HomeMy WebLinkAboutSWP2703430PMq
boa
City of Renton
,�," ��n L)SQ� --�) (�)
t its• of
r��rr
rJ�i :..
Rainier Avenue South Improvement Project — SW Grady
Way to S 2nd Street
Surface Water Technical Information Report
November 2011
The technical information and data included in this report was prepared by or under the direct supervision
of the undersigned, whose seal as registered professional engineer licensed to practice as such in the
State of Washington is affixed below:
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
Contents
1.
Project Overview
1
1.1 Project Description
1
1.2 Background
1
1.3 Threshold Discharge Areas
1
2.
Requirements Summary
3
2.1 Project Conditions Affecting Drainage Requirements
3
2.2 Applicability of the Minimum Requirements
4
3.
Offsite Analysis
8
3.1 Resource Review
8
3.2 Study Area Mapping
8
3.3 Field Inspection
8
3.4 Downstream Drainage System Descriptions
10
3.5 Upstream Drainage Areas
11
3.6 Existing and Predicted Drainage Problems
12
4.
Runoff Treatment and Flow Control Analysis & Design
13
4.1 Runoff Treatment
13
4.2 Flow Control
15
4.3 Existing Facilities
15
5. Conveyance System Analysis and Design 17
5.1 Design Standards
17
5.2 Existing Conveyance System
17
5.3 Proposed Conveyance System
18
5.4 Gutter Flow and Inlet Design
20
5.5 Rainier Avenue Pump Station Performance and Impacts
23
6. Special Reports and Studies
25
7. CSWPPP Analysis and Design
26
7.1 CSWPPP Drawings
26
7.2 CSWPPP Narrative
26
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
Table Index
Table 1.
Project Area Summary
Table 2.
Change in 100-year Peak Flow
Table 3.
Runoff Treatment Areas
Table 4.
Filterra Sizing Calculations
Table 5.
Tailwater Elevations
Table 6.
Pump Station Performance
Figure Index
Figure 1 Basin Map
Appendices
A Land Coverage Maps
B Flow Control and Runoff Treatment Facility Calculations
C Conveyance Analysis
D Gutter and Inlet Analysis
E Shattuck Avenue Stormwater Diversion Modeling Report
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
4
7
14
14
20
24
1. Project Overview
1.1 Project Description
The Rainier Avenue South Improvement Project is located along Rainier Avenue S in Renton,
Washington, between SW Grady Way and SW Sunset Way. The project will improve transit access and
reliability, general purpose traffic flow, and develop a more pedestrian friendly urban designed street.
This report addresses preparation of the storm water site plans to accommodate preliminary roadway
improvements. Per direction from the City of Renton, stormwater management facilities have been
evaluated using the Department of Ecology's February 2005 Stormwater Management Manual for
Western Washington (SMMWW). Conveyance facilities have been designed in accordance with the 2009
King County Surface Water Design Manual.
1.2 Background
The City of Renton plans to improve the roadway by adding traffic lanes, protected turn pockets, and
planted (raised) medians along the roadway. New frontage improvements will consist of wider sidewalks,
irrigated planter strips, curb and gutter. The existing roadway to remain will be resurfaced. Stormwater
drainage and other franchise utilities will be modified or relocated to accommodate roadway
improvements.
Project limits are the roadway length by the width of the right-of-way. The distance from SW Grady Way
and SW Sunset Way is approximately 3,700 feet and the existing right-of-way width varies from 82 feet to
115 feet. Additional right-of-way will be acquired in some areas to accommodate roadway improvements.
1.2.1 Existing Conditions
The existing right-of-way is fully developed with commercial properties adjacent to the roadway. The
roadway width is approximately 78 feet and narrows down to 68 feet north of S 3rd Street. The existing
frontage consists of curb, sidewalk, and planter strips. Planter strips exist in some areas and separate
the sidewalk from parking lots in the private, commercial properties.
1.2.2 Developed Conditions
Proposed improvements will widen the existing roadway to accommodate additional travel lanes, left turn
lanes, and median. The new roadway width is 97 feet and narrows down to 76 feet north of S 3rd Street.
Frontage improvements will include curb and gutter, 5-foot planting strip, and 8-foot sidewalk.
1.3 Threshold Discharge Areas
Threshold discharge areas (TDAs) are defined for projects with multiple storm drainage discharge points.
A TDA is defined as an onsite area that drains to a single natural discharge location, or multiple natural
discharge locations that combine within one -quarter mile downstream (as determined by the shortest flow
path). Drainage requirements with thresholds are applied to each TDA separately.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
The Rainier Avenue project has four TDAs as described below. TDA naming is based on the basin
naming used for previous drainage studies of this area. These TDAs are used for determining the '
applicability of the 10 minimum requirements of the SMMWW (see Chapter 2). Project TDAs are shown
on Figure 1 in Chapter 3. More detailed descriptions of the drainage systems located downstream from
each TDA are contained in Chapter 3. '
1.3.1 TDA A
TDA A is the northern portion of the project area that drains into the Hardie Avenue SW drainage system ,
that flows south from SW Sunset Boulevard. This storm drain joins the SW 7"' Street storm drain at Lind
Avenue SW, and then flows west to the Black River Forebay.
1.3.2 TDA V '
TDA V is the central portion of the project area that drains to the existing pump station located south of
the BNSF railroad crossing. The pump station discharges to the west, joining runoff from TDA A at
Hardie Avenue SW.
1.3.3 TDA I
TDA I is the portion of the project area near SW 7`h Street that discharges into the storm drainage system
that flows west along SW 7`I' Street. Drainage from TDA I joins runoff from TDAs A and V near Lind I
Avenue SW.
1.3.4 TDA GW
The Grady Way (GW) TDA is the southern portion of the project area that drains into the Grady Way
conveyance system that flows west, eventually draining into Springbrook Creek and the Black River
Forebay.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street Z
Surface water Technical Information Report
H
2. Requirements Summary
The Department of Ecology's February 2005 SMMWW, as interpreted by the City of Renton, was used to
determine mitigation requirements for this roadway project. Depending on the type and size of the
project, different combinations of these minimum requirements apply. The minimum requirements are:
1. Preparation of Stormwater Site Plans
2. Construction Stormwater Pollution Prevention
3. Source Control of Pollution
4. Preservation of Natural Drainage Systems and Outfalls
5. On -Site Storm Management
6. Runoff Treatment
7. Flow Control
8. Wetlands Protection
9. Basin/Watershed Planning
10.0peration and Maintenance
2.1 Project Conditions Affecting Drainage Requirements
Chapter 2.4 in Volume I of the SMMWW identifies thresholds that determine the applicability of each
requirement to the project. These thresholds are based on:
i The area of new impervious surface. The definition for impervious surface contained in the SMMWW
does not identify which impervious surfaces on a project are considered "new"; therefore the definition
is determined by the local jurisdiction. Renton defines new impervious surface as existing pervious
surfaces converted to impervious surface.
o The percentage of existing impervious surface.
P The percentage of added impervious surface.
Table 1 summarizes existing and new impervious surface areas within the project area, and the resulting
percentage of additional impervious surface. Also included in Table 1 is the area of new pollution -
generating impervious surface (PGIS), which is used for determining the runoff treatment requirement
(see Section 2.2.6). Removed impervious surface and net -new impervious surface area have been used
in assessing applicability of the Flow Control requirement (see Section 2.2.7). New impervious areas
within the project area are shown on the land coverage maps in Appendix A.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 3
Surface Water Technical Information Report
Table 1. Proiect Area Summa
TDA A
TDA V
TDA I
TDA GW
Total
Project Area (SF)
114,500
195,400
101,900
129,100
540,900
Existing Impervious
104,500
173,100
86,700
119,800
484,100
Surface (SF)
Percent Existing
91%
89%
85%
93%
89%
Impervious
New Impervious
6,022
15,550
11,526
6,216
39,314
Surface Area' (SF)
Percent Added
5.8%
9.0%
13%
5.2%
8.1 %
Impervious
New PGIS2 (SF)
1.644
7,946
7,628
1,583
18,801
Removed Existing
4,039
12,591
6,384
9,437
32,451
Impervious3 (SF)
Net New
Impervious Surface
1,983
2,959
5,142
-3,221
13,305
Area (SF)
Notes:
1. Area converted from pervious to impervious as a result of roadway widening
2. New pollution -generating impervious surface within the New Impervious Surface Area
3. Area converted from impervious to pervious as a result of landscaped median areas
2.2 Applicability of the Minimum Requirements
The applicability of the Minimum Requirements differs for new development and redevelopment projects.
Redevelopment projects are defined as projects occurring on sites that are already substantially
developed, with 35% or more existing impervious coverage. Since the Rainier Avenue right-of-way
between Grady Way and S 2nd Street has 90% existing impervious coverage (see Table 1), the proposed
roadway improvements are classified as a redevelopment project.
Application of the 10 Minimum Requirements to redevelopment projects is determined using Figure 2.3 in
Volume I of the SMMWW. Navigating the flow chart using this project's conditions results in the following
conclusions regarding applicability of the Minimum Requirements:
P The project will add more than 5,000 square feet of new impervious surfaces; therefore, Minimum
Requirements #1 though #10 apply to the new impervious and converted pervious surfaces.
No additional requirements are necessary for replaced impervious surfaces because this is a road
related project that does not add 50% or more of new impervious surface to the existing impervious
surfaces (only approximately 8% of new impervious surfaces will be added).
The following sections describe the applicability of the individual Minimum Requirements for this project,
and how the requirements will be met:
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
2.2.1 Minimum Requirement #1: Preparation of Stormwater Site Plans
This Surface Water Technical Information Report (TIR) satisfies the requirement for Minimum
Requirement #1. Required elements for a Stormwater Site Plan, as outlined in the SMMWW, are
contained in this report as follows:
P Determine Applicable Minimum Requirements (Chapter 2)
P Offsite Analysis (Chapter 3)
o Prepare a Permanent Stormwater Control Plan (Appendix A)
o Prepared a Construction Stormwater Pollution Prevention Plan (Chapter 7)
2.2.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)
The 12 SWPP elements were addressed during design of the roadway improvement plans. A
Stormwater Pollution
Prevention Plan Narrative has been included in Chapter 7 that addresses each of
the 12 SWPP elements.
The 12 SWPP elements are as follows:
Element 1:
Mark Clearing Limits
Element 2:
Establish Construction Access
Element 3:
Control Flow Rates
Element 4:
Install Sediment Controls
Element 5:
Stabilize Soils
Element 6:
Protect Slopes
Element 7:
Protect Drain Inlets
Element 8:
Stabilize Channels and Outlets
Element 9:
Control Pollutants
Element 10:
Control De -Watering
Element 11:
Maintain Best Management Practices (BMPs)
Element 12:
Manage the Project
2.2.3 Minimum Requirement #3: Source Control of Pollution
All projects are required to apply all known, available, and reasonable source control BMPs to prevent
stormwater from coming into contact with pollutants. BMPs come in two categories: structural and
operational. Structural source control BMPs should be identified in the storm drainage plans.
The following recommended pollution control approach for Urban Streets is described in Volume IV of the
SMMWW: "Conduct efficient street sweeping where and when appropriate to minimize the contamination
of stormwater. Do not wash street debris into storm drains." Recommended operation BMPs consist of
different approaches to street cleaning. No structural BMPs are identified that would need to be
incorporated into the drainage plans.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 5
Surface Water Technical Information Report
2.2.4 Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls
The proposed storm drainage conveyance system has been designed to maintain existing drainage
patterns. The project site area has four Threshold Discharge Areas with downstream paths that
recombine further than % mile downstream from the site. All four of the downstream paths flow into storm
sewers. The location and area of the four Threshold Discharge Areas will be maintained between the
existing and redeveloped conditions.
2.2.5 Minimum Requirement #5: On -Site Stormwater Management
On -site stormwater BMPs are required to infiltrate, disperse, and retain stormwater runoff onsite to the
maximum extent feasible without causing flooding or erosion impacts. The purpose of these BMPs is to
reduce the disruption of natural hydrologic characteristics resulting from development. Due to Rainier
Avenue's existing condition as a fully -developed urban corridor with limited opportunity for effective
infiltration or dispersion, and due to the project's minimal change to hydrologic conditions, on -site BMPs
have not been included in the scope of this project.
2.2.6 Minimum Requirement #6: Runoff Treatment
Runoff treatment is required for Threshold Discharge Areas in which the total of effective PGIS is 5,000
square feet or more. As described previously, Minimum Requirements 1 - 10 only apply to the "new"
impervious surface areas of the project. As shown in Table 1, within the new impervious surface areas,
the amount of new PGIS exceeds 5,000 square feet in TDA V and TDA I. As a result, runoff treatment
facilities are required for these two threshold discharge areas. The sizing and design of the required
facilities is described in Section 4.1.
Runoff treatment facilities for this project are required to be chosen from the Enhanced Treatment Menu
because the Annual Average Daily Traffic counts for Rainier Avenue exceed 7,500.
Three intersections within the project area are classified as "high -use" because Rainier Avenue S has an
Average Daily Traffic (ADT) count of greater than 25,000, and the intersecting roadway ADTs exceed
15,000 (based on City of Renton 2006 Traffic Flow Map). These intersections are SW Sunset Boulevard,
SW 7th Street, and SW Grady Way. High -use intersections are required to apply the Oil Control Menu
per the SMMKW. However, oil control facilities are not required for this project because the new PGIS
areas requiring treatment are not within the high -use intersection areas.
2.2.7 Minimum Requirement #7: Flow Control
Flow control is required for TDAs in which the total of effective impervious surfaces is 10,000 square feet
or more or for TDAs where the 100-year flow frequency peak flow will increase by 0.1 cfs or more. As
described previously, Minimum Requirements 1 - 10 only apply to the "new" impervious surface areas of
this project because it is classified as a roadway redevelopment project. The City of Renton applies flow
control thresholds to net new impervious surfaces. This gives credit for new pervious surfaces that will be
created by the project, such as landscaped medians.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
As shown in Table 1, the net new impervious surface for each threshold discharge area is less than
10,000 square feet. In addition, the change in 100-year peak flow has been calculated for the net new
impervious surface and found to be less than 0.1 cfs for all four TDAs (see Table 2; see Appendix B for
calculations). As a result, flow control facilities are not required for this project.
Table 2. Change in 100-year Peak Flow
TDA A
TDA V
TDA I
TDA GW
Existing 100-yr peak
flow rate (cfs)
1.18
1.98
0.98
1.34
Proposed 100-yr
peak flow rate cfs
1.20
2.00
1.05
1.32
Change in 100-yr
peak flow rate (cfs)
0.02
0.02
0.07
-0.02
2.2.8 Minimum Requirement #8: Wetlands Protection
Additional requirements apply to projects that drain to wetlands, either directly or indirectly through a
conveyance system. Discharges to wetlands are required to maintain hydrologic conditions, hydrophytic
vegetation, and substrate characteristics necessary to support existing and designated uses.
The Rainier Avenue project drains via conveyance systems to the Black River Forebay, located
approximately one mile downstream from the site. Although the Black River Riparian Forest surrounding
the forebay contains wetlands, discharge from Renton's storm drainage system follows a stream channel
and does not flow through the wetlands. As a result, Minimum Requirement #8 does not apply to this
project.
2.2.9 Minimum Requirement #9: Basin/Watershed Planning
There are no known basin or watershed plans that would impose additional requirements to the drainage
system for the Rainier Avenue Improvements project.
2.2.10 Minimum Requirement #10: Operation and Maintenance
Components of the drainage systems proposed for the Rainier Avenue Improvements project are
consistent with other drainage facilities currently operated and maintained by the City of Renton. As a
result, a project -specific Operations and Maintenance Manual will not be provided.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
I Offsite Analysis
This offsite analysis has been prepared to comply with one component of Minimum Requirement No. 1:
Preparation of Stormwater Site Plans. The purpose of the offsite analysis is to recognize existing
upstream areas that pass through or connect to the project and investigate downstream areas that may
have existing or potential drainage issues. The task determines if any mitigation is necessary by
identifying and evaluating drainage impacts that may be caused or aggravated by the proposed
redevelopment project. The required offsite analysis components are outlined in Section 2.6.2 of the
2005 SMMWW, and consist of defining the mapping of the study area, reviewing all available information
on the study area, a field inspection, and description of the drainage system and its existing and predicted
problems.
3.1 Resource Review
The following information was used as the basis of the offsite analysis:
P Storm System Inventory Book (City of Renton, April 2007)
Ill, SW 7th Street/Hardie Avenue SW/Lake Avenue S Drainage Investigations (RW Beck, November
1998)
P SW 7th Street Storm Drainage Improvement Project Pre -Design Analysis (Gray & Osborne, February
2003)
11 30% Storm Drainage Memorandum, Rainier Avenue S/BNSF Improvements, S. 4th Place to S. 7th
Street (RoseWater Engineering, January 2006)
P City of Renton Shattuck Avenue Stormwater Diversion Modeling Report (Draft) (RoseWater
Engineering, February 2008)
3.2 Study Area Mapping
Figure 1 shows the study area, on -site threshold discharge areas, upstream drainage basins, and
downstream drainage paths.
3.3 Field Inspection
Since the downstream drainage system within the study area consists entirely of enclosed storm drains
that are operated and maintained by the City of Renton, field inspection of the interior of these facilities
was limited.
86/1415914577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
3.4 Downstream Drainage System Descriptions
Downstream drainage system descriptions begin where project stormwater discharges into the existing
downstream drainage system. The following descriptions are based on City mapping, prior studies, and
limited field investigation. The described systems extend downstream at least one -quarter mile from the
project discharge points.
3.4.1 Downstream TDA A
The downstream system from TDA A begins at a storm drain manhole in the parking lot of the Fred Meyer
shopping center located near the southwest corner of the Rainier Avenue S and SW Sunset Boulevard
intersection. An 8-foot by 10-foot box culvert under Rainier Avenue S discharges upstream and project
flows to the downstream system via a 24-inch by 42-inch arched corrugated metal connector pipe. The
downstream conveyance system continues west and parallel to SW Sunset Boulevard towards Hardie
Avenue SW. Prior to heading south on Hardie Avenue SW, pipe flow from SW Langston Road converges
into the system. The conveyance system continues south and collects roadway runoff from Hardie
Avenue SW, SW 5th Place, Maple Ave SW, and the Fred Meyer shopping center. The quarter mile
investigation ends 140 feet south of the Hardie Avenue SW and SW 5th Place intersection. The system
eventually combines with drainage from TDA V on the south side of the railroad overpass on Hardie
Avenue SW.
3.4.2 Downstream TDA V
The downstream system from TDA V begins on the south side of the railroad overpass on Rainier Avenue
S. A pump station at this location conveys upstream and project flows west along the railroad right-of-
way to Hardie Avenue SW. Flows from TDA V combine with TDA A on the south side of the railroad
overpass at Hardie Avenue SW. The storm drain system gravity flows west along the railroad then
southwesterly to SW 7th Street. The quarter mile investigation ends prior to the drainage system crossing
between two commercial properties located at 300 and 440 SW 7th Street. The drainage system
ultimately converges into the SW 7th Street drainage system near Lind Avenue SW where it combines
with drainage from TDA I.
3.4.3 Downstream TDA I
The downstream system from TDA I begins on the west side of the Rainier Avenue S and SW 7th Street
intersection. Upstream and project flows discharge into the SW 7th Street drainage system that consists
of two existing 24-inch and 60-inch storm drain pipes that convey stormwater flow west towards the Black
River Forebay. The two pipes run parallel to each other and share stormwater flows, with stormwater
manholes and vault structures connecting the two systems. The 24-inch conveyance increases to 36-
inch west of Hardie Avenue SW and to 54-inch before Lind Avenue SW. The quarter mile investigation
ends 270 feet east of the intersection with Lind Avenue SW. At this point, upstream project flows from
TDA V and TDA A converge into the SW 7th Street drainage system. The 54-inch and 60-inch
conveyance pipes continue west to a vault on the west side of the intersection with Lind Avenue SW. The
vault outlet is a 60-inch pipe that continues west along the roadway, eventually discharging to the Black
River Forebay at Naches Avenue SW.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 10
Surface Water Technical Information Report
3.4.4 Downstream TDA GW
The downstream system from TDA GW begins at the northwest corner of the intersection of SW Grady
Way and Rainier Avenue S. Upstream and project flows connect to a 52-inch underground pipe
conveyance system that flows west along the north side of Grady Way SW, eventually discharging to
Springbrook Creek near Oakesdale Avenue SW.
3.5 Upstream Drainage Areas
3.5.1 Upstream TDA A
The upstream area for TDA A consists of a mix of residential neighborhood and commercial properties.
The approximate size of the upstream area is 55 acres. The Lake Avenue S conveyance system collects
most of the upstream flows for the area. Project flows from north of S 2nd Street connect to the offsite
system at Lake Avenue S and S 2nd Street. The system then flows in a southwesterly direction towards
the Rainier Avenue S and S 3rd Street intersection. Offsite flows pass through the project area in an 8-
foot by 10-foot concrete box culvert. Project and offsite flows combine at existing manholes upstream
and downstream of the box culvert.
3.5.2 Upstream TDA V
The upstream area for TDA V consists of a mix of residential neighborhood and commercial properties.
The approximate size of the upstream area is 11 acres, with runoff from this area entering the Rainier
Avenue conveyance system at several connection points along the roadway. An additional 54 acres was
previously tributary to TDA V, but was diverted to TDA I by construction of the Shattuck Avenue
Stormwater Bypass Project in 2010. The Shattuck Avenue project consisted of a new 48-inch storm drain
pipe constructed between S 4th Place and S 7th Street.
3.5.3 Upstream TDA I
The upstream area for TDA I consists of a mix of residential neighborhood and commercial properties. '
The Shattuck Avenue Stormwater Bypass Project increased the upstream area from 104 acres to
approximately 158 acres by diverting 54 acres from TDA V. Upstream flows pass through the project
area at the Rainier Avenue S and SW 7th Street intersection in existing 24-inch and 60-inch storm
drainage pipes. Project flows will combine with upstream flows at the intersection.
3.5.4 Upstream TDA GW
The upstream area for TDA GW consists of commercial properties, including Les Schwab, Walker's
Renton Subaru, and Sound Ford. The approximate size of the upstream area is 12.7 acres. Runoff from
approximately 3.5 acres of this area enters the Rainier Avenue S conveyance system at several existing
connection points along the roadway.
Runoff from the remaining 9.2 acres is conveyed by an existing 27-inch concrete storm drain from the
east that connects to the Rainier Avenue drainage system approximately 200 feet north of the intersection
of Grady Way and Rainier Avenue. This drainage system extends approximately 1,300 feet to the east,
and collects runoff from portions of Sound Ford, Renton Mazda, and properties north of Lithia Hyundai.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
cl�HDI
Although this drainage system passes through the South Renton Park and Ride lot, drainage from that
facility is not connected. A map of this drainage system and contributing basin areas has been included
in Appendix C.
3.6 Existing and Predicted Drainage Problems
Prior drainage investigations for the study area document past flooding problems in several locations.
Some of these problems have been corrected by construction of a new storm drainage system along S
7th Street. The two remaining drainage problems known to exist downstream from the Rainier Avenue S
Improvement Project are described below:
o Flooding along Hardie Avenue SW below the railroad overpass occurs during large storm events when
the hydraulic grade line of the drainage system is higher than the low-lying street surface below the
railroad. This flooding will not increase as a result of the Rainier Avenue project because the change
in hydrologic conditions within the project area will be negligible. Although construction of the
Shattuck Avenue Stormwater Bypass (Phase 1 of the Rainier Avenue Improvements) diverted runoff
from 54 acres away from the Hardie Avenue SW flooding area, it is not expected to noticeably improve
flooding conditions at Hardie Avenue because that problem appears to be caused primarily by
tailwater conditions in the downstream storm drainage system along S 71h Street.
o Flooding under the Rainier Avenue S underpass occurs occasionally during power outages that affect
the downstream pump station (reported by City staff during meetings held on 8/29/05 and 10/20/05).
More recently, City staff have reported occasional flooding at other times during heavy rain. Recent
construction of the Shattuck Avenue Stormwater Bypass (Phase 1 of the Rainier Avenue
Improvements) redirected runoff from approximately 54 acres away from the pump station, which is
expected to reduce flooding during heavy rain, and reduce the severity of flooding during a pump
failure or power outage. Additional analysis of this project's impacts on the pump station is discussed
in Section 5.5.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 12
Surface Water Technical Information Report
4. Runoff Treatment and Flow Control Analysis &
Design
The applicability of Runoff Treatment and Flow Control requirements for this project is described in
Sections 2.2.6 and 2.2.7. The following sections document the analysis and design of required runoff
treatment and flow control facilities.
4.1 Runoff Treatment
As described in detail in Section 2.2.6, runoff treatment facilities are required for TDA V and TDA I
because the amount of new PGIS in both of these TDAs exceeds 5,000 square feet. The runoff
treatment menu applicable to this project was determined from Chapter 2 in Volume III of the SMMWW.
Enhanced treatment facilities are required for this project because Rainier Avenue is a within the Urban
Growth Management Area and has an Annual Average Daily Traffic count greater than 7,500. The
Enhanced Treatment menu options are specified in Section 3.4 in Volume III of the SMMWW. Allowable
Enhanced treatment facility options include infiltration with pretreatment, sand filters, sormwater
treatment wetlands, compost -amended filter strips, and several two -facility treatment trains. In addition to
these options, the Americast Filterra has received a General Use Level Designation (GULD) from the
Washington State Department of Ecology for Basic, Enhanced, and Oil Control Treatment.
4.1.1 Runoff Treatment BMP Selection
Americast Filterra tree box filter units have been chosen as the runoff treatment BMP for this project.
Because Filterra units are not listed as an approved Enhanced runoff treatment BMP in the Department of
Ecology's February 2005 SMMWW, or in the City of Renton's current drainage manual, a standards
adjustment is needed. The justification for a standards adjustment is documented Section 4.1.3
Because the Filterra units include vegetation, appropriate locations are constrained by landscaping and
urban design concepts. Other constraints include driveways, utilities, maintenance accessibility, and
appropriate storm drain and gutter geometry. Filterra units cannot be located at a sag in the gutter profile,
and another catch basin needs to be placed downstream from each unit to serve as an overflow.
After analyzing these constraints, no suitable locations were found for treating PGIS in TDA I. As a result,
for this project Renton Stormwater has approved constructing Filterra units TDA V to mitigate for new
PGIS created in TDA I. This approval was made because runoff from both TDAs recombines a short
distance downstream in 7th Street SW, prior to discharge from the City's piped drainage system to the
Black River Forebay.
Table 3 below summarizes the amounts of new PGIS and proposed PGIS treatment within TDAs V and I,
and the totals for the two TDAs. Facility sizing is described in Section 4.1.2.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 13
Surface Water Technical Information Report
Table 3. Runoff Treatment Areas
TDA V
TDA 1
TDA V + TDA I
New PGIS
7,946 sf
7,628 sf
15,574 sf
Proposed PGIS to be
treated
21,155 sf
0 sf
21,155 sf
% of treatment requirement
provided
266%
0%
136%
Treatment Facility
(4) 4'x4' Filterra Units
4.1.2 Filterra Unit Sizing Calculations
As shown in Table 3, the total required water quality treatment in TDA V and TDA I is 15,574 sf. The
GUILD for Filterra dated December 2009 (Revised May 2010) stipulates the sizing methodology. For
Enhanced Treatment, the GUILD says:
Each Filterra unit shall be sized for Enhanced Treatment using a filter hydraulic
conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as
listed in the TER)using the sand filter module in the latest version of the WWHM or other
Ecology -approved continuous runoff model. The model must indicate the unit is capable
of processing 91 percent of the influent runoff file.
MISS Flood, an Ecology -approved hydrologic software, has been used to model the proposed Filterra
units as sand filters, in accordance with the GUILD. Site maps showing the tributary areas for each of the
four Filterra units, and MGS Flood project reports, are attached in Appendix B. Table 4 below shows the
tributary area for each Filterra unit.
The site maps and calculations were submitted to Filterra in December 2010 for their review as required
by the conditions of the GUILD. An email from Filterra dated December 14, 2010 has been included in
Appendix B that documents their concurrence with the submitted calculations.
Table 4. Filterra Sizing Calculations
Structure No.
Tributary Areas
Required
Roadway PGIS
Other Imp. Area
Pervious Area
Unit Size
200
5,930
1,632
2,703
4'x4'
201
5,357
1,123
4,132
4'x4'
202
4,198
933
641
4'x4'
203
5,670
1,113
483
4'x4'
Total
21,155
4.1.3 Standards Adjustment for use of Filterra Units for Runoff Treatment
A standards adjustment is needed for the proposed use of Americast Filterra tree box filter units for
Enhanced runoff treatment on the Rainier Avenue S improvements project, because Filterra units are not
listed as an approved Enhanced runoff treatment BMP in the 2005 SMMWW, the drainage standard
being used for this project.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 14
Surface Water Technical Information Report
Per Section 1.4.3 of the City's drainage manual, in order for a standards adjustment request to be
approved, it must:
• Produce a compensating or comparable result that is in the public interest, and
• Meet the objectives of safety, function, appearance, environmental protection, and maintainability
based on sound engineering judgement.
Justification for this standards adjustment consists of the following:
1. Americast Filterra tree box filters received a General Use Level Designation (GULD) from the '
Department of Ecology in December 2009 for Enhanced Treatment. A copy of the GULD is
attached in Appendix B.
2. Detailed sizing calculations have been prepared in accordance with the Department of Ecology's
GULD. These calculations include detailed site plans and hydrologicthydraulic calculations using
MGS Flood (an Ecology -approved continuous runoff model) that demonstrate each unit treats 91
percent of the influent runoff. Filterra representatives have reviewed the sizing information and
expressed concurrence in an email dated December 14, 2010. Copies of the site plans,
calculations, and Filterra's concurrence email are attached in Appendix B.
3. The plans and specifications for the Rainier Avenue project specify Filterra media conforming to
the specifications submitted to and approved by Ecology as part of the GULD approval process.
In a memo dated October 17, 2011, Renton Surface Water Utility approved the standards adjustment
request with conditions (see Appendix B). Conditions of approval 1, 2, and 6 have been addressed by the
sizing calculations and Filterra review documentation included in this report. The remaining conditions,
concerning Filterra media, inspection and maintenance requirements, have been addressed in the
construction plans and specifications.
4.2 Flow Control
As described in detail in Section 2.2.7, flow control facilities are not required for this project because the
net new impervious surfaces in each TDA are less than 10,000 square feet.
4.3 Existing Facilities
There are several private stormwater facilities that will be affected by the newly widened roadway. These
facilities will now be located inside of the proposed right-of-way limits. Conveyance facilities will be
reconstructed as needed to fit the proposed project configuration. Water quality facilities will be replaced
by equivalent facilities as described in the following sections.
4.3.1 Existing Offsite Water Quality Facilities
There is one known water quality facility that will be affected by the proposed project: an oil/water
separator at the Shell gas station (300 Rainier Ave S). This structure provides high -use site oil/water
separation for the pavement area outside the fueling island. The existing structure is located in a planter
strip behind the existing sidewalk, and appears to treat runoff from up to approximately 13,600 square
feet.
86/1415914577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 15
Surface Water Technical Information Report
The existing oil/water separator will be replaced with two oil/water separators providing 110 gpm process
flow each, which exceeds the capacity of the existing system.
A second existing oil/water separator that treats drainage from under the fuelling island canopy prior to
discharge to the sanitary sewer will not be affected by construction.
4.3.2 Existing Offsite Flow Control Facilities
There are no known storm detention systems that will be affected by the proposed project.
86114159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 16
Surface water Technical Information Report
5. Conveyance System Analysis and Design
5.1 Design Standards
As discussed in Chapter 1, conveyance elements for this project are being designed in accordance with
the requirements of the 2009 King County Surface Water Design Manual (KCSWDM) because
Department of Ecology's 2005 SMMWW does not contain specific requirements for conveyance. In
addition, gutter and inlet calculations have been performed in accordance with the requirements of the
WSDOT Hydraulics Manual, as referenced by the 2009 KCSWDM.
5.2 Existing Conveyance System
Existing drainage from offsite properties adjacent to the roadway must be maintained by reconnecting
private systems to the new conveyance lines. A majority of the offsite flows are generated from existing
parking lots and driveways associated with the commercial properties along Rainier Avenue S. Following
is a description of existing storm drainage conveyance systems in the vicinity of the project:
5.2.1 Existing Conveyance -TDA A
The project area between S 2nd Street and S 3rd Street is conveyed by gutter flow towards the south. An
existing conveyance system begins midway along the west side as the roadway transitions from a
crowned to a superelevated road section. The system continues south to S 3rd Street and is connected
to a manhole downstream of the box culvert. An inlet is located near the northwest corner of the Rainier
Avenue S and S 3rd Street intersection to collect roadway runoff from the east side of the roadway and is
connected to a manhole upstream of the box culvert.
The project area between S 3rd Street and S 3rd Place is conveyed by an existing pipe system along
both sides of the roadway.
5.2.2 Existing Conveyance - TDA V
The project area between S 3rd Place and the BNSF Railroad Bridge is collected and conveyed by an
existing pipe drain system along both sides of the roadway. Both systems flow south along the curb line
towards the railroad bridge that crosses Rainier Avenue S. The two systems are combined at a manhole
approximately 40 feet south of the bridge on the west side of the roadway. The manhole is located at the
low point of the sag curve and discharges to an existing pump station.
The roadway is superelevated between the railroad bridge and the south border of TDA V. The project
area is collected and conveyed north along the west side of the roadway. The first inlet in the system is
located in the vicinity of the Brown Bear Car Wash and Lithia Car Dealership property line. A storm drain
pipe along the east side of the roadway collects off -site runoff from adjacent commercial properties and
conveys it to the pump station.
See Section 5.5 for additional description regarding the existing pump station and impacts to it resulting
from this project.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 17
Surface Water Technical Information Report
5.2.3 Existing Conveyance - TDA I
The project area on Rainier Avenue S approximately 350 feet north of SW 7th Street and south to the
intersection is collected and conveyed south by an existing pipe drain system along the west side of
Rainier Avenue S. The stormwater is conveyed west on S 7th Street.
The west half of the roadway from SW 7th Street to Hardie Avenue SW is collected and conveyed north
by an existing pipe drain system to SW 7th Street. The west half of the roadway from Hardie Avenue SW
to approximately 160 feet north of Grady Way SW is conveyed north by gutter flow and collected at
Hardie Avenue SW. The collected runoff is piped north on Hardie Avenue SW to SW 7th Street.
5.2.4 Existing Conveyance - TDA GW
The project area (east side of Rainier Avenue S) between SW 7th Street to Grady Way SW is collected
and conveyed south by an existing pipe drain system along the east side of the roadway. The west side
of the roadway is in TDA I. The conveyance system is under the sidewalk and the storm drainage inlets
along the curb tie into the main line. A portion of the system is located in the Sound Ford parking lot. The
system flows south and crosses the roadway at Grady Way SW then flows west.
5.3 Proposed Conveyance System
5.3.1 Conveyance System Description
The proposed storm drainage conveyance system typically has one pipe on each side of Rainer Avenue
S to collect and convey stormwater within each TDA, generally maintaining the existing flow patterns
described in Section 5.2. Several raised concrete medians are proposed, which require additional
drainage along the median in superelevated areas. Video inspections performed during the design phase
revealed several locations where private drainage systems are connected into the existing street drainage
system using tee fittings. The new conveyance system will replace all tee connections with connections
at catch basins to facilitate inspection and cleaning.
Some existing components of the conveyance system will remain in place to reduce utility relocation and
in offsite areas where existing easements have been established. Video inspections of these systems
have been performed to verify serviceable condition. Following is a list of existing conveyance elements
that are proposed to remain in service following construction of roadway improvements, including a
discussion of inspections/investigations findings.
o The existing 24-inch and 60-inch concrete storm drains in S 7th Street will remain in service. These
systems were not video inspected as part of this project. The 60-inch storm drain was constructed
and the 24-inch pipe repaired in 2004 as part of the SW 7th Street Drainage Improvement Project,
Phase 2.
The existing 18-inch diameter concrete storm drain crossing under Rainier Avenue at 4th Place will
remain in service. The pipe is approximately 8.5 feet deep. The video inspection performed on 2/1/10
revealed the existing concrete storm drain to be in very good condition. The pipe was cleaned for the
video inspection.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 18
Surface Water Technical Information Report
i The existing 8-foot by 10-foot box culvert at 3rd Street/Sunset Way will remain in service. The video
inspection performed on 12/23/09 revealed the existing cast -in -place structure to be in good condition,
although in need of cleaning. Groundwater infiltration into the structure was noted at four locations.
Access improvements are proposed at the west end of the culvert as part of this project and at the
east end as part of the Lake Avenue storm drain replacement project. '
5.3.2 Conveyance System Analysis/Sizing
Core Requirement #4 of the 2009 KCSWDM requires new conveyance systems to have adequate '
capacity to handle runoff from a 25-year storm, and to not create or aggravate a severe flooding problem
during a 100-year storm. Existing onsite conveyance systems with no change in flow characteristics are
not required to be analyzed. '
Per Table 3.2 of the 2009 KCSWDM, Rational Method hydrology is required for conveyance analysis of
drainage basins less than 10 acres in size. For drainage basins larger than 10 acres, either the Rational
Method, or the King County Runoff Time Series (KCRTS) method, with 15-minute time steps, may be
used. The Rational Method has been used for conveyance system analysis on this project, with the
exception of a tailwater elevation analysis for TDA GW (see Table 4) and for an analysis of the Rainier '
Avenue pump station (Section 5.5).
For sizing new conveyance pipes, the method of the 2009 KCSWDM (as documented in KCSWDM
4.2.1.2) is to perform preliminary sizing using a uniform flow analysis and final sizing using a backwater '
analysis. In lieu of the KCSWDM approach, the Renton Public Works Department, Surface Water
Division has approved the use of XP-SWMM for conveyance analysis for this project.
The following Rational Method input parameters were used for the conveyance system sizing:
o Impervious C=0.9
P Pervious C=0.25
ii Time of Concentration Tc=6.3 minutes (10 minutes used for large off -site basins)
i Percent Impervious=90% (from Table 1)
0 P25=3.4"
1 P100=3.9"
XP-SWMM supports rational method hydrology, but not King County's specific method for calculating
peak rainfall intensity IR based on the total 24-hour precipitation. To incorporate the 2009 KCSWDM
Rational Method approach into XP-SWMM, an Intensity -Duration -Frequency (IDF) table was prepared for
specific precipitation conditions in Renton, using the aR and bR coefficients found on Table 3.2.1 B of the
KCSWDM. Because the Rational Method flows generated by XP-SWMM were found to be 12% higher
than flows directly calculated using the KCSWDM method, a correction factor was applied to the OF
Table. A copy of the original and modified IDF tables, and a separate spreadsheet calculation of the peak
flows, has been included in Appendix C.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 19
Surface Water Technical Information Report
Within XP-SWMM, the calculated Rational Method flows were treated as peak flows for the hydraulic
routing, resulting in minor flow attenuation within the system due to the travel time within the conveyance
system.
The calculations were performed using both 25-year and 100-year hydrology. Separate models were run
for each TDA. Tailwater condition assumptions used in these analyses are described below in Table 4.
Model input and output tables have been included in Appendix C.
The conveyance system has been sized so that no catch basins overtop during the 25-year Rational
Method design storm. During a 100-year storm, the calculations indicate minor overtopping at CB 62 in
TDA V and at CB 11 in TDA GW. It should be noted that the Rational Method hydrology calculations are
very conservative with short times of concentration, with flows approximately 2.7 times higher than
KCRTS using 15-minute time steps. As a result, it is unlikely that the predicted overtopping would
actually occur due to undersized pipes within Rainier. If overtopping were to occur, the cause would most
likely be due to a downstream tailwater conditions exceeding the design values listed in Table 5.
Table 5. Tailwater Elevations
Outfall Location Design Source
Tailwater
Elevation
(ft)
Sunset Way/3rd Street (TDA 26.35 25-year TW based on XP-SWMM modeling performed for
A) — Box Culvert 7th Street and Shattuck Avenue projects (see Shattuck
Avenue Stormwater Diversion Modeling Report — Scenario
2A, Node 80A ABACAP, in Appendix E)
Pump Station (TDA V) — 18.75 25-year TW from pump station modeling (see Section 5.5
Exst pump station wetwell and Appendix C)
SDMH 30682
7th Street (TDA 1) — Exst 22.28 25-year water elevation based on XP-SWMM modeling
SDMH 32050 performed for 7th Street and Shattuck Avenue projects
(see Shattuck Avenue Stormwater Diversion Modeling
Report — Scenario 2A, Node CB40 (17+97)).
Grady Way (TDA GW) — 21.65 Assumed 25-year backwater elevation calculated at CB
Exst SDMH 28226 28226 based hydraulic modeling from CB 5 downstream
to Lind Ave, using KCRTS 15-minute peak flows from a
20.6-acre tributary basin (see analysis in Appendix C)
5.4 Gutter Flow and Inlet Design
Section 4.2.1.2 of the 2009 KCSWDM references Chapters 5 of the WSDOT's Hydraulics Manual for
performing inlet grate capacity calculations when capacity is a concern. Inlet capacity is a concern for
Rainier Avenue due to the width of the roadway, low longitudinal gutter slopes, and limited width available
for gutter flow spread outside of the travel lanes.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 20
Surface Water Technical Information Report
Section 5-4 of the Hydraulics Manual specifies the design gutter flow spread widths and corresponding
design frequencies, based on various roadway classifications. As a high -volume roadway with a posted
speed of less than 45 mph, the gutter spread design requirements for Rainier Avenue are as follows:
o Continuous grade gutter spread (1 0-year): Shoulder + 2'
0 Sag point gutter spread (50-year): Shoulder + 2'
Based on these requirements, the allowable 10-year gutter flow spread was determined to be 4 feet (2'
shoulder + 2') along the outside roadway gutters. In superelevated areas where the flow travels along the
median curb, the allowable 10-year gutter flow spread was determined to be 3 feet (1' shoulder + 2').
A larger gutter flow spread is allowed for collector roadways with a posted speed of less than 45 mph,
with design gutter flow to spread across half the driving lane. This standard would allow up to 6' of gutter
flow spread and could be applicable to the turn lanes of the Rainier Avenue project.
WSDOT's standard calculation spreadsheets were used to perform gutter flow and inlet design '
calculations for continuous grades and at sag locations. These worksheets can be found in Appendix D.
The proposed conveyance system was initially laid out based on where catch basins (CBS) were needed
at junctions for connecting off -site pipes, sag locations, and at curb returns. Additional CBS were added
to reduce gutter flow spread where the calculations indicated it was necessary. However, due to the
narrow allowable spread widths and relatively flat gutter slopes, it was not possible to achieve the
allowable flow spread in all areas of the roadway without excessive closely -spaced inlets. Section 5-4 of
the Hydraulics Manual acknowledges that in urban situations it is not always feasible to achieve the
recommended design gutter flow spreads. It should also be noted the WSDOT Hydraulic Manual is more
restrictive than the FHWA's Hydraulic Engineering Circular No. 22, Urban Drainage Design Manual, on
which the WSDOT requirements are based. FHWA's requirements typically allow 1' more gutter spread
than WSDOT's.
