................................10 Figure 4. Model Schematic — Scenarios 3 and 4...................................................................11 APPENDIX A — BASIN MODIFICATIONS APPENDIX B — KCRTS MODELING OUTPUT APPENDIX C — XP-SWMM MODEL OUTPUT City of Renton April 2010 Shattuck Avenue Diversion Modeling Report iii 1.0 INTRODUCTION 1.1 PROJECT DESCRIPTION The Shattuck Avenue Stormwater Diversion is a 48-inch diameter storm drain pipe proposed to be constructed along Shattuck Avenue S between S 4th Place and S 7th Street in Renton, Washington. Once constructed, this new storm drain will provide gravity stormwater conveyance for the majority of the drainage basin that currently flows to a pump station located on Rainier Avenue S adjacent to the BNSF railroad bridge. Supplemental stormwater modeling has been performed as part of the Rainier Avenue South/BNSF Improvements project to evaluate the feasibility of diverting more runoff away from the Rainier Avenue pump station than had been considered by earlier studies. This assessment was accomplished by modifying the City's XP-SWMM planning -level hydraulic model. 1.2 BACKGROUND The City's existing XP-SWMM model was prepared as part of the SW 7th Street Storm Drainage Improvement Project Pre -Design Analysis (Gray & Osborne, February 2003). Hydrologic modeling input to the XP-SWMM model was achieved using the King County Runoff Time Series (KCRTS) computer program. The Shattuck Avenue Diversion was included as part of the chosen Alternative 1 of the SW 7'h Street Pre -Design Analysis. Alternative 1 included a 60-inch storm drain along SW 71h Street between Lind and Shattuck Avenues, which has since been constructed. The 7th Street pre -design analysis describes the Shattuck Avenue storm drain pipe improvements as consisting of a 48-inch pipe between S 7th and S 6th Streets and a 36-inch pipe between S 6th and S 2"d Streets. The City currently plans to construct a 48-inch pipe between S 7th Street and S 4th Place. The size of conveyance improvements north of 4th Place will be determined in the future. The previous XP-SWMM modeling was performed both with and without an additional 72- inch parallel downstream conveyance pipe improvement between Lind Avenue and the outfall to the Black River Forebay. The downstream parallel pipe improvement had been determined by the SW 7`h Street Pre -Design Analysis to be necessary to achieve 25-year conveyance capacity with future land use conditions. The parallel pipe system is not currently included in the City's Capital Improvement Program because flooding predicted by the future conditions modeling has not occurred with the current land -use and drainage system conditions. In addition to the previous XP-SWMM modeling, a backwater analysis was performed for the proposed pipe improvements between S 71h Street and S 4th Place as part of the Shattuck Avenue Diversion Feasibility Study (RoseWater Engineering, May 2007). City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 1 1.3 SCOPE OF WORK The scope of work of this study included the following tasks: • Reviewing hydrologic and hydraulic modeling prepared for the SW 7`h Street Storm Drainage Improvements Project Pre -Design Analysis (Gray & Osborne, February 2003). ' • Revising existing hydrologic modeling to reflect known current conditions identified through review of record drawings and limited field investigation. ' • Modifying the existing XP-SWMM model to create a new "current conditions" model that includes as -built drainage conditions in S 7th Street and Shattuck Avenue S. • Modeling future conditions including the Shattuck Avenue Stormwater Diversion, with alternative model scenarios that evaluate the feasibility of diverting additional runoff away from the Rainier Avenue pump station. • Running all modeled scenarios both with and without a potential future 72-inch parallel pipe drainage improvement between Lind Avenue and the outfall to the Black River Forebay. • Presenting modeling results in terms of changes in the HGL along S 7th Street and ' Shattuck Avenue S, and changes in pump station performance and flooding depth along Rainier Avenue. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 2 2.0 HYDROLOGIC MODELING 2.1 BASIN MODIFICATIONS Drainage basin boundaries were revised based on a review of record drawings and limited field investigation. Record drawings were obtained and reviewed for the following properties: Renton High School, McLendons Hardware, Renton Center (Fred Meyer and businesses on the west side of Rainier Avenue), Lithia Dodge, Kentucky Fried Chicken, and Bob Bridge Scion. Record drawings could not be found for Rainier Village (Baskin - Robbins, Radio Shack) and for Mazatlan Mexican Restaurant. Figure 1 shows the revised basin map resulting from this effort. Table 1 shows the revised basin areas in acres, including future conditions impervious and pervious areas used in the revised hydrologic modeling. Impervious coverage percentages were taken from Table 1 of the SW r Street Pre -Design Analysis and applied to the modified basin areas. These changes reduced the total "existing" area tributary to the Rainier Avenue pump station by about 11 acres, from the 82 acres indicated in 7th Street Pre -Design Analysis to 71 acres with the revised areas. See Appendix A for copies of the record drawings that were used for updating the basin map. Table 1. Basin Area Revisions Basin Previous Revised Area (ac) % Impervious3 Area (ac) Impervious Area (ac) ° Pervious Area (ac) 1 7.45 91 % 7.66 6.97 0.69 U 14.26 89% 12.93 11.51 1.42 V1 22.72 90% 16.63 14.97 1.66 V2 23.06 83% 24.04 19.95 4.09 W 4.16 84% 4.57 3.84 0.73 X 19.02 96% 19.91 19.11 0.80 AH 7.93 73% 10.14 7.40 2.74 AK 7.31 78% 11.90 9.28 2.62 AL 12.77 78% 5.05 3.94 1.11 AN 9.71 75% 11.22 8.42 2.80 AP 3.43 95% 2.91 2.76 0.15 1. From "SW 7 InStreet Storm Drainage Improvement Project Pre -Design Analysis" (Gray & Osborne, Feb. 2003). 2. Revised areas based on review of record drawings and limited field investigation. 3. % Impervious used for "future conditions' modeling = greater of existing or future conditions. 4. Based on % impervious used for previous "future conditions' modeling. Basin V1 is the drainage basin that drains directly to the existing pump station and was not originally planned to be diverted to the new storm drainage system in Shattuck Avenue S. In order to evaluate the possibility of diverting additional areas away from Rainier Avenue to Shattuck Avenue, Basin V1 was divided into three sub -basins, V1-1, V1-2, and V1-3. These areas are delineated on Figure 1; see Table 1 for sub -basin areas and percent impervious coverage. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 3 • Sub -Basin V1-1 consists of the Rainier Avenue drainage basin between S 3rd Place and S 4th Place that currently drains to the pump station, but could be diverted to the new Shattuck Avenue storm drain by constructing a new storm drainage pipe along S 4th Place. • Sub -Basin V1-2 consists of the Rainier Avenue drainage basin between S 4th Place and a point 500 feet north of S 7th Street that must remain tributary to the pump station because it is too low to be conveyed to the new Shattuck Avenue storm drain. • Sub -Basin V1-3 consists of an area along Rainier Avenue that extends 150 feet through 500 feet north of S 7th Street that currently drains to the pump station, but could be diverted to the storm drainage system in S 7th Street. This area includes the Lithia Dodge parking lot. Table 2. Basin V1 Sub -Basins use for Scenarios 3-5 Sub -Basin Area (ac) % Impervious Impervious Area (ac) Pervious Area (ac) V1-1 7.85 90% 7.06 0.79 V1-2 4.75 90% 4.28 0.47 V1-3 4.03 90% 3.63 0.40 Total (Basin V1) 16.63 Same as Basin V1, See Table 1 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 4 2.2 KCRTS MODELING The same hydrologic modeling approach used by the SW 7th Street Pre -Design Analysis was used for the current modeling. Following is a list of the model parameters: • Model: King County Runoff Time Series (KCRTS) • Time Step: 15-minute • Rainfall: Sea-Tac Region with 1.0 scale factor • Soils: Till • Land Cover: Impervious and till grass, based on the future land use condition impervious coverage percentages found in Table 1 of the SW 7th Street Pre -Design Analysis. Hydrograph Extraction: 25-year hydrographs were extracted using the KCRTS Analysis Tools Module. The 48-hour hydrograph was extracted from 12/8/02, 0:00 hours to 12/9/02, 23:00 hours to bracket the 25-year storm. The resulting hydrographs were converted to comma delimitated format using Excel for input into the XP-SWMM hydraulic model as gauged inflow. Revised hydrology modeling files have been named using the same convention as the previous modeling, except the suffix "-rev" has been added. KCRTS modeling was only performed for drainage basins that changed in size and for the new sub -basins V1-1, V1-2, and V1-3. The peak 25-year runoff rates from the previous and current hydrology modeling are found in Table 3. Detailed KCRTS program output is attached as Appendix B. Table 3. KCRTS Modeling Results Basin Future Condition 25-year Peak Flow (cfs) Previous Modeling Current Modeling 1 6.25 6.43 U 11.78 10.67 V1 18.98 13.84 V2 17.72 18.88 W 3.29 3.62 X 16.61 17.41 AH 5.79 7.27 AK 5.48 8.93 AL 9.63 3.79 AN 7.10 8.20 AP 2.97 2.52 Sub -Basin V1-1 n/a 6.53 V 1-2 n/a 3.96 V 1-3 n/a 3.36 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 6 3.0 HYDRAULIC MODELING 3.1 MODIFICATIONS TO XP-SWMM HYDRAULIC MODEL The following modifications were made to the City's existing XP-SWMM model to develop a current conditions hydraulic model: • The previous Version 8 XP-SWMM model was imported into Version 10.6 and run to verify consistent results. • Hydraulic conditions in S 7th Street were revised to match the SW 7th Street as -built plans. • Hydraulic conditions in Shattuck Avenue S were revised to match the recent topographic survey. • The Rainier Avenue pump station link was modified to match the pump station performance and stage/storage relationships determined through previous preliminary design work for the Rainier Avenue/BNSF Improvement project. The pump station is modeled to have 6.9 cfs average capacity when one pump is running and 13.5 cfs capacity with both pumps running. • Revised hydrograph inputs generated using KCRTS were attached to the appropriate nodes as gauged inflow (see Section 2 for hydrologic modeling). • Model nodes along the Hardie Avenue branch of the storm drainage system were switched from "sealed" to "ponding allowed" to more accurately reflect current conditions. 3.2 MODEL SCENARIOS The following model scenarios were developed and run to evaluate the impacts of diverting additional runoff away from the Rainier Avenue pump station to the new 48-inch storm drain in Shattuck Avenue S. Each scenario name contains an A or B suffix: A = Existing conveyance system between Lind Avenue and the Black River Forebay. B = New 72-inch parallel conveyance pipe between Lind Avenue and the Black River Forebay. All model scenarios used future land use conditions. Following is a description of each scenario: Scenario 1: Current conditions in Shattuck and Rainier Avenues. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 7 Scenario 2: 48-inch storm drain improvement in Shattuck Avenue between S 7th Street and S 4th Place. All of Basin V1 (16.63 ac) remains tributary to the Rainier Avenue pump station. This results in runoff from 54 acres being diverted away from the Rainier Avenue pump station to the new Shattuck Avenue storm drain. Scenario 3: 48-inch storm drain improvement in Shattuck Avenue between S 7th Street and S 4th Place, and 24-inch storm drain improvement along S 4th Place to convey Sub -Basin V1-1 to the new Shattuck Avenue storm drain. Sub - Basins V1-2 and V1-3 (8.78 ac) remain tributary to the Rainier Avenue pump station. This results in runoff from 62 acres being diverted away from the Rainier Avenue pump station to the new Shattuck Avenue storm drain. Scenario 4: Same as Scenario 3, with the addition of a 24-inch storm drain improvement in Rainier Avenue to convey runoff from Basin V1-3 to S 7th Street. Only Sub -Basin V1-2 (4.75 ac) remains tributary to the Rainier Avenue pump station. This results in runoff from 66 acres being diverted away from the Rainier Avenue pump station to the new Shattuck Avenue storm drain. One additional scenario was added after evaluating the modeling results of the first four scenarios. Scenario 5: Same as Scenario 2, with a 36-inch storm drain improvement added between S 4th Place and S 2"d Street. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 8 LEGEND 45• MANHOLE NODE 40_E MANHOLE NODE WITH • BASIN INPUT -� STORM DRAIN PIPE OUTFALL 1_A,B1,B2 72" PARALLEL PIPE (SCENARIO 1B) 5 10 4+21 Ex F 15 C.D 45 - 20 25 30 35 40 E SW 7TH ST VAULT 1 (1+62) CONVEYANCE SYSTEM ponq CLIENTS IPEOPLE IPERFORMANCE K SMITH - _ 02,08,2008 150AAIAJAK 145A 140A 138A 137A 136A 135A AH 13055A i 120A 115A_AF,AD 110A 100A 105A 95A AE 80A_ABACAP 79A 78A 75A_Z,AA,Y 73A 70A AH75_AL SH70_AG SH65 SHATTUCK AVE CONVEYANCE SYSTEM HARDIE AVE 67A CONVEYANCE SH60-V2 SYSTEM 65A 60B NODE 60A X LIFT STATION\ 59A_W,AM TmpOut_V1 59B_U CB46 (24+14) CB45 (23+63) 58A CB -EX (22+85) 57A CB42 (21+04) F8-22(19+96) 56A D8-14-G E8-136 (18+83) VAULT 2 (6+44) E8-13A (17+97) E8-11 (16+20) C652 (15+71)N \ C65 (4+67) CB17 (9+78) CB21 (11+35) CB31 (14+35) CB35 (15+71)_I 1 VT3 (25+57)/ CB41 (20+92) CB40 (17+97) S H 50_AN SH45 SH40 SH25_L SH2O SH15 SH10_K,M / MH2385 ExCB (31+02) 32+10 Ex 26+48 Ex 32+23 Ex 32+17 Ex ExCB (31+05) CB54 (29+23) CB51 (26+48) CB50 J 35+21 , 36+60 �235_0,A0 37+22 P,Q,R SHATTUCK AVENUE STORMWATER DIVERSION MODELING SCENARIO 1 FIGURE 2 LEGEND 450 MANHOLE NODE 40 E MANHOLE NODE WITH • BASIN INPUT EXISTING STORM DRAIN PIPE PROPOSED STORM DRAIN PIPE 1—A,B1,B2 OUTFALL 72" PARALLEL PIPE ` (SCENARIO 2B AND 5B) 5 10 � 4+21 Ex F 15 CD 45 20 25 30 35 40_E SW 7TH ST VAULT 1 (1+62) CONVEYANCE SYSTEM ICLIENTSIPEOPLE IPERFORMANCE hum DESIGNED K. SMITH onrE 02/08/2008 150AAIAJAK 145A 140A 138A 137A 136A 135A AH 13055A i 120A 115A_AF,AD 110A SH70_AG AH75_AL 100A 105A 95A_AE _ 8OA_ABACAP N O 79A SH65 O_ w 78A Z,AA,Y Z w U SHATTUCK AVE U) CONVEYANCE /73A 7 iv SYSTEM cnHARDIE AVE M67ACONVEYANCE SH60_V2 U) X SYSTEM w z 65A 6OB 60A X LIFT STATION 59A_W,AM Tmp Out_VI 59B_U CB46 (24+14) CB45 (23+63) 58A CB -EX (22+85) 57A CB42 (21+04) F8-22 (19+96) 56A D8-14_G E8-13B (18+83) VAULT 2 (6+44) E8-13A (17+97) ZI E8-11(16+20) _ CB52 (15+71)\\ \ CB5 (4+67) C617 (9+78) CB21 (11+35) CB31 (14+35) CB35 (15+71)_I SH50_AN VT3 (25+57)/ CB41 (20+92) CB40 (17+97) U is / CB6 0 00 v CB5 W CB4 Z CB3 CB2 / MH2385 ExCB (31+02) 26+48 Ex 32+10 Ex 35+21 32+23 Ex 36+60 32+17 Ex 235_0,AO ExCB (31+05) 37+22 P,Q,R CB54 (29+23) CB51 (26+48) CB50 J SHATTUCK AVENUE FIGURE STORMWATER DIVERSION MODELING SCENARIOS 2 AND 5 3 10 LEGEND 450 MANHOLE NODE 40 E MANHOLE NODE WITH • BASIN INPUT EXISTING STORM DRAIN PIPE PROPOSED STORM ~- DRAIN PIPE 1 A,B1,B2 OUTFALL 72" PARALLEL PIPE ` (SCENARIO 3B AND 4B) 10 4+21 Ex 15_C,D 45 20 25 30 35 40_E SW 7TH ST VAULT 1 (1+62) CONVEYANCE SYSTEM PPMR CLIENTS I PEOPLE I PERFORMANCE `r DESIGNEo K. SMITH once 02/OS/2008 150AAIAJAK 145A 140A 138A 137A 136A 135A_AH 13055A 120A 115A_AF,AD AH75 AL 110A - SH70_AG 100A 105A 95A_AE 80A_ABACAP 79A SH65 78A 75A_Z,AA,Y (V SHATTUCK AVE 73A v~i CONVEYANCE 70A W SYSTEM HARDIE AVE 67A CONVEYANCE SYSTEM SH60_V2 65A NEW 24" :��SH�50AN 608 RA-1 60A_X LIFT STATION LP_V1-23 (SCENARIO 3) LP_V1-2 (SCENARIO 4) 59A_W,AM 59B_U 58A 57A RA_V1-3 (SCENARIO 4) D8-14_G NEW 24" SD 56A VAULT 2 (6+44) (SCENARIO 4) CB52 (15+71) CB17 (9+78) VT3 (25+57) CB21 (11+35) �1341 (20+92) CB31 (14+35) CB40 (17+97) CB35 (15+71)_I CB7 C B6 0 U) 00 v CB5 W CB4 Z CB3 CB2 / MH2385 ExCB (31+02) 32+10 Ex 26+48 Ex 32+23 Ex 32+17 Ex ExCB (31+05) CB54 (29+23) C651 (26+48) CB50_J 35+21 36+60 �235_0,AO 37+22 P,Q,R SHATTUCK AVENUE FIGURE STORMWATER DIVERSION MODELING SCENARIOS 3 AND 4 4 4.0 MODELING RESULTS 4.1 SUMMARY OF RESULTS The results of the 25-year XP-SWMM modeling for the scenarios defined in Section 3.2 are summarized in Table 4 for Shattuck Avenue and Table 5 for 7th Street. These tables include the surface elevation, HGL, and peak flows at key locations along each of these streets. Table 6 summarizes the "out of system" and ponded water volumes for each model run due to overflow from nodes with unsealed lids or nodes that allow ponding. Table 7 summarizes performance of the Rainier Avenue pump station for each modeled scenario, in terms of peak flow rate, storage volume used, and predicted flooding depth at the sag under the railroad bridge. See Appendix C for XP-SWMM modeling result printouts. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 12 Table 4. 25-year Modeling Results - Shattuck Avenue Modeling Scenario 1A I 1B 2A 2B 3A 3B 4A 4B 5A 5B Shattuck & 7 St. Ground Bev.= 24.362 (Node VT3(25+57)) Max. HGL feet 24.06 19.19 24.46 20.21 24.59 20.59 24.58 20.56 24.73 21.29 Max. Flow cfs 38.07 46.20 49.88 56.93 51.94 59.34 51.44 60.34 53.75 67.00 Shattuck & 6 St. Ground Elev. = 25.80 Node SH15, CB4 L Max. HGL feet 25.57 25.57 24.69 20.34 24.90 20.79 24.91 20.76 25.31 21.58 Max. Flow cfs 3.56 3.56 29.07 22.03 36.71 25.71 35.14 26.26 59.94 36.19 Shattuck & 4 PI. Ground Elev. = 28.31 Node SH50 AN Max. HGL feet 27.42 27.42 24.73 20.39 25.18 20.89 25.17 20.84 25.54 21.75 Max. Flow cfs 8.85 8.85 11.57 12.84 19.05 18.17 19.49 18.09 41.59 27.88 Shattuck & 4th St. Ground Elev. = 29.63 Node SH60 V2 Max. HGL feet 29.63 29.63 29.63 29.63 29.63 29.63 29.63 29.63 26.26 22.08 Max. Flow cfs 4.59 4.59 4.80 5.45 4.79 4.79 4.79 4.79 33.71 24.28 Shattuck & 3 St. Ground Elev. = 30.99 Node SH65 Max. HGL feet 30.57 30.57 30.57 30.56 30.57 30.57 30.57 30.57 30.41 22.18 Max. Flow cfs 1.38 1.38 1.39 1.65 1.38 1.41 1.38 1.41 -23.0 7.27 Shattuck & 2" St. Ground Elev. = 31.90 Node SH75 AL Max. HGL (feet) 31.90 31.90 31.90 31.90 31.90 31.90 31.90 31.90 30.94 23.10 Max. Flow cfs 3.44 3.44 3.44 3.44 3.44 3.44 3.44 3.44 6.18 3.75 Notes: 1. See Section 3.2 for description of modeling scenarios 2. Ground elevation revised from 24.49 in SW 7`h Street Pre -Design Analysis modeling City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 13 GHD Table 5. 25-year Modeling Results - 7th Street Modeling Scenario 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 7 n& Naches Ground Elev. = 20.30 (Node. 15_C,D ) Max. HGL feet 16.75 15.19 16.80 15.30 16.78 15.34 16.77 15.30 16.78 15.43 Max. Flow cfs 158.5 85.28 159.6 90.28 158.7 92.09 158.8 90.16 159.2 96.18 7 & Thomas Ground Elev. = 22.60 Node: 35 Max. HGL feet 19.56 16.81 19.60 16.98 19.69 17.03 19.58 16.98 19.61 17.16 Max. Flow (cfs) 128.0 68.39 132.5 73.50 129.9 76.16 128.4 73.59 132.2 78.87 7 n& Lind Ground Elev. = 23.40 Node: Vault 1 1+62 Max. HGL feet 22.85 17.75 22.90 18.00 22.90 18.08 22.98 18.00 22.97 18.29 Max. Flow cfs) 111.2 160.1 116.8 170.9 117.3 175.0 117.2 172.6 118.1 180.9 7 n& Hardie Ground Elev. = 25.40 (Node: CB3114+35 H Max. HGL feet 23.77 18.89 24.25 19.69 24.05 20.00 24.24 19.90 24.15 20.42 Max. Flow cfs 55.01 51.26 63.77 65.35 65.93 69.98 66.61 71.23 65.14 79.17 7 & Shattuck Ground Elev. = 24.363 Node: VT3 25+57 Max. HGL feet 24.06 19.19 24.46 20.21 24.59 20.59 24.58 20.56 24.73 21.29 Max. Flow cfs 38.07 46.20 49.88 56.93 51.94 59.34 51.44 60.34 53.75 67.00 7 & Morris Ground Elev. = 25.50 Node: 32+10EX Max. HGL feet 25.55 22.16 25.56 22.16 25.57 22.16 25.56 22.16 25.56 22.48 Max. Flow cfs 32.88 34.30 32.13 34.30 29.99 34.31 30.13 34.30 32.44 34.18 7,n & Burnett Ground Elev. = 29.82 Node: 2350,A0 Max. HGL feet 26.77 23.72 26.99 23.72 26.83 23.72 27.11 23.72 27.26 23.72 Max. Flow cfs) 22.48 22.04 22.48 22.04 21.88 22.04 22.45 22.04 22.23 22.06 Notes: 1. See Section 3.2 for description of modeling scenarios 2. Flow through this node only -additional flow in parallel pipe for some scenarios 3. Ground elevation revised from 24.49 in SW 7tn Street Pre -Design Analysis modeling City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 14 Table 6. 25-year Modeling Results - Out of System or Ponded Volume (ac-ft) Modeling Scenario 1A 1 113 2A 213 3A 313 4A 413 5A 56 Shattuck Ave South of 4`h Place 0.51 0.39 0.00 0.00 0.04 0.00 0.03 0.00 0.07 0.00 Shattuck Ave North of 4`h Place 1.13 1.12 0.90 0.72 0.91 0.85 0.91 0.85 0.00 0.00 7 nStreet East of Rainier Ave 0.06 0.00 0.31 0.00 0.55 0.00 0.37 0.00 0.45 0.00 Hardie Avenue Branch of Storm System 2.82 0.92 2.92 0.91 2.82 0.78 2.74 0.81 3.06 0.94 Total 4.52 2.43 4.13 1.63 4.32 1.63 4.05 1.66 3.58 0.94 Notes: 1. See Section 3.2 for description of modeling scenarios 2. Information compiled from Table E20 of XP-SWMM output file see Appendix C Table 7. 25-year Modeling Results - Rainier Ave Sag & Pump Station Modeling Scenario 1A 113 2A 26 3A 313 4A 4B 5A 513 Ground Elev. feet 19.40 19.40 19.40 19.40 19.40 19.40 19.40 19.40 19.40 19.40 Max. HGL Elev. feet 21.52 21.52 18.74 18.74 17.71 17.71 17.70 17.70 18.74 18.74 Flooding Depth (feet) 2.1 2.1 0 0 0 0 0 0 0 0 Peak Inflow cfs 22.6 22.6 13.8 13.8 7.3 7.3 4.0 4.0 13.8 13.8 Max Pump Flow cfs 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 Storage Volume 6429 6429 689 689 511 510 510 511 689 689 Notes: 1. See Section 3.2 for description of modeling scenarios 2. Rainier sag and pump station represented by Node Tmp Out V1 for Scenarios 1, 2, and 5; Node LP_V1- 23 for Scenario 3; and Node LP V1-2 for Scenario 4 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 15 4.2 MODELING FINDINGS This section summarizes the findings from modeling results for each scenario. Scenario 1 — Current Conditions The model predicts that the 7th Street drainage system is surcharged nearly to the surface during a 25-year storm. Very minor flooding occurs along 7th Street east of Rainier Avenue. Flooding occurs along Shattuck Avenue and at the low point along Rainier Avenue at the railroad bridge. Significant flooding occurs along the Hardie Avenue branch of the drainage system. Addition of the 72-inch parallel pipe improvement west of Lind Avenue reduces the HGL by nearly five feet along the 7th Street storm drain, eliminating all flooding from this portion of the conveyance system. Flooding still occurs at the low point along Rainier Avenue. Hardie Avenue flooding is reduced. Scenario 2 — Shattuck Avenue Diversion to 4th Place Without conveyance improvements west of Lind Avenue, the model predicts HGL increases at the intersection of 7th Street and Shattuck Avenue by about 0.40 foot, resulting in a 0.1- foot flooding depth at this location and a minor increase in flooding further to the east along 7th Street (maximum 0.3-foot depth). Shattuck Avenue flooding is nearly eliminated south of S 4th Place. It should be noted that HGL along 7th Street predicted by the current model is approximately 0.4 foot higher than in the SW 7t`' Street Pre -Design Analysis modeling because surface ponding was not allowed in that model. Based on a calculated capacity of 13.5 cfs, the Rainier Avenue pump station can handle the 25-year peak flows from Basin V1 (13.8 cfs) without surface flooding. Addition of the 72-inch parallel pipe improvement west of Lind Avenue reduces the HGL by about four feet along the 7th Street storm drain, eliminating all flooding from this portion of the conveyance system. No flooding occurs at the low point along Rainier Avenue. Flooding still occurs along Shattuck Avenue north of S 4th Place. Scenario 3 — Shattuck Avenue Diversion to 4th Place & Sub -Basin V1-1 (7.8 ac) Diversion The elevation of the intersection of Shattuck Avenue S and S 4th Place is nearly four feet higher than the intersection of Rainier Avenue S and S 4th Place. Without the downstream conveyance improvements along 7th Street, HGL in the Shattuck Avenue storm drain is too high to allow the diversion because flows from that system would overflow to Rainier Avenue. The diversion has a negligible effect on the HGL along 7th Street, but raises the HGL along Shattuck two feet at 4th Place. As a result, Scenario 3A does not appear to be feasible. With the addition of the 72-inch parallel pipe improvement west of Lind Avenue, the reduced HGL throughout the drainage system would allow Sub -Basin V1-1 diversion to occur without the risk of overflows to Rainier Avenue. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 16 Scenario 4 — Shattuck Avenue Diversion to 4th Place, Sub -Basin V1-1 (7.8 ac) Diversion, and Sub -Basin V1-3 Diversion (4.0 ac) This scenario without downstream conveyance improvements (Scenario 4A) has the same problem as Scenario 3A—the tailwater condition is too high in 7th Street and Shattuck Avenue to allow Sub -Basins V1-1 and V1-3 to be diverted without risking overflows to Rainier Avenue. Therefore, Scenario 4A does not appear to be feasible. With the addition of the 72-inch parallel pipe improvement west of Lind Avenue, the reduced HGL throughout the drainage system would allow Sub -Basin V1-1 and V1-3 diversions to occur without the risk of overflows to Rainier Avenue. Scenario 5 — Shattuck Avenue Diversion to 2"d Street This scenario was added to further study potential impacts of the Shattuck Avenue Diversion on downstream conveyance systems for a future condition where conveyance improvements were made further upstream along Shattuck Avenue. The results of this model scenario are similar to Scenario 2, except the added 36-inch conveyance improvement along Shattuck Avenue north of S 4th Place eliminates flooding from that segment of storm drain. This change results in a slightly higher hydraulic grade line at the intersection of 7th Street and Shattuck Avenue; however, impacts to the drainage system further downstream are negligible. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report 17 APPENDIX A - BASIN MODIFICATIONS Copies of existing record drawings showing revised basin boundary assumptions for: • Renton High School: Renton High School Modernization (2000) • Renton Center: o Fred Meyer Renton Center Existing Conditions (1994) o Grading and Drainage Plan- Parking lot near 3Id Place (1992) o South Lake Center Grading and Drainage Plan (2006) • McLendon's Hardware: K-Mart#4480 Storm Plan (1971) • Lithia Dodge: Grading, Paving and Drainage Plan (2003) • KFC Restaurant: Grading and Utilities Plan (1986) • Scion Dealership: Sound Olds/Pontiac/GMC Utility/Traffic/Storm Plan (1989); shows downstream system from IHOP restaurant City of Renton April 2010 Shattuck Avenue Diversion Modeling Report LL � FWgy i z zJ w 8 Z 1 o F I / 1 0 CITY OF RENTON STORMAIATER DRANAGE NOTES E MN,H la vxtfla 33A N[AO FVh®9m PR rq Mf gMx¢IM369,LL �wL W0.5 IA�p rm�iH �aNplq ml�'a�AP[�IDIbKoaI,QPR swNu WRa. naS RX['Y NOEa uW VN. IRmA, 11 q m¢ fm[ uo cars¢ r>eva] mmX nE t4w and a I¢ naam s,Hr9nWs ' iu ma Nmlrsmm na u]Wedwa w.sAoia• Pv.u®ei rsaor. xn K xEwX nsF: ,I. muHEs � Ita� O63,liw RDlx a Im an[ ssc If[ a AA smNl aYw¢ We .va awc nWtE ASDdroI Iwn3 AS 4fxl[D h K fL3' a RYIDA a➢Nmdi a RAC'Y�n t]. NL [Nq aYw qa6 9Vu H C(xL4q aA t¢i R]q PXE16N LLK 1 gY,LR[ nAW 9W5 ¢ m6nIICIN }•ARMA W N[ ,1IIO.W N.YStlnW AR DF �xAomiYs�mx v3 a rt��wY ocai, srvivdvs umh➢ U.6 RG,[ �lY �a069WS�Nm]IWO6CrvG PAC Wis-0r-YY tll sA ¢ Nsgfa uNSs rK�nIIgN , , taYT a KA wHPn Pxa Nn1 E d K.N 9rt Fb35fA u]eA'IIol a N lmRs3 ' c� vVlnaE qA4 R� W9C0. 