Following is a description of the areas where the design gutter flow spread cannot be feasibly achieved,
and a discussion of the conditions in each case that could justify minor deviations from these standards:
o Southbound outer curb, Station 11+00 to 13+00 (north of Grady Way): In this section, the 10-year
gutter flow spread reaches 6', which exceeds the allowable 4', and the 50-year spread at CB 101
reaches 6'. This exceedance of the standards is not expected to create a hazard due to slower traffic
in the right -turn lane.
P Southbound median curb, Station 13+00 to 18+00 (between Grady Way and 7th Street): In this
section, the 10-year gutter flow spread is approximately 4', which exceeds the allowable 3', and the
50-year spread at the CB 21 sag location is 4.6'. However, half of this length is within a left -turn
pocket where 6' of flow spread is justifiable (see discussion above). The remainder, between Station
15+00 and 17+00, already has closely -spaced inlets at a sag location (CBS 20, 21, and 22). Achieving
a maximum S gutter spread would require two additional catch basins, with approximate 50-foot
spacing.
o Northbound outer curb, Station 20+50 to 22+00 (south of 7th Street): In this section, the 10-year gutter
flow spread reaches approximately 5.3', which exceeds the allowable 4'. This exceedance of the
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 21
Surface Water Technical Information Report I
standards is not expected to create a hazard due to slower traffic in this section of the Business
Access and Transit (BAT) lanes and in the right turn lane.
o Northbound median curb, Station 23+80 to 24+50 (north of 7th Street): In this section, the 10-year
gutter flow spread reaches approximately 5' at CB 38, which exceeds the allowable 3'. This isolated
exceedance of the standards is not expected to create a hazard.
o Sag inlets at the BNSF railroad crossing: At this location, the sag inlet analysis for the southbound
lanes at CB 70 shows a 50-year spread of 5.1', and 6.6' at CB 61 along the northbound median.
Reduction of these spread widths does not appear feasible without excessive closely -spaced inlets.
The 50-year 5.1' flow spread within the southbound roadway is not expected to create a hazard due to
slower traffic and heavier vehicle use in this section of the BAT lane. The identified 6.6' 50-year flow
spread in the northbound lanes will not create a hazard due to its location within a left turn lane for S
4th Place.
o Sag inlet along the northbound median at Station 26+00 (CB 39): At this location, the sag inlet
analysis shows a 50-year spread of 3.6', which exceeds the allowable 3'. This minor exceedance of
the standards is not expected to create a hazard. Flanking inlets have not been included at this
location because this sag in the curb line is very slight (only 0.2') so if the inlet became plugged, any
overflows would flow north to CB 50 before any significant ponding would occur.
P Northbound outer curb, Station 41+80 to 45+00: In this section, the 10-year gutter flow spread of 4.5'
to 5' slightly exceeds the allowable spread at CBS 98, 99, 102, and 103. The 50-year spread at the
CB 100 sag location was calculated to be 6.5 feet. This exceedance of standards is not expected to
create a hazard due to slower traffic in the BAT lane.
o Southbound outer curb, Station 34+00 to 39+00 (between S 4" Place and S 3rd Street): In this
section, the 10-year gutter flow spread reaches approximately 4.5', which slightly exceeds the
allowable 4', and the 50-year spread at CB 80 and CB 89 (northbound) sag locations is 47. This
slight exceedance of the standards is not expected to create a hazard due to slower traffic in this
section of the BAT lanes.
P Northbound outer curb, Station 43+50 to 46+00: In this section, the 10-year gutter flow spread
reaches approximately 5.3', which exceeds the allowable 4', and the 50-year spread at the CB 100
sag location is 5.6'. This exceedance of the standards is not expected to create a hazard due to
slower traffic in this section of the BAT lanes and in the right turn lane.
o Southbound median curb, Station 47+00 to 51+00 (between S 3rd Street and S 2nd Street): In this
section, the 10-year gutter flow spread reaches 4.7 feet upstream from CB 118, and 4.1 feet for the
rest of this length, which exceeds the allowable 3'. However, the majority of this length is within a
left -turn pocket where 6' of flow spread could be justified (see discussion above). For the remainder of
this length, between Station 50+00 and 51+00, the minor exceedance of the standards is not expected
to create a hazard. Achieving a maximum 3' gutter spread would require at least one additional catch
basin, with a spacing between catch basins of approximately 50 feet.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 22
Surface Water Technical Information Report
5.5 Rainier Avenue Pump Station Performance and Impacts
As discussed in Section 5.2.2, Basin V drains to an existing stormwater pump station adjacent to the
railroad crossing. This pump station was constructed in 1960, and over time the tributary basin appears to
have increased from approximately 17 acres to 71 acres.
Phase 1 of the Rainier Avenue improvements included constructing a 48-inch gravity storm sewer along
Shattuck Avenue between 41h Place and 71h Street, which diverts runoff from approximately 54 acres away
from the pump station. The reduction in peak flows to the pump station resulting from the diversion has
been modeled to be approximately 8 cfs during a 25-year storm.
The Shattuck Avenue Stormwater Diversion Modeling Report (see Appendix E) was prepared prior to
construction of the 48-inch storm sewer in Shattuck Avenue, which updated an existing XP-SWMM model
of the area and evaluated alternative configurations for the diversion. Alternative 2 of the Shattuck
Avenue analysis was chosen, and construction was completed in 2010.
Additional analysis has been performed as part of the current phase of the Rainier Avenue Improvements
project to predict pump station performance changes resulting from the Shattuck Avenue Stormwater
Diversion and the proposed Rainier Avenue roadway geometry and conveyance system.
This additional analysis was performed using an XP-SWMM hydraulic model of the proposed conveyance
system in the vicinity of the pump station, using KCRTS with 15-minute time steps for hydrology
calculations. 2, 10, 25, and 100-year storms have been evaluated for this analysis.
The capacity of the existing pump station used for this analysis is the same as was used for the previous
Shattuck Avenue modeling-6.9 cfs for one pump operating and 13.5 cfs for both pumps. Renton Public
Works staff have indicated that the actual capacity of the pump station may be significantly lower,
possibly due to degraded impellers, insufficient pump submergence, modified on/off set points, and prior
modifications to the valves and piping system. However, since there is no data from direct metering of
the pumped flows, the previously -calculated capacities have been used for this analysis. Public Works
upgraded the pump station in 2010 with refurbished pumps and motors, which may improve the capacity
of the system somewhat. If flow monitoring is performed following those upgrades, the pump
performance can be re -analyzed at that time.
A second pipe connection to the pump station wetwell is proposed as part of this project, and has been
included in this modeling. This is needed to increase flow capacity into the wetwell from the roadway
storm drainage system, which is currently restricted by a single 18-inch diameter pipe. Removal of this
restriction will increase the effective storage of the wetwell by adding the volume of upstream pipes and
drainage structures. Additionally, reducing the headloss between the roadway conveyance system and
pump wetwell could potentially allow for adjusting the pump on/off set points to operate the pumps with
greater submergence.
Documentation of the KCRTS hydrology modeling and the XP-SWMM hydraulic model is found in
Appendix C. Table 6 below presents the results of the analysis.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 23
Surface Water Technical Information Report
Table 6. Pump Station Performance
2-year
10-year
25-year
100-year
Peak Inflow
7.2 cfs
9.8 cfs
13.9 cfs
18.6 cfs
Max Pump Flow
13.5 cfs
13.5 cfs
13.5 cfs
13.5 cfs
Low Point
Ground Elevation
19.4 ft
19.4 ft
19.4 ft
19.4 ft
Maximum Water
Elevation
17.7 ft
17.7 ft
18.8 ft
20.3 ft
Freeboard
1.7 ft
1.7 ft
0.6 ft
-0.9 ft
As illustrated in Table 6, this analysis shows the pump station providing enough capacity to handle runoff
from a 25-year storm, and a 0.9-foot depth of flooding during a 100-year storm. This represents a
significant improvement over conditions prior to construction of the Shattuck Avenue Bypass.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 24
Surface Water Technical Information Report
6. Special Reports and Studies
P Geotechnical Report - Rainier Avenue Improvements Project — Phase I Jacobs Associates 2/10/2010
P Geotechnical Report Addendum — Rainier Avenue Improvements Project — Phase 2 — Jacobs
Associates 6/22/2010
P Geotechnical Supplementary Recommendations — Rainier Avenue Improvements Project — Phase 2 —
Jacobs Associates 2/8/2011
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 25
Surface Water Technical Information Report
7. CSWPPP Analysis and Design
A Construction Stormwater Pollution Prevention Plan (CSWPPP) consists of drawings and details, and a
narrative describing how each of the 12 SWPP Elements have been evaluated and incorporated into the
plans.
7.1 CSWPPP Drawings
Temporary Erosion and Sedimentation Control (TESC) plans for this project have been prepared and
incorporated into the Contract Plans, which will serve as the CSWPPP drawings for this project. In
accordance with Section 8-01.3 of the 2010 WSDOT Standard Specifications for Road, Bridge, and
Municipal Construction (Standard Specifications), the contractor will have the option to adopt the TESC
plans included in the Contract Plans, or submit modified TESC plans for approval. The Contractor is
required to designate an ESC Lead who has a current Certificate of Training in Construction Site Erosion
and Sediment Control from a course approved by the Washington State Department of Ecology. The
ESC Lead is responsible for installing, inspecting, and maintaining BMPs included in the TESC Plan, and
updating the TESC plan to reflect current field conditions.
7.2 CSWPPP Narrative
The following CSWPPP Narrative describes how each of the 12 SWPP Elements have been evaluated
for this project and provides a summary of the BMPs that should be employed during construction.
7.2.1 Introduction
Site and Soil Conditions
The project site is a heavily developed urban arterial with some landscaping. Site topography is generally
flat, with the exception of slopes in the vicinity of the railroad bridge. As described by the project
geotechnical report, the existing project area is underlain by 2-5 feet of fill soils with varying properties
ranging from medium dense, medium to coarse silty sand or loose to medium dense, fine to coarse silty,
sandy to very sandy gravel. Alluvium soils encountered beneath the fill layer generally consist of
interbedded layers of soft, silty clay to clayey silt; very loose to medium dense, fine to coarse sand and
silty fine sand; and very loose to medium dense silt.
Erosion Potential
Improvements to the roadway will require clearing existing landscaped parking strips and medians, and
removing portions of the existing pavement. The total area of soils expected to be exposed within the
13.6 acre project area is approximately 8 acres over the course of an 18-month construction period. The
potential for erosion and sediment control problems during construction is reduced due to relatively flat
topography, the linear configuration of the project, and because exposed soils are spread out along the
length of the project and separated by pavement that will remain. Regardless, BMPs will be used during
construction to ensure that the City of Renton is meeting State water quality standards (i.e. preventing
86114159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 26
Surface Water Technical Information Report
sediment from mixing with stormwater runoff and discharging into the storm sewer system and waters of
the State).
Primary Water Quality Risks
BMPs will be used to prevent:
i Turbid construction runoff from entering storm sewer systems that discharges to Springbrook Creek,
the Black River Forebay, and eventually to the Green River.
o Mixing of offsite runoff from adjacent properties with construction runoff, increasing turbidity and
erosion.
i Increased turbidity in stormwater leaving the site.
Ill Construction equipment from tracking sediment and mud onto adjacent paved roadway surfaces that
would discharge to downstream waters.
TESC Plan Concept
The TESC plan provides a proactive approach to managing and controlling erosion and sediment. I
establishes when, where, and how specific BMPs will be implemented to prevent erosion and the
transport of sediment from the project during construction. BMPs have been identified in the plan to
reduce the possibility of construction runoff transporting sediment into surface waters.
The following list summarizes project specific BMPs and construction issues addressed in the plan:
P Inlet protection inserts will be installed in all new and existing stormwater catch basins and inlets within
the project area. Inserts filter stormwater runoff and provide a primary or secondary method of
preventing sediment from entering the storm sewer system.
o High visibility fence will be used to protect vegetation and delineate the limits of clearing and grading.
i Silt fence will be used in areas where project runoff could sheet flow off site.
Several types of BMPs will be applied to protect disturbed areas and slopes from erosion. Specific soil
covering areas and practices have not been shown on the TESC plans due to the variable nature of
roadway improvement construction. Soil covering practices will be implemented by the Contractor in
accordance with the requirements of the WSDOT Standard Specifications and as required by the
Engineer.
i Temporary curbs maybe needed in some areas to prevent runoff from existing pavement from
entering disturbed soils in widening areas. The location of temporary curbs would be implemented
when determined to be needed by the Engineer and ESC Lead.
The following section provides a more detailed analysis of the project risks associated with each of the 12
TESC elements and the BMPs selected to mitigate these risks.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 27
Surface Water Technical Information Report
7.2.2 Analysis of TESC Elements
TESC Element 1: Mark Clearing Limits
Risk Analysis:
The associated risks for clearing include the potential to clear vegetated areas beyond the areas needed
for construction. The Rainier Avenue work will not occur directly adjacent to natural resources (e.g.
wetlands/streams/lakes) so the risk of directly disturbing sensitive areas is low.
BMPs Identified:
o High Visibility Fence, Standard Specification 8-01.3(1)
High visibility fence will be installed adjacent to work areas not bounded by existing pavement or curbs.
The high visibility fencing will delineate clearing and grading limits to protect existing vegetation and
buffer areas. High visibility fencing will be installed prior to any construction activities. The fencing will be
inspected periodically and immediately replaced if damaged.
TESC Element 2: Establish Construction Access
Risk Analysis:
The associated risks for establishing construction access are reduced by plans to retain much of the
existing pavement. Haul vehicles will be able to remain on paved surfaces in many areas; however, other
construction equipment will have access to exposed soils.
BMPs Identified:
i Stabilized Construction Entrance, Standard Specification 8-01.3(7)
D Street Cleaning, Standard Specification 8-01.3(8)
Tire Wash, Standard Specification 8-01.3(7)
Tire wash facilities will be constructed in conjunction with new construction entrances. Tire wash water
will be disposed of so that it does not violate water quality standards or any permit conditions.
If sediment is transported onto a road surface, the road will be cleaned thoroughly at the end of each day.
Sediment will be removed from roads by shoveling or sweeping and transported to a controlled sediment
disposal area. Street washing will be allowed only after sediment is first removed in this manner.
The approach for stabilizing construction access points will be refined during final design once
construction staging and traffic control plans have been prepared.
TESC Element 3: Control Flow Rates
Risk Analysis:
The amount of new impervious surface proposed to be constructed within each TDA within the project
area is small compared to the existing impervious surface (less than 2% increase). As a result, the post -
development flow rates for each TDA will not increase significantly from existing conditions. Therefore,
risks associated with flow rates downstream from the construction zone are negligible. Erosion risks
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 28
Surface Water Technical Information Report
resulting from flow rates within the construction area will be mitigated by the BMPs proposed to address
the other TESC elements.
TESC Element 4: Install Sediment Control
Risk Analysis:
The risks associated with sediment erosion are moderate. There is a potential risk of offsite runoff
discharging onto disturbed work areas, which would cause sediment and stormwater to enter the storm
sewer system. However this risk is reduced by the fact that the exposed soils for pavement replacement
will typically be lower in elevation than the adjacent pavement and catch basins, and will tend to collect
and infiltrate runoff.
BMPs Identified:
o Inlet Protection, Standard Specification 8-01.3(9)D
Silt Fence, Standard Specification 8-01.3(9)A
Temporary Curb, Standard Specification 8-01.3(13)
Existing vegetation will be preserved and protected with fencing prior to construction.
Inlet protection inserts will be installed prior to the start of construction in existing stormwater inlets within
and down gradient from the project work areas. Inlet protection inserts will be installed in new stormwater
inlets as they are constructed.
Silt fence will be installed adjacent to the down gradient edge of disturbed areas not bounded by
pavement or retaining walls.
Temporary curbs may be used in some area on the upstream side of the work area to direct runoff from
adjacent pavement into existing catch basins
Widening areas that are cut down to sub -grade below adjacent pavement and inlets will provide informal
sediment trapping.
TESC Element 5: Stabilize Soils
Risk Analysis:
Some soils within the project area have a high risk potential for erosion because of high silt content and
low infiltration rate.
The project will disturb up to approximately eight acres of soil over the course of 18 months, including one
wet season. However, the potential for erosion is reduced because soil disturbance will be staged to
occur at separate, smaller construction areas over the duration of the project rather than all at once.
BMPs Identified:
P Stabilized Construction Entrance, Standard Specification 8-01.3(7)
P Temporary Mulching, Standard Specification 8-01.3(2)D
P Erosion Control Blanket, Standard Specification 8-01.3(3)
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 29
Surface Water Technical Information Report
All exposed and unworked soils will be stabilized according to the following criteria:
From October 1 to April 30, no exposed and unworked soils shall remain unstabilized (exposed) for more
than two days. Construction activities should never expose more than five acres during this time period.
From May 1 to September 30, no exposed and unworked soils on slopes will remain unstabilized
(exposed) for more than seven days. Construction activities should never expose more than 17 acres
during this time period.
TESC Element 6: Protect Slopes
Risk Analysis:
The roadway widening will use retaining walls and small cut/fill slopes in limited areas to match existing
grades. However, as the majority of site topography is relatively flat, the risk of severe erosion from these
disturbed slopes is limited. In addition, the slopes that exist are short in length.
BMPs Identified:
i Erosion Control Blanket, Standard Specification 8-01.3(3)
Although it is not anticipated that slopes will be left unworked prior to final stabilization, erosion control
blankets should be used if short-term slope protection is needed.
TESC Element 7: Protect Drain Inlets
Risk Analysis:
Associated construction activities of this project have a high risk of potentially affecting water quality.
Several catch basins within the project area collect stormwater which is conveyed through storm sewer
pipes and discharged directly to Lake Washington and its associated waterways.
BMPs Identified:
i Inlet Protection, Standard Specification 8-01.3(9)D
All catch basins within the project area that collect stormwater from the construction site will be protected
so that sediment is contained by the catch basin before it is discharged to Springbrook Creek or the Black
River Forebay. Inlet protection BMPs will be installed in all stormwater inlets within and down gradient
from the construction work areas.
TESC Element 8: Stabilize Channels and Outlets
Risk Analysis:
The risk of erosion to channels and outlets is low because neither of these drainage features are
proposed as part of the Rainier Avenue Improvements project.
BMPs Identified:
Since this project does not include channels and outlets, no specific BMP's have been identified.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 30
Surface Water Technical Information Report
GHD
TESC Element 9: Control Pollutants
Risk Analysis:
The risk associated with pollutants generated from construction activities within the project area is
relatively high. During construction, organic and inorganic pollutants from construction activities could
potentially enter the stormwater system, which conveys runoff to the Black River Forebay and the Green
River. Saw cutting and pouring of concrete will be part of this project; BMPs must be implemented to
keep construction waste separate from stormwater. A detailed plan for containing concrete during cutting
and pouring and storing hazardous waste and fuel at the staging area will be provided in the Contractor's
Spill Prevention, Control, and Countermeasures (SPCC) Plan and the Concrete Contaminant and
Disposal Plan (CCDP).
Due to the urban nature of the Rainier Avenue corridor, there is the potential for existing hazardous
materials within the project area.
BMPs Identified:
P Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B
P Spill Prevention, Control and Countermeasures Plan, Standard Specification 1-07.15(1)
The ESC Lead shall implement and update the TESC plan when necessary to prevent pollutants and
sediment associated with construction activities from entering the storm sewer system. These changes
will be documented and shown on the TESC Plan. All pollutants, including construction materials, waste
materials, and demolition debris must be handled and disposed of in a manner that does not cause
contamination of stormwater, soil, or groundwater. All other potential pollutants will be properly disposed
of off -site.
Methods for controlling pollutants that can be considered hazardous materials, such as hydrocarbons and
pH -modifying substances, will be described in the Contractor's SPCC plan. Handling of concrete,
concrete slurry, dust, and pH -modifying substances will be specifically addressed in the CCDP.
TESC Element 10: Control Dewatering
Risk Analysis:
The associated risk from dewatering for construction activities associated with the project is moderate
Due to relatively high groundwater, dewatering may be required for some activities.
BMPs Identified:
When groundwater is encountered in an excavation, it should be treated and discharged per Standard
Specification 8-01.3(1)C. Dewatering devices shall discharge into a sediment trap or portable tank (e.g.
Baker Tank). The rate of dewatering discharge shall not exceed the design capacity of the sediment trap.
The Contractor will responsible for developing a plan for dewatering and properly disposing of collected
ground water.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 31
Surface Water Technical Information Report
TESC Element 11: Maintain BMPs
Risk Analysis:
The associated risk from sediment entering the existing drainage system that leads to Springbrook Creek
and the Black River Forebay is high. The limited work areas and access routes, as well as extended
periods of precipitation, could result in destabilization of BMPs during construction activities. In addition,
changes in construction staging and conditions may require modifications to the TESC elements.
BMPs Identified:
o Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B
o Maintenance Standard Specification 8-01.3(15)
The Contractor shall identify an ESC Lead at preconstruction discussions. The ESC Lead must have a
current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved
by WSDOT's Statewide Erosion Control Coordinator. The ESC Lead is responsible for implementing and
updating the TESC plans.
All temporary and permanent erosion control BMPs must be inspected at least once every five working
days and each day there is a runoff -producing storm event. BMPs must be maintained as needed to
assure their continued performance. Any BMP deficiencies identified during inspections will be
immediately corrected and documented. A TESC inspection report will be prepared for each inspection
and included in the Site Log Book. The inspection report will include, but not be limited to:
It When, where, and how the BMPs were installed, maintained, modified, and removed.
P Repairs needed and repairs made.
o Observations of BMP effectiveness and proper placement.
o Recommendations for improving the performance of BMPs.
TESC Element 12: Manage the Project
Risk Analysis:
The associated risks for managing this project are low. There are no unique circumstances that would
make the ESC Lead unable to follow and implement the specifications identified in 8-01.3(1)B.
BMPs Identified:
D Contractor's TESC Plan Modifications and Schedule, Standard Specification 8-01.3(1)A
o Erosion and Sediment Control (ESC) Lead, Standard Specification 8-01.3(1)B
Plan Implementation:
1. Contractor Adopts or Modifies Plan at Pre -Construction Meeting
Because the Contractor determines the construction methods and schedule for the project, the Contractor
is responsible for reviewing the TESC plan included in the contract documents and either adopting it or
modifying it for better compatibility with the proposed construction approach.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 32
Surface Water Technical Information Report
Standard Specification 8-01.3(1) requires the Contractor to provide the following at the Pre -Construction
Meeting:
P Proposed modifications to the TESC plan.
P Schedule for TESC plan implementation incorporated into the Contractor's progress schedule.
o Name of ESC Lead.
2. ESC Lead Implements the Plan During Construction
The ESC Lead is responsible for implementing the TESC plan throughout construction. This includes
installing and maintaining BMPs, performing BMP inspections, maintaining the TESC file with current
plans and inspection reports, and working with the Engineer. Implementing the plan often includes
making modifications in the field and documenting these modifications. The ESC Lead must coordinate
with the WSDOT Engineer to modify the plan as needed.
The Contractor must identify an ESC Lead at the Pre -Construction Meeting. The ESC Lead must have a
current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved
by the Washington State Department of Ecology.
The ESC Lead shall maintain a copy of the TESC file. The file should include, but not be limited to
0 TESC inspection reports.
o Stormwater site plan.
o Temporary erosion and sediment control (TESC) plan.
o National Pollutant Discharge Elimination System (NPDES) construction permit (Notice of Intent).
o Other applicable permits
o SPCC Plan
o CCDP Plan.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street 33
Surface Water Technical Information Report
fD
Q
x
D
Appendix A
Land Coverage Maps
Land Coverage Maps Al-A3
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
✓ /0Q'
Oy
�,q y
1 4
r
,r
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
t [`1 T 1206 4419385
\� F 1206 448 6922
W www.ghd.com
TIR LEGEND
NEW IMPERVIOUS SURFACE
NEW POLLUTION GENERATING
IMPERVIOUS SURFACE (PGIS)
1 NEW PERVIOUS SURFACE
J (FROM EXISTING IMPERVIOUS SURFACE)
_ BASIN I THRESHOLD DISCHARGE AREA BOUNDARY
BASIN GW
PLAN
0 25 50 100
SCALE: IN FEET
RAINIER AVENUE S Al
LAND COVERAGE
wzvm„
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
TIR LEGEND
NEW IMPERVIOUS SURFACE
NEW POLLUTION GENERATING
IMPERVIOUS SURFACE (PGIS)
NEW PERVIOUS SURFACE
(FROM EXISTING IMPERVIOUS SURFACE)
_ BASIN I _ THRESHOLD DISCHARGE AREA BOUNDARY
BASIN V
PLAN
RAINIER AVENUE S
LAND COVERAGE
0 25 50 100
SCALE: IN FEET
/_X
oasrso„
P4
Blqsw
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
TIR LEGEND
NEW IMPERVIOUS SURFACE
NEW POLLUTION GENERATING
IMPERVIOUS SURFACE (PGIS)
NEW PERVIOUS SURFACE
(FROM EXISTING IMPERVIOUS SURFACE)
BASIN — THRESHOLD DISCHARGE AREA BOUNDARY
BASIN V
025 50 1 T11
PLAN SCALE- IN I'Ll I
RAINIER AVENUE S A3
LAND COVERAGE
CD
a
Appendix B
Flow Control and Runoff Treatment Facility
Calculations
Documentation of Flow Control Threshold Calculations
Filterra Site Plan/Tributary Area Maps 131 & B2
Ecology GULD for Americast Filterra
Filterra Detail
Filterra Project Information Form
Filterra Review Email
MGS Flood Sizing Calculations
Standards Adjustment Approval Memo
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
PEAK FLOW CALCULATIONS
FOR EVALUATION OF MIN. REQUIREMENT #7
PREDEVELOPED TDA
A
AREA
(ACRES)
0.00
Till Forest
0.00
Till Pasture
0.23
Till Grass
0.00
Outwash Forest
0.00
Outwash Pasture
0.00
Outwash Grass
0.00
Wetland
2.40
Impervious
Flow Frequency Analysis
Time Series File:predev-a.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
0.602
7
2/09/01
2:00
1.18
1
100.00
0.990
0.523
8
1/05/02
16:00
0.877
2
25.00
0.960
0.730
3
12/08/02
18:00
0.730
3
10.00
0.900
0.603
6
8/26/04
2:00
0.716
4
5.00
0.800
0.716
4
10/28/04
16:00
0.643
5
3.00
0.667
0.643
5
1/18/06
16:00
0.603
6
2.00
0.500
0.877
2
10/26/06
0:00
0.602
7
1.30
0.231
1.18
1
1/09/08
6:00
0.523
8
1.10
0.091
Computed Peaks
1.08
50.00
0.980
DEVELOPED TDA A
AREA
(ACRES)
0.00
0.00
0.18
0.00
0.00
0.00
0.00
2.45
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Impervious
Flow Frequency Analysis
Time Series File:dev-a.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
0.610
7
2/09/01
2:00
1.20
1
100.00
0.990
0.532
8
1/05/02
16:00
0.894
2
25.00
0.960
0.740
3
12/08/02
18:00
0.740
3
10.00
0.900
0.614
6
8/26/04
2:00
0.730
4
5.00
0.800
0.730
4
10/28/04
16:00
0.652
5
3.00
0.667
0.652
5
1/18/06
16:00
0.614
6
2.00
0.500
0.894
2
10/26/06
0:00
0.610
7
1.30
0.231
1.20
1
1/09/08
6:00
0.532
8
1.10
0.091
Computed Peaks
1.10
50.00
0.980
Page 1 of 4
PREDEVELOPED TDA
V
AREA
(ACRES)
0.00
Till Forest
0.00
Till Pasture
0.51
Till Grass
0.00
Outwash Forest
0.00
Outwash Pasture
0.00
Outwash Grass
0.00
Wetland
3.97
Impervious
Flow Frequency Analysis
Time Series File:predev-v.tsf
Project Location:Sea-Tac
---Annual Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
1.01
6
2/09/01
2:00
1.98
1
100.00
0.990
0.871
8
1/05/02
16:00
1.45
2
25.00
0.960
1.22
3
12/08/02
18:00
1.22
3
10.00
0.900
0.999
7
8/26/04
2:00
1.19
4
5.00
0.800
1.19
4
10/28/04
16:00
1.08
5
3.00
0.667
1.08
5
1/18/06
16:00
1.01
6
2.00
0.500
1.45
2
10/26/06
0:00
0.999
7
1.30
0.231
1.98
1
1/09/08
6:00
0.871
8
1.10
0.091
Computed Peaks
1.81
50.00
0.980
DEVELOPED TDA
V
AREA
(ACRES)
0.00
Till Forest
0.00
Till Pasture
0.44
Till Grass
0.00
Outwash
Forest
0.00
Outwash
Pasture
0.00
Outwash
Grass
0.00
Wetland
4.04
Impervious
Flow Frequency
Analysis
Time Series
File:dev-v.tsf
Project Location:Sea-Tac
---Annual Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
1.02
6
2/09/01
2:00
2.00
1
100.00
0.990
0.883
8
1/05/02
16:00
1.48
2
25.00
0.960
1.23
3
12/08/02
18:00
1.23
3
10.00
0.900
1.02
7
8/26/04
2:00
1.21
4
5.00
0.800
1.21
4
10/28/04
16:00
1.09
5
3.00
0.667
1.09
5
1/18/06
16:00
1.02
6
2.00
0.500
1.48
2
10/26/06
0:00
1.02
7
1.30
0.231
2.00
1
1/09/08
6:00
0.883
8
1.10
0.091
Computed Peaks
1.83
50.00
0.980
Page 2 of 4
PREDEVELOPED TDA
I
AREA
(ACRES)
0.00
Till Forest
0.00
Till Pasture
0.35
Till Grass
0.00
Outwash Forest
0.00
Outwash Pasture
0.00
Outwash Grass
0.00
Wetland
1.99
Impervious
Flow Frequency Analysis
Time Series File:predev-i.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates ---
Flow Rate Rank Time of Peak
(CFS)
0.502 6
0.435 8
0.604 3
0.498 7
0.591 4
0.537 5
0.723 2
0.983 1
Computed Peaks
DEVELOPED TDA I
AREA
(ACRES)
0.00
0.00
0.23
0.00
0.00
0.00
0.00
2.11
2/09/01
1/05/02
12/08/02
8/26/04
10/28/04
1/18/06
10/26/06
1/09/08
2:00
16:00
18:00
2:00
16:00
16:00
0:00
6:00
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Impervious
Flow Frequency Analysis
Time Series File:dev-i.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
0.532
6
2/09/01
2:00
0.461
8
1/05/02
16:00
0.644
3
12/08/02
18:00
0.530
7
8/26/04
2:00
0.631
4
10/28/04
16:00
0.568
5
1/18/06
16:00
0.772
2
10/26/06
0:00
1.05
1
1/09/08
6:00
Computed Peaks
----Flow
Frequency
Analysis-
- - Peaks
- - Rank Return
(CFS)
Period
0.983
1
100.00
0.723
2
25.00
0.604
3
10.00
0.591
4
5.00
0.537
5
3.00
0.502
6
2.00
0.498
7
1.30
0.435
8
1.10
0.896
50.00
-----Flow
Frequency Analysis-
- - Peaks
- - Rank
Return
(CFS)
Period
1.05
1
100.00
0.772
2
25.00
0.644
3
10.00
0.631
4
5.00
0.568
5
3.00
0.532
6
2.00
0.530
7
1.30
0.461
8
1.10
0.955
50.00
Prob
0.990
0.960
0.900
0.800
0.667
0.500
0.231
0.091
0.980
Prob
0.990
0.960
0.900
0.800
0.667
0.500
0.231
0.091
0.980
Page 3 of 4
PREDEVELOPED
TDA GW
AREA
(ACRES)
0.00
Till Forest
0.00
Till Pasture
0.21
Till Grass
0.00
Outwash Forest
0.00
Outwash Pasture
0.00
Outwash Grass
0.00
Wetland
2.75
Impervious
Flow Frequency Analysis
Time Series File:predev-gw.tsf
Project Location:Sea-Tac
---Annual Peak
Flow Rate Rank
(CFS)
0.686 7
0.597 8
0.832 3
0.689 6
0.819 4
0.732 5
1.00 2
1.34 1
Computed Peaks
DEVELOPED TDA GW
AREA
(ACRES)
0.00
0.00
0.28
0.00
0.00
0.00
0.00
2.68
Flow Rates ---
Time of Peak
2/09/01
1/05/02
12/08/02
8/26/04
10/28/04
1/18/06
10/26/06
1/09/08
2:00
16:00
18:00
2:00
16:00
16:00
0:00
6:00
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Impervious
Flow Frequency Analysis
Time Series File:dev-gw.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
0.675
6
2/09/01
2:00
0.585
8
1/05/02
16:00
0.817
3
12/08/02
18:00
0.673
7
8/26/04
2:00
0.801
4
10/28/04
16:00
0.721
5
1/18/06
16:00
0.980
2
10/26/06
0:00
1.32
1
1/09/08
6:00
Computed Peaks
-----Flow Frequency Analysis --
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
1.34
1
100.00
0.990
1.00
2
25.00
0.960
0.832
3
10.00
0.900
0.819
4
5.00
0.800
0.732
5
3.00
0.667
0.689
6
2.00
0.500
0.686
7
1.30
0.231
0.597
8
1.10
0.091
1.23
50.00
0.980
-----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
1.32
1
100.00
0.990
0.980
2
25.00
0.960
0.817
3
10.00
0.900
0.801
4
5.00
0.800
0.721
5
3.00
0.667
0.675
6
2.00
0.500
0.673
7
1.30
0.231
0.585
8
1.10
0.091
1.21
50.00
0.980
Page 4 of 4
CLIENTS IPEOPLE 1PERFORMANCE
1201 m,d Ave—, Sulb 1500, Seattle NYsh Vl0 98101 USA
T 1 206 441 9385 i 1 206 NB 6922
E eeama109hd — W www.0ne.00m
0 5 10 20 40 60
SCALE IN FEET
l ROADWAY POLLUTION GENERATING IMPERVIOUS SURFACE
SIDEWALK AND DRIVEWAY IMPERVIOUS SURFACE
PLANTING STRIP AND MEDIAN PERVIOUS SURFACES
FILTERRA TRIBUTARY AREAS_ B1
ENHANCED WATER QUALITY TREATMENT
USING FILTERRA TREE BOX FILTERS
ICLIENTS IPEOPLE IPERFORMANCE
1201 Thnd Ave S... 1500, Seattb Washlnpbn 88101 USA
T 1 206 441 F 1 206 "8 6922
E-...I®phd.mm W—.ghd.mm
j ROADWAY IIMPERVIOUS SURFACE
SIDEWALK AND DRIVEWAY IMPERVIOUS SURFACE
PLANTING STRIP AND MEDIAN PERVIOUS SURFACES
FILTERRA TRIBUTARY AREAS B2
ENHANCED WATER QUALITY TREATMENT
USING FILTERRA TREE BOX FILTERS
WA SXIN 6T0N STATE
0EPANTNE I OF
E C O L O G Y December 2009 (Revised May, 2010)
GENERAL USE LEVEL DESIGNATION FOR BASIC (TSS), ENHANCED, &
OIL TREATMENT
CONDITIONAL USE LEVEL DESIGNATION FOR PHOSPHORUS
TREATMENT
For
Americast's Filterra®
Ecology's Decision:
Based on Americast's submissions, including the Final Technical Evaluation Report, dated
December, 2009 and additional information provided to Ecology dated October 9, 2009,
Ecology hereby issues the following use level designations:
1. A General Use Level Designation for Basic, Enhanced, and Oil Treatment.
2. A Conditional Use Level Designation for Phosphorus Treatment.
The Conditional Use Level Designation expires on December 1, 2011 unless extended by
Ecology, and is subject to the conditions specified below.
Ecology's Conditions of Use:
Filterra® units shall be designed, installed, and maintained to comply with these
conditions:
1. Each Filterra® unit shall be sized for Basic and Oil Treatment using a filter hydraulic
conductivity of 35.46 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as
listed in the TER) using the sand filter module in the latest version of the Western
Washington Hydrology Model (WWHM) or other Ecology -approved continuous runoff
model. The model must indicate the unit is capable of processing 91 percent of the
influent runoff file. The Filterra® unit is not appropriate for oil spill -control purposes.
2. Each Filterra® unit shall be sized for Enhanced Treatment using a filter hydraulic
conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as
listed in the TER) using the sand filter module in the latest version of the WWHM or
other Ecology -approved continuous runoff model. The model must indicate the unit is
capable of processing 91 percent of the influent runoff file.
3. Each Filterra® unit shall be sized for Phosphorus Treatment using a filter hydraulic
conductivity of 35.46 inches/hour (assuming a hydraulic gradient of 1.41 inch/inch as
listed in the TER) using the sand filter module in the latest version of the WWHM or
other Ecology -approved continuous runoff model. The model must indicate the unit is
capable of processing 91 percent of the influent runoff file.
4. Each site plan must undergo Filterra® review before the unit can be approved for site
installation. This will ensure that site grading and slope are appropriate for use of a
Filterra® unit.
5. Filterra® media shall conform to the specifications submitted to and approved by
Ecology.
6. Maintenance includes removing trash, degraded mulch, and accumulated debris from
the filter surface and replacing the mulch layer. Inspections will be used to determine
the site -specific maintenance schedules and requirements. Maintenance procedures
should follow those given in the most recent version of the Filterra® Installation,
Operation, and Maintenance Manual.
7. Filterra® commits to submitting a QAPP by May 15, 2010 for Ecology review and
approval of a new test site that meets the TAPE requirements for attaining a GULD for
phosphorus treatment. The QAPP must be submitted for a minimum of one site where
the unit is to be used for phosphorus treatment.
8. Filterra® shall submit a TER for Ecology review for phosphorus treatment by
December 1, 2011.
9. Filterra® units come in standard sizes. The minimum size filter surface -area is
determined by using the sand filter module in the latest version of WWHM or other
Ecology approved continuous runoff model. Model inputs include
a. Filter media depth: 1.8 feet
b. Effective Ponding Depth: 0.75 feet (This is equivalent to the 6-inch clear zone
between the top of the mulch and the bottom of the slab plus 3-inches of mulch.)
c. Side slopes: Vertical
d. Riser height: 0.70 feet
e. Filter Hydraulic Conductivity: Must be back -calculated assuming a target
infiltration rate of 35 inches per hour (enhanced treatment) or 50 inches per
hour (Basic, oil, or phosphorus treatment). Hydraulic conductivity in the
WWHM includes the effective ponding depth as well as the filter media depth.
10. Filterra® may request Ecology to grant deadline or expiration date extensions, upon
showing cause for such extensions. Lack of funds to complete the monitoring will not
be viewed by Ecology as sufficient cause.
11. Discharges from the Filterra® units shall not cause or contribute to water quality
standards violations in receiving waters.
Applicant: Americast
Applicant's Address: 11352 Virginia Precast Road
Ashland, VA, 23005
Application Documents:
• State of Washington Department of Ecology Application for Conditional Use
Designation, Americast (September 2006)
• Quality Assurance Project Plan Filterra® Bioretention Filtration System Performance
Monitoring, Americast (April 2008)
• Quality Assurance Project Plan Addendum Filterra® Bioretention Filtration System
Performance Monitoring, Americast (June 2008)
• Draft Technical Evaluation Report Filterra® Bioretention Filtration System Performance
Monitoring, Americast (August 2009)
• Final Technical Evaluation Report Filterra® Bioretention Filtration System Performance
Monitoring, Americast (December 2009)
• Technical Evaluation Report Appendices Filterra® Bioretention Filtration System
Performance Monitoring, Americast, August 2009 Draft)
• Memorandum to Department of Ecology Dated October 9, 2009 from Americast, Inc. and
Herrera Environmental Consultants
Applicant's Use Level Request:
General Level Use Designation for Basic, Enhanced, and Oil Treatment and Conditional Use
Level for Phosphorus Treatment.
Applicant's Performance Claims:
Field-testing and laboratory testing show that the Filterra® unit is promising as a sormwater
treatment best management practice and can meet Ecology's performance goals for basic,
enhanced and oil treatment and has the potential to meet Ecology's goal for phosphorus
treatment.
Findings of Fact:
1. Field-testing was completed at two sites at the Port of Tacoma. Continuous flow and
rainfall data collected during the 2008-2009 monitoring period indicated that 89 storm
events occurred. Water quality data was obtained from 27 storm events. Not all the
sampled storms produced information that met TAPE criteria for storm and/or water
quality data.
2. During the testing at the Port of Tacoma, 98.96 to 99.89 percent of the annual influent
runoff volume passed through the POT1 and POT2 test systems respectively.
Stormwater runoff bypassed the POT1 test system during nine storm events and bypassed
the POT2 test system during one storm event. Bypass volumes ranged from 0.13% to
15.3% of the influent stone volume. Both test systems achieved the 91 percent water
quality treatment -goal over the I -year monitoring period.
3. Infiltration rates as high as 133 in/hr were observed during the various stones. No paired
data that identified percent removal of TSS, metals, oil, or phosphorus at an .instantaneous
observed flow rate was provided.
4. The maximum storm average hydraulic loading rate associated with water quality data is
<40 in/hr, with the majority of flow rates < 25 in/hr. The average instantaneous hydraulic
loading rate ranged from 8.6 to 53 inches per hour.
5. The field data showed a removal rate greater than 80% for TSS with an influent
concentration greater than 20 mg/1 at an average instantaneous hydraulic loading rate up
to 53 in/hr (average influent concentration of 28.8 mg/l, average effluent concentration of
4.3 mg/1).
6. The field data showed a removal rate generally greater than 54% for dissolved zinc at an
average instantaneous hydraulic loading rate up to 60 in/hr and an average influent
concentration of 0.266 mg/1 (average effluent concentration of 0.115 mg/1).
7. The field data showed a removal rate generally greater than 40% for dissolved copper at
an average instantaneous hydraulic loading rate up to 35 in/hr and an average influent
concentration of 0.0070 mg/1 (average effluent concentration of 0.0036 mg/1).
8. The field data showed a average removal rate of 93% for total petroleum hydrocarbon
(TPH) at an average instantaneous hydraulic loading rate up to 53 in/hr and an average
influent concentration of 52 mg/1(average effluent concentration of 2.3 mg/1). The data
also shows achievement of less than 15 mg/1 TPH for grab samples. Limited visible
sheen data was provided due to access limitations at the outlet monitoring location.
9. The field data showed low percentage removals of total Phosphorus at all storm flows at
an average influent concentration of 0.189 mg/1 (average effluent concentration of 0.171
mg/1). The relatively poor treatment performance of the Filterra® system at this location
may be related to influent characteristics for total phosphorus that are unique to the Port
of Tacoma site. It appears that the Filterra® system will not meet the 50 percent removal
performance goal when the majority of phosphorus in the runoff is expected to be in the
dissolved form.
10. Laboratory testing was performed on a scaled down version of the Filterra® unit. The
lab data showed an average removal from 83-91 % for TSS with influents ranging from
21 to 320 mg/L, 82-84% for total copper with influents ranging from 0.94 to 2.3 mg/L,
and 50-61 % for orthophosphate with influents ranging from 2.46 to 14.37 mg/L.
11. Permeability tests were conducted on the soil media.
12. Lab scale testing using Sil-Co-Sil 106 showed percent removals ranging from 70.1% to
95.5% with a median percent removal of 90.7%, for influent concentrations ranging from
8.3 to 260 mg/L. These laboratory tests were run at an infiltration rate of 50 in/hr.
4
13. Supplemental lab testing conducted in September 2009 using Sil-co-sil 106 showed an
average percent removal of 90.6%. These laboratory tests were run at infiltration rates
ranging from 25 to 150 in/hr for influent concentrations ranging from 41.6 to 252.5 mg/l.
Regression analysis results indicate that the Filterra system's TSS removal performance
is independent of influent concentration in the concentration rage evaluated at hydraulic
loading rates of up to 150 in/hr.
Contact Information:
Applicant: Larry Coffman
Americast
301-580-6631
lcoffman@filterra.com
Applicant's Website: http://www.filterra.com
Ecology web link: http://www.ecy.wa_gov/programs/wg/stormwater/newtech/index.htmi
Ecology: Douglas C. Howie, P.E.
Water Quality Program,
(360) 407-6444,
dou glas.howie2ecy.wa.gov
A
INLET SHAPING
A (BY OTHERS)
4
SDR-35 PVC COUPLING
CAST INTO PRECAST BOX
WALL BY AMERICAST (OUTLET
PIPE LOCATION VARIES)
-F� CURB (BY OTHERS)
PLAN VIEW
TREE FRAME PLANT AS SUPPLIED
CLEANOUT COVER & GRATE BY AMERICAST GALVANIZED
CAST IN TOP SLAB CAST IN (NOT SHOWN
TOP SLAB FOR CLARITY) ANGLE NOSING
TOP SLAB CURB AND GUTTER
INTERLOCKING (BY OTHERS)
00
JOINT (TYP)
STREET
0
N I DOWEL BARS
d z ® 12" O.C.
UNDERDRAIN STONE PROVIDED BY AMERICAST PERFORATED
MULCH PROVIDED BY AMERICAST UNDERDRAIN SYSTEM
BY AMERICAST
FILTER MEDIA PROVIDED BY AMERICAST
SECTION A -A
DESIGNATION
L
w
TREE GRATE
OUTLET
QTY & SIZE
PIPE
4 x 4
4'-0"
4'-0"
(1) 3x3
4" SDR-35 PVC
6 x 6
6'-0"
6'-0"
(1) 30
4" SDR-35 PVC
MODIFICATIONS OF DRAWINGS ARE ONLY PERMITTED
BY WRITTEN AUTHORIZATION FROM FILTERRA DRAWING AVAILABLE IN TIF FILE FORMAT.
DATE: 12-09-09 DWG: WWA FIST-3
PRECAST
1�
'UNIT
�`"���a�'-' STANDARDFCONFIGURATION Werra"
CopyrightC2007byAmericast WESTERN WASHINGTON US PAT 6.277.274
AND 6,569,321
32
Filterrao Project Information Form
Complete & send to Americast by email, fax or mail.
Project Information
Project Name/Number: lzA,1 W 6lt- A,4 5
Pt-tA.F's 31 / 4.w No. & 1'159
Regulatory Municipality and State (City, County, etc.):
P-e-r f o rl IL..1 W its Gott"'-*Y f WA, -
Target Treatment Rate: WA- EGot.C"
sv-titAcgc7 v4Q It c-
e
Mfrs Ftcdo •►
PLEASE PRINT AND FAX OR EMAIL THIS FORM
Address: 11352 Virginia Precast Road Toll Free: (866) 349-3458
Ashland, VA 23005 Fax: (804) 798-8400
Email: design@filterra.com
Engineering Contact Information
Engineering Firm:
C-AIk%21 lgc,
Contact:
Email: n
gpr(. E 17EZP.ti1t-1(� �. Go e-�1
Current Date:
I2 08 2-0to
Phone:
Fax:
Filterra@ Details (Email, mail or fax plans to Americast - Acceptable formats are AutoCAD or pdf)
Plans sheets should include (1) cover, (2) grading, (3) drainage areas, (4) stormwater schedules or profile, (5) landscaping & (6) Filterra@ details.
12/09-v01- Western WA
0
filterra
Bioretention Systems
Filterra Structure #
20,0
Zo 1
202
Z0 3
Filterra Size (ID ft) Throat L x W
t �4 q
If>4If
It It
�fx Lf
Impervious Drainage Area Acres
.1109
, 152.
.119
153
Pervious Drainage Area Acres
, 0(0(p
. 092.
. o1$
Olt
Percent Filtered
gt, (� qQ,
93.2/d
g� S�r
9✓'• 2/p
Filterra Spot Elevation TC
23.35
2149r
26.39
2(0-5b
FL
22.(Ar
Zo.BI
Z5.72'
25.99f
INV OUT
19 , S S
Ills,
02 .ec/
2-.3.0(10
Bypass Spot Elevation TC
23.27�
21 .11 /
2(0.15
�.}p
FL
22-1�
20.(pl,
25-V5'
2-6-1Di
Bypass or Effluent INV IN
19.72.
Ito .42
`-1. So
21. $o
Modified Structure Y/N?
Grate or Top Options Y/N?
Y
Y
10 TC = Top Curb, FL = Flow Line FLP Detail on plans (Y/N)0 CGT Detail on plans (Y/N)0 FT Plan Notes shown (Y/N)0
From: "Dean Baddorf" <dbaddorf@fi[terra.com> on 12/14/2010 10:19:31 AM
Repository: 8614159 Rainier Ave - Grady Way to S 2nd St Final Design
To: <Ray.Edralin@ghd.com>
cc: "Peter Evans" <pevans@filterra.com>
Subject: RE: Renton Ave - Renton, WA - Rainier Ave South - Phase 2
Ray
Thank you for choosing Filterra to treat your projects stormwater needs. I have taken a look at the plan
set you sent in for the Rainier Ave South— Phase 2 project and would make the following comments:
We find the following specified Filterra units' placement and sizing in accordance to our specifications
and in compliance with DOE's 91 % filtered requirements:
200: 4x4
201: 4x4
202: 4x4
203: 4x4
Please do not hesitate to contact me if you should have any questions
Thanks
Dean Baddorf
Filterra® Bioretention Systems
Direct: (804) 752 1454, Fax: (804) 798 8400, Web:- www.filterra.com
From: Peter Evans
Sent: Friday, December 10, 2010 1:36 PM
To: Dean Baddorf
Subject: Renton Ave- Renton, WA- Rainier Ave South- Phase 2
\\V:\Filterra\Projects\WA\Rainier Ave South Phase2\Plans\2010-12-10
Plan review please
Peter Evans
From: Ray.Edralin@ghd.com <Ray. Edralin@ghd.com >
To: Peter Evans
Sent: Fri Dec 10 12:55:43 2010
Subject: Renton Ave- Renton, WA
Peter,
Attached are the design documents for Filterra Review. The purpose of this submittal is to verify that we
have sized and placed the Filterra Units per recommendations. We are proposing four (4) 4' x 4' tree
box units for Department of Ecology's Enhanced Water Quality Treatment. I have included the following:
- Filterra Plan Review Form
- Figure - Tributary Area (for each unit)
- 60% Roadway Profiles and Section
- Draft Drainage Plans, Profiles & Detail
- MGS Floodv4 Report and Filterra Sizing Example
Please let me know if you have any questions
Regards
WM Ray Edralin, PE, LEED AP
Project Engineer
GHD
T: 206 441 9385 1 V: 868565 1 E: ray.edralin@ghd.com
1201 Third Avenue Suite 1500SeattleWashington98101USA1 www.and.com
WATER I ENERGY & RESOURCES I ENVIRONMENT I PROPERTY & BUILDINGS I TRANSPORTATION
Please consider our environment before printing this email
This email and all attachments are confidential. For further important information about emails
sent to or from GHD or if you have received this email in error, please refer to
http://www.ghd.com/emaildisclaimer.html .
This e-mail has been scanned for viruses by MessageLabs.
MGS FLOOD
PROJECT REPORT
Program Version: MGSFIood 4.08
Program License Number: 201010004
Run Date: 12/08/2010 9:24 AM
Input File Name: Rai nier-Filterra-200.fId
Project Name: Rainier Avenue South
Analysis Title: Filterra Tree Box Calculations
Comments:
Computational Time Step (Minutes)
PRECIPITATION INPUT
15
Extended Precipitation Timeseries Selected
Climatic Region Number: 13
Full Period of Record Available used for Routing
Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097
Evaporation Station 961040 Puget East 40 in MAP
Evaporation Scale Factor 0.750
HSPF Parameter Region Number: 1
HSPF Parameter Region Name : USGS Default
********************** WATERSHED DEFINITION ***********************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Subbasin : 200
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
-------Area(Acres)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.235
Subbasin Total 0.235
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Subbasin : 200
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
Subbasin Total
-------Area(Acres)
0.000
0.000
0.066
0.000
0.000
0.000
0.000
0.000
0.000
0.169
0.235
LINK DATA *****************************
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
*********************** LINK DATA *********«********************
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
Link Name: Filterra No. 200
Link Type: Structure
Downstream Link: None
Prismatic Pond Option Used
Pond Floor Elevation (ft)
100.00
Riser Crest Elevation (ft)
Max Pond Elevation (ft)
102.00
Storage Depth (ft)
0.75
Pond Bottom Length (ft)
4.0
Pond Bottom Width (ft)
4.0
Pond Side Slopes (ft/ft)
: L1= 0.00
Bottom Area (sq-ft)
16.
Area at Riser Crest El (sq-ft)
16.
(acres)
0.000
Volume at Riser Crest (cu-ft)
12.
(ac-ft)
0.000
Area at Max Elevation (sq-ft)
16.
(acres)
0.000
Vol at Max Elevation (cu-ft)
34.
(ac-ft)
0.001
100.75
L2= 0.00 W 1= 0.00 W2= 0.00
Massmann Infiltration Option Used
Hydraulic Conductivity (in/hr) 0.00
Depth to Water Table (ft) : 100.00
Bio-Fouling Potential : Low
Maintenance : Average or Better
Riser Geometry
Riser Structure Type
: Circular
Riser Diameter (in)
: 100.00
Common Length (ft)
: 0.000
Riser Crest Elevation
: 100.75 ft
Hydraulic Structure Geometry
Number of Devices:
--- Device Number 1 ---
Device Type : Sand Filter
Elev of Filter Top (ft) 100.00
Filter Surface Area (sq-ft) 16.
Filter Thickness (ft) 1.80
Permeability (in/hr) 24.82
**********************FLOOD FREQUENCY AND DURATION STATISTICS*******************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Number of Links: 1
********** Link: Filterra No. 200
WSEL Frequency Data(ft)
(Recurrence Interval Computed Using Gringorten Plotting Position)
Tr (yrs) WSEL Peak (ft)
--------------------------------------
--------------------------------------
1.05-Year 100.753
1.11-Year 100.754
1.25-Year 100.754
2.00-Year 100.756
3.33-Year 100.757
5-Year 100.758
10-Year 100.760
25-Year 100.762
50-Year 100,765
100-Year 100.767
***********Water Quality Facility Data *************
********** Link WSEL Stats
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
********** Link: Filterra No. 200
Basic Wet Pond Volume (91% Exceedance): 816. cu-ft
Computed Large Wet Pond Volume, 1.5*Basic Volume: 1224. cu-ft
Infiltration/Filtration Statistics --------------------
Total Runoff Volume (ac-ft): 89.04
Total Runoff Infiltrated (ac-ft): 0.00, 0.00%
Total Runoff Filtered (ac-ft): 81.55, 91.59%
Percent Treated (Infiltrated+Filtered)/Total Volume: 91.59%
***********Compliance Point Results *************
Scenario Predeveloped Compliance Subbasin: 200
Scenario Postdeveloped Compliance Link: Filterra No. 200
*** Point of Compliance Flow Frequency Data ***
Recurrence Interval Computed Using Gringorten Plotting Position
Predevelopment Runoff
Postdevelopment Runoff
Tr (Years)
-----------------------------------------------------------------------------------------------------------
Discharge (cfs)
Tr (Years) Discharge (cfs)
2-Year
0.088
2-Year 0.069
5-Year
0.114
5-Year 0.088
10-Year
0.128
10-Year 0.106
25-Year
0.161
25-Year 0.144
50-Year
0.205
50-Year 0.167
100-Year
0.237
100-Year 0.209
200-Year
0.246
200-Year 0.211
** Record too
Short to Compute Peak Discharge for These Recurrence Intervals
**** Flow Duration Performance According to Dept. of Ecology Criteria ****
Excursion at Predeveloped '/2Q2 (Must be Less Than 0%): -67.4% PASS
Maximum Excursion from'/2Q2 to Q2 (Must be Less Than 0%): -62.8% PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%): -20.0% PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS
POND MEETS ALL DURATION DESIGN CRITERIA: PASS
MGS FLOOD
PROJECT REPORT
Program Version: MGSFIood 4.08
Program License Number: 201010004
Run Date: 12/08/2010 1:42 PM
Input File Name: Rai nier-Filterra-201.fId
Project Name: Rainier Avenue South
Analysis Title: Filterra Tree Box Calculations
Comments:
Computational Time Step (Minutes):
PRECIPITATION INPUT
15
Extended Precipitation Timeseries Selected
Climatic Region Number: 13
Full Period of Record Available used for Routing
Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097
Evaporation Station 961040 Puget East 40 in MAP
Evaporation Scale Factor 0.750
HSPF Parameter Region Number: 1
HSPF Parameter Region Name : USGS Default
********************** WATERSHED DEFINITION ***********************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Subbasin : 201
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
-------Area(Acres)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.244
Subbasin Total 0.244
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Subbasin : 201
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
Subbasin Total
-------Area(Acres)
0.000
0.000
0.092
0.000
0.000
0.000
0.000
0.000
0.000
0.152
0.244
************************ LINK DATA
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
************************* LINK DATA
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
Link Name: Filterra No. 201
Link Type: Structure
Downstream Link: None
Prismatic Pond Option Used
Pond Floor Elevation (ft)
100.00
Riser Crest Elevation (ft)
Max Pond Elevation (ft)
102.00
Storage Depth (ft)
0.75
Pond Bottom Length (ft)
4.0
Pond Bottom Width (ft)
4.0
Pond Side Slopes (ft/ft)
: L1= 0.00
Bottom Area (sq-ft)
16.
Area at Riser Crest El (sq-ft)
16.
(acres)
0.000
Volume at Riser Crest (cu-ft)
12.
(ac-ft)
0.000
Area at Max Elevation (sq-ft)
16.
(acres)
0.000
Vol at Max Elevation (cu-ft)
34.
(ac-ft)
0.001
100.75
L2= 0.00 W 1= 0.00 W2= 0.00
Massmann Infiltration Option Used
Hydraulic Conductivity (in/hr) 0.00
Depth to Water Table (ft) : 100.00
Bio-Fouling Potential : Low
Maintenance : Average or Better
Riser Geometry
Riser Structure Type
: Circular
Riser Diameter (in)
: 100.00
Common Length (ft)
: 0.000
Riser Crest Elevation
: 100.75 ft
Hydraulic Structure Geometry
Number of Devices:
--- Device Number 1 ---
Device Type : Sand Filter
Elev of Filter Top (ft) 100.00
Filter Surface Area (sq-ft) 16.
Filter Thickness (ft) 1.80
Permeability (in/hr) 24.82
**********************FLOOD FREQUENCY AND DURATION STATISTICS*******************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Number of Links: 1
********** Link: Filterra No. 201
WSEL Frequency Data(ft)
(Recurrence Interval Computed Using Gringorten Plotting Position)
Tr (yrs) WSEL Peak (ft)
--------------------------------------
--------------------------------------
1.05-Year
100.753
1.11-Year
100.754
1.25-Year
100.754
2.00-Year
100.756
3.33-Year
100.757
5-Year
100.758
10-Year
100.760
25-Year
100.762
50-Year
100.764
100-Year
100.767
***********Water Quality Facility Data *************
********** Link WSEL Stats
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
********** Link: Filterra No. 201
Basic Wet Pond Volume (91 % Exceedance): 768. cu-ft
Computed Large Wet Pond Volume, 1.5*Basic Volume: 1152. cu-ft
Infiltration/Filtration Statistics -------- -----------
Total Runoff Volume (ac-ft): 86.65
Total Runoff Infiltrated (ac-ft): 0.00, 0.00%
Total Runoff Filtered (ac-ft): 80.80, 93.24%
Percent Treated (Infiltrated+Filtered)/Total Volume: 93.24%
***********Compliance Point Results *************
Scenario Predeveloped Compliance Subbasin: 201
Scenario Postdeveloped Compliance Link: Filterra No. 201
*** Point of Compliance Flow Frequency Data ***
Recurrence Interval Computed Using Gringorten Plotting Position
**********
Predevelopment Runoff
Postdevelopment Runoff
Tr (Years)
Discharge (cfs)
Tr (Years) Discharge (cfs)
------------------------------------------------------------------------------------------------------------
2-Year
0.091
2-Year 0.065
5-Year
0.118
5-Year 0.082
10-Year
0.133
10-Year 0.103
25-Year
0.167
25-Year 0.139
50-Year
0.213
50-Year 0.166
100-Year
0.246
100-Year 0.206
200-Year
0.255
200-Year 0.207
** Record too
Short to Compute Peak Discharge for These Recurrence Intervals
**** Flow Duration Performance According to Dept. of Ecology Criteria ****
Excursion at Predeveloped'/2Q2 (Must be Less Than 0%): -78.3% PASS
Maximum Excursion from'/2Q2 to Q2 (Must be Less Than 0%): -75.2% PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%): -40.0% PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS
POND MEETS ALL DURATION DESIGN CRITERIA: PASS
MGS FLOOD
PROJECT REPORT
Program Version: MGSFlood 4.08
Program License Number: 201010004
Run Date: 12/08/2010 11:39 AM
Input File Name
Project Name:
Analysis Title:
Comments:
Rai nier-Filterra-202.fId
Rainier Avenue South
Filterra Tree Box Calculations
Computational Time Step (Minutes):
PRECIPITATION INPUT
15
Extended Precipitation Timeseries Selected
Climatic Region Number: 13
Full Period of Record Available used for Routing
Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097
Evaporation Station 961040 Puget East 40 in MAP
Evaporation Scale Factor 0.750
HSPF Parameter Region Number: 1
HSPF Parameter Region Name : USGS Default
********************** WATERSHED DEFINITION ***********************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Subbasin : 202
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
-------Area(Acres)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.132
Subbasin Total 0.132
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
---------- Subbasin
: 202----------
-------Area(Acres)--------
Till Forest
'
0.000
Till Pasture
0.000
Till Grass
0.013
Outwash Forest
0.000
Outwash Pasture
0.000
Outwash Grass
0.000
Wetland
0.000
Green Roof
'
0.000
User 2
0.000
Impervious
0.119
Subbasin Total 0.132
LINK DATA
----------------------SCENARIO: PREDEVELOPED ,
Number of Links: 0
************************* LINK DATA
---------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
Link Name: Filterra No. 202
Link Type: Structure
Downstream Link: None
Prismatic Pond Option Used
Pond Floor Elevation (ft)
100.00
Riser Crest Elevation (ft)
Max Pond Elevation (ft)
102.00
Storage Depth (ft)
0.75
Pond Bottom Length (ft)
4.0
Pond Bottom Width (ft)
4.0
Pond Side Slopes (ft/ft)
: L1= 0.00
Bottom Area (sq-ft)
16.
Area at Riser Crest El (sq-ft)
16.
(acres)
0.000
Volume at Riser Crest (cu-ft)
12.
(ac-ft)
0.000
Area at Max Elevation (sq-ft)
16.
(acres)
0.000
Vol at Max Elevation (cu-ft)
34.
(ac-ft)
0.001
100.75
L2= 0.00 W1= 0.00 W2= 0.00
Massmann Infiltration Option Used
Hydraulic Conductivity (in/hr) 0.00
Depth to Water Table (ft) : 100.00
Bio-Fouling Potential : Low
Maintenance : Average or Better
Riser Geometry
Riser Structure Type
: Circular
Riser Diameter (in)
: 100.00
Common Length (ft)
: 0.000
Riser Crest Elevation
: 100.75 ft
Hydraulic Structure Geometry
Number of Devices
--- Device Number 1 ---
Device Type :
Sand Filter
Elev of Filter Top (ft)
100.00
Filter Surface Area (sq-ft)
16.
Filter Thickness (ft)
1.80
Permeability (in/hr)
24.82
**********************FLOOD FREQUENCY AND DURATION STATISTICS*******************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Number of Links: 1
********** Link:
Filterra No. 202
WSEL Frequency Data(ft)
(Recurrence
Interval Computed Using Gringorten Plotting Position)
Tr (yrs)
--------------------------------------
WSEL Peak (ft)
--------------------------------------
1.05-Year
100.752
1.11-Year
100.752
1.25-Year
100.753
2.00-Year
100.754
3.33-Year
100.755
5-Year
100.756
10-Year
100.757
25-Year
100.759
50-Year
100.761
100-Year
100.763
***********Water Quality Facility Data *************
********** Link WSEL Stats
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
********** Link: Filterra No. 202
Basic Wet Pond Volume (91% Exceedance): 538. cu-ft
Computed Large Wet Pond Volume, 1.5*Basic Volume: 807. cu-ft
Infiltration/Filtration Statistics --------------------
Total Runoff Volume (ac-ft): 55.97
Total Runoff Infiltrated (ac-ft): 0.00, 0.00%
Total Runoff Filtered (ac-ft): 54.00, 96.48%
Percent Treated (Infiltrated+Filtered)/Total Volume: 96.48%
***********Compliance Point Results *************
Scenario Predeveloped Compliance Subbasin: 202
Scenario Postdeveloped Compliance Link: Filterra No. 202
*** Point of Compliance Flow Frequency Data ***
Recurrence Interval Computed Using Gringorten Plotting Position
**********
Predevelopment Runoff
Postdevelopment Runoff
Tr (Years)
Discharge (cfs)
Tr (Years) Discharge (cfs)
------------------------------------------------------------------------------------------------------------
2-Year
0.049
2-Year 0.045
5-Year
0.064
5-Year 0.058
10-Year
0.072
10-Year 0.068
25-Year
0.090
25-Year 0.087
50-Year
0.115
50-Year 0.107
100-Year
0.133
100-Year 0.128
200-Year
0.138
200-Year 0.131
** Record too
Short to Compute Peak Discharge for These Recurrence Intervals
**** Flow Duration Performance According to Dept. of Ecology Criteria ****
Excursion at Predeveloped'/Q2 (Must be Less Than 0%): -30.2% PASS
Maximum Excursion from to Q2 (Must be Less Than 0%): -25.5% PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%): 0.0% PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS
POND MEETS ALL DURATION DESIGN CRITERIA: PASS
MGS FLOOD
PROJECT REPORT
Program Version: MGSFIood 4.08
Program License Number: 201010004
Run Date: 12/08/2010 1:45 PM
Input File Name: Rainier-Filterra-203.fid
Project Name: Rainier Avenue South
Analysis Title: Filterra Tree Box Calculations
Comments:
PRECIPITATION INPUT
Computational Time Step (Minutes): 15
Extended Precipitation Timeseries Selected
Climatic Region Number: 13
Full Period of Record Available used for Routing
Precipitation Station : 96004005 Puget East 40 in_5min 10/01/1939-10/01/2097
Evaporation Station 961040 Puget East 40 in MAP
Evaporation Scale Factor 0.750
HSPF Parameter Region Number: 1
HSPF Parameter Region Name : USGS Default
********************** WATERSHED DEFINITION ***********************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Subbasin : 203
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
-------Area(Acres)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.167
Subbasin Total 0.167
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Subbasin : 203
Till Forest
Till Pasture
Till Grass
Outwash Forest
Outwash Pasture
Outwash Grass
Wetland
Green Roof
User 2
Impervious
Subbasin Total
-------Area(Acres)
0.000
0.000
0.014
0.000
0.000
0.000
0.000
0.000
0.000
0.153
0.167
********************* LINK DATA
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
**«********************** LINK DATA
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
Link Name: Filterra No. 203
Link Type: Structure
Downstream Link: None
Prismatic Pond Option Used
Pond Floor Elevation (ft)
100.00
Riser Crest Elevation (ft)
Max Pond Elevation (ft)
102.00
Storage Depth (ft)
0.75
Pond Bottom Length (ft)
4.0
Pond Bottom Width (ft)
4.0
Pond Side Slopes (ft/ft)
: L1= 0.00
Bottom Area (sq-ft)
16.
Area at Riser Crest El (sq-ft)
16.
(acres)
0.000
Volume at Riser Crest (cu-ft)
12.
(ac-ft)
0.000
Area at Max Elevation (sq-ft)
16.
(acres)
0.000
Vol at Max Elevation (cu-ft)
34.
(ac-ft)
0.001
100.75
L2= 0.00 W1= 0.00 W2= 0.00
Massmann Infiltration Option Used
Hydraulic Conductivity (in/hr) 0.00
Depth to Water Table (ft) : 100.00
Bio-Fouling Potential : Low
Maintenance : Average or Better
Riser Geometry
Riser Structure Type
: Circular
Riser Diameter (in)
: 100.00
Common Length (ft)
: 0.000
Riser Crest Elevation
: 100.75 ft
Hydraulic Structure Geometry
Number of Devices
--- Device Number 1 ---
Device Type : Sand Filter
Elev of Filter Top (ft) 100.00
Filter Surface Area (sq-ft) 16.
Filter Thickness (ft) 1.80
Permeability (in/hr) 24.82
**********************FLOOD FREQUENCY AND DURATION STATISTICS*******************
----------------------SCENARIO: PREDEVELOPED
Number of Subbasins: 1
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Subbasins: 1
Number of Links: 1
Link: Filterra No. 203
WSEL Frequency Data(ft)
(Recurrence Interval Computed Using Gringorten Plotting Position)
Tr (yrs) WSEL Peak (ft)
--------------------------------------
--------------------------------------
1.05-Year
100.753
1.11-Year
100.753
1.25-Year
100.754
2.00-Year
100.755
3.33-Year
100.756
5-Year
100.757
10-Year
100.758
25-Year
100.761
50-Year
100.763
100-Year
100.765
***********Water Quality Facility Data *************
********** Link WSEL Stats
----------------------SCENARIO: PREDEVELOPED
Number of Links: 0
----------------------SCENARIO: POSTDEVELOPED
Number of Links: 1
********** Link: Filterra No. 203
Basic Wet Pond Volume (91% Exceedance): 689. cu-ft
Computed Large Wet Pond Volume, 1.5*Basic Volume: 1034. cu-ft
Infiltration/Filtration Statistics --------------------
Total Runoff Volume (ac-ft): 71.41
Total Runoff Infiltrated (ac-ft): 0.00, 0.00%
Total Runoff Filtered (ac-ft): 66.56, 93.20%
Percent Treated (Infiltrated+Filtered)/Total Volume: 93.20%
***********Compliance Point Results *************
Scenario Predeveloped Compliance Subbasin: 203
Scenario Postdeveloped Compliance Link: Filterra No. 203
*** Point of Compliance Flow Frequency Data ***
Recurrence Interval Computed Using Gringorten Plotting Position
**********
Predevelopment Runoff
Postdevelopment Runoff
Tr (Years)
Discharge (cfs)
Tr (Years) Discharge (cfs)
---------------------------------------------------------------------------------------------------------
2-Year
0.062
2-Year 0.058
5-Year
0.081
5-Year 0.075
10-Year
0.091
10-Year 0.087
25-Year
0.114
25-Year 0.111
50-Year
0.146
50-Year 0.137
100-Year
0.168
100-Year 0.162
200-Year
0.175
200-Year 0.167
** Record too Short to Compute Peak Discharge for These Recurrence Intervals
**** Flow Duration Performance According to Dept. of Ecology Criteria ****
Excursion at Predeveloped'/2Q2 (Must be Less Than 0%): -26.8% PASS
Maximum Excursion from'/zQ2 to Q2 (Must be Less Than 0%): -22.4% PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%): 0.0% PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%): 0.0% PASS
POND MEETS ALL DURATION DESIGN CRITERIA: PASS
PUBLIC WORKS DEPARTMENT �Mf�O�
M E M O R A N D U M
DATE: October 17, 2011
TO: Bob Hanson, Transportation Design Supervisor
FROM: j��{�— Ron Straka, Surface Water Utility Supervisor, x7248
(X Richard Marshall, Surface Water Maintenance Manager, x7400
STAFF CONTACT: Hebe Bernardo, Surface Water Utility Engineer, x7264
SUBJECT: Rainier Avenue South Improvement Project — SW Grady
Way to S 2°d Street — Filterra® Adjustment 2011-05
The City of Renton Surface Water Utility has completed review of the adjustment
request for the Rainier Avenue South Improvement Project — SW Grady Way to S 2nd
Street in accordance with the 2005 Stormwater Management Manual for Western
Washington. Our review of the information leads us to understand that the project
proposes the implementation of the Filterra® Bioretention System for Enhanced Basic
Water Quality. This is the first application of such system in the City of Renton. The
Washington State Department of Ecology has approved the Filterra® Bioretention
System for General Use Level Designation for TSS, oil and grease, and enhanced
dissolved metals.
Based on these understandings, the adjustment to use the Filterra® Bioretention System
for Enhanced Basic Water Quality and Oil Treatment is approved with the following
conditions:
1. Each Filterra® unit shall be sized for Enhanced Treatment using a filter hydraulic
conductivity of 24.82 inches/hour (assuming a hydraulic gradient of 1.41
inch/inch as listed in the TER) using the sand filter module in the latest version of
the WWHM or other Ecology -approved continuous runoff model. The model
must indicate the unit is capable of processing 91 percent of the influent runoff
file.
2. Each site plan must undergo Filterra® review before the unit can be approved for
site installation. This will ensure that site grading and slope are appropriate for
use of a Filterra® unit.
3. Filterra® media shall conform to the specifications submitted to and approved by
Ecology.
Mr. Hansen
Page 2of2
October 17, 2011
4. The facility shall be inspected every six months by the supplier during the first
year of operation as offered with the purchase of the Filterra® system.
Inspections will be used to determine the site -specific maintenance schedules
and requirements. Maintenance of the facility shall include removing trash,
degraded mulch, and accumulated debris from the filter surface and replacing
the mulch layer. Maintenance procedures should follow those given in the most
recent version of the Filterra® Installation, Operation, and Maintenance Manual.
During the first year of operation of the facility, written records of the
inspections and maintenance shall be submitted to Ron Straka, Surface Water
Utility Engineering Supervisor.
5. The Transportation Division shall have the Filterra® Bioretention System
maintained by the supplier or approved contractor during the first year of
operation as offered by the supplier with the purchase of the Filterra® system.
Prior to maintenance of the Filterra® Bioretention System, the Surface Water
Utility shall be notified and allowed to inspect the facility and observe the
maintenance of the Filterra® Bioretention System by the supplier or approved
contractor.
6. The final project Technical Information Report must be revised to include the use
of the Filterra® Bioretention System and this adjustment approval. This is a
conceptual approval for using the Filterra® Bioretention System for Enhanced
Basic Water Quality. Further analysis and design calculations shall be included in
the TIR for final approval.
7. This adjustment approval does not authorize the use of the Filterra®
Bioretention System on future City Transportation projects.
Please note that the approval of this adjustment does not relieve the applicant from
other city, state, or federal requirements. If you have any questions about this
adjustment, please contact Hebe Bernardo or me.
cc: Richard Perteet, Deputy Public Works Administrator -Transportation
Lys Hornsby, P.E., Utility Systems Director
Derek Akesson, Transportation Engineer
H:\File Sys\SWP -Surface Water Projects\SWP-27 - Surface Water Projects (CIP)\27-3129 Renton Stormwater
Manual\ADIUSTMENTS\2011-5 Rainier Ave S - Filterra.doc\HBah
iz
cc
CL
x
n
Appendix C
Conveyance Analysis
Conveyance Basin Maps Cl-C3
Rational Method XP-SWMM Modeling Documentation
Grady Way Tailwater Calculation
Grady Way Upstream Basin Map C4
Pump Station Modeling Documentation
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
0.20 AC
30
23 0.32 AC
0.11 AC
22
0.13 AC
_ - 12 218
11 0.10AC 0.16AC
0.16 AC
20 10
0.15 AC 0.22 AC
11 �
18 9 U v
0.15 AC 0.13 AC
8
19 0.11 AC
0.14 AC
J
7 .J
0.10 AC
101
1.88 AC
021AC
6
0.11 AC 0.62 AC
2
_ 0.11 AC
0.09 5AC �
1
0.15 AC
4
0.06 AC
3
0.08 AC
27787
�aj 0.08 AC
J<
�J
P
Qom`\17 sCR9 Y
O �
-9y
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
OFFSITE BASIN
TDA GW
TDA
TDA V
TDA A
0.32 AC4AC
AC
13 50.10AC 0.20 AC
0.99 AC
35 124
a10AC 0.16AC
37 38
0.08 AC 0.11 AC
17 36
)9 AC 0.35 AC
S,
'QF
F�
PLAN
0 25 50 100
SCALE: IN FEET
RAINIER AVENUE S C1
BASIN DELINEATION FOR HYDRAULIC MODELING
................
10, i
1201 Third Avenue, Suit(
Seattle, Washington 9811
T 1206 4419385
F 1206 448 6922922
W www,ghd.com
m OFFSITE BASIN
TDA GW
TDA I
TDA V
TDA A
C2
(\tltf\141Jtl\I:NUU\UNNVVINijJ\IIHWE>>U-IIXi:l i:9 M V1 awg
1 O/24=11
1201 Third Avenue, Suite 1500 0.69 AC
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
80
0.23 AC
89
0.20 AC
ys 0.13 AC
116
0.50 ac
OFFSITE BASIN
TDA GW
TDA
TDA V PLAN
TDA A 0 25 50 100
SCALE: IN FEET
RAINIER AVENUE S C3
BASIN DELINEATION FOR HYDRAULIC MODELING
G186\14159\CADD\DRAWNGS\TIR10655D-TIRGl REV10vq
10/24/2011
3.2.1 RATIONAL METHOD
TABLE 3.2.1.A RUNOFF COEFFICIENTS - "C" VALUES FOR THE RATIONAL METHOD
General Land Covers
Single Family Residential Areas*
Land Cover
C
Land Cover Density
C
Dense forest
0.10
0.20 DU/GA (1 unit per 5 ac.)
0.17
Light forest
0.15
0.40 DU/GA (1 unit per 2.5 ac.)
0.20
Pasture
0.20
0.80 DU/GA (1 unit per 1.25 ac.)
0.27
-� Lawns
0.25
1.00 DU/GA
0.30
Playgrounds
0.30
1.50 DU/GA
0.33
Gravel areas
0.80
2.00 DU/GA
0.36
-� Pavement and roofs
0.90
2.50 DU/GA
0.39
Open water (pond, lakes,
1.00
3.00 DU/GA
0.42
wetlands)
3.50 DU/GA
0.45
4.00 DU/GA
0.48
4.50 DU/GA
0.51
5.00 DU/GA
0.54
5.50 DU/GA
0.57
6.00 DU/GA
0.60
Based on average 2,500 square feet per lot of impervious coverage.
For combinations of land covers listed above, an area -weighted "C,:x A," sum should be computed based on the
equation C,: x A, = (Cl x .41) + (C2 x A2) + ...+(C,, x A„ ), where A. = (A, + A2 + ...+A„), the total drainage basin area.
TABLE 3.2.1.B COEFFICIENTS FOR THE RATIONAL METHOD "iR" EQUATION
Design Storm Return Frequency
aR
bR
2 years
1.58
0.58
5 years
2.33
0.63
10 years
2.44
0.64
->' 25 years
2.66
0.65
50 years
2.75
0.65
->100 years
2.61
0.63
TABLE 3.2.1.0 kR VALUES FOR T, USING THE RATIONAL METHOD I
Land Cover Category kR
Forest with heavy ground litter and meadow 2.5
Fallow or minimum tillage cultivation 1 4.7
Short grass pasture and lawns 1 7.0
Nearly bare ground 10.1
Grassed waterway 15.0
Paved area (sheet flow) and shallow gutter flow 20.0
2009 Surface water Design Manual 1/9/2009
3-13
SECTION 3.2 RUNOFF COMPUTATION AND ANALYSIS METHODS
FIGURE 3.2.1.(' 25-YEAR 24-110UR ISOPLUVIALS
--+OMISN COUNTY
----� -� - WING COUNTY
?8
1 ° 0
32 ( ,
5.0
T
m
s i
Pzs=4 !I
o m
m
v
CO m
M co
M "D`
KING COUNTY
/13• PIERCE COUNTY
WESTERN
KING COUNTY
25-Year 24-Hour co r-
Precipitation �� ^ ;
4
in Inches �-- Miles
I ! QUO') 2009 Surface Water Design Manual
3-16
v
.6,
FIGURE 3.2.1.D 100-YEAR 24-HOUR ISOPLL VIALS
33
3
3. 3S
4ga
0
4�
43 O
0
91
m m
`\ �®_—�•_o.L N G COUNTY
iE CE COUNT
WESTERN
KING COUNTY �o
100-Year 24-Hour
Precipitation
in Inches`-=
;.1.1 RATIONAL METHOD
C u NTl IN—
5D
0
_ 6.5
6.0
5.5
�h
2009 Surface Water Design Manual 1/9/2009
3-17
Created by: K.Smith 7/9/10
Checked by: R. Edralin 7/26/10
OF Table for use in XP-SWMM, based on approach of 2009 KCSWDM, Section 3.2.1
25 r
100 r
aR
bR
aR
bR
aR, bR
2.66
0.65
2.61
0.63
PR (in.)
P25= 3.4
P1u-= 3.9
125
125
i100
1100
Duration (min.)
6.3
0.8041
2.7339
0.8186
3.1924
10
0.5955
2.0247
0.6118
23862
15
0.4575
1.5556
0.4739
1.8483
20
0.3795
1.2903
0.3954
1.5419
25
0.3283
1.1161
0.3435
1.3397
30
0.2916
0.9914
0.3062
1.1943
35
0.2638
08968
0.2779
1.0838
40
0.2418
08223
0.2555
0.9963
45
0.2240
0.7617
0.2372
0.9251
50
0.2092
0.7113
0.2220
08657
55
0.1966
0.6685
0.2090
0.8152
60
0.1858
0.6318
0.1979
0.7717
65
0.1764
0.5997
0.1882
0.7338
70
0.1681
0.5715
0.1796
0.7003
OF Table for use in XP-SWMM, based on approach of 2009 KCSWDM, Section 3.2.1
(Modified with Correction Factor for use in XP-SWMM)
Factor = 0.89525
25 r
100yr
aR
bR
aR
bR
aR, bR
2.66
0.65
2.61
0 63
PR (in.)
P25= 3.4
P-- -= 3 9
125
125
i100
1100
Duration (min.)