9,u] H a WVa Cahn rDPw 11. 3 qaw 9Yll H uitc u]Ss mf9Yd YPv,1a h ott a Aud avN.WH a PDVC,gXS PNID W A mmll a s IIXn 40 uN P.]1 PUq,A WUCgll& i .3'/lY-M P,t9/:: l'-s' RDaf/YV-W{ vA4W, ,ID -]' HOf/ H-W[ v],f314 ma0e[ IAte,ad W W carol M[ Ww q n< Pxrt IS NL 10.D1,5 mxSd16 AV IOTTC aK¢ 9Wl ¢ mttLIN A K SNa dtlV¢ MwL YIEID,taX nCWd IYfl H w aaWNv i1W: l0 A]H4 uR WA+G D n3Cnn, N 9,Y nEi IL Staalna[Y YAWI]!D N]R mn1RCIW16 WYP[nD Iq[4 YPRAW h or DAMfVIM a INRa YDRa, H9a1 vWm1 s ntWl YVA1 DM. M ]WYWRY 0141LW VED AS-A41 DINrY. H 9A K Mm Yll ¢ 9nwna PoI1iIWL Iq q-sH 01®H nAf PR95 III m1Abq to ID m AY 0! Dmd VWS dWAIIN fOb.Di� �Gd�Aa1RSw�YI H�YIW,Pay.IDa w1Y n4�H,Am�VtM gXnS a.�GlAI Nn No l o. xL a i13 6,C q gAiPK Ott] h ilF Arr q 95d AYS WI sUIK of DIntP �E amK WIMe[ 1(W aNYAnN Ao]a vlry 9FP/3 caw gwswx m v s w Vu H ANXW h NammA [Xm s WnGSF. Dnu dw Nn a RMII nlut a[ Llx a mrq oas xw.miN Xrc rm [ PPra n.cmvr.' xa WaiawII a xC Sn'd Pxr.IIV oueA mR,acro, aMD�Wn �N1SQ1�WL B[ fLMlaO h A wYJW! 4 T� xa YrPMID H np ]. E (giACW 9Nl H R9vagL M mM9C xCVwf sxtAlNn 3V[tt G"/� YW6GM ,. xA uPamwEa swE H ua d A Sww Serum xlw.¢n x wm,avE ra [P1PAT, P/m,8 Yq wf DDd I®N:¢Y6 W PAln K ¢[ Id9L AID Sgtt A n[ wa�ua Poaa Puw.r�x mKfla] Y,N K SU,msIYS a 0% a+cto d nE �Prt can a K n,R,n sPW a NxwY:Nn s9+mAA sufarcx rq wYD xa aHa CanaECDAL nE tNM! wLWa NQ051A! LLsfI3C N nE naM)I BDIAV q n[ Iq a K n AW asn-a-w nw wN w,Earl FwWw aanE' ISW 94u I�A"G(onrW Pa A A[ h.SNn]IIW arbL Nl IICIb6 a a[ IWLNC As Ysll M PKN'all Na ! 'ta a uaad ¢AWL YVaVL W V,raa PrSC A Dw DN !: S VKTI a M PN Yll ¢ s3nNlm w X WaMu mf[ wodc 1 ,. ; NrWC mrml, 9Wl NPY ��i SxwD�vO 0,ff al vlE 6®D 1Wl H llw RAe T. w41 K l>191d a P.0 PA 1A1�"I.WY 0.1551-A 1G WMI BIIVO 9Wl R f ud KI urvll PYt. PAA� �0.' 3]A N Smarr f K xA¢I la,rol R nmF K !w„¢ ��mq � �� rro•w-stn I ROLL # 168 Call before you Dig. scnLE r-Too• 1-800-424.5�saDW 0 COUGHUN PORTERLUNOEEN All MS�.We,'�9vla'im AxV c,.a xacm Plftw 1Nnww.wlNl e.SwsA.lY,1 I i $J. Sff, RU TTPAINd(;F RYRTFU P14ACM TA14 F nGH W SW.CwL[ to K WVp. ID fAWMd as W]QTC wwADs IRf 9AYlD H w9xIW Inln A [dPnW a — I I ID 13 IgMzl� I�iW. Aw xvx[ R,YAWA union v°Nd IHV f i saw w s N I W 11 RAa nNsuYl �WmA, ' tPYONAA SN lYw w N W 1 1 W u tt rtwaum WPmn� s lli A W In 1 it. —I —s[uD oxq� a l b PA[sEA rAd Aal N I A W ,t 1 1 W II 10W IN PIAIH rFSAO, WOl INl W, W ID N .— I ID � PYA4 IMAr.Y RW bsR K IaIIAtlC ID SWJLNES xA lnkrlCM 1153 9A11D H VRWIID 11m1 i0 a R 3 1 W ] N I W f f IA W I M. W! Iv av-b b il f � Il IL rxK,Ml. mcS+bW I f to IS S ID Iq ID I K 1dgYN W f1YCDtl] xR 6Fv ¢aYNFYI alA ¢ INxlw LADE Ir6 MR xl, FIDLWD w H tlN1Aw UMR MAH N f R W tagfAYl a W 4 5 1,;At W 1 P.d. 4epaWpw,,+IV w..W IbW ll,ab I-;Hf lnW1 4vpC, Arad Nld lAl sD1ebID raX.evlw.l xs b,l.-3 w�Na.i pn lN. 541>Ib IEw FRUIwf WI s s1111..Gss rr eN..Wi 'xi �•�•+YW 1� • SD f A W _ n Mt�illi 33 al W w / ID iiDli v N ID W P.Fx E� lw 4 W IS PNN wu3 la• wb,� 4 A Ica w w IID Fo W Y Iv ILrbJm 4 I I� [ ®WGYL W SNu[Nau xw mIO]vC W6 ML cal MY[ HACK WI Yb! H lDa1W h ![ E nwA nuror.:i sia Loos RER YmssNr Ica HHSDaX cam AANS P xw a xxoE Iwm 3lann iawe r4xlEm onus w AXNs a fowl IwR ill [ sitn mN�ioo SAKE u NIDs I:Q S,s?s Idua snit wRSX lSAIA¢iVEYOR r.RArs lE. IA( 3) NV . m.Uh n9n R ARCHRECT I., w3153H 9P[uGf IW9 NI -SSW mnx'E Ica LEGEND f0'WI[ Mw. O Iwron P'AAI �- —Sao— MRDI— w¢ Ni Y GENERAL STORM MANAGE NOTES !"WM11R aE Ml¢WA6��bE m,m 9M AR gXANw,[Na X91uHKmnNOW'f Iqq •—P— _ SH uo Idrr3InA3q s u n.m auvt a ranro.KY. wsPAE ul —,— w! uu W IWu i Kan I-Asnl-sas —G— I. Imva Ir�w Lwnw ouxuEL u ullm laos3rs uXrs onfws ,old mss PWS iIDDI, IWNG w, ODEY DAPa PSmW W,rt maRcq 9V:E K k<Vta^m W E "IfOYHD Slab NUDS SYSIW. RVnE W - - - VERTICAL DATUM HORZONTAL CONTROL---- mr a tlhw an a PXIq NEN Yoanuxml�.-: �rcuK�e�unio! luµ sn x mam lim�wri� wmiw�'XI,.IH: uxevrl � ADw <Uw .. p IgY,AN I mnnm w.s usx[ ,ria mnx oon sil¢i ,WUR sml w/m llIN35]]ll E IHQFSlO („D A') M'Ud'E hs'IINW W ll ART! Ldl M1AtI1. . •AWfH q+n0.���� I�Dt a Yip Ii1NHl�m[ w K tlgl aW111m31 hll ~-� fsWID 13R Wgsv.TY NAX ,rvRA L04'x A[50']niq n( I 14,LYtl IXW IhY MfHIDlNd FAmI fADWK aSDVM NIwW YYY ONgAD Nu,r µWijL}I]I a x lM»la ! IJOWw�1, 11w U/➢II IIAud. AwfY,N RN SEE MQ-MCRM PLANE ! FORPROJECTPHASNG •.1 RENTON Hl MODERNIZATION arHEi P Wlln Ild" WWI NE. E03 JDRAMGB �° E C3.0 [1::.+nv� C�- 9 •�� cGNNEo cer 4iB07 R d tm— bnlR�lu�� /won ivax z, �ooe-ee uAR �• �";� 'A Aw I(.: �:'.Y � �nmce -. .. - -�-�- w A _--- _ r ---- _ _ - _ - �N S� obis q : • �,�--- ,I-a-�-- -- A /p R }' ei � v�J ✓ I a � �ix� - lay�uaina 411 I• � NR Irq R•Nyl I `� I �y _: -' ., �eMOaiml"°. Lw S 08- F � I. i uaNrfyq � 1 �• •' III r"nu )r pllr 1 III , Y ' R•x�e R IAI 1 I 1 � 1 in a it lunli I 4 H w I3� 4. °GIs I U rY. a I�i "°m16` w 1 �9•..o :{ ny u• sil � If r`� w 1). . I I i 1 i 7 � �� ���,� : ` r rT I ! � � I' `" 7 - r�� ?; a• / � Rat ,,� . „ r E i I i as 9 ' Imgtial.mq _ . c• LfS 1 ., kt L J ^Im.1111016i 1 � ��efl�NR+ t'} rirb�rym'� APPROVED �' . ' j i I M � , •Eo®m 1{ ATE �Ao I ,I,_ � / 's �shv Hbi�OrwfSPA IOwM' a'u:a�!` — ru nNs (ml MnROV£O .�M1 Q�LORiJ$ _ ( 1 L I u yr � n a i i 9 t" ap . , R.:,e s• R % i� �I4rcren�-srfs�rps REYIMP RENTON RS. MODERNIZATION SUET. beforeyou_ COUGHR%Ic,N4FOR.TERe.UNDEE)N10 ? Cell DIN'/ i9• .,N..., GRADING ANDCJ.1 1.800.424.55$5 .� S, DRAINAGE F BCALE P-20' 9 eD�4-�Ja«•9 ACAIrIEORCT +taw a ROLL # 168 PF(:TI(1N IA TWP 71 N RW-- 5 F WM r r� N S I 0 az n � F �� ''�°` A ___ "----�•� J(. ---_ ---- F„z w 1 s, TIUri f r le( i I I "hh 1�I .. so • :.. oqf. n;u IR N � :' ... n _ .m wino � R',f2®4 6 �9T / i a JIATCi[JYf - Sff8fFFT C34 Call �Toof Wofo you 4,L DYE. COUGNLINPORTERLUNDEEN 9NCp %Er •.m-- RENMN H.S. MODERNIZATION aao. 3_ wmn ua goo GRADING AND czar C3.2 Y�'� z *Fo-w-rtN BCALEfw20' 1-800-424-5555 ao� o��s DRAINAGE PLAN ROLL.# 168 N� O r - YYY "a oz O r A ®n a ROLL# 168 SECTION 18, TWP 23 M WE 5 E, WM ri 9� Ft q ��JJ7vie � �\ Ir��}. jyta7a�-pp f � b• r..r �� a�vys'��4JI,.�I4 � ♦�` � At4rCMAE-&E9$rG95 ®® b before You Call04-01 D39• CO UGHUNPORTERLUNOEEN m """ �-GRADING appc EETMM p^�- _� RENTON HX MODERNIZATION e""'""E�.rwrmr,xHEw WET �vv _ 1-800-424-5555M• o � ANDC3.J SCALE r-20r A( DRAINAGE PLAN 0/1%-�'r °� SC�nnEo OGi 4 i000 'e . y : 3` i ' ZO 00 Op ROLL # 169 SEC" It TV 23 K RGE 5 E, Wm At4IMM-&'MI-TC32 d Call moor 21 before '� you Dig. 1-800-424-6666 ComHUMPORTERLUNDEEN SCALE FIR., -4. K—AP I RWMN H.S. MODERNIZATIONMING AND C3.4 DRAINAGE PLAN wT It 01H go o - z 2. TP 23 K RGE 5 F VIA AM TCMM - Sff&'MTC33 A, Z, . . . . I1y. . . . . . . . . Rim R., e JA if IN b R-285200 vJ F—W,--Mmmm SCALE Call before you Dig. 1.800-424-5555 �OUGIHLIHPORTEPLLU _.,_NDE�N ROLL # 168 KEYWV RENTON H.& MODERNIZATION . SKU ja 1— Se ft... W. I. GRADING AM DRAINAGE IPIAN C3.5 "0"000 i'm a OH 2i 0PA 9� 7- q N5 Op {L a y z g 1@ TI P, .Ll SECTION Is, TWP 23 N• RGE 5 E• WX ATC.'LIIE-SffS'EETC14 �•�.�♦ � . �tN' _�2. I j�+''� '. �f `yiivt'.I�y'��}'v�Jr 9."�c��fF» �'6� s tr'z�hr ^�� . Qom. ��r ;. �7-.G,.�3'i1 -�:• �-PF�r: ?;y,_+p�3: s:� �1 . b � s ii•'+' � ti �� (u.'V�.� tE�� J�1,� N���,�ba �rl�{�l t � 9' h�YtS5y�W R •i c �f.al�glf���fEi `, � t_ 'dti� l ���5, 7 PPvv it y Gk.\�;u�.y 4 rn� 11.'':`'ifr' i.��tiia:, <-;� .i.�._* 'P.+t� •i•j 9.. +rAnom aYioc/[i '-'iiYsT Y 7F0-Ie-JBIl ROLL # 168 SCALE 1•-20' Call before you Di8• 1-800-424-5555 ywot CO UGHLINPORTERLUNDET 'snrnc.r.vmi == 742"'ic"EEYMAY RENTON H.S. MODERNIZATION �coss �� �� GRADING ANDr C3.6 CO; ,Q ..a,p1<eF [CAPNm WtsW.'Nm OCt ISEGp 2 JCV I1VIY 10. 1 vvr LJ Iv, flux 7 C, W.M. B e �• RAINIER AVE. SOUTH ,e• w E C rv•uu,oM '.MW 9 IMIM°Y E �enc usui. u FL eo p2iiE.�Ae .' 0Af V4 .. •• . nn O tND� /FaS.r^ S: �w•� " P � ° SEA .: Y1 VQ T 1 N 1V59'0{' W 4 F � • tyRN IT a .0 �aE r 0.T6 - ,NEa •'II $ �i I . L4 .e.. e^ is• IE ie,leEi, IY NO . co LEBEfiI LEGEND. vliwwYo .. m�nen ua _--_ p. uwiavu w cuE ® w w.n A ! -gyp, umrrcE THE 60SRNG•SITE COND1710H$ SHOyYN ON THIS MAP ON saooauW w'm� •` - - 'WERE OBTAINED FROM OOCIIMENTS ByOTHERS. i' ^^'r•° W''i —�►— ® ^,,,M,.�v 'THE' CONTRACTOR SHALL BE'REMON5MLE FOR VERIFYING • w,,rz^usrcv 'THE ACTUAL SITE CONDITIONS PRIOR TO BIDDING OR CONSTRUCTION OF ANY SITE FACUTIM [elm �k ° o,��F Core'E�Ruc+e_dw- Yfo eSs; 6�(H�Awif.►la 1 • Leonard, BoudlnGt do Skodje, Ina, CITY OF RENTON DTi.PAATHONT OP PUBLSO WOAH• ' - FRED MEYER RENTON C EXISTING CONDITI NIS maim ala B/B/B4 rec rw• 990°i8 : EvsoNs.PER aTY cONUExIs oa Bar SA ! EL ovs PEN am NN' u T . II wuc 1-eS7 aysen tN,te C—len Se NEW CUR _ pEYN L CPTGN` It v \ CURD r4vf•fHT H11.i R`i pER i 8 PEN10N 2 tE i� GRAPHICSCALE LP y Wpg. SG,t{ OF \ SAVCUT It b - 4" CLASS 'B' AC. VE• tl \ 6 CRUSHED ROCK J A 1A g I 0p N Fq2 2� \ \ NOTE. SEE PIANO ME AND CURB & GUTTER MUST MATCH EXISTING THICKNESS AINIER/ i 05�/" 1 � • E R \ IF GREATER. • OR 1.0' BEYOND EDGE OF DAMAGED PAVEMENT Rt / \ � ASPHALT REPLACEMENT DETAIL C/ "'T's tp9•60 0: . 's'�1 ALONG RAINIER AVE. MIN. =AVGDr • 1 pfEfe DWG\ \ ITT OF REN ON TO SEE DETAIL \I 6PNY',r Ht' • }14 \ 4" CLASS 'B' AC. }�\1 6" CRUSHED ROCK JJ • , �' T S(A 9 52 ® 51 _ �' .r - �'" PER 1 0 .N !� 1B • C- LINE fq15 "I- S. Pt)L $, , � � NOTE, MUSTIF GREMATCH ATER EXISTING THICKNESS M OR 1.0' BEYOND EDGE OF DAMAGED PAVEMENT N� ---C' IN ( to ASPHALT REPLACEMENT DETAIL S7A JIt1 TJ -" ♦' 1. N A.s ii. .. .ION RN p F 0 ly ' Tyz • p/ ELEY.�24.04 gtpD N.T.S. BUI� BA'Y CEMENT CONCRETE MIN. LW F,235 \\ \ SAVCUT 2R (L LINE+ Lu N:RLAY SEE DETAA .)EA i •' T i ��' '- \ \ JOINT (TYP.) ICAL VV1l'' Ilo - -- -- a\ O y O g5 1 '2T•g1 NOTE. \ 1 CERR999, 10 BE PlRENTll ON, ENC PT /\ T RBIyG 6RUSHED ROCK 4" CLASS 'R' A.C. } 2060 �� CCC UFONNGi .5 PNEW ERMIE E DNGA'NANl4Y 2 CONSULT EER A ARC HI TE PION 18 ASPHALT REPLACEMENT DETAIL �ti, •.; ,� :, :,.;. � � `�T � X1 ANY CHANGE UESI 6YFADE. ST 10+00 LWE 'C' `11� .� '• .... I '�. 1 IN CASE OF VARIABLE N.T.S. _ AT BUILDING CE ASPN iWRLAY p K 0.10 MIN COMPAC 0 PiH COAT PRIOR TO PAwn'G F BEGIN REFERENCE LINE "0' HE;CAB 05 ^' laD ♦ 'B' 'S / TAPER TO MATCH CXISDNO - -- - --- r.�- ..�.. 7 183% FAOO LINE NOTE: ALL ETEV,ARE FL V LINE. EXCEPT THOSE 5140 OFF CURB ALL RADIUS ONIEN"ON ARE FTF BECIN REFERENCE' LINE 'A' VERTICAL OARIY: q1Y OF O FLOIY LINE. EHTON EXISIWG ASPHALT CONCRETE LINE 'A / IOU: RAIULOAO SPIXE IN OF POWER POLE AT N.Z. T FACE Y BE /^` ASPHALTIC CONC. OVERLAY DETAIL ,-' OF MOST SOUTHWESTERLY EN TO SITE. ELEVATION-22.0B OE .S � - % N.T.S. CHECKED FOR COMPLIANCE TO CITYS STANDARDS 1 +ea.i.K G RECORD DRAWING FDA APPROVAL Mw It W / `! ,'+!{ � CE(f f4awn4°� he CHECIODFGROOAF C.•k'L WATER UTILITY DATE DY_L 4 ,,�1N7M 0 ,�'•.1•- � .I 2Z TO CITY STANDMI 91y/9-L / �;` DOW L H N 0 1 N ®� R S CITY OF RENTON DEPARTMENT OF PUBLIC WORKS GRADING 8 PAVING PLAN !Ty NO nEV1Ef0 FIRE DEPARTMENT DATE CALL 2 DAYSe'n � D •w t� n � •°VO • •»••, Wtl W.M' uR =� ^�••"IJ-•^a— u,N DATE j�D>A�911 •elm®uaivj-,�y�yzl PUN REVIEW EW DATE BEFORE YOU DIG L 1-800-424-5555 TED-4o MAINTENANCE DATE = spncN w NfR DATE NrroKo_ RH{ETy Of �E REFERENCE NOTES: O Nmnn umr putt rAvadr va urn sp.n m wsrun mlanE aAM Iu cern Ip.n ® scA rar rmrN¢ vAAaar. m NsrAu. mXAE,E :acWUA Aoi u�AE spa ® raven au xAA• ra Dnn Xp . ® D°urotrttO�nxi1duas Am mmxM nr. � ruxs rM dr.W m SE AroNECMu NNK IDt nua° SmIArp146. ® s¢ nwarrtcun vENN rox PNva� aoi onn 0 t� PARIM PAM wm 4 xtlE SrPPE M., Vo II I 1 I SURFACE WATER DRAINAGE- NOTES h SPECIFICATIONS. 1 1 ,. naa ixr tasmucnan rA oEA¢oNar ACAWIr DEGtN. A Ars-mumucml YQTu IAISI x rd0 �M Ir[ art Of iprw nM In[tu I 1 0. ILL CIwrNA'Ixx BALL M N AttwmMtF wd NF itNt lIAXDAIR tPEtlY uN¢ iPt mM. Ne0¢ PIY WMsw 0�6mx'lIONNaAAMD Br 1 1 wE Otf MJrlwl OlPM1YDrr (f Pllal[ w�°RAi,ml (APNAA AS A°0ipm M n ' I 1 Az sttro awn a ttNnrwclm Ac>tmPw m nA wNE [VMmpr ? N.ec tae¢ AWf Arnot 1 i ai Ary am°Nnws ru Izaula venrX AwvwAn rrw Yxc � � Imr,w uvMnrtxr a PAuc XaaN. awAn: um unnr s¢oox. 1 a a ne AAAMm PrAxt wn c a nv Aw art waaAv NN1wA I%N iimves - 1 1 S DAM/ aWt H Mm ®UIIIIJ d1411wi IPfPNm nY DIY Of MrrOx 1 1 � MDpO V R91t IONS ,mpWNQ D!,mNAAx uW NLVA,ION AM ROAD 1 0. AAt Nmxe rMq A= IACV116IANf 1E N 6O1ATa1 AIeM ro rlwnc caxsm pt Aw nn rwT u sA»ffAcmar vAwru® w,E NMMNrp1 b 0P1[IFD uw M,MIprMI IU W-aN wMav° MAA An5[a. i. ALL AEIdlMALflExpp, iApllRt YYSr. aONlAiItD AIR N fPfAAAni iflni W I '.qm AIn taXsmxtu A�vm( u.A!roKo gY:rM rvNk.m9 A,IA :sfOxlx_ . ',' 1 A, 4m PL owMAurr 4 ° , y°w°'�i m�'r a lmria wvaamB1 srwAeo ims . a��v amm i/om MAO'.� OY➢¢ NM1C dsurlAvrC YSA¢ m V 1 n.- .Ill AR Aro APNAANAV� 91NL EI.W a A ixvEMY PMfAMD IPAOA➢Or - � ARtlmu°tE xd s[erv! 1-m]II ? M OXNDI, ttAm Dr"W 94Wb1 ANPUD mNNA r ANM Wmor CAVMA'EIM: nxt'tWAL ntAllOE I a YRHEM( n[-.DIObI BOnpu•OA rro 6:TArbYW1MN' IWAL A Orf Aw EpPADmiI U MtlAm,Dmpw uARMAL - y�q�'t .. A butl��QADE ID MiT't1E� Wc�ME, M w[ wLL-Xr 9FNIrD.d a1mpND pm0pn•awL.Bi u�u MII 'r: •NtNVnc OVAAyh 1 nd 1KP uo°oI DAOvti arAl R'ir1YACAD 1 10 Wi r011.N.rEY[xl Mw rm AAp.mAbnphff PkA AS,Y �' I u OI 1 _1 MI. yAl}i_ RMN 4 6�Na(5 11W NN.um° V _ 1 0'N SAL RC um NNNtdD SI�°i[ �� � ... � .ALA ro.. nA1® ; .0.. K Afranl 1¢.A,IdI N aE,ILt.NAM m aARrtff �� nw.i awn xoi.e: Mw Ailiir io rm v ,r¢ vv�c.uxi w MY 1 SNm QMNA6 RPE OR u R. of IDx V ANY — dK I ¢'Au' u a n aE trP� a F. nD � x oAd a, aoM olosawz EmINO wwM wm u `�'= r d - IA i a -Anvrmux�ss vconuur wrxwm v rc mla ovAq?mrr . A, i4£ra"� � 1 I I'A � a saz rwnDNDAt!eA: NYIXS uAaNwAia. a . -dY r- Yh F�m y � �•o ��: u�` � �;Axx>K� 1„Dn,AxD�,�rnE �y . (U m°n i li;>; ` ` is ci DA•Wra ssn°1S'uD[aroAlDRnAiO°M°lursifKwpnfl, KEY' aAp' W 11A ,UR' Ax Al{F. DrRIDWD NrNWD A5-P0. d �AOAr m ,A Ile, �ii �,,cu °� o rci x•r I: Tes Nwiu¢ smru Wu. K 9°v+irm m n4 •orY a avml urox.. Ika .'4'.kl'. I € i ' iD Q' �i IIi i w.or 'AEay"'so �°"mvle�n�:m.n°aOXGi a P. omnwmo."`�'i m°Yiw'Kia°°rcioa rmw oaa ,, jfis�� s1F° �•_ y„�rn,, - . 1 yl i�r A "cuiMc xm s,auwdAa rtv �ns:la,ov iC�""r�: Nvnl+ac'am mlauroN Aemu A }uwre:A ,,�j �' y�-.*...�� — — II. AiFtY [(VLg, nR4'mS DAiNrp4 MO; C YD Olxq IDID® ACI1W5 APr —IA7117TI'f' — � � 1 ii ql:, r rt0 n[ Ifc. KKm 4a Sui,T AC n9G MO m gMDp'Lf BURLINQTQN NQRTNFRN RA/LRQAD �QR. �A .�°iW'" '�Aw - 1 io we "M' WMNivsrpr-Ni w1°'m,lwira 491Q®'"' .. . ('xArsstc cnAsr A4udolD1 1 : auknurc nn vtun rtav° MpAm n1'rpofrvxAa w.ui nc iL - \ 1 II vD�%t 11MIKgr Si 1 ii �I ne Ksa Awvowmrem'a��.'m-a rypc � slw�i °un'v • f ' AI -�1 0. �"K µ Ma1fCDM ASA IMa rtvAm r 1 i li I CHECKED FOR COMPLIgNCE - rnoEcr , �N� Wx ®uArq vMvvm aArAQ FMVAxN maecrvM ��/ TD IIY STANOAR05 GRAPHIC SCALE l SUMA60NAfIX -i4®rr 7! 0 - �Da ® NnAL am° wx ru uun sp ° 9 I - m r xar camarE sass Is> wm u• wnmt AK NOTE: �k ASSUMED BASIS OF ELEVATION' T:9a1 —~ _— TNS TMCD. C M —NE NE WADIr MD° YEn,° IUA9 E6 cm K POlixl d Ip6 1' BRAS D6t MN OavNrwaA soar uAN °�a^'0rt'xu�A1O u^"°1R 8Nwr"1°' vc°tu Mo.wWOE xDAm rns rAlrAtuMWArm .CONTRACTOR.. NOTE MaN[CMAn RMt utAA IXADgY[M 1A1O1 AK. SODN, ii[VAIIDX• � IMT. - _ - - i" UNOGD/OWID: 5441'ICC AIfAf .. MIDI W ACxllOfw DRNY4 AMA MAS tLFll . , . - fl rmcw anMan ro tmaE im onn DA1,. w WAs AM�ArtD ar nA rMn usrrn Au FrMNs rtrlWSsmw a NA14 AM.to c rHwA➢ xamniiuir AnoMr=cAtL xuWeEx oD mvtv;E sxm.nuu vvax ro AIN'avaautnov Au EMnev: runty wanvc wAm a Mwwr M.ruyurM. Mmm•vAvs Axe aNwsneam n (890)424 5555 ' ASSUMED BASIS OF BEARING � "°un � � AwAtAc a vMff Moaot Ao � tuA°tY0. FM EOFnax -RtrxC YwA 4 Mot grllgn m BA95 d DEMrM PEA xAM CpWM1 nu - ftlN,mDllal OONAR.DE VAIN ONrN/ACdtt Arxl,sovo°osooN � I-- nM _ a - `w 1-� . .nc+ n� + CITY;`OF souTN LWce:c€idreq tC-3 t imam RLN fON amRENTON WA 99055.0 6yAp1eY.9CflTINi.��p:R-)TT1e}. o Vow SUMMARY or ou4mrmej L A!"FrAW U.) a� SrOM14 SO-&. Chbrl,Me 500. y 1 c ? :' - . I) V GENERAL NOTES IAAC mIIACI Ooml i Izum AR' mEVID ro a n I7TbA. z Au lo9nrc IxtAAa sEvi 4 A n°a n GNERR Fx rDYDulro 1n9 NsfLT nlG S1W1 PNI SKRIL ID1Rri fRA16 BULL R RIA® rA lE n[a RIt1Un< — LITHIA CHRYSLER DODGE JEEP — RENTON F'ORIION OF SW 1/4. SW 1/4 OF SECTION V) TWR 23 N, ME 5 E_ WA(. CITY OF RENTON, KING COUNTY, WAS}MOTON I Z , II `- `R"PI°` SCALE A\ r V 1 ,•\ z a W ' w i UAIIf IR9>IAiro Onot¢ sw1 R[ 9Ull P1C f>fl a mcEa a Rcar x 91NL : FYE Ar A IaRu Ymmlr 9.as YUltl9PRIR N 90v 0E CARATS NN'tiE - /•S-0i115 A OML 4E iv s' x V' I 9, A \ cc\ Z uN1 OQ < z NA]IRCNUL R.W 101 QILT IOFAl101 AID Ms®l O DOn60)i STOP tli/II REY1 fARs i tf�wx scrr„. y la•x.ry r. n ' H U`' ivusvi. \,,\ ,.�7�JY, 11-�`� JIJJ//fff a (�j �j • a'� n.. w a i STF ®091E AlO 9AO9Y1 mAA a SQ OI}. 9flT QI-27IIX ORADIW PAYNL AtD STGN (RAnIQ IIGCS ANl •iWl wtst sa< �MXUST N M PM a I LAWp � i � ' A9LSi RY 10 fN9ED TR1GC 1I �•A�tx�a� I Ir A G O s C Z K9 RY EIfY ZMd YNI MAI IFTIC TS06 NO OINI tl' +rr 4r a``6w s cr Rn • ). DDr1AAL101 91ALL 1OYY IOf.Algl O AU E\STAG URIIES NO SnUCIII� . wrrEC 1 T 5 z isrwiwwwAls >MUL a ma[clm m _� _ aAMD r� F `J � 9 nt uR125 )RE FPo1'AIE Uc11S � � InOW •cRcs � TT \ \ 6U J 7. Is 1A1 URxLUA911S GIE IYR 1 WL0110ND OOtpn9. o)H \\ Y �� _' \ r` e Mm uAoacii 11111 FOi eulnw Ara EnsrNo-C p sa.w y I .L IPwry5 I YATOI DEI`4 - P• � �4�Iz FOP ]l \ J �Ew�s�� � i �,• :-5�.-�--_---i —5 CBe�IIL�i � 1 .� : It f3^<'xr"r%I6'w33 -h�O iem :x<IR9s ii A a'ro, I ; MAn„iRat r tnc tL s tars sTa— I ; s [ A C i1 t9p[ i niv. z,.a j MI. eEv w) �I %a r:° oa � wq ElaTllG ux.9EE : I N rbm' I I I R -- ------ -- - - - -----� fu9ut Nn turnx]t9 a �\ <e•s<(�, to i�drs: �1 ;•.'n° f 0aSR16 J MATCH 0�111ID (Qt:RA wf3t xtxi) J I (P9S9EtE tY Fux ro rM Nam)—� I r'` /-••� :aa)' u�'::L'.xvc La 1 ASPIINr CITY OF RENTON CONTROL POINTS '1AUTOCAO NOTE QN0. 00 AN AUTOCAD FILE IS A9NVHLE TO AS9m THE CONTRACTOR I NORTHING: 175690.972 `1 PA SITE LAYOUT. CITY OF RENTON CONTROL POINTS ARE I FASTING: 129.16.471 FOR CITY USE mLY. CITY OF RENTON CONTROL POINTS Qi NO. 201 � SHALL N°7 BE USED FOR9RE LAYOUT. HORNING: M I793b2f FASRNG: 12966{6."I NIMO COUNTY SURVEY CONTROL PE NUMBER ICON (:MT Ox E rn- .TOP OF GRASS DISK W RNH ENO OF THE NSANTAA FE CONCRETE CFMERUNE OF SW. TTN STREET PFR •R' A TOP OF SORT OF — W,NCWALL OF BURUNGTON NORTHERN-SAMA iE AARROAD SHORT PUT NO. 0110. .,' W BOON I11'GR/NT, LOCATE➢ WEST i SRIOGE NUMBER 11.7 OYER SANTA Fr. AVENUE 29, AT PACE 156, RECORDS OF TRIG SIDE OF HARDIE AYE. SW. ElEVA1WN 35.72 (HAV086) COUNTY, WASHINGTON (S.P.) ELEV. . 2723 TEO ya'�ItI AI, FBi �M x ,3 n wla3s _ Y4f A.� fL=x'.IS xsal e I.xes �•)uAs E-uex � la INsm1c OaF 273 pvF le 2 `e'>M� RY µu01 El YARN ♦1mwc -W\-W\ . j AY.x5 YY W�Lr�9 r 121 YARN EOSSIx10 J # c r unr n•t�Y� --------- ROLL 1 i9 2 PR 12`0 W11E r SDI Ma9tc IT ,: ALAI N GQ]� OF ]Y v 6 p J*-30¢403 •A' IROI YA9116D TRw 9RW mAZE Tx OEP 1 " 1 C-r7:to _ x Tx i���JJe'cga ats EC ly 1S IF a £T f9P[P O lSE1f n..)yN; .I fl\rt. 12rc9r°NCie I �cx - M:�xrvr x I � 9o/Ewlix wine YEa9AED rRGII FZN C A FwW ;T Nli��oxcM n.1e e / CALL 40 HOURS BEFORE YOU DIG 1-800-424-5555 .• •- I FOR COMPLIANCE CITY OF RENTON TYSTANDAR05 wnrAlasvr Dr euaue w °iR �-'a"� ORAOINOr PAVIN660RAINAOEPEAN tAa C2.0 snuu Vtl .e., 4 a TI CD�/t. F•69wJ 9CA,RIED NOY •TECH R. AS GRADING and UTILITIES PLAN ,S,hFS ,-A l H •ASMA.11 pY'b +aBiT xAtFA Flf^I _ pp L T-11b1vcrpcJon iVral �-Hnlalpal P1Dl1a Nalhf CwOYCtfOn HTI ' DY OW MAVSYN GNgR6. ISATE V a J z .y �n Y:Wno •E{ S j Pd ea0 � a „ .O}I � I _-r- IDII a -I LI•. l3• %C 1�_,SSt --�\ .. , .f.. }f.N B 0. OY Z 1^ N A N RlOIN sp f D.M 16Iwos1 / Y Y.Id- wmo - a".IrNg f - �i a yam., uc °� < w A � �/ I \ ..Tom oNTx 6• Ps l Jsl ... •... wxC Y YY _ T o ` •• ^ xA eenvlcr. }p. , i11 ro�Eui i W i� /T- // NEW'K/�.F.C. REST>A RANT' 11,E I [� 1i• S C) g i; n 1 ®TiaR I f� i:e:= S. (-- _y 1 /e acsr: e•.6•:c Y 1 • . .: p�f�J�3I�S- snub JJI I i°f. Esrs arms. Imc is k 24. IDl 1 UTILITIES CONTACT LIST ?IN�I �CiI•J�VAXV1Y�\,��,f } �( M. DAM, AM 6mi- 1 8 ;m O rcN IpNAIDfI � - `•l / I / �f - _ IAI M9R19C�1. _ .. _ _... f� • , NN:RI PI9w„ xM5 0• / rnRlIy La.Yt N e D.Im _J �� •r Rnrlrw, Iwul�ilmw'OYs(oss ' �' • � �Fn 6r�RpN �E� "pRL, pE>.T. � = 4 • i i 10. I1 R ;- I .•.y l •I; � .•..-- -- I2C61 s,S UTIL'ItT1 ,iE56 V -�; �Nnsr a I it � /�we• - wen �. �/pieo•�niflnl�sTT,I�'rr Ns •1! ../ _ _ • / 1 If ifObl ll-NOW � pGi� �/ / • 1ryl �C•�i: C niwryu watr mmkrc R�1{.. C gl., Th.N.Mrntx •NI I aNrar.f. Rnd Ilr revey of Invrl• Al I N I uofF Sss=rlm; Fzr. ODS /n {Ittll4 lA 14R 0.11 - Isfl� f^ a I• 6^ nvlbry I Y .-`---- V`SA,OS C W tl 6 e Ro M pelnb al en n bn bli- utll lr l.., prMlnp, ..s on ln'nd.tlN aw•truct Ion. Nerlly unpinn nt .rico of anY I 101. .SD NrNIRA 1M r D•a 4•rin. _ IIIC NOTAI�r mf. N C 1N B1V11105r bH^/dnl "� Y N f 6 1. GLl }SS-RDI fOR IIf01fIAT101I NNJI T.. {(YLN S E 1. FN }• Ir 'D.I I W H' 11- -1 -11 ruf0010111tY rn 11'Id chrcW snd I MI i0{ IIyy actin lout0n ol'ell uflllrlu •n1 rlviNlp lyrw'ranr•. I 1}061 Stlsr-11no11 5'055�"}Ni INSFFCTI01 kR T[6TIIK. NILOIIfI SESER 1111 510E IX 1.TI. IWl - gl.t 1. und.rBrw.1 )nllltl•• Wre,6'en 'born, on tAl• Wrinf (Y, e m �, E pF Sp•[1 lgi(f1 BDUSE-1 00 My NW1LL rTIA DIxI(D MIL l-1311 11 DI1ENleY '; le<Il lrl i'urp TR' nen9lnlwtlior Rner; r.rtu'f 0.1I.I1 -AfIRR . I 8 I. PRIDR 10 INSTELUTION Of W .- 1-1 WIN41101, h SIDE S0.[R TID 1114LciN. F NAL AFFAOYk ..IS R[ ORNIIYD -1 - FAISTINJ � utlllfln A. D•n ICD.}M. R1v mnrr•ctAR'M.11 W •pl•IT I / i.C. •. T.02 � � N O ^ PEWIT MST D FORCIM6ED TRW TI[ CI IY OF REMgI p S SFPfIC iA1f[ 105 46N PUbfO DUr AW IIL(N YITN fN6. I'vpbnlN. fx .Ay Ivrep. t, vtivrRrpugl INI,IIVIn rr tl I ppvv�R OEPAI1.1- TIK C... PER SIIDLE R[SIOIIRIAL =XalW I$ rl M- F50.00. 5. I-L 110E - YIm }I^ NIXIMf1 WYER. EIIATEER .- SIS.) Ira'hi'Mr.t NY•. _ 1. /J a AWfV WAICA IS kLCxCD AT TNE:N0AS1 II OIRLET IS S-01. 11 •h.11 Da Ih6 u.irecta'• 11 `•16r_L I.J ` �J� T•TldG f g 1. TYRE. G ^1EF Na IITTIKS T. WI.OE USED IOR SANITARY .,AS l '.cflrltl.. rltA I.GI HIIItV u.M'Ia�ta lvn•rv. 1Mt �I I�Io11111t11N �� W.LL Of 1PPROYFD By TIE wmThENT a PIALIC LOWS. R. A 6. If SIDE 1- If 10T AVAILABLE• - -A -1.1 IC R -11kE au InrtMltl cm Ily fe M.r-Plan. end IS. ryulrsaalf .1 APPRCVEO'BY GATE OR IRTP1- DAISES$ AS SPECIIIED .1 iNE NNI.-DAIR S.1 tl A01 ITS INSTNUTI011. RR SIDE HKA SIVLL OE A MI III xW Of 6" 1M IM1v I1R.1 NIIIty o IRS. USE00. I.-C. ID M.. IF TEE IS IDT AVAIIABLE, TI( RAIR S[RER LIHE 1�ISi BE ""1n 0. AAyy1 plp adl wced se 0• aWl b YMn[o.mf � u p(P Yr TAPPED 1w0XRl A CART IRON C-L., kl MM -1,I SMFET P,IOR-Lvn ]I canPorv(M 1n SRI C-]I NlVI r�yl� yet tf h S. A NINIFNI WAGE OF fE 11/1" MR FOOTS WET DE MAINTAINED NITR 01 ,W III- RE MIA RY A LICENSED 1Ap BOIREp Cp11RNl, pp, 6• AlMI I yytla NnwlOro vhorn on than plan( .ra }o ^tap sl PornOy In A M C-111. Ni [P >�IIW fM1llL 1a SlOulloO v1N Co F N B• PIPE. .11 Tp EVEXT A 21 WADE CA'OIOT BC RAIMAIDEO. RE .11R pW11" (unlr. forts otMrrinl. clan '•tl• 4Ya1l�q 1n ocor6orca'v1111 APA� scv.UNn. ,0 � (Y� _ MST OpAIR h ADE RLLEASE TO THE CV, AM R(N CAI, IMSTML 6" T. At WAR f11LLL DE ACEDW'L Ill. IN ACEDADR.0 NIIN TM W.SNIIKTON v' � l pifv tlavlgroul0)1 F � alru�llaln mAttuiotn�lnldorySN•]51 e,u 11 � � /�y// 8 � a s PIPE AT A GRADE CT If. IlOufiWk fAffTt AM NAIiN ACf IRISWJ• bmllnm{nWd vM1MfA Clnmr'M bIMOIIp In enuM wIM kth SuOleado. S0' Y W�.B+ c A W' W. &=rxaff x s-W � wx. rw a•.w. Ph ALL I .. 1 NT4. ROLL 179 FR 3'15 IHoP DRP'1NPrG� 'poll Nn obw� P�NT�Pa/m�RG f/ELLN.I � YU �iL�R F•h��bLiR 1k1F1 Pb %6l•lf/ DWI• - SCAnH o W, P /qy(� lo�ro�9a APPENDIX B - KCRTS MODELING OUTPUT KCRTS Flow Frequency Analysis Results for Previous and Revised Basin Areas (Filenames with —rev suffix are for revised basin areas) City of Renton April 2010 Shattuck Avenue Diversion Modeling Report Basin I Flow Frequency Analysis Time Series File:f-i.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 3.22 6 8/27/01 18:00 2.25 8 9/17/02 17:45 6.25 2 12/08/02 17:15 2.60 7 8/23/04 14:30 3.46 5 10/28/04 16:00 3.65 4 10/27/05 10:45 4.40 3 10/25/06 22:45 8.33 1 1/09/08 6:30 Computed Peaks Flow Frequency Analysis Time Series File:f-i-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 3.32 6 8/27/01 18:00 2.32 8 9/17/02 17:45 6.43 2 12/08/02 17:15 2.67 7 8/23/04 14:30 3.56 5 10/28/04 16:00 3.76 4 10/27/05 10:45 4.53 3 10/25/06 22:45 8.57 1 1/09/08 6:30 Computed Peaks City of Renton Shattuck Avenue Diversion Modeling Report -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 8.33 1 100.00 0.990 6.25 2 25.00 0.960 4.40 3 10.00 0.900 3.65 4 5.00 0.800 3.46 5 3.00 0.667 3.22 6 2.00 0.500 2.60 7 1.30 0.231 2.25 8 1.10 0.091 7.63 50.00 0.980 -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 8.57 1 100.00 0.990 6.43 2 25.00 0.960 4.53 3 10.00 0.900 3.76 4 5.00 0.800 3.56 5 3.00 0.667 3.32 6 2.00 0.500 2.67 7 1.30 0.231 2.32 8 1.10 0.091 7.86 50.00 0.980 April 2010 B-1 Basin U Flow Frequency Analysis Time Series File:f-u.tsf Project Location:Sea-Tac ---Annual Pea Flow Rate Ran (CFS) 6.04 6 4.22 8 11.78 2 4.87 7 6.49 5 6.86 4 8.25 3 15.77 1 Computed Peaks k Flow Rates--- k Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 Flow Frequency Analysis Time Series File:f-u-rev.tsf Project Location:Sea-Tac ---Annual Pea Pe Flow Rate Ra (CFS) 5.48 6 3.83 8 10.67 2 4.41 7 5.89 5 6.22 4 7.49 3 14.30 1 Computed Peaks Flow Rates--- Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 City of Renton Shattuck Avenue Diversion Modeling Report ----Flow Frequency Analysis-- - - Peaks - - Rank Return (CFS) Period 15.77 1 100.00 11.78 2 25.00 8.25 3 10.00 6.86 4 5.00 6.49 5 3.00 6.04 6 2.00 4.87 7 1.30 4.22 8 1.10 14.44 50.00 Prob 0.990 0.960 0.900 0.800 0.667 0.500 0.231 0.091 0.980 -Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 14.30 1 100.00 0.990 10.67 2 25.00 0.960 7.49 3 10.00 0.900 6.22 4 5.00 0.800 5.89 5 3.00 0.667 5.48 6 2.00 0.500 4.41 7 1.30 0.231 3.83 8 1.10 0.091 13.09 50.00 0.980 April 2010 B-2 Basin V1 Flow Frequency Analysis Time Series File:f-vl.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 9.78 6 8/27/01 18:00 25.33 1 100.00 0.990 6.83 8 9/17/02 17:45 18.98 2 25.00 0.960 18.98 2 12/08/02 17:15 13.35 3 10.00 0.900 7.88 7 8/23/04 14:30 11.10 4 5.00 0.800 10.51 5 10/28/04 16:00 10.51 5 3.00 0.667 11.10 4 10/27/05 10:45 9.78 6 2.00 0.500 13.35 3 10/25/06 22:45 7.88 7 1.30 0.231 25.33 1 1/09/08 6:30 6.83 8 1.10 0.091 Computed Peaks 23.22 50.00 0.980 Flow Frequency Analysis Time Series File:f-vl-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 7.13 6 8/27/01 18:00 18.51 1 100.00 0.990 4.98 8 9/17/02 17:45 13.84 2 25.00 0.960 13.84 2 12/08/02 17:15 9.73 3 10.00 0.900 5.74 7 8/23/04 14:30 8.08 4 5.00 0.800 7.65 5 10/28/04 16:00 7.65 5 3.00 0.667 8.08 4 10/27/05 10:45 7.13 6 2.00 0.500 9.73 3 10/25/06 22:45 5.74 7 1.30 0.231 18.51 1 1/09/08 6:30 4.98 8 1.10 0.091 Computed Peaks 16.96 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-3 Basin V2 Flow Frequency Analysis Time Series File:f-v2.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 8.84 6 8/27/01 18:00 6.18 8 9/17/02 17:45 17.72 2 12/08/02 17:15 7.12 7 8/23/04 14:30 9.64 5 10/28/04 16:00 10.18 4 10/27/05 10:45 12.14 3 10/25/06 22:45 24.17 1 1/09/08 6:30 Computed Peaks Flow Frequency Analysis Time Series File:f-v2-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rate Rank (CFS) 9.50 6 6.64 8 18.88 2 7.65 7 10.32 5 10.87 4 13.03 3 25.60 1 Computed Peaks -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 24.17 1 100.00 0.990 17.72 2 25.00 0.960 12.14 3 10.00 0.900 10.18 4 5.00 0.800 9.64 5 3.00 0.667 8.84 6 2.00 0.500 7.12 7 1.30 0.231 6.18 8 1.10 0.091 22.02 50.00 0.980 Flow Rates--- -----Flow Frequency Analysis------- Timeof Peak - - Peaks - - Rank Return Prob (CFS) Period 8/27/01 18:00 25.60 1 100.00 0.990 9/17/02 17:45 18.88 2 25.00 0.960 12/08/02 17:15 13.03 3 10.00 0.900 8/23/04 14:30 10.87 4 5.00 0.800 10/28/04 16:00 10.32 5 3.00 0.667 10/27/05 10:45 9.50 6 2.00 0.500 10/25/06 22:45 7.65 7 1.30 0.231 1/09/08 6:30 6.64 8 1.10 0.091 23.36 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-4 Basin W Flow Frequency Analysis Time Series File:f-w.