6.3
0.8041
2.4476
0.8186
2.8580
10
0.5955
1.8126
0.6118
2.1362
15
0.4575
1.3927
0.4739
16547
20
0.3795
1.1551
0.3954
1.3804
25
0.3283
09992
0.3435
1.1994
30
0.2916
08875
0.3062
1.0692
35
0.2638
0.8029
0.2779
0.9703
40
0.2418
0.7361
0.2555
0.8920
45
0.2240
0.6819
0.2372
0.8282
50
0.2092
0.6368
0.2220
0.7750
55
0.1966
05985
0.2090
0.7298
60
0.1858
05656
0.1979
06909
65
0.1764
05369
0.1882
0.6569
70
0.1681
0.5117
0.1796
0.6270
TDA GW - Conveyance Basin
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
(Pervious)
Max
Flow
cfs
02
25- ear
1
0.110
90.000
6.300
6.300
0.250
0.251
03
25-year
1
0.080
90.000
6.300
6.300
0.250
0.183
04
25-year
1
0.060
90.000
6.300
6.300
0.250
0.137
05
25-year
1
0.090
90.000
15.000
15.000
0.250
11.953
05
2
9.200
90.000
06
25-year
1
0.110
90.000
10.000
10.000
0.250
1.203
06
2
0.620
90.000
07
25 ear
1
0.100
90.000
6.300
6.300
0.250
0.228
08
25- ear
1
0.110
90.000
6.300
6.300
0.250
0.251
09
25-year
1 1
0.130
90.000
6.300
6.300
0.250
0.297
10
25-year
1
0.220
90.000
6.300
6.300
0.250
0.502
11
25-year
1
0.170
90.000
6.300
6.300
0.250
0.388
12
25 ear
1
0.100
90.000
10.000
10.000
0.250
3.312
12
2
1.860
90.000
13
25- ear
1
0.100
90.000
6.300
6.300
0.250
0.228
14
25-year
1
0.170
90.000
10.000
10.000
10.250
1.912
14
2
0.990
90.000
15
25-year
1
0.200
90.000
6.300
6.300
0.250
0.457
16
25-year
6.300
6.300
0.000
0.457
17
25-year
1
0.090
90.000
6.300
6.300
0.250
0.205
18
25 ear
1
0.150
90.000
6.300
6.300
0.250
0.342
19
25 ear
1
0.140
90.000
6.300
6.300
0.250
0.320
20
25-year
1
0.150
90.000
6.300
6.300
0.250
0.342
21
25- ear
0.000
0.000
0.250
0.000
22
25 ear
0.000
0.000
0.250
0.000
23
25-year
1
0.110
90.000
6.300
6.300
0.250
0.251
101
25-year
1
0.210
90.000
6.300
6.300
0.250
0.479
146
25-year
0.000
0.000 10.000
0.000
218
25- ear
1
0.150
90.000
6.300
6.300
0.250
0.342
222
25-year
0.000
0.000
0.000
0.000
26802
25- ear
0.000
0.000
0.000
0.000
28226
25-year
0.000
0.000
0.000 10.00,
10/24/11 15:11:26 1/1
TDA GW - Conveyance Basin
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
(Pervious)
Max
Flow
cfs
02
1 00-ear
1
0.110
90.000
6.300
6.300
0.250
0.293
03
100-year
1
0.080
90.000
6.300
6.300
0.250
0.213
04
100-year
1
0.060
90.000
6.300
6.300
0.250
0.160
05
100-year
1
0.090
90.000
15.000
15.000
0.250
14.201
05
2
9.200
90.000
06
100-year
1
0.110
90.000
10.000
10.000
0.250
1.416
06
2
0.620
90.000
07
1 00ear
1
0.100
90.000
6.300
6.300
0.250
0.267
08
1 00-ear
1
0.110
90.000
6.300
6.300
0.250
0.293
09
100-year
1
0.130
90.000
6.300
6.300
0.250
0.347
10
100-year
1
0.220
90.000
6.300
6.300
0.250
0.586
11
100-year
1
0.170
90.000
6.300
6.300
0.250
0.453
12
1 00-ear
1
0.100
90.000
10.000
10.000
0.250
3.900
12
2
1.860
90.000
13
1 00ear
1
0.100
90.000
6.300
6.300
0.250
0.267
14
100-year
1
0.170
90.000
10.000
10.000
0.250
2.250
14
2
0.990
90.000
15
100-year
1
0.200
90.000
6.300
6.300
0.250
0.533
16
100-year
6.300
6.300
0.000
0.533
17
100-year
1
0.090
90.000
6.300
6.300
0.250
0.240
18
1 00ear
1
0.150
90.000
6.300
6.300
0.250
0.400
19
1 00ear
1
0.140
90.000
6.300
6.300
0.250
0.373
20
100-year
1
0.150
90.000
6.300
6.300
0.250
0.400
21
1 00-ear
0.000
0.000
0.250
0.600
22
1 00-ear
0.000
0.000
0.250
0.000
23
100-year
1
0.110
90.000
6.300
6.300
0.250
0.293
101
100-year
1
0.210
90.000
6.300
6.300
0.250
0.560
146
100-year
0.000
0.000
0.000
0.000
218
1 00ear
1
0.150
90.000
6.300
6.300
0.250
0.400
222
100-year
0.000
10.000
10.000
0.000
26802
1 1 00-ear
0.000
10.000
10.000
10.000
28226
1 100-year
0.000
10.000
10.000
10.000
10/24/11 15:26:55 1 /1
TDA GW - Links
Name
Scenario
Upstream
Node
Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
pe
ess
ess
Max
Flow
cfs
Max
Velocity
ft/s
P02
25-year
02
28226
Circula
2.000
50.160
2.456
0.012
0.730
4.710
P03
25 ear
03
04
Circula
1.000
44.950
1.001
0.012
0.180
2.360
PO4
25- ear
04
222
Circula
1.000
44.410
0.851
0.012
0.320
2.740
P05
25 ear
05
26802
Circula
3.000
112.000
0.000
0.012
18.620
3.800
P06
25-year
06
05
Circula
2.000
85.000
0.156
0.012
7.890
2.540
P07
25 ear
07
06
Circula
2.000
85.000
0.160
0.012
6.770
2.220
P08
25 ear
08
07
Circula
2.000
92.000
0.160
0.012
6.700
2.280
P09
25-year
09
08
Circula
1.500
99.000
0.160
0.012
6.090
3.430
P10
25-year
10
09
Circula
1.500
58.000
0.160
0.012
5.980
3.380
P11
25- ear
11
10
Circula
1.500
67.000
0.200
0.012
5.790
3.270
P12
25 ear
12
11
Circula
1.500
78.160
0.200
0.012
5.640
3.180
P13
25-year
13
218
Circula
1.500
106.890
0.199
0.012
2.300
1.480
P14
25-year
14
13
Circula
1.500
61.000
0.507
0.012
2.120
12.600
P146
25 ear
146
26802
Circula
1.000
42.310
0.740
0.012
0.320
0.630
P15
25- ear
15
14
Circula
1.000
116.000
0.259
0.012
0.640
1.510
P16
25-year
16
15
Circula
1.000
100.000
0.500
0.012
0.400
1.560
P17
25-year
17
16
Circula
1.000
85.000
0.506
0.012
0.210
2.050
P18
25- ear
18
08
Circula
1.000
38.000
1.711
0.012
0.830
2.510
P19
25- ear
19
18
Circula
1.000
96.000
2.448
0.012
0.320
2.600
P20
25- ear
20
18
Circula
1.000
110.000
0.300
0.012
0.370
1.430
P21
25-year
21
20
Circula
1.000
27.000
0.296
0.012
0.170
0.880
P218
25 ear
218
12
Circula
1.500
60.400
0.200
0.012
2.780
1.510
P22
25- ear
22
21
Circula
1.000
27.000
0.333
0.012
0.180
1.320
P222
25-year
222
05
Circula
1.000
66.640
1.433
0.012
0.320
3.360
P23
25-year
123
22
Circula
1.000
149.340
10.301
0.012
0.250
1.780
P26802
25 ear
26802
28226
Circula
3.000
121.550
-0.165 10.012
118.600
4.300
P37
25 ear 1101
02
Circula
1.000
172.160 10.485
10.012
10.480
2.380
10/24/11 15:13:41 1 /1
TDA GW - Links
Name
Scenario
Upstream
Node
Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Roughn
ess
Max
Flow
cfs
Max
Velocity
ft/s
P02
100-year
02
28226
Circular
2.000
50.160
2.456
0.012
0.850
4.940
P03
1 00ear
03
04
Circular
1.000
44.950
1.001
0.012
0.210
2.480
PO4
100 ear
04
222
Circular
1.000
144.410
0.851
0.012
0.370
2.870
P05
1 00-ear
05
26802
Circular
3.000
112.000
0.000
0.012
22.330
4.110
P06
100-year
06
05
Circular
2.000
85.000
10.156
0.012
10.190
3.100
P07
1 00-ear
07
06
Circular
2.000
85.000
0.160
0.012
8.820
2.680
P08
1 00-ear
08
07
Circular
2.000
92.000
0.160
0.012
8.660
2.640
P09
100-year
09
08
Circular
1.500
99.000
0.160
0.012
7.840
4.420
P10
100-year
10
09
Circular
1.500
58.000
0.160
0.012
7.660
4.310
P11
1 00-ear
11
10
Circular
1.500
67.000
0.200
0.012
7.410
4.170
P12
1 00ear
12
11
Circular
1.500
78.160
0.200
0.012
7.170
4.030
P13
100-year
13
218
Circular
1.500
106.890
0.199
0.012
2.830
1.590
P14
1 00ear
14
13
Circular
1.500
61.000
0.507
0.012
2.690
1.520
P146
1 00-ear
146
26802
Circular
1.000
42.310
0.740
0.012
-0.030
0.020
P15
100- ear
15
14
Circular
1.000
116.000
0.259
0.012
0.710
1.180
P16
100-year
16
15
Circular
1.000
100.000
0.500
0.012
-0.790
1.340
P17
100-year
17
16
Circular
1.000
85.000
0.506
0.012
-0.690
2.080
P18
100- ear
18
08
Circular
1.000
38.000
1.711
0.012
0.870
1.110
P19
100- ear
19
18
Circular
1.000
96.000
2.448
0.012
0.370
2.350
P20
100- ear
20
18
Circular
1.000
110.000
0.300
0.012
0.570
0.870
P21
100-year
21
20
Circular
1.000
27.000
0.296
0.012
0.450
0.790
P218
1 00-ear
218
12
Circular
1.500
60.400
0.200
0.012
3.270
1.840
P22
100- ear
22
21
Circular
1.000
27.000
0.333
0.012
0.370
0.860
P222
100-year
222
05
Circular
1.000
66.640
1.433
0.012
0.370
3.530
P23
100-year
23
22
Circular
1.000
149.340
0.301
10.012
10.260
1.520
P26802
100- ear
26802
28226
Circular
3.000
121.550
-0.165
10.012
122.380
4.640
P37
100- ear
101
02
Circular
1.000
172.160
0.485
10.012
10.560
2.490
10/24/11 15:26:26 1 /1
TDA GW - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation
(Spill Crest)
ft
Max Water
Elevation
ft
Freeboard
ft
02
25 ear
None
24.565
28.612
24.757
3.860
03
25- ear
None
23.780
28.000
23.928
4.070
04
25 ear
None
23.330
28.091
23.539
4.550
05
25-year
None
20.000
28.419
21.980
6.440
06
25 ear
None
20.133
26.911
22.119
4.790
07
25- ear
None
20.269
25.556
22.172
3.380
08
25-year
Allowed
20.416
24.443
22.222
2.220
09
25-year
Allowed
20.574
23.680
22.493
1.190
10
25 ear
Allowed
20.667
23.538
22.656
0.880
11
25- ear
Allowed
20.801
23.646
22.831
0.810
12
25-year
Allowed
20.957
24.198
23.026
1.170
13
25- ear
Allowed
21.291
24.586
23.087
1.500
14
25- ear
None
21.600
24.901
23.099
1.800
15
25- ear
None
21.900
25.490
23.109
2.380
16
25-year
None
22.400
26.048
23.139
2.910
17
25-year
None
22.830
25.141
23.186
1.950
18
25 ear
None
21.250
25.825
22.231
3.590
19
25 ear
None
23.600
27.078
23.756
3.320
20
25- ear
None
21.580
24.878
22.230
2.650
21
25-year
None
21.660
24.821
22.229
2.590
22
25 ear
None
21.750
24.831
22.229
2.600
23
25 ear
None
22.200
25.100
22.432
2.670
101
25-year
None
25.400
28.429
25.716
2.710
146
25-year
None
21.000
23.700
21.813
1.890
218
25- ear
Allowed
21.078
24.452
23.052
1.400
222
25- ear
None
22.952
28.995
23.130
5.860
26802
25-year
None
20.000
28.567
21.811
6.760
28226
25-year
None
20.200
27.410
21.740
5.670
10/24/11 15:14:29 1 /1
TDA GW - Node HGL
Name
Scenario
Type g
Type
Invert
Elevation
tt
Ground
Elevation
(Spill Crest)
Max Water
Elevation
ftft
Freeboard
ft
02
1 00-ear
None
24.565
28.612
24.771
3.840
03
1 00-ear
None
23.780
28.000
23.940
4.060
04
100-year
None
23.330
28.091
23.556
4.540
05
100-year
None
20.000
28.419
22.177
6.240
06
1 00-ear
None
20.133
26 911
22.444
4.470
07
1 00ear
None
20.269
25.556
22.544
3.010
08
100-year
Allowed
20.416
24.443
22.646
1.800
09
100-year
Allowed
20.574
23.680
23.118
0.560
10
1 00ear
Allowed
20.667
23.538
23.377
0.160
11
1 00-ear
Allowed
20.801
23.646
23.649
0.000
12
100-year
Allowed
20.957
24.198
23.964
0.230
13
100-year
Allowed
21.291
24.586
24.084
0.500
14
1 00ear
None
21.600
24.901
24.115
0.790
15
1 00ear
None
21.900
25 490
24.119
1.370
16
100-year
None
22.400
26.048
24.137
1.910
17
100-year
None
22.830
25.141
24.145
1.000
18
1 00ear
None
21.250
25.825
22.672
3.150
19
1 00ear
None
23.600
27.078
23.768
3.310
20
100-year
None
21.580
24.878
22.695
2.180
21
100-year
None
21.660
24 821
22.699
2 120
22
1 00ear
None
21.750
24.831
22.702
2.130
23
1 00-ear
None
22.200
25.400
22.716
2.680
101
100-year
None
25.400
28.429
25.741
2.690
146
100-year
None
21.000
23.700
21_993
1710
218
1 00-ear
Allowed
21.078
24.452
24.015
0.440
222
1 00-ear
None
22.952
28.995
23.144
5.850
26802
100-year
I None
20.000
28.567
21.990
6.580
28226
100-year
INone
20.200
27.410
21740
5.670
10/24/11 15 25:42 1/1
TDA I - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
27
25-year
1
0.140
90.000
6.300
6.300
0.250
1.050
27
2
0.320
90.000
28
25- ear
0.000
0.000
0.000
0.000
29
25 ear
0.000
0.000
0.000
0.000
30
25 ear
1
0.320
90.000
6.300
6.300
0.250
1.175
30
2
0.200
90.000
31
25 ear
0.000
0.000
0.000
0.000
32
25- ear
0.000
0.000
0.000
0.000
34
25-year
1
0.110
90.000
6.300
6.300
0.250
0.251
35
25-year
1
0.100
90.000
6.300
6.300
0.250
0.228
36
25- ear
1
0.050
90.000
6.300
6.300
0.250
0.114
37
25 ear
1
0.080
90.000
6.300
6.300
0.250
0.183
38
25-year
1
0.110
90.000
6.300
6.300
0.250
0.251
39
25-year
1
0.200
90.000
6.300
6.300
0.250
0.457
EX SDMH
25 ear
1
0.090
90.000
6.300
6.300
0.250
0.205
SDMH 23099
25- ear
0.000
0.000
0.000
0.000
SDMH 23791
25-year
0.000
0.000
0.000
0.000
SDMH 30900
25-year
0.000
0.000
0.000
0.000
SDMH 30901
25- ear
0.000
0.000
0.000
0.000
SDMH 30902
25 ear
0.000
0.000
0.000
0.000
SDMH 32050
25-year
0.000
0.000
0.000
0.000
10/24/11 15:36:46 1 /1
TDA I - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
27
100-year
1
0.140
90.000
6.300
6.300
0.250
1.226
27
2
0.320
90.000
28
100 ear
0.000
0.000
0.000
0.000
29
100 ear
0.000
0.000
10000
0.000
30
100-year
1
0.320
90.000
6.300
6.300
0 250
1 372
30
2
0.200
90.000
31
100- ear
0.000
0.000
0.000
0.000
32
1 00-ear
0.000
0.000
0.000
0.000
34
100-year
1
0.110
90.000
6.300
6.300
0.250
0.293
35
100-year
1
0.100
90.000
6.300
6.300
0.250
0.267
36
1 00ear
1
0.050
90.000
6.300
6.300
0.250
0.133
37
1 00ear
1
0.080
90.000
6.300
6.300
0.250
0.213
38
100-year
1
0.110
90.000
6.300
6 300
0.250
0.293
39
100-year
1
0.200
90.000
6.300
6.300
0.250
0.533
EX SDMH
1 00ear
1
0.090
90.000
6.300
6.300
0.250
0.240
SDMH 23099
1 00ear
0.000
10.000
0.000
0.000
SDMH 23791
100-year
0.000
0.000
0.000
0 000
SDMH 30900
100-ye2r
0.000
0.000
0.000
0.000
SDMH 30901
1 00ear
0.000
0.000
0.000
0.000
SDMH 30902
1 00ear
0.000
0.000
0.000
10,000
SDMH 32050
100-year
0.000
0.000
0.000
10000
10/24/11 15:4339 1 /1
TDA I - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Roughn
ess
Max
Flow
cfs
Max
Velocity
ft/s
P23099
25-year
SDMH 23099
SDMH 30900
Circular
6.000
113.450
0.353
0.012
1.140
0.050
P26
25- ear
27
EX SDMH
Circular
1.000
65.990
1.212
0.012
2.230
2.800
P28
25-year
28
27
Circular
1.000
85.870
0.500
0.012
1.180
11.490
P29
25- ear
29
28
Circular
1.000
49.600
0.500
0.012
1.180
1.490
P30
25-year
30
29
Circular
1.000
15.000
0.500
0.012
1.180
1.490
P30900
25-year
SDMH 30900
SDMH 30901
Circular
1.000
84.600
0.355
0.012
1.120
1.390
P30901
25- ear
SDMH 30901
SDMH 30902
Circular
1.000
14.410
2.776
0.012
1.120
1.390
P30902
25 ear
SDMH 30902
SDMH 32050
Circular
6.000
69.617
0.000
0.012
3.510
0.120
P31
25 ear
31
30
Circular
1.000
10.010
0.799
0.012
-0.110
0.080
P32
25-year
32
31
Circular
1.000
61.762
0.988
0.012
-0.060
0.050
P32050
25-year
SDMH 23791
SDMH 32050
Circular
1.000
39.121
2.045
0.012
0.2 00
0.440
P34
25- ear
34
SDMH 23791
Circular
1.000
44.500
0.225
0.012
0.260
0.540
P35
25-year
35
SDMH 30900
Circular
1.000
40.030
8.743
0.012
0.230
2.390
P36
25 ear
36
37
Circular
1.000
18.353
1.003
0.012
-0.900
2.410
P37
25-year
37
SDMH 23099
Circular
1.000
10.604
33.949
0.012
1.670
3.600
P38
25- ear
38
37
Circular
1.000
58.620
0.571
0.012
0.730
2.410
P39
25-year
39
38
Circular
1.000
216.320
0.585
0.012
0.450
2.520
P-EX
25-year
EX SDMH
SDMH 30902
Circular
1.000
43.440
2.000
0.012
2.430
3.030
10/24/11 15: 38:34 1 /1
TDA I - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Roughn
ess
Max
Flow
cfs
Max
Velocity
ft/s
P23099
100-year
SDMH 23099
SDMH 30900
Circular
6.000
113.450
0.353
0.012
2.100
0.100
P26
100-year
27
EX SDMH
Circular
1.000
65.990
1.212
0.012
2.590
3.260
P28
100-year
28
27
Circular
1.000
85.870
0.500
0.012
1.370
1.720
P29
1 00ear
29
28
1 Circular
1.000
49.600
0.500
0.012
1.370
1.730
P30
100-year
30
29
Circular
1.000
15.000
0.500
0.012
1.370
1.730
P30900
100-year
SDMH 30900
SDMH 30901
Circular
1.000
84.600
0.355
0.012
1.240
1.540
P30901
100-year
SDMH 30901
SDMH 30902
Circular
1.000
14.410
2.776
0 012
1.240
1.540
P30902
1 00-ear
SDMH 30902
SDMH 32050
Circular
6.000
69.617
0.000
0.012
4.020
0.140
P31
100-year
31
30
Circular
1.000
10.010
0.799
0.012
-0130
0.110
P32
100-year
32
31
Circular
1.000
61.762
0.988
0.012
-0.070
0 060
P32050
100-year
SDMH 23791
SDMH 32050
Circular
1.000
39.121
2.045
0.012
0.300
0.510
P34
1 00ear
34
SDMH 23791
Circular
1.000
44.500
0.225
0.012
0.300
0.620
P35
100-year
35
SDMH 30900
Circular
1.000
40.030
8.743
0.012
0 270
2.570
P36
100-year
36
37
Circular
1.000
18.353
1.003
0.012
-0.890
2.330
P37
100-year
37
SDMH 23099
Circular
1.000
10.604
33.949
0.012
1.780
3.560
P38
1 00-ear
38
37
Circular
1.000
58.620
0.571
0.012
0.820
2.410
P39
100-year
39
38
Circular
1.000
216,320
0.585
0.012
0.530
2.620
P-EX
100-year
EX SDMH
SDMH 30902
Circular
1.000
43.440
2.000
0.012
2.830
3.530
10/24/11 15 43:11 1/1
TDA I - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation
(Spill Crest
Max Water
Elevation
ft
Freeboard
ft
27
25-year
None
19.700
24.849
22.659
2.190
28
25-year
None
20.129
24.385
22.737
1.650
29
25- ear
None
20.377
24.044
22.782
1.260
30
25 ear
None
20.452
24.016
22.796
1.220
31
25 ear
None
20.532
24.030
22.796
1.230
32
25-year
None
21.142
24.642
22.798
1.840
34
25 ear
None
21.700
24.646
22.290
2.360
35
25- ear
None
22.900
25.141
22.962
2.180
36
25-year
None
21.884
25.014
22.575
2.440
37
25-year
None
21.700
25.590
22.420
3.170
38
25 ear
None
22.035
26.389
22.456
3.930
39
25 ear
None
23.300
26.460
23.564
2.900
EX SDMH
25-year
None
17.880
25.610
22.445
3.160
SDMH 23099
25-year
None
18.100
25.540
22.393
3.150
SDMH 23791
25- ear
None
21.600
24.490
22.284
2.210
SDMH 30900
25- ear
None
17.700
25.940
22.391
3.550
SDMH 30901
25-year
None
17.400
24.700
22.322
2.380
SDMH 30902
25-year
None
13.800 125.260
22.281
2.980
SDMH 32050
25- ear
None
113.800 125.290
22.280
3.010
10/24/11 15:38:57 1 /1
TDA I - Node HGL
Name
Scenario
Ponding
Type
yP
Invert
Elevation
ft
Ground
Elevation
(Spill Crest
Max Water
Elevation
ft
Freeboard
ft
27
100-year
None
19.700
24.849
22.794
2.060
28
100-year
None
20.129
24.385
22.899
1.490
29
100 ear
None
20.377
24.044
22.960
1.080
30
100 ear
None
20.452
24.016
22.979
1.040
31
1 00ear
None
20.532
24.030
22.979
1.050
32
100-year
None
21.142
24.642
22.980
1.660
34
1 00-ear
None
21.700
24.646
22.292
2.350
35
1 00-ear
None
22.900
25.141
22.978
2.160
36
100-year
None
21.884
25.014
22.564
2.450
37
100-year
None
21.700
25.590
22.433
3.160
38
1 00-ear
None
22.035
26.389
22.498
3.890
39
1 00ear
None
23.300
26.460
23.587
2.870
EX SDMH
100-year
None
17.880
25.610
22.504
3.110
SDMH 23099
100-year
None
18.100
25.540
22.422
3.120
SDMH 23791
100 ear
None
21.600
24.490
22.285
2.210
SDMH 30900
1 00-ear
None
17.700
25.940
22.413
3.530
SDMH 30901
100-year
None
17.400
24.700
22.330
2.370
SDMH 30902
100-year
I None
13.800
25.260
22.281
2.980
SDMH 32050
1 1 00ear
I None
13.800
25.290
22.280
3.010
10/24/11 15:42:26 1 /1
TDA V - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
124
25-year
1
0.160
90.000
6.300
6.300
0.250
0.365
40
25-year
1
0.120
90.000
6.300
6.300
0.250
0.274
400
25- ear
0.000
0.000
0.000
0.000
41
25 ear
1
0.120
90.000
6.300
6.300
0.250
0.274
42
25-year
1
0.120
90.000
6.300
6.300
0.250
0.274
43
25-year
1
0.160
90.000
6.300
10.000
0.250
4.663
43
2
2.600
90.000
44
25 ear
1
0.160
90.000
6.300
6.300
0.250
0.365
45
25-year
1
0.140
90.000
6.300
6.300
0.250
0.662
45
2
0.150
90.000
46
25 ear
1
0.190
90.000
6.300
6.300
0.250
0.434
49
25 ear
1
0.170
90.000
6.300
6.300
0.250
0.388
50
25-year
1
0.090
90.000
6.300
6.300
0.250
0.205
51
25-year
1
0.060
90.000
6.300
6.300
0.250
0.137
52
25- ear
1
0.120
90.000
6.300
6.300
0.250
0.274
53
25 ear
1
0.150
90.000
6.300
6.300
0.250
0.342
55
25-year
1
0.980
90.000
6.300
6.300
0.250
2.238
56
25-year
1
1.370
90.000
6.300
6.300
0.250
3.128
57
25 ear
0.000
0.000
10.000
0.000
58
25- ear
0.000
0.000
0.000
0.000
59
25 ear
1
0.360
90.000
6.300
6.300
0.250
0.822
60
25-year
1
0.380
90.000
6.300
6.300
0.250
0.868
61
25 ear
1
0.080
90.000
6.300
6.300
0.250
0.183
62
25 ear
1
0.090
90.000
6.300
6.300
0.250
0.205
63
25-year
1
0.130
90.000
6.300
6.300
0.250
0.297
65
25 ear
0.000
0.000
0.000
0.000
66
25- ear
1
0.110
90.000
6.300
6.300
0.250
0.251
67
25- ear
0.000
0.000
0.000
0.000
68
25-year
1
0.030
90.000
6.300
6.300
0.250
1.790
68
2
0.750
90.000
69
25- ear
0.000
0.000
0.000
0.000
70
25 ear
1
0.190
90.000
6.300
6.300
0.250
0.776
70
2
0.150
90.000
71
25-year
1
0.150
90.000
6.300
6.300
0.250
0.342
72
25- ear
1
0.180
90.000
6.300
6.300
0.250
0.845
72
2
0.190
90.000
73
25-year
0.000
0.000
0.000
0.000
74
25-year
1
0.120
90.000
6.300
6.300
0.250
0.274
76
25 ear
1
0.110
90.000
6.300
6.300
0.250
1.187
76
2
0.410
90.000
77
25-year
1
0.190 190.000
6.300
6.300
0.250
1.490
77
2
0.460
90.000
78
25- ear
1
0.130
90.000
6.300
6.300
0.250
1.644
78
2
0.590
90.000
79
25-year
0.000
0.000
0.250
0.000
80
25-year
1
0.230
90.000
6.300
6.300
0.250
0.525
81
25 ear
0.000
0.000
0.000
0.000
83
25- ear
1
0.150
90.000
6.300
6.300
0.250
0.342
84
25 ear
1
0.060
90.000
10.000
10.000
0.250
4.282
84 1
2
2.460
90.000
85 1
25 ear
1
0.030
90.000
6.300 16.300
10.250
2.215
10/24/11 15:51:13 1 /2
TDA V - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
85
2
0.940
90.000
86
25-year
1
0.110
90.000
6.300
6.300
0.250
0.251
87
25- ear
1
0.070
90.000
6.300
6.300
0.250
0.160
88
25- ear
1
0.140
90.000
6.300
6.300
10.250
0.320
89
25-year
1
0200
90.000
6.300
6.300
0.250
0.457
90
25-year
1
0.240
90.000
6.300
6.300
0.250
0.548
91
25 ear
1
0.120
90.000
6.300
6.300
0 250
0.274
92
25- ear
1
0.250
90.000
6.300
6.300
0.250
0.731
92
2
0.070
90.000
93
25-year
0.000
0.000
0.000
0.000
SDMH 301
25 ear
0.000
0.000
.0000
0.000
SDMH 801
25 ear
1
10000
10000
10000
Jam
10/24/11 15:51 13 2/2
TDA V - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
124
100-year
1
0.160
90.000
6.300
6.300
0.250
0.427
40
100-year
1
0.120
90.000
6.300
6.300
0.250
0.320
400
100- ear
0.000
0.000
0.000
0.000
41
100- ear
1
0.120
90.000
6.300
6.300
10.250
0.320
42
1 00ear
1
0.120
90.000
6.300
6.300
0.250
0.320
43
100-year
1
0.160
90.000
6.300
10.000
0.250
5.491
43
2
2.600
90.000
44
100 ear
1
0.160
90.000
6.300
6.300
0.250
0.427
45
100-year
1
0.140
90.000
6.300
6.300
0.250
0.773
45
2
10,150
90.000
46
1 00ear
1
0.190
90.000
6.300
6.300
0.250
0.506
49
100 ear
1
0.170
90.000
6.300
6.300
0.250
0.453
50
100-year
1
0.090
90.000
6.300
6.300
0.250
0.240
51
100-year
1
0.060
90.000
6.300
6.300
0.250
0.160
52
1 00-ear
1
0.120
90.000
6.300
6.300
0.250
0.320
53
1 00ear
1
0.150
90.000
6.300
6.300
0.250
0.400
55
100-year
1
0.980
90.000
6.300
6.300
0.250
2.612
56
100-year
1
1.370
90.000
6.300
6.300
10.250
3.652
57
1 00-ear
0.000
0.000
0.000
0.000
58
1 00ear
0.000
0.000
0.000
0.000
59
100-year
1
0.360
90.000
6.300
6.300
0.250
0.960
60
100-year
1
0.380
90.000
6.300
6.300
0.250
1.013
61
100 ear
1
0.080
90.000
6.300
6.300
0.250
0.213
62
1 00-ear
1
0.090
90.000
6.300
6.300
0.250
0.240
63
100-year
1
0.130
90.000
6.300
6.300
0.250
0.347
65
1 00-ear
10.000
10.000
0.000
1.557
66
1 00-ear
1
0.110
90.000
6.300
6.300
0.250
0.293
67
100- ear
0.000
0.000
0.000
0.000
68
100-year
1
0.030
90.000
6.300
6.300
0.250
2.090
68
2
0.750
90.000
69
1 00ear
0.000
0.000
0.000
0.000
70
1 00-ear
1
0.190
90.000
6.300
6.300
0.250
0.906
70
2
0.150
90.000
71
100-year
1
0.150
90.000
6.300
6.300
0.250
0.400
72
1 00-ear
1
0.180
90.000
6.300
6.300
0.250
0.986
72
2
0.190
90.000
73
100-year
0.000
0.000
0.000
0.000
74
100-year
1
0.120
90.000
6.300
6.300
0.250
0.320
76
100- ear
1
0.110
90.000
6.300
6.300
0.250
1.386
76
2
0.410
90.000
77
100-year
1
0.190
90.000
6.300
6.300
0.250
1.739
77
2
0.460
90.000
78
1 00-ear
1
0.130
90.000
6.300
6.300 10.250
1.919
78
2
0.590
90.000
79
100-year
6.300
6.300
0.250
0.634
80
100-year
1
0.230
90.000
6.300
6.300
0.250
0.613
81
1 00ear
0.000
0.000
0.000
0.000
83
100 ear
1
0.150
90.000
6.300
6.300
0.250
0.400
84
100 ear
1
0.060
90.000
10.000
10.000
0.250
5.044
84
2
2.460
90.000
85
100 ear
1
0.030
90.000 16.300
16.300
10.250
2.586
10/24/11 15:58:26 1 /2
TDA V - Conveyance Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
85
2
0.940
90.000
86
100-year
1
0.110
90.000
6.300
6.300
0.250
0.293
87
1 00-ear
1
0.070
90.000
6.300
6.300
0.250
0.187
88
1 00-ear
1
0.140
90.000
6.300
6.300
0.250
0.373
89
100-year
1
0.200
90.000
6.300
6.300
0.250
0.533
90
100-year
1
0.240
90.000
6.300
6.300
0.250
0.640
91
1 00ear
1
0.120
90.000
6.300
6.300
0.250
0.320
92
1 00ear
1
0.250
90.000
6.300
6.300
0.250
0.853
92
2
0.070
90.000
93
100-year
0.000
10.000
10.000
0.000
SDM
1 00-ear
0.000
10.000
10.000
0.000
SDM
1 00-ear
6.300
16.300
10.000
2.230
10/24/11 15:58:26 2/2
TDAV - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Rough
Hess
Max
Flow
cfs
Max
Velocity
ft/s
P124
25-year
124
46
Circ
1.000
117.615
0.500
0.012
0.370
2.420
P40
25- ear
40
400
Circ
1.500
83.790
0.501
0.012
7.380
4.150
P400
25 ear
400
SDMH 30682
Circ
1.500
13.490
1.100
0.012
16.980
9.550
P41
25- ear
41
40
Circ
1.500
71.430
2.002
0.012
7.170
3.920
P42
25-year
42
41
Circ
1.500
88.990
0.697
0.012
6.940
4.690
P43
25- ear
43
42
Circ
1.500
51.310
1.228
0.012
6.220
5.810
P44
25 ear
44
43
Circ
1.000
85.650
0.934
0.012
1.790
4.000
P45
25-year
45
44
Circ
1.000
83.870
0.715
0.012
1.450
3.900
P46
25-year
46
45
Circ
1.000
77.080
0.778
0.012
0.790
3.250
P49
25 ear
49
42
Circ
1.000
58.530
6.800
0.012
0.590
14.160
P50
25 ear
50
49
Circ
1.000
141.060
0.503
0.012
0.200
1.950
P51
25-year
51
400
Circ
1.500
46.490
0.645
0.012
10.040
5.630
P52
25 ear
52
51
Circ
1.000
50.110
2.993
0.012
0.630
0.800
P53
25- ear
53
52
Circ
1.000
100.240
2.494
0.012
0.340
2.250
P55
25 ear
55
51
Circ
1.500
42.030
2.855
0.012
6.860
3.860
P56
25-year
56
55
Circ
1.000
68.980
1.682
10.012
4.650
5.860
P57
25-year
57
56
Circ
1.000
80.030
2.224
0.012
1.780
12.710
P58
25 ear
58
57
Circ
1.000
50.410
1.904
0.012
1.680
5.700
P59
25- ear
59
58
Circ
1.000
61.000
1.902
0.012
1.690
6.000
P60
25 ear
60
59
Circ
1.000
49.520
1.898
0.012
0.870
4.700
P61
25-year
61
51
Circ
1.000
25.120
0.518
0.012
2.620
3.290
P62
25 ear
62
61
Circ
1.000
24.890
0.522
0.012
2.430
3.050
P63
25- ear
63
62
Circ
1.000
50.060
2.159
0.012
2.210
2.790
P65
25-year
65
63
Circ
1.000
46.670
0.984
0.012
1.940
2.450
P66
25-year
66
65
Circ
1.000
107.860
1.391
0.012
1.900
3.670
P67
25 ear
67
66
Circ
1.000
29.320
1.364
0.012
1.730
3.760
P68
25 ear
68
67
Circ
1.000
32.710
6.114
0.012
1.790
8.120
P69
25-year
69
SDMH 30682
Circ
1.500
13.250
1.130
0.012
14.360
8.080
P70
25-year
70
69
Circ
1.500
13.980
0.143
0.012
14.360
8.070
P71
25 ear
71
70
Circ
1.500
25.080
0.200
0.012
13.820
7.760
P72
25- ear
72
71
Circ
1.500
135.230
0.200
0.012
13.590
7.580
P73
25-year
73
72
Circ
1.500
82.330
0.267
0.012
12.950
7.200
P74
25-year
74
73
Circ
1.000
34.170
1.756
0.012
-0.620
3.140
P76
25 ear
76
73
Circ
1.500
48.950
2.000
0.012
4.870
7.670
P77
25- ear
77
76
Circ
1.500
133.120
1.801
0.012
3.910
5.890
P78
25-year
78
77
Circ
1.000
70.570
0.555
0.012
2.450
5.150
P79
25-year
79
78
Circ
1.000
130.890
0.451
0.012
0.840
2.740
P80
25 ear
80
79
Circ
1.000
20.020
0.450
0.012
0.840
2.920
P8082
25 ear
SDMH 8082
73
Circ
1.500
75.510
0.300
0.012
8.660
4.810
P81
25 ear
81
80
Circ
1.000
19.970
0.601
0.012
0.350
2.210
P83
25 ear
83
81
Circ
1.000
174.250
0.689
0.014
0.340
2.310
P84
25- ear
84
SDMH 8082
Circ
1.500
30.080
2.000
0.012
8.600
8.520
P85
25- ear
85
84
Circ
1.000
22.770
1.800
0.012
2.190
5.000
P86
25-year
86
84
Circ
1.000
22.800
2.193
0.012
2.820
5.170
P87
25-year
87
86
Circ
1.000
92.520
0.919
0.012
2.320
4.730
P88
25 ear
88
87
Circ
1.000
99.190
0.504
0.012
2.240
3.910
P89
25 ear
89
88
Circ
1.000
129.470
0.502
0.012
1.950
3.690
P90
25- ear
90
89
Circ
1.000
172.240
0.500
0.012
1.530
3.530
P91
25-year
91
90
Circ
1.000
133.690
0.643
0.012
1.000
3.350
P92
25- ear
92
91
Circ
1.000
24.430
0.491
0.012
0.730
2.780
P93
f 25 ear
93
92
Circ
1.000 IT300
0.591
0.012
-0.070
0.650
10/24/11 15:52:10 1!1
TDAV - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Rough
ness
Max
Flow
cfs
Max
Velocity
ft/s
P124
100-year
124
46
Circ
1.000
117.615
0.500
0.012
0.430
2.520
P40
1 00-ear
40
400
Circ
1.500
83.790
0.501
0.012
8.510
4.780
P400
100 ear
400
SDMH 30682
Circ
1.500
13.490
1.100
0.012
19.610
11.020
P41
100 ear
41
40
Circ
1.500
71.430
2.002
0.012
8.280
4.670
P42
100 ear
42
41
Circ
1.500
88.990
0.697
0.012
8.030
4.770
P43
100 ear
43
42
Circ
1.500
51.310
1.228
0.012
7.290
5.900
P44
100-year
44
43
Circ
1.000
85.650
0.934
0.012
2.030
4.060
P45
100-year
45
44
Circ
1.000
83.870
0.715
0.012
1.690
4.010
P46
100-year
46
45
Circ
1.000
77.080
0.778
0.012
0.930
3.370
P49
100-year
49
42
Circ
1.000
58.530
6.800
0.012
0.690
4.210
P50
100-year
50
49
Circ
1.000
141.060
0.503
0.012
0.240
2.040
P51
100-year
51
400
Circ
1.500
46.490
0.645
0.012
11.560
6.480
P52
1 00-ear
52
51
Circ
1.000
50.110
2.993
0.012
0.740
0.950
P53
1 00ear
53
52
Circ
1.000
100.240
2.494
0.012
0.410
2.650
P55
1 00ear
55
51
Circ
1.500
42.030
2.855
0.012
7.900
4.440
P56
100-year
56
55
Circ
1.000
68.980
1.682
0.012
5.320
6.680
P57
100-year
57
56
Circ
1.000
80.030
2.224
0.012
2.130
4.710
P58
1 00-ear
58
57
Circ
1.000
50.410
1.904
0.012
2.020
5.630
P59
100-year
59
58
Circ
1.000
61.000
1.902
0.012
1.970
6.140
P60
1 00ear
60
59
Circ
11.000
49.520
1.898
0.012
1.010
4.900
P61
100-year
61
51
Circ
11.000
25.120
0.518
0.012
2.990
3.740
P62
100-year
62
61
Circ
1.000
24.890
0.522
0.012
2.780
3.480
P63
100-year
63
62
Circ
1.000
50.060
2.159
0.012
2.640
3.310
P65
100-year
65
63
Circ
1.000
46.670
0.984
0.012
2.310
2.910
P66
100-year
66
65
Circ
1.000
107.860
1.391
0.012
2.310
3.750
P67
1 00ear
67
66
Circ
1.000
29.320
1.364
0.012
2.020
3.760
P68
1 00ear
68
67
Circ
1.000
32.710
6.114
0.012
2.090
8.320
P69
100-year
69
SDMH 30682
Circ
1.500
13.250
1.130
0.012
14.570
8.200
P70
100-year
70
69
Circ
1.500
13.980
0.143
0.012
14.570
8.190
P71
100- ear
71
70
Circ
1.500
25.080
0.200
0.012
13.950
7.830
P72
100- ear
72
71
Circ
1.500
135.230
0.200
0.012
15.270
8.500
P73
100-year
73
72
Circ
1.500
82.330
0.267
0.012
14.540
8.060
P74
100-year
74
73
Circ
1.000
34.170
1.756
0.012
0.570
3.180
P76
100- ear
76
73
Circ
1.500
48.950
2.000
0.012
5.480
7.740
P77
100-year
77
76
Circ
1.500
133.120
1.801
0.012
4.530
5.970
P78
100-year
78
77
Circ
1.000
70.570
0.555
0.012
2.870
5.290
P79
100-year
79
78
Circ
1.000
130.890
0.451
0.012
0.990
2.810
P80
100- ear
80
79
Circ
1.000
20.020
0.450
0.012
0.990
3.020
P8082
100- ear
SDMH 8082
73
Circ
1.500
75.510
0.300
0.012
9.410
5.220
P81
100-year
81
80
Circ
1.000
19.970
0.601
0.012
0.410
1.940
P83
100 ear
83
81
Circ
1.000
174.250
0.689
0.014
0.400
2:400
P84
100- ear
84
SDMH 8082
Circ
1.500
30.080
2.000
0.012
9.290
8.320
P85
100- ear
85
84
Circ
1.000
22.770
1.800
0.012
2.510
5.150
P86
100-year
86
84
Circ
1.000
22.800
2.193
0.012
3.540
5.630
P87
100-year
87
86
Circ
1.000
92.520
0.919
0.012
3.090
5.010
P88
100- ear
88
87
Circ
1.000
99.190
0.504
0.012
2.430
3.930
P89
100-year
89
88
Circ
1.000
129.470
0.502
0.012
2.220
3.740
P90
1 00ear
90
89
Circ
1.000
172,240
0.500
0.012
1.790
3.620
P91
100-year
91
90
Circ
1.000
133,690
0.643
0.012
1.170
3.470
P92
1 00-ear
92
91
Circ
1.000 124.430
0.491
0.012
0.850
2.880
P93
100-year
93
92
Circ
1.000 120.300
10.591
0.012
-0.080
0.720
10/24/11 15:57:51 1 /1
TDA V - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
Ground
Elevation
Max Water
Elevation
Freeboard
ft
124
25 ear
None
21.688
25.012
21.945
3.070
40
25- ear
Allowed
16.420
20.606
19.379
1.230
400
25-year
Allowed
16.000
19.988
19.047
0.940
41
25-year
None
17.850
21.961
19.660
12.300
42
25- ear
None
18.470
22.755
19.946
2.810
43
25- ear
None
19.100
23.140
20.067
3.070
44
25- ear
None
19.900
23.549
20.429
3.120
45
25-year
None
20.500
23.990
20.973
3.020
46
25- ear
None
21.100
24.433
21.434
3.000
49
25 ear
None
22.700
25.764
22.864
2.900
50
25-year
None
23.410
26.449
23.603
12.850
51
25 ear
Allowed
16.300
20.783
19.895
0.890
52
25- ear
None
18.300
21.520
19.906
1.610
53
25 ear
None
20.800
23.756
20.961
2.800
55
25-year
None
17.500
21.150
20.038
1.110
56
25-year
None
19.160
22.952
21.560
1.390
57
25 ear
None
20.940
24.984
21.668
3.320
58
25 ear
None
21.900
25.909
22.302
3.610
59
25 ear
None
23.060
26.803
23.504
3.300
60
25-year
None
24.000
27.337
24.348
2.990
61
25 ear
None
16.430
20.560
20.000
0.560
62
25- ear
None
16.560
20.499
20.091
0.410
63
25-year
None
17.641
21.444
20.247
1.200
65
25- ear
None
18.100
21.539
20.360
1.180
66
25- ear
None
19.600
24.350
20.618
3.730
67
25- ear
None
20.000
24.910
20.717
4.190
68
25-year
None
22.000
25.259
22.568
Z690
69
25- ear
None
16.040
19.444
18.959
0.480
70
25- ear
Allowed
16.060
19.539
19.180
0.360
71
25- ear
Allowed
16.110
19.539
19.540
0.000
72
25-year
None
16.380
22.841
21.424
1.420
73
25-year
Sealed
16.600
25.137
22.455
2.680
74
25- ear
None
21.000
25.245
22.453
2.790
76
25- ear
None
21.800
25.900
22.563
3.340
77
25 ear
None
23.200
27.081
23.802
3.280
78
25-year
None
23.900
28.056
24.485
3.570
79
25- ear
None
24.490
28.606
24.889
3.720
80
25- ear
None
24.580
28.512
24.975
3.540
81
25-year
None
24.700
28.610
24.986
3.620
83
25-year
None
25.900