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.66 6 8/27/01 18:00 4.46 1 100.00 0.990 1.16 8 9/17/02 17:45 3.29 2 25.00 0.960 3.29 2 12/08/02 17:15 2.28 3 10.00 0.900 1.34 7 8/23/04 14:30 1.90 4 5.00 0.800 1.80 5 10/28/04 16:00 1.80 5 3.00 0.667 1.90 4 10/27/05 10:45 1.66 6 2.00 0.500 2.28 3 10/25/06 22:45 1.34 7 1.30 0.231 4.46 1 1/09/08 6:30 1.16 8 1.10 0.091 Computed Peaks 4.07 50.00 0.980 Flow Frequency Analysis Time Series File:f-w-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.83 6 8/27/01 18:00 4.90 1 100.00 0.990 1.28 8 9/17/02 17:45 3.62 2 25.00 0.960 3.62 2 12/08/02 17:15 2.51 3 10.00 0.900 1.47 7 8/23/04 14:30 2.09 4 5.00 0.800 1.98 5 10/28/04 16:00 1.98 5 3.00 0.667 2.09 4 10/27/05 10:45 1.83 6 2.00 0.500 2.51 3 10/25/06 22:45 1.47 7 1.30 0.231 4.90 1 1/09/08 6:30 1.28 8 1.10 0.091 Computed Peaks 4.47 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-5 Basin X Flow Frequency Analysis Time Series File:f-x.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 8.69 6 8/27/01 18:00 6.07 8 9/17/02 17:45 16.61 2 12/08/02 17:15 7.00 7 8/23/04 14:30 9.25 5 10/28/04 16:00 9.77 4 10/27/05 10:45 11.84 3 10/25/06 22:45 21.93 1 1/09/08 6:30 Computed Peaks Flow Frequency Analysis Time Series File:f-rev.tsf Project Location:Sea-Tac -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 21.93 1 100.00 0.990 16.61 2 25.00 0.960 11.84 3 10.00 0.900 9.77 4 5.00 0.800 9.25 5 3.00 0.667 8.69 6 2.00 0.500 7.00 7 1.30 0.231 6.07 8 1.10 0.091 20.16 50.00 0.980 ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 9.10 6 8/27/01 18:00 22.96 1 100.00 0.990 6.35 8 9/17/02 17:45 17.41 2 25.00 0.960 17.41 2 12/08/02 17:15 12.37 3 10.00 0.900 7.33 7 8/23/04 14:30 10.24 4 5.00 0.800 9.69 5 10/28/04 16:00 9.69 5 3.00 0.667 10.24 4 10/27/05 10:45 9.10 6 2.00 0.500 12.37 3 10/25/06 22:45 7.33 7 1.30 0.231 22.96 1 1/09/08 6:30 6.35 8 1.10 0.091 Computed Peaks 21.11 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-6 Basin AH Flow Frequency Analysis Time Series File:f-ah.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 2.83 6 8/27/01 18:00 8.02 1 100.00 0.990 1.98 8 9/17/02 17:45 5.79 2 25.00 0.960 5.79 2 12/08/02 17:15 3.91 3 10.00 0.900 2.28 7 8/23/04 14:30 3.30 4 5.00 0.800 3.12 5 10/28/04 16:00 3.12 5 3.00 0.667 3.30 4 10/27/05 10:45 2.83 6 2.00 0.500 3.91 3 10/25/06 22:45 2.28 7 1.30 0.231 8.02 1 1/09/08 6:30 1.98 8 1.10 0.091 Computed Peaks 7.28 50.00 0.980 Flow Frequency Analysis Time Series File:f-ah-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 3.53 6 8/27/01 18:00 10.12 1 100.00 0.990 2.46 8 9/17/02 17:45 7.27 2 25.00 0.960 7.27 2 12/08/02 17:15 4.87 3 10.00 0.900 2.84 7 8/23/04 14:30 4.12 4 5.00 0.800 3.90 5 10/28/04 16:00 3.90 5 3.00 0.667 4.12 4 10/27/05 10:45 3.53 6 2.00 0.500 4.87 3 10/25/06 22:45 2.84 7 1.30 0.231 10.12 1 1/09/08 6:30 2.46 8 1.10 0.091 Computed Peaks 9.17 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-7 Basin AK Flow Frequency Analysis Time Series File:f-ak.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 2.71 6 8/27/01 18:00 1.89 8 9/17/02 17:45 5.48 2 12/08/02 17:15 2.18 7 8/23/04 14:30 2.97 5 10/28/04 16:00 3.14 4 10/27/05 10:45 3.73 3 10/25/06 22:45 7.53 1 1/09/08 6:30 Computed Peaks Flow Frequency Analysis Time Series File:f-ak-rev.tsf Project Location:Sea-Tac -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 7.53 1 100.00 0.990 5.48 2 25.00 0.960 3.73 3 10.00 0.900 3.14 4 5.00 0.800 2.97 5 3.00 0.667 2.71 6 2.00 0.500 2.18 7 1.30 0.231 1.89 8 1.10 0.091 6.85 50.00 0.980 ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 4.42 6 8/27/01 18:00 12.29 1 100.00 0.990 3.09 8 9/17/02 17:45 8.93 2 25.00 0.960 8.93 2 12/08/02 17:15 6.09 3 10.00 0.900 3.56 7 8/23/04 14:30 5.11 4 5.00 0.800 4.84 5 10/28/04 16:00 4.84 5 3.00 0.667 5.11 4 10/27/05 10:45 4.42 6 2.00 0.500 6.09 3 10/25/06 22:45 3.56 7 1.30 0.231 12.29 1 1/09/08 6:30 3.09 8 1.10 0.091 Computed Peaks 11.17 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-8 Basin AL Flow Frequency Analysis Time Series File:f-al.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 4.77 6 8/27/01 18:00 13.21 1 100.00 0.990 3.33 8 9/17/02 17:45 9.63 2 25.00 0.960 9.63 2 12/08/02 17:15 6.57 3 10.00 0.900 3.84 7 8/23/04 14:30 5.52 4 5.00 0.800 5.22 5 10/28/04 16:00 5.22 5 3.00 0.667 5.52 4 10/27/05 10:45 4.77 6 2.00 0.500 6.57 3 10/25/06 22:45 3.84 7 1.30 0.231 13.21 1 1/09/08 6:30 3.33 8 1.10 0.091 Computed Peaks 12.02 50.00 0.980 Flow Frequency Analysis Time Series File:f-al-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.88 6 8/27/01 18:00 5.21 1 100.00 0.990 1.31 8 9/17/02 17:45 3.79 2 25.00 0.960 3.79 2 12/08/02 17:15 2.58 3 10.00 0.900 1.51 7 8/23/04 14:30 2.17 4 5.00 0.800 2.05 5 10/28/04 16:00 2.05 5 3.00 0.667 2.17 4 10/27/05 10:45 1.88 6 2.00 0.500 2.58 3 10/25/06 22:45 1.51 7 1.30 0.231 5.21 1 1/09/08 6:30 1.31 8 1.10 0.091 Computed Peaks 4.74 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-9 Basin AN Flow Frequency Analysis Time Series File:f-an.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 3.47 6 8/27/01 18:00 9.83 1 100.00 0.990 2.42 8 9/17/02 17:45 7.10 2 25.00 0.960 7.10 2 12/08/02 17:15 4.79 3 10.00 0.900 2.80 7 8/23/04 14:30 4.04 4 5.00 0.800 3.82 5 10/28/04 16:00 3.82 5 3.00 0.667 4.04 4 10/27/05 10:45 3.47 6 2.00 0.500 4.79 3 10/25/06 22:45 2.80 7 1.30 0.231 9.83 1 1/09/08 6:30 2.42 8 1.10 0.091 Computed Peaks 8.92 50.00 0.980 Flow Frequency Analysis Time Series File:f-an-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 4.01 6 8/27/01 18:00 11.35 1 100.00 0.990 2.80 8 9/17/02 17:45 8.20 2 25.00 0.960 8.20 2 12/08/02 17:15 5.53 3 10.00 0.900 3.23 7 8/23/04 14:30 4.67 4 5.00 0.800 4.42 5 10/28/04 16:00 4.42 5 3.00 0.667 4.67 4 10/27/05 10:45 4.01 6 2.00 0.500 5.53 3 10/25/06 22:45 3.23 7 1.30 0.231 11.35 1 1/09/08 6:30 2.80 8 1.10 0.091 Computed Peaks 10.30 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-10 Basin AP Flow Frequency Analysis Time Series File:f-ap.tsf Project Location:Sea-Tac ---Annual Flow Rate (CFS) 1.55 1.09 2.97 1.25 1.66 1.75 2.11 3.93 Peak Flow Rates --- Rank Time of Peak Computed Peaks 6 8/27/01 18:00 8 9/17/02 17:45 2 12/08/02 17:15 7 8/23/04 14:30 5 10/28/04 16:00 4 10/27/05 10:45 3 10/25/06 22:45 1 1/09/08 6:30 Flow Frequency Analysis Time Series File:f-ap-rev.tsf Project Location:Sea-Tac -----Flow Frequency - - Peaks - - Rank (CFS) 3.93 1 2.97 2 2.11 3 1.75 4 1.66 5 1.55 6 1.25 7 1.09 8 3.61 Analysis------- ReturnProb Period 100.00 0.990 25.00 0.960 10.00 0.900 5.00 0.800 3.00 0.667 2.00 0.500 1.30 0.231 1.10 0.091 50.00 0.980 ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.32 6 8/27/01 18:00 3.33 1 100.00 0.990 0.918 8 9/17/02 17:45 2.52 2 25.00 0.960 2.52 2 12/08/02 17:15 1.79 3 10.00 0.900 1.06 7 8/23/04 14:30 1.48 4 5.00 0.800 1.40 5 10/28/04 16:00 1.40 5 3.00 0.667 1.48 4 10/27/05 10:45 1.32 6 2.00 0.500 1.79 3 10/25/06 22:45 1.06 7 1.30 0.231 3.33 1 1/09/08 6:30 0.918 8 1.10 0.091 Computed Peaks 3.06 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-1 1 Added Basins W & AM Flow Frequency Analysis Time Series File:f-wam.tsf Project Location:Sea-Tac ---Annual Pea Flow Rate Ran (CFS) 11.65 6 8.13 8 23.72 2 9.37 7 12.82 5 13.52 4 16.06 3 32.69 1 Computed Peaks k Flow Rates--- k Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 Flow Frequency Analysis Time Series File:f-wam-rev.tsf Project Location:Sea-Tac ----Flow Frequency Analysis - - Peaks - - Rank Return (CFS) Period 32.69 1 100.00 23.72 2 25.00 16.06 3 10.00 13.52 4 5.00 12.82 5 3.00 11.65 6 2.00 9.37 7 1.30 8.13 8 1.10 29.70 50.00 Prob 0.990 0.960 0.900 0.800 0.667 0.500 0.231 0.091 0.980 ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 11.82 6 8/27/01 18:00 33.14 1 100.00 0.990 8.25 8 9/17/02 17:45 24.04 2 25.00 0.960 24.04 2 12/08/02 17:15 16.30 3 10.00 0.900 9.51 7 8/23/04 14:30 13.72 4 5.00 0.800 12.98 5 10/28/04 16:00 12.98 5 3.00 0.667 13.72 4 10/27/05 10:45 11.82 6 2.00 0.500 16.30 3 10/25/06 22:45 9.51 7 1.30 0.231 33.14 1 1/09/08 6:30 8.25 8 1.10 0.091 Computed Peaks 30.11 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-12 Added Basins Al. AJ & AK Flow Frequency Analysis Time Series File:f-aiajak.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 11.96 6 8/27/01 18:00 9.42 8 1/05/02 15:00 25.15 2 12/08/02 17:15 10.98 7 8/26/04 1:00 13.35 5 10/28/04 16:00 15.03 4 10/27/05 10:45 18.90 3 10/25/06 22:45 36.58 1 1/09/08 6:30 Computed Peaks Flow Frequency Analysis Time Series File:f-aiajak-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 12.10 7 8/27/01 18:00 10.30 8 1/05/02 15:00 25.93 2 12/08/02 17:15 12.29 6 8/26/04 1:00 14.32 5 11/17/04 5:15 15.91 4 10/27/05 10:45 20.64 3 10/25/06 22:45 38.75 1 1/09/08 6:30 Computed Peaks City of Renton Shattuck Avenue Diversion Modeling Report -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 36.58 1 100.00 0.990 25.15 2 25.00 0.960 18.90 3 10.00 0.900 15.03 4 5.00 0.800 13.35 5 3.00 0.667 11.96 6 2.00 0.500 10.98 7 1.30 0.231 9.42 8 1.10 0.091 32.77 50.00 0.980 -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 38.75 1 100.00 0.990 25.93 2 25.00 0.960 20.64 3 10.00 0.900 15.91 4 5.00 0.800 14.32 5 3.00 0.667 12.29 6 2.00 0.500 12.10 7 1.30 0.231 10.30 8 1.10 0.091 34.47 50.00 0.980 April 2010 B-13 Added Basins AB, AP & AC Flow Frequency Analysis Time Series File:f-abapac.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 5.17 6 8/27/01 18:15 13.52 1 100.00 0.990 4.15 8 1/05/02 15:15 8.64 2 25.00 0.960 8.64 2 12/08/02 17:30 8.02 3 10.00 0.900 5.05 7 8/26/04 1:00 6.41 4 5.00 0.800 6.33 5 11/17/04 5:15 6.33 5 3.00 0.667 6.41 4 10/27/05 11:00 5.17 6 2.00 0.500 8.02 3 10/25/06 22:45 5.05 7 1.30 0.231 13.52 1 1/09/08 6:30 4.15 8 1.10 0.091 Computed Peaks 11.89 50.00 0.980 Flow Frequency Analysis Time Series File:f-abapac-rev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- FlowRate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 5.03 6 8/27/01 18:15 12.90 1 100.00 0.990 4.02 8 1/05/02 15:15 8.48 2 25.00 0.960 8.48 2 12/08/02 17:30 7.70 3 10.00 0.900 4.87 7 8/26/04 1:00 6.22 4 5.00 0.800 6.14 5 11/17/04 5:15 6.14 5 3.00 0.667 6.22 4 10/27/05 11:00 5.03 6 2.00 0.500 7.70 3 10/25/06 22:45 4.87 7 1.30 0.231 12.90 1 1/09/08 6:30 4.02 8 1.10 0.091 Computed Peaks 11.43 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-14 Sub -Basin V1-1 Flow Frequency Analysis Time Series File:f-vl-l.tsf Project Location:Sea-Tac ---Annual Pea Flow Rate Ran (CFS) 3.36 6 2.35 8 6.53 2 2.71 7 3.61 5 3.81 4 4.59 3 8.73 1 Computed Peaks Sub -Basin V1-2 k Flow Rates--- k Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 Flow Frequency Analysis Time Series File:f-vl-2.tsf Project Location:Sea-Tac ---Annual Pe Flow Rate Ra (CFS) 2.04 6 1.42 8 3.96 2 1.64 7 2.19 5 2.31 4 2.78 3 5.29 1 Computed Peaks Pea Ran Sub -Basin V1-3 Flow Rates--- Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 Flow Frequency Analysis Time Series File:f-vl-3.tsf Project Location:Sea-Tac ---Annual Pe Flow Rate Ra (CFS) 1.73 6 1.21 8 3.36 2 1.39 7 1.86 5 1.96 4 2.36 3 4.48 1 Computed Peaks Pea Ran Flow Rates--- Time of Peak 8/27/01 18:00 9/17/02 17:45 12/08/02 17:15 8/23/04 14:30 10/28/04 16:00 10/27/05 10:45 10/25/06 22:45 1/09/08 6:30 ----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 8.73 1 100.00 0.990 6.53 2 25.00 0.960 4.59 3 10.00 0.900 3.81 4 5.00 0.800 3.61 5 3.00 0.667 3.36 6 2.00 0.500 2.71 7 1.30 0.231 2.35 8 1.10 0.091 8.00 50.00 0.980 ----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 5.29 1 100.00 0.990 3.96 2 25.00 0.960 2.78 3 10.00 0.900 2.31 4 5.00 0.800 2.19 5 3.00 0.667 2.04 6 2.00 0.500 1.64 7 1.30 0.231 1.42 8 1.10 0.091 4.84 50.00 0.980 -----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 4.48 1 100.00 0.990 3.36 2 25.00 0.960 2.36 3 10.00 0.900 1.96 4 5.00 0.800 1.86 5 3.00 0.667 1.73 6 2.00 0.500 1.39 7 1.30 0.231 1.21 8 1.10 0.091 4.11 50.00 0.980 City of Renton April 2010 Shattuck Avenue Diversion Modeling Report B-15 Added Sub -Basin V1-2 and V1-3 Flow Frequency Analysis Time Series File:f-vl-23.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates --- Flow Rate Rank Time of Peak (CFS) 3.77 6 8/27/01 18:00 2.63 8 9/17/02 17:45 7.32 2 12/08/02 17:15 3.04 7 8/23/04 14:30 4.04 5 10/28/04 16:00 4.26 4 10/27/05 10:45 5.14 3 10/25/06 22:45 9.77 1 1/09/08 6:30 Computed Peaks City of Renton Shattuck Avenue Diversion Modeling Report ----Flow Frequency Analysis------- - - Peaks - - Rank Return Prob (CFS) Period 9.77 1 100.00 0.990 7.32 2 25.00 0.960 5.14 3 10.00 0.900 4.26 4 ' 5.00 0.800 4.04 5 3.00 0.667 3.77 6 2.00 0.500 3.04 7 1.30 0.231 2.63 8 1.10 0.091 8.95 50.00 0.980 April 2010 B-16 APPENDIX C - XP-SWMM MODEL OUTPUT • XP-Tables output (Nodes and Links) for each model scenario. • Output file Table E20 (Junction Flooding and Volume Listing) for each model scenario. City of Renton April 2010 Shattuck Avenue Diversion Modeling Report Scenario 1 A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,B1,B2 10.310 20.350 13.106 7.240 None 10 11.310 21.230 15.217 6.010 None 100A 18.640 30.090 26.494 3.600 Allowed 105A 19.000 30.800 26.960 3.840 Allowed 110A 18.790 30.340 27.881 2.460 Allowed 115A_AF,AD 20.850 30.430 28.066 2.360 Allowed 120A 21.110 29.320 28.053 1.270 Allowed 125A 21.180 29.190 28.052 1.140 Allowed 130A 21.640 28.440 28,092 0.350 Allowed 135A AH 21.900 27.750 28.259 -0.510 Allowed 136A 21.950 27.750 28.381 -0.630 Allowed 137A 22.140 27.740 28.514 -0.770 Allowed 138A 22.140 27.870 28.646 -0.780 Allowed 140A 22.340 28.040 28.828 -0.790 Allowed 145A 22.640 28.690 29.248 -0.560 Allowed 15_C,D 12.080 20.300 16.748 3.550 None 150AAIAJAK 23.050 28.750 29.760 -1.010 Allowed 20 12.870 21.540 17.122 4.420 None 235_0,AO 22.000 29.820 26.768 3.050 None 25 12.820 21.520 18.041 3.480 None 26+48Ex 20.470 24.580 24.599 -0.020 Allowed 30 12.830 22.060 18.390 3.670 None 32+10Ex 20.110 25.500 25.549 -0.050 Allowed 32+17Ex 20.150 26.100 25.581 0.520 Allowed 32+23Ex 20.190 25.600 25.600 0.000 None 35 12.900 22.600 19.560 3.040 None 35+21 20.905 26.580 26.158 0.420 None 36+10Ex N 22.450 27.340 26.208 1.130 None 36+60 21.239 27.290 26.443 0.850 None 37+22P,Q,R 21.388 28.480 26.589 1.890 None 4+21 Ex_F 13.770 23.870 23.218 0.650 None 40_E 13.120 22.770 21.316 1.450 None 45 13.210 22.860 21.425 1.430 None 5 10.990 20.940 14.715 6.220 None 56A 14.690 25.790 23.187 2.600 Allowed 57A 14.720 25.820 23.263 2.560 Allowed 58A 15.330 27.330 23.506 3.820 Allowed 59A_W,AM 15.650 22.750 24.000 -1.250 Allowed 596 U 15.330 21.380 23.828 -2.450 Allowed 60A_X 15.960 23.650 24.175 -0.520 Allowed 60B 16.000 24.200 24.293 -0.090 Allowed 65A 16.250 24.400 24.406 -0.010 Allowed 67A 16.490 25.540 24.727 0.810 Allowed 70A 16.750 27.350 24.978 2.370 Allowed 73A 16.770 30.370 25.102 5.270 Allowed 75A_Z,AA,Y 17.140 31.140 26.208 4.930 Allowed 78A 17.260 30.070 26.270 3.800 Allowed 79A 17.370 30.170 26.327 3.840 Allowed 80A ABACAP 17.090 30.220 26.341 3.880 jAllowed 95A_AE 18.250 30.250 26.401 3.850 jAllowed 01 /14/10 13:38:47 112 Scenario 1A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 23.552 2.050 None CB21(11+35) 13.140 25.900 21.676 3.320 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB40(17+97) 13.980 25.170 22.277 2.890 None C641(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed 3+63) 18.270 24.240 0.000 0.000 Allowed 4+14) 18.390 24.000 0.000 0.000 Allowed 67) 13.600 24.000 23.137 0.860 None J L 14.500 24.430 24.467 -0.040 Allowed 6+48) 14.500 24.570 0.000 0.000 Allowed 5+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 24.680 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14_G 13.780 23.950 23.264 0.690 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 27.171 -2.670 Sealed MH2385 17.870 24.070 24.070 0.000 None Node157 16.540 23.940 23.172 0.770 None Outfall 10.270 17.000 12.968 4.030 None SH10_KM 19.590 25.070 25.070 0.000 None SH15 19.170 25.880 25.570 0.310 None SH20 20.070 25.620 25.620 0.000 None SH25_L 20.030 25.850 25.850 0.000 None SH40 20.800 27.410 26.716 0.690 None SH45 20.930 27.630 27.118 0.510 None SH50_AN 16.810 28.310 27.416 0.890 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.568 0.420 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31.900 31.900 0.000 None Tmp Out_V1 14.700 25.600 21.522 4.080 None VAULT1(1+62) 11.600 123,400 19.755 3.380 Allowed VAULT2(6+44) 12.140 124.650 20.774 3.750 Allowed VT3(25+57) 13.050 124.360 24.057 0.300 Allowed 01/14/10 13:38:48 2/2 Scenario 1A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) Length ft Max Flow cfs3/s, m 3/s) 1-Outfall 1_A,61,B2 Outfall 5.500 34.000 173.810 10-5 10 5 5.000 91,600 158.820 100A-95A 100A 95A AE 2.000 46.000 18.530 105A-100A 105A 100A 2.000 220.000 18.290 110A-105A 110A 105A 2.000 309.000 18.340 115A-110A 115A_AF,AD 110A 2.000 62.000 18.420 120A-115A 120A 115A_AF,AD 2.000 80.000 17.800 125A-120A 125A 120A 2.000 27.000 17.810 130A-125A 130A 125A 2.000 110.000 17,840 135A-130A 135A AH 130A 2.000 178.000 17.860 136A-135A 136A 135A AH 2.000 77.000 17.460 137A-136A 137A 136A 2.000 77.000 17.230 138A-137A 138A 137A 2.000 75.000 12.080 140A-138A 140A 138A 2.000 86.000 12.540 145A-140A 145A 140A 2.000 145.000 12.930 15-10 15_C,D 10 5.000 336.000 158.470 150A-145A 150AAIAJAK 145A 2.000 123.000 15.990 20-15 20 15_C,D 5.000 169.000 128.230 235-3722 235_O,AO 37+22P,Q,R 3.000 100.000 22.480 25-20 25 20 5.000 340.900 129.140 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 -11.560 30-25 30 25 5.000 127.600 128.490 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 32.880 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 34.730 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 28.120 35-30 35 30 5.000 470.000 127.990 3521-3223e 35+21 32+23Ex 3.000 298.000 28.510 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.620 3660-3521 36+60 35+21 3.000 139.000 28.570 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.850 4+21 E-50 4+21 Ex_F VAULT1(1+62) 4.500 306.500 160.710 40-35 40 E 35 5.000 603.400 128.400 45-40 45 40 E 5.000 56.000 111.240 5-1 5 1_A,131,62 5.000 213.300 158.880 56A-55 56A 4+21 Ex_F 5.000 229.000 75.660 57A-56A 57A 56A 4.000 133.000 75.620 58A-57A 58A 57A 4.000 315.000 75.590 59A-59B 59A_W,AM 59B_U 3.000 187.000 71.730 5913-58A 59B_U 58A 3.000 328.000 75.570 60A-59A 60A_X 59A_W,AM 3.000 272.000 59.730 60B-60A 60B 60A X 3.000 100.000 47.310 65A-60B 65A 60B 3.000 199.000 47.320 67A-65A 67A 65A 3.000 353.000 47.330 70A-67A 70A 67A 3.000 252.000 47.340 73A-70A 73A 70A 3.000 125.000 47.360 75A-73A 75A_Z,AA,Y 73A 2.000 210,000 47.380 78A-75A 178A 75A_Z,AA,Y 2.000 172.000 25.780 79A-78A 179A 78A 2.000 154,000 25.740 80A-79A 180A ABACAP 179A 2.000 38.000 25.770 01/14/10 13:39:02 1/4 Scenario 1A - Links Name Upstream Invert Elevation Downstream Invert Elevation Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.610 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-596 15.650 15.330 0.171 596-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01/14/10 13:39:02 2/4 Scenario 1A - Links Name Upstream Node Name Downstream Node Name Diameter ft (Height) Length ft Max Flow Cf 3/s, m 3/s) s 95A-80A 95A AE 80A_ABACAP 2.000 241.000 19.330 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 55.210 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 55.120 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 55.010 15+7114+35 C635(15+71)_I CB31(14+35)_H 5.000 136.000 46.870 1797-1571 CB40(17+97) CB35(15+71)_1 5.000 226.000 38.510 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 38.170 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 -7.600 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -7.800 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -11.500 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 55.180 2648-2557 C650_J VT3(25+57) 3.000 19.000 39.020 Link139 CB51(26+48) CB50_J 3.000 72.000 32.070 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -7.090 Link142 C852(28+16) CB51(26+48) 3.000 168.000 26.980 Linkl41 CB54(29+23) CB52(28+16) 3.000 107.000 24.360 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 3.660 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -5.580 4+77E4+21E D8-14_G 4+21Ex_F 3.000 56.000 -19.790 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -6.960 1797el620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -6.630 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 -6.190 1883el797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -10.300 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 5.680 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 27.280 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 10.500 1996el883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -10.480 L109 Mdpoint 59B_U 2.000 830.000 13.580 Link167 MH2385 VT3(25+57) 1.500 18.000 4.880 Linkl71 Node157 Tmp Out_V1 1.500 271.000 8.800 Link166 SH10_KM MH2385 1.000 220.000 4.950 Link165 SH15 SH10_KM 1.000 215.000 3.560 Link164 SH20 SH15 1.000 22.000 3.560 Link185 SH25_L SH20 1.000 34.000 3.780 Link184 SH40 SH25_L 1.000 370.000 -1.870 Link183 SH45 SH40 1.000 165.000 -1.880 Link186 SH45 SH50_AN 1.000 116.000 1.890 Link181 SH50_AN Node157 1.500 550.000 8.850 Link175 SH60_V2 SH50_AN 1.000 455.000 4.590 Link174 SH65 SH60_V2 1.000 579.000 1.380 Link173 SH70_AG SH65 1.000 413.000 1.380 U0172 SH75_AL SH70_AG 1.000 71.000 3.440 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULTI(1+62) 45 5.000 650.000 111.190 6+44E4+77E VAULT2(6+44) D8-14_G 3.000 167.000 -26.850 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 55.230 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.000 38.070 01 /14/10 13:39:02 3/4 Scenario 1A - Links Name Upstream Invert Elevation Downstream Invert Elevation Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 12+68-9+78 13.140 13.270 -0.080 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 -clog 22.020 15.330 0.595 Link167 17.870 13.050 0.000 Link171 16.540 14.700 0.680 Link166 19.590 17.870 0.000 Link165 19.170 19.590 0.000 Link164 20.070 19.170 4.090 Link185 20.030 20.070 -0.120 Link184 20.800 20.030 0.210 Link183 20.930 20.800 0.080 Link186 20.930 16.810 0.000 Link181 16.810 16.540 0.050 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 6+44E4+77E 12.140 13.780 0.042 6+44-4+77 12.140 13.600 0.041 2557-2092 13.050 14.510 -0.013 01 /14/10 13:39:02 4/4 Scenario 1 B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,B1,B2 10.310 20.350 13.360 6.990 None 10 11.310 21.230 14.180 7.050 None 100A 18.640 30.090 25.724 4.370 Allowed 105A 19.000 30.800 26.560 4.240 Allowed 110A 18.790 30.340 27.735 2.610 Allowed 115A_AF,AD 20.850 30.430 27.969 2.460 Allowed 120A 21.110 29.320 27.965 1.360 Allowed 125A 21.180 29.190 27.963 1.230 Allowed 130A 21.640 28.440 27.970 0.470 Allowed 135A AH 21.900 27.750 28.123 -0.370 Allowed 136A 21.950 27.750 28.178 -0.430 Allowed 137A 22.140 27.740 28.296 -0.560 Allowed 138A 22.140 27.870 28.491 -0.620 Allowed 140A 22.340 28.040 28.749 -0.710 Allowed 145A 22.640 28.690 29.221 -0.530 Allowed 15_C,D 12.080 20.300 15.188 5.110 None 150AAIAJAK 23.050 28.750 29.749 -1.000 Allowed 20 12.870 21.540 15.401 6.140 None 235_0,AO 22.000 29.820 23.717 6.100 None 25 12.820 21.520 16.075 5.440 None 26+48Ex 20.470 24,580 20.521 4.060 Allowed 30 12.830 22.060 16.274 5.790 None 32+10Ex 20.110 25.500 22.163 3.340 None 32+17Ex 20.150 26.100 22.223 3.880 INone 32+23Ex 20.190 25.600 22.254 3.350 None 35 12.900 22.600 16.808 5.790 None 35+21 20.905 26.580 23.135 3.440 None 36+10Ex_N 22.450 27.340 23.388 3.950 None 36+60 21.239 27.290 23.473 3.820 None 37+22P,O,R 21.388 28.480 23.599 4.880 None 4+21Ex F 13.770 23.870 18.894 4,980 INone 40_E 13.120 22.770 17.324 5.450 None 45 13.210 22.860 17.349 5.510 None 5 10.990 20.940 13.916 7.020 None 56A 14.690 25.790 19.143 6.650 Allowed 57A 14.720 25.820 19.656 6.160 Allowed 58A 15.330 27.330 21.061 6.270 Allowed 59A_W,AM 15.650 22.750 22.586 0.160 Allowed 59B_U 15.330 21.380 22.191 -0.810 Allowed 60A X 15.960 23.650 22.941 0.710 Allowed 60B 16.000 24.200 23.019 1.180 Allowed 65A 16.250 24.400 23.172 1.230 Allowed 67A 16.490 25.540 23.445 2.100 Allowed 70A 16.750 27.350 23.638 3.710 Allowed 73A 16.770 30.370 23.742 6.630 Allowed 75A_Z,AA,Y 17.140 31.140 24.725 6.420 Allowed 78A 17.260 30.070 25.019 5.050 Allowed 79A 17.370 30.170 25.283 4.890 Allowed 80A ABACAP 17.090 130.220 125.348 14,870 Allowed 95A AE 118.250 130.250 125.552 14.700 jAllowed 01 /14/10 13:39:37 1 /2 Scenario 1 B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 18.730 6.870 None C821(11+35) 13.140 25.900 21.676 3.320 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22067 3.240 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5(4+67) 13.600 24.000 18.255 5.740 None CB50 J 14.500 24.430 19.724 4.710 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed DS-14 G 13.780 23.950 18.863 5.090 None ES-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-138(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 25.568 -1.070 Sealed MH2385 17.870 24.070 19.222 4.850 None Node157 16.540 23.940 23.172 0.770 None Outfall 10.270 17.000 13.219 3.780 None SH10_KM 19.590 25.070 25.070 0.000 None SH15 19.170 25.880 25.570 0.310 None SH20 20.070 25.620 25.620 0.000 None SH25_L 20.030 25 850 25.850 0.000 None SH40 20.800 27.410 26 716 0.690 None SH45 20.930 27.630 27.118 0.510 None SH50_AN 16.810 28.310 27.416 0.890 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.568 0.420 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31900 31.900 0.000 None Tmp Out_V1 14.700 25,600 21.522 4.080 None VAULTI(1+62) 111.600 23.400 19.755 3.380 Allowed VAULT2(6+44) 112.140 24.650 20.774 3.750 Allowed VT3(25+57) 113050 24.360 19.191 5.170 Allowed 01 /14/10 13:39.38 2/2 Scenario 1 B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft^3/s, m^3/s) Cfs 1-Outfall 1_A,61,62 Outfall 5.500 34.000 204.270 10-5 10 5 5.000 91.600 85.270 100A-95A 100A 95A_AE 2.000 46.000 18.760 105A-100A 105A 100A 2.000 220.000 18.860 110A-105A 110A 105A 2.000 309.000 18.960 115A-110A 115A AF,AD 110A 2.000 62.000 19.010 120A-115A 120A 115A_AF,AD 2,000 80.000 16.960 125A-120A 125A 120A 2.000 27.000 16.950 130A-125A 130A 125A 2.000 110.000 16.940 135A-130A 135A_AH 130A 2.000 178.000 16.940 136A-135A 136A 135A_AH 2,000 77.000 16.360 137A-136A 137A 136A 2.000 77.000 16.350 138A-137A 138A 137A 2.000 75.000 15.950 140A-138A 140A 138A 2.000 86.000 12.580 145A-140A 145A 140A 2.000 145.000 13.230 15-10 15_C,D 10 5.000 336.000 85.280 150A-145A 150AAIAJAK 145A 2.000 123.000 16.070 20-15 20 15_C,D 5.000 169.000 69.140 235-3722 235_O,AO 37+22P,O,R 3.000 100.000 22.040 25-20 25 20 5.000 340.900 68.650 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 0.020 30-25 30 25 5.000 127.600 68.460 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 34.300 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 34.140 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 27.990 35-30 35 30 5.000 470.000 68.390 3521-3223e 35+21 32+23Ex 3.000 298.000 28.130 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.310 3660-3521 36+60 35+21 3.000 139.000 28.090 3722-3660 37+22PAR 36+60 3.000 62.000 28.170 4+21E-50 4+21Ex F VAULTI(1+62) 4.500 306.500 93.560 40-35 40_E 35 5.000 603.400 68.570 45-40 45 40_E 5.000 56.000 54.900 5-1 5 1 A,B1,B2 5.000 213.300 85.220 56A-55 56A 4+21 Ex_F 5.000 229.000 90.360 57A-56A 57A 56A 4.000 133.000 91.090 58A-57A 58A 57A 4.000 315.000 91.330 59A-59B 59A_W,AM 596_U 3.000 187.000 85.640 5913-58A 59B_U 58A 3.000 328.000 91.800 60A-59A 60A_X 59A_W,AM 3.000 272.000 61.650 60B-60A 60B 60A X 3.000 100.000 52.250 65A-60B 65A 60B 3.000 199.000 52.250 67A-65A 67A 65A 3.000 353.000 52.260 70A-67A 70A 67A 3.000 252.000 52.270 73A-70A 73A 70A 3.000 125.000 52,280 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 52.290 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 28.250 79A-78A 79A 78A 2.000 154.000 28.010 80A-79A 80A_ABACAP 179A 12.000 138.000 28.020 01 /14/10 13:39:57 1 /4 Scenario 1 B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.610 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 598-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-606 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01/14/10 13:39:57 2/4 Scenario 1 B - Links Name Upstream Node Name Downstream Node Name Diameter ft (Height) Length ft Max Flow Cf 3/s, MA 3/s) s 95A-80A 95A AE 80A_ABACAP 2.000 241.000 22.640 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 50.370 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 50.860 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 51.260 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 45.090 1797-1571 CB40(17+97) CB35(15+71)_I 5.000 226.000 43.240 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 44.160 CB42_F8-22 C842(21+04) F8-22(19+96) 2.000 108.000 -0.980 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -0.570 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -0.630 4+21-1+14 CB5(4+67) VAULTI(1+62) 5.000 304.500 74.180 2648-2557 CB50_J VT3(25+57) 3.000 19.000 43.360 Link139 CB51(26+48) CB50_J 3.000 72.000 32.570 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 4.900 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 32.620 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 32.720 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 0.650 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -0.400 4+77E4+21 E D8-14 G 4+21 Ex_F 3.000 56.000 -23.960 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -4.730 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -3.750 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 0.000 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -2.300 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 0.020 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 33.520 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 0.590 1996e1883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -1.370 L109 Mdpoint 59B_U 2.000 830.000 15.040 Link167 MH2385 VT3(25+57) 1.500 18.000 5.810 Link171 Node157 Tmp Out_V1 1.500 271.000 8.800 Link166 SH10_KM MH2385 1.000 220.000 5.810 Link165 SH15 SH10_KM 1.000 215.000 3.560 Link164 SH2O SH15 1.000 22.000 3.560 Link185 SH25_L SH2O 1.000 34.000 3.780 Link184 SH40 SH25_L 1.000 370.000 -1.840 Link183 SH45 SH40 1.000 165.000 -1.820 Link186 SH45 SH50_AN 1.000 116.000 11.820 Link181 SH50_AN Node157 1.500 550.000 8.850 Link175 SH60_V2 SH50_AN 1.000 455.000 4.590 Link174 SH65 SH60_V2 1.000 579.000 1.380 Link173 SH70_AG SH65 1.000 413.000 1.380 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULTI(1+62) 45 5.000 650.000 54.300 Link187 VAULTI(1+62) 1_A,131,132 16.000 3311.000 105.810 6+44E4+77E VAULT2(6+44) I D8-14_G 13.000 167.000 -36.790 6+44-4+77 VAULT2(6+44) CB5(4+67) 15.000 197.500 75.140 2557-2092 VT3(25+57) CB41(20+92) 15.000 465.000 46.200 01 /14/10 13:39:58 3/4 Scenario 1 B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 12+68-9+78 13.140 13.270 -0.080 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 C842_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 L109 22.020 15.330 0.595 Link167 17.870 13.050 0.000 Link171 16.540 14.700 0.680 Link166 19.590 17.870 0.000 Link165 19.170 19.590 0.000 Link164 20.070 19.170 4.090 Link185 20.030 20.070 -0.120 Link184 20.800 20.030 0.210 Link183 20.930 20.800 0.080 Link186 20.930 16.810 0.000 Link181 16.810 16.540 0.050 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 Link187 11.600 10.310 0.040 6+44E4+77E 12.140 13.780 0.042 6+44-4+77 12.140 13.600 0.041 2557-2092 13.050 14.510 -0.013 01 /14/10 13:39:58 4/4 Scenario 2A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1 A,61,132 10.310 20.350 13.114 7.240 None 10 11.310 21.230 15,227 6.000 None 100A 18.640 30.090 26.516 3.570 Allowed 105A 19.000 30.800 26.962 3.840 Allowed 110A 18.790 30.340 27.891 2.450 Allowed 115A AF,AD 20.850 30.430 28.076 2.350 Allowed 120A 21.110 29.320 28.061 1.260 Allowed 125A 21.180 29.190 28.056 1.130 Allowed 130A 21.640 28.440 28.090 0.350 Allowed 135A_AH 21.900 27.750 28.262 -0.510 Allowed 136A 21.950 27.750 28.383 -0.630 Allowed 137A 22.140 27.740 28.515 -0.780 Allowed 138A 22.140 27.870 28.646 -0.780 Allowed 140A 22.340 28.040 28.827 -0.790 Allowed 145A 22.640 28.690 29.246 -0.560 Allowed 15_C,D 12.080 20.300 16.795 3.500 None 150AAIAJAK 23.050 28.750 29.758 -1.010 Allowed 20 12.870 21.540 17.149 4.390 None 235_O,AO 22.000 29.820 26.993 2,830 None 25 12.820 21.520 18.047 3.470 None 26+48Ex 20.470 24.580 24.852 -0.270 Allowed 30 12.830 22.060 18.395 3.660 None 32+10Ex 20.110 25.500 25.557 -0.060 Allowed 32+17Ex 20.150 26.100 25.584 0.520 Allowed 32+23Ex 20.190 25.600 25.600 0.000 None 12.900 22.600 19.604 3.000 None +21 20.905 26.580 26.279 0.300 None +10Ex N [4+21 22.450 27.340 27.340 0.000 None +60 21.239 27.290 26.593 0.700 None +22P,Q,R 21.388 28.480 26.712 1.770 None Ex_F 13.770 23.870 23.332 0.540 None 40 E 13.120 22.770 21.442 1.330 None 45 13.210 22.860 21.549 1.310 None 5 10.990 20.940 14.718 6.220 None 56A 14.690 25.790 23.372 2.420 Allowed 57A 14.720 25.820 23.436 2.380 Allowed 58A 15.330 27.330 23.637 3.690 Allowed 59A_KAM 15.650 22.750 24.068 -1.320 Allowed 59B U 15.330 21.380 23.926 -2.550 Allowed 60A_X 15.960 23.660 24.217 -0.570 Allowed 60B 16.000 24.200 24.260 -0.060 Allowed 65A 16.250 24.400 24.399 0.000 Allowed 67A 16.490 25.540 24.750 0.790 Allowed 70A 16.750 27.350 25.001 2.350 Allowed 73A 16.770 30.370 25.125 5.240 jAllowed 75A_Z,AA,Y 17.140 31.140 26.230 4.910 Allowed 78A 17.260 30.070 26.293 3.780 Allowed 79A 17.370 30.170 26.350 3.820 Allowed 80A_ABACAP 17.090 30.220 26.364 3.860 Allowed 95A AE 18.250 30.250 126.424 3.830 Allowed 01/14/10 13:40:55 1 /2 Scenario 2A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 23.704 1.900 None C82_KM 15.030 24.500 24.576 -0.080 Allowed CB21(11+35) 13.140 25.900 21.676 3.320 None C83 15.540 25.200 24.640 0.560 Allowed CB31(14+35)_H 13.990 25.400 21.903 3.630 None C835(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 24.685 1.120 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 24.732 2.270 None CB5(4+67) 13.600 24.000 23.190 0.810 None CB50_J 14.500 24.430 24.747 -0.320 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 24.680 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed C136 16.900 27.400 24.763 2.640 None CB7 17.380 27.700 24.744 2.960 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14 G 13.780 23.950 23.358 0.590 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 27.873 -3.370 Sealed Outfall 10.270 17.000 12.978 4.020 None SH50_AN 16.810 28.310 24.734 3.580 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.572 0.420 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31.900 31.900 0.000 None Tmp Out_V1 14.700 25.600 18.736 6.860 None VAULTI(1+62) 111.600 123.400 119.755 13.380 Allowed VAULT2(6+44) 112.140 124.650 120.774 13.750 Allowed VT3(25+57) 113.050 124.360 124.461 -0.100 Allowed 01/14/10 13:40:56 Scenario 2A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft^3/s, m^3/s) Cfs 1-Outfall 1_A,B1,B2 Outfall 5.500 34.000 174.990 10-5 10 5 5.000 91.600 159.120 100A-95A 100A 95A_AE 2.000 46.000 19.590 105A-100A 105A 100A 2.000 220.000 18.530 110A-105A 110A 105A 2.000 309.000 18.610 115A-110A 115A_AF,AD 110A 2.000 62.000 18.380 120A-115A 120A 115A_AF,AD 2.000 80.000 17.770 125A-120A 125A 120A 2.000 27.000 17.770 130A-125A 130A 125A 2.000 110.000 17.760 135A-130A 135A_AH 130A 2.000 178.000 17,750 136A-135A 136A 135A A 2.000 77.000 17.430 137A-136A 137A 136A 2.000 77.000 17.070 138A-137A 138A 137A 2.000 75.000 12.130 140A-138A 140A 138A 2.000 86.000 12.560 145A-140A 145A 140A 2.000 145.000 12.930 15-10 15_C,D 10 5.000 336.000 159.600 150A-145A 150AAIAJAK 145A 2.000 123.000 15.990 20-15 20 15_C,D 5.000 169.000 129.370 235-3722 235_0,AO 37+22P,Q,R 3.000 100.000 22.480 25-20 25 20 5.000 340.900 128.830 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 14.040 30-25 30 25 5.000 127.600 130.490 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 32.130 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 32.230 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 25.990 35-30 35 30 5.000 470.000 132.510 3521-3223e 35+21 32+23Ex 3.000 298.000 28.500 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.570 3660-3521 36+60 35+21 3.000 139.000 28.890 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.990 4+21E-50 4+21Ex F VAULTI(1+62) 4.500 306.500 62.470 40-35 40_E 35 5.000 603.400 129.840 45-40 45 40_E 5.000 56.000 116.850 5-1 5 1_A,B1,B2 5.000 213.300 159.720 56A-55 56A 4+21Ex_F 5.000 229.000 71.010 57A-56A 57A 56A 4.000 133.000 70.990 58A-57A 58A 57A 4.000 315.000 70.960 59A-59B 59A_W,AM 59B_U 3.000 187.000 74.540 596-58A 59B U 58A 3.000 328.000 70.940 60A-59A 60A_X 59A_W,AM 3.000 272.000 60.250 60B-60A 60B 60A X 3.000 100.000 46.990 65A-60B 65A 608 3.000 199,000 47.310 67A-65A 67A 65A 3.000 353.000 47.320 70A-67A 70A 67A 3.000 252.000 47.330 73A-70A 73A 70A 3.000 125,000 47.340 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 47.360 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 25.820 79A-78A 79A 78A 2.000 154.000 25.790 80A-79A 180A.ABACAP 179A 12.000 138.000 25.850 01114110 13:41:18 1 /4 Scenario 2A - Links Name Upstream Elevation ft Downstream Elevrt ation rt ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.03E 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14 690 0-023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 5913-58A 15.330 15 330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 117.370 -0.737 01 /14/10 1141:21 2/4 Scenario 2A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 3/s, m 3/s) cfs 95A-80A 95A_AE 80A_ABACAP 2.000 241.000 20.390 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 63.760 Link193 CB2_KM VT3(25+57) 4.000 200.000 36.820 12+68-9+78 CB21(11+35) C817(9+78) 5.000 157.000 63.760 Link192 CB3 CB2_KM 4.000 176.000 29.760 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 63.770 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 57.590 Link191 C84_L C63 4.000 87.000 29.070 1797-1571 CB40(17+97) CB35(15+71)_1 5.000 226.000 51.080 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 49.950 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 -6.740 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -7.450 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -9.590 Link190 CB5 CB4_L 4.000 191.000 -15.370 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 59.060 2648-2557 CB50_J VT3(25+57) 3.000 19.000 37.400 Link139 C851(26+48) CB50_J 3.000 72.000 34.970 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -7.130 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 19.530 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 23.460 Link189 CB6 CB5 4.000 191.000 -16.330 Link188 CB7 CB6 4.000 165.000 12.800 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.600 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -5.770 4+77E4+21 E D8-14 G 4+21 Ex_F 3.000 56.000 21.860 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -7.040 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -6.740 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 -3.900 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -8.650 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 5.470 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 26.560 Unk144 EXCB(31+05) EXCB(31+02) 1.750 10.000 5.520 1996e1883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -8.590 L109 Mdpoint 59B_U 2.000 830.000 13.500 Link187 SH50_AN CB7 4.000 116.000 11.570 Link175 SH60_V2 SH50_AN 1.000 455.000 4.800 Link174 SH65 SH60_V2 1.000 579.000 1.390 Link173 SH70_AG SH65 1.000 413.000 1.380 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULT1(1+62) 45 5.000 650.000 116.800 6+44E4+77E VAULT2(6+44) D8-14_G 13.000 167.000 -26.000 6+44-4+77 VAULT2(6+44) CB5(4+67) 15.000 J59.030 2557-2092 VT3(25+57) CB41(20+92) 15.000 1465.000 149.880 01/14/10 13:41:21 3/4 Scenario 2A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42 F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Unk141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 L109 22.020 15.330 0.595 Link187 16.810 17.380 0.293 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 6+44E4+77E 112.140 113.780 0.042 6+44-4+77 112,140 113.600 0.041 2557-2092 113.050 114.510 -0.013 icy/fClf[�7iKlCyWY� 4/4 Scenario 2B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,B1,B2 10.310 20.350 13.438 6.910 None 10 11.310 21.230 14.281 6.950 None 100A 18.640 30.090 25.697 4.390 Allowed 105A 19.000 30.800 26.538 4.260 Allowed 110A 18.790 30.340 27.718 2.620 Allowed 115A AF,AD 20.850 30.430 27.953 2.480 Allowed 120A 21.110 29.320 27.948 1.370 Allowed 125A 21.180 29.190 27.946 1.240 Allowed 130A 21.640 28.440 27.958 0.480 Allowed 135A_AH 21.900 27.750 28.113 -0.360 Allowed 136A 21.950 27.750 28.169 -0.420 Allowed 137A 22.140 27.740 28.285 -0.540 Allowed 138A 22.140 27.870 28.480 -0.610 Allowed 140A 22.340 28.040 28.742 -0.700 Allowed 145A 22.640 28.690 29.219 -0.530 Allowed 15_C,D 12.080 20.300 15.299 5.000 None 150AAIAJAK 23.050 28.750 29.747 -1.000 Allowed 20 12.870 21.540 15.522 6.020 None 235_0,AO 22.000 29.820 23.716 6.100 None 25 12.820 21.520 16.206 5.310 None 26+48Ex 20.470 24.580 20.788 3.790 Allowed 30 12.830 22.060 16.412 5.650 None 32+10Ex 20.110 25.500 22.163 3.340 Allowed 32+17Ex 20.150 26.100 22.223 3.880 Allowed 32+23Ex 20.190 25.600 22.254 3.350 None 35 12.900 22.600 16.975 5.630 None 35+21 20.905 26.580 23.135 3.440 None 36+10Ex_N 22.450 27.340 23.388 3.950 None 36+60 21.239 27.290 23.473 3.820 None 37+22P,Q,R 21.388 28.480 23.599 4.880 None 4+21 Ex_F 13.770 23.870 19.177 4.690 None 40 E 13.120 22.770 17.529 5.240 None 45 13.210 22.860 17.557 5.300 None 5 10.990 20.940 14.015 6.930 None 56A 14.690 25.790 19.407 6.380 Allowed 57A 14.720 25.820 19.904 5.920 Allowed 58A 15.330 27.330 21.180 6.150 Allowed 59A_W,AM 15.650 22.750 22.594 0.160 Allowed 59B_U 15.330 21.380 22.199 -0.820 Allowed 60A_X 15.960 23.650 22.946 0.700 Allowed 60B 16.000 24.200 23.023 1.180 Allowed 65A 16.250 24.400 23.177 1.220 Allowed 67A 16.490 25.540 23.449 2.090 Allowed 70A 16.750 27.350 23.642 3.710 Allowed 73A 16.770 30.370 23.738 6.630 Allowed 75A_Z,AA,Y 17.140 31.140 24.694 6.450 Allowed 78A 17.260 30.070 24.988 5.080 Allowed 79A 17.370 30.170 25.253 4.920 Allowed 80A ABACAP 17.090 30.220 25.318 4.900 Allowed 95A_AE 18.250 130.250 125.524 14.730 Allowed 01/14/10 13:42:13 1/2 Scenario 2B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 19.362 6.240 None C132_KM 15.030 24.500 20.269 4.230 None CB21(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 20.317 4.880 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 20.337 5.460 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 20.357 6.640 None CB5(4+67) 13.600 24.000 18.634 5.370 None CB50_J 14.500 24.430 20.648 3.780 None CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed C136 16.900 27.400 20.374 7.030 None C137 17.380 27.700 20.381 7.320 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14_G 13.780 23.950 19.166 4.780 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 25.655 -1.160 Sealed Outfall 10.270 17.000 13.297 3.700 None SH50_AN 17.720 28.310 20.386 7.920 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.559 0.430 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31.900 31.900 0.000 None Tmp Out_V1 14.700 25.600 18.736 6.860 None VAULT1(1+62) 111.600 123.400 119.755 13.380 Allowed VAULT2(6+44) 112.140 124.650 120.774 13.750 Allowed VT3(25+57) 113.050 124.360 120.210 14.150 Allowed 01 /14/10 13:42:16 2/2 Scenario 2B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft ' 3/s, mA 3/s) Cfs 1-Outfall 1_A,B1,B2 Outfall 5.500 34.000 214.310 10-5 10 5 5.000 91.600 90.220 100A-95A 100A 95A AE 2.000 46.000 19.390 105A-100A 105A 100A 2.000 220.000 19.380 110A-105A 110A 105A 2.000 309.000 20.360 115A-110A 115A_AF,AD 110A 2.000 62.000 20.450 120A-115A 120A 115A_AF,AD 2.000 80.000 16.880 125A-120A 125A 120A 2.000 27.000 16.880 130A-125A 130A 125A 2.000 110.000 16.870 135A-130A 135A_AH 130A 2.000 178.000 16.860 136A-135A 136A 135A AH 2.000 77.000 16.270 137A-136A 137A 136A 2,000 77.000 16.270 138A-137A 138A 137A 2.000 75,000 16.140 140A-138A 140A 138A 2.000 86.000 12.570 145A-140A 145A 140A 2.000 145.000 13.230 15-10 15_C,D 10 5.000 336.000 90.280 150A-145A 150AAIAJAK 145A 2.000 123.000 16.090 20-15 20 15_C,D 5.000 169.000 74.310 235-3722 235 O,AO 37+22P,Q,R 3.000 100.000 22.040 25-20 25 20 5.000 340.900 73.810 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 0.800 30-25 30 25 5.000 127.600 73.630 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 34.300 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 34.140 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 27.990 35-30 35 30 5.000 470.000 73.500 3521-3223e 35+21 32+23Ex 3.000 298.000 28.130 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.310 3660-3521 36+60 35+21 3.000 139.000 28.090 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.170 4+21E-50 4+21Ex F VAULT1(1+62) 4.500 306.500 95.150 40-35 40_E 35 5.000 603.400 73.670 45-40 45 40 E 5.000 56.000 60.510 5-1 5 1_A,61,B2 5.000 213.300 90.200 56A-55 56A 4+21 Ex_F 5.000 229.000 88.560 57A-56A 57A 56A 4.000 133.000 89.330 58A-57A 58A 57A 4.000 315.000 89.600 59A-596 59A_W,AM 59B_U 3.000 187.000 85.570 5913-58A 59B_U 58A 3.000 328.000 91.390 60A-59A 60A_X 59A W,AM 3.000 272.000 61.580 60B-60A 60B 60A_X 3.000 100.000 52.380 65A-60B 65A 60B 3.000 199.000 52.420 67A-65A 67A 65A 3.000 353.000 52.480 70A-67A 70A 67A 3.000 252.000 52.540 73A-70A 73A 70A 3.000 125.000 52.600 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 52.650 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 29.730 79A-78A 79A 78A 2.000 154.000 29.580 80A-79A 80A ABACAP 79A 2.000 38.000 29.630 01 /14110 13:42:33 1 /4 Scenario 2B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 59B-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01 /14/10 13:42:34 2/4 Scenario 2B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 3/s, m 3/s) cfs 95A-80A 95A AE 80A ABACAP 2.000 241.000 23.410 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 65.080 Link193 C62_KM VT3(25+57) 4.000 200.000 24.180 12+68-9+78 C821(11+35) CB17(9+78) 5.000 157.000 65.260 Link192 CB3 CB2_KM 4.000 176.000 21.890 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 65.350 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 60.020 Link191 CB4_L CB3 4.000 87.000 22.030 1797-1571 C840(17+97) CB35(15+71)_1 5.000 226.000 54.600 2092-1797 C641(20+92) CB40(17+97) 5.000 295.000 55.580 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 4.480 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -4.260 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -5.220 Link190 CB5 CB4_L 4.000 191.000 12.760 4+21-1+14 C85(4+67) VAULT1(1+62) 5.000 304.500 82.790 2648-2557 CB50_J VT3(25+57) 3.000 19.000 41.880 Link139 CB51(26+48) CB50_J 3.000 72.000 31.540 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -6.180 Link142 C652(28+16) CB51(26+48) 3.000 168.000 31.160 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 31.200 Link189 CB6 C65 4.000 191.000 11.510 Link188 C67 CB6 4.000 165.000 11.470 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 4.370 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -4.230 4+77E4+21 E D8-14 G 4+21 Ex_F 3.000 56.000 -18.580 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -5.960 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 4.860 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 0.000 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 4.780 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 0.810 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 31.790 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 2.180 1996e1883e F8-22(19+96) E8-13B(18+83) 2,000 113.000 4.570 L109 Mdpoint 59B_U 2.000 830.000 13.630 Link187 SH50_AN CB7 4.000 116.000 12.840 Link175 SH60_V2 SH50_AN 1.000 455.000 5.450 Link174 SH65 SH60_V2 1.000 579.000 1.650 Link173 SH70_AG SH65 1.000 413.000 1.560 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 Pump Tmp Out V1 Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULT1(1+62) 45 5.000 650.000 59.820 Link194 VAULT1(1+62) 1_A,B1,B2 6.000 3311.000 111.080 6+44E4+77E VAULT2(6+44) DB-14_G 3.000 167.000 -32.170 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 83.030 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.000 56.930 01 /14/10 13:42:34 3/4 Scenario 2B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 L109 22.020 15.330 0.595 Link187 17.720 17.380 0.293 Link175 21.670 17.720 0.870 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 Link194 11.600 10.310 0.040 6+44E4+77E 112.140 113.780 10.042 6+44-4+77 112.140 113.600 10.041 2557-2092 113.050 114.510 -0.013 01 /14/10 13:42:34 4/4 Scenario 3A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,61,132 10.310 20.350 13.110 7.240 None 10 11.310 21.230 15.221 6.010 None 100A 18.640 30.090 26.520 3.570 Allowed 105A 19.000 30.800 26.965 3,830 Allowed 110A 18.790 30.340 27.884 2.460 Allowed 115A_AF,AD 20.850 30.430 28.072 2.360 Allowed 120A 21.110 29.320 28.056 1.260 Allowed 125A 21.180 29.190 28.051 1.140 Allowed 130A 21.640 28.440 28.084 0.360 Allowed 135A_AH 21.900 27.750 28.261 -0.510 Allowed 136A 21.950 27.750 28.381 -0.630 Allowed 137A 22.140 27.740 28.512 -0.770 Allowed 138A 22.140 27.870 28.643 -0.770 Allowed 140A 22.340 28.040 28.823 -0.780 Allowed 145A 22.640 28.690 29.244 -0.550 Allowed 15_C,D 12.080 20.300 16.782 3.520 None 150AAIAJAK 23.050 28.750 29.757 -1.010 Allowed 20 12.870 21,540 17.148 4.390 None 235_0,AO 22.000 29.820 26.834 2.990 None 25 12.820 21.520 18.056 3.460 None 26+48Ex 20.470 24.580 24.978 -0.400 Allowed 30 12.830 22.060 18.390 3.670 None 32+10Ex 20.110 25,500 25.572 -0.070 Allowed 32+17Ex 20.150 26.100 25.590 0.510 Allowed 32+23Ex 20.190 25.600 25.600 0.000 None 35 12.900 22.600 19.689 2.910 None 35+21 20.905 26.580 26.570 0.010 None 36+10Ex N 22.450 27.340 27.340 0.000 None 36+60 21.239 27.290 26.682 0.610 None 37+22P,Q,R 21.388 28.480 26.692 1.790 None 4+21 Ex_F 13.770 23.870 23.330 0.540 None 40_E 13.120 22.770 21.448 1.320 None 45 13.210 22.860 21.546 1.310 None 5 10.990 20.940 14.715 6.220 None 56A 14.690 25.790 23.367 2.420 Allowed 57A 14.720 25.820 23.424 2.400 Allowed 58A 15.330 27.330 23.617 3.710 Allowed 59A_W,AM 15.650 22.750 24.029 -1.280 Allowed 59B_U 15.330 21.380 23.889 -2.510 Allowed 60A_X 15.960 23.650 24.180 -0.530 Allowed 60B 16.000 24.200 24.224 -0.020 Allowed 65A 16.250 24.400 24.414 -0.010 Allowed 67A 16.490 25.540 24.754 0.790 Allowed 70A 16.750 27.350 25,005 2.350 Allowed 73A 16.770 30.370 25.129 5.240 Allowed 75A_Z,AA,Y 17.140 31.140 26.234 4.910 Allowed 78A 17.260 30.070 26.297 3.770 Allowed 79A 17.370 30.170 26.353 3.820 Allowed 80A_ABACAP 17.090 30.220 26.367 3.850 Allowed 95A AE 18.250 130.250 126.427 13.820 Allowed 01 /14/10 13:44:17 1 /2 Scenario 3A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 23.746 1.850 None C62_KM 15.030 24.500 24.673 -0.170 Allowed CB21(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 24.787 0.410 Allowed CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 24.901 0.900 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 25.013 1.990 None CB5(4+67) 13.600 24.000 23.200 0.800 None CB50_J 14.500 24.430 24.875 -0.450 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 25.072 2.330 None C67 17.380 27.700 25.140 2.560 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14 G 13.780 23.950 23.363 0.590 None ES-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None LP_V1-23 14.700 25.600 17.707 7.890 None Mdpoint 22.020 24.500 28.003 -3.500 Sealed Outfall 10.270 17.000 12.973 4.030 None RA V1-1 20.420 24.400 30.952 -6.550 Sealed SH50_AN 16.810 28.310 25.182 3.130 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.572 0.420 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31.900 31.900 10,000 None VAULTI(1+62) 11.600 23.400 19.755 13.380 Allowed VAULT2(6+44) 12.140 124.650 20.774 13.750 Allowed V173(25+57) 13.050 124.360 24.585 -0.230 Allowed 01 /14/10 13:44.18 2/2 Scenario 3A - Links Name Upstream Node Name Downstream Node Name Diameter ft (Height) Length ft Max Flow Cf 3/s, m 3!s) s 1-Outfall 1_A,131,62 Outfall 5.500 34.000 174.440 10-5 10 5 5.000 91.600 159.000 100A-95A 100A 95A_AE 2.000 46.000 19.510 105A-100A 105A 100A 2.000 220.000 18.490 110A-105A 110A 105A 2.000 309.000 18.510 115A-110A 115A_AF,AD 110A 2.000 62.000 18.330 120A-115A 120A 115A_AF,AD 2.000 80.000 17.760 125A-120A 125A 120A 2.000 27.000 17.750 130A-125A 130A 125A 2.000 110.000 17.740 135A-130A 135A_AH 130A 2.000 178.000 17.730 136A-135A 136A 135A_AH 2.000 77.000 17.420 137A-136A 137A 136A 2.000 77.000 16.960 138A-137A 138A 137A 2.000 75.000 12.120 140A-138A 140A 138A 2.000 86.000 12.550 145A-140A 145A 140A 2.000 145.000 13.040 15-10 15_C,D 10 5.000 336.000 158.730 150A-145A 150AAIAJAK 145A 2.000 123.000 16.000 20-15 20 15_C,D 5.000 169.000 129.360 235-3722 235_O,AO 37+22P,Q,R 3.000 100.000 21.880 25-20 25 20 5.000 340.900 128.830 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 11.020 30-25 30 25 5.000 127.600 128.790 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 29.990 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 30.670 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 25.210 35-30 35 30 5.000 470.000 129.850 3521-3223e 35+21 32+23Ex 3.000 298.000 28.480 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.330 3660-3521 36+60 35+21 3.000 139.000 28.120 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.150 4+21 E-50 4+21 Ex_F VAULT1(1+62) 4.500 306.500 59.030 40-35 40_E 35 5.000 603.400 130.860 45-40 45 40_E 5.000 56.000 117.290 5-1 5 1_A,61,62 5.000 213.300 159.290 56A-55 56A 4+21 Ex_F 5.000 229.000 70.650 57A-56A 57A 56A 4.000 133.000 70.630 58A-57A 58A 57A 4.000 315.000 70.600 59A-59B 59A_W,AM 59B U 3.000 187.000 74.960 596-58A 59B_U 58A 3.000 328.000 70.570 60A-59A 60A_X 59A_KAM 3.000 272.000 60.350 60B-60A 60B 60A_X 3.000 100.000 48.760 65A-60B 65A 60B 3.000 199.000 46.910 67A-65A 67A 65A 3.000 