28.983
26.137
2.850
84
25- ear
None
21.300
25.429
23.042
2.390
85
25- ear
None
21.700
25.197
23.077
2.120
86
25-year
None
21.800
25.665
23.133
2.530
87
25-year
None
22.650
27.135
23.401
3.730
88
25 ear
None
23.150
27.830
23.838
3.990
89
25 ear
None
23.800
28.129
24.432
3.700
90
25-year
None
24.700
28.269
25.231
3.040
91
25-year
None
25.560
28.667
25.951
2.720
92
25 ear
None
25.680
28.783
26.046
2.740
93
25- ear
None
25.800
28.897
26.046
2.850
SDMH 30682
25 ear
None
15.890
20.000
18.750 11.250
SDMH 8082
25-year
Sealed
16.400
24.440
22.852 11.590
10/24/11 15:54:18 1 /1
TDA V - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
Ground
Elevation
Max Water
Elevation
Freeboard
ft
124
1 00-ear
None
21 688
25.012
21.966
3.050
40
1 00ear
Allowed
16.420
20.606
19.585
1.020
400
100-year
Allowed
16.000
19.988
19.136
0.850
41
100-year
None
17.850
21.961
19.949
2.010
42
100 ear
None
18.470
22.755
20.390
2.360
43
100 ear
None
19.100
23.140
20.552
2.590
44
100-year
None
19.900
23 549
20 662
2.890
45
100-year
None
20.500
23.990
21.021
2.970
46
100 ear
None
21.100
24.433
21.465
2.970
49
100- ear
None
22.700
25.764
22.877
2.890
50
100-year
None
23.410
26.449
23.618
2.830
51
100-year
Allowed
16.300
20.783
20.254
0.530
52
1 00-ear
None
18.300
21.520
20.269
1.250
53
1 00-ear
None
20.800
23.756
20.972
2.780
55
100-year
None
17.500
21.150
20.453
0.700
56
100-year
None
19.160
22 952
22 434
0.520
57
1 00ear
None
20.940
24.984
22.601
2 380
58
1 00ear
None
21.900
25.909
22.667
3.240
59
100-year
None
23.060
26.803
23.540
3 260
60
100-year
None
24.000
27.337
24.374
2.960
61
1 00ear
None
16.430
20.560
20 389
0.170
62
1 00-ear
None
16.560
20.499
20.499
0.000
63
100-year
None
17.641
21.444
20.728
0.720
65
100-year
None
18.100
21.539
20.894
0.640
66
100- ear
None
19.600
24.350
21.278
3.070
67
1 00-ear
None
20 000
24.910
21.458
3 450
68
100-year
None
22.000
25.259
22.634
2.630
69
100-year
None
16.040
19.444
18.956
0.490
70
1 00-ear
Allowed
16.060
19.539
19.183
0 360
71
1 00-ear
None
16.110
19.539
19.539
0.000
72
100-year
None
16.380
22.841
21.915
0.930
73
100-year
Sealed
16.600
25.137
23.209
1.930
74
1 00-ear
None
21.000
25.245
23.211
2.030
76
100 ear
None
21.800
25.900
23.299
2.600
77
100-year
None
23.200
27.081
23.899
3.180
78
100-year
None
23.900
28.056
24.550
3.510
79
1 00ear
None
24.490
28.606
24.931
3.670
80
1 00-ear
None
24.580
28.512
25.014
3.500
81
100-year
None
24.700
28.610
25.022
3 590
83
100-year
None
25.900
28.983
26.156
2.830
84
1 00ear
None
21.300
25.429
23.895
1.530
85
100 ear
None
21.700
25.197
23.944
1.250
86
100-year
None
21.800
25.665
23.978
1.690
87
100-year
None
22.650
27.135
24.263
2.870
88
1 00ear
None
23.150
27.830
24.528
3.300
89
1 00-ear
None
23.800
28.129
24.777
3.350
90
100-year
None
24.700
28.269
25.289
2.980
91
100-year
None
25.560
28.667
25.988
2.680
92
1 00ear
None
25.680
28.783
26.080
2.700
93
1 00ear
None
25.800
28.897
26 080
2.820
SDMH 30682
100-year
None 1115.890
20.000
18.750
1.250
SDMH 8082
100-year
Sealed 116A00
24.440
23.696
0.740
10/24/11 15:57 09 1/1
TDA A (South) Conv.Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
100
25-year
1
0.170
90.000
6.300
6.300
0.250
0.822
100
2
0.190
190.000
102
25 ear
1
0.090
90.000
6.300
6.300
0.250
0.822
102
2
0.270
90.000
103
25- ear
1
0.090
90.000
6.300
6.300
0.250
0.205
104
25-year
1
0.060
90.000
6.300
6.300
0.250
0.137
105
25- ear
1
0.070
90.000
6.300
6.300
0.250
0.160
106
25 ear
1
0.080
90.000
6.300
6.300
0.250
0.183
107
25-year
1
0.090
90.000
6.300
6.300
0.250
0.457
107
2
0.110
90.000
108
25- ear
6.300
6.300
0.000
0.365
109
25- ear
1
0.240
90.000
6.300
6.300
0.250
1.548
109
2
0.450
90.000
110
25-year
1
0.180
90.000
6.306
6.300
0.250
0.411
95
25 ear
1
0.120
90.000
6.300
6.300
0.250
0.822
95
2
0.240
90.000
98
25-year
1
0.150
90.000
6.300
6.300
0.250
0.342
99
25-year
1
0.130
90.000
6.300
6.300
0.250
0.753
99
12
0.200
90.000
SDMH 12357
1 25 ear
I
1
10.000
10.000
0.000
0.000
10/24/11 16:30:39 1 /1
TDA A (North) Conv Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
114
25-year
0.000
0.000
0.000
0.000
115
25-year
1
0180
90.000
6.300
6.300
0.250
0.411
116
1 25- ear
1
0.500
90.000
6.300
6.300
0.250
1.142
117
1 25 ear
1
10,000
10.000
10000
0.000
118
1 25-year
1 1
10.130 190,000
16.300
16,300
10250
0.297
10/24/11 16:49:49 1 /1
TDA A (South) Conv Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
100
100-year
1
0.170
90.000
6.300
6.300
0.250
0.960
100
2
0.190
90.000
102
1 00ear
1
0.090
90.000
6.300
6.300
0.250
0.960
102
2
0.270
90.000
103
1 00ear
1
0.090
90.000
6.300
6.300
0.250
0.240
104
100-year
1
0.060
90.000
6.300
6.300
0.250
0.160
105
1 00ear
1
0.070
90.000
6.300
6.300
0.250
0.187
106
100-year
1
0.080
90.000
6.300
6.300
0.250
0.213
107
100-year
1
0.090
90.000
6.300
6.300
0.250
0.533
107
2
0.110
90.000
108
100 ear
6.300
6.300
0.000
0.427
109
1 00-ear
1
0.240
90.000
6.300
6.300
0.250
1.807
109
2
0.450
90.000
110
100-year
1
0.180
90.000
6.300
6.300
0.250
0.480
95
1 00-ear
1
0.120
90.000
6.300
6.300
0.250
0.960
95
2
0.240
90.000
98
100-year
1
0.150
90.000
6.300
6.300
0.250
0.400
99
100-year
1
0.130
90.000
6.300
6.300
0.250
0.880
99
2
0.200
90.000
SDMH 12357
100- ear
10.000
10.000
10.000
0.000
10/24/11 16:34:49 1 /1
TDA A (North) Conv Basins
Name
Scenario
Subcatchm
ent
Area
ac
Impervious
Percentage
%
Impervious
Tc
mins
Pervious
Tc
mins
Runoff
Coefficient
Pervious
Max
Flow
cfs
114
100-year
0.000
0.000
0.000
0.000
115
100-year
1
0.180
90.000
6.300
6.300
0 250
0.480
116
1 00ear
1
0.500
90.000
6.300
.6300
0.250
1.333
117
1 1 00ear
1
10.000
10.000
10.000
0.000
118
1 100-year 1
1
10.130
190.000
16.300
16.300
10.250
10.347
10/24/11 16:46:58 1 /1
TDA A (South) - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Roughn
ess
Max
Flow
cfs
Max
Velocity
ft/s
P100
25- ear
100
99
Circular
1.000
43.140
0.533
0.012
2.120
2.670
P102
25- ear
102
100
Circular
1.000
122.450
0.563
0.012
1.340
1.690
P103
I 25- ear
103
1102
Circular
1.000
70.770
0.579
0.012
0.600
0.760
P104
25- ear
104
103
Circular
1.000
16.200
1.235
0.012
0.370
0.470
P105
25-year
105
104
Circular
1.000
16.500
1.212
0.012
0.190
0.240
P106
25- ear
106
95
Circular
1.000
68.130
0.881
0.012
2.590
3.240
P107
25- ear
107
106
Circular
1.000
36.700
0.518
0.012
2.400
3.010
P108
25-year
108
107
Circular
1.000
91.910
0.500
0.012
1.950
2.440
P109
25-year
109
108
Circular
1.000
99.290
0.755
0.012
1.950
2.460
Pilo
25 ear
110
109
Circular
1.000
83.900
0.596
0.012
0.420
0.530
P95
25- ear
95
SDMH 12357
Circular
1.500
114.000
1.667
0.012
6.590
3.690
P98
25-year
98
95
Circular
1.500
110.380
0.921
0.012
3.190
1.790
P99
25-year
99
98
Circular
1.000
82.120
0.467
0.012
2.850
3.590
10/24/11 16:09:18 1/1
TDA A (North) - Links
Diameter
Max
Max
Name
Scenario
Upstream
Downstream
Shape
(Height)
Length
Conduit
Roughn
Flow
Velocity
Node Name
Node Name
ft
ft
Slope
ess
cfs
ft/s
P115
25-year
115
117
Circular
1.000
21.030
0.323
0.012
1.850
2.850
P116
25 ear
116
115
Circular
1.000
23.434
0.572
0.012
1.440
1.750
P117
25 ear
117
114
Circular
1.000
12.973
0.902
0.012
1.850
3.160
P118
25-year
118
116
Circular
1.000
32.774
6.102
0.012
0.300
2.270
10/24/11 16AI1 57 1/1
TDA A (South) - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
ope
ess
ess
Max
Flow
cfs
Max
Velocity
ft/s
P100
100-year
100
99
Circular
1.000
43.140
0.533
0.012
2.460
3.090
P102
100-year
102
100
Circular
1.000
122.450
0.563
0.012
1.560
1.960
P103
I 100-year
103
1102
Circular
1.000
70.770
0.579
0.012
0.730
0.920
P104
100-year
104
103
Circular
1.000
16.200
1.235
0.012
0.450
0.570
P105
100-year
105
104
Circular
1.000
16.500
1.212
0.012
0.230
0.360
P106
1 00-ear
106
95
Circular
1.000
68.130
0.881
0.012
3.010
3.760
P107
1 00ear
107
106
Circular
1.000
36.700
0.518
0.012
2.800
3.500
P108
100-year
108
107
Circular
1.000
91.910
0.500
0.012
2.270
2.840
P109
100-year
109
108
Circular
1.000
99.290
0.755
0.012
2.270
2.850
P110
1 00ear
110
109
Circular
1.000
83.900
0.596
0.012
0.510
0.640
P95
1 00-ear
95
SDMH 12357
Circular
1.500
114.000
1.667
0.012
7.680
4.300
P98
100-year
98
95
Circular
1.500
110.380
10.921
0.012 13.720
2.090
P99
100-year
99
98
Circular
1.000
82.120
10.467 10.012
13.320
14.160
10/24/11 16:11:48 1 /1
TDA A (North) - Links
Diameter
Max
Max
Name
Scenario
Upstream
Downstream
Shape
(Height)
Length
Conduit
Roughn
Flow
Velocity
Node Name
Node Name
ft
ft
Slope
ess
cfs
ft/s
P115
100-year
115
117
Circular
1.000
21.030
0.323
0.012
2.160
3.050
P116
1 00ear
116
115
Circular
1.000
23.434
0.572
0.012
1.680
2.130
P117
1 00ear
117
114
Circular
11,000
12.973
0.902
0.012
2.160
3.330
P118
100-year
118
116
Circular
11.000
32.774
6.102
0.012
0.350
2.610
10/24/11 16:47:30 1 /1
TDA A (South) - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation
(Spill Crest
Max Water
Elevation
ft
Freeboard
ft
100
25-year
None
24.400
29.532
27.383
2.150
102
25-year
None
25.090
29.426
27.521
1.910
103
25- ear
None
25.500
29.078
27.533
1.540
104
25 ear
None
25.700
29.027
27.534
1.490
105
25 ear
None
25.900
29.010
27.535
1.480
106
25-year
None
23.400
30.323
27.021
3.300
107
25- ear
None
23.590
30.050
27.159
2.890
108
25- ear
None
24.050
30.019
27.388
2.630
109
25-year
None
24.800
29.422
27.636
1.790
110
25 ear
None
25.300
29.225
27.646
1.580
95
25 ear
None
22.550
30.814
26.726
4.090
98
25 ear
None
23.567
30.167
26.814
3.350
99
25-year
None
24.170
29.746
27.255
2.490
SDMH 1235
25-year
None
17.600
30.570
26.350
4.220
10/24/11 16:09:46 1 /1
TDA A (North) - Node HGL
Ponding
Invert
Ground
Max Water
Freeboard
Name
Scenario
Type
Elevation
Elevation
Elevation
ft
ft
(Spill Crest
ft
114
25-year
None
26.500
30.600
27.003
3.600
115
25-year
None
26.766
31.000
27 961
3.040
116
25- ear
None
26.900
29.890
28.039
1.850
117
25 ear
I None
126,617
131,316
127.337
13.980
118
25-year
I None
128.900
132,124
129.062
13,060
10/24/11 16:4220 1/1
TDA A (South) - Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation
(Spill Crest
Max Water
Elevation
ft
Freeboard
ft
100
100-year
None
24.400
29.532
27.742
1790
102
100-year
None
25.090
29.426
27 926
1.500
103
1 00-ear
None
25.500
29.078
27.942
1.140
104
1 00ear
None
25.700
29.027
27 943
1.080
105
100-year
None
25 900
29.010
27.944
1.070
106
100-year
None
23.400
30.323
27.259
3.060
107
1 00ear
None
23.590
30.050
27.446
2 600
108
1 00ear
None
24 050
30.019
27.753
12.270
109
100-year
None
24.800
29.422
28.087
1.330
110
100-year
None
25.300
29.225
28100
1120
95
1 00ear
None
22.550
30.814
26.859
3 950
98
1 00ear
None
23.567
30.167
26.977
3190
99
100-year
None
24170
29.746
27.572
2170
SDMH 12357
100-year
None
17.600
130,570
26 350
4.220
10/24/1 1 16 11 16 1 /1
TDA A (North) - Node HGL
Ponding
Invert
Ground
Max Water
Freeboard
Name
Scenario
Type
yP
Elevation
Elevation
Elevation
ft
ft
(Spill Crest
ft
114
100-year
None
26.500
30.600
27.052
3.550
115
100-year
None
26.766
31.000
28.043
2.960
116
1 00ear
None
26.900
29.890
28.158
1.730
117
1 00ear
I None
126.617
131.316
27.413
13.900
118
100-year
I None
128.900
132.124
129.082
11040
10/24/11 16:47:57 1 /1
Created by: K.Smith 7/9/10
Checked by: R. Edralin 7/26/10
Updated: K. Smithl0/18/11
TDA GW Tailwater Calculation
Notes/Assumptions:
1. No existing hydraulic model is available for the drainage system between Rainier Avenue CB 5
and Springbrook Creek.
2. Since the existing section of Rainier Avenue between Grady Way and 7th Street does not
experience significant flooding, and because the project will not increase flows to the downstream
system, a hydraulic anlaysis downstream to Springbrook Creek is not warranted or required by the
the KCSWDM.
3. This tailwater elevation calculation is intended only for sizing the storm drain pipes
for the Rainier Avenue Improvements.
Approach:
1. An XP-SWMM hydraulic model was created for the drainage system between CB 5 and Lind
Avenue.
2. Since the area contributing runoff to this system exceeds 10 acres, KCRTS with 15-minute
time steps was used for calculating peak flows.
3. The analysis was run using varying tailwater conditions at Lind Avenue to determine the elevation
at which tailwater conditions downstream from Lind Avenue begin to impact the water elevation at
CB 5--the resulting water elevation at CB 5 has been used for the design TW condition.
Contributing Areas (See attached fioure):
Rainier Avenue & Adjacent Off -site tributary area:
Sound Ford/Renton Mazda:
Area north of Lithia Hyundai:
Renton Honda
KCRTS Hvdroloov:
See attached KCRTS output.
Peak rate results:
(Total Tributary to CB 5)
(Tributary to SDMH 28310)
CB 5
SDMH 28310
XP-SWMM Model:
See attached model schematic and input/output tables.
Results/Conclusions:
Lind TW (approx. IE 17.7)
17.7 (54" Pipe IE)
19
20
21
22.2 (54" Pipe Crown)
6.4 ac
4.7 ac
4.5 ac
15.6 ac
5.0 ac
Q25
12.66 cfs
4.16 cfs
CB 5 HGL
CB 28226 HGL
21.89
21.50
21.87
21.47
21.88
21.49
21.97
21.65
22.57
22.43
A design TW elevation of 21.65 for CB 26802 has been used for TDA GW conveyance analysis,
corresponding to the likely water elevation due to upstream flows, assuming no
additional influence from conditions downstream from Lind Ave.
10/18/11 Revision note: Tailwater analysis point moved downstream to CB 28226 since
the existing 30" storm drain between CB 5 and CB 26802 will be replaced with a 36"
storm drain as a part of this project, and the roadway conveyance analysis has been
extended downstream to that point.
16,F8-�1,4
,ca,,—
SW 7th St
i8,E8-1 ]61�8-8 16,Ezs
16,E8-10 6,E8-11 16,F8-14
6 Eg-211116,F8- 1 6,F8-
16, 8-18 16,E 6 lL
16,E8-4 1�,E8-"2f-i
/ 2t;F -2
Rainier
6.4 AC
Q
4.7 AC
Sound
Ford a
KS�apED
CB ZF CBEC _.-
h,f: 3- 9
CB 26802 E 1 E
CB 28226
-1,E3-
Renton CB 28310
Honda '21,F
5.0 AC1;1^3-6
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1 206 4419385
F 1 206 448 6922
W www ghd.com
Renton
Mazda
Grady \Nay
] 6,F-pt-� 7
cn, j \1(6 F 8
16,F8
> �
Q1F�3-`
;- , ? iIC.C�3~
C) Nq�7'78-
m
16,F--1
16f6--1
South
Renton
Park & Ride
S 6th St
S 7th St`
21;G3=4\� 21,H4-16
RAINIER AVENUE S
GRADY WAY UPSTREAM BASIN
C4
' 3` `,P �• 1 i
1q.-r Air hi
a"PAY7i66,
.- a cOf
15 4f,!�Stl
1 A 1 i'l. VA�ayy Y.I:�i+,,
a /'+N'� tF''s
20' WIDE WATER LING EASEMENT TO CITY OF RENTON
1
-aar WIDE TRAA
nor-3 `EASEMENT TO
car-Q •..
ex. PR'' ` td'LG /T4a It"IA, S
.1 � F. � .... "f ...,... �-rl R'.",• ,,..,,.,n ew .qs•..T .. r 1-_.,.., .... -
NO
y 1 a• t 1 /
dkF,+'t 1 ,� j ��bC1Yi_ ;'Vt.'t'r;"'° ; + t :i(`7•, Y/''' grit Ir 't:,� `:.Kt a; (�4'w�,t/y+wy..
Y..�ilSrit'1 t.1. t'4 y4 _' �,t jY"ri :f}i fl r :':;1L'`.,•��1'�i.1' .y W.r:x C�A,ea•11t+L f1 ,�i` e
I p. ylt, I'ft�.�,];j�'�y' �.F,S 1J. 1, , �.prr .�,: :� �s�,.J� L;. .ty•,l �r �1 /'
•'+1 `%1�`.N �fl k.N'���YYY,: V4 plltY 'L.i.' ��..•� Itdrr'yy-'��IGli,�,l �4fcr.�� `Y 'N "�.ti.' {�,5 �'
.. '�.'�µ � ,1 .�+,�' RC .� U I J,I > }"lr'.i,j�._�$'S Sy•�R:� ,r � :f t� A•,
I/14-. S6'CT. !8 ,TWP. P3K,
I I
r s
i Y
oI
dn•:eXrliuYa'i&r:I•.+, t' ... , •.Y. ,,,.,r .4:1},, :4 ,� .v^_
,,��� RENTON HONDA „ i f a.`1hy
1O A 7ION 'I r � a
IRANl� s NION VOLTAO1 . j� CATION �'• t n' "
\ 1 6p r , :'% I
YNP4 naeND YNClaONOOMO / r
eONan9IAOLa for "E DRAINAGE EASEMENT sOMeN OAOt, �t S"1E J
l.'
87 rip
/J/I
:,;,^ �: ;.:i. :,te.^rau...... :'F.r_:.. •._1:°,[ri;'L•^d".il''N!fTln
','19J. �F'[ •...4i�. ,",. ,I �4n1, ,'/ylI'•,: Ih".'dir•!.:N� J �
SO W.
p ✓, 1 ,ti xI
�• Y^ . ,x, tltt , •r ...h N d,•,1 • „i' FETTER
WQ t •.t' . I• tF�C� ���yl 4 (1�� ' 7v��
t v
15 TOP OF FIRE�6
"A
! yyI txx(r .tl,• / '•�,!hy�t1ar
"•^�'' I /1•7';�L1i1 �( I11 •,.�' i',1Y. Ne''�•k
j(r
�•{ v'I��u
:Y�'
`� �iar'M!� It.� 1, I." �; 1 v;! �•y •� •�r �r h'' •4'�� t �/ �'�ti�;ltll7'k 'A'{
/� .>F G',��9 I :.;. 1...1 I ,I Q r�lr 't''.`7��+ {{jj,�^»�X..', 1 ,!'•.•. "fU
.._�tiuhl:_- _._ • t- ., . - (V.':"wla1 �' + ., ... ' '6"Ju`n.:A:,i'F1 `:icY:lic.►
0 f 2 J 4 D 6 7
M
ap 144,o
N �ly�h A
o+�o�W
p�41Q��
K I'• U
8 y9� UC•
t Q I P
'Ip,u
yl�W vI'n' :'
A�CEW.1k'A�S NT FOR LOTS 2. 4- .
R 9
NOTF.'.d'I
NAA_HOLE R!M AND CRA7F
---'�e,..�.. . I' t r'i' .. It • ; yv .dAG 'S./•,Y>�•�1(QPeA�..Rl4/)l t
1
TYp hll d ' :PPNFR/ L1'•
L _ 1
ovisdsE
T. WAY . r
• I•'i^i••.• rN i I
�fy to $!><+iu�
G
sl1
va? 1. r • Ir.�,�`, »:•^i, }s"t";•1' p
i / ; •:+e,I.'�.1 e,'�', .. ?:•St • li.��' a ..'.c ��Y :;'t.!3��7tt•,
I � �, :niPl;.t;%,.yt # ta' .1•x •r �+'�Oti I i � a,:. l
3.
/0 !/ 12 /3 /4
NCONNACTORSHRLL CALL PS.P6
bls
Z
A
r
U'
z
I1J n
N C 3
U Q
a w 2
cc c
w p
Q r W
W W ¢
T
a w
1 O
U7 ac
n' 2
0
F
2
J 4t . - X 1 17.25 N
'9' yn pnuyavn[ 7, S//e Plan And Ctod/ng. 0
V �pN GWr / - W - . / Ll 2-exisl/ng 3S"dlamelarcontwe slam aYoinp/pas (01 Assumed csih of 4 airlt p tale will bo
�� I NOT£: ,a i.l. wstee N•,N tlES1GN ASSUMPT1aN/COMPUr4T10NS m
✓ leave the site hers, westerly 1lmlla. independency darn/q^ad, d
EX / F f4 Ha fAn eapocify or the prop fad 54"d/omaler alotm dials provides for (ware L Site 6enerohd RuAo/!; 0 ,Av Give'); 0.36"and assum/ng n • 0.0018 /bl Maximum homier at #goers reel or Aai/ding =
COORORVAT£S
Dewar rm I
S1AT/oel
OEAwive
O(STAN(.-c
X
Y
Nil • 4
114.1.1
M -t
O+OP
/r4 laB./0
/Bab aY0.9a
S 4 Oa E
IOF.00
MN-•t
liar
else
fesed
N7T'48?B E
_
5l e.00
612r
tr4 rao.aa
t BaT o a,Ra
Nr7. 48 ae e
1 ,21,00.
4M-4
l3I'I2
frA 9l q I
.1 B5776:.. 4 I
MH-
t4♦ d1n
st!•00 1e F
10704
17 08 al
a08,Ae
M
��
potential b,clo(fallon of:
1 a) As&mirg oxtsf1po ouNa/I We siraWs, (4-36"5,0.) which ham a
0 • Alc
A•SAr.
I . /00 YQm Storm.
Inlet Concealrolfon
r • 4.0!/a
Q ' 28• •' •1°'
(el edl any fill 010,7 s, (L�c'ruding dflch l/fll
(d1 n finish S.
o
0 IV
A
copdelty et 56.4ole. Thon a 24"dlamoler conmely p/pe constructed
i • 2.5
77me. 10. 9mies.
Or+rllaw • P 12R.5)• S7c/s.
City of elborklgoe irdme
(el City of Renton eNbod raq,4fcM@
I{
al a slope of 0..JN% and having a dopaalry of 0. 9,Sela MAY At
e • 0.77
(Sea WSOOTI Highway
• •
(!) CH, 1.
per portf/p/ raqu/ emeMs. One pork-
3
oeeomoa'olod.
0•(5/(Y.5) (O_r7/•9.6eis.
Nydra/ie Manuo6 CnorfiJ/
9, Rrgy4od Copoy!!y 0/Oulldl.
t 11
/np stall per YUO aq.IL or ouaamg.
OR
(b) Assum/ng /ho 0.110#V oulfo/l system Is supplemented by /As
c • Slla Co✓oroq'B
Roof 22 %
Onstls t EalfrAV site
A6Cfs tss.4 P19 • 9d.Oc1i
'CapaCily
< ,
I r
oatdll/on n/ 1-,'1 s" dtomo l...... mt. pips 6-je cld .1 a slope el
"didmeler
Paremded 56 %
on OF Oaf Abw • S7.O eta
"
0. f¢x and having d capaifly of 0.28cfs. Then a 42
C04FOIR Pipe a Ruracled�! III slope of0.1d% and havlaga capdrity
pp
Landsi'gvs 23 %
CoJleYrloled Campof/ls C•O.TT
5.CalevblBd Required COnersta Phse Site TO
Accomadato 45c/s Al A S/ape Of 0,18%And
w w a
0
of p • 4£ c/a. NAI' AO oceomaddfed,
_
Calndalad /allow Potential Franm
Easl 1Haliiler Avenllel
n .
2 )
OR (c
2.
D r 92" r • 9.7 //a
-42"
O 0 7�
l Assvmlrlo- ens at Me oxfstia� J6"Mamete, eoaerace p/pea /a rup lead
2-ox1fling 3O"dial»ter Zone
the ltmfte,
storm aiofp P1Pu5 enler
6.Caftlated De/oalloo
iOT NpUIn�A
PAOJ81062
by q 46"d7dmoler eoacrslap/pn rorofryehd eta slope a/0.16
and having' a ao Nty of 0%34els. Then a 42adiameter eonci Ja
Seto al Beastly
0 • AI� Sivan: D• 30" and 0aaaming n • 0.00/6
1/1 Assume Na Mddllfearloo Ta Exisrfog Wt.. And
ppN aCVlelcxa Or1Ll I
81 O 6 2
oN.ro t r7 a r salae .da PIP4 construued a! a.slop#,O/ 0.18% 4ad having ocapacity of v • 3,¢./As •%idle/ caaudltas: r t DAWN! NOR/1,' x.e .
O• IfRds., MAY he aCCPANQvIBd, O. 17.7cfe silo Daleallea• VD•trRL-firL
TT • / B,L.. Inflow • 2 /17.7/ • 35.4c/e• • 1f L !R'Le') t a VSRT,' C/TY OF RENTON
N 4t f VO• A(M431 (4) 4 Psi ao• 0 0 /00'
•760 /L'
_ t -
1 OF 2
. I I �II,I .I,I III I j II ILI'..y III, :III yl III. II III I'�IIIIIIIIIIIIIII�IIIILII Ilu, lu. •I� „II ' I: t'.�:I' •! :•) I1 I
I, I' �. I I .IIII III II III I' :II I. ,I'.II I'llll'.III I:.:1.111", 1'III II •II 'I' ..] •,I II „ ( fill 11 .fI I I I ,I"II ,I ,II II : I II„I tl ll'll,.,�III .I II, II I,I II......I•II••' I•. , .�I I•, I'lI I1. IIlI,r Iltl IIIII I'11. ,1 I�II 1, 71 ,III,I, III . I1: �t I I' III !.I „ I Q l
"M .91 41A.11_.ICI,.Le1I-LI'm... 151 �,11.41-1,f d�,,,1,7llynhi H�I�IM, �ilnf1"" Id-113Iul�ml4 J.5.1lll,dl1
T
Renton Honda
CB 5
SDMH 26802
•� ;C7
D_
Z
m
D
m
,02
SDMH 28310 ,SD/MH 28226
n
GRADY WAY
Sound Ford
XP-SWMM Model Schematic
For TDA GW Tailwater Calculation
Scale 1 : 1781.30
Grady Way - CB 5 - 15.6 ac
Flow Frequency Analysis
Time Series File:grady-e.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
6.53
6
8/27/01
18:00
16.92
1
100.00
0.990
4.55
8
9/17/02
17:45
12.66
2
25.00
0.960
12.66
2
12/08/02
17:15
8.91
3
10.00
0.900
5.26
7
8/23/04
14:30
7.40
4
5.00
0.800
7.00
5
10/28/04
16:00
7.00
5
3.00
0.667
7.40
4
10/27/05
10:45
6.53
6
2.00
0.500
8.91
3
10/25/06
22:45
5.26
7
1.30
0.231
16.92
1
1/09/08
6:30
4.55
8
1.10
0.091
Computed Peaks
15.50
50.00
0.980
Grady Way - Renton Honda - 5.0 ac - SDMH 28310
Flow Frequency Analysis
Time Series File:grady-w.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
2.14
6
8/27/01
18:00
5.56
1
100.00
0.990
1.50
8
9/17/02
17:45
4.16
2
25.00
0.960
4.16
2
12/08/02
17:15
2.93
3
10.00
0.900
1.73
7
8/23/04
14:30
2.43
4
5.00
0.800
2.30
5
10/28/04
16:00
2.30
5
3.00
0.667
2.43
4
10/27/05
10:45
2.14
6
2.00
0.500
2.93
3
10/25/06
22:45
1.73
7
1.30
0.231
5.56
1
1/09/08
6:30
1.50
8
1.10
0.091
Computed Peaks
5.09
50.00
0.980
Grady TW Calc - Nodes
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
ft
Max Water
Elevation
ft
Freeboard
ft
SDMH 28226
Base Scenario
None
20.000
27.410
21.653
5.760
SDMH 28226
Lind TW=17.7
21.496
5.910
SDMH 28226
Lind TW=19
21.472
5.940
SDMH 28226
Lind TW=20
21.490
5.920
SDMH 28226
Lind TW=21
21.653
5.760
SDMH 28226
Lind TW=22.2
22.425
4.990
SDMH 26802
Base Scenario
None
20.000
28.450
21.897
6.550
SDMH 26802
Lind TW=17.7
21.800
6.650
SDMH 26802
Lind TW=19
21.787
6.660
SDMH 26802
Lind TW=20
21.797
6.650
SDMH 26802
Lind TW=21
21.897
6.550
SDMH 26802
Lind TW=22.2
22.530
5.920
SDMH 28310
Base Scenario
None
19.900
28.700
21.509
7.190
SDMH 28310
Lind TW=17.7
21.268
7.430
SDMH 28310
Lind TW=19
21.225
7.480
SDMH 28310
Lind TW=20
21.258
7.440
SDMH 28310
Lind TW=21
21.509
7.190
SDMH 28310
Lind TW=22.2
22.383
6.320
LindMH
Base Scenario
None
17.700
28.700
21.000
7.700
LindMH
Lind TW=17.7
21.000
7.700
LindMH
Lind TW=19
21.000
7.700
LindMH
Lind TW=20
21.000
7.700
LindMH
Lind TW=21
21.000
7.700
LindMH
Lind TW=22.2
22.200
6.500
CB5
Base Scenario
None
20.000
28.440
21.969
6.470
CB5
Lind TW=17.7
21.885
6.550
CB5
Lind TW=19
21.874
6.570
CB5
Lind TW=20
21.882
6.560
CB5
Lind TW=21
121,969
16.470
C135
Lind TW=22.2
122.566
15.870
10/18/11 15:42:31 1 /1
Grady TW Calc - Links
Name
Scenario
Upstream
Node Name
Downstream
Node Name
Shape
Diameter
(Height)
ft
Length
ft
Conduit
Slope
Rough
ness
Max
Flow
cfs
P28226
Base Scenario
SDMH 28226
SDMH 28310
Circular
4.333
39 200
0 000
0.012
12.700
P28226
Lind TW=17.7
12.660
P28226
Lind TW=19
12.660
P28226
Lind TW=20
12.660
P28226
Lind TW=21
12.700
P28226
Lind TW=22.2
12.880
P26802
Base Scenario
SDMH 26802
SDMH 28226
Circular
3.000
121.000
0 000
0.012
12.680
P26802
Lind TW=17 7
12.660
P26802
Lind TW=19
12.660
P26802
Lind TW=20
12.660
P26802
Lind TW=21
12.680
P26802
Lind TW=22 2
12.800
P28310
Base Scenario
SDMH 28310
LindMH
Circular
4.500
1235 000
0 178
0.012
17 070
P28310
Lind TW=17 7
16.820
P28310
Lind TW=19
16.820
P28310
Lind TW=20
16.830
P28310
Lind TW=21
17.070
P28310
Lind TW=22.2
17.940
Link38
Base Scenario
CB5
SDMH 26802
Circular
3.000
121 000
0 000
0 012
12.670
Link38
Lind TW=17 7
12.660
Link38
Lind TW=19
12.660
Link38
Lind TW=20
12.660
Link38
Lind TW=21
12.670
Link38 I
Lind TW=22.2
12.700
10/18/11 15:43:31 1/1
2yr Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
40
Base Scenario
Sealed
16.420
20.610
20.167
0.440
40
Post -Diversion
17.752
2.860
51
Base Scenario
Sealed
16.500
20.460
20.164
0.300
51
Post -Diversion
17.705
2.750
59B U
Base Scenario
Allowed
15.330
21.380
16.580
4.800
59B_U
Post -Diversion
16.164
5.220
69
Base Scenario
Sealed
16.040
19.400
20.279
-0.880
69
Post -Diversion
17.700
1.700
70
Base Scenario
Sealed
16.060
19.430
21.021
-1.590
70
Post -Diversion
17.700
1.730
71
Base Scenario
Sealed
16.110
19.540
21.274
-1.730
71
Post -Diversion
17.713
1.830
72
Base Scenario
Sealed
16.380
22.830
22.663
0.170
72
Post -Diversion
17.768
5.060
73
Base Scenario
Sealed
16.550
24.600
24.014
0.590
73
Post -Diversion
17.734
6.870
MH2063
Base Scenario
None
16.810
28.400
28.400
0.000
MH2063
Post -Diversion
17.889
10.510
PUMP OUT
Base Scenario
Sealed
22.020
24.500
23.271
1.230
PUMP OUT
Post -Diversion
22.855
1.640
SDMH 30682
Base Scenario
Sealed
14.700
25.600
20.149
5.450
SDMH 30682
Post -Diversion
17.700
7.900
SDMH 30683
Base Scenario
Sealed
16.000
19.530
20.154
-0.620
SDMH 30683
Post -Diversion
17.700
1.830
SDMH 8082
Base Scenario
Sealed
16.400
124.440
25.754
-1.310
SDMH 8082
Post -Diversion
17.820
6.620
SDMH 8628
Base Scenario
Sealed
16.600
24.190
24.936
-0.750
SDMH 8628
Post -Diversion
17.770
6.420
07/29/10 19:09:20 1 /1
10yr Node HGL
Name
Scenario
Ponding
Type
Yp
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
40
Base Scenario
Sealed
16.420
20.610
20.781
-0.170
40
Post -Diversion
18.755
1.850
51
Base Scenario
Sealed
16.500
20.460
20.775
-0.320
51
Post -Diversion
18.736
1.720
59B U
Base Scenario
Allowed
15.330
21.380
16.580
4.800
59B U
Post -Diversion
16.331
5.050
69
Base Scenario
Sealed
16.040
19.400
20.871
-1.470
69
Post -Diversion
18.663
0.740
70
Base Scenario
Sealed
16.060
19.430
21.584
-2.150
70
Post -Diversion
18.775
0.660
71
Base Scenario
Sealed
16.110
19.540
21.832
-2.290
71
Post -Diversion
18.813
0.730
72
Base Scenario
Sealed
16.380
22.830
23.220
-0.390
72
Post -Diversion
19.018
3.810
73
Base Scenario
Sealed
16.550
24.600
24.638
-0.040
73
Post -Diversion
19.209
5.390
MH2063
Base Scenario
None
16.810
28.400
28.400
0.000
MH2063
Post -Diversion
19.446
8.950
PUMP OUT
Base Scenario
Sealed
22.020
24.500
23.271
1.230
PUMP OUT
Post -Diversion
23.024
1.480
SDMH 30682
Base Scenario
Sealed
14.700
25.600
20.750
4.850
SDMH 30682
Post -Diversion
18.643
6.960
SDMH 30683
Base Scenario
Sealed
16.000
19.530
20.758
-1.230
SDMH 30683
Post -Diversion
18.675
0.860
SDMH 8082
Base Scenario
Sealed
16.400
24.440
26.405
-1.960
SDMH 8082
Post -Diversion
19.448
4.990
SDMH 8628
Base Scenario
Sealed
16.600
24.190
25.576
-1.390
SDMH 8628
Post -Diversion
19.335
4.850
07/29/10 19:08:00 1 /1
25yr Node HGL
Name
Scenario
Ponding
Type
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
40
Base Scenario
Sealed
16.420
20.610
20.779
-0.170
40
Post -Diversion
18.947
1.660
51
Base Scenario
Sealed
16.500
20.460
20.767
-0.310
51
Post -Diversion
18.913
11.550
59B_U
Base Scenario
Allowed
15.330
21.380
16.580
4.800
59B_U
Post -Diversion
16.551
4.830
69
Base Scenario
Sealed
16.040
19.400
20.840
-1.440
69
Post -Diversion
18.785
0.620
70
Base Scenario
Sealed
16.060
19.430
21.585
-2.160
70
Post -Diversion
19.004
0.430
71
Base Scenario
Sealed
16.110
19.540
21.856
-2.320
71
Post -Diversion
19.076
0.460
72
Base Scenario
Sealed
16.380
22.830
23.442
-0.610
72
Post -Diversion
19.460
3.370
73
Base Scenario
Sealed
16.550
24.600
25.009
-0.410
73
Post -Diversion
19.822
4.780
MH2063
Base Scenario
None
16.810
28.400
28.400
0.000
MH2063
Post -Diversion
20.301
8.100
PUMP OUT
Base Scenario
Sealed
22.020
24.500
23.271
1.230
PUMP OUT
Post -Diversion
23.248
1.250
SDMH 30682
Base Scenario
Sealed
14.700
25.600
20.723
4.880
SDMH 30682
Post -Diversion
18.747
6.850
SDMH 30683
Base Scenario
Sealed
16.000
19.530
20.735
-1.200
SDMH 30683
Post -Diversion
18.803
0.730
SDMH 8082
Base Scenario
Sealed
16.400
24.440
26.975
-2.540
SDMH 8082
Post -Diversion
1
20.268
4.170
SDMH 8628
Base Scenario
Sealed
16.600
124.190
26.051
-1.860
SDMH 8628
Post -Diversion
1
20.061
14.130
07/29/10 19:07:00 1 /1
100yr Node HGL
Name
Scenario
Ponding
Type
Yp
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
40
Base Scenario
Sealed
16.420
20.610
21.701
-1.090
40
Post -Diversion
20.459
0.150
51
Base Scenario
Sealed
16.500
20.460
21.695
-1.230
51
Post -Diversion
20.413
0.050
59B U
Base Scenario
Allowed
15.330
21.380
16.580
4.800
59B U
Post -Diversion
16.580
4.800
69
Base Scenario
Sealed
16.040
19.400
21.774
-2.370
69
Post -Diversion
20.256
-0.860
70
Base Scenario
Sealed
16.060
19.430
22.418
-2.990
70
Post -Diversion
20.510
-1.080
71
Base Scenario
Sealed
16.110
19.540
22.636
-3.100
71
Post -Diversion
20.612
-1.070
72
Base Scenario
Sealed
16.380
22.830
24.088
-1.260
72
Post -Diversion
21.259
1.570
73
Base Scenario
Sealed
16.550
24.600
25.698
-1.100
73
Post -Diversion
21.888
2.710
MH2063
Base Scenario
None
16.810
28.400
28.400
0.000
MH2063
Post -Diversion
22.657
5.740
PUMP OUT
Base Scenario
Sealed
22.020
24.500
23.271
1.230
PUMP OUT
Post -Diversion
23.271
1,230
SDMH 30682
Base Scenario
Sealed
14,700
25.600
21.664
3.940
SDMH 30682
Post -Diversion
20.217
5.380
SDMH 30683
Base Scenario
Sealed
16.000
19.530
21.674
-2.140
SDMH 30683
Post -Diversion
20.278
-0.750
SDMH 8082
Base Scenario
Sealed
16.400
24.440
27.703
-3.260
SDMH 8082
Post -Diversion
22.668
1.770
SDMH 8628
Base Scenario
Sealed
16.600
124.190
26.762
-2.570
SDMH 8628
Post -Diversion
1
22.306
1.880
07/29/10 19:04:46 1 /1
598U PUMP —OUT
-- 4.-- PHPplP&T*----
KCRTSINPUT
V1-C
SDMH 8628 SDMH 8082
---asea2—
P8 28 4TH PLACE
73
P 3
72
P2 W
Q
ry
W
71 Z
Q
P 1
70
+69
SDMH 30682
P3 83 SDMH 30683
40
�` KCRTS INPUT
V 1-A
51
KCRTSINPUT
V1-B
MH20,73,
KCRTS INPUT
V1-D (Base
Scenario Only)
XP-SWMM Model Schematic
For TDA V Pump Station
Analysis with KCRTS
Scale 1 : 2530.62
Hydrology
Created by: K.Smith 7/21/10
Checked by: R. Edralin 8/3/10
TDA V Pump Station Analysis
Notes/Assumptions:
1. Pump station capacity has been assumed to be 6.9 cfs `or a single pump operating,
and 13.5 cfs with both pumps operating (same as Shattuck Ave analysis, based on
pump station original design). City of Renton public works staff indicate the current pump
capacity is significantly less as reported by SCADA. However, since direct flow monitoring data
is not available, the original capacity values have been used for the purposes of this analysis.
2. Pump on/off elevations used in this analysis are based on the original design, as follows:
Bottom of Wetwell: 14.7
Pumps off: 15.7
1st Pump on: 17.7
2nd Pump on: 18.7
Public works staff indicate that set points have been changed from the original design.
3. The pump station will be upgraded in 2010 with refurbished pumps and new motors. This analysis
could be revised if accurate pump capacity and on/off set point data is obtained as part of that
effort.
Approach:
1. An XP-SWMM hydraulic model has been created for the portion of the Rainier Avenue drainage
system adjacent to the pump station (see attached model schematic).
2. Since the area contributing runoff to this system exceeds 10 acres, KCRTS with 15-minute
time steps was used for hydrograph inputs into XP-SWMM, input as gauged inflow in the
hydraulics layer. The tributary area was split into four sub -basins, with one basin representing the
diversion area (see below).
3. Model scenarios were run for each storm frequency, with and without the upstream diversion.
4. Wetwell storage is based on the pump station original design and has been included in the
model at Node SDMH 30682. Roadway surface storage is based on Rainier Avenue proposed
(60% design) roadway geometry. Roadway storage volumes are included in the model in Node 69.
Contributin Areas:
Name
Description
Area
% impervious
Model Node
V1-A
Southern portion of TDA V trib. to west -side
4.52 ac
90
40
SD pipe from south.
V1-B
East/central portionof TDA V trib. to SD
4.61 ac
90
51
pipe crossing near RR bridge.
V1-C
Northern portion of Basin V trib. to west -side
7.60 ac
90
SDMH 8082
SD pipe.
V1-DIV
Area diverted to Shattuck Avenue 48-inch
54.37 ac
78.8
MH 2O63
SD system (areas AG, AL, AN, & VZ)
KCRTS H droloav Results see attached KCRTS printoutsi.
2r
10r
25r
100r
V1-A
1.94
2.64
3.77
5.03
V1-B
1.98
2.7
3.84
5.13
V1-C
3.26
4.45
6.33
8.45
V1-DIV
20.4
28.08
41.12
56.36
Created by: K.Smith 7/21/10
Checked by: R. Edralin 8/3/10
Roadwav Saq Surface Storage Geomet Node 69
Elevation
Stage
Surf. Area (sf)
19.4
0.0
0
19.9
0.5
1570
20.4
1.0
5367
20.9
1.5
11838
21.4
2.0
17520
21.9
2.5
21956
22.4
3.0
26203
22.9
3.5
30506
XP-SWMM Modeling Results/Conclusions:
With the assumed pump station capacity, the modeling shows 25-year flood protection. See Section
5.5 for additional discussion.
V1-A - 4.52 ac
Fiow Frequency Analysis
Time Series File:vl-a.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
1.94
6
8/27/01
18:00
1.35
8
9/17/02
17:45
3.77
2
12/08/02
17:15
1.56
7
8/23/04
14:30
2.08
5
10/28/04
16:00
2.20
4
10/27/05
10:45
2.64
3
10/25/06
22:45
5.03
1
1/09/08
6:30
Computed Peaks
V1-B - 4.61 ac
Flow Frequency Analysis
Time Series File:vl-b.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
1.98
6
8/27/01
18:00
1.38
8
9/17/02
17:45
3.84
2
12/08/02
17:15
1.59
7
8/23/04
14:30
2.12
5
10/28/04
16:00
2.24
4
10/27/05
10:45
2.70
3
10/25/06
22:45
5.13
1
1/09/08
6:30
Computed Peaks
V1-C - 7.60 ac
Flow Frequency Analysis
Time Series File:vl-c.tsf
Project Location:Sea-Tac
-----Flow
Frequency
Analysis-------
- - Peaks
- - Rank Return
Prob
(CFS)
Period
5.03
1
100.00
0.990
3.77
2
25.00
0.960
2.64
3
10.00
0.900
2.20
4
5.00
0.800
2.08
5
3.00
0.667
1.94
6
2.00
0.500
1.56
7
1.30
0.231
1.35
8
1.10
0.091
4.61
50.00
0.980
-----Flow
Frequency
Analysis-------
- - Peaks
- - Rank Return
Prob
(CFS)
Period
5.13
1
100.00
0.990
3.84
2
25.00
0.960
2.70
3
10.00
0.900
2.24
4
5.00
0.800
2.12
5
3.00
0.667
1.98
6
2.00
0.500
1.59
7
1.30
0.231
1.38
8
1.10
0.091
4.70
50.00
0.980
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
3.26
6
8/27/01
18:00
8.45
1
100.00
0.990
2.28
8
9/17/02
17:45
6.33
2
25.00
0.960
6.33
2
12/08/02
17:15
4.45
3
10.00
0.900
2.62
7
8/23/04
14:30
3.69
4
5.00
0.800
3.49
5
10/28/04
16:00
3.49
5
3.00
0.667
3.69
4
10/27/05
10:45
3.26
6
2.00
0.500
4.45
3
10/25/06
22:45
2.62
7
1.30
0.231
8.45
1
1/09/08
6:30
2.28
8
1.10
0.091
Computed Peaks
7.74
50.00
0.980
V1-DIV - 54.37 ac
Flow Frequency Analysis
Time Series File:vl-d.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Flow Rate
Rank
Time of
Peak
- - Peaks
(CFS)
(CFS)
20.40
6
8/27/01
18:00
56.36
14.23
8
9/17/02
17:45
41.12
41.12
2
12/08/02
17:15
28.08
16.42
7
8/23/04
14:30
23.59
22.32
5
10/28/04
16:00
22.32
23.59
4
10/27/05
10:45
20.40
28.08
3
10/25/06
22:45
16.42
56.36
1
1/09/08
6:30
14.23
Computed Peaks
51.28
Frequency Analysis-------
- - Rank Return Prob
Period
1 100.00 0.990
2 25.00 0.960
3 10.00 0.900
4 5.00 0.800
5 3.00 0.667
6 2.00 0.500
7 1.30 0.231
8 1.10 0.091
50.00 0.980
m
m
Q
Appendix D
Gutter and Inlet Analysis
Gutter Analysis Maps D1-D3
Inlet Spacing — Curb and Gutter Spreadsheets (for Continuous
Grade Gutters)
Sag Inlet Design Worksheets
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
SAG ANALYSIS CB NO. 21
34
SAG ANALYSIS CB NO. 30
SAG ANALYSIS CB NO. 23
23 32 28 RAINIER AVENUES 35 124
11 22
-� - 30
SAG ANALYSIS CB NO. 101 20 21 12 216 t3 14 15 / 38
10 s>�y
9
18
31 19 17
7
146 0-1, SAG ANALYSIS CB NO. 13
101 /111
6 y SAG ANALYSIS CB NO. 10
29
5�
y,
2 222
4
1
3
�J
RP,� f
�qr
25 50 100
i
SCALE: IN FEET
PLAN
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385 D 1
F 1 206 448 6922 RAINIER AVENUE S
W www.ghd.com GUTTER FLOW ANALYSYS
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
SAG ANALYSIS CB NO, 39
ANALYSIS CB NO. 89
SQ FILTERRA UNIT
ry�p� 203 / SAG ANALYSIS CB NO. 88
FILTERRA UNIT
SAG ANALYSIS CB NO. 61
0 25 50 100
SCALE: IN FEET
PLAN
RAINIER AVENUE S
GUTTER FLOW ANALYSYS
D2
1024 201
SAG ANALYSIS CB NO. 109
SAG ANALYSIS CB NO. 110
S 3RO p`
SAG ANALYSIS CB NO. 83- S
-31
SAG ANALYSIS CB NO. 80
1201 Third Avenue, Suite 1500
Seattle, Washington 98101
T 1206 4419385
F 1206 448 6922
W www.ghd.com
SAG ANALYSIS CB NO. 107
�l
ANALYSIS CB NO. 100
SAG ANALYSIS CB NO. 115
*40
0 zs so 100
I
rALE IN FEET
PLAN
RAINIER AVENUE S
GUTTER FLOW ANALYSYS
D3
G \Ml 41591CADDIDRAIMNGS106550-TIR-0i-04_REV1.M9
10R4/2011
INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS)
T c = 5.00
C = 0.90
2.39
m= 5.62
n= 0.53
Allowable Zd= 4.00
Project Name Rainier Avenue S Roadway Improvements EAST ROADWAY/NORTHBOUND TRAFFIC
Project #: GHD-8614159
S.R.:
Designed By: WIRE Checked By: KRS
Date: AUG 2010
Updated: OCT 2011
CB
Station
Distance
Width
N Q
E Q
Slope L
SuperT
G.W.
G.L.
d
Zd
Qb ••
Vcontinuous'
Vside"
E.
Re
E
Q,
Qbp"
Zd Check
Velocity Check
Qbp Check
Comments (UR)
11+69
--
---
--
--
-
---
Grad Wa I/S NE Corner
4
11+06
63.34
36.00
0.11
0.11
0.028
0.028
1.45
1.25
0.06
2.14
0.01
1.82
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
3
10+75
30.422
36.00
0.05
0.06
0.007
0.028
1.45
1.25
0.06
2.14
0.00
0.92
0.94
0.95
0.26
0.96
0.05
0.00
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 0.1 CFS
11+41
----
- -
-
-
Hi h Dint on utter line
5
12+15
73.56
36.00
0.13
0.13
0.012
0.036
1.45
1.25
0.08
2.22
0.01
1.56
1.52
0.94
0.16
0.95
0.12
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
61
13+02 1
87.44
36.00
0.161
0.17
0.014
0.0461
1.45
1.25
0.091
1.96
0.00
1.971
1.74
0.97
0.16
0.98
0.16
0.00
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
7
13+92
89.78
36.00
0.161
0.16
0.013
0.052
1.45
1.25
0.10
1.92
0.00
1.77
1.80
0.98
0.17
0.98
0.16
0.00
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
8
14+89
96.99
36.00
0.17
0.17
0.011
0.038
1.45
1.25
0.09
2.37
0.01
1.76
1.55
0.92
0.16
0.93
0.16
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
9
15+93
104
36.00
0.19
0.20
0,005
0.033
1.45
1.25
0.11
3.33
0.04
1.26
1.19
0.78
0.21
0.83
0.17
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 0A CFS
See sag anal - for CB 10, 16+55 RT
22+56
----
----
H, n pt along utter at 7th Street
15
21+57
99.22
47.00
0.23
0.23
0.005
0.019
1.45
1.25
0.09
4.74
0.09
1.30
1.04
0.62
0.16
0.68
0.16
0.07
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Slightly exceeds allowable Zd, see report
14
20+41
116.17
47.00
0.27
0.34
0.005
0.021
1.45
1.25
0.11
5.24
0.14
1.44
1.20
0.58
0.141
0.64
0.22
0.121
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
NEED TO REDUCE Cbp
See sag anal - for CB 13. 18+80 RT
19+42
-
--
-
-
--
--- ----
H, h pt et utter W. CB218 end C1313
218
18+72
69.8
47.00
0.16
0.16
0.005
0.022
1.45
1.25
0.08
3.64
0.04
1.28
0.96
0.74
0.21
0.80
0.13
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
12
18+23
49.21
42.00
0.10
0.13
0.005
0.029
1.45
1.25
0.09
3.10
0.02
1.08
1.04
0.81
0.23
0.86
0.11
0.02
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
11
17+26
97.35
42.00
0.20
0.22
0.005
0.036
1.45
1.25
0.11
3.06
0.04
1.48
1.20
0.82
0.22
0.86
0.19
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 0 1 CFS
See sag analysis for CB 10, 16+55 RT
24+88
-_-
---
--
- -
-
-
High point on utter line
38
23+85
103.26
36.00
0.18
0.18
0.005
0.014
1.45
1.25
0.07
5.00
0.07
1.24
0.88
0.60
0.16
0.66
0.12
0.061
NEED TO DECREASE Zd
VELOCITY <5 FT/SEC
Qbp <0. t CFS
Zd exoeedance see r t.
26+70
---
--
--
----
--
Hi h point on gutter line
50
27+41
70.75
36.00
0.13
0.13
0.005
0,033
1.45
1.25
0.09
2.73
0.02
1.18
1.04
0.87
0.25
0.90
0.12
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
49
28+79
138.17
36.00
0.25
0.26
0.005
0.038
1 A5
1.25
0.12
3.16
0.05
1.58
1.26
0.81
0.22
0.85
0.22
0.04
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
53
30+02
122.71
36.00
0.22
0.26
0.016
0.033
1.45
1.25
0.09
2.73
0.03
2.35
1.86
0.87
0.11
0.88
0.23
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
52
31+50
148.37
36.00
0.26
0.29
0.023
0,022
1.45
1.25
0.081
3.64
0.07
2.32
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 6 FT/SEC
Qbp < 0.1 CFS
See sag analysis for CB 61, 31+75 RT
51
31+01
49.4
36.00
0.09
0.16
0.010
0,015
1.45
1.25
0.06
4.00
0.05
1.62
1.12
0.70
0.121
0.74
0.12
0.04
Zd ALLOWABLE - Zd DESIGN
VELOCITY < 5 FT/SEC
See sag analysis for CB 61. 31+75 RT
36+23
---
----
----- --
-
---
-
High point on gutter line
87
35+51
71.5
36.00
0.13
0.13
0.020
0.028
1.45
1.25
0.07
2.50
0.01
1.63
1.76
0.90
0.10
0.91
0.12
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY <5 FT/SEC
202
34+83
67.64
36.00
0.12
0.13
0.010
0.027
1.45
1.25
0.07
2.59
0.01
1.60
1.25
0.89
0.17
0.91
0.12
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY <5 FT/SEC
Filtsrra LIM
86
34+58
24.89
36.00
0.04
0.05
0.010
0.026
1.45
1.25
0.05
1.92
0.00
1.13
0.99
0.98
0.23
0.98
0.05
0.00
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 01 CFS
43+25
-- --
----
High point on gufter line
102
42+53
72.44
48.00
0.17
0.17
0.005
0.015
1.45
1.25
0.07
4.67
0.06
1.25
0.88
0.63
0.17
0.69
0.12
0.05
NEED TO DECREASE Zd
VELOCITY <5 FT/SEC
Zd exceadance seer t
103
41+82
70.73
36.00
0.13
0.18
0.005
0.022
1.45
1.25
0.09
4.09
0.06
1.17
1.04
0.69
0.19
0.75
0.14
0.051
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Qbp < 0 1 CFS
Zd exceedence , see rpt
40+41
--
-
-
---
----
----
--
----
-
-------
-
-------
High pointon gufter line
91
40+84
42.71
48.00
0.10
0.10
0.005
0.028
1.45
1.25
0.08
2.86
0.02
0.98
0.96
0.85
0.25
0.89
0.09
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 6 FT/SEC
Qbp < a 1 CFS
48+50
--- -
----
--
---
-
--
--
-
-
nd o1 Trans,bon
118
47+21
128.97
25.00
0.161
0.16
0.007
0.026
1.45
1.25
0.081
3.08
0.03
1.47
1.14
0.82
0.19
0.85
0.14
0.02
2d ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
OD <0.1 CFS
+58
---
------
-
- -
---
---
-
--
-
---
-
-
-
---
---
-------
Su erel abon transition
63
32+50
108
47.00
0.25
0.25
0.033
0.007
1.45
1.25
0.05
7.14
0.14
1.74
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Exceeds allowable Zd, see report
62
32+00
50
47.00
0.12
0.26
0.018
0.012
1.45
1.25
0.06
5.00
0.10
2.06
1.51
0.60
0.06
0.62
0.16
0.10
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Qb <0.1JCFee
sa anal sis for CB 61, 31+75 RT
45+66
--
-- -
- ---
-
--
--
-
unset BWd/3rd $t
98
45+00
65.75
60.00
0.20
0.20
0.005
0.020
1.45
1.25
0.09
4.62
0.07
1.15
1.04
0.63
0.17
0.70
0.14
0.06
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
xceeds allowable Zd, see report
99
44+18
82.11
60.00
0.24
0.30
0.005
0.021
1.45
1.25
0.10
4.76
0.11
1.52
1.12
0.62
0.16
0.68
0.21
0.10
NEED TO DECREASE Zd
VELOCITY <6 FT/SEC
Qbp< 0,1ee
sag analysis for CB 100. 43+75 RT
52+50
----
-
--
upset BNd2nd St
116
47+21
529.12
27.00
0.71
0.71
0.010
0.044
1.45
1.25
0.17
3.86
0.20
2.53
2.26
0.72
0.10
0.74
0.53
0.18
Zd ALLOWABLE >Zd DESIGN
VELOCITY <5FT15EC
115
46+96
24.51
27.00
0.03
0.21
0.005
0.0371
1.25
0.11
2.97
0.04
1.46
1.19
0.83
0.23
0.87
0.18
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY <5 FT/SEC
Qbp <0.1 CFS
See sal; analysis for CB 115, 47+01 RT
"FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vslde, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontlnuous AND Qbp (COLUMN L) FOR COMPLIANCE.
PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT.
G:\86\14159\TECH\Drainage Report\03 - DevelopmenhApp D - Gutter Analysis\QC RAINIER East Inlet Spacing_October2011.x1s 1024/2011 11:52 AM
INLET SPACING - CURB AND GUTTER SPREADSHEET (ENGLISH UNITS)
Tc -= 5.00
C =
0.90
I
2.39
m=
5.62
n=
0.53
Allowable Zd=
4.00
Project Name Rainier Avenue S - Roadway Improvement WEST ROADWAY/SOUTHBOUND TRAFFIC
Project #: GHD No. 8614159
S.R.:
Designed By: WRE Checked By: KRS
Date: AUG 2010
Updated: OCT 2011
CB
Station I
Distance
Width
- a
Slope L
Super T
G.W.
G.L.
d
Z
Qbp"
Vcontinuous'
Vside"
Ec
Rs
E
Q,
Qb ••
Zd Check
Velocity Check
Qb Check
Comments (UR)
13+00.00
__________
___________
_____________
____-__
_-______
------- -----
________
______
-------------
-------------
___ ___
_______
_______
_-_____
____ __
________
_ ____
_________
________
_________
_________
High Point
19
13+91.99
91.99
58.00
0.26
0.26
0.016
0.018
1.45
1.25
007
3.89
0.07
2.24
1.58
0.71
0.08
0.74
0.19
0.07
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
18
14+88.90
96.91
58.00
0.28
0.35
0.013
0.025
1.45
1.25
0.10
4.00
0.10
2.05
1.80
0.70
0.09
0.73
0.25
0.10
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Obp < 0.1 CFS
23+50.00
-- --
-- - -
_- --
--- --
---- ---
- --
- -
-- _-
---_-
- --
- ---
-- ---
--------
--- --
--------
---- -
-- --
-_---
- - --
High Point
124
24+40.01
90.01
60.00
0.27
0.27
0.005
0.039
1.45
1.25
0.13
3.33
0.06
1.43
1.33
0.78
0.21
0.83
0.22
0.05
Zd ALLOWABLE > Zd DESIGN
VELOCITY <5 FT/SEC
46
25+57.621
117.61
60.00
0.35
0.40
0.005
0.039
1.45
1.25
0.15
3.851
0.11
1.61
1.47
0.72
0.18
0.77
0.30
0.09
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
45
26+41.91
84.29
60.00
0.25
0.34
0.005
0.044
1.45
1.25
0.14
3.18
0.07
1.75
1.40
0.80
0.21
0.84
0.29
0.05
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
44
27+35.21
93.3
60.00
0.28
0.33
0.005
0.047
1.45
1.25
0.15
3.19
0.07
1.59
1.47
0.80
0.21
0.84
0.28
0.05
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FTISEC
200
28+73.77
138.56
36.00
0.25
0.30
0.005
0.050
1.45
1.25
0.14
2.80
0.04
1.72
1.40
0.86
0.23
0.89
0.27
0.03
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Mena Und
42
28+86.00
12.23
36.00
0.02
0.05
0.005
0.050
1.45
1.25
0.08
1.60
0.00
0.84
0.96
1.00
0.37
1.00
0.05
0.00
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
201
30+32.27
146.27
36.00
0.26
0.26
0.012
0.031
1.45
1.25
0.10
3.23
0.05
1.84
1.73
0.80
0.11
0.82
0.21
0.05
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Fiherra Unit
40
30+61.84
29.57
36.00
0.05
0.10
0.012
0.031
1.45
1.25
0.07
2.26
0.01
1.31
1.36
0.94
0.16
0.95
0.09
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Obp < 0.1 CFS
See sag analysis for CB 70, 31+77 LT
34+62.00
____-__
__-__
_____-
________
-_-_-
__--_
_______
__--
--- ----
___----
_____--
High Point
72
33+37.27
124.73
36.00
0.22
0.22
0.030
0.033
1.45
1.25
0.08
2.42
0.02
2.47
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
71
32+02.00
135.27
36.00
0.24
0.26
0.013
0.023
1.45
1.25
0.09
3.91
0.08
1.73
1.68
0.71
0.09
0.74
0.19
0.07
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FTISEC
Qbp < 0.1 CFS
See sag analysis for CB 70, 31+77 LT
37+81.00
____________
__------- __
________
__-__-
___-___
_-_-__
�____
___---------
__________
_______-_
----
--------
________
________
______
______
-
High Point
78
36+72.54
108.46
37.00
0.20
0.20
0.007
0.018
1.45
1.25
0.08
4.44
0.071
1.34
1.141
0.65
0.14
0.701
0.14
0.061
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Zd slightly excceds allowable, see report
77
36+02.00
70.54
48.00
0.17
0.23
0.010
0.026
1.45
1.25
0.09
3.46
0.05
1.71
1.50
0.77
0.12
0.79
0.18
0.05
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
202
34+82.45
119.55
48.00
0.28
0.33
0.011
0.018
1.45
1.25
0.091
5.00
0.13
1.76
1.57
0.601
0.08
0.63
0.21
0.12
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Fiherra Unit
76
34+68.35
14.1
48.00
0.03
0.15
0.011
0.018
1.45
1.25
0.071
3.89
0.04
1.30
1.32
0.711
0.11
0.74
0.11
0.04
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 0 1 CFS
46+50.00
___-____
---- __-----
______
__._____
___-__
________
_____-_
___-_
--___
_- _
-___-_
_____-
__
__________
________
_
High Point
95
45+54.90
95.1
36.00
0.17
0.17
0.013
0.027
1.45
1.25
008
2.96
0.03
1.62
1.55
0.83
0.12
0.85
0.15
0.02
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
106
44+86.82
68.08
36.001
0.12
0.14
0.008
0.026
1.45
1.25
0.08
3.08
0.03
1.34
1.22
0.82
0.17
0.85
0.12
0.02
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp <0.1 CFS
See sag analysis for CB 107, 44+50 LT
17+24.02
___-____
________
_____________
------- _-_
__________
_________
__------- __
___-__
_-____
________
-_____
________
------- ___
______
-_-__
- _
High Point
231
18+00.00
75.98
36.00
0.14
0 14
0.013
0.014
1.45
1.25
0.06
4.29
0.05
1.29
1.28
0.67
0.09
0.70
0.10
0.04
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Obp < 0.1 CFS
Zd slightly excceds allowable, see report
18+31.32
-- ----
---
-------
---
- ---
----
----
-- -
_ --
------
-- ---
------
--- --
- _ _-
--------
-- --
-----------
-------------
- - -
High Point
32
18+87.00
55.68
36.00
0.10
0.10
0.013
0.024
1.45
1.25
0.06
2.50
0.01
1.46
1.28
0.90
0.15
0.92
0.09
0.01
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Qbp < 0.1 CFS
21+07.50
______-_
__ ____
_________
______-
-_-__
________
_________
____-__
-------
________
_-_-__
___-_-___--
-_--
_____-
________
______-
___ __
____ __
_____
High Point
28
20+24.28
83.22
36.00
0.15
0.15
0.0081
0.030
1.45
1.25
0.09
3.00
0031
1.26
1.28
0.83
0.18
0.86
0.13
0.02
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Obp < 0,1 CFS
23+50.00
_-__-_
_______
_______
____________
______
_-__-_
_______
___-_
____-_-
_______
___--------
_____________
_______
-____-
-___-_
------
----
-'
High Point
35
22+86.50
63.5
60.00
0.19
0.19
0.005
0.025
1.45
1.25
0.09
3.60
0.05
1.36
1.04
0.75
0.21
0.80
0.15
0.04
Zd ALLOWABLE > Zd DESIGN
VELOCITY < 5 FT/SEC
Obp < 0.1 CFS
11+75.00
___________
_________
_____________
--_
_-______
-------------
__--- _-----
-______
------ -_-
_ ____
------- _----
________
_________
--------- __
____
_ _
_
High Point
29
12+12.50
37.5
60.00
0.11
0.11
0 008
0.010
1.45
1.25
0.05
5.00
0.04
1.06
0.86
0.60
0.13
0.65
0.07
0.04
NEED TO DECREASE Zd
VELOCITY < 5 FT/SEC
Zd slightly excceds allowable, see report
31
12+50.00
37.5
60.00
0.11
0.15
0 008
0.010
1.45
1.25
0.06
6.00
0.07
1.01
0.97
0.52
0.10
0.57
0.081
0.061
NEED TO DECREASE Zd
VELOCITY < 5 FTISEC
Obp<0.1 CFS
Zd slightlyslighfly excceds allowable, see report
11+75.00
------ _--- _
____
_________
___-__
_________
_____-_--
__________
---------
I___-___
______
________
-______
______
_____-
High Point
2
11+09.08
65.92
58.00
0.19
0.191
0.0081
0.019
1.45
1.25
0.081
4.21
0.061
1.34
1.18
0.68
0.14
0.72
0.14
0.05
NEED TO DECREASE Zd
VELOCITY < 5 FTISEC
Qbp < 0.1 CFS
Zd slightly excceds allowable, aee r ort
FOR LAST GRATE ON RUN OF GUTTER, IF SPREADSHEET SHOWS A VALUE FOR Vside, CHECK Vside AND Qbp (COLUMN S) FOR COMPLIANCE. OTHERWISE, CHECK Vcontinuous AND Qbp (COLUMN L) FOR COMPLIANCE.
PLEASE REPORT ANY PROBLEMS TO WSDOT HQ HYDRAULICS OFFICE. SPREADSHEET IS PROTECTED BUT DOES NOT REQUIRE A PASSWORD TO UNPROTECT.
G:\86\14159\TECH\Drainage Report\03 - Development\App D - Gutter Analysis= RAINIER West Inlet Spacing_Revised_0Ctober2011.x1s 10/24/2011 4:59 PM
SAG INLET DESIGN WORKSHEET - CB 10
Combination inlet at low point
OQ1 ZQ Z�Q2
Li
L2
QBP Inlet A Inlet C QBP
�.
dA dB �dC
M �
N
O t+D M .0+
N > C fn
y O = y
to
W O .—O W
m N O N � d
U to > m U c
d wLU
c in m
U � c
Transverse Slope
ST
Allowable
Zd
Allowable
dB
Time of Concentration
To
50 yr. rainfall r
m
coefficients L
n
Rainfall Intensity
Isar,
Distance between last inlet
and low point
L1
Width of catchment area
W,
Bypass from last inlet
QBP,°
Discharge of catchment area Q1
0.033 ft/ft
4.00 ft
0.132 ft
5.0 min
7.88
0.545
3.28 in/hr
M
ft
ft
cfs
cfs
QTntal = QBP1 + Q1 + QBP2 + Q2
QTotal = 0.06 + 0.16 + 0.09 + 0.18 = 0.49 CfS
Shoulder Width 2.00 ft
Lane Width 11.00 ft
WA = do = 0.066 ft allowable)
(for 5 minute duration)
L2
71.00
ft
W2
36.00
ft
Q1124
0.09
cfs
Q2
0.18
cfs
Combination' or Grate Inlet for sag PB (C/G)--► C
Effective Perimeter of PA Flank 0 ft
Width 0
Grate Inlets (reduced by PB a 15 ft
Width 1.45
50% for plugging) Pc Flank ft ft
Widthl 0
b
EQ = QA + QB + QC
2 EQ = CWAPA(0.5dB)1.5+ CwaP,dal.5+ CwcPc(0-5ds), 5
0.60 cfs
rEQ
12/3 _
dB — I CWAPA0.3536 + CW8P8+ Cwo+ CwcPc0.3536
J ft
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the
process repeated
Designed by WRE 10/2011
Checked by KRS 10/2011
i--� Face of Curb
all
Len_Ith
idth See Figure 5-5
Hydraulics Mar
for nrntp rlimec
Length 0
Length 1.25
Length 0
Capacity is adequate,
design is complete.
Check calculated do against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
" Qbp1 and Qbp2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 13
Combination inlet at low point
L,Q1 ZQ AQ2
L1
L
Q BP Inlet A Inlet C QBP2
\� 1 F Inlet B � f/ 7
dA dB dC
N T.
T N N N
O
O
C
N C N >
> O O 0
d ca r O
W N tv O « :O W
_
C y d Cn A y j T d
O W d m C
a W U
2 U
Transverse Slope
ST
0.031
ft/ft
Allowable
Zd
4.00
ft
Allowable
de
0.124
ft
Time of Concentration
To
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
I50.y,
3.28
n/hr
Distance between last inlet
and low point
L,
38.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP,4
0.10
cfs
Discharge of catchment area
Q,
0 10
cfs
QTotal = QBP1 + Q1 + QBP2 + Q2
QTotal = 0.10 + 0.10 + 0.12
+ 0.16 =
0.48
cfs
Combination' or Grate Inlet for sag Pe (C/G�-► M
Effective Perimeter of PA Flankft
Grate Inlets (reduced by PB ft
50% for plugging) Pc Flankft
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = do = 0.062 ft allowable)
(for 5 minute duration)
L2
61.00
ft
W2
36.00
ft
QBP2
0.12
cfs
Q2
0.16
cfs
Width 0 Length 0
Width 1.45 Length 1.25
Width 0 Length 0
Designed by WRE 10/2011
Checked by KRS 10/2011 '
EQ = CA + QB + QC
2 IQ = CwAPA(0.5d8)15+ Cw,PBd815+ CwcPc(0.5de)' S 0.54 cfs Capacity is adequate,
2/ design is complete.
SQ 3 _
de - 0.11 ft Check calculated
CwAPA0.3536 + CWBPe+ Ct,,,e+ CwcPc0.3536 d � B against
allowable de.
If de < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added' and the process repeated.
Notes:
If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
0 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
QbP, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls
10/24/2011
SAG INLET DESIGN WORKSHEET - CB 21
Combination inlet at low point
1�Q1 ZQ -'LQ2
L
L2
Q BP t A Inlet C QBP2
Inlet
I F Inlet B � f/
dA dB dC
� N pp N � N
W n,-�
tN00
tto t coO
. rNrNr f� 'a+
U C N j
_y O C d
i+ C W
W W <0 l6 O r° .2 a+
to N 2 U) CO
> C 0
O
U � o uJ a>i
m N LLl N w 01
U E m m U c 2
c—
Transverse Slope
ST
0.032
ft/ft
Allowable (Calculated*)
Zd
4.50
ft
Allowable
dB
0.144
ft
Time of Concentration
Tc
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
Is0-y,
328
in/hr
Distance between last inlet
and low point
L,
136.00
ft
Width of catchment area
W,
48.00
ft
Bypass from last inlet
QBP14
0.17
cfs
Discharge of catchment area
Q,
0.47
cfs
QTo131 — QBP1 + Q1 + QBP2 + Q2
QTotal = 0.17 + 0.47 + 0.00
+ 0.28 =
0.92
cfs
Combination' or Grate Inlet for sag PB (C/G)--► C
Effective Perimeter of PA A nk [tft
Grate Inlets (reduced by PB ft50% for plugging) Pc Flakft
b
10 = QA+QB+QC
z LQ = CwAPA(0.5de)1 5+ CwBPBdet e+ CwcPc(0.5dB)1 e
Shoulder Width 1.00 ft
Lane Width 11.00 ft
(dA = do = 0.072 ft allowable)
* Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration) SAG analysis criteria
L2
10300ft
3800W
ft
QBP24
cfs
02
Q
cfs
Width 1.45
Width 1.45
Widthl 1.45
0.92 cfs
iQ
]2/3
dB — 0.14 ft
C,NAPA0.3536 + CWBPa+ CWe+ CwcPc0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Length 1.25
Lengthl 1.25
Length 1 1.25
Designed by WIRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
4 QbP1 and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 23
Combination inlet at low point
z�Q1 Q O Q 2
Li I L2
Designed by WRE 10/2011
Checked by KRS 10/2011 ,
Q BP Inlet A Inlet C QBP2
I Inlet B
dA dB dC
04
v ,o
n ~ +
N 00 N
O
O
C
!n > C O N 4i >
O O O 61
M W R l� O 2 '„O—,, C r
In 0a.
m
c W y m r
m y M W W T
m _
Super Transition U_ m U
U c —
Transverse Slope
ST
0.020
ft/ft
Allowable
Zd
4.00
ft
Allowable
dB
0.08
ft
Time of Concentration
To
5.0
min
50 yr, rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
150_y,
3.28
in/hr
Distance between last inlet
and low point
L,
76.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP,°
0.00
cfs
Discharge of catchment area
Q1
0.20
cfs
QTotal — C61 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.20 + 0.02 + 0.06 = 0.28 efs
Combination' or Grate Inlet for sag PB (C/G}-► IN
Effective Perimeter of PA Flank ft
Grate Inlets (reduced by PB ft
50% for plugging) Pc Flank ft
b
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = dc = 0.04 ft allowable)
(for 5 minute duration)
L2 25.00 ft
W2 36.00 Ift �� Face of Curb
QBP24 0.02 cfs
Q2 0.06 cfs
Length
idth See Figure 5-5
Hydraulics Mar
for grate dimen
Width 0 Length 0
Width 1.45 Length 1.25
Widthl 0 1 Length 0
cQ = QA + QB + QC
2 EQ = CWAPA(0.5dB)' 5+ CWBPBdB' S+ C,,,,,P,(0.5dB)' 5 0.28 cfs Capacity is adequate,
2/ design is complete.
TQ 3 _
dB 0.08 ft Check calculated d against
CWAPA0.3536 + CWBPB+ CWB+ CwcPc0.3536 B 9
allowable dB.
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
" QbP1 and QbP2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls
10/24/2011
SAG INLET DESIGN WORKSHEET - CB 30
Combination inlet at low point
z�,Q1 ZQ O Q 2
L1
L2
Q BPl Inlet A Inlet C QBP2
Inlet B /
dA dB dC
N N N
O
O O
(� > CIA O c N
d
U m m N > m
c w m m U c
Coc W m w
Super Transition m
U � _
Transverse Slope S-
Allowable 7d
Allowable dB
Time of Concentration T,
50 yr. rainfall r m
coefficients L n
Rainfall Intensity I50.y,
Distance between last inlet
and low point L,
Width of catchment area W,
Bypass from last inlet QBP14
Discharge of catchment area Q1
0.036
ft/ft
ft
ft
min
in/hr
ft
ft
cfs
cfs
3.00
0.108
5.0
7.88
0.545
1 328
72.00
36.00
0.00
0.19
QTotal — QBP1 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.19 + 0.02 + 0.17 = 0.37 cfs
Combination' or Grate Inlet for sag PB (C/G)- *, M
Effective Perimeter of PA Funkft
Grate Inlets (reduced by PBft50% for plugging) PC Flankft
b
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = dC = 0.054 ft allowable)
(for 5 minute duration)
W
ft
a
QBP2
gOOftL2
cfs
02
cfs
Designed by WIRE 1012011
Checked by KRS 10/2011
�� Face of Curb
Length
V
See Figure 5-5
Hydraulics Man
for rate dimen
Width 0 Length 0
Width 1.45 Length 1.25
Width 0 Length 0
IQ = QA+QB+QC
2 IQ = CWAPA(0.5d6)' S+ CWBPedB' S+ CwCPC(0.5d6)' e 0.44 cfs Capacity is adequate,
2/ design is complete.
�Q 3
d6 - 0.10 Check calculated d a
CwAPA0.3536 + CWBPe+ CWe+ CwCPC0.3536 ft e against
�
allowable dB.
If de < allowable d6, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
° Qbp1 and QbP2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls
10/24/2011
SAG INLET DESIGN WORKSHEET - CB 39
Combination inlet at low point
�Q1 LQ /\Q2
L1
L2
n 1-1— n 11-1— f, Onn
O
O N
t
N N
C
O C
m toM >
W > d
d
d 01 W W
c m y c
U c
Designed by WIRE 10/2011
Checked by KRS 10/2011
Transverse Slope ST 0.031 ft/ft Shoulder Width 1.00 ft
Allowable Zd 3.64 ft Lane Width 11.00 ft
Allowable dB 0.11284 ft (dA = do = 0.05642 ft allowable)
Time of Concentration To 5.0 min
50 yr. rainfall r m 7.88
coefficients L n 0.545
Rainfall Intensity 150-yr 3.28 in/hr (for 5 minute duration)
Distance between last inlet
and low point L, 101.00 ft L2 70.00 ft
Width of catchment area W, 36.00 ft W2 36.00 ft �� Face of Curb
Bypass from last inlet QBP,a 0.00 cfs Q8P2' 0.00 cfs
Discharge of catchment area Q1 0.26 cfs Q2 0.18 cfs
QTotal = Q8P1 + Q1 + QBP2 + Q2 Length
QTotal = 0.00 + 0.26 + 0.00 + 0.18 = 0.44 CfS
See Figure 5-5
idth 5
Hydraulics Man
for orate i�
Combination' or Grate Inlet for sag PB (C/G) ► C
Effective Perimeter of PA Flank ft ft Width 0 Length 0
Grate Inlets (reduced by PB 4.15 ft Width 1.45 Length 1.25
50% for plugging) Pc Flank 0 ft Widthl 0 1 Length 0
b
EQ = QA + QB + Qc
2 cQ = CWAPA(0.5d6)15+ CwBPBde' S+ CwcPc(O.5dB)' S 0.47 cfs Capacity is adequate,
2/ design is complete.
jQ 3
dB — 0.11 ft Check calculated dB against
a
CWAPA0.3536 + CwBPe+ Cwe+ CwcPc0.3536 �
allowable dB.
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
° QbP, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls
10/24/2011
SAG INLET DESIGN WORKSHEET - CB 61
Combination inlet at low point
LQ1 ZQ AQ2
L1
L2
Q BP Inlet A Inlet C QBP2
�� � �
dA dB dC
0 0
M N M N
C ^ N =
O G O
y a>i C O >
ca W
W fn O �' O
> " ++
Uc uJ a>i m U c
W W
C in W
U c
Transverse Slope
ST
0.015
ft/ft
Allowable
Za
6.60
ft
Allowable
dB
0.099
ft
Time of Concentration
To
5.0
min
50 yr, rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
150.Y,
1 3.28
linthr
Distance between last inlet
and low point
L,
25.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP,4
0.08
cfs
Discharge of catchment area
Q,
0.06
cfs
QTotal _ QBP, + Q1 + QBP2 + Q2
QTotal = 0.08 + 0.06 + 0.15
+ 0.08 =
0.38 cfs
Combination' or Grate Inlet for sag PB (C/G}- C
Effective Perimeter of PA Flak 0 ft
Grate Inlets (reduced by PB 4.15 ft
50% for plugging) PC Flank 0 ft
b
10 = CIA + QB + QC
2 1Q = CwAPA(0.5dB)'S+ CwePBdB15+ CwcPc(0.5dB)' S
Shoulder Width F 2.00 ft
Lane Width 11.00 ft
WA = do = 0.0495 ft allowable)
(for 5 minute duration)
L2
25.00
ft
W2
47.00
ft
QBP2"
0.15
cfs
Q2
0.08
cfs
Width 0
Width 1.45
Width 0
0.39 cfs
2/3
r(,1 _
dB ft
CWAPA0.3536 + CWBPB+ CWB+ CwcPc0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Length 0
Length 1.25
Length 0
Designed by WIRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions
° Qtp, and QbP2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 70
Combination inlet at low point
OQt Q Z�Q2
Li I L2
Designed by WRE 10/2011
Checked by KRS 10/2011 '
Q BP Inlet A Inlet C QBP2
-___ � Inlet B f `- I
N N
l0
C
t 0 '
C M � r 01 f� i=�
to C M >
y 2 G)
� w+ C
U c W > _d
to U c
co W '
m N 0-W �+
U m y m
U � �
Transverse Slope
ST
0.022
ft/ft
Allowable (Calculated')
Zd
5.11
ft
Allowable
de
0.11242
ft
Time of Concentration
Tc
5.0
min
50 yr. rainfall
r
m
7.88
coefficients
L
n
0.545
Rainfall Intensity
I50_yr
3.28
in/hr
Distance between last inlet
and low point
L1
115.00
ft
Width of catchment area
W1
36.00
ft
Bypass from last inlet
QBP14
0.01
cfs
Discharge of catchment area
Q1
0.30
cfs
QTotal _ QBP1 + Q1 + Q8P2 + Q2
QTotal = 0.01 + 0.30 + 0.08
+ 0.06 =
0.45
CfS
Combination' or Grate Inlet for sag PB (C/GN C
Effective Perimeter of PA Flank 2.08 ft
Grate Inlets (reduced by PB 4.15 ft
50% for plugging) Pc Flank 0 ft
Shoulder Width
1 2.00
ft
Lane Width
11.00
ft
(dA = dc = 0.05621 ft allowable)
' Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration)
SAG analysis criteria
L2
25.00
ft
W2
36.00
ft
�� Face of Curb
QBP24
0.08
cfs
Q2
OA6
cfs
Length
idth See Figure 5-5
Hydraulics Mar
for orate dimpr
Width 1.45
Length 1.25
Width
1.45
Length
1.25
Width
0
Length
0
IQ = QA + QB + QC
2 IQ = CWAPA(0.5de)' S+ CWBPede' S+ CwcPc(0.5dB)' S 0.55 cfs Capacity is adequate,
z/ design is complete.
IQ 3
de - 0.10 ft Check calculated d a ainst
CWAPA0.3536 + CWBPB+ CWe+ CWcPC0.3536 B 9
allowable de.
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual),
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
4 Qop1 and Qop2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 80
Combination inlet at low point
Qt L Q Z� Q2
L1
L2
Q BPI Inlet A Inlet C QBP2
Inlet B f
dA dB dC
M N
G M N
tD �p
+ N t C
p 'aO
r M N M N M N .
r M
N > c N o >
m � c m
c w
o
C d N G>7 N R A C d
o c > m aCO
c
r1 °' y o w m CO
rn U c � a
U
U c S
Transverse Slope
Sr
0.021
fUft
Allowable
Zd
4.68
ft
Allowable
dB
0.09828
ft
Time of Concentration
T�
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
150y,
3.28
in/hr
Distance between last inlet
and low point
L,
44.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP,4
0.00
cfs
Discharge of catchment area
Q,
0.11
cfs
QTOt.1 - QBP1 + Q1 + QBP2 + Q2
QTota, = 0.00 + 0.11 + 0.00
+ 0.37 =
0.48 cfs
Combination' or Grate Inlet for sag PB (C/G}-► C
Effective Perimeter of PA Flank [,Ift
Grate Inlets (reduced by PBft50% for plugging) PC Flank ft
b
cQ = QA+QB+QC
2 _ = CWAPA(0.5de)' S+ CwBPBde15+ CwcPc(0.5de), s
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = do = 0.04914 ft allowable)
(for 5 minute duration)
L2
W2
QBP2'
Q2
144.00
ft
ft
cfs
cfs
36.00
0.00
0.37
Width 1.45
Width 1.45
Width 1.45
0.52 cfs
21
SQ _
d8 - J 0.09 ft
CWAPA0.3536 + CwePB+ we+ CwcPc0.3536
If dF < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added' and the process repeated.
Designed by WIRE 10/2011
Checked by KRS 10/2011
�� Face of Curb
Length
idth See Figure 5-5
Hydraulics Mar
Length 1.25
Length 1.25
Length 1.25
Capacity is adequate,
design is complete.