353.000 47.320 70A-67A 70A 67A 3.000 252.000 47.330 73A-70A 73A 70A 3.000 125.000 47.340 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 47.360 78A-75A 78A 75A_Z,AA,Y 12.000 172.000 125.870 79A-78A 79A 178A 12.000 154.000 125.850 80A-79A 180A.ABACAP 179A 12.000 38.000 125.920 01/14/10 13:44:33 1/4 Scenario 3A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.610 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 5913-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01114/10 13:44:35 Scenario 3A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 3Is, m 3/s) cfs 95A-80A 95A AE 80A ABACAP 2.000 241.000 20.240 9+78-8+80 C617(9+78) VAULT2(6+44) 5.000 314.000 65.680 Link193 C132_KM V173(25+57) 4.000 200.000 43.240 12+68-9+78 C821(11+35) CB17(9+78) 5.000 157.000 65.800 Link192 C133 C132_KM 4.000 176.000 36.840 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 65.930 15+7114+35 CB35(15+71)_I C631(14+35)_H 5.000 136.000 59.850 Link191 CB4_L C63 4.000 87.000 36.710 1797-1571 C640(17+97) CB35(15+71)_1 5.000 226.000 53.180 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 51.940 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 -7.780 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -6.450 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -10.170 Link190 C65 CB4_L 4.000 191.000 -22.750 4+21-1+14 CB5(4+67) VAULTI(1+62) 5.000 304.500 59.480 2648-2557 CB50_J VT3(25+57) 3.000 19.000 40.500 Link139 CB51(26+48) CB50_J 3.000 72.000 37.650 15+7115+71 CB52(15+71) CB35(15+71)_I 2.000 14.000 -7.710 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 32.400 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 32.650 Link189 CB6 C65 4.000 191.000 19.020 Link188 CB7 CB6 4.000 165.000 19.150 2285el996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.850 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -5.810 4+77E4+21E D8-14 G 4+21Ex F 3.000 56.000 23.290 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -7.570 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -6.990 1797el797 E8-13A(17+97) CB40(17+97) 2.000 10.000 -4.710 1883el797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -9.050 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 5.670 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 24.340 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 6.140 1996el883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -8.520 Pump LP_Vl-23 Mdpoint 0.050 10.000 6.900 Pump LP_V1-23 Mdpoint 0.050 10.000 6.900 L109 Mdpoint 59B U 2.000 830.000 9.380 Link194 RA VI-1 SH50_AN 2.000 550,000 8.340 Link187 SH50_AN C87 4.000 116.000 19.050 Link175 SH60_V2 SH50_AN 1.000 455.000 4.790 Link174 SH65 SH60_V2 1.000 579.000 1.420 Link173 SH70_AG SH65 1.000 413.000 1.380 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 50-45 VAULT1(1+62) 45 5.000 650.000 117.280 6+44E4+77E VAULT2(6+44) D8-14_G 3.000 167.000 -24.930 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 59.470 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.00 551.940 01 /14/10 13:44:35 3/4 Scenario 3A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 UAW 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 50157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 L109 22.020 15.330 0.595 Link194 20.420 16.810 0.000 Link187 16.810 17.380 0.293 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 50-45 11.600 13.210 0.040 6+44E4+77E 112.140 113.780 10.042 6+44-4+77 12.140 113.600 10.041 2557-2092 113.050 114.510 -0.013 01/14/10 13:44:35 Scenario 3B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,131,62 10.310 20.350 13.476 6.870 None 10 11.310 21.230 14.323 6.910 None 100A 18.640 30.090 25.999 4.090 Allowed 105A 19.000 30.800 26.712 4.090 Allowed 110A 18.790 30.340 27.742 2.600 Allowed 115A_AF,AD 20.850 30.430 27.958 2.470 Allowed 120A 21.110 29.320 27.945 1.370 Allowed 125A 21.180 29.190 27.945 1.250 Allowed 130A 21.640 28.440 27.984 0.460 Allowed 135A AH 21.900 27.750 28.121 -0.370 Allowed 136A 21.950 27.750 28.165 -0.420 Allowed 137A 22.140 27.740 28.273 -0.530 Allowed 138A 22.140 27.870 28.471 -0.600 Allowed 140A 22.340 28.040 28.736 -0.700 Allowed 145A 22.640 28.690 29.219 -0.530 Allowed 15 C,D 12.080 20.300 15.340 4.960 None 150AAIAJAK 23.050 28.750 29.747 -1.000 Allowed 20 12.870 21.540 15.566 5.970 None 235_0,AO 22.000 29.820 23.716 6.100 None 25 12.820 21.520 16.254 5.270 None 26+48Ex 20.470 24.580 21.121 3.460 Allowed 30 12.830 22.060 16.461 5.600 None 32+10Ex 20.110 25.500 22.163 3.340 Allowed 32+17Ex 20.150 26.100 22.223 3.880 Allowed 32+23Ex 20.190 25.600 22.254 3.350 None 35 12.900 22.600 17.030 5.570 None 35+21 20.905 26.580 23.135 3.440 None 36+10Ex_N 22.450 27.340 23.388 3.950 None 36+60 21.239 27.290 23.473 3.820 None 37+22P,Q,R 21.388 28.480 23.599 4.880 None 4+21Ex_F 13.770 23.870 19.285 4.580 None 40_E 13.120 22.770 17.597 5.170 None 45 13.210 22.860 17.626 5.230 None 5 10.990 20.940 14.055 6.880 None 56A 14.690 25.790 19.520 6.270 Sealed 57A 14.720 25.820 20.061 5.760 Sealed 58A 15.330 27.330 21.398 5.930 Sealed 59A W,AM 15.650 22.750 22.948 -0.200 Allowed 59B_U 15.330 21.380 22.495 -1.110 Sealed 60A_X 15.960 23.650 23.310 0.340 Allowed 60B 16.000 24.200 23.386 0.810 Allowed 65A 16.250 24.400 23.539 0.860 Allowed 67A 16.490 25.540 23.812 1.730 Allowed 70A 16.750 27.350 24.013 3.340 Allowed 73A 16.770 30.370 24.119 6.250 Allowed 75A Z,AA,Y 17.140 31.140 25.077 6.060 Allowed 78A 17.260 30.070 25.356 4.71 Allowed 79A 17.370 30.170 25.605 4.560 Allowed 80A ABACAP 17.090 130.220 125.667 4.550 Allowed 95A AE 18.250 130.250 125.851 4.400 Allowed 01 /14/10 13:45:26 1 /2 Scenario 3B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 19.558 6.040 None CB2_KM 15.030 24.500 20.677 3.820 None CB21(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 20.749 4.450 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71) I 13.570 25.310 22.067 3.240 None C134_L 15.970 25.800 20.790 5.010 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed C65 16.350 27.000 20.826 6.170 None CB5(4+67) 13.600 24.000 18.747 5.250 None CB50_J 14.500 24.430 20.996 3.430 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 20.853 6.550 None C67 17.380 27.700 20.873 6.830 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14_G 13.780 23.950 19.279 4.670 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 None F8-22(19+96) 18.200 25.480 22.471 3.010 None LP_V1-23 14.700 25.600 17.707 7.890 None Mdpoint 22.020 24.500 23.446 1.050 Sealed Outfall 10.270 17.000 13.335 3.670 None RA V1-1 20A20 24.400 21.476 2.920 Sealed SH50_AN 16.810 28.310 20.888 7.420 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.572 None SH70_AG 22.800 31.200 31.200 None SH75_AL 23.200 31.900 31.900 None VAULT1(1+62) 11.600 23.400 19.755 23.750]Allowed Allowed VAULT2(6+44) 12.140 24.650 20.774 VT3(25+57) 13.050 24.360 20.585 Allowed 01 /14/10 13:45:28 2/2 Scenario 3B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 3/s, m 3/s) cfs 1-Outfall 1_A,B1,B2 Outfall 5.500 34.000 219.150 10-5 10 5 5.000 91.600 92.050 100A-95A 100A 95A_AE 2.000 46.000 19.380 105A-100A 105A 100A 2.000 220.000 20.320 1IOA-105A 110A 105A 2.000 309.000 20.480 115A-110A 115A_AF,AD 110A 2.000 62.000 20.460 120A-115A 120A 115A_AF,AD 2.000 80.000 16.850 125A-120A 125A 120A 2.000 27.000 16.850 130A-125A 130A 125A 2.000 110.000 16.840 135A-130A 135A AH 130A 2.000 178.000 16.830 136A-135A 136A 135A_AH 2.000 77.000 16.240 137A-136A 137A 136A 2.000 77.000 16.230 138A-137A 138A 137A 2.000 75.000 15.940 140A-138A 140A 138A 2.000 86.000 12.560 145A-140A 145A 140A 2.000 145.000 13.230 15-10 15_C,D 10 5.000 336.000 92.090 150A-145A 150AAIAJAK 145A 2.000 123.000 16.100 20-15 20 15_C,D 5.000 169.000 75.830 235-3722 235_O,AO 37+22PAR 3.000 100.000 22.040 25-20 25 20 5.000 340.900 75.420 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 1.680 30-25 30 25 5.000 127.600 75.190 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 34.310 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 34.140 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 28.000 35-30 35 30 5.000 470.000 75.160 3521-3223e 35+21 32+23Ex 3.000 298.000 28.130 3610e3217e 36+10Ex_N 32+17Ex 1.750 393.000 6.320 3660-3521 36+60 35+21 3.000 139.000 28.090 3722-3660 37+22PAR 36+60 3.000 62.000 28.170 4+21 E-50 4+21 Ex_F VAULTI (1+62) 4.500 306.500 99.150 40-35 40 E 35 5.000 603.400 75.410 45-40 45 40 E 5.000 56.000 60.770 5-1 5 1_A,B1,B2 5.000 213.300 92.010 56A-55 56A 4+21Ex_F 5.000 229.000 93.890 57A-56A 57A 56A 4.000 133.000 94.720 58A-57A 58A 57A 4.000 315.000 95.140 59A-59B 59A_W,AM 596_U 3.000 187.000 79.340 59B-58A 59B_U 58A 3.000 328.000 95.100 60A-59A 60A_X 59A_W,AM 3.000 272.000 61.440 608-60A 60B 60A_X 3.000 100.000 52.490 65A-60B 65A 60B 3.000 199+000 52.510 67A-65A 67A 65A 3.000 353.000 52.550 70A-67A 70A 67A 3.000 252.000 52.590 73A-70A 73A 70A 3.000 125.000 52.630 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 52.670 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 29.590 79A-78A 79A 78A 2.000 154.000 29.640 80A-79A 180A.ABACAP 179A 2.000 138.000 29.690 01/14/10 13.45:42 1/4 Scenario 3B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.040 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 59B-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 10,136 80A-79A 117.090 17.370 -0.737 01/14/10 13:45:43 2/4 Scenario 3B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft^3/s, m^3/s) cfs 95A-80A 95A_AE 80A_ABACAP 2.000 241.000 23.470 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 71.170 Link193 C82_KM VT3(25+57) 4.000 200.000 27.920 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 70.440 Link192 C133 CB2_KM 4.000 176.000 25.540 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 69.980 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 65.620 Link191 CB4_L CB3 4.000 87.000 25.710 1797-1571 CB40(17+97) CB35(15+71)_I 5.000 226.000 56.680 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 56.800 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 5.170 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -5.070 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -6.070 Link190 CB5 C64_L 4.000 191.000 17.840 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 86.280 2648-2557 CB50_J VT3(25+57) 3.000 19.000 41.460 Link139 CB51(26+48) CB50_J 3.000 72.000 31.200 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -6.960 Link142 C652(28+16) CB51(26+48) 3.000 168.000 30.500 Link141 C654(29+23) CB52(28+16) 3.000 107.000 30.560 Link189 C66 C65 4.000 191.000 16.070 Link188 CB7 C66 4.000 165.000 15.980 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.060 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -5.120 4+77E4+21E D8-14_G 4+21Ex F 3.000 56.000 -18.560 1620057le E8-11(16+20) CB52(15+71) 2.000 49.000 -6.720 1797el620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 5.810 1797el797 E8-13A(17+97) CB40(17+97) 2.000 10.000 0.280 1883el797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 5.690 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 1.540 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 31.010 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 2.910 1996el883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 5.390 Pump LP_Vl-23 Mdpoint 0.050 10.000 6.900 Pump LP_Vl-23 Mdpoint 0.050 10.000 6.900 L109 Mdpoint 59B_U 2.000 830.000 7.330 Link194 RA_V1-1 SH50_AN 2,000 550,000 6.420 Link187 SH50_AN CB7 4.000 116.000 18.170 Link175 SH60_V2 SH50_AN 1.000 455.000 4.790 Link174 SH65 SH60_V2 1.000 579.000 1.410 Link173 SH70_AG SH65 1.000 413.000 1.380 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 50-45 VAULTI(1+62) 45 5.000 650.000 60.750 Link195 VAULT1(1+62) 1_A,131,62 6.000 3311.000 114.280 6+44E4+77E VAULT2(6+44) D8-14 G 13.000 1167.000 -32.140 6+44-4+77 VAULT2(6+44) CB5(4+67) 15.000 1197.500 186.250 2557-2092 1 VT3(25+57) CB41(20+92) 15.000 1465.000 159.340 01 /14/10 13:45:43 3/4 Scenario 3B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 L109 22.020 15.330 0.595 Link194 20.420 16.810 0.000 Link187 16.810 17.380 0.293 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 50-45 11.600 13.210 0.040 Link195 111.600 110.310 10.040 6+44E4+77E 12.140 113.780 0.042 6+44-4+77 12.140 113.600 10.041 2557-2092 113.050 114.510 -0.013 01/14/10 13:45:43 4/4 Scenario 4A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,B1,B2 10.310 20.350 13.109 7.240 None 10 11.310 21.230 15.219 6.010 None 100A 18.640 30.090 26.474 3.620 Allowed 105A 19.000 30.800 26.927 3.870 Allowed 110A 18.790 30.340 27.876 2.460 Allowed 115A AF,AD 20.850 30.430 28.067 2.360 Allowed 120A 21.110 29.320 28.051 1.270 Allowed 125A 21.180 29.190 28.046 1.140 Allowed 130A 21.640 28.440 28.080 0.360 Allowed 135A_AH 21.900 27.750 28.250 -0.500 Allowed 136A 21.950 27.750 28.373 -0.620 Allowed 137A 22.140 27.740 28.506 -0.770 Allowed 138A 22.140 27.870 28.639 -0.770 Allowed 140A 22.340 28.040 28.821 -0.780 Allowed 145A 22.640 28.690 29.242 -0.550 Allowed 15_C,D 12.080 20.300 16.767 3.530 None 150AAIAJAK 23.050 28.750 29.756 -1.010 Allowed 20 12.870 21.540 17.146 4.390 None 235_O,AO 22.000 29.820 27.109 2.710 None 25 12.820 21.520 18.065 3.460 None 26+48Ex 20.470 24.580 24.945 -0.370 Allowed 30 12.830 22.060 18.409 3.650 None 32+10Ex 20.110 25.500 25.563 -0.060 Allowed 32+17Ex 20.150 26.100 25.586 0.510 None 32+23Ex 20.190 25.600 25.600 0.000 None 35 12.900 22.600 19.577 3.020 None 35+21 20.905 26.580 26.580 0.000 None 36+10Ex N 22.450 27.340 26.252 1.090 None 36+60 21.239 27.290 27,051 0.240 None 37+22P,Q,R 21.388 28.480 27.145 1.330 None 4+21Ex F 13.770 23.870 23.320 0.550 None 40 E 13.120 22.770 21.243 1.530 None 45 13.210 22.860 21.349 1.510 None 5 10.990 20.940 14.714 6.230 None 56A 14.690 25.790 23.357 2.430 Allowed 57A 14.720 25.820 23.413 2.410 Allowed 58A 15.330 27.330 23.597 3.730 Allowed 59A_W,AM 15.650 22.750 24.002 -1.250 Allowed 59B_U 15.330 21.380 23.861 -2.480 Allowed 60A_X 15.960 23.650 24.158 -0.510 Allowed 60B 16.000 24.200 24.211 -0.010 Allowed 65A 16.250 24.400 24.351 0.050 Allowed 67A 16.490 25.540 24.703 0.840 Allowed 70A 16.750 27.350 24.953 2.400 Allowed 73A 16.770 30.370 25.078 5.290 Allowed 75A_Z,AA,Y 17.140 31.140 26.185 4.950 Allowed 78A 17.260 30.070 26.248 3.820 Allowed 79A 17.370 30.170 26.306 3.860 Allowed 80A_ABACAP 17.090 30.220 26.320 3.900 Allowed 95A_AE 18.250 30.250 126.380 3.870 JAIlowed 01/14/10 13:46:44 112 Scenario 4A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 23.828 1.770 None C132_KM 15.030 24.500 24.667 -0.170 Allowed C621(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 24.800 0.400 Allowed CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 24.905 0.890 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 25.010 1.990 None CB5(4+67) 13.600 24.000 23.331 0.670 None C1350_J 14.500 24.430 24.845 -0.410 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 25.089 2.310 None CB7 17.380 27.700 25.151 2.550 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14 G 13.780 23.950 23.352 0.600 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None LP_V1-2 14.700 25.600 17.699 7.900 Sealed Mdpoint 22.020 24.500 27.365 -2.860 Sealed Outfall 10.270 17.000 12.973 4.030 None RA V1-1 20.420 24.400 26.693 -2.290 Sealed RA V1-3 19.690 23.820 24.916 -1.100 Sealed SH50_AN 16.810 28.310 25.173 3.140 None SH60_V2 21.670 29.630 29.630 0.000 None SH65 21.990 30.990 30.572 0.420 None SH70_AG 22.800 31.200 31.200 0.000 None SH75_AL 23.200 31.900 31.900 0.000 None VAULT1(1+62) 11.600 23.400 19.755 3.380 Allowed VAULT2(6+44) IVT3(25+57) 12.140 24.650 20.774 3.750 Allowed j 13.050 24.360 24.579 -0.220 Allowed 01 /14/10 13:46:46 2/2 Scenario 4A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft^3/s, m^3/s) cfs 1-Outfall 1 A,131,132 Outfall 5.500 34.000 174.410 10-5 10 5 5.000 91.600 159.070 10OA-95A 100A 95A_AE 2.000 46.000 19.820 105A-100A 105A 1ODA 2.000 220.000 18.570 110A-105A 110A 105A 2.000 309.000 18.340 115A-110A 115A_AF,AD 110A 2.000 62.000 18.410 120A-115A 120A 115A AF,AD 2.000 80.000 17.740 125A-120A 125A 120A 2.000 27.000 17.780 130A-125A 130A 125A 2,000 110.000 17.850 135A-130A 135A_AH 130A 2.000 178,000 17.890 136A-135A 136A 135A_AH 2.000 77,000 17.400 137A-136A 137A 136A 2.000 77.000 17.000 138A-137A 138A 137A 2.000 75.000 16.270 140A-138A 140A 138A 2.000 86.000 12.550 145A-140A 145A 140A 2.000 145.000 13.070 15-10 15_C,D 10 5.000 336.000 158.750 150A-145A 150AAIAJAK 145A 2.000 123.000 16.010 20-15 20 15_C,D 5.000 169.000 129.240 235-3722 235_O,AO 37+22P,Q,R 3.000 100.000 22.450 25-20 25 20 5.000 340.900 129.000 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 -11.470 30-25 30 25 5.000 127.600 128.510 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 30.130 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 32.440 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 26.280 35-30 35 30 5.000 470.000 128.360 3521-3223e 35+21 32+23Ex 3.000 298.000 28.180 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.310 3660-3521 36+60 35+21 3.000 139.000 30.510 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.870 4+21E-50 4+21Ex_F VAULT1(1+62) 4.500 306.500 60.470 40-35 40_E 35 5.000 603.400 129.610 45-40 45 40_E 5.000 56.000 117.170 5-1 5 1_A,B1,B2 5.000 213.300 159.150 56A-55 56A 4+21Ex_F 5.000 229.000 69.030 57A-56A 57A 56A 4.000 133.000 69.020 58A-57A 58A 57A 4.000 315.000 69.010 59A-59B 59A_W,AM 59B_U 3.000 187.000 75.110 596-58A 596 U 58A 3.000 328.000 69.000 60A-59A 60A X 59A_W,AM 3.000 272.000 60.340 60B-60A 60B 60A_X 3.000 100.000 47.360 65A-60B 65A 60B 3.000 199.000 47.360 67A-65A 67A 65A 3.000 353.000 47.370 70A-67A 70A 67A 3.000 252.000 47.380 73A-70A 73A 70A 3.000 125.000 47.400 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 47.420 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 26,610 79A-78A 179A 78A 2.000 154.000 25.990 80A-79A 180A_ABACAP 79A 2.000 38.000 25.970 01/14/10 13:47:01 1/4 Scenario 4A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.040 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21139 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-5913 15.650 15.330 0.171 596-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 117.090 17.370 -0.737 01/14/10 13:47:02 2/4 Scenario 4A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft 3/s, m 3/s) ofs 95A-80A 95A_AE 80A_ABACAP 2.000 241.000 20.840 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 66.560 Link193 C62_KM VT3(25+57) 4.000 200.000 37.460 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 66.580 Link192 CB3 C62_KM 4.000 176.000 35.150 14+3512+68 C831(14+35) H CB21(11+35) 5.000 300.000 66.610 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 60.380 Link191 C134_L C63 4.000 87.000 35.140 1797-1571 C840(17+97) CB35(15+71)_I 5.000 226.000 53.690 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 51.450 C842_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 -6.000 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -7.010 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -9.640 Link190 CB5 CB4_L 4.000 191.000 -18.020 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 59.470 2648-2557 CB50_J VT3(25+57) 3.000 19.000 34.840 Link139 CB51(26+48) CB50_J 3.000 72.000 26.780 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -7.830 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 21.030 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 21.030 Link189 CB6 CB5 4.000 191.000 18.860 Link188 CB7 C66 4.000 165.000 19.640 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.720 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -5.690 4+77E4+21 E D8-14 G 4+21 Ex_F 3.000 56.000 23.960 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -7.700 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -7.380 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 -8.350 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -10.040 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 5.450 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 25.400 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 8.270 1996e1883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -8.640 Pump LP VI-2 Mdpoint 0.050 10.000 6.900 Pump LP_V1-2 Mdpoint 0.050 10.000 6.900 L109 Mdpoint 59B_U 2.000 830.000 6.160 Link194 RA_V1-1 SH50_AN 2.000 550.000 8.230 Link196 RA_V1-3 E8-13B(18+83) 2.000 545.000 4.950 Unk187 SH50_AN CB7 4.000 116.000 19.490 Link175 SH60_V2 SH50_AN 1.000 455.000 4.790 Unk174 SH65 SH60_V2 1.000 579.000 1.420 Link173 SH70_AG SH65 1.000 413.000 1.380 Unk172 SH75_AL SH70_AG 1.000 71.000 3.440 50-45 VAULT1(1+62) 145 5.000 650.000 117.160 6+44E4+77E VAULT2(6+44) D8-14 G 3.000 167.000 -25.930 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 59.460 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.000 51.440 01 /14/10 13:47:02 3/4 Scenario 4A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 L ink 141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797el620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 L109 22.020 15.330 0.595 Link194 20.420 16.810 0.000 Link196 19.690 17.530 0.400 Link187 16.810 17.380 0.293 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 50-45 11.600 113.210 10.040 6+44E4+77E 12.140 13.780 10.042 6+44-4+77 12.140 13.600 10.041 2557-2092 13.050 114.510 -0.013 01 /14/1013:47:03 Scenario 4B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1 A,B1,B2 10.310 20.350 13.452 6.900 None 10 11.310 21.230 14.284 6.950 None 100A 18.640 30.090 25.573 4.520 Allowed 105A 19.000 30.800 26.438 4.360 Allowed 110A 18.790 30.340 27.660 2.680 Allowed 115A_AF,AD 20.850 30.430 27.906 2.520 Allowed 120A 21.110 29.320 27.906 1.410 Allowed 125A 21.180 29.190 27.907 1.280 Allowed 130A 21.640 28.440 27.929 0.510 Allowed 135A_AH 21.900 27.750 28.091 -0.340 Allowed 136A 21.950 27.750 28.148 -0.400 Allowed 137A 22.140 27.740 28.261 -0.520 Allowed 138A 22.140 27.870 28.460 -0.590 Allowed 140A 22.340 28.040 28.727 -0.690 Allowed 145A 22.640 28.690 29.214 -0.520 Allowed 15_C,D 12.080 20.300 15.299 5.000 None 150AAIAJAK 23.050 28.750 29.746 1.000 Allowed 20 12.870 21.540 15.524 6.020 None 235_0,AO 22.000 29.820 23.716 6.100 None 25 12.820 21.520 16.209 5.310 None 26+48Ex 20.470 24.580 21.104 3.480 Allowed 30 12.830 22.060 16.414 5.650 None 32+10Ex 20.110 25.500 22.163 3.340 Allowed 32+17Ex 20.150 26.100 22.223 3.880 Allowed 32+23Ex 20.190 25.600 22.254 3.350 None 35 12.900 22.600 16.977 5.620 None 35+21 20.905 26.580 23.135 3.440 None 36+10Ex N 22.450 27.340 23.388 3.950 None 36+60 21.239 27.290 23.473 3.820 None 37+22P,Q,R 21.388 28.480 23.599 4.880 None 4+21 Ex_F 13.770 23.870 19.162 4.710 None 40_E 13.120 22.770 17.531 5.240 None 45 13.210 22.860 17.560 5.300 None 5 10.990 20.940 14.021 6.920 None 56A 14.690 25.790 19,365 6.420 Allowed 57A 14.720 25.820 19.793 6.030 Allowed 58A 15.330 27.330 20.953 6.380 Allowed 59A_W,AM 15.650 22.750 22.342 0.410 jAllowed 59B_U 15.330 21.380 21.890 -0.510 Allowed 60A_X 15.960 23.650 22.720 0.930 Allowed 60B 16.000 24.200 22.798 1.400 Allowed 65A 16.250 24.400 22.955 1.450 Allowed 67A 16.490 25.540 23.244 2.300 Allowed 70A 16.750 27.350 23.467 3.880 Allowed 73A 16.770 30.370 23.577 6.790 Allowed 75A Z,AA,Y 17.140 31.140 24.565 6.580 Allowed 78A 17.260 30.070 24.860 5.210 Allowed 79A 17.370 30.170 25.125 5.050 Allowed 80A ABACAP 17.090 30.220 25.191 5.030 Allowed 95A AE 118.250 130.250 125.396 14.850 Allowed 01/14/10 13:47:36 1/2 Scenario 4B - Nodes Name IC132 Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 19.504 6.100 None KM 15.030 24.500 20.648 3.850 None CB21(11+35) 13.140 25.900 21.676 3.320 None C63 15.540 25.200 20.717 4.480 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None C134_L 15.970 25.800 20.756 5.040 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 20.789 6.210 None CB5(4+67) 13.600 24.000 18.671 5.330 None CB50_J 14.500 24.430 20.966 3.460 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 20.816 6.580 None CB7 17.380 27.700 20.834 6.870 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14 G 13.780 23.950 19.158 4.790 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None LP_V1-2 14.700 25.600 17.704 7.900 None Mdpoint 22.020 24.500 23.105 1.400 Sealed Outfall 10.270 17.000 13.311 3.690 None RA VIA 20.420 24.400 21.473 2.930 Sealed RA V1-3 19.690 23.820 20.364 Sealed SH50_AN 16.810 28.310 20.843 None SH60_V2 21.670 29.630 29.630 None SH65 21.990 30.990 30.572 INAllowed None SH70_AG 22.800 31.200 31.200 None SH75_AL 23.200 31.900 31.900 None VAULT1(1+62) 11.600 23.400 19.755 VAULT2(6+44) 12.140 124.650 120.774 13.750 jAllowed VT3(25+57) 13.050 124.360 120.559 13.800 lAllowed 01 /14/10 13:47:38 2/2 Scenario 4B - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow (ft 3/s, m 3/s) cfs 1-Outfall 1_A,131,132 Outfall 5.500 34.000 216.080 10-5 10 5 5.000 91.600 90.130 100A-95A 100A 95A_AE 2.000 46.000 19.360 105A-100A 105A 100A 2.000 220.000 20.440 110A-105A 110A 105A 2.000 309.000 20.490 115A-110A 115A_AF,AD 110A 2.000 62.000 20.460 120A-115A 120A 115A_AF,AD 2.000 80.000 16.830 125A-120A 125A 120A 2.000 27.000 16.820 130A-125A 130A 125A 2.000 110.000 16.820 135A-130A 135A_AH 130A 2.000 178.000 16.810 136A-135A 136A 135A AH 2.000 77.000 16.210 137A-136A 137A 136A 2.000 77.000 16.200 138A-137A 138A 137A 2.000 75.000 15.980 140A-138A 140A 138A 2.000 86.000 12.560 145A-140A 145A 140A 2.000 145.000 13.230 15-10 15_C,D 10 5.000 336.000 90.160 150A-145A 150AAIAJAK 145A 2.000 123.000 16.110 20-15 20 15_C,D 5.000 169.000 74.360 235-3722 235_0,AO 37+22P,Q,R 3.000 100.000 22.040 25-20 25 20 5.000 340.900 73.850 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 1.540 30-25 30 25 5.000 127.600 73.670 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 34.300 3217e3210e 32+1-Ex 32+10Ex 3.000 12.000 34.140 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 28.000 35-30 35 30 5.000 470.000 73.590 3521-3223e 35+21 32+23Ex 3.000 298.000 28.130 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6.320 3660-3521 36+60 35+21 3.000 139.000 28.090 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.170 4+21E-50 4+21Ex_F VAULTI(1+62) 4.500 306.500 95.010 40-35 40_E 35 5.000 603.400 73.790 45-40 45 40 E 5.000 56.000 60.240 5-1 5 1_A,B1,B2 5.000 213.300 90.140 56A-55 56A 4+21 Ex F 5.000 229.000 86.850 57A-56A 57A 56A 4.000 133.000 89.130 5BA-57A 58A 57A 4.000 315.000 87.360 59A-59B 59A_W,AM 59B_U 3.000 187.000 85.590 596-58A 596_U 58A 3.000 328.000 90,200 60A-59A 60A_X 59A_W,AM 3.000 272.000 61.690 606-60A 60B 60A X 3.000 100.000 52.420 65A-60B 65A 60B 3.000 199.000 52.450 67A-65A 67A 65A 3.000 353.000 52.490 70A-67A 70A 67A 3.000 252.000 52.550 73A-70A 73A 70A 3.000 125.000 52.600 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 52.640 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 29.610 79A-78A 79A 78A 2.000 154.000 29.650 80A-79A 80A_ABACAP 179A 2.000 38.000 29.700 01/14/10 13:48:00 1/4 Scenario 4B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.040 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.610 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-5913 15.650 15.330 0.171 596-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01 /14/10 13:48:01 2/4 Scenario 4B - Links Name Upstream Node Name Downstream Node Name Diameter ft (Height) Length ft Max Flow Cf 3/s, m 3/s) s 95A-80A 95A_AE 80A_ABACAP 2.000 241.000 123.570 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 71.120 Link193 CB2_KM VT3(25+57) 4.000 200.000 28.360 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 71.200 Link192 CB3 CB2_KM 4.000 176.000 26.000 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 71.230 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 65.640 Link191 CB4_L CB3 4.000 87.000 26.260 1797-1571 CB40(17+97) CB35(15+71)_I 5.000 226.000 56.070 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 57.520 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 4.460 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -4.850 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -5.690 Link190 CB5 CB4_L 4.000 191.000 17.090 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 85.420 2648-2557 CB50_J VT3(25+57) 3.000 19.000 41.500 Link139 CB51(26+48) CB50_J 3.000 72.000 31.230 15+7115+71 CB52(15+71) CB35(15+71)_I 2.000 14.000 7.560 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 30.470 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 30.530 Link189 CB6 CB5 4.000 191.000 15.380 Link188 CB7 CB6 4.000 165.000 15.840 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 4.500 Link147 CB-EX(22+85) CB45(23+63) 2.000 78.000 -4.560 4+77E4+21 E D8-14 G 4+21 Ex_F 3.000 56.000 -15.040 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 7.400 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 7.010 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 0.410 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 6.870 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 1.500 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 30.710 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 3.070 1996e1883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 4.460 Pump LP VI-2 Mdpoint 0.050 10.000 6.900 Pump LP_V1-2 Mdpoint 0.050 10.000 6.900 L109 Mdpoint 59B_U 2.000 830.000 5.980 Link194 RA_V1-1 SH50_AN 2.000 550.000 6.550 Link196 RA_V1-3 E8-13B(18+83) 2.000 545.000 3.230 Link187 SH50_AN CB7 4.000 116.000 18.090 Link175 SH60_V2 SH50_AN 1.000 455.000 4.790 Link174 SH65 SH60_V2 1.000 579.000 1.410 Link173 SH70_AG SH65 1.000 413.000 1.380 Link172 SH75_AL SH70_AG 1.000 71.000 3.440 50-45 VAULT1(1+62) 45 5.000 650.000 59.640 Link197 VAULTI(1+62) 1_A,B1,B2 6.000 3311.000 112.980 6+44E4+77E VAULT2(6+44) D8-14 G 3.000 167.000 -29.430 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197,500 86.110 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.000 60.340 01/14/10 13:48:01 3/4 Scenario 4B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Unk149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Unk139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link141 17.530 16.170 1.271 Unk189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21 E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -11200 1996e1883e 18.200 17.530 0.549 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 L109 22.020 15.330 0.595 Link194 20.420 16.810 0.000 Link196 19.690 17.530 0.400 Link187 16.810 17.380 0.293 Link175 21.670 16.810 0.000 Link174 21.990 21.670 0.060 Link173 22.800 21.990 0.200 Link172 23.200 22.800 0.560 50-45 11.600 13.210 0.040 Link197 11.600 10.310 0.040 6+44E4+77E 12.140 13.780 0.042 6+44-4+77 12.140 13.600 0.041 2557-2092 13.050 14.510 -0.013 01 /14110 13:48:02 4/4 Scenario 5A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,131,82 10.310 20.350 13.115 7.230 None 10 11.310 21.230 15.229 6.000 None 100A 18.640 30.090 26.585 3.510 Allowed 105A 19.000 30.800 27.017 3.780 Allowed 110A 18.790 30.340 27.886 2.450 Allowed 115A_AF,AD 20.850 30.430 28.071 2.360 Allowed 120A 21.110 29.320 28.057 1.260 Allowed 125A 21.180 29.190 28.054 1.140 Allowed 130A 21.640 28.440 28.095 0.340 Allowed 135A_AH 21.900 27.750 28.279 -0.530 Allowed 136A 21.950 27.750 28.397 -0.650 Allowed 137A 22.140 27.740 28.525 -0.780 Allowed 138A 22.140 27.870 28.653 -0.780 Allowed 140A 22.340 28.040 28.829 -0.790 Allowed 145A 22.640 28.690 29,248 -0.560 Allowed 15_C,D 12.080 20.300 16.781 3.520 None 150AAIAJAK 23.050 28.750 29.759 -1.010 Allowed 20 12.870 21.540 17.135 4.400 None 235_0,AO 22.000 29.820 27.259 2.560 None 25 12.820 21.520 18.085 3.430 None 26+48Ex 20.470 24.580 24.988 -0.410 Allowed 30 12.830 22.060 18.433 3.630 None 32+10Ex 20.110 25.500 25.555 -0.060 Allowed 32+17Ex 20.150 26.100 25.584 0.520 Allowed 32+23Ex 20.190 25.600 25.600 0.000 None 35 12.900 22.600 19.613 2.990 None 35+21 20.905 26.580 26.580 0.000 None 36+10Ex N 22.450 27.340 26.393 0.950 None 36+60 21.239 27.290 26.924 0.370 None 37+22P,Q,R 21.388 28.480 27.054 1.430 None 4+21 Ex_F 13.770 23.870 23.406 0.460 None 40_E 13.120 22.770 21.301 1.470 None 45 13.210 22.860 21.409 1.450 None 5 10.990 20.940 14.722 6.220 None 56A 14.690 25.790 23.444 2.350 Allowed 57A 14.720 25.820 23.504 2.320 Allowed 58A 15.330 27.330 23.694 3.640 Allowed 59A_W,AM 15.650 22.750 24.105 -1.350 Allowed 59B_U 15.330 21.380 23.972 -2.590 Allowed 60A_X 15.960 23.650 24.247 -0.600 Allowed 60B 16.000 24.200 24.326 -0.130 Allowed 65A 16.250 24.400 24.503 -0.100 Allowed 67A 16.490 25.540 24.839 0.700 Allowed 70A 16.750 27.350 25.088 2.260 Allowed 73A 16.770 30.370 25.211 5.160 Allowed 75A_Z,AA,Y 17.140 31.140 26.308 4.830 Allowed 78A 17.260 30.070 26.369 3.700 Allowed 79A 17.370 30.170 26.424 3.750 Allowed 80A_ABACAP 17.090 30.220 26.437 3.780 Allowed 95A AE 18.250 30.250 26.495 3.750 Allowed 01/14/10 13:48:40 1/2 Scenario 5A - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 23.838 1.760 None C62 KM 15.030 24.500 24.912 -0.410 Allowed CB21(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 25.245 -0.050 Allowed CB31(14+35) H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 25.309 0.490 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed C135 16.350 27.000 25.297 1.700 None CB5(4+67) 13.600 24.000 23.278 0.720 None CB50_J 14.500 24.430 24.912 -0.480 Allowed CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 24.680 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 25.370 2.030 None CB7 17.380 27.700 25.463 2.240 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14_G 13.780 23.950 23.440 0.510 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 27.733 -3.230 Sealed Outfall 10.270 17.000 12.977 4.020 None SH50 AN 17.720 28.310 25.535 2.780 None SH60_V2 19.093 29.630 26.257 3.370 None SH65 20.840 30.990 30.411 0.580 None SH70_AG 22.086 31.200 30.553 0.650 None SH75_AL 22.300 31.900 30.937 0.960 None Tmp Out_V1 14.700 25.600 18.736 6.860 None VAULTI(1+62) 111.600 123.400 119.755 13.380 Allowed VAULT2(6+44) 112.140 124.650 120.774 13.750 Allowed VT3(25+57) 113.050 24.360 124.730 -0.370 Allowed 01/14/10 13:48:41 2/2 Scenario 5A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 31s, m 3/s) cfs 1-Outfali 1_A,131,62 Outfall 5.500 34.000 174.910 10-5 10 5 5.000 91.600 159.230 10DA-95A 100A 95A_AE 2.000 46.000 18.650 105A-100A 105A 100A 2.000 220.000 18.270 110A-105A 110A 105A 2.000 309.000 18.310 115A-110A 115A_AF,AD 110A 2.000 62.000 18.400 120A-115A 120A 115A_AF,AD 2.000 80.000 17.850 125A-120A 125A 120A 2.000 27.000 17.900 130A-125A 130A 125A 2.000 110.000 17.950 135A-130A 135A AH 130A 2.000 178.000 17.970 136A-135A 136A 135A AH 2.000 77.000 17.450 137A-136A 137A 136A 2.000 77.000 17.090 138A-137A 138A 137A 2.000 75.000 16.480 140A-138A 140A 138A 2.000 86.000 12.530 145A-140A 145A 140A 2.000 145.000 12.970 15-10 15_C,D 10 5.000 336.000 159.220 150A-145A 150AAIAJAK 145A 2.000 123.000 15.980 20-15 20 15_C,D 5.000 169.000 129.920 235-3722 235_0,AO 37+22P,Q,R 3.000 100.000 22.230 25-20 25 20 5.000 340.900 129.400 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 8.220 30-25 30 25 5.000 127.600 131.770 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 32.440 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 32.570 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 26.380 35-30 35 30 5.000 470.000 132.180 3521-3223e 35+21 32+23Ex 3.000 298.000 27.930 3610e3217e 36+10Ex N 32+17Ex 1.750 393.000 6,330 3660-3521 36+60 35+21 3.000 139.000 28.820 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.600 4+21E-50 4+21Ex_F VAULTI(1+62) 4.500 306.500 62.050 40-35 40_E 35 5.000 603.400 130.650 45-40 45 40 E 5.000 56.000 118.160 5-1 5 1_A,131,62 5.000 213.300 159.660 56A-55 56A 4+21 Ex_F 5.000 229.000 72.800 57A-56A 57A 56A 4.000 133.000 72.780 58A-57A 58A 57A 4.000 315.000 72.760 59A-59B 59A_W,AM 5913_U 3.000 187.000 71.820 596-58A 59B_U 58A 3.000 328.000 72.740 60A-59A 60A_X 59A_W,AM 3.000 272.000 59.980 60B-60A 60B 60A_X 3.000 100.000 45.940 65A-60B 65A 60B 3.000 199.000 46.250 67A-65A 67A 65A 3.000 353.000 47.160 70A-67A 70A 67A 3.000 252.000 47.170 73A-70A 73A 70A 3.000 125.000 47.190 75A-73A 75A_Z,AA,Y 73A 2.000 210.000 47.200 78A-75A 78A 75A_Z,AA,Y 2.000 172.000 25.790 79A-78A 79A 78A 2.000 154,000 25.760 80A-79A 80A_ABACAP 79A 2.000 38.000 25.810 01 /14/10 13:48:56 1 /4 Scenario 5A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 58A-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 596-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-60B 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01 /14/10 13:48:59 2/4 Scenario 5A - Links Name Upstream Node Name Downstream Node Name Diameter (Height) ft Length ft Max Flow Cf 3/s, m 3/s) cfs 95A-80A 95A_AE 80A ABACAP 2.000 241.000 20.310 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 65.080 Link193 CB2_KM VT3(25+57) 4.000 200.000 44.990 12+68-9+78 CB21(11+35) CB17(9+78) 5.000 157.000 65.110 Link192 CB3 C132_KM 4.000 176.000 66.450 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 65.140 15+7114+35 CB35(15+71)_I CB31(14+35)_H 5.000 136.000 61.400 Link191 C64_L CB3 4.000 87.000 59.940 1797-1571 CB40(17+97) CB35(15+71)_I 5.000 226.000 54.620 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 53.770 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 5.980 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -5.700 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -9.740 Link190 CB5 CB4_L 4.000 191.000 42.970 4+21-1+14 CB5(4+67) VAULTI(1+62) 5.000 304.500 59.990 2648-2557 CB50_J VT3(25+57) 3.000 19.000 39.560 Link139 CB51(26+48) CB50_J 3.000 72.000 36.580 15+7115+71 CB52(15+71) CB35(15+71)_I 2.000 14.000 -7.500 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 29.510 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 22.710 Link189 C66 CB5 4.000 191.000 42.270 Link188 CB7 C66 4.000 165.000 41.730 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.970 Link147 CB-EX(22+85) C845(23+63) 2.000 78.000 -5.970 4+77E4+21E D8-14 G 4+21Ex F 3.000 56.000 21.440 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -6.950 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -6.100 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 -6.050 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 -9.670 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 5.490 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 26.960 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 7.860 1996e1883e F8-22(19+96) E8-13B(18+83) 2.000 113.000 -9.210 L109 Mdpoint 59B_U 2.000 830.000 13.490 Link187 SH50_AN CB7 4.000 116.000 41.590 Link175 SH60_V2 SH50_AN 3.000 455.000 33.710 Link174 SH65 SH60 V2 3.000 579.000 -22.980 Link173 SH70_AG SH65 3.000 413.000 12.740 Link172 SH75_AL SH70_AG 3.000 71.000 6.180 Pump Tmp Out VI Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULT1(1+62) 45 5.000 650.000 118.140 6+44E4+77E VAULT2(6+44) D8-14 G 3.000 167.000 -25.950 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 159.990 2557-2092 VT3(25+57) CB41(20+92) 15.000 1465.000 153.750 01/14/10 13:48:59 3/4 Scenario 5A - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 Link 141 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 L109 22.020 15.330 0.595 Link187 17.720 17.380 0.293 Link175 19.093 17.720 0.300 Link174 20.840 19.093 0.300 Link173 22.086 20.840 0.300 Link172 22.300 22.086 0.300 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 6+44E4+77E 12.140 13.780 0.042 6+44-4+77 112.140 113.600 0.041 2557-2092 113.050 114.510 -0.013 01 /14/10 13:48:59 4/4 Scenario 5B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type 1_A,B1,B2 10.310 20.350 13.527 6.820 None 10 11.310 21.230 14.403 6.830 None 100A 18.640 30.090 25.708 4.380 Allowed 105A 19.000 30.800 26.545 4.250 Allowed 110A 18.790 30.340 27.721 2.620 Allowed 115A_AF,AD 20.850 30.430 27.956 2.470 Allowed 120A 21.110 29.320 27.995 1.320 Allowed 125A 21.180 29.190 28.000 1.190 Allowed 130A 21.640 28.440 27.962 0.480 Allowed 135A_AH 21.900 27.750 28.119 -0.370 Allowed 136A 21.950 27.750 28.175 -0.430 Allowed 137A 22.140 27.740 28.297 -0.560 Allowed 138A 22.140 27.870 28.492 -0.620 Allowed 140A 22.340 28.040 28.750 -0.710 Allowed 145A 22.640 28.690 29.224 -0.530 Allowed 15_C,D 12.080 20.300 15.433 4.870 None 150AAIAJAK 23.050 28.750 29.751 -1.000 Allowed 20 12.870 21.540 15.665 5.880 None 235_0,AO 22.000 29.820 23.716 6.100 None 25 12.820 21.520 16.353 5.170 None 26+48Ex 20.470 24.580 21.822 2.760 Allowed 30 12.830 22.060 16.565 5.500 None 32+10Ex 20.110 25.500 22.481 3.020 Allowed 32+17Ex 20.150 26.100 22.499 3.600 Allowed 32+23Ex 20.190 25.600 22.508 3.090 None 35 12.900 22.600 17.156 5.440 None 35+21 20.905 26.580 23.135 3.450 None 36+10Ex_N 22.450 27.340 23.388 3.950 None 36+60 21.239 27.290 23.473 3.820 None 37+22P,Q,R 21.388 28.480 23.601 4.880 None 4+21Ex_F 13.770 23.870 19.478 4.390 None 40 E 13.120 22.770 17.756 5.010 None 45 13.210 22.860 17.789 5.070 None 5 10.990 20.940 14.133 6.810 None 56A 14.690 25.790 19.704 6.090 Allowed 57A 14.720 25.820 20.202 5.620 Allowed 58A 15.330 27.330 21.378 5.950 Allowed 59A_W,AM 15.650 22.750 22.660 0.090 Allowed 598_U 15.330 21.380 22.309 -0.930 Allowed 60A_X 15.960 23.650 22.988 0.660 Allowed 60B 16.000 24.200 23.060 1.140 Allowed 65A 16.250 24.400 23.204 1.200 Allowed 67A 16.490 25.540 23.471 2.070 Allowed 70A 16.750 27.350 23.664 3.690 Allowed 73A 16.770 30.370 23.760 6.610 Allowed 75A_Z,AA,Y 17.140 31.140 24.709 6.430 Allowed 78A 17.260 30.070 25.004 5.070 Allowed 79A 17.370 30.170 25.267 4.900 Allowed 80A ABACAP 17.090 30.220 25.333 14.890 Allowed 95A_AE 18.250 30.250 25.537 14,710 jAllowed 01/14/10 13:49A0 1/2 Scenario 5B - Nodes Name Invert Elevation ft Ground Elevation (Spill Crest) Max Water Elevation ft Freeboard ft Ponding Type CB17(9+78) 13.270 25.600 19.951 5.650 None CB2_KM 15.030 24.500 21.424 3.080 None CB21(11+35) 13.140 25.900 21.676 3.320 None CB3 15.540 25.200 21.529 3.670 None CB31(14+35)_H 13.990 25.400 21.903 3.630 None CB35(15+71)_I 13.570 25.310 22.067 3.240 None CB4_L 15.970 25.800 21.581 4.220 None CB40(17+97) 13.980 25.170 22.277 2.890 None CB41(20+92) 14.510 25.640 22.544 3.100 Allowed CB42(21+04) 18.250 25.200 22.729 1.860 Allowed CB45(23+63) 18.270 24.240 0.000 0.000 Allowed CB46(24+14) 18.390 24.000 0.000 0.000 Allowed CB5 16.350 27.000 21.631 5.370 None CB5(4+67) 13.600 24.000 19.003 5.000 None CB50_J 14.500 24.430 21.698 2.730 None CB51(26+48) 14.500 24.570 0.000 0.000 Allowed CB52(15+71) 17.350 24.790 22.091 2.700 None CB52(28+16) 16.170 25.100 0.000 0.000 Allowed CB54(29+23) 17.530 24.860 0.000 0.000 Allowed CB6 16.900 27.400 21.691 5.710 None CB7 17.380 27.700 21.734 5.970 None CB-EX(22+85) 18.340 24.590 22.729 1.860 Allowed D8-14 G 13.780 23.950 19.477 4.470 None E8-11(16+20) 17.620 24.920 22.133 2.790 None E8-13A(17+97) 16.670 24.790 22.279 2.510 None E8-13B(18+83) 17.530 26.130 22.361 3.770 None EXCB(31+02) 20.900 25.790 0.000 0.000 Allowed EXCB(31+05) 19.300 25.360 0.000 0.000 Allowed F8-22(19+96) 18.200 25.480 22.471 3.010 None Mdpoint 22.020 24.500 25.660 -1.160 Sealed Outfall 10.270 17.000 13.386 3.610 None SH50_AN 17.720 28.310 21.754 6.560 None SH60_V2 19.093 29.630 22.081 7.550 None SH65 20.840 30.990 22.179 8.810 None SH70_AG 22.086 31.200 23.054 8.150 None SH75_AL 22.300 31.900 23.099 8.800 None Tmp Out_V1 14.700 25.600 18.736 6.860 None VAULT1(1+62) 11.600 23.400 19.755 3.380 Allowed VAULT2(6+44) 112.140 124.650 120.774 3.750 Allowed VT3(25+57) 113.050 124.360 121.290 3.070 Allowed 01 /14/10 13:49:40 2/2 Scenario 5B - Links Name Upstream Node Name Downstream Node Name Diameter ftHeight) Length ft Max Flow (Cfs m 3/s) 1-Outfall 1_A,61,132 Outfall 5.500 34.000 225.690 10-5 10 5 5.000 91.600 96.130 100A-95A 100A 95A_AE 2.000 46.000 19.340 105A-100A 105A 100A 2.000 220.000 19.350 110A-105A 110A 105A 2.000 309.000 20.240 115A-110A 115A_AF,AD 110A 2.000 62.000 20.380 120A-115A 120A 115A_AF,AD 2.000 80.000 16.910 125A-120A 125A 120A 2.000 27.000 16.910 130A-125A 130A 125A 2.000 110.000 16.900 135A-130A 135A_AH 130A 2.000 178.000 16.890 136A-135A 136A 135A_AH 2.000 77,000 16.310 137A-136A 137A 136A 2.000 77.000 16.300 138A-137A 138A 137A 2.000 75.000 16.150 140A-138A 140A 138A 2.000 86.000 12.600 145A-140A 145A 140A 2.000 145.000 13.290 15-10 15_C,D 10 5.000 336.000 96.180 150A-145A 150AAIAJAK 145A 2.000 123.000 16.090 20-15 20 15_C,D 5.000 169.000 79.680 235-3722 235_0,AO 37+22P,Q,R 3.000 100.000 22.060 25-20 25 20 5.000 340.900 79,210 2648e-2648 26+48Ex CB51(26+48) 2.000 10.000 5.090 30-25 30 25 5.000 127.600 78,980 3210e3102e 32+10Ex EXCB(31+05) 3.000 105.000 34.180 3217e3210e 32+17Ex 32+10Ex 3.000 12.000 34.160 3223e3217e 32+23Ex 32+17Ex 3.000 11.000 28.040 35-30 35 30 5.000 470.000 78.870 3521-3223e 35+21 32+23Ex 3.000 298.000 28.130 3610e3217e 36+10Ex_N 32+17Ex 1.750 393.000 6.320 3660-3521 36+60 35+21 3.000 139.000 28.080 3722-3660 37+22P,Q,R 36+60 3.000 62.000 28.210 4+21E-50 4+21Ex F VAULT1(1+62) 4.500 306.500 96.850 40-35 40_E 35 5.000 603.400 79.210 45-40 45 40 E 5.000 56.000 64.870 5-1 5 1_A,B1,B2 5.000 213.300 96.170 56A-55 56A 4+21 Ex_F 5.000 229.000 87.780 57A-56A 57A 56A 4.000 133.000 88.780 58A-57A 58A 57A 4.000 315.000 88.970 59A-59B 59A_W,AM 59B_U 3.000 187.000 85.580 5913-58A 59B_U 58A 3.000 328.000 91.000 60A-59A 60A_X 59A_W,AM 3.000 272.000 61.590 60B-60A 60B 60A X 3.000 100.000 52.380 65A-60B 65A 60B 3.000 199.000 52.450 67A-65A 67A 65A 3.000 353.000 52.500 70A-67A 70A 67A 3.000 252.000 52.560 73A-70A 73A 70A 3.000 125.000429.600 52.620 75A-73A 75A_Z,AA,Y 73A 2.000 210.00052.670 78A-75A 78A 75A Z,AA,Y 2.000 172.00029.490 79A-78A 79A 78A 2.000 154.00029.550 80A-79A 80A ABACAP 79A 2.000 38.000 01/14/10 13:54:05 1/4 Scenario 5B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 1-Outfall 10.310 10.270 0.118 10-5 11.310 10.990 0.349 100A-95A 18.640 18.250 0.848 105A-100A 19.000 18.640 0.164 110A-105A 18.790 19.000 -0.068 115A-110A 20.850 18.790 3.000 120A-115A 21.110 20.850 0.138 125A-120A 21.180 21.110 0.259 130A-125A 21.640 21.180 0.286 135A-130A 21.900 21.640 0.146 136A-135A 21.950 21.900 0.065 137A-136A 22.140 21.950 0.247 138A-137A 22.140 22.140 0.000 140A-138A 22.340 22.140 0.233 145A-140A 22.640 22.340 0.207 15-10 12.080 11.310 0.229 150A-145A 23.050 22.640 0.333 20-15 12.870 12.080 0.467 235-3722 22.000 21.388 0.612 25-20 12.820 12.870 -0.015 2648e-2648 20.470 14.500 0.700 30-25 12.830 12.820 0.008 3210e3102e 20.110 19.300 0.395 3217e3210e 20.150 20.110 0.364 3223e3217e 20.190 20.150 0.364 35-30 12.900 12.830 0.015 3521-3223e 20.905 20.190 0.240 3610e3217e 22.450 20.150 0.585 3660-3521 21.239 20.905 0.240 3722-3660 21.388 21.239 0.240 4+21 E-50 13.770 11.600 0.098 40-35 13.120 12.900 0.036 45-40 13.210 13.120 0.161 5-1 10.990 10.310 0.319 56A-55 14.690 13.770 0.380 57A-56A 14.720 14.690 0.023 5BA-57A 15.330 14.720 0.194 59A-59B 15.650 15.330 0.171 596-58A 15.330 15.330 0.076 60A-59A 15.960 15.650 0.040 60B-60A 16.000 15.960 0.040 65A-6013 16.250 16.000 0.025 67A-65A 16.490 16.250 0.068 70A-67A 16.750 16.490 0.083 73A-70A 16.770 16.750 0.096 75A-73A 17.140 16.770 0.176 78A-75A 17.260 17.140 -0.012 79A-78A 17.370 17.260 0.136 80A-79A 17.090 17.370 -0.737 01/14/10 13:54:06 2/4 Scenario 5B - Links Name Upstream Node Name Downstream Node Name Diameter ft (Height) Length ft Max Flow „ Cf 3/s, m 3/s) s 95A-80A 95A AE 80A ABACAP 2.000 241.000 23.400 9+78-8+80 CB17(9+78) VAULT2(6+44) 5.000 314.000 79.180 Link193 CB2_KM VT3(25+57) 4.000 200.000 38.720 12+68-9+78 CB21(11+35) C817(9+78) 5.000 157.000 79.170 Link192 C133 CB2_KM 4.000 176.000 36.180 14+3512+68 CB31(14+35)_H CB21(11+35) 5.000 300.000 79.170 15+7114+35 C635(15+71)_I C831(14+35)_H 5.000 136.000 73.110 Link191 CB4_L CB3 4.000 87.000 36.190 1797-1571 CB40(17+97) CB35(15+71)_I 5.000 226.000 63.440 2092-1797 CB41(20+92) CB40(17+97) 5.000 295.000 63.590 CB42_F8-22 CB42(21+04) F8-22(19+96) 2.000 108.000 5.760 Link148 CB45(23+63) CB46(24+14) 2.000 51.000 -7.400 Link149 CB46(24+14) VT3(25+57) 2.000 143.000 -8.730 Link190 C65 CB4_L 4.000 191.000 24.650 4+21-1+14 CB5(4+67) VAULT1(1+62) 5.000 304.500 91.640 2648-2557 C650_J VT3(25+57) 3.000 19.000 40.220 Link139 CB51(26+48) C650_J 3.000 72.000 29A50 15+7115+71 CB52(15+71) CB35(15+71)_1 2.000 14.000 -7.610 Link142 CB52(28+16) CB51(26+48) 3.000 168.000 28.580 Link141 CB54(29+23) CB52(28+16) 3.000 107.000 28.640 Link189 CB6 CB5 4.000 191.000 24.210 Link188 CB7 C136 4.000 165.000 25.210 2285e1996e CB-EX(22+85) CB42(21+04) 2.000 181.000 5.770 Link147 CB-EX(22+85) C645(23+63) 2.000 78.000 -6.350 4+77E4+21E D8-14 G 4+21Ex_F 3.000 56.000 -16.620 1620e1571e E8-11(16+20) CB52(15+71) 2.000 49.000 -7.310 1797e1620e E8-13A(17+97) E8-11(16+20) 2.000 177.000 -5.800 1797e1797 E8-13A(17+97) CB40(17+97) 2.000 10.000 0.980 1883e1797e E8-13B(18+83) E8-13A(17+97) 2.000 86.000 5.940 Link157 EXCB(31+02) 26+48Ex 1.750 457.000 4.380 Link140 EXCB(31+05) CB54(29+23) 3.000 182.000 30.160 Link144 EXCB(31+05) EXCB(31+02) 1.750 10.000 5.060 1996e1883e F8-22(19+96) EB-13B(18+83) 2.000 113.000 5.900 L109 Mdpoint 59B_U 2.000 830.000 13.700 Link187 SH50_AN C87 4.000 116.000 27.880 Link175 SH60_V2 SH50_AN 3.000 455.000 24.280 Link174 SH65 SH60_V2 3.000 579.000 7.270 Link173 SH70_AG SH65 3.000 413.000 7.340 Link172 SH75_AL SH70_AG 3.000 71.000 3.750 Pump Tmp Out VI Mdpoint 0.050 10.000 13.500 Pump Tmp Out_V1 Mdpoint 0.050 10.000 13.500 50-45 VAULT1(1+62) 45 5.000 650.000 64.430 Link194 VAULTI(1+62) 1_A,B1,B2 6.000 13311.000 116.520 6+44E4+77E VAULT2(6+44) D8-14 G 3.000 167.000 -30.210 6+44-4+77 VAULT2(6+44) CB5(4+67) 5.000 197.500 192.720 2557-2092 VT3(25+57) CB41(20+92) 5.000 465.000 167.000 01 /14/10 13:54:06 3/4 Scenario 5B - Links Name Upstream Invert Elevation ft Downstream Invert Elevation ft Conduit Slope 95A-80A 18.250 17.090 0.427 9+78-8+80 13.270 12.140 -0.131 Link193 15.030 13.050 0.290 12+68-9+78 13.140 13.270 -0.080 Link192 15.540 15.030 0.290 14+3512+68 13.990 13.140 0.283 15+7114+35 13.570 13.990 -0.309 Link191 15.970 15.540 0.490 1797-1571 13.980 13.570 0.181 2092-1797 14.510 13.980 0.180 CB42_F8-22 18.250 18.200 0.100 Link148 18.270 18.390 -0.235 Link149 18.390 13.050 -0.217 Link190 16.350 15.970 0.200 4+21-1+14 13.600 11.600 0.059 2648-2557 14.500 13.050 0.263 Link139 14.500 14.500 0.000 15+7115+71 17.350 13.570 -0.714 Link142 16.170 14.500 0.994 LinkW 17.530 16.170 1.271 Link189 16.900 16.350 0.290 Link188 17.380 16.900 0.290 2285e1996e 18.340 18.250 0.100 Link147 18.340 18.270 0.090 4+77E4+21E 13.780 13.770 0.018 1620e1571e 17.620 17.350 0.551 1797e1620e 16.670 17.620 -0.537 1797e1797 16.670 13.980 -26.300 1883e1797e 17.530 16.670 0.942 Link157 20.900 20.470 0.000 Link140 19.300 17.530 0.973 Link144 19.300 20.900 -13.200 1996e1883e 18.200 17.530 0.549 L109 22.020 15.330 0.595 Link187 17.720 17.380 0.293 Link175 19.093 17.720 0.300 Link174 20.840 19.093 0.300 Link173 22.086 20.840 0.300 Link172 22.300 22.086 0.300 Pump 14.700 22.020 0.000 Pump 14.700 22.020 0.000 50-45 11.600 13.210 0.040 Link194 11.600 10.310 0.040 6+44E4+77E 112.140 13.780 10.042 6+44-4+77 112.140 13.600 10.041 2557-2092 113.050 14.510 -0.013 01 /14/10 13:54:06 4/4 Scenario 1 A Table E20 - Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the I flooded storage area is the total volumel above the ground elevation, where the I flooded pond storage area starts. l I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) Units are either ft^3 or m^3 depending on the units.) ----------------------------------------------------- Junction Surcharged Flooded Name Time (min) Time(min) 15_C,D 20 25 30 35 40 E VAULTI(1+6 4+21Ex F D8-14 G CB17(9+78) CB21(11+35 CB31(14+35 CB35(15+71 56A 57A 58A 59B U CB40(17+97 CB41(20+92 VT3(25+57) CB50_J 36+60 235 O,AO 37+22P,Q,R E8-13A(17+ E8-13B(18+ F8-22(19+9 CB-EX(22+8 E8-11(16+2 CB52(15+71 45 59A_W,AM 60B 65A 67A 70A 73A 75A_Z,AA, Y 78A 80A_ABACAP 95A AE 100A 110A 115A_AF,AD 120A 125A 130A 135A AH 140A Out of 1D-System (Flooded Maximum Volume Passed to 2D cell OR Volume Stored in allowed Flood Pond of 1D-System 0.0000 0.0000 0.0000 59.0096 0.0000 0.0000 0.0000 0.0000 53.5719 0.0000 8.3583 0.0000 0.0000 65.7027 0.0000 14.3333 0.0000 0.0000 69.9442 0.0000 87.0029 0.0000 0.0000 84.8472 0.0000 137.9874 0.0000 0.0000 104.0579 0.0000 163.6965 0.0000 0.0000 2179.5783 0.0000 160.2676 0.0000 0.0000 119.2297 0.0000 378.1718 0.0000 0.0000 119.4956 0.0000 180.7027 0.0000 0.0000 129.6076 0.0000 190.6395 0.0000 0.0000 132.1572 0.0000 150.8019 0.0000 0.0000 124.0274 0.0000 130.2108 0.0000 0.0000 130.0594 0.0000 126.5566 0.0000 0.0000 107.1606 0.0000 170.5758 0.0000 0.0000 107.4012 0.0000 161.7176 0.0000 0.0000 102.7372 0.0000 177.6237 121.1096 0.0000 52900.7338 60832.7299 23.0917 0.0000 0.0000 125.1976 0.0000 128.7949 0.0000 0.0000 118.9909 0.0000 59.4375 0.0000 0.0000 1463.3489 0.0000 321.5030 7.3500 0.0000 323.2437 198.3884 13.3500 0.1000 15.2115 76.0369 0.0000 12.0083 0.0000 0.0000 71.8290 0.0000 13.0167 0.0000 0.0000 76.6645 0.0000 134.0667 0.0000 0.0000 91.3962 0.0000 119.4367 0.0000 0.0000 81.5557 0.0000 91.1683 0.0000 0.0000 73.5140 0.0000 83.8624 0.0000 0.0000 71.5121 0.0000 123.5021 0.0000 0.0000 79.5992 0.0000 133.8418 0.0000 0.0000 82.7167 0.0000 136.1442 0.0000 0.0000 104.2625 0.0000 197.4569 77.1488 0.0000 12535.8110 13455.6800 180.9478 15.0862 0.0000 659.1282 229.7980 181.3308 1.3677 0.0000 161.9405 24.0479 171.7535 0.0000 0.0000 103.5714 0.0000 165.7880 0.0000 0.0000 103.4375 0.0000 163.8519 0.0000 0.0000 104.7294 0.0000 200.8688 0.0000 0.0000 113.9451 0.0000 217.1459 0.0000 0.0000 113.2794 0.0000 250.3999 0.0000 0.0000 116.4159 0.0000 175.1937 0.0000 0.0000 102.6790 0.0000 170.6199 0.0000 0.0000 98.9823 0.0000 303.7933 0.0000 0.0000 114.2845 0.0000 182.9402 0.0000 0.0000 90.6722 0.0000 185.8667 0.0000 0.0000 87.2765 0.0000 183.6674 0.0000 0.0000 86.3777 0.0000 180.0023 0.0000 0.0000 81.0801 0.0000 183.4783 96.6015 0.0000 3390.2160 3774.9125 184.6917 140.4440 0.0000 6064.7202 7294.8977 145A 183.1644 90.8111 0.0000 3809.3906 4390.2285 150AAIAJAK 179.7242 97.1823 0.0000 8802.0390 9859.5662 105A 205.7487 0.0000 0.0000 100.3487 ' 0.0000 60A X 194.8486 61.4647 -2.8337 3550.2128 5162.1651 79A 214.0061 0.0000 0.0000 112.6926 0.0000 136A 185.3331 106.8925 0.0000 4470.7832 4509.6543 137A 183.6333 139.8427 0.0000 5912.2405 6503.8985 138A 186.5588 141.8333 0.0000 5937.4422 ' 6967.8005 32+23Ex 17.5500 2.5167 202.3547 67.9821 0.0000 32+17Ex 17.7083 0.0000 0.0000 68.2898 0.0000 32+10Ex 17.8667 6.4250 0.0000 353.9689 295.3709 10 0.0000 0.0000 0.0000 49.1255 0.0000 5 0.0000 0.0000 0.0000 46.8150 ' 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 35.1588 0.0000 Outfall 0.0000 0.0000 0.0000 33.9379 0.0000 36+10Ex_N 13.0583 0.0000 0.0000 53.0149 0.0000 26+48Ex 20.2250 9.0333 0.0000 150.1419 ' 111.8624 35+21 14.5500 0.3583 81.1616 71.3120 0.0000 CB5(4+67) 159.6745 0.0000 0.0000 120.5950 0.0000 VAULT2(6+4 161.1370 0.0000 0.0000 1741.7119 0.0000 CB51(26+48 20.9917 8.9583 0.0000 241.8571 119.8390 EXCB(31+05 20.6333 0.0000 0.0000 75.3565 0.0000 CB54(29+23 94.6993 11.0583 0.0000 823.5749 732.7960 CB52(28+16 150.9056 11.2667 0.0000 967.9527 925.8501 EXCB(31+02 20.9667 0.0000 0.0000 55.2987 0.0000 CB42(21+04 93.7750 0.0000 0.0000 72.8733 0.0000 CB45(23+63 96.6750 0.0000 0.0000 72.2649 ' 0.0000 CB46(24+14 83.1026 2.1500 0.0000 103.3389 22.1281 Tmp Out Vl 2622.8933 0.0000 0.0000 6428.8883 0.0000 Mdpoint 101.0834 84.9612 0.0000 64.7247 93.4164 SH20 347.4219 63.5687 2448.1715 69.7413 0.0000 SH15 380.0951 0.0000 0.0000 80.4931 0.0000 SH10_KM 293.8715 37.2250 2459.2963 68.8617 0.0000 MH2385 136.3294 0.1583 3.0249 77.9092 0.0000 SH50_AN 277.6345 0.0000 0.0000 133.4577 0.0000 Node157 302.4613 0.0000 0.0000 83.3491 ' 0.0000 SH75_AL 346.0971 3.9333 41.1006 109.3242 0.0000 SH70_AG 357.9916 128.0154 8529.0296 105.5544 0.0000 SH65 375.8095 0.0000 0.0000 107.9221 0.0000 SH60_V2 378.3744 223.6171 40597.3969 100.0254 0.0000 SH45 239.8989 0.0000 0.0000 78.2659 0.0000 SH40 255.9504 0.0000 0.0000 74.9457 0.0000 SH25_L 363.0168 75.7064 17500.9088 73.1341 0.0000 Scenario 1 B ------------------------------------------------------ Table E20 - Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the I flooded storage area is the total volumel above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 depending on the units.) *-------------------------------- ---------------------* ----------------------------------------------------- Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name Time (min) Time(min) Volume) Volume Pond of 1D-System --------------- 15_C,D ---------- 0.0000 --------- 0.0000 --------- 0.0000 --------- 39.0688 ----------------- 0.0000 20 0.0000 0.0000 0.0000 31.8074 0.0000 25 0.0000 0.0000 0.0000 40.9077 0.0000 30 0.0000 0.0000 0.0000 43.2774 0.0000 35 0.0000 0.0000 0.0000 49.1145 0.0000 40 E 0.0000 0.0000 0.0000 52.8232 0.0000 VAULT1(1+6 0.0000 0.0000 0.0000 1179.8349 0.0000 4+21Ex F 6.1250 0.0000 0.0000 64.3926 0.0000 D8-14 G 95.6065 0.0000 0.0000 63.8702 0.0000 CB17(9+78) 15.1750 0.0000 0.0000 68.6263 0.0000 CB21(11+35 17.7833 0.0000 0.0000 70.9743 0.0000 CB31(14+35 0.0000 0.0000 0.0000 61.5161 0.0000 CB35(15+71 0.0000 0.0000 0.0000 67.2954 0.0000 56A 0.0000 0.0000 0.0000 55.9557 0.0000 57A 22.0417 0.0000 0.0000 62.0293 0.0000 58A 23.8250 0.0000 0.0000 72.0304 0.0000 59B U 58.9581 21.4250 0.0000 6326.8072 6699.5531 CB40(17+97 0.0000 0.0000 0.0000 62.8308 0.0000 CB41(20+92 0.0000 0.0000 0.0000 56.9830 0.0000 VT3(25+57) 0.0000 0.0000 0.0000 884.2701 0.0000 CB50_J 46.6897 0.0000 0.0000 65.6698 0.0000 36+60 0.0000 0.0000 0.0000 28.2673 0.0000 235 O,AO 0.0000 0.0000 0.0000 21.6292 0.0000 37+22P,Q,R 0.0000 0.0000 0.0000 28.0122 0.0000 E8-13A(17+ 0.0000 0.0000 0.0000 28.6203 0.0000 E8-13B(18+ 0.0000 0.0000 0.0000 17.8875 0.0000 F8-22(19+9 0.0000 0.0000 0.0000 9.5599 0.0000 CB-EX(22+8 0.0000 0.0000 0.0000 9.1191 0.0000 E8-11(16+2 0.0000 0.0000 0.0000 16.4476 0.0000 CB52(15+71 0.0000 0.0000 0.0000 19.8018 0.0000 45 0.0000 0.0000 0.0000 52.0075 0.0000 59A_W,AM 95.7877 0.0000 0.0000 87.1601 0.0000 60B 83.1960 0.0000 0.0000 88.1990 0.0000 65A 87.1503 0.0000 0.0000 87.0109 0.0000 67A 75.6712 0.0000 0.0000 87.4707 0.0000 70A 68.3633 0.0000 0.0000 86.9312 0.0000 73A 64.3026 0.0000 0.0000 88.0683 0.0000 75A Z,AA,Y 148.9147 0.0000 0.0000 95.7103 0.0000 78A 157.5094 0.0000 0.0000 97.9737 0.0000 80A_ABACAP 172.4130 0.0000 0.0000 104.2432 0.0000 95A AE 103.4343 0.0000 0.0000 92.2427 0.0000 100A 94.7555 0.0000 0.0000 89.5374 0.0000 110A 277.1518 0.0000 0.0000 112.4643 0.0000 115A_AF,AD 122.9681 0.0000 0.0000 89.4694 0.0000 120A 139.9399 0.0000 0.0000 86.5584 0.0000 125A 130.3986 0.0000 0.0000 85.9027 0.0000 130A 118.5000 0.0000 0.0000 79.6509 0.0000 135A AH 145.0411 38.7762 0.0000 2337.0753 2261.5028 140A 153.2000 89.7362 0.0000 5229.0376 6000.0428 145A 151.7615 75.6034 0.0000 3582.2234 4075.3452 150AAIAJAK 129.6053 82.8963 0.0000 8650.0705 9634.5076 105A 173.0410 0.0000 0.0000 95.3801 0.0000 60A X 100.1816 0.0000 0.0000 87.7279 0.0000 79A 158.4829 0.0000 0.0000 99.9108 0.0000 136A 152.9614 73.1733 0.0000 2747.6450 2869.9170 137A 151.3488 88.0514 0.0000 3789.5847 3790.8915 138A 154.7901 89.6801 0.0000 4376.0744 4697.2863 32+23Ex 0.0000 0.0000 0.0000 26.0227 0.0000 32+17Ex 0.0000 0.0000 0.0000 26.1367 0.0000 32+10Ex 0.0000 0.0000 0.0000 25.8700 0.0000 10 0.0000 0.0000 0.0000 36.0615 0.0000 5 0.0000 0.0000 0.0000 36.7801 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 38.3204 0.0000 Outfall 0.0000 0.0000 0.0000 37.0587 0.0000 36+10Ex_N 0.0000 0.0000 0.0000 11.8526 0.0000 26+48Ex 0.0000 0.0000 0.0000 0.6576 0.0000 35+21 0.0000 0.0000 0.0000 28.0263 0.0000 CB5(4+67) 0.0000 0.0000 0.0000 58.4976 0.0000 VAULT2(6+4 0.0000 0.0000 0.0000 1021.8344 0.0000 CB51(26+48 0.0000 0.0000 0.0000 67.9618 0.0000 EXCB(31+05 0.0000 0.0000 0.0000 21.7913 0.0000 CB54(29+23 2.8417 0.0000 0.0000 38.7693 0.0000 CB52(28+16 15.6667 0.0000 0.0000 52.5302 0.0000 EXCB(31+02 0.0000 0.0000 0.0000 1.6947 0.0000 CB42(21+04 0.0000 0.0000 0.0000 9.3799 0.0000 CB45(23+63 0.0000 0.0000 0.0000 9.9397 0.0000 CB46(24+14 0.0000 0.0000 0.0000 8.5723 0.0000 Tmp Out V1 2622.7770 0.0000 0.0000 6428.8580 0.0000 Mdpoint 21.6250 19.8583 0.0000 44.5915 26.9158 SH20 342.7314 21.0771 287.9303 69.7413 0.0000 SH15 378.3618 0.0000 0.0000 80.4231 0.0000 SH10_KM 283.2055 3.0780 27.4225 68.8617 0.0000 MH2385 0.0000 0.0000 0.0000 16.9887 0.0000 SH50_AN 275.6498 0.0000 0.0000 133.4577 0.0000 Node157 301.3395 0.0000 0.0000 83.3490 0.0000 SH75_AL 346.0319 3.9333 41.1006 109.3242 0.0000 SH70 AG 357.9642 128.0325 8529.0126 105.5544 0.0000 SH65 375.7863 0.0000 0.0000 107.9221 0.0000 SH60 V2 378.3512 222.6376 40307.1311 100.0254 0.0000 SH45 236.2538 0.0000 0.0000 78.2658 0.0000 SH40 251.9396 0.0000 0.0000 74.9456 0.0000 SH25_L 359.2538 69.2287 16731.5956 73.1341 0.0000 Scenario 2A -------------------------------------- I Table E20 - ================- Junction Flooding and Volume Listing. I I The maximum volume is the total volume I I in the node including the volume in the I I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volumel l above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel i sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 depending *----------------------------------------------------- on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name Time (min) Time(min) Volume) Volume Pond of 1D-System --------------- 15_C,D ---------- 0.0000 --------- 0.0000 --------- 0.0000 --------- 59.2674 ----------------- 0.0000 20 0.0000 0.0000 0.0000 54.0582 0.0000 25 11.1000 0.0000 0.0000 66.1489 0.0000 30 21.8833 0.0000 0.0000 70.0768 0.0000 35 95.6939 0.0000 0.0000 87.9796 0.0000 40 E 132.5148 0.0000 0.0000 105.8503 0.0000 VAULT1(1+6 162.1727 0.0000 0.0000 2176.6052 0.0000 4+21Ex F 154.5079 0.0000 0.0000 120.1611 0.0000 D8-14 G 380.1412 0.0000 0.0000 120.3752 0.0000 CB17(9+78) 187.6817 0.0000 0.0000 134.2881 0.0000 CB21(11+35 212.5470 0.0000 0.0000 138.1135 0.0000 CB31(14+35 148.6519 0.0000 0.0000 130.8070 0.0000 CB35(15+71 129.7656 0.0000 0.0000 136.9264 0.0000 56A 121.4412 0.0000 0.0000 109.0988 0.0000 57A 168.8307 0.0000 0.0000 109.5263 0.0000 58A 148.1601 0.0000 0.0000 104.4434 0.0000 59B U 170.4154 111.2460 0.0000 58906.8119 63671.6742 CB40(17+97 41.3667 0.0000 0.0000 131.3392 0.0000 CB41(20+92 129.5018 0.0000 0.0000 125.7385 0.0000 VT3(25+57) 88.0731 0.0000 0.0000 1472.3263 0.0000 CB50_J 346.7256 23.2500 0.0000 2004.7899 1941.1984 36+60 24.7096 0.3333 227.8330 76.0394 0.0000 235 O,AO 23.6607 0.0000 0.0000 90.1096 0.0000 37+22P,Q,R 24.3323 0.0500 30.1027 89.1231 0.0000 E8-13A(17+ 134.2196 0.0000 0.0000 97.3767 0.0000 E8-13B(18+ 121.8378 0.0000 0.0000 95.6116 0.0000 F8-22(19+9 102.8521 0.0000 0.0000 90.7089 0.0000 CB-EX(22+8 99.0522 0.0000 0.0000 78.3878 0.0000 E8-11(16+2 124.4850 0.0000 0.0000 86.6776 0.0000 CB52(15+71 132.8150 0.0000 0.0000 89.7225 0.0000 45 130.5688 0.0000 0.0000 105.9019 0.0000 59A_W,AM 187.5031 75.3467 0.0000 13761.8349 14993.4369 60B 174.5963 21.6902 0.0000 412.4630 368.2960 65A 175.3009 0.2394 0.0000 103.1081 0.3753 67A 165.8800 0.0000 0.0000 103.8293 0.0000 70A 156.9645 0.0000 0.0000 103.7055 0.0000 73A 155.0437 0.0000 0.0000 105.0061 0.0000 75A_Z,AA,Y 192.7610 0.0000 0.0000 114.2251 0.0000 78A 200.3417 0.0000 0.0000 113.5556 0.0000 80A_ABACAP 234.6850 0.0000 0.0000 116.6804 0.0000 95A AE 169.1062 0.0000 0.0000 102.9336 0.0000 100A 163.7725 0.0000 0.0000 99.2246 0.0000 110A 302.5746 0.0000 0.0000 114.3887 0.0000 115A_AF,AD 180.7414 0.0000 0.0000 90.8009 0.0000 120A 184.2888 0.0000 0.0000 87.3626 0.0000 125A 182.0373 0.0000 0.0000 86.4305 0.0000 130A 176.7197 0.0000 0.0000 81.0609 0.0000 135A AH 181.7049 95.4750 0.0000 3416.2406 3791.6686 140A 182.9399 136.6887 0.0000 6050.3458 7199.7134 145A 181.3649 89.4616 0.0000 3793.5153 4337.8704 150AAIAJAK 177.7100 95.2361 0.0000 8772.0752 9742.8095 105A 204.6876 0.0000 0.0000 100.3352 0.0000 60A X 185.3722 60.8678 -3.7732 3915.9449 4681.5950 79A 199.6651 0.0000 0.0000 112.9594 0.0000 136A 183.6229 105.8148 0.0000 4488.6607 4536.3349 137A 181.8377 136.7248 0.0000 5923.8415 6412.9760 138A 184.8206 137.9745 0.0000 5940.3421 6848.5286 32+23Ex 32.1264 5.8417 751.6339 67.9821 0.0000 32+17Ex 33.7675 0.0000 0.0000 68.6200 0.0000 32+10Ex 34.6693 10.0333 0.0000 371.2078 383.3897 10 0.0000 0.0000 0.0000 49.2788 0.0000 5 0.0000 0.0000 0.0000 46.9400 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 35.2498 0.0000 Outfall 0.0000 0.0000 0.0000 34.0278 0.0000 36+10Ex_N 24.1548 0.1667 17.1007 61.4477 0.0000 26+48Ex 39.1167 23.6917 0.0000 1615.3285 1856.8617 35+21 25.3852 0.7417 240.7969 71.3095 0.0000 CB5(4+67) 158.3756 0.0000 0.0000 120.9271 0.0000 VAULT2(6+4 160.5742 0.0000 0.0000 1742.6105 0.0000 CB51(26+48 40.2783 23.5583 0.0000 1720.4786 1710.8199 EXCB(31+05 40.2167 0.1667 0.0000 94.9422 9.6948 CB54(29+23 104.7156 23.0452 0.0000 1540.1036 1577.6171 CB52(28+16 151.7676 23.8357 0.0000 2042.3151 2187.4361 EXCB(31+02 40.5333 0.0000 0.0000 57.0960 0.0000 CB42(21+04 104.6843 0.1583 0.0000 96.2129 3.6264 CB45(23+63 106.0750 15.2500 0.0000 531.6856 492.6143 CB46(24+14 98.7374 22.7417 0.0000 2148.2504 2304.4579 Tmp Out V1 2880.0000 0.0000 0.0000 688.6891 0.0000 Mdpoint 30.7665 25.5549 0.0000 78.2150 711.6996 SH50_AN 49.1273 0.0000 0.0000 130.2074 0.0000 SH75_AL 345.9232 3.9333 41.1006 109.3242 0.0000 SH70_AG 357.8805 127.9735 8528.7254 105.5544 0.0000 SH65 375.7863 0.0000 0.0000 107.9044 0.0000 SH60_V2 378.3512 198.3939 30704.8945 100.0254 0.0000 CB7 57.3750 0.0000 0.0000 125.3134 0.0000 CB6 86.3572 0.0000 0.0000 128.1924 0.0000 CB5 105.4407 0.0000 0.0000 125.5600 0.0000 CB4 L 116.9670 0.0000 0.0000 122.4771 0.0000 CB3 131.4338 0.1167 0.0000 134.8714 15.3881 CB2_KM 153.9885 10.8500 0.0000 637.8475 172.8331 Scenario 2B ------------- Table E20 - Junction Flooding and Volume Listing. I The maximum volume is the total volume I l in the node including the volume in the I I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volumel I above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 *----------------------------------------------------- depending on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name -------------- Time (min) Time(min) ------------------- Volume) --------- Volume --------- Pond of 1D-System 15_C,D 0.0000 0.0000 0.0000 40.4627 ----------------- 0.0000 20 0.0000 0.0000 0.0000 33.3282 0.0000 25 0.0000 0.0000 0.0000 42.5542 0.0000 30 0.0000 0.0000 0.0000 45.0181 0.0000 35 0.0000 0.0000 0.0000 51.2057 0.0000 40 E 0.0000 0.0000 0.0000 55.4059 0.0000 VAULT1(1+6 0.0000 0.0000 0.0000 1229.8195 0.0000 4+21Ex F 12.9075 0.0000 0.0000 67.9640 0.0000 D8-14 G 97.3698 0.0000 0.0000 67.7154 0.0000 CB17(9+78) 21.3548 0.0000 0.0000 76.7161 0.0000 CB21(11+35 24.8437 0.0000 0.0000 79.7317 0.0000 CB31(14+35 14.7092 0.0000 0.0000 71.7435 0.0000 CB35(15+71 8.7583 0.0000 0.0000 77.9575 0.0000 56A 0.0000 0.0000 0.0000 59.2868 0.0000 57A 21.3085 0.0000 0.0000 65.1713 0.0000 58A 22.0240 0.0000 0.0000 73.5188 0.0000 59B U 32.3546 20.1795 0.0000 6413.7515 6710.4984 CB40(17+97 0.0000 0.0000 0.0000 74.0496 0.0000 CB41(20+92 11.0463 0.0000 0.0000 68.8071 0.0000 VT3(25+57) 0.0000 0.0000 0.0000 1031.4023 0.0000 CB50 J 95.0810 0.0000 0.0000 77.3245 0.0000 36+60 0.0000 0.0000 0.0000 28.2711 0.0000 235 O,AO 0.0000 0.0000 0.0000 21.6284 0.0000 37+22P,Q,R 0.0000 0.0000 0.0000 28.0184 0.0000 E8-13A(17+ 11.0167 0.0000 0.0000 40.4167 0.0000 E8-13B(18+ 7.0000 0.0000 0.0000 30.1096 0.0000 F8-22(19+9 0.0000 0.0000 0.0000 22.0196 0.0000 CB-EX(22+8 0.0000 0.0000 0.0000 21.7135 0.0000 E8-11(16+2 6.6833 0.0000 0.0000 27.4596 0.0000 CB52(15+71 10.3708 0.0000 0.0000 30.5373 0.0000 45 0.0000 0.0000 0.0000 54.6374 0.0000 59A W,AM 51.3664 0.0000 0.0000 87.2565 0.0000 60B 46.9967 0.0000 0.0000 88.2574 0.0000 65A 51.5074 0.0000 0.0000 87.0522 0.0000 67A 48.2357 0.0000 0.0000 87.5010 0.0000 70A 45.2070 0.0000 0.0000 86.7058 0.0000 73A 43.4897 0.0000 0.0000 87.8453 0.0000 75A Z,AA,Y 111.5798 0.0000 0.0000 95.4776 0.0000 78A 134.2398 0.0000 0.0000 97.7421 0.0000 80A_ABACAP 165.5333 0.0000 0.0000 104.0064 0.0000 95A AE 91.9135 0.0000 0.0000 91.9604 0.0000 100A 83.9070 0.0000 0.0000 89.2424 0.0000 110A 275.6026 0.0000 0.0000 112.2343 0.0000 115A_AF,AD 119.4702 0.0000 0.0000 89.7320 0.0000 120A 138.4244 0.0000 0.0000 88.0194 0.0000 125A 127.5404 0.0000 0.0000 87.3414 0.0000 130A 115.6003 0.0000 0.0000 80.7793 0.0000 135A AH 144.9107 34.4204 0.0000 2260.4391 2191.1952 140A 150.3765 88.1493 0.0000 5155.8427 5846.4694 145A 148.9853 73.8322 0.0000 3559.8954 4007.6128 150AAIAJAK 127.2325 82.7934 0.0000 8623.2413 9632.4304 105A 170.6374 0.0000 0.0000 95.0681 0.0000 60A X 68.2833 0.0000 0.0000 87.7976 0.0000 79A 149.4096 0.0000 0.0000 99.6673 0.0000 136A 149.9746 70.1108 0.0000 2672.1207 2787.3450 137A 148.4214 86.2554 0.0000 3693.6452 3700.4927 138A 151.9473 88.0797 0.0000 4278.2513 4621.7887 32+23Ex 0.0000 0.0000 0.0000 26.0233 0.0000 32+17Ex 0.0000 0.0000 0.0000 26.1375 0.0000 32+10Ex 0.0000 0.0000 0.0000 25.8705 0.0000 10 0.0000 0.0000 0.0000 37.3425 0.0000 5 0.0000 0.0000 0.0000 38.0193 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 39.3147 0.0000 Outfall 0.0000 0.0000 0.0000 38.0455 0.0000 36+10Ex_N 0.0000 0.0000 0.0000 11.8526 0.0000 26+48Ex 0.0000 0.0000 0.0000 4.0994 0.0000 35+21 0.0000 0.0000 0.0000 28.0243 0.0000 CB5(4+67) 0.0000 0.0000 0.0000 63.2645 0.0000 VAULT2(6+4 10.8601 0.0000 0.0000 1096.5430 0.0000 CB51(26+48 0.0000 0.0000 0.0000 79.0559 0.0000 EXCB(31+05 0.0000 0.0000 0.0000 27.8068 0.0000 CB54(29+23 13.0083 0.0000 0.0000 47.2860 0.0000 CB52(28+16 24.6369 0.0000 0.0000 61.9062 0.0000 EXCB(31+02 0.0000 0.0000 0.0000 7.7228 0.0000 CB42(21+04 0.0000 0.0000 0.0000 21.8755 0.0000 CB45(23+63 0.0000 0.0000 0.0000 23.0012 0.0000 CB46(24+14 0.0000 0.0000 0.0000 21.7840 0.0000 Tmp Out V1 2880.0000 0.0000 0.0000 688.6891 0.0000 Mdpoint 8.1250 4.4833 0.0000 45.8044 27.4287 SH50_AN 0.0000 0.0000 0.0000 33.6397 0.0000 SH75_AL 294.4633 3.9333 41.1006 109.3242 0.0000 SH70_AG 305.5155 123.3896 8494.8066 105.5544 0.0000 SH65 344.8257 0.0000 0.0000 108.0430 0.0000 SH60_V2 342.1411 137.5295 22678.2417 100.0254 0.0000 CB7 0.0000 0.0000 0.0000 37.8460 0.0000 CB6 0.0000 0.0000 0.0000 43.7343 0.0000 CB5 1.3250 0.0000 0.0000 50.4132 0.0000 CB4_L 9.7750 0.0000 0.0000 54.9404 0.0000 CB3 14.5651 0.0000 0.0000 60.0937 0.0000 CB2_KM 20.5667 0.0000 0.0000 65.8823 0.0000 Scenario 3A I Table E20 - Junction Flooding and Volume Listing. I I The maximum volume is the total volume I I in the node including the volume in the I I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volume) I above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 depending on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name Time (min) Time(min) Volume) Volume Pond of ID -System 15_C,D 0.0000 0.0000 0.0000 59.1425 0.0000 20 0.0000 0.0000 0.0000 53.8007 0.0000 25 11.3417 0.0000 0.0000 65.9744 0.0000 30 22.9917 0.0000 0.0000 70.2352 0.0000 35 97.1556 0.0000 0.0000 85.9313 0.0000 40 E 132.9929 0.0000 0.0000 104.7656 0.0000 VAULT1(1+6 162.9378 0.0000 0.0000 2170.5788 0.0000 4+21Ex F 155.5009 0.0000 0.0000 120.1490 0.0000 D8-14 G 380.5067 0.0000 0.0000 120.4275 0.0000 CB17(9+78) 190.0339 0.0000 0.0000 137.0542 0.0000 CB21(11+35 217.5416 0.0000 0.0000 140.2301 0.0000 CB31(14+35 150.2973 0.0000 0.0000 131.2860 0.0000 CB35(15+71 131.3973 0.0000 0.0000 136.6323 0.0000 56A 121.9023 0.0000 0.0000 109.0477 0.0000 57A 169.6258 0.0000 0.0000 109.3973 0.0000 58A 146.3620 0.0000 0.0000 104.1444 0.0000 59B U 169.9440 110.2699 0.0000 56555.2118 60568.7460 CB40(17+97 43.2850 0.0000 0.0000 132.1785 0.0000 CB41(20+92 131.1268 0.0000 0.0000 127.5829 0.0000 VT3(25+57) 90.9908 0.0000 0.0000 1474.2610 0.0000 CB50_J 350.1594 29.5380 0.0000 2931.9878 2984.8781 36+60 33.2042 0.4583 265.4073 76.0369 0.0000 235 0,A0 31.8857 0.0000 0.0000 88.0894 0.0000 37+22P,Q,R 32.9321 0.0333 11.8383 89.1181 0.0000 E8-13A(17+ 135.2734 0.0000 0.0000 98.4079 0.0000 E8-13B(18+ 122.9629 0.0000 0.0000 88.6935 0.0000 F8-22(19+9 104.1855 0.0000 0.0000 86.3121 0.0000 CB-EX(22+8 100.8910 0.0000 0.0000 78.4127 0.0203 E8-11(16+2 125.4545 0.0000 0.0000 87.3305 0.0000 CB52(15+71 134.3168 0.0000 0.0000 89.2915 0.0000 45 131.8728 0.0000 0.0000 104.8510 0.0000 59A_W,AM 186.6170 76.6689 0.0000 13058.8844 14209.1225 60B 173.3962 23.2782 0.0000 342.7082 285.2539 65A 174.2639 4.7729 0.0000 183.8995 47.5855 67A 164.7779 0.0000 0.0000 103.8711 0.0000 70A 156.4027 0.0000 0.0000 103.7522 0.0000 73A 154.1301 0.0000 0.0000 105.0544 0.0000 75A_Z,AA,Y 192.7558 0.0000 0.0000 114.2766 0.0000 78A 200.1475 0.0000 0.0000 113.5978 0.0000 80A_ABACAP 230.2873 0.0000 0.0000 116.7088 0.0000 95A AE 168.8324 0.0000 0.0000 102.9504 0.0000 100A 162.9997 0.0000 0.0000 99.2349 0.0000 110A 302.7124 0.0000 0.0000 114.3160 0.0000 115A_AF,AD 180.5958 0.0000 0.0000 90.7489 0.0000 120A 184.3523 0.0000 0.0000 87.3129 0.0000 125A 181.7658 0.0000 0.0000 86.3826 0.0000 130A 176.6039 0.0000 0.0000 80.9782 0.0000 135A AH 181.7668 95.6061 0.0000 3406.2459 3769.9518 140A 183.0326 136.1224 0.0000 6008.8130 7130.2971 145A 181.3008 89.5727 0.0000 3774.6436 4337.7175 150AAIAJAK 177.5036 95.3043 0.0000 8755.5287 9728.3832 105A 204.7826 0.0000 0.0000 100.3203 0.0000 60A X 185.6836 61.3569 -3.7718 3595.3193 4489.5362 79A 199.2514 0.0000 0.0000 112.9904 0.0000 136A 183.6586 105.6992 0.0000 4468.0148 4507.6579 137A 181.9384 133.7995 0.0000 5891.8339 6392.7447 138A 184.8697 137.0336 0.0000 5900.2700 6821.9450 32+23Ex 37.0330 9.3583 1976.5090 67.9821 0.0000 32+17Ex 37.3244 0.0000 0.0000 69.4063 0.0000 32+10Ex 37.6944 13.7833 0.0000 438.6667 483.4008 10 0.0000 0.0000 0.0000 49.2671 0.0000 5 0.0000 0.0000 0.0000 46.8836 ' 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 35.1843 0.0000 Outfall 0.0000 0.0000 0.0000 33.9644 0.0000 36+10Ex_N 32.2583 0.2333 29.8139 61.4477 0.0000 26+48Ex 40.9825 31.3812 0.0000 2499.0660 2835.7883 35+21 34.0542 0.8083 285.6967 71.3120 0.0000 CB5(4+67) 159.1774 0.0000 0.0000 123.3945 0.0000 VAULT2(6+4 161.5616 0.0000 0.0000 1745.0488 0.0000 CB51(26+48 42.0217 31.3261 0.0000 2608.4962 3985.0729 EXCB(31+05 41.6267 12.4833 0.0000 322.2213 ' 344.6923 CB54(29+23 105.9731 31.7125 0.0000 2473.5699 5070.7352 CB52(28+16 154.6992 26.7465 0.0000 1504.4145 1851.5911 EXCB(31+02 41.9233 0.0000 0.0000 58.7768 0.0000 CB42(21+04 105.7950 0.0000 0.0000 87.0714 0.0000 CB45(23+63 107.6843 18.6333 0.0000 987.7760 951.9451 CB46(24+14 100.6323 27.5083 0.0000 2772.4787 2913.1526 LP V1-23 2880.0000 0.0000 0.0000 510.6567 0.0000 Mdpoint 13.0661 4.7414 0.0000 77.1905 590.8513 SH50 AN 51.2622 0.0000 0.0000 132.8579 ' 0.0000 SH75_AL 345.9879 3.9333 41.1006 109.3242 0.0000 SH70 AG 357.8795 127.9765 8528.7618 105.5544 0.0000 SH65 375.7863 0.0000 0.0000 107.9055 0.0000 SH60_V2 378.3512 202.8935 31126.9206 100.0254 0.0000 CB7 61.7804 0.0167 4.0960 129.6811 ' 0.0000 CB6 89.6454 0.0000 0.0000 131.6014 0.0000 CB5 107.1183 0.0000 0.0000 130.9095 0.0000 CB4_L 118.4774 0.0000 0.0000 122.8107 0.0000 CB3 133.3866 0.4583 0.0000 167.6349 36.8102 CB2 KM 156.5997 16.6000 0.0000 1061.9942 1436.0518 RA V1-1 39.0167 20.2667 0.0000 139.5471 250.7114 Scenario 3B ---------------======-------- =__=----- =========______- I Table E20 - Junction Flooding and Volume Listing. I I The maximum volume is the total volume I I in the node including the volume in the I I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volume) I above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 depending on the units.) ----------------------------------------------------- Out of 1D-System Junction Surcharged Flooded (Flooded Maximum Name Time (min) Time(min) Volume) Volume ---------- 15_C,D ---------- --------- --------- 0.0000 ---- 20 0.0000 25 0.0000 30 0.0000 35 0.0000 40 E 0.0000 VAULTI(1+6 0.0000 12 4+21Ex F 0.0000 D8-14 G 0.0000 CB17(9+78) 0.0000 CB21(11+35 0.0000 CB31(14+35 0.0000 CB35(15+71 0.0000 56A 0.0000 57A 0.0000 58A 0.0000 59B U 0.0000 CB40(17+97 0.0000 CB41(20+92 0.0000 VT3(25+57) 0.0000 10 CB50 J 0.0000 36+60 0.0000 235 0,A0 0.0000 37+22P,Q,R 0.0000 E8-13A(17+ 0.0000 E8-13B(18+ 0.0000 F8-22(19+9 0.0000 CB-EX(22+8 0.0000 E8-11(16+2 0.0000 CB52(15+71 0.0000 45 0.0000 59A_W,AM 0.0000 11 60B 0.0000 65A 0.0000 67A 0.0000 70A 0.0000 73A 0.0000 75A_Z,AA,Y 0.0000 78A 0.0000 1 80A_ABACAP 0.0000 1 95A AE 0.0000 100A 0.0000 110A 0.0000 1 115A_AF,AD 0.0000 120A 0.0000 125A 0.0000 130A 0.0000 135A AH 0.0000 23 140A 0.0000 51 0 0 0 0 0 0 0 11 92 21 24 15 10 0 19 19 29 0 12 0 104 0 0 0 12 9 0 0 9 11 0 48 44 48 45 43 41 109 126 163 89 80 274 117 137 126 113 144 149 0000 0000 0000 0000 0000 0000 0000 2500 9506 5639 7083 0865 3333 0000 2679 6923 7209 0000 4619 0000 0318 0000 0000 0000 2090 7750 0000 0000 1810 5935 0000 2603 2022 9313 67 98 7272 3172 0558 9532 7255 0201 7676 8248 9185 3755 1888 8591 3539 1288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 87 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 5000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1083 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 9923 3449 40.9778 33.8807 43.1471 95.6227 51.9212 56.2959 49.3082 69.3768 69.1841 79.0522 82.3085 74.9412 81.2781 60.7321 67.1234 76.3411 90.0986 77.6555 72.8319 85.3713 81.6282 28.2712 21.6269 28.0183 43.8563 33.7440 26.1771 26.9043 30.7981 33.8681 55.5333 82.5110 92.8453 91.6179 92.0153 91.9624 92.5486 99.7562 01.7403 07.8097 95.5652 92.6322 13.3989 90.0614 87.8700 87.1660 80.6796 41.9847 09.8824 Passed to 2D cell OR Volume Stored in allowed Flood Pond of 1D-System ----------------- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 54.1996 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1179.3608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2270.6133 5763.6697 145A 147.7911 72.7691 0.0000 3561.7955 4017.8519 150AAIAJAK 125.9827 80.7167 0.0000 8630.6982 9603.6339 105A 169.5930 0.0000 0.0000 97.6920 0.0000 60A X 55.9350 0.0000 0.0000 92.3922 0.0000 79A 134.1850 0.0000 0.0000 103.5136 0.0000 136A 148.7181 68.9966 0.0000 2648.8362 2761.8357 137A 147.1073 85.2442 0.0000 3591.5463 3592.0320 138A 150.8173 87.2453 0.0000 4195.4180 4536.1391 32+23Ex 0.0000 0.0000 0.0000 26.0235 0.0000 32+17Ex 0.0000 0.0000 0.0000 26.1375 0.0000 32+10Ex 0.0000 0.0000 0.0000 25.8705 0.0000 10 0.0000 0.0000 0.0000 37.8617 0.0000 5 0.0000 0.0000 0.0000 38.5425 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 39.7875 0.0000 Outfall 0.0000 0.0000 0.0000 38.5158 0.0000 36+10Ex_N 0.0000 0.0000 0.0000 11.8527 0.0000 26+48Ex 0.0000 0.0000 0.0000 8.2505 0.0000 35+21 0.0000 0.0000 0.0000 28.0242 0.0000 CB5(4+67) 4.1750 0.0000 0.0000 64.6917 0.0000 VAULT2(6+4 10.2762 0.0000 0.0000 1117.2590 0.0000 CB51(26+48 0.0000 0.0000 0.0000 83.2320 0.0000 EXCB(31+05 0.0000 0.0000 0.0000 30.3759 0.0000 CB54(29+23 14.3250 0.0000 0.0000 50.5133 0.0000 CB52(28+16 25.0813 0.0000 0.0000 65.5143 0.0000 EXCB(31+02 0.0000 0.0000 0.0000 10.2578 0.0000 CB42(21+04 3.0750 0.0000 0.0000 26.2054 0.0000 CB45(23+63 6.1500 0.0000 0.0000 27.6720 0.0000 CB46(24+14 0.0000 0.0000 0.0000 26.6240 0.0000 LP_Vl-23 2880.0000 0.0000 0.0000 510.1144 0.0000 Mdpoint 0.0000 0.0000 0.0000 17.9150 0.0000 SH50_AN 0.0000 0.0000 0.0000 51.2445 0.0000 SH75_AL 345.9677 3.9333 41.1005 109.3242 0.0000 SH70_AG 357.9234 127.9614 8528.5590 105.5544 0.0000 SH65 375.7863 0.0000 0.0000 107.9055 0.0000 SH60_V2 378.3512 176.9588 28440.8523 100.0254 0.0000 CB7 0.0000 0.0000 0.0000 43.9649 0.0000 CB6 0.0000 0.0000 0.0000 49.6843 0.0000 CB5 8.6310 0.0000 0.0000 56.2452 0.0000 CB4 L 12.1821 0.0000 0.0000 60.5714 0.0000 CB3 16.4917 0.0000 0.0000 65.4592 0.0000 CB2_KM 21.2368 0.0000 0.0000 70.9678 0.0000 RA V1-1 0.0000 0.0000 0.0000 13.2865 0.0000 Scenario 4A *----------------------------------------------------- Table E20 - Junction Flooding and Volume Listing. I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I volume at any time. The volume in the I flooded storage area is the total volumel above the ground elevation, where the I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation) Units are either ft^3 or m^3 depending --------------------------------------- on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name --------------- Time (min) Time(min) Volume) Volume Pond of 1D-System 15_C,D ---------- 0.0000 --------- 0.0000 --------- 0.0000 --------- 59.0267 ----------------- 0.0000 20 0.0000 0.0000 0.0000 53.8128 0.0000 25 11.1417 0.0000 0.0000 66.0328 0.0000 30 22.5250 0.0000 0.0000 70.2480 0.0000 35 95.6503 0.0000 0.0000 85.2171 0.0000 40 E 130.3200 0.0000 0.0000 104.3904 0.0000 VAULT1(1+6 162.1485 0.0000 0.0000 2190.0014 0.0000 4+21Ex F 152.9885 0.0000 0.0000 120.0210 0.0000 D8-14 G 380.7297 0.0000 0.0000 120.5357 0.0000 CB17(9+78) 189.7962 0.0000 0.0000 132.8234 0.0000 CB21(11+35 218.3744 0.0000 0.0000 136.5116 0.0000 CB31(14+35 148.8332 0.0000 0.0000 129.7553 0.0000 CB35(15+71 128.9466 0.0000 0.0000 136.3757 0.0000 56A 119.3806 0.0000 0.0000 108.9231 0.0000 57A 168.6940 0.0000 0.0000 109.2390 0.0000 58A 142.1448 0.0000 0.0000 103.8868 0.0000 59B U 168.5447 106.4866 0.0000 54855.2866 58022.3426 CB40(17+97 42.6367 0.0000 0.0000 132.1291 0.0000 CB41(20+92 128.9469 0.0000 0.0000 125.3580 0.0000 VT3(25+57) 90.3745 0.0000 0.0000 1469.7333 0.0000 CB50 J 349.6490 25.8151 0.0000 2693.1784 2615.2609 36+60 27.0068 0.3500 258.5246 76.0394 0.0000 235 O,A0 25.7643 0.0417 17.8944 98.2661 0.0000 37+22P,Q,R 26.7071 0.0250 2.7569 89.1231 0.0000 E8-13A(17+ 134.6761 0.0000 0.0000 98.5838 0.0000 E8-13B(18+ 121.9148 0.0000 0.0000 90.3544 0.0000 F8-22(19+9 103.5411 0.0000 0.0000 81.7062 0.0000 CB-EX(22+8 99.8007 0.0000 0.0000 78.0440 0.0000 E8-11(16+2 124.2553 0.0000 0.0000 86.2820 0.0000 CB52(15+71 132.7493 0.0000 0.0000 89.1513 0.0000 45 128.5194 0.0000 0.0000 104.5756 0.0000 59A W,AM 184.7348 74.0769 0.0000 12581.9325 13608.0901 60B 172.4359 13.1794 0.0000 281.6199 49.3764 65A 173.1869 0.0000 0.0000 102.3075 0.0175 67A 163.8590 0.0000 0.0000 103.2556 0.0000 70A 153.5383 0.0000 0.0000 103.1274 0.0000 73A 150.9833 0.0000 0.0000 104.4241 0.0000 75A_Z,AA,Y 191.3509 0.0000 0.0000 113.6675 0.0000 