Check calculated dB against
allowable de.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
Qbp, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 83
Combination inlet at low point
L�,Q1 Q O Q 2
L1 I L2
Q BP Inlet A Inlet C QBP2
\� I Inlet B -1 f/
dA dB dC
w o
N <D
O�
O�
+� N +� r
rn l0
Cl) y O G_�i
c y m CO >
O LL C E_
a d a
t d M W W t
_Q1 C m d Q1
= U c 2
Transverse Slope
ST
0.027
ft/ft
Allowable
Zd
4.00
ft
Allowable
de
0.108
ft
Time of Concentration
To
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
150-yr
3.28
in/hr
Distance between last inlet
and low point
L,
50.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP14
0.00
cfs
Discharge of catchment area
Q1
0.13
cfs
QTotal - QBP1 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.13 + 0.00 + 0.21
= 0.34
cfs
Combination' or Grate Inlet for sag PB (C/G)— *. M
Effective Perimeter of PA Flankft
Grate Inlets (reduced by PB ft
50% for plugging) PC Flankft
Shoulder Width 2.00 ft
Lane Width 1 11.00 Ift
(dA = dC = 0.054 ft allowable)
(for 5 minute duration)
L2 81.00 ft
Designed by WIRE 10/2011
Checked by KRS 10/2011
W2 36.00 ft �� Face of Curb
QBP2' 0.00 cfs
Q2 0.21 cfs
Length
idth See Figure 5-5
Hydraulics Mar
Width 0 Length 0
Width 1.45 Length 1.25
Width 0 Length 0
IQ = QA + QB + QC
2 EQ = CwAPA(0.5de)15+ CwePedB' S+ CwCPC(0.5de)' S 0.44 cfs Capacity is adequate,
2 design is complete.
Q /3
de — 0 09 ft Check calculated dB against
CwAPA0.3536 + CwBPB+ Cwe+ CwcPC0.3536 � 9
allowable dB.
If dB < allowable de, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
" QbP, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls
10/24/2011 '
SAG INLET DESIGN WORKSHEET - CB 88
Combination inlet at low point
QI L Q ,\ Q2
Li
L 2
Q BP Inlet A Inlet C QBP
n2
I F Inlet B � � f/
dA dB dC
N N
+ Cf + M
M N M N
O
C O + OD O
(n C fn >
O
y Y C C G7
.. W c0 O ate+ yam-,, W
C y 0 CO > c m
a c w >> m o c
.. 00 W a
4) CO III
a, m m °7 tM
Transverse Slope ST
Allowable Zd
Allowable dB
Time of Concentration T�
50 yr. rainfall r m
Coefficients L n
Rainfall Intensity Ie0 y,
Distance between last inlet
and low point L,
Width of catchment area W,
Bypass from last inlet QBP1'
Discharge of catchment area Q1
0.023
ft/ft
ft
ft
min
in/hr
ft
ft
cfs
cfs
4.00
0.092
5.0
7.88
0.545
3.28
RO
QTotal — QBP1 + Q1 + QBP2 + Q2
QTotal - 0.00 + 0.07 + 0.00 + 0.21 = 0.28 CfS
Combination' or Grate Inlet for sag PB (C/%)- C
Effective Perimeter of PA Flank ft
GrateInlets (reduced by PB ft
50% for plugging) PC FlankL�lft
b
IQ = %+QB+QC
2 `Q = CwAPA(0.5dB)1 5+ C,,PBd,"+ C,,PC(0.5dB)1 s
Shoulder Width 2.00 ft
Lane Width 11.00 It
WA = do = 0.046 It allowable)
(for 5 minute duration)
L2
82.00
ft
W2
36.00
ft
QBP2°
0.00
cfs
Qz
0 21
cfs
Width 0
Width 1.45
Widthl 0
0.35 cfs
IQ
]2/3
dB 0.08 ft
CWAPA0.3536 + CWBPB+ CWB+ CWCPC0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Length 0
Length 1.25
Length 0
Designed by WIRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
Q,v1 and QW2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 89
Combination inlet at low point
OQ1 Q Z�lQ2
L1 L2
Q BP Inlet A Inlet C QBP n2
\� I F Inlet B � � f/
dA dB dC
+ N }
CO M N
M N
C
O
O
(n C M N N >
f0
> O O y
10, C
C W to > ` ++ (n C W
r
m m > o m
a w m m a c
d 00 w w
�_ cCO
+. m
Transverse Slope
ST
0.025
ft/ft
Allowable (Calculated')
Zd
4.66
ft
Allowable
de
0.1165
ft
Time of Concentration
T�
5.0
min
50 yr. rainfall
r
m
7.88
coefficients
L
n
0.545
Rainfall Intensity
150 yr
3.28
in/hr
Distance between last inlet
and low point
L1
46.00
ft
Width of catchment area
W,
36.00
ft
Bypass from last inlet
QBP14
0.00
cfs
Discharge of catchment area
Q1
0.12
cfs
QTotal — QBP1 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.12 + 0.00
+ 0.34
= 0.46 cfs
Combination' or Grate Inlet for sag Pe (C/G)— * Rd
Effective Perimeter of PA Flankft
Grate Inlets (reduced by PB ft
50% for plugging) Pc Flankft
b
Designed by WIRE 10/2011
Checked by KRS 1012011
Shoulder Width
2.00
ft
Lane Width
11.00
ft
(dA = do = 0.05825 ft allowable)
. Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration)
SAG analysis criteria
L2
100.00
ft
W2
48.00
ft
�� Face of Curb
QBP24
0.00
cfs
Q2
0.34
cfs
P
Length
See Figure 5-5
Hydraulics Mar
Width 0
Length 0
Width
1.45
Length
1.25
Width
0
Length
0
EQ = QA + QB + QC
2 IQ = C,,PA(0.5dB)1 5+ CwBPBd815+ CwcPc(0.5d,,)' S 0.50 cfs Capacity is adequate,
2/ design is complete.
(� 3
dB — 0.11 ft Check calculated dB against
CwAPA0.3536 + CwBPB+ CwB+ CwcPc0.3536
allowable dB.
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
' To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
° Qbp1 and Qbp2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls
10/24/2011 1
SAG INLET DESIGN WORKSHEET - CB 90
Combination inlet at low point
Q> Q Q2
Li
L2
Q BP Inlet A Inlet C QBP2
�. 1 F Inlet B ---, 7 f/
dA dB dC
+ w + o0
I p
C + M C
O O
(/> C >
>
> O C C�
W CIOl0 w O ate+ •. a+
d d U) Cn
> C d
p
a
a y CD w L
rn E m m m o�
U = c 2
Transverse Slope
ST
0.033
ft/ft
Allowable
Zd
4.01
ft
Allowable
de
0,13233
ft
Time of Concentration
T�
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
Ieo-y,
3.28
in/hr
Distance between last inlet
and low point
L,
72.00
ft
Width of catchment area
W,
48.00
ft
Bypass from last inlet
QBP14
0.00
cfs
Discharge of catchment area
Q1
0.25
cfs
QTotal — QBP1 + Q1 + QBP2 + Q2
Qmtal = 0.00 + 0.25 + 0.00 + 0.31
= 0.56
cfs
Combination' or Grate Inlet for sag PB (C/G)--► C
Effective Perimeter of PA FlankL!d
ft
Grate Inlets (reduced by PB ft
50% for plugging) PC Flankft
b
`Q = QA+QB+QC
2 IQ = C11PA(0.5d8)75+ CIBPBdB15+ CwcPC(0.5de)1 s
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = dC = 0.066165 ft allowable)
(for 5 minute duration)
L2
91.00
ft
W2
48.00
ft
QBP24
0.00
cfs
Q2
0.31
cfs
Width 0
Width 1.45
Width 0
0.60 cfs
2/3
IQ 1 _
de — 1 0.13 ft
CWAPA0.3536 + C,Nepe+ CWe+ CWCPC0.3536
If de < allowable dB, the design is complete.
If dB > allowable de, additional inlets must be added and the process repeated.
Length 0
Length 1.25
Length 0
Designed by WIRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
4 Qbp, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 100
Combination inlet at low point
z�Q1 Y-Q AQ2
L1 L2
Q BP Inlet A Inlet C QBP
Inlet B f/
dA dB �dC
� o
C C + to C C
O O M 01 O O
Z M > N
C C ++ >
to d O O C C rq Cs
C O W
+.+ •+ > �' i.+ yR,, A
•0 rn G> tC (n > m d
a c w m > m V c
r o d w
°' ILL! m
U —
Transverse Slope
ST
Allowable (Calculated*)
Zd
Allowable
dB
Time of Concentration
To
50 yr. rainfall r
m
coefficients L
n
Rainfall Intensity
150-yr
Distance between last inlet
and low point
L,
Width of catchment area
W,
Bypass from last inlet
QBP,4
Discharge of catchment area Q1
0.020 ft/ft
6.50 ft
0.13 ft
5.0 min
7.88
0.545
3.28 in/hr
M
ft
ft
cfs
cfs
QTotal - QBP1 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.19 + 0.17 + 0.18 = 0.55 cfs
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = dc = 0.065 ft allowable)
' Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration) SAG analysis criteria
L2
W2
ft
QBP2
[4g3.00ft
cfs
Q2
cfs
Combination' or Grate Inlet for sag Pe (C/G)- *. RO
Effective Perimeter of PA FlankIft
ft Width 0
Grate Inlets (reduced by PB ft Width1.45
50% for plugging) Pc Flank Width 0
IQ = QA+QB+Qc
2 IQ = CwAPA(0.5de)' B+ CwBPBde' S+ CwcPc(0.5dB)' aF 0.58 cfs
S
2/3
(� 1 _
dB - J 0.13 ft
CwAPA0.3536 + CWBPB+ C�,�,B+ CwCPG0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Designed by WRE 10/2011
Checked by KRS 10/2011
�� Face of Curb
VLength
ee Figure 5-5 in
ydraulics Manual
for grate dimension
Length 0
Length 1.25
Length 0
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
" QbP, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 1
SAG INLET DESIGN WORKSHEET - CB 101
Combination inlet at low point
LQl Y-Q AQ2
Li I L
QBP Inlet A Inlet C QBP
\� I F Inlet B
dA dB dC
N Y)
t OD + <O
r N p N
N
O
w .0 r N N O
r
N ; c r N >
d O c
w C W
W U) A O .2 ..
c r W d
N a.r
m M y O d W lL L
U U c c S
Transverse Slope
ST
0.018
ft/ft
Allowable (Calculated')
Zd
6.00
ft
Allowable
dB
0.108
ft
Time of Concentration
T�
5.0
min
50 yr. rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
I50_yr
3.28
in/hr
Distance between last inlet
and low point
L,
68.00
ft
Width of catchment area
W,
58.00
ft
Bypass from last inlet
QBP,°
0.07
cfs
Discharge of catchment area
Q,
0.27
cfs
QTotai — QBP1 + Q1 + QBP2 + Q2
QTo1a1 = 0.07 + 0.27 + 0.00
+ 0.18 =
0.51 cfs
Combination' or Grate Inlet for sag PB (C/G}— . C
Effective Perimeter of PA Flank 2.08 ft
Grate Inlets (reduced by PB 4.15 ft
50% for plugging) PC Flank 0 ft
b
EQ = QA + QB + QC
2 EQ = CwAPA(0.5dB), 5+ CwePed,"+ CwcPc(0.5dB)15
Shoulder Width 1.00 ft
Lane Width 11.00 ft
WA = dc = 0.054 ft allowable)
Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration) SAG analysis criteria
L2
45.00
ft
W2
5&00
ft
QBP2
0.00
cfs
Q2
0.18
cfs
Width 1.45
Width 1.45
Width 0
0.52 Ifs
cQ
2/3
dB — 0.11 ft
CWAPA0.3536 + CwBPB+ CwB+ Cw,P,0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Length 1,25
Length 1.25
Length 0
Designed by WRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions
" QbP, and QCP2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 107
Combination inlet at low point
UQt TQ O Q 2
Li
Q BPl Inlet A
Inlet B
dA dB
M
O
N
M
O
C + O
� O
CO > C
O O
C
A v O
y m to a
a c w y
r d c W
27, a r-
= m c
U —
Transverse Slope ST 0.030 ft/ft
Allowable 7d 4.00 ft
Allowable dB 0.12 ft
Time of Concentration Tc 5.0 min
50 yr. rainfall r m 7.88
coefficients L n 0.545
Rainfall Intensity I50
y, 3.28 in/hr
Distance between last inlet
and low point L, 47.00 ft
Width of catchment area W, 37.00 ft
Bypass from last inlet QBP,4 0.00 cfs
Discharge of catchment area Q, 0.12 cfs
QTotal — QBP, + Q, + QBP2 + Q2
QTotal - 0.00 + 0.12 + 0.04 + 0.10 = 0.26 cfs
Combination' or Grate Inlet for sag PB (C/Gy -► C
Effective Perimeter of PA Flank 0 ft
Grate Inlets (reduced by PB 4.15 ft
50% for plugging) PC Flank 0 ft
b
sQ = QA+QB+QC
2 EQ = C,,PA(0.5dB), 5+ CwBPBdB,s+ CwcPc(0.5dB)'s
L2
Inlet C QBP2
dC
n
O M
t
'mod M
O
r
ac+ >
C to d
y O W
d
4) C
W m —
� U
c
Shoulder Width 1 2.00 Ift
Lane Width 11.00 ft
A, = do = 0.06 ft allowable)
(for 5 minute duration)
Lz
Wz
QBP2°04
Q2
ft
ft
cfs
cfs
.00
[!37.00
10
Width 0
Width 1.45
Width 0
0.52 cfs
CQ
2/3
1
dB - J 0.08 ft
CWAPA0.3536 + CWBPB+ CWB+ CWCPC0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Designed by WIRE 10/2011
Checked by KRS 10/2011
�� Face of Curb
Length
idth See Figure 5-5
Hydraulics Mar
Length 0
Length 1.25
Length 0
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
QbP, and QbP2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10/24/2011 1
SAG INLET DESIGN WORKSHEET - CB 109
Combination inlet at low point
z� Q1 Q "AQ2
L1
1-1-+ A
Q
d
c
Transverse Slope
ST
0.017
ft/ft
Allowable (Calculated*)
Zd
6.50
ft
Allowable
dB
0.1105
ft
Time of Concentration
To
5.0
min
50 yr, rainfall r
m
7.88
coefficients L
n
0.545
Rainfall Intensity
150_y,
3.28
in/hr
Distance between last inlet
and low point
L,
34.00
ft
Width of catchment area
W,
48.00
ft
Bypass from last inlet
QBP,'
0.00
cfs
Discharge of catchment area
Q1
0.12
cfs
QTotal = QBP1 + Q1 + QBP2 + Q2
QTotal = 0.00 + 0.12 + 0.00 + 0.34 =
0.46
CfS
Combination' or Grate Inlet for sag PB (C/G)--► C
Effective Perimeter of PA Flank Ldft
Grate Inlets (reduced by PB 4ft
50% for plugging) Pc Flank ft
EQ = QA+QB+QC
2 I:Q = CwAPA(0.5dB),5+CwBPBdB15+ CwcPc(0.5dB)1.5
T«1— !`
L2
.�+ >
N 0
w
m
c
.M."
Shoulder Width 2.00 ft
Lane Width 11.00 ft
(dA = do = 0.05525 ft allowable)
* Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration) SAG analysis criteria
L2
99.00
ft
W2
48.00
ft
QBP2
0.00
cfs
Q2
0 34
cfs
Width 0
Width 1.45
Width 0
0.46 cfs
EQ 2/3 _
dB 1 0.11
CWAPA0.3536 + CwBPB+ Cwe+ CwcPc0.3536 ftJ -
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Length 0
Length 1.25
Length 0
Designed by WIRE 10/2011
Checked by KRS 10/2011
Capacity is adequate,
design is complete.
Check calculated dB against
allowable cl,
Notes:
1 If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
' Q,p, and Qbp2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
SAG INLET DESIGN WORKSHEET - CB 110
Combination inlet at low point
z�Qt T-Q /\Q2
Li
Q BpI Inlet A
Inlet B
dA dB
0
0
t �O
� N
C C + M
. ..
O O 6
C C
N O O C C
W R O O
a c W
s m o w
at 'E
= m
L)
Transverse Slope ST 0.020 ft/ft
Allowable (Calculated') Zo 5.50 ft
Allowable dB 0.11 ft
Time of Concentration T� 5.0 min
50 yr. rainfall r m 7.88
coefficients L n 0.545
Rainfall Intensity 150-yr 3.28 in/hr
Distance between last inlet
and low point L, 75.00 ft
Width of catchment area W, 48.00 ft
Bypass from last inlet QBP1a 0.00 cfs
Discharge of catchment area Q1 0.26 cfs
QTotal = QBP1 + Q1 + QBP2 + Q2
QTotal = &00 + 0.26 + 0.00 + 0.17 = 0.43 cfs
Combination' or Grate Inlet for sag PB (C/G)- * C
Effective Perimeter of PA Flank 0 ft
Grate Inlets (reduced by PB 4.15 ft
50% for plugging) Pc Funk 0 ft
£Q = QA + QB + QC
2 £Q = CwAPA(0.5dB)1s+ CwBPBdB1 e+ CwcPc(0.5dB)"
L2
Inlet C Q 2
Shoulder Width 2.00 ft
Lane Width 11.00 ft
WA = do = 0.055 ft allowable)
Zd is calculated to
show the spread
achieved to meet the
(for 5 minute duration) SAG analysis criteria
L2
W2
QBP24
Q2
50.00
ft
ft
cfs
cfs
48.00
0.00
0.17
Width 0
Width 1.45
Width 0
0.45 cfs
£Q 2/3 _
dB 0.11 ft
CwAPA0.3536 + CwBPe+ Cwe+ CwcPc0.3536
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Designed by WIRE 1012011
Checked by KRS 10/2011
w� Face of Curb
Length
idth See Figure 5-5
Hydraulics Mar
Length 0
Length 1.25
Length 0
Capacity is adequate,
design is complete.
Check calculated dB against
allowable dB.
Notes:
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
Qbp, and Qbp2come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet_Revised.xls 10124/2011 1
SAG INLET DESIGN WORKSHEET - CB 115
Combination inlet at low point
AQ1 LQ /\Q2
LI
L2
Designed by WIRE 10/2011
Checked by KRS 10/2011
Q BPI Inlet A Inlet C QBP2
Inlet B f
dA dB dC
v M a M
o O ^ c o 0
ca >
m o >
4) o c c c c cn m
W R > «— O :+ W
to
O YG7 fii d ate+ ly6 Vi >
C W (1) N �
LU
m
m � � LO LLI y U
U m c
U c
Transverse Slope ST 0.037 ft/ft Shoulder Width 2.00 ft
Allowable 4 4.00 ft Lane Width 11.00 ft
Allowable de 0.148 ft (CIA = do = 0.074 ft allowable)
Time of Concentration To 5.0 min
50 yr. rainfall r m 7.88
coefficients L n 0.545
Rainfall Intensity 150_Y, 3.28 in/hr (for 5 minute duration)
Distance between last inlet
and low point L, 57.00 ft L2 20.00 ft
Width of catchment area W, 28.00 ft W2 28.00 ft �� Face of Curb
Bypass from last inlet QsP a 0.00 cfs QBP24 0.53 cfs
Discharge of catchment area Q1 0.11 cfs 02 0.04 cfs
Length
QTotai = QBP1 + Q1 + QBP2 + Q2
QTotai = 0.00 + 0.11 + 0.53 + 0.04 = 0.68 cfs
idth See Figure 5-5
Hydraulics Man i
it
Combination' or Grate Inlet for sag PB (C/G)--► C
for or i
Effective Perimeter of PA Flank 0 ft Width 0 Length 0
Grate Inlets (reduced by PS 4.15 ft Width 1.45 Length 1.25
50% for plugging) PC Flank 0 ft Widthl 0 1 Length 0
b
ZQ = CIA +QB+QC
2 cQ = C,A,APA(0.5dB)' 5+ C,,PBdBt 5+ CwcPc(0.5dB)' S 0.71 cfs Capacity is adequate,
2/ design is complete.
�-Q 3
de - 0.15 ft Check calculated d
CWAPA0.3536 + CWBPe+ CWe+ CWCPC0.3536 � e against
allowable dB.
If dB < allowable dB, the design is complete.
If dB > allowable dB, additional inlets must be added and the process repeated.
Notes.-
' If using a combination inlet for the sag, the flank grate inlets are not required except in a depressed area (See Hydaulics Manual).
2 Formulas based on weir flow. See Hydraulic Manual 5-5.2.
3 To add more than one inlet in the sag or flanks just increase the width and length values to the sum of all values.
Inlets can be different sizes. See Figure 5-5 in Hydraulics Manual for grate dimensions.
" QbP, and Qbp2 come from the inlet spreadsheet.
XL1024 QC WSDOT SAG Inlet Worksheet Revised.xls 10/24/2011
c�
CL
x
m
Appendix E
Shattuck Avenue Stormwater Diversion
Modeling Report
Final Report
Response to 3/25/08 Review Comments on Draft Report
6/18/08 Response Memorandum to Review Comment #2
86/14159/4577 Rainier Avenue South Improvement Project • SW Grady Way to S 2nd Street
Surface Water Technical Information Report
CITY OF RENTON
SHATTUCK AVENUE STORMWATER DIVERSION
MODELING REPORT
Prepared For:
City of Renton
Prepared By:
GHD Inc.
(Job #8614159)
April 2010
(Supersedes February 2008 Draft)
SHATTUCK AVENUE STORMWATER DIVERSION
MODELING REPORT
The technical information and data included in this report was prepared by or under the direct
supervision of the undersigned, whose seal as registered professional engineer licensed to
practice as such in the State of Washington is affixed below:
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report i
Table of Contents
1.0 INTRODUCTION...............................................................................................................1
1.1
PROJECT DESCRIPTION............................................................................................1
1.2
BACKGROUND............................................................................................................1
1.3
SCOPE OF WORK.......................................................................................................2
2.0 HYDROLOGIC MODELING..............................................................................................3
2.1
BASIN MODIFICATIONS.............................................................................................3
2.2
KCRTS MODELING.....................................................................................................6
3.0 HYDRAULIC MODELING.................................................................................................7
3.1
MODIFICATIONS TO XP-SWMM HYDRAULIC MODEL..............................................7
3.2
MODEL SCENARIOS...................................................................................................7
4.0 MODELING RESULTS....................................................................................................12
4.1
SUMMARY OF RESULTS..........................................................................................12
4.2
MODELING FINDINGS...............................................................................................16
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report ii
w
List of Tables
Table 1. Basin Area Revisions..............................................................................
Table 2. Basin V1 Sub -Basins use for Scenarios 3-5............................................
Table 3. KCRTS Modeling Results.......................................................................
Table 4. 25-year Modeling Results — Shattuck Avenue .........................................
Table 5. 25-year Modeling Results — 7th Street .....................................................
Table 6. 25-year Modeling Results — Out of System or Ponded Volume (ac-ft).....
Table 7. 25-year Modeling Results — Rainier Ave Sag & Pump Station ................
Table of Figures
.3
Figure1. Basin Map...............................................................................................................5
Figure 2. Model Schematic — Scenario 1................................................................................9
Figure 3. Model Schematic — Scenarios 2 and 5...................................................................10
Figure 4. Model Schematic — Scenarios 3 and 4...................................................................11
APPENDIX A — BASIN MODIFICATIONS
APPENDIX B — KCRTS MODELING OUTPUT
APPENDIX C — XP-SWMM MODEL OUTPUT
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report iii
1.0 INTRODUCTION
1.1 PROJECT DESCRIPTION
The Shattuck Avenue Stormwater Diversion is a 48-inch diameter storm drain pipe
proposed to be constructed along Shattuck Avenue S between S 4th Place and S 7th Street
in Renton, Washington. Once constructed, this new storm drain will provide gravity
stormwater conveyance for the majority of the drainage basin that currently flows to a pump
station located on Rainier Avenue S adjacent to the BNSF railroad bridge.
Supplemental stormwater modeling has been performed as part of the Rainier Avenue
South/BNSF Improvements project to evaluate the feasibility of diverting more runoff away
from the Rainier Avenue pump station than had been considered by earlier studies. This
assessment was accomplished by modifying the City's XP-SWMM planning -level hydraulic
model.
1.2 BACKGROUND
The City's existing XP-SWMM model was prepared as part of the SW 7th Street Storm
Drainage Improvement Project Pre -Design Analysis (Gray & Osborne, February 2003).
Hydrologic modeling input to the XP-SWMM model was achieved using the King County
Runoff Time Series (KCRTS) computer program.
The Shattuck Avenue Diversion was included as part of the chosen Alternative 1 of the SW
7'h Street Pre -Design Analysis. Alternative 1 included a 60-inch storm drain along SW 71h
Street between Lind and Shattuck Avenues, which has since been constructed. The 7th
Street pre -design analysis describes the Shattuck Avenue storm drain pipe improvements
as consisting of a 48-inch pipe between S 7th and S 6th Streets and a 36-inch pipe between
S 6th and S 2"d Streets. The City currently plans to construct a 48-inch pipe between S 7th
Street and S 4th Place. The size of conveyance improvements north of 4th Place will be
determined in the future.
The previous XP-SWMM modeling was performed both with and without an additional 72-
inch parallel downstream conveyance pipe improvement between Lind Avenue and the
outfall to the Black River Forebay. The downstream parallel pipe improvement had been
determined by the SW 7`h Street Pre -Design Analysis to be necessary to achieve 25-year
conveyance capacity with future land use conditions. The parallel pipe system is not
currently included in the City's Capital Improvement Program because flooding predicted by
the future conditions modeling has not occurred with the current land -use and drainage
system conditions.
In addition to the previous XP-SWMM modeling, a backwater analysis was performed for
the proposed pipe improvements between S 71h Street and S 4th Place as part of the
Shattuck Avenue Diversion Feasibility Study (RoseWater Engineering, May 2007).
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 1
1.3 SCOPE OF WORK
The scope of work of this study included the following tasks:
• Reviewing hydrologic and hydraulic modeling prepared for the SW 7`h Street Storm
Drainage Improvements Project Pre -Design Analysis (Gray & Osborne, February
2003). '
• Revising existing hydrologic modeling to reflect known current conditions identified
through review of record drawings and limited field investigation. '
• Modifying the existing XP-SWMM model to create a new "current conditions" model
that includes as -built drainage conditions in S 7th Street and Shattuck Avenue S.
• Modeling future conditions including the Shattuck Avenue Stormwater Diversion,
with alternative model scenarios that evaluate the feasibility of diverting additional
runoff away from the Rainier Avenue pump station.
• Running all modeled scenarios both with and without a potential future 72-inch
parallel pipe drainage improvement between Lind Avenue and the outfall to the
Black River Forebay.
• Presenting modeling results in terms of changes in the HGL along S 7th Street and '
Shattuck Avenue S, and changes in pump station performance and flooding depth
along Rainier Avenue.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 2
2.0 HYDROLOGIC MODELING
2.1 BASIN MODIFICATIONS
Drainage basin boundaries were revised based on a review of record drawings and limited
field investigation. Record drawings were obtained and reviewed for the following
properties: Renton High School, McLendons Hardware, Renton Center (Fred Meyer and
businesses on the west side of Rainier Avenue), Lithia Dodge, Kentucky Fried Chicken, and
Bob Bridge Scion. Record drawings could not be found for Rainier Village (Baskin -
Robbins, Radio Shack) and for Mazatlan Mexican Restaurant. Figure 1 shows the revised
basin map resulting from this effort.
Table 1 shows the revised basin areas in acres, including future conditions impervious and
pervious areas used in the revised hydrologic modeling. Impervious coverage percentages
were taken from Table 1 of the SW r Street Pre -Design Analysis and applied to the
modified basin areas.
These changes reduced the total "existing" area tributary to the Rainier Avenue pump
station by about 11 acres, from the 82 acres indicated in 7th Street Pre -Design Analysis to
71 acres with the revised areas. See Appendix A for copies of the record drawings that
were used for updating the basin map.
Table 1. Basin Area Revisions
Basin
Previous
Revised
Area (ac)
%
Impervious3
Area (ac)
Impervious
Area (ac) °
Pervious
Area (ac)
1
7.45
91 %
7.66
6.97
0.69
U
14.26
89%
12.93
11.51
1.42
V1
22.72
90%
16.63
14.97
1.66
V2
23.06
83%
24.04
19.95
4.09
W
4.16
84%
4.57
3.84
0.73
X
19.02
96%
19.91
19.11
0.80
AH
7.93
73%
10.14
7.40
2.74
AK
7.31
78%
11.90
9.28
2.62
AL
12.77
78%
5.05
3.94
1.11
AN
9.71
75%
11.22
8.42
2.80
AP
3.43
95%
2.91
2.76
0.15
1. From "SW 7 InStreet Storm Drainage Improvement Project Pre -Design Analysis" (Gray & Osborne,
Feb. 2003).
2. Revised areas based on review of record drawings and limited field investigation.
3. % Impervious used for "future conditions' modeling = greater of existing or future conditions.
4. Based on % impervious used for previous "future conditions' modeling.
Basin V1 is the drainage basin that drains directly to the existing pump station and was not
originally planned to be diverted to the new storm drainage system in Shattuck Avenue S.
In order to evaluate the possibility of diverting additional areas away from Rainier Avenue to
Shattuck Avenue, Basin V1 was divided into three sub -basins, V1-1, V1-2, and V1-3.
These areas are delineated on Figure 1; see Table 1 for sub -basin areas and percent
impervious coverage.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 3
• Sub -Basin V1-1 consists of the Rainier Avenue drainage basin between S 3rd Place
and S 4th Place that currently drains to the pump station, but could be diverted to
the new Shattuck Avenue storm drain by constructing a new storm drainage pipe
along S 4th Place.
• Sub -Basin V1-2 consists of the Rainier Avenue drainage basin between S 4th Place
and a point 500 feet north of S 7th Street that must remain tributary to the pump
station because it is too low to be conveyed to the new Shattuck Avenue storm
drain.
• Sub -Basin V1-3 consists of an area along Rainier Avenue that extends 150 feet
through 500 feet north of S 7th Street that currently drains to the pump station, but
could be diverted to the storm drainage system in S 7th Street. This area includes
the Lithia Dodge parking lot.
Table 2. Basin V1 Sub -Basins use for Scenarios 3-5
Sub -Basin
Area (ac)
%
Impervious
Impervious
Area (ac)
Pervious
Area (ac)
V1-1
7.85
90%
7.06
0.79
V1-2
4.75
90%
4.28
0.47
V1-3
4.03
90%
3.63
0.40
Total (Basin V1)
16.63
Same as Basin V1, See Table 1
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 4
2.2 KCRTS MODELING
The same hydrologic modeling approach used by the SW 7th Street Pre -Design Analysis
was used for the current modeling. Following is a list of the model parameters:
• Model: King County Runoff Time Series (KCRTS)
• Time Step: 15-minute
• Rainfall: Sea-Tac Region with 1.0 scale factor
• Soils: Till
• Land Cover: Impervious and till grass, based on the future land use condition
impervious coverage percentages found in Table 1 of the SW 7th Street
Pre -Design Analysis.
Hydrograph Extraction: 25-year hydrographs were extracted using the KCRTS Analysis
Tools Module. The 48-hour hydrograph was extracted from 12/8/02, 0:00 hours to 12/9/02,
23:00 hours to bracket the 25-year storm. The resulting hydrographs were converted to
comma delimitated format using Excel for input into the XP-SWMM hydraulic model as
gauged inflow. Revised hydrology modeling files have been named using the same
convention as the previous modeling, except the suffix "-rev" has been added.
KCRTS modeling was only performed for drainage basins that changed in size and for the
new sub -basins V1-1, V1-2, and V1-3. The peak 25-year runoff rates from the previous and
current hydrology modeling are found in Table 3. Detailed KCRTS program output is
attached as Appendix B.
Table 3. KCRTS Modeling Results
Basin
Future Condition 25-year Peak Flow
(cfs)
Previous
Modeling
Current Modeling
1
6.25
6.43
U
11.78
10.67
V1
18.98
13.84
V2
17.72
18.88
W
3.29
3.62
X
16.61
17.41
AH
5.79
7.27
AK
5.48
8.93
AL
9.63
3.79
AN
7.10
8.20
AP
2.97
2.52
Sub -Basin
V1-1
n/a
6.53
V 1-2
n/a
3.96
V 1-3
n/a
3.36
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 6
3.0 HYDRAULIC MODELING
3.1 MODIFICATIONS TO XP-SWMM HYDRAULIC MODEL
The following modifications were made to the City's existing XP-SWMM model to develop a
current conditions hydraulic model:
• The previous Version 8 XP-SWMM model was imported into Version 10.6 and run to
verify consistent results.
• Hydraulic conditions in S 7th Street were revised to match the SW 7th Street as -built
plans.
• Hydraulic conditions in Shattuck Avenue S were revised to match the recent
topographic survey.
• The Rainier Avenue pump station link was modified to match the pump station
performance and stage/storage relationships determined through previous
preliminary design work for the Rainier Avenue/BNSF Improvement project. The
pump station is modeled to have 6.9 cfs average capacity when one pump is running
and 13.5 cfs capacity with both pumps running.
• Revised hydrograph inputs generated using KCRTS were attached to the
appropriate nodes as gauged inflow (see Section 2 for hydrologic modeling).
• Model nodes along the Hardie Avenue branch of the storm drainage system were
switched from "sealed" to "ponding allowed" to more accurately reflect current
conditions.
3.2 MODEL SCENARIOS
The following model scenarios were developed and run to evaluate the impacts of diverting
additional runoff away from the Rainier Avenue pump station to the new 48-inch storm drain
in Shattuck Avenue S.
Each scenario name contains an A or B suffix:
A = Existing conveyance system between Lind Avenue and the Black River Forebay.
B = New 72-inch parallel conveyance pipe between Lind Avenue and the Black River
Forebay.
All model scenarios used future land use conditions. Following is a description of each
scenario:
Scenario 1: Current conditions in Shattuck and Rainier Avenues.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 7
Scenario 2: 48-inch storm drain improvement in Shattuck Avenue between S 7th Street
and S 4th Place. All of Basin V1 (16.63 ac) remains tributary to the Rainier
Avenue pump station. This results in runoff from 54 acres being diverted
away from the Rainier Avenue pump station to the new Shattuck Avenue
storm drain.
Scenario 3: 48-inch storm drain improvement in Shattuck Avenue between S 7th Street
and S 4th Place, and 24-inch storm drain improvement along S 4th Place to
convey Sub -Basin V1-1 to the new Shattuck Avenue storm drain. Sub -
Basins V1-2 and V1-3 (8.78 ac) remain tributary to the Rainier Avenue pump
station. This results in runoff from 62 acres being diverted away from the
Rainier Avenue pump station to the new Shattuck Avenue storm drain.
Scenario 4: Same as Scenario 3, with the addition of a 24-inch storm drain improvement
in Rainier Avenue to convey runoff from Basin V1-3 to S 7th Street. Only
Sub -Basin V1-2 (4.75 ac) remains tributary to the Rainier Avenue pump
station. This results in runoff from 66 acres being diverted away from the
Rainier Avenue pump station to the new Shattuck Avenue storm drain.
One additional scenario was added after evaluating the modeling results of the first four
scenarios.
Scenario 5: Same as Scenario 2, with a 36-inch storm drain improvement added between
S 4th Place and S 2"d Street.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 8
LEGEND
45• MANHOLE NODE
40_E MANHOLE NODE WITH
• BASIN INPUT
-� STORM DRAIN PIPE
OUTFALL 1_A,B1,B2
72" PARALLEL PIPE
(SCENARIO 1B)
5
10
4+21 Ex F
15 C.D 45
- 20 25 30 35
40 E
SW 7TH ST VAULT 1 (1+62)
CONVEYANCE
SYSTEM
ponq
CLIENTS IPEOPLE IPERFORMANCE
K SMITH - _ 02,08,2008
150AAIAJAK
145A
140A
138A
137A
136A
135A AH
13055A i
120A
115A_AF,AD
110A
100A 105A
95A AE
80A_ABACAP
79A
78A
75A_Z,AA,Y
73A
70A
AH75_AL
SH70_AG
SH65
SHATTUCK AVE
CONVEYANCE
SYSTEM
HARDIE AVE
67A CONVEYANCE SH60-V2
SYSTEM
65A
60B NODE
60A X
LIFT STATION\
59A_W,AM TmpOut_V1
59B_U CB46 (24+14)
CB45 (23+63)
58A CB -EX (22+85)
57A CB42 (21+04)
F8-22(19+96)
56A D8-14-G E8-136 (18+83)
VAULT 2 (6+44) E8-13A (17+97)
E8-11 (16+20)
C652 (15+71)N \
C65 (4+67)
CB17 (9+78)
CB21 (11+35)
CB31 (14+35)
CB35 (15+71)_I
1 VT3 (25+57)/
CB41 (20+92)
CB40 (17+97)
S H 50_AN
SH45
SH40
SH25_L
SH2O
SH15
SH10_K,M
/ MH2385 ExCB (31+02)
32+10 Ex
26+48 Ex 32+23 Ex
32+17 Ex
ExCB (31+05)
CB54 (29+23)
CB51 (26+48)
CB50 J
35+21
, 36+60
�235_0,A0
37+22 P,Q,R
SHATTUCK AVENUE
STORMWATER DIVERSION
MODELING SCENARIO 1
FIGURE
2
LEGEND
450 MANHOLE NODE
40 E MANHOLE NODE WITH
• BASIN INPUT
EXISTING STORM
DRAIN PIPE
PROPOSED STORM
DRAIN PIPE
1—A,B1,B2
OUTFALL
72" PARALLEL PIPE
` (SCENARIO 2B AND 5B)
5
10 �
4+21 Ex F
15 CD 45
20 25 30 35 40_E
SW 7TH ST VAULT 1 (1+62)
CONVEYANCE
SYSTEM
ICLIENTSIPEOPLE IPERFORMANCE
hum
DESIGNED K. SMITH onrE 02/08/2008
150AAIAJAK
145A
140A
138A
137A
136A
135A AH
13055A i
120A
115A_AF,AD
110A
SH70_AG
AH75_AL
100A 105A
95A_AE
_
8OA_ABACAP
N
O
79A SH65
O_
w
78A
Z,AA,Y
Z
w
U
SHATTUCK AVE
U)
CONVEYANCE
/73A
7
iv
SYSTEM
cnHARDIE
AVE
M67ACONVEYANCE
SH60_V2
U)
X
SYSTEM
w
z
65A
6OB
60A X
LIFT STATION
59A_W,AM Tmp Out_VI
59B_U CB46 (24+14)
CB45 (23+63)
58A CB -EX (22+85)
57A CB42 (21+04)
F8-22 (19+96)
56A D8-14_G E8-13B (18+83)
VAULT 2 (6+44) E8-13A (17+97)
ZI
E8-11(16+20)
_ CB52 (15+71)\\ \
CB5 (4+67)
C617 (9+78)
CB21 (11+35)
CB31 (14+35)
CB35 (15+71)_I
SH50_AN
VT3 (25+57)/
CB41 (20+92)
CB40 (17+97)
U is /
CB6
0
00
v
CB5 W
CB4 Z
CB3
CB2
/ MH2385 ExCB (31+02)
26+48 Ex 32+10 Ex 35+21
32+23 Ex 36+60
32+17 Ex 235_0,AO
ExCB (31+05) 37+22 P,Q,R
CB54 (29+23)
CB51 (26+48)
CB50 J
SHATTUCK AVENUE FIGURE
STORMWATER DIVERSION
MODELING SCENARIOS 2 AND 5 3
10
LEGEND
450 MANHOLE NODE
40 E MANHOLE NODE WITH
• BASIN INPUT
EXISTING STORM
DRAIN PIPE
PROPOSED STORM
~- DRAIN PIPE
1 A,B1,B2
OUTFALL
72" PARALLEL PIPE
` (SCENARIO 3B AND 4B)
10
4+21 Ex
15_C,D 45
20 25 30 35 40_E
SW 7TH ST VAULT 1 (1+62)
CONVEYANCE
SYSTEM
PPMR
CLIENTS I PEOPLE I PERFORMANCE
`r
DESIGNEo K. SMITH once 02/OS/2008
150AAIAJAK
145A
140A
138A
137A
136A
135A_AH
13055A
120A
115A_AF,AD AH75 AL
110A -
SH70_AG
100A 105A
95A_AE
80A_ABACAP
79A SH65
78A
75A_Z,AA,Y
(V
SHATTUCK AVE
73A v~i CONVEYANCE
70A W SYSTEM
HARDIE AVE
67A CONVEYANCE
SYSTEM
SH60_V2
65A NEW 24" :��SH�50AN
608 RA-1
60A_X LIFT STATION
LP_V1-23 (SCENARIO 3)
LP_V1-2 (SCENARIO 4)
59A_W,AM
59B_U
58A
57A RA_V1-3 (SCENARIO 4)
D8-14_G NEW 24" SD
56A VAULT 2 (6+44) (SCENARIO 4)
CB52 (15+71)
CB17 (9+78) VT3 (25+57)
CB21 (11+35) �1341 (20+92)
CB31 (14+35)
CB40 (17+97)
CB35 (15+71)_I
CB7
C B6
0
U)
00
v
CB5 W
CB4 Z
CB3
CB2
/ MH2385 ExCB (31+02)
32+10 Ex
26+48 Ex 32+23 Ex
32+17 Ex
ExCB (31+05)
CB54 (29+23)
C651 (26+48)
CB50_J
35+21
36+60
�235_0,AO
37+22 P,Q,R
SHATTUCK AVENUE FIGURE
STORMWATER DIVERSION
MODELING SCENARIOS 3 AND 4 4
4.0 MODELING RESULTS
4.1 SUMMARY OF RESULTS
The results of the 25-year XP-SWMM modeling for the scenarios defined in Section 3.2 are
summarized in Table 4 for Shattuck Avenue and Table 5 for 7th Street. These tables
include the surface elevation, HGL, and peak flows at key locations along each of these
streets.
Table 6 summarizes the "out of system" and ponded water volumes for each model run due
to overflow from nodes with unsealed lids or nodes that allow ponding.
Table 7 summarizes performance of the Rainier Avenue pump station for each modeled
scenario, in terms of peak flow rate, storage volume used, and predicted flooding depth at
the sag under the railroad bridge.
See Appendix C for XP-SWMM modeling result printouts.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 12
Table 4. 25-year Modeling Results - Shattuck Avenue
Modeling
Scenario
1A
I 1B
2A
2B
3A
3B
4A
4B
5A
5B
Shattuck & 7 St.
Ground Bev.= 24.362
(Node VT3(25+57))
Max. HGL feet
24.06
19.19
24.46
20.21
24.59
20.59
24.58
20.56
24.73
21.29
Max. Flow cfs
38.07
46.20
49.88
56.93
51.94
59.34
51.44
60.34
53.75
67.00
Shattuck & 6 St.
Ground Elev. = 25.80
Node SH15, CB4 L
Max. HGL feet
25.57
25.57
24.69
20.34
24.90
20.79
24.91
20.76
25.31
21.58
Max. Flow cfs
3.56
3.56
29.07
22.03
36.71
25.71
35.14
26.26
59.94
36.19
Shattuck & 4 PI.
Ground Elev. = 28.31
Node SH50 AN
Max. HGL feet
27.42
27.42
24.73
20.39
25.18
20.89
25.17
20.84
25.54
21.75
Max. Flow cfs
8.85
8.85
11.57
12.84
19.05
18.17
19.49
18.09
41.59
27.88
Shattuck & 4th St.
Ground Elev. = 29.63
Node SH60 V2
Max. HGL feet
29.63
29.63
29.63
29.63
29.63
29.63
29.63
29.63
26.26
22.08
Max. Flow cfs
4.59
4.59
4.80
5.45
4.79
4.79
4.79
4.79
33.71
24.28
Shattuck & 3 St.