78A 198.9431 0.0000 0.0000 113.0055 0.0000 80A_ABACAP 229.3649 0.0000 0.0000 116.1451 0.0000 95A AE 167.4609 0.0000 0.0000 102.4132 0.0000 100A 161.1576 0.0000 0.0000 98.7228 0.0000 110A 304.5053 0.0000 0.0000 114.2329 0.0000 115A_AF,AD 182.4935 0.0000 0.0000 90.6861 0.0000 120A 186.1096 0.0000 0.0000 87.2606 0.0000 125A 183.6182 0.0000 0.0000 86.3329 0.0000 130A 178.5229 0.0000 0.0000 80.9221 0.0000 135A AH 183.6408 94.0361 0.0000 3320.7108 3713.3160 140A 184.5750 137.5769 0.0000 5990.3730 7273.1485 145A 182.7834 96.7174 0.0000 3763.2130 4469.8168 150AAIAJAK 178.8053 109.0507 0.0000 8746.0639 10021.0585 105A 206.5572 0.0000 0.0000 99.9417 ' 0.0000 60A X 183.5817 58.8188 -3.8317 3407.1758 4289.2715 79A 198.5287 0.0000 0.0000 112.4179 0.0000 136A 185.5444 104.4893 0.0000 4394.2162 4441.0467 137A 183.5308 135.6159 0.0000 5829.8909 6263.9323 138A 186.7027 137.9802 0.0000 5861.0674 ' 6739.9944 32+23Ex 35.2590 7.3833 1439.3017 67.9821 0.0000 32+17Ex 35.7000 0.0000 0.0000 70.5304 0.0000 32+10Ex 36.1603 11.8667 0.0000 531.1019 578.2031 10 0.0000 0.0000 0.0000 49.2979 0.0000 5 0.0000 0.0000 0.0000 46.9789 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 35.1847 0.0000 Outfall 0.0000 0.0000 0.0000 33.9617 0.0000 36+10Ex_N 26.2274 0.2167 43.3852 61.4477 0.0000 26+48Ex 40.2461 26.1564 0.0000 2254.8563 2326.6438 , 35+21 27.8981 0.6583 199.9293 71.3095 0.0000 CB5(4+67) 157.9405 0.0000 0.0000 124.3964 0.0000 VAULT2(6+4 160.9064 0.0000 0.0000 1746.6235 0.0000 CB51(26+48 41.3509 25.7977 0.0000 2375.6645 2297.1850 EXCB(31+05 40.9171 7.8917 0.0000 347.2519 359.1110 CB54(29+23 104.8276 24.1767 0.0000 2078.7571 2148.3803 CB52(28+16 153.0827 0.0000 0.0000 112.1547 0.0906 EXCB(31+02 41.1816 0.1750 0.0000 105.1332 15.0808 CB42(21+04 105.1735 0.0000 0.0000 80.0204 0.0000 CB45(23+63 106.3374 19.2833 0.0000 1095.6691 ' 1058.5250 CB46(24+14 99.5418 26.2302 0.0000 2892.2218 2973.9813 LP_V1-2 2880.0000 0.0000 0.0000 510.0899 0.0000 Mdpoint 5.8591 2.7566 0.0000 74.1132 377.3553 SH50 AN 50.8889 0.0000 0.0000 129.8642 ' 0.0000 SH75_AL 345.9255 3.9333 41.1006 109.3242 0.0000 SH70_AG 357.9027 127.9736 8528.7403 105.5544 0.0000 SH65 375.8560 0.0000 0.0000 107.9044 0.0000 SH60_V2 378.3977 202.4187 30964.8307 100.0254 0.0000 CB7 61.1095 0.0000 0.0000 126.0242 0.0000 , CB6 89.0603 0.0000 0.0000 128.3711 0.0000 CB5 105.9630 0.0000 0.0000 127.7298 0.0000 CB4_L 117.1860 0.0000 0.0000 119.8162 0.0000 CB3 131.9282 0.1417 0.0000 156.3243 7.0647 CB2 KM 154.8460 16.1000 0.0000 1027.1273 1006.3887 , RA V1-1 38.0081 20.1083 0.0000 121.5638 262.5040 RA V1-3 48.3627 22.8372 0.0000 106.4582 190.1136 Scenario 4B *-------------- -----------------------------------------------------* I Table E20 - Junction Flooding and Volume Listing. I I The maximum volume is the total volume I I in the node including the volume in the I I flooded storage area. This is the max I volume at any time. The volume in the I I flooded storage area is the total volumel above the ground elevation, where the I I flooded pond storage area starts. I The fourth column is instantaneous, the fifth is thel sum of the flooded volume over the entire simulation] Units are either ft^3 or m^3 depending on the units.) Junction Name --------------- 15_C,D 20 25 30 35 40 E VAULTI(1+6 4+21Ex F D8-14 G CB17(9+78) CB21(11+35 CB31(14+35 CB35(15+71 56A 57A 58A 59B U CB40(17+97 CB41(20+92 VT3(25+57) CB50 J 36+60 235 O,AO 37+22P,Q,R E8-13A(17+ E8-13B(18+ F8-22(19+9 CB-EX(22+8 E8-11(16+2 CB52(15+71 45 59A_W,AM 60B 65A 67A 70A 73A 75A_Z,AA,Y 78A 80A_ABACAP 95A AE 100A 110A 115A_AF,AD 120A 125A 130A 135A AH 140A Surcharged Flooded Time (min) Time(min) ------------------- 0 0 0 0 0 0 0 11 92 22 25 15 11 0 19 19 28 0 13 0 108 0 0 0 13 11 0 0 9 12 0 45 43 48 44 42 41 107 123 162 87 79 274 116 136 125 112 143 148 0000 0000 0000 0000 0000 0000 0000 1833 8113 3086 6094 7813 0375 0000 4897 8564 1878 0000 0564 0000 1213 0000 0000 0000 9146 0964 0000 0000 9250 1589 0000 9319 0648 0631 6406 7241 1596 6774 5885 6544 5106 0347 1359 8501 6275 2330 8194 9983 1723 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 86 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0156 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 2159 6710 Out of Passed to 2D cell 1D-System OR Volume Stored (Flooded Maximum in allowed Flood Volume) --------- Volume --------- Pond of 1D-System ----------------- 0.0000 40.4451 0.0000 0.0000 33.3541 0.0000 0.0000 42.5863 0.0000 0.0000 45.0480 0.0000 0.0000 51.2351 0.0000 0.0000 55.4304 0.0000 0.0000 1229.5320 0.0000 0.0000 67.7875 0.0000 0.0000 67.6117 0.0000 0.0000 78.3831 0.0000 0.0000 81.6850 0.0000 0.0000 74.3286 0.0000 0.0000 80.8054 0.0000 0.0000 58.7974 0.0000 0.0000 63.7703 0.0000 0.0000 70.7152 0.0000 0.0000 3400.7292 3439.8815 0.0000 77.2362 0.0000 0.0000 72.4556 0.0000 0.0000 1081.5808 0.0000 0.0000 81.2870 0.0000 0.0000 28.2671 0.0000 0.0000 21.6291 0.0000 0.0000 28.0120 0.0000 0.0000 44.2135 0.0000 0.0000 34.4003 0.0000 0.0000 26.6419 0.0000 0.0000 26.2675 0.0000 0.0000 30.5650 0.0000 0.0000 33.4401 0.0000 0.0000 54.6600 0.0000 0.0000 84.1178 0.0000 0.0000 85.4288 0.0000 0.0000 84.3722 0.0000 0.0000 85.4060 0.0000 0.0000 84.9984 0.0000 0.0000 86.1636 0.0000 0.0000 93.9430 0.0000 0.0000 96.2794 0.0000 0.0000 102.6797 0.0000 0.0000 90.7220 0.0000 0.0000 88.0891 0.0000 0.0000 112.0086 0.0000 0.0000 90.0662 0.0000 0.0000 88.3204 0.0000 0.0000 87.6200 0.0000 0.0000 80.9877 0.0000 0.0000 2109.5295 2042.8840 0.0000 5014.2396 5681.8092 145A 146.8508 72.3536 0.0000 3517.0628 3969.3680 150AAIAJAK 125.0683 80.4321 0.0000 8613.4518 9591.4131 105A 168.7970 0.0000 0.0000 94.3235 ' 0.0000 60A X 54.5110 0.0000 0.0000 84.9430 0.0000 79A 130.1999 0.0000 0.0000 98.3140 0.0000 136A 147.7273 68.1059 0.0000 2518.9205 2638.8491 137A 146.1164 84.3051 0.0000 3486.3014 3490.3391 138A 149.8398 86.5496 0.0000 4093.6274 4427.4007 32+23Ex 0.0000 0.0000 0.0000 26.0235 0.0000 32+17Ex 0.0000 0.0000 0.0000 26.1375 0.0000 32+10Ex 0.0000 0.0000 0.0000 25.8705 0.0000 10 0.0000 0.0000 0.0000 37.3763 0.0000 5 0.0000 0.0000 0.0000 38.0862 ' 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 39.4924 0.0000 Outfall 0.0000 0.0000 0.0000 38.2221 0.0000 36+10Ex_N 0.0000 0.0000 0.0000 11.8527 0.0000 26+48Ex 0.0000 0.0000 0.0000 7.9707 ' 0.0000 35+21 0.0000 0.0000 0.0000 28.0262 0.0000 CB5(4+67) 2.3500 0.0000 0.0000 63.7575 0.0000 VAULT2(6+4 10.4667 0.0000 0.0000 1105.5582 0.0000 CB51(26+48 0.0000 0.0000 0.0000 82.9241 0.0000 EXCB(31+05 0.0000 0.0000 0.0000 30.3246 ' 0.0000 CB54(29+23 14.6500 0.0000 0.0000 50.3899 0.0000 CB52(28+16 26.0687 0.0000 0.0000 65.2857 0.0000 EXCB(31+02 0.0000 0.0000 0.0000 10.1922 0.0000 CB42(21+04 4.7000 0.0000 0.0000 26.5320 0.0000 CB45(23+63 6.5083 0.0000 0.0000 27.5759 ' 0.0000 CB46(24+14 0.0000 0.0000 0.0000 26.3328 0.0000 LP V1-2 4320.0000 0.0000 0.0000 510.9350 0.0000 Mdpoint 0.0000 0.0000 0.0000 14.4813 0.0000 SH50_AN 0.0000 0.0000 0.0000 50.6985 0.0000 SH75_AL 345.9445 3.9333 41.1005 109.3242 0.0000 SH70_AG 357.9467 127.9614 8528.5662 105.5544 0.0000 SH65 375.7863 0.0000 0.0000 107.9044 0.0000 SH60_V2 378.3512 176.9588 28440.7701 100.0254 0.0000 CB7 0.0000 0.0000 0.0000 43.4045 ' 0.0000 CB6 0.0000 0.0000 0.0000 49.2452 0.0000 CB5 8.9808 0.0000 0.0000 55.8091 0.0000 CB4_L 12.9018 0.0000 0.0000 60.1518 0.0000 CB3 17.1591 0.0000 0.0000 65.0588 0.0000 CB2 KM 22.1812 0.0000 0.0000 70.6025 ' 0.0000 RA Vl-1 0.0000 0.0000 0.0000 13.2911 0.0000 RA V1-3 0.0000 0.0000 0.0000 8.4675 0.0000 Scenario 5A Table E20 - Junction Flooding and Volume Listing. I I The maximum volume is the total volume I I in the node including the volume in the I I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volumel I above the ground elevation, where the I I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) I Units are either ft^3 or m^3 depending on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name --------------- Time (min) ---------- Time(min) --------- Volume) --------- Volume --------- Pond of 1D-System 15_C,D 0.0000 0.0000 0.0000 59.1378 ----------------- 0.0000 20 0.0000 0.0000 0.0000 53.7861 0.0000 25 11.5842 0.0000 0.0000 66.1905 0.0000 30 25.3750 0.0000 0.0000 70.4160 0.0000 35 103.2413 0.0000 0.0000 86.4453 0.0000 40 E 142.6974 0.0000 0.0000 104.8512 0.0000 VAULT1(1+6 170.9677 0.0000 0.0000 2213.3729 0.0000 4+21Ex F 165.6375 0.0000 0.0000 121.0968 0.0000 D8-14 G 383.1487 0.0000 0.0000 121.3883 0.0000 CB17(9+78) 195.7020 0.0000 0.0000 133.4459 0.0000 CB21(11+35 225.3149 0.0000 0.0000 136.0410 0.0000 CB31(14+35 161.2676 0.0000 0.0000 128.0319 0.0000 CB35(15+71 140.8548 0.0000 0.0000 135.0471 0.0000 56A 129.5847 0.0000 0.0000 110.0017 0.0000 57A 176.2457 0.0000 0.0000 110.3796 0.0000 58A 161.3976 0.0000 0.0000 105.1280 0.0000 59B U 176.3866 120.8876 0.0000 61904.4616 66840.3394 CB40(17+97 47.1302 0.0000 0.0000 132.3534 0.0000 CB41(20+92 140.4518 0.0000 0.0000 125.9055 0.0000 VT3(25+57) 96.3406 0.0000 0.0000 1471.6363 0.0000 CB50 J 351.1815 30.7886 0.0000 3222.1027 3148.8478 36+60 34.1493 0.2526 158.4562 76.0394 0.0000 235 O,AO 32.7585 0.0000 0.0000 85.2554 0.0000 37+22P,Q,R 33.9026 0.0000 0.0000 87.0551 0.0000 E8-13A(17+ 145.4965 0.0000 0.0000 99.2742 0.0000 E8-13B(18+ 132.1191 0.0000 0.0000 91.9462 0.0000 F8-22(19+9 111.0838 0.0000 0.0000 86.1469 0.0000 CB-EX(22+8 107.8911 0.0000 0.0000 77.6847 0.0000 E8-11(16+2 134.8287 0.0000 0.0000 86.0501 0.0000 CB52(15+71 143.7685 0.0000 0.0000 88.1932 0.0000 45 140.6241 0.0000 0.0000 105.0109 0.0000 59A_W,AM 193.2688 80.3366 0.0000 14469.3479 15306.0216 60B 180.7827 46.5044 0.0000 771.6740 1180.2521 65A 181.2761 13.9652 0.0000 647.5075 560.9851 67A 170.1784 0.0000 0.0000 104.9578 0.0000 70A 164.7954 0.0000 0.0000 104.8070 0.0000 73A 162.9274 0.0000 0.0000 106.0911 0.0000 75A_Z,AA,Y 198.3443 0.0000 0.0000 115.2041 0.0000 78A 205.3577 0.0000 0.0000 114.5119 0.0000 80A_ABACAP 241.3329 0.0000 0.0000 117.6113 0.0000 95A AE 174.5563 0.0000 0.0000 103.8432 0.0000 100A 169.2057 0.0000 0.0000 100.0994 0.0000 110A 307.1047 0.0000 0.0000 114.3402 0.0000 115A_AF,AD 185.3728 0.0000 0.0000 90.7371 0.0000 120A 188.8958 0.0000 0.0000 87.3261 0.0000 125A 186.4840 0.0000 0.0000 86.4052 0.0000 130A 182.0492 0.0000 0.0000 81.1200 0.0000 135A_AH 186.6107 98.8323 0.0000 3559.7337 3908.9312 140A 187.3715 141.7904 0.0000 6082.6454 7249.2409 145A 185.9010 98.2819 0.0000 3815.3899 4622.7577 150AAIAJAK 182.7235 105.3603 0.0000 8792.0009 9887.0029 105A 209.1404 0.0000 0.0000 101.0255 0.0000 60A X 192.2692 66.4388 -3.7649 4180.8339 5094.0988 79A 204.5556 0.0000 0.0000 113.9017 0.0000 136A 188.4366 108.7947 0.0000 4617.5265 4661.2753 137A 186.3991 141.7375 0.0000 6031.3247 6608.1760 138A .189.3383 142.8273 0.0000 6007.1456 6806.6329 32+23Ex 40.3083 4.7053 398.1021 67.9821 0.0000 32+17Ex 40.5583 0.0000 0.0000 68.2867 0.0000 32+10Ex 40.8083 10.5064 0.0000 356.8245 347.3893 10 0.0000 0.0000 0.0000 49.3390 0.0000 5 0.0000 0.0000 0.0000 47.0361 0.0000 1_A,B1,B2 0.0000 0.0000 0.0000 35.2504 0.0000 Outfall 0.0000 0.0000 0.0000 34.0234 0.0000 36+10Ex_N 33.2534 0.0000 0.0000 56.4796 0.0000 26+48Ex 44.4039 31.3462 0.0000 2571.9275 2560.8287 35+21 35.5611 0.6697 214.0609 71.3095 0.0000 CB5(4+67) 167.6169 0.0000 0.0000 122.2596 0.0000 VAULT2(6+4 169.8704 0.0000 0.0000 1743.5522 0.0000 CB51(26+48 45.3033 31.2202 0.0000 2694.9093 2612.0463 EXCB(31+05 44.5033 0.0000 0.0000 76.0351 0.0232 CB54(29+23 112.9307 31.9148 0.0000 1925.7559 1930.0829 CB52(28+16 164.1279 32.1493 0.0000 2693.0502 2828.3466 EXCB(31+02 44.7517 0.0000 0.0000 55.8188 0.0000 CB42(21+04 112.4607 0.0000 0.0000 86.2790 0.0000 CB45(23+63 113.7976 22.4544 0.0000 1602.1102 1559.8223 CB46(24+14 107.6717 30.5333 0.0000 3592.0340 3759.6401 Tmp Out V1 2880.0000 0.0000 0.0000 688.6891 0.0000 Mdpoint 32.2521 26.8405 0.0000 78.9990 853.3807 SH50_AN 55.0759 0.0000 0.0000 131.1725 0.0000 SH75_AL 9.9835 0.0000 0.0000 112.3253 0.0000 SH70_AG 12.6357 0.0917 4.8732 114.5293 0.0000 SH65 32.0331 0.1750 36.5330 127.5485 0.0000 SH60_V2 48.5596 0.3417 59.2342 132.4106 0.0000 CB7 65.7651 0.1833 43.5557 129.6811 0.0000 CB6 95.0861 0.0833 7.3101 131.9430 0.0000 CB5 114.3077 0.0000 0.0000 132.8947 0.0000 CB4_L 127.5855 0.0917 4.4405 123.5238 0.0000 CB3 142.6833 1.5228 0.0000 388.4961 248.0243 C52 KM 165.8842 18.7301 0.0000 2675.5791 2786.4695 Scenario 5B I Table E20 - Junction Flooding and Volume Listing. I I The maximum volume is the total volume I in the node including the volume in the I flooded storage area. This is the max I I volume at any time. The volume in the I I flooded storage area is the total volumel above the ground elevation, where the I flooded pond storage area starts. I I The fourth column is instantaneous, the fifth is thel I sum of the flooded volume over the entire simulation) Units are either ft^3 or m^3 ------------------- depending --------------------___ on the units.) Out of Passed to 2D cell 1D-System OR Volume Stored Junction Surcharged Flooded (Flooded Maximum in allowed Flood Name Time (min) Time(min) Volume) Volume Pond of 1D-System 15_C,D 0.0000 0.0000 0.0000 42.1297 0.0000 20 0.0000 0.0000 0.0000 35.1302 0.0000 25 0.0000 0.0000 0.0000 44.4081 0.0000 30 0.0000 0.0000 0.0000 46.9384 0.0000 35 0.0000 0.0000 0.0000 53.4840 0.0000 40 E 0.0000 0.0000 0.0000 58.2763 0.0000 VAULT1(1+6 0.0000 0.0000 0.0000 1284.8039 0.0000 4+21Ex F 16.8865 0.0000 0.0000 71.7629 0.0000 D8-14 G 101.0723 0.0000 0.0000 71.6125 0.0000 CB17(9+78) 26.0456 0.0000 0.0000 83.9808 0.0000 CB21(11+35 29.3771 0.0000 0.0000 87.6511 0.0000 CB31(14+35 20.1729 0.0000 0.0000 80.8549 0.0000 CB35(15+71 16.3833 0.0000 0.0000 87.6723 0.0000 56A 2.1904 0.0000 0.0000 63.0357 0.0000 57A 22.8551 0.0000 0.0000 68.9113 0.0000 58A 23.2994 0.0000 0.0000 76.0146 0.0000 59B U 35.4686 21.8363 0.0000 7749.4496 8043.6266 CB40(17+97 0.0000 0.0000 0.0000 84.4667 0.0000 CB41(20+92 18.5137 0.0000 0.0000 80.3235 0.0000 VT3(25+57) 9.0122 0.0000 0.0000 1187.6687 0.0000 CB50 J 113.9431 0.0000 0.0000 90.4724 0.0000 36+60 0.0000 0.0000 0.0000 28.2652 0.0000 235 O,A0 0.0000 0.0000 0.0000 21.6168 0.0000 37+22P,Q,R 0.0000 0.0000 0.0000 28.0149 0.0000 E8-13A(17+ 18.2594 0.0000 0.0000 50.6678 0.0000 E8-13B(18+ 15.0619 0.0000 0.0000 40.6678 0.0000 F8-22(19+9 10.4053 0.0000 0.0000 33.3268 0.0000 CB-EX(22+8 10.6275 0.0000 0.0000 34.2946 0.0000 EB-11(16+2 14.7333 0.0000 0.0000 37.2958 0.0000 CB52(15+71 17.6269 0.0000 0.0000 40.2870 0.0000 45 0.0000 0.0000 0.0000 57.5560 0.0000 59A_W,AM 53.4139 0.0000 0.0000 88.1011 0.0000 60B 48.9589 0.0000 0.0000 88.7226 0.0000 65A 54.7564 0.0000 0.0000 87.4120 0.0000 67A 50.1824 0.0000 0.0000 87.7703 0.0000 70A 48.0417 0.0000 0.0000 86.9687 0.0000 73A 46.2114 0.0000 0.0000 87.9483 0.0000 75A_Z,AA,Y 111.8763 0.0000 0.0000 95.6061 0.0000 78A 135.4391 0.0000 0.0000 97.8662 0.0000 80A_ABACAP 166.3743 0.0000 0.0000 104.1393 0.0000 95A AE 92.0358 0.0000 0.0000 92.0986 0.0000 100A 84.4460 0.0000 0.0000 89.3792 0.0000 110A 276.4026 0.0000 0.0000 112.2742 0.0000 115A_AF,AD 121.0682 0.0000 0.0000 89.4503 0.0000 120A 139.8820 0.0000 0.0000 87.5915 0.0000 125A 128.9617 0.0000 0.0000 86.8972 0.0000 130A 117.4286 0.0000 0.0000 80.3995 0.0000 135A AH 146.4957 35.5585 0.0000 2301.5732 2222.1363 140A 151.4106 88.9337 0.0000 5241.8105 5856.0904 145A 150.0914 74.4256 0.0000 3602.3648 4007.4984 150AAIAJAK 128.6144 82.9368 0.0000 8672.6904 9633.3735 105A 171.4765 0.0000 0.0000 95.1942 0.0000 60A X 72.2891 0.0000 0.0000 88.3123 0.0000 79A 149.8665 0.0000 0.0000 99.8012 0.0000 136A 151.0737 71.1515 0.0000 2722.0886 2800.2776 137A 149.5450 86.7904 0.0000 3799.1859 3782.0825 138A 153.0179 88.9494 0.0000 4383.0605 4707.7446 32+23Ex 0.0000 0.0000 0.0000 29.2154 0.0000 32+17Ex 0.0000 0.0000 0.0000 29.5894 0.0000 32+10Ex 0.0000 0.0000 0.0000 29.8642 0.0000 10 0.0000 0.0000 0.0000 38.8735 0.0000 5 0.0000 0.0000 0.0000 39.4960 0.0000 l A,B1,B2 0.0000 0.0000 0.0000 40.4263 0.0000 Outfall 0.0000 0.0000 0.0000 39.1534 0.0000 36+10Ex_N 0.0000 0.0000 0.0000 11.8535 0.0000 26+48Ex 0.0000 0.0000 0.0000 17.0038 0.0000 35+21 0.0000 0.0000 0.0000 28.0144 0.0000 CB5(4+67) 11.0600 0.0000 0.0000 67.9019 0.0000 VAULT2(6+4 16.3567 0.0000 0.0000 1161.7311 0.0000 CB51(26+48 0.0000 0.0000 0.0000 91.9982 0.0000 EXCB(31+05 0.0000 0.0000 0.0000 38.4352 0.0000 CB54(29+23 17.6528 0.0000 0.0000 57.9527 0.0000 CB52(28+16 30.6979 0.0000 0.0000 73.4704 0.0000 EXCB(31+02 0.0000 0.0000 0.0000 18.2482 0.0000 CB42(21+04 11.4499 0.0000 0.0000 33.7297 0.0000 CB45(23+63 12.5235 0.0000 0.0000 35.9129 0.0000 CB46(24+14 10.8267 0.0000 0.0000 34.8805 0.0000 Tmp Out V1 2880.0000 0.0000 0.0000 688.7008 0.0000 Mdpoint 8.5040 4.6667 0.0000 46.0300 28.1734 SH50_AN 2.5160 0.0000 0.0000 51.0631 0.0000 SH75_AL 0.0000 0.0000 0.0000 10.0626 0.0000 SH70_AG 0.0000 0.0000 0.0000 12.2180 0.0000 SH65 0.0000 0.0000 0.0000 16.8472 0.0000 SH60_V2 0.2794 0.0000 0.0000 37.7739 0.0000 CB7 7.4744 0.0000 0.0000 55.0927 0.0000 CB6 11.5514 0.0000 0.0000 60.6265 0.0000 CB5 15.9063 0.0000 0.0000 66.7513 0.0000 CB4_L 18.9688 0.0000 0.0000 70.7724 0.0000 CB3 22.3732 0.0000 0.0000 75.4857 0.0000 CB2 KM 27.0403 0.0000 0.0000 80.5144 0.0000 City of Renton Review Comments Project: Shattuck Ave. S. Storm System Improvement Project Jurisdiction: City of Renton Job Number: 200504.1 (RWE) Review Number: 1 Reviewer Name: Allen Quynn Review Date: March 25, 2008 Response Date: June 5, 2008 (updated Aug. 2, 2010) Comment Number Sheet No. or Sec Section Reviewer's Initials Review Comments Response By Designer's Reply Resolution 1 Under model Scenario 2, Section 3.2, there is no description of how much Hydraulic drainage area is being diverted to the upsized Shattuck Ave. storm Report AQ system. Figure 1 shows the hatched in area but does not explain which Kirk Smith The scenario descriptions in Section 3.2 has been (Pg. 7) sub basins are being diverted from the pump station. Report needs to (KRS) expanded to describe the area being diverted. include a better description of proposed drainage to be diverted to Shattuck Ave. 2 The modeling results show that diverting additional are to an upsized Shattuck Ave. storm system results in an water surface elevation of 24.44 at the intersection of 7th and Shattuck which is an increase of 0.38 feet above current water surface elevation of 24.06. The ground elevation shown on Table 5 is 24.36 which would suggest that the roadway would A separate memorandum dated 6/18/08 was prepared flood only 0.08 feet; However, drawing SD01 shows a rim elevation of that addressed this comment. Hydraulic Y 23.46 for the existing catch basin at the northwest corner of S. 7th and Shattuck (CB2382) which is almost 1 feet of flooding of the 25-year storm. An error has been found inthe modeling for Scenario 5A. Repoli (Pg 14) AQ Under current conditions, the 25-yr water surface elevation of 24.04 will KRS Node CB2_KM has been corrected to have ponding I surcharge the rim of CB2382 by 0.6 feet. Diverting additional are to the allowed. This causes the HGL at 7th & Shattuck to raise Shattuck storm system under Scenario 2 will make an existing flooding to 24.72 from 24.44 stated in the draft report. This has problem worse. been corrected in the final version of the report. Option to consider includes an overflow structure at 4th Place that would divert flows to the pump station if the HGL at 7th and Shattuck begin to overtop the rim of CB #1A. 3 Hydraulic RoseWater's scope of work included modelingonlythe Report AQ Hydraulic Report (General) - Why was the 100-yr event not analyzed in KRS 25-year event --consistent with previous modeling done (General) this report? by Gray & Osborne for the 7th Street drainage NI improvements 4 Hydraulic The report should include a summary table that shows the 25-yr flow rates Report AQ for existing conditions and with proposed project along Shattuck Ave. KRS The flow rates are already included in Tables 4 and 5. NI (General) similar to the Table 5 that shows the hydraulic grade line. LEGEND: I = Incorporated NI = Not Incorporated TBI = To Be Incorporated NR = Needs Resolution MEMORANDUM To DerekAkesson DATE 6/18/08 City of Renton PROJECT No 200504.1 PROJECT Shattuck Ave S - - _ Storm System Improvement Project cc Rex Meyer, DMJM Harris SUBJECT Response to Hydraulic Report Comment #2 FROM Kirk Smith PAGE 1 OF 2 This memo has been written in response to Hydraulic Report Comment #2 from Allen Quynn, memo dated 3/25/08. Comment #2 noted that the February 2008 Draft Hydraulic Modeling Report states that the existing 25-year Hydraulic Grade Line (HGL) at the intersection of 7`h Street and Shattuck Avenue has an elevation 24.06, which is 0.6 foot above the existing rim of CB 2382. The comment noted that the proposed stormwater diversion will make the problem worse, and suggested considering a stormwater diversion at 4 h Place to direct flows to the pump station if the HGL at 7`h and Shattuck began to overtop the rim of CB # 1 A. To address this comment, the XP-SWMM hydraulic model was rerun to evaluate the effectiveness of an overflow weir at 4`h Place and Shattuck Avenue (Node SH50 AN). The model was also rerun using "existing" hydrologic conditions based on Gray & Osborne's previous study. The following table shows the results of the additional model runs, in terms of HGL elevations at 7`h & Shattuck and at the low point of Rainier Avenue below the railroad bridge. Model 25-yr HGL at 71& HGL at Rainier Out of System or Out of System or Scenario Shattuck Avenue Sag Ponded Volume Ponded Volume ("Existing" HGL = (Ground Elevation Shattuck Ave, Shattuck Ave, 24.06, CB Rim = = 19.4) North of 4'h Place South of 4`h Place 23.46) (ac-ft ac-ft I Existing 24.1 21.5 1.04 0.49 Condition 2A Proposed 24.4 17.7 0.90 0.08 Condition 2A revised with 24.3 20.7 0.90 0.05 O.F. Weir Elev. 23.0 2A revised with 24.3 21.0 0.90 0.04 O.F. Weir Elev. 18.0 2A revised with 24.2 17.7 0.80 0.03 existing hydrology MEMORANDUM O To Derek Akesson DATE 6/18/08 PAGE 2 OF 2 Also as part of this additional analysis, the surveyed ground elevations in the vicinity of 7`h Street and Shattuck Avenue were reviewed. The elevation 24.0 contour stays within the street and right of way area. The elevation 24.5 contour extends into the yards of two houses on the west side of the street immediately north of S. Vh Street (641 and 645 Shattuck Avenue S). The finish floor elevations of residences around the intersection are higher than 25.0; however the floors of accessory buildings at 641 and 645 Shattuck Avenue S are at the ground elevation. Based on the additional modeling runs, and a closer review of the existing topography at the intersection of 7`h Street and Shattuck Avenue, the following observations have been made in response to Comment #2: • Adding an overflow weir at 4'h Place and Shattuck Avenue decreases the HGL only slightly, but causes flooding under the railroad bridge on Rainier Avenue. As a result, an overflow weir is not recommended. • Although the model predicts the HGL at 76 Street and Shattuck Avenue to increase 0.38 foot as a result of the Shattuck Avenue drainage improvements, the model predicts the 25- year flooding volume along Shattuck Avenue between 7th Street and 41h Place to be decreased by 0.41 ac-ft as a result of the project. Flooding predicted under the railroad bridge along Rainer Avenue is also eliminated. • The predicted flooding at 7`h Street and Shattuck Avenue resulting from the proposed condition 25-year HGL stays below finish floor elevations of the adjacent houses. • The modeling has been performed using future condition hydrology (full zoning build -out). Rerunning the model using existing condition hydrology decreases the HGL at 71h and Shattuck to 24.2. • It is suspected that even the "existing" hydrologic modeling overestimates peak flow rates because flooding has not been reported at this location since the 7th Street drainage improvements were constructed in 2004, despite high -intensity rainfall in December 2006. This may be due, in part, to a modeling assumption of l 00% directly -connected impervious surfaces, which rarely occurs in older residential areas. Also, the modeling doesn't fully take into account restrictions caused by small -diameter storm drain pipes that exist between some of the tributary drainage basins and Shattuck Avenue. Based on the modelini and these additional observations, it appears that only minimal flooding is likely to occur at 7 Street and Shattuck Avenue following construction of the proposed conveyance improvements, while greatly reducing the overall flooding issues for the system. Since future upstream development has the potential to increase flooding at this location, it is recommended that the City place conditions on zoning to address system inadequacies prior to full build -out. GHD Inc. 1201 Third Avenue, Suite 1500 Seattle, WA 98101-3033 T: 1 206 441 9385 F: 1206 448 6922 E: seamail@ghd.us.com @ GHD Inc. 2011 This document is and shall remain the property of GHD Inc. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorized use of this document in any form whatsoever is prohibited. 86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Surface Water Technical Information Report www.ghd.com GA86114159VCADD\DRAY M7GS1TIR166556TIR-TDAM+9 Oc;l v ,( 0 7 3-7 � r Ff i4-4 20,G4-2 0 Lp , 3°' a I 0 % 1 L�GJ- F101 I f� 20,H2-1 16,D3-5 •16,B3-1 +�-� �+ i 4 3 5322 16,B3-2 °•�' n p 3 5324 5318 3 53 16, -2 O - fi6,D4-I9 16,E4- 4-3 O 0 ❑ 16, 4-2 2 e� 16,B4-16 �- 6 � 1 ,E4-8 10, Q o `� LD b.B4 24,B4- r - >b,1�-Iil-3 t C3 21,C3-11-•' J I 21,C3- 21,C3-10 21,C3-9 20 H4-2# H4- 21,B4-1 - 20,H-�' 211 4 r 20)H4-8 ( 21,B - 4 1, 4-4 2li C4_19 -19 21,C4-3 4 21,C4-8 t , 'a- 0 21 D2 11 ,D2-17 ❑ D2- 4 2t,D2� 4 21,D2-5 i,D2-B If 21, 2-2 U 21.E2-7 I 21,113-7 j G 21,E3- 21,E3-2 21,D3 16 i,E3 21,D3-15 21 D3-3 21 D3-14 21 21 D4- 1, 1 21,E4 21,D4-39 Q 3 i,D4-4 ?J,E4-12 i 1,D4 1 4} oLJ 21,E3-5 0 q--i�: 16,E 7-1 16,E3-5 16, 4-2 I I6,F -7 14 16.F4-2 16 4-2 I ,F43 ❑ 16,F4-32-- 1 F4-33 Al I F4-34 I F5-20 A H 16 j 16,G5-6 ❑� I 6�, r6-7 16,G6-5 3 ❑ I I H4 7,B 16,H qD� ■ ._ ; ��■■ � � fit■ � ■ + ■ ti * � i • • ! ■ 7 ■ r I■■/ 1 mil/ , i ■ ; i i' • t 17 17 ,DEy-7 17,B5 7,D6 16 H6-8 fj�i7N 0 f j O /J 0 21,H2- 21 H2-I 2t,E3-11 - -� 21,G3-6 21,H3- H3-5 21,G3-7 / H3-12 3-5 21H3-4 } -8 1.G3-11 21,G3- �..� 21,G3-1 00 21,G3-17 21,G -1----� 21,H3-3 •� 21,F3- i,H3-13 F' 21, 3-2 21,E3-9 21 - L�^""21,F3- t 21, ;3-8 - j 1, 3 `.•.•ems �3Gv 21,G3-13 21,G3-12 1 H -2 - I F3-t - H _6 2I,G3-14 / 21,H4-17 f 3 21,G3-15 2 -4 l 21,H4-16 21, 4-8 21,H3- G4-4 21,G4-il 21,G4-I4 22,4-6 J I 1,H4- ' 21, 4-3 21,G4-12 \ -15 H4-11 2F4-4 - 22,G4-7 22,G4 21,H•4-18' 21,G4-1 i 21 21,G4-5 21,G4-3 21,H4-6 21,F4-10 - 2LF4-11 2114-5 - _._.._..__..._.........1] �--. r21 21,H4-13 { -- ...._.... 21,H4-19 ._ 4-2 _` 21,F4-6 /I _ 7,L5-1 4g�__ ' 1 ._.. 7,C5-3 jjj 5-2 j �? �✓' O D6-2 17,B6-1 ! 7,C6-2 I 6-12 i ppp f V 1. 7, b zI 7 17 j 17,C 11 i7, -27 6-24 jj ❑ 19 1 D6-20 I �- 17,C -I ,C6-9 j 2TC6- -2I J• 17, n,c7_ 17,C7 i 3 j 0 150 300 600 SCALE: 1`300' LEGEND EXISTING PUMP STATION TRIBUTARY AREA PREVIOUS BASIN BOUNDARIES FROM SW 7TH ST PRE -DESIGN ANALYSIS HYDRAULIC BASEMAP REVISED BASIN BOUNDARIES PREVIOUS BASIN BOUNADRIES THAT HAVE CHANGED BASIN VI SUB BASIN BOUNDARIES CLIENTS I PEOPLE PERFORMANCE CITY OF RENTON SHATTUCK AVENUE DIVERSION BASIN MAP FIGURE 1