Ground Elev. = 30.99
Node SH65
Max. HGL feet
30.57
30.57
30.57
30.56
30.57
30.57
30.57
30.57
30.41
22.18
Max. Flow cfs
1.38
1.38
1.39
1.65
1.38
1.41
1.38
1.41
-23.0
7.27
Shattuck & 2" St.
Ground Elev. = 31.90
Node SH75 AL
Max. HGL (feet)
31.90
31.90
31.90
31.90
31.90
31.90
31.90
31.90
30.94
23.10
Max. Flow cfs
3.44
3.44
3.44
3.44
3.44
3.44
3.44
3.44
6.18
3.75
Notes:
1. See Section 3.2 for description of modeling scenarios
2. Ground elevation revised from 24.49 in SW 7`h Street Pre -Design Analysis modeling
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 13
GHD
Table 5. 25-year Modeling Results - 7th Street
Modeling
Scenario
1A
1B
2A
2B
3A
3B
4A
4B
5A
5B
7 n& Naches
Ground Elev. = 20.30
(Node. 15_C,D )
Max. HGL feet
16.75
15.19
16.80
15.30
16.78
15.34
16.77
15.30
16.78
15.43
Max. Flow cfs
158.5
85.28
159.6
90.28
158.7
92.09
158.8
90.16
159.2
96.18
7 & Thomas
Ground Elev. = 22.60
Node: 35
Max. HGL feet
19.56
16.81
19.60
16.98
19.69
17.03
19.58
16.98
19.61
17.16
Max. Flow (cfs)
128.0
68.39
132.5
73.50
129.9
76.16
128.4
73.59
132.2
78.87
7 n& Lind
Ground Elev. = 23.40
Node: Vault 1 1+62
Max. HGL feet
22.85
17.75
22.90
18.00
22.90
18.08
22.98
18.00
22.97
18.29
Max. Flow cfs)
111.2
160.1
116.8
170.9
117.3
175.0
117.2
172.6
118.1
180.9
7 n& Hardie
Ground Elev. = 25.40
(Node:
CB3114+35 H
Max. HGL feet
23.77
18.89
24.25
19.69
24.05
20.00
24.24
19.90
24.15
20.42
Max. Flow cfs
55.01
51.26
63.77
65.35
65.93
69.98
66.61
71.23
65.14
79.17
7 & Shattuck
Ground Elev. = 24.363
Node: VT3 25+57
Max. HGL feet
24.06
19.19
24.46
20.21
24.59
20.59
24.58
20.56
24.73
21.29
Max. Flow cfs
38.07
46.20
49.88
56.93
51.94
59.34
51.44
60.34
53.75
67.00
7 & Morris
Ground Elev. = 25.50
Node: 32+10EX
Max. HGL feet
25.55
22.16
25.56
22.16
25.57
22.16
25.56
22.16
25.56
22.48
Max. Flow cfs
32.88
34.30
32.13
34.30
29.99
34.31
30.13
34.30
32.44
34.18
7,n & Burnett
Ground Elev. = 29.82
Node: 2350,A0
Max. HGL feet
26.77
23.72
26.99
23.72
26.83
23.72
27.11
23.72
27.26
23.72
Max. Flow cfs)
22.48
22.04
22.48
22.04
21.88
22.04
22.45
22.04
22.23
22.06
Notes:
1. See Section 3.2 for description of modeling scenarios
2. Flow through this node only -additional flow in parallel pipe for some scenarios
3. Ground elevation revised from 24.49 in SW 7tn Street Pre -Design Analysis modeling
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 14
Table 6. 25-year Modeling Results - Out of System or Ponded Volume (ac-ft)
Modeling
Scenario
1A
1 113
2A
213
3A
313
4A
413
5A
56
Shattuck Ave
South of 4`h Place
0.51
0.39
0.00
0.00
0.04
0.00
0.03
0.00
0.07
0.00
Shattuck Ave
North of 4`h Place
1.13
1.12
0.90
0.72
0.91
0.85
0.91
0.85
0.00
0.00
7 nStreet
East of Rainier Ave
0.06
0.00
0.31
0.00
0.55
0.00
0.37
0.00
0.45
0.00
Hardie Avenue Branch
of Storm System
2.82
0.92
2.92
0.91
2.82
0.78
2.74
0.81
3.06
0.94
Total
4.52
2.43
4.13
1.63
4.32
1.63
4.05
1.66
3.58
0.94
Notes:
1. See Section 3.2 for description of modeling scenarios
2. Information compiled from Table E20 of XP-SWMM output file see Appendix C
Table 7. 25-year Modeling Results - Rainier Ave Sag & Pump Station
Modeling
Scenario
1A
113
2A
26
3A
313
4A
4B
5A
513
Ground Elev. feet
19.40
19.40
19.40
19.40
19.40
19.40
19.40
19.40
19.40
19.40
Max. HGL Elev. feet
21.52
21.52
18.74
18.74
17.71
17.71
17.70
17.70
18.74
18.74
Flooding Depth (feet)
2.1
2.1
0
0
0
0
0
0
0
0
Peak Inflow cfs
22.6
22.6
13.8
13.8
7.3
7.3
4.0
4.0
13.8
13.8
Max Pump Flow cfs
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
Storage Volume
6429
6429
689
689
511
510
510
511
689
689
Notes:
1. See Section 3.2 for description of modeling scenarios
2. Rainier sag and pump station represented by Node Tmp Out V1 for Scenarios 1, 2, and 5; Node LP_V1-
23 for Scenario 3; and Node LP V1-2 for Scenario 4
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 15
4.2 MODELING FINDINGS
This section summarizes the findings from modeling results for each scenario.
Scenario 1 — Current Conditions
The model predicts that the 7th Street drainage system is surcharged nearly to the surface
during a 25-year storm. Very minor flooding occurs along 7th Street east of Rainier Avenue.
Flooding occurs along Shattuck Avenue and at the low point along Rainier Avenue at the
railroad bridge. Significant flooding occurs along the Hardie Avenue branch of the drainage
system.
Addition of the 72-inch parallel pipe improvement west of Lind Avenue reduces the HGL by
nearly five feet along the 7th Street storm drain, eliminating all flooding from this portion of
the conveyance system. Flooding still occurs at the low point along Rainier Avenue.
Hardie Avenue flooding is reduced.
Scenario 2 — Shattuck Avenue Diversion to 4th Place
Without conveyance improvements west of Lind Avenue, the model predicts HGL increases
at the intersection of 7th Street and Shattuck Avenue by about 0.40 foot, resulting in a 0.1-
foot flooding depth at this location and a minor increase in flooding further to the east along
7th Street (maximum 0.3-foot depth). Shattuck Avenue flooding is nearly eliminated south
of S 4th Place. It should be noted that HGL along 7th Street predicted by the current model
is approximately 0.4 foot higher than in the SW 7t`' Street Pre -Design Analysis modeling
because surface ponding was not allowed in that model. Based on a calculated capacity of
13.5 cfs, the Rainier Avenue pump station can handle the 25-year peak flows from Basin
V1 (13.8 cfs) without surface flooding.
Addition of the 72-inch parallel pipe improvement west of Lind Avenue reduces the HGL by
about four feet along the 7th Street storm drain, eliminating all flooding from this portion of
the conveyance system. No flooding occurs at the low point along Rainier Avenue.
Flooding still occurs along Shattuck Avenue north of S 4th Place.
Scenario 3 — Shattuck Avenue Diversion to 4th Place & Sub -Basin V1-1 (7.8 ac)
Diversion
The elevation of the intersection of Shattuck Avenue S and S 4th Place is nearly four feet
higher than the intersection of Rainier Avenue S and S 4th Place. Without the downstream
conveyance improvements along 7th Street, HGL in the Shattuck Avenue storm drain is
too high to allow the diversion because flows from that system would overflow to Rainier
Avenue. The diversion has a negligible effect on the HGL along 7th Street, but raises the
HGL along Shattuck two feet at 4th Place. As a result, Scenario 3A does not appear to be
feasible.
With the addition of the 72-inch parallel pipe improvement west of Lind Avenue, the
reduced HGL throughout the drainage system would allow Sub -Basin V1-1 diversion to
occur without the risk of overflows to Rainier Avenue.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 16
Scenario 4 — Shattuck Avenue Diversion to 4th Place, Sub -Basin V1-1 (7.8 ac) Diversion,
and Sub -Basin V1-3 Diversion (4.0 ac)
This scenario without downstream conveyance improvements (Scenario 4A) has the same
problem as Scenario 3A—the tailwater condition is too high in 7th Street and Shattuck
Avenue to allow Sub -Basins V1-1 and V1-3 to be diverted without risking overflows to
Rainier Avenue. Therefore, Scenario 4A does not appear to be feasible.
With the addition of the 72-inch parallel pipe improvement west of Lind Avenue, the
reduced HGL throughout the drainage system would allow Sub -Basin V1-1 and V1-3
diversions to occur without the risk of overflows to Rainier Avenue.
Scenario 5 — Shattuck Avenue Diversion to 2"d Street
This scenario was added to further study potential impacts of the Shattuck Avenue
Diversion on downstream conveyance systems for a future condition where conveyance
improvements were made further upstream along Shattuck Avenue. The results of this
model scenario are similar to Scenario 2, except the added 36-inch conveyance
improvement along Shattuck Avenue north of S 4th Place eliminates flooding from that
segment of storm drain. This change results in a slightly higher hydraulic grade line at the
intersection of 7th Street and Shattuck Avenue; however, impacts to the drainage system
further downstream are negligible.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report 17
APPENDIX A - BASIN MODIFICATIONS
Copies of existing record drawings showing revised basin boundary assumptions for:
• Renton High School: Renton High School Modernization (2000)
• Renton Center:
o Fred Meyer Renton Center Existing Conditions (1994)
o Grading and Drainage Plan- Parking lot near 3Id Place (1992)
o South Lake Center Grading and Drainage Plan (2006)
• McLendon's Hardware: K-Mart#4480 Storm Plan (1971)
• Lithia Dodge: Grading, Paving and Drainage Plan (2003)
• KFC Restaurant: Grading and Utilities Plan (1986)
• Scion Dealership: Sound Olds/Pontiac/GMC Utility/Traffic/Storm Plan (1989); shows
downstream system from IHOP restaurant
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report
LL �
FWgy
i
z
zJ
w
8
Z 1
o
F
I
/ 1
0
CITY OF RENTON STORMAIATER DRANAGE NOTES
E MN,H
la vxtfla 33A N[AO FVh®9m PR rq Mf gMx¢IM369,LL �wL W0.5
IA�p rm�iH �aNplq ml�'a�AP[�IDIbKoaI,QPR
swNu WRa. naS RX['Y NOEa uW VN.
IRmA, 11 q m¢ fm[ uo cars¢
r>eva] mmX nE t4w and a I¢ naam s,Hr9nWs
' iu ma Nmlrsmm na u]Wedwa w.sAoia• Pv.u®ei rsaor. xn K xEwX nsF:
,I. muHEs � Ita� O63,liw RDlx a Im an[ ssc If[ a AA smNl aYw¢ We
.va awc
nWtE ASDdroI Iwn3 AS 4fxl[D h K fL3' a RYIDA a➢Nmdi a RAC'Y�n
t]. NL [Nq aYw qa6 9Vu H C(xL4q aA t¢i R]q PXE16N LLK
1 gY,LR[ nAW 9W5 ¢ m6nIICIN }•ARMA W N[ ,1IIO.W N.YStlnW AR DF
�xAomiYs�mx v3 a rt��wY ocai, srvivdvs umh➢ U.6 RG,[
�lY �a069WS�Nm]IWO6CrvG PAC Wis-0r-YY tll sA ¢ Nsgfa uNSs
rK�nIIgN
, , taYT a KA wHPn Pxa Nn1 E d K.N 9rt Fb35fA u]eA'IIol a N lmRs3
' c� vVlnaE qA4 R� W9C0. 9,u] H a WVa Cahn rDPw 11.
3 qaw 9Yll H uitc u]Ss mf9Yd YPv,1a h ott a Aud avN.WH a PDVC,gXS
PNID W A mmll a s IIXn 40 uN P.]1 PUq,A WUCgll& i .3'/lY-M P,t9/::
l'-s' RDaf/YV-W{ vA4W, ,ID -]' HOf/ H-W[ v],f314
ma0e[ IAte,ad W W carol M[ Ww q n< Pxrt
IS NL 10.D1,5 mxSd16 AV IOTTC aK¢ 9Wl ¢ mttLIN A K SNa dtlV¢ MwL
YIEID,taX nCWd IYfl H w aaWNv i1W: l0 A]H4 uR WA+G
D n3Cnn, N 9,Y nEi IL Staalna[Y YAWI]!D N]R mn1RCIW16 WYP[nD
Iq[4 YPRAW h or DAMfVIM a INRa YDRa, H9a1 vWm1 s ntWl YVA1 DM.
M ]WYWRY 0141LW VED AS-A41 DINrY. H 9A K Mm Yll ¢ 9nwna
PoI1iIWL Iq q-sH 01®H nAf PR95
III m1Abq to ID m AY 0! Dmd VWS dWAIIN
fOb.Di� �Gd�Aa1RSw�YI H�YIW,Pay.IDa w1Y n4�H,Am�VtM gXnS a.�GlAI
Nn No l o.
xL
a i13 6,C q gAiPK Ott] h ilF Arr q 95d AYS WI sUIK of DIntP
�E amK WIMe[ 1(W aNYAnN Ao]a vlry 9FP/3 caw gwswx
m v
s w Vu H ANXW h NammA [Xm s WnGSF. Dnu dw Nn a RMII
nlut a[ Llx a mrq oas xw.miN Xrc rm [ PPra n.cmvr.' xa
WaiawII a xC Sn'd Pxr.IIV oueA mR,acro,
aMD�Wn �N1SQ1�WL B[ fLMlaO h A wYJW! 4 T� xa YrPMID H np
]. E (giACW 9Nl H R9vagL M mM9C xCVwf sxtAlNn 3V[tt G"/� YW6GM
,. xA uPamwEa swE H ua d A Sww Serum xlw.¢n x wm,avE ra
[P1PAT, P/m,8 Yq wf DDd I®N:¢Y6 W PAln K ¢[ Id9L AID Sgtt A n[
wa�ua Poaa Puw.r�x mKfla] Y,N K SU,msIYS a 0% a+cto d nE
�Prt
can a K n,R,n sPW a NxwY:Nn s9+mAA sufarcx rq wYD xa aHa
CanaECDAL nE tNM! wLWa NQ051A! LLsfI3C N nE naM)I BDIAV q n[ Iq a K
n AW asn-a-w nw wN w,Earl FwWw aanE' ISW 94u
I�A"G(onrW Pa A A[ h.SNn]IIW arbL Nl IICIb6 a a[
IWLNC As Ysll M PKN'all Na ! 'ta a uaad ¢AWL YVaVL W V,raa
PrSC A Dw DN !: S VKTI a M PN Yll ¢ s3nNlm w X WaMu mf[ wodc
1 ,. ; NrWC mrml, 9Wl NPY
��i SxwD�vO
0,ff al vlE 6®D 1Wl H llw RAe T. w41 K l>191d a P.0 PA
1A1�"I.WY 0.1551-A 1G WMI BIIVO 9Wl R f ud KI urvll PYt. PAA� �0.'
3]A N Smarr f K xA¢I la,rol R nmF K !w„¢
��mq �
�� rro•w-stn
I
ROLL # 168
Call
before you
Dig.
scnLE r-Too• 1-800-424.5�saDW
0
COUGHUN PORTERLUNOEEN
All MS�.We,'�9vla'im AxV c,.a xacm
Plftw
1Nnww.wlNl e.SwsA.lY,1
I i $J.
Sff, RU TTPAINd(;F RYRTFU P14ACM TA14 F
nGH W SW.CwL[ to
K WVp. ID fAWMd as W]QTC
wwADs
IRf 9AYlD H w9xIW Inln A [dPnW a — I
I
ID 13
IgMzl� I�iW. Aw
xvx[ R,YAWA union v°Nd IHV f i saw w s N
I
W 11
RAa nNsuYl �WmA, '
tPYONAA SN lYw w N W 1
1
W u
tt rtwaum WPmn� s lli A W In
1
it.
—I —s[uD oxq�
a l b PA[sEA rAd Aal N I A W ,t
1
1
W II
10W IN
PIAIH rFSAO, WOl INl W, W ID N
.—
I
ID �
PYA4 IMAr.Y RW bsR
K IaIIAtlC ID SWJLNES xA lnkrlCM
1153 9A11D H VRWIID 11m1 i0 a R 3
1
W ]
N
I
W
f
f
IA
W I
M. W! Iv av-b b il
f
� Il
IL
rxK,Ml. mcS+bW I
f
to IS
S
ID Iq
ID I
K 1dgYN W f1YCDtl] xR 6Fv
¢aYNFYI alA ¢ INxlw LADE
Ir6 MR xl, FIDLWD w H tlN1Aw UMR MAH N f R
W tagfAYl a W 4 5
1,;At
W 1
P.d. 4epaWpw,,+IV w..W IbW ll,ab
I-;Hf
lnW1 4vpC, Arad Nld lAl
sD1ebID raX.evlw.l xs
b,l.-3 w�Na.i pn lN.
541>Ib IEw FRUIwf
WI
s
s1111..Gss rr eN..Wi 'xi �•�•+YW 1�
•
SD f A W _ n Mt�illi 33
al
W
w
/
ID
iiDli
v N
ID W
P.Fx E� lw 4 W IS
PNN wu3 la• wb,� 4 A Ica
w w IID Fo W Y Iv ILrbJm 4 I
I� [ ®WGYL W SNu[Nau xw mIO]vC W6 ML cal MY[ HACK WI Yb! H lDa1W h ![
E nwA nuror.:i sia Loos RER YmssNr Ica HHSDaX cam AANS P xw a xxoE Iwm
3lann iawe r4xlEm onus w AXNs a fowl IwR
ill [ sitn mN�ioo
SAKE u NIDs
I:Q S,s?s Idua snit wRSX
lSAIA¢iVEYOR r.RArs lE.
IA( 3) NV . m.Uh n9n R
ARCHRECT
I., w3153H 9P[uGf
IW9 NI -SSW mnx'E Ica
LEGEND
f0'WI[ Mw. O
Iwron P'AAI �- —Sao—
MRDI—
w¢ Ni Y
GENERAL STORM MANAGE NOTES !"WM11R aE
Ml¢WA6��bE m,m 9M AR gXANw,[Na X91uHKmnNOW'f Iqq •—P—
_ SH uo Idrr3InA3q s u n.m auvt a ranro.KY. wsPAE ul —,—
w! uu W IWu i Kan I-Asnl-sas
—G—
I. Imva Ir�w Lwnw ouxuEL u ullm laos3rs uXrs onfws ,old mss PWS
iIDDI, IWNG w, ODEY DAPa PSmW W,rt maRcq 9V:E K k<Vta^m W
E "IfOYHD Slab NUDS SYSIW. RVnE W - - -
VERTICAL DATUM HORZONTAL CONTROL----
mr a tlhw an a PXIq NEN Yoanuxml�.-:
�rcuK�e�unio! luµ sn x mam lim�wri� wmiw�'XI,.IH: uxevrl � ADw <Uw .. p
IgY,AN I mnnm w.s usx[ ,ria mnx oon sil¢i ,WUR sml w/m
llIN35]]ll E IHQFSlO („D A')
M'Ud'E hs'IINW W ll
ART! Ldl M1AtI1. .
•AWfH q+n0.���� I�Dt a Yip Ii1NHl�m[ w K tlgl aW111m31 hll ~-�
fsWID 13R Wgsv.TY NAX ,rvRA L04'x A[50']niq n( I
14,LYtl IXW IhY MfHIDlNd FAmI fADWK aSDVM NIwW YYY
ONgAD Nu,r µWijL}I]I a x lM»la ! IJOWw�1, 11w U/➢II
IIAud. AwfY,N RN
SEE MQ-MCRM PLANE !
FORPROJECTPHASNG •.1
RENTON Hl MODERNIZATION arHEi
P Wlln Ild" WWI NE. E03
JDRAMGB �° E C3.0
[1::.+nv� C�- 9 •�� cGNNEo cer 4iB07 R
d
tm—
bnlR�lu�� /won ivax
z,
�ooe-ee uAR
�• �";�
'A
Aw I(.: �:'.Y � �nmce -. ..
- -�-�-
w A
_--- _ r
---- _ _ - _
- �N
S� obis
q : • �,�--- ,I-a-�--
--
A
/p R
}'
ei � v�J
✓ I a �
�ix� -
lay�uaina 411
I• � NR Irq R•Nyl I
`� I �y _: -' ., �eMOaiml"°.
Lw S
08-
F
�
I. i uaNrfyq � 1 �• •'
III r"nu )r pllr 1
III , Y ' R•x�e R IAI 1
I 1 � 1 in a it lunli I 4
H w
I3� 4. °GIs
I
U rY. a
I�i "°m16` w 1 �9•..o :{ ny u• sil � If r`� w 1).
.
I I
i 1 i
7
�
�� ���,� : ` r rT I ! � � I' `" 7 - r�� ?; a• /
�
Rat
,,� . „
r
E i I i
as
9 '
Imgtial.mq _ . c• LfS 1 ., kt L J
^Im.1111016i
1 � ��efl�NR+ t'} rirb�rym'� APPROVED
�'
. ' j i I M � , •Eo®m
1{ ATE �Ao
I ,I,_ � / 's �shv Hbi�OrwfSPA IOwM'
a'u:a�!` — ru nNs (ml MnROV£O
.�M1 Q�LORiJ$
_ ( 1 L
I
u yr � n a i i
9 t" ap . , R.:,e s• R % i�
�I4rcren�-srfs�rps
REYIMP RENTON RS. MODERNIZATION SUET.
beforeyou_ COUGHR%Ic,N4FOR.TERe.UNDEE)N10 ?
Cell DIN'/
i9•
.,N..., GRADING ANDCJ.1
1.800.424.55$5 .� S, DRAINAGE F BCALE P-20'
9
eD�4-�Ja«•9 ACAIrIEORCT +taw a
ROLL # 168
PF(:TI(1N IA TWP 71 N RW-- 5 F WM
r
r�
N
S I
0
az
n
�
F
��
''�°` A
___ "----�•� J(.
---_ ----
F„z
w
1 s, TIUri
f
r le( i I I "hh
1�I
..
so
• :.. oqf. n;u
IR
N
�
:' ...
n _
.m wino
�
R',f2®4
6
�9T
/
i
a
JIATCi[JYf - Sff8fFFT C34
Call �Toof
Wofo you 4,L
DYE.
COUGNLINPORTERLUNDEEN
9NCp
%Er
•.m--
RENMN H.S. MODERNIZATION
aao. 3_ wmn ua goo
GRADING AND
czar
C3.2
Y�'�
z
*Fo-w-rtN
BCALEfw20' 1-800-424-5555 ao�
o��s
DRAINAGE PLAN
ROLL.# 168
N�
O r -
YYY "a
oz
O
r
A ®n
a
ROLL# 168
SECTION 18, TWP 23 M WE 5 E, WM
ri 9�
Ft q
��JJ7vie
� �\
Ir��}. jyta7a�-pp
f � b•
r..r
��
a�vys'��4JI,.�I4 �
♦�`
�
At4rCMAE-&E9$rG95
®®
b
before You
Call04-01
D39•
CO UGHUNPORTERLUNOEEN
m """ �-GRADING
appc
EETMM
p^�- _�
RENTON HX MODERNIZATION
e""'""E�.rwrmr,xHEw
WET
�vv _
1-800-424-5555M•
o
�
ANDC3.J
SCALE r-20r
A(
DRAINAGE PLAN
0/1%-�'r °� SC�nnEo OGi 4 i000 'e
. y
: 3` i
'
ZO
00
Op
ROLL # 169
SEC" It TV 23 K RGE 5 E, Wm
At4IMM-&'MI-TC32
d
Call
moor
21
before '� you
Dig.
1-800-424-6666
ComHUMPORTERLUNDEEN
SCALE
FIR.,
-4.
K—AP I RWMN H.S. MODERNIZATIONMING AND C3.4
DRAINAGE PLAN
wT
It
01H
go
o
-
z
2. TP 23 K RGE 5 F VIA
AM TCMM - Sff&'MTC33
A,
Z,
. . . . I1y. . . . . . . . .
Rim
R.,
e
JA
if
IN
b
R-285200
vJ
F—W,--Mmmm
SCALE
Call
before you
Dig.
1.800-424-5555
�OUGIHLIHPORTEPLLU
_.,_NDE�N
ROLL # 168
KEYWV RENTON H.& MODERNIZATION . SKU
ja 1— Se ft... W. I.
GRADING AM
DRAINAGE IPIAN C3.5
"0"000 i'm a
OH
2i
0PA
9�
7-
q
N5
Op
{L a
y z
g
1@
TI
P,
.Ll
SECTION Is, TWP 23 N• RGE 5 E• WX
ATC.'LIIE-SffS'EETC14
�•�.�♦ � . �tN' _�2. I j�+''� '. �f `yiivt'.I�y'��}'v�Jr 9."�c��fF» �'6� s tr'z�hr ^�� .
Qom. ��r ;. �7-.G,.�3'i1 -�:• �-PF�r: ?;y,_+p�3: s:� �1 .
b � s
ii•'+' � ti �� (u.'V�.� tE�� J�1,� N���,�ba �rl�{�l t � 9' h�YtS5y�W R
•i c �f.al�glf���fEi `, � t_ 'dti� l ���5,
7 PPvv it y Gk.\�;u�.y 4
rn�
11.'':`'ifr' i.��tiia:, <-;� .i.�._* 'P.+t� •i•j 9..
+rAnom aYioc/[i '-'iiYsT
Y 7F0-Ie-JBIl
ROLL # 168
SCALE 1•-20'
Call
before you
Di8•
1-800-424-5555
ywot
CO UGHLINPORTERLUNDET
'snrnc.r.vmi
==
742"'ic"EEYMAY RENTON H.S. MODERNIZATION �coss �� �� GRADING ANDr C3.6
CO; ,Q ..a,p1<eF [CAPNm WtsW.'Nm OCt ISEGp 2
JCV I1VIY 10. 1 vvr LJ Iv, flux 7 C, W.M.
B e �•
RAINIER AVE. SOUTH ,e• w E
C rv•uu,oM '.MW 9 IMIM°Y E �enc usui. u
FL
eo
p2iiE.�Ae
.' 0Af V4 .. •• .
nn O tND� /FaS.r^
S:
�w•� " P � ° SEA .:
Y1
VQ T
1
N 1V59'0{' W
4
F
�
• tyRN
IT
a
.0
�aE
r
0.T6 -
,NEa
•'II $
�i
I .
L4
.e.. e^
is•
IE ie,leEi, IY NO
.
co
LEBEfiI
LEGEND.
vliwwYo
..
m�nen ua
_--_
p. uwiavu w cuE
®
w w.n
A
!
-gyp,
umrrcE
THE 60SRNG•SITE COND1710H$ SHOyYN ON THIS MAP
ON
saooauW w'm�
•`
-
- 'WERE OBTAINED FROM OOCIIMENTS ByOTHERS.
i' ^^'r•° W''i
—�►—
®
^,,,M,.�v
'THE' CONTRACTOR SHALL BE'REMON5MLE FOR VERIFYING
• w,,rz^usrcv
'THE ACTUAL SITE CONDITIONS PRIOR TO BIDDING OR
CONSTRUCTION OF ANY SITE FACUTIM
[elm
�k
° o,��F
Core'E�Ruc+e_dw- Yfo eSs; 6�(H�Awif.►la
1
•
Leonard, BoudlnGt do Skodje, Ina,
CITY OF RENTON
DTi.PAATHONT OP PUBLSO WOAH•
'
-
FRED MEYER
RENTON C
EXISTING CONDITI NIS
maim
ala B/B/B4 rec rw• 990°i8
: EvsoNs.PER aTY cONUExIs
oa
Bar
SA !
EL
ovs PEN am
NN'
u T .
II wuc 1-eS7
aysen
tN,te C—len Se
NEW CUR
_ pEYN L CPTGN`
It v
\
CURD
r4vf•fHT H11.i
R`i
pER i 8 PEN10N 2 tE i�
GRAPHICSCALE LP y Wpg. SG,t{ OF
\
SAVCUT
It
b
-
4" CLASS 'B' AC.
VE• tl
\
6 CRUSHED ROCK J
A 1A g I 0p
N Fq2 2�
\
\
NOTE. SEE PIANO ME AND
CURB & GUTTER
MUST MATCH EXISTING THICKNESS
AINIER/
i 05�/" 1 � • E
R
\
IF GREATER.
• OR 1.0' BEYOND EDGE OF DAMAGED PAVEMENT
Rt
/
\
� ASPHALT REPLACEMENT DETAIL
C/ "'T's
tp9•60 0: . 's'�1
ALONG RAINIER AVE.
MIN.
=AVGDr
•
1
pfEfe DWG\
\
ITT OF REN ON TO
SEE DETAIL \I
6PNY',r Ht'
•
}14
\
4" CLASS 'B' AC. }�\1
6" CRUSHED ROCK JJ
• , �' T S(A 9 52
® 51 _ �' .r - �'"
PER 1 0 .N !� 1B • C- LINE fq15
"I- S. Pt)L
$,
,
� �
NOTE,
MUSTIF GREMATCH ATER EXISTING THICKNESS
M OR 1.0' BEYOND EDGE OF DAMAGED PAVEMENT
N� ---C' IN
(
to ASPHALT REPLACEMENT DETAIL
S7A JIt1 TJ -" ♦' 1. N A.s ii. .. .ION RN
p F 0 ly ' Tyz •
p/
ELEY.�24.04
gtpD
N.T.S.
BUI�
BA'Y CEMENT CONCRETE
MIN.
LW
F,235
\\ \
SAVCUT 2R
(L LINE+
Lu
N:RLAY SEE DETAA .)EA i •' T i ��' '-
\
\
JOINT (TYP.)
ICAL VV1l'' Ilo
- -- -- a\ O y O g5 1 '2T•g1
NOTE.
\
1 CERR999, 10 BE PlRENTll
ON, ENC PT
/\
T RBIyG
6RUSHED ROCK
4" CLASS 'R' A.C. } 2060
��
CCC
UFONNGi
.5
PNEW ERMIE E DNGA'NANl4Y
2 CONSULT EER A ARC HI
TE PION
18 ASPHALT REPLACEMENT DETAIL
�ti, •.; ,� :, :,.;. � �
`�T �
X1
ANY CHANGE UESI 6YFADE.
ST 10+00 LWE 'C'
`11� .� '• .... I '�. 1 IN CASE
OF VARIABLE
N.T.S.
_ AT BUILDING
CE ASPN iWRLAY p K
0.10 MIN COMPAC 0 PiH COAT PRIOR TO PAwn'G
F BEGIN REFERENCE LINE "0'
HE;CAB 05 ^' laD ♦
'B'
'S
/
TAPER TO MATCH CXISDNO
- -- - ---
r.�- ..�..
7 183% FAOO LINE NOTE:
ALL ETEV,ARE FL V LINE.
EXCEPT THOSE 5140 OFF
CURB
ALL RADIUS ONIEN"ON ARE
FTF BECIN REFERENCE' LINE 'A' VERTICAL OARIY: q1Y OF
O
FLOIY LINE.
EHTON
EXISIWG ASPHALT CONCRETE
LINE 'A
/
IOU: RAIULOAO SPIXE IN
OF POWER POLE AT N.Z.
T FACE
Y BE
/^` ASPHALTIC CONC. OVERLAY DETAIL
,-'
OF MOST SOUTHWESTERLY EN
TO SITE. ELEVATION-22.0B
OE
.S
� - % N.T.S.
CHECKED FOR COMPLIANCE TO CITYS STANDARDS
1
+ea.i.K G RECORD DRAWING FDA APPROVAL Mw It W / `!
,'+!{ � CE(f f4awn4°� he CHECIODFGROOAF C.•k'L WATER UTILITY DATE DY_L 4 ,,�1N7M 0 ,�'•.1•-
� .I 2Z TO CITY STANDMI 91y/9-L / �;`
DOW L
H N 0 1 N ®� R S
CITY OF RENTON
DEPARTMENT OF PUBLIC WORKS
GRADING 8 PAVING PLAN
!Ty NO nEV1Ef0 FIRE DEPARTMENT DATE
CALL 2 DAYSe'n
�
D
•w t� n � •°VO • •»••, Wtl W.M'
uR =�
^�••"IJ-•^a—
u,N DATE j�D>A�911
•elm®uaivj-,�y�yzl PUN REVIEW
EW DATE BEFORE YOU DIG
L
1-800-424-5555
TED-4o MAINTENANCE DATE
=
spncN w NfR DATE
NrroKo_ RH{ETy Of �E
REFERENCE NOTES:
O Nmnn umr putt rAvadr va urn sp.n
m wsrun mlanE aAM Iu cern Ip.n
® scA rar rmrN¢ vAAaar.
m NsrAu. mXAE,E :acWUA Aoi u�AE spa
® raven au xAA• ra Dnn Xp .
® D°urotrttO�nxi1duas Am mmxM nr. �
ruxs rM dr.W
m SE AroNECMu NNK IDt nua° SmIArp146.
® s¢ nwarrtcun vENN rox PNva� aoi onn
0 t� PARIM PAM wm 4 xtlE SrPPE M.,
Vo
II
I
1
I
SURFACE WATER DRAINAGE- NOTES h SPECIFICATIONS.
1
1
,. naa ixr tasmucnan rA oEA¢oNar ACAWIr DEGtN. A Ars-mumucml
YQTu IAISI x rd0 �M Ir[ art Of iprw nM In[tu
I
1
0. ILL CIwrNA'Ixx BALL M N AttwmMtF wd NF itNt lIAXDAIR
tPEtlY uN¢ iPt mM. Ne0¢ PIY WMsw 0�6mx'lIONNaAAMD Br
1
1
wE Otf MJrlwl OlPM1YDrr (f Pllal[ w�°RAi,ml (APNAA AS A°0ipm M
n
'
I
1
Az sttro awn a ttNnrwclm Ac>tmPw m nA
wNE [VMmpr ? N.ec tae¢ AWf
Arnot
1
i
ai Ary am°Nnws ru Izaula venrX AwvwAn rrw Yxc
� �
Imr,w uvMnrtxr a PAuc XaaN. awAn: um unnr s¢oox.
1
a a ne AAAMm PrAxt wn c a nv Aw art waaAv
NN1wA I%N iimves
-
1
1
S DAM/ aWt H Mm ®UIIIIJ d1411wi IPfPNm nY DIY Of MrrOx
1
1
� MDpO V R91t IONS ,mpWNQ D!,mNAAx uW NLVA,ION AM ROAD
1
0. AAt Nmxe rMq A= IACV116IANf 1E N 6O1ATa1 AIeM ro rlwnc
caxsm pt Aw nn rwT u sA»ffAcmar vAwru® w,E
NMMNrp1 b 0P1[IFD uw M,MIprMI IU W-aN wMav° MAA An5[a.
i. ALL AEIdlMALflExpp, iApllRt YYSr. aONlAiItD AIR N fPfAAAni iflni W
I
'.qm AIn taXsmxtu A�vm( u.A!roKo
gY:rM rvNk.m9 A,IA :sfOxlx_
.
','
1
A, 4m PL
owMAurr 4
° , y°w°'�i m�'r a lmria wvaamB1 srwAeo ims . a��v amm
i/om MAO'.� OY➢¢ NM1C dsurlAvrC YSA¢
m V
1
n.- .Ill AR Aro APNAANAV� 91NL EI.W a A ixvEMY PMfAMD IPAOA➢Or
-
� ARtlmu°tE xd s[erv! 1-m]II ? M OXNDI, ttAm Dr"W 94Wb1
ANPUD mNNA r ANM Wmor CAVMA'EIM: nxt'tWAL ntAllOE
I
a
YRHEM( n[-.DIObI BOnpu•OA rro 6:TArbYW1MN'
IWAL A Orf Aw EpPADmiI U MtlAm,Dmpw uARMAL
-
y�q�'t ..
A butl��QADE ID MiT't1E� Wc�ME, M w[ wLL-Xr 9FNIrD.d
a1mpND pm0pn•awL.Bi u�u MII
'r: •NtNVnc
OVAAyh
1 nd 1KP uo°oI DAOvti arAl R'ir1YACAD
1 10 Wi r011.N.rEY[xl Mw rm AAp.mAbnphff PkA AS,Y �'
I
u OI
1 _1 MI. yAl}i_ RMN 4 6�Na(5 11W NN.um° V _
1 0'N SAL RC um NNNtdD SI�°i[
��
� ...
�
.ALA ro..
nA1®
; .0.. K Afranl 1¢.A,IdI N aE,ILt.NAM m aARrtff
�� nw.i awn xoi.e: Mw Ailiir io rm v ,r¢ vv�c.uxi w MY
1 SNm QMNA6 RPE OR u R. of IDx V ANY — dK
I
¢'Au' u a n aE trP� a F. nD
�
x oAd a, aoM olosawz EmINO wwM wm u
`�'= r d - IA i a -Anvrmux�ss vconuur wrxwm v rc mla ovAq?mrr .
A, i4£ra"� � 1 I I'A � a saz rwnDNDAt!eA: NYIXS uAaNwAia. a .
-dY r- Yh F�m
y � �•o ��: u�` � �;Axx>K� 1„Dn,AxD�,�rnE �y .
(U m°n i li;>; ` ` is ci DA•Wra ssn°1S'uD[aroAlDRnAiO°M°lursifKwpnfl, KEY'
aAp' W 11A ,UR' Ax Al{F. DrRIDWD NrNWD A5-P0. d �AOAr
m ,A Ile,
�ii �,,cu °� o rci x•r I: Tes Nwiu¢ smru Wu. K 9°v+irm m n4 •orY a avml urox.. Ika .'4'.kl'.
I € i ' iD Q' �i IIi i w.or 'AEay"'so �°"mvle�n�:m.n°aOXGi a
P. omnwmo."`�'i m°Yiw'Kia°°rcioa rmw oaa ,, jfis�� s1F°
�•_ y„�rn,, - . 1 yl i�r A "cuiMc xm s,auwdAa rtv �ns:la,ov iC�""r�:
Nvnl+ac'am mlauroN Aemu A }uwre:A ,,�j
�' y�-.*...�� — — II. AiFtY [(VLg, nR4'mS DAiNrp4 MO; C YD Olxq IDID® ACI1W5
APr
—IA7117TI'f' — � � 1 ii ql:, r rt0 n[ Ifc. KKm 4a Sui,T AC n9G MO m gMDp'Lf
BURLINQTQN NQRTNFRN RA/LRQAD �QR. �A .�°iW'" '�Aw - 1 io we "M' WMNivsrpr-Ni w1°'m,lwira 491Q®'"' ..
. ('xArsstc cnAsr A4udolD1 1 : auknurc nn vtun rtav° MpAm n1'rpofrvxAa w.ui nc iL -
\ 1 II vD�%t 11MIKgr Si
1 ii �I ne Ksa Awvowmrem'a��.'m-a rypc � slw�i °un'v • f
' AI -�1 0. �"K µ Ma1fCDM ASA IMa rtvAm r
1 i li I CHECKED FOR COMPLIgNCE - rnoEcr , �N� Wx
®uArq vMvvm aArAQ FMVAxN maecrvM ��/ TD IIY STANOAR05 GRAPHIC SCALE l
SUMA60NAfIX -i4®rr 7! 0 - �Da
® NnAL am° wx ru uun sp ° 9 I -
m r xar camarE sass Is> wm u• wnmt AK NOTE: �k ASSUMED BASIS OF ELEVATION' T:9a1 —~
_—
TNS TMCD. C M —NE NE WADIr MD° YEn,° IUA9 E6 cm K POlixl d Ip6 1' BRAS D6t MN
OavNrwaA soar uAN °�a^'0rt'xu�A1O u^"°1R 8Nwr"1°' vc°tu Mo.wWOE xDAm rns rAlrAtuMWArm .CONTRACTOR.. NOTE
MaN[CMAn RMt utAA IXADgY[M 1A1O1 AK. SODN, ii[VAIIDX• � IMT. - _ - - i" UNOGD/OWID: 5441'ICC AIfAf ..
MIDI W ACxllOfw DRNY4 AMA MAS tLFll . , . -
fl rmcw anMan ro tmaE im onn DA1,. w WAs AM�ArtD ar nA rMn usrrn Au FrMNs rtrlWSsmw a NA14 AM.to c rHwA➢ xamniiuir AnoMr=cAtL xuWeEx
oD mvtv;E sxm.nuu vvax ro AIN'avaautnov Au EMnev: runty wanvc wAm
a Mwwr M.ruyurM. Mmm•vAvs Axe aNwsneam n (890)424 5555 '
ASSUMED BASIS OF BEARING � "°un � � AwAtAc a vMff Moaot Ao �
tuA°tY0. FM EOFnax -RtrxC YwA 4 Mot grllgn m
BA95 d DEMrM PEA xAM CpWM1 nu - ftlN,mDllal OONAR.DE VAIN ONrN/ACdtt
Arxl,sovo°osooN �
I--
nM _ a - `w 1-� . .nc+ n� + CITY;`OF souTN LWce:c€idreq tC-3
t imam
RLN fON amRENTON WA 99055.0
6yAp1eY.9CflTINi.��p:R-)TT1e}.
o
Vow
SUMMARY or ou4mrmej L A!"FrAW
U.) a�
SrOM14 SO-&.
Chbrl,Me
500.
y
1
c ?
:' -
. I) V
GENERAL NOTES
IAAC mIIACI Ooml i Izum AR' mEVID ro a n I7TbA.
z Au lo9nrc IxtAAa sEvi 4 A n°a n GNERR Fx rDYDulro 1n9
NsfLT nlG S1W1 PNI SKRIL ID1Rri fRA16 BULL R RIA® rA lE n[a
RIt1Un<
—
LITHIA CHRYSLER DODGE JEEP — RENTON
F'ORIION OF SW 1/4. SW 1/4 OF SECTION V) TWR 23 N, ME 5 E_ WA(.
CITY OF RENTON, KING COUNTY, WAS}MOTON
I Z ,
II
`- `R"PI°` SCALE
A\ r V 1
,•\
z
a
W
'
w
i UAIIf IR9>IAiro Onot¢ sw1 R[ 9Ull P1C f>fl a mcEa
a Rcar x 91NL : FYE Ar A IaRu Ymmlr 9.as
YUltl9PRIR N 90v 0E CARATS NN'tiE - /•S-0i115 A OML 4E
iv s' x V'
I 9,
A
\ cc\
Z
uN1 OQ
<
z
NA]IRCNUL R.W 101 QILT IOFAl101 AID Ms®l O DOn60)i STOP tli/II
REY1 fARs
i tf�wx scrr„. y la•x.ry r. n ' H U`'
ivusvi.
\,,\
,.�7�JY,
11-�`�
JIJJ//fff
a (�j
�j
•
a'� n..
w
a
i STF ®091E AlO 9AO9Y1 mAA
a SQ OI}. 9flT QI-27IIX ORADIW PAYNL AtD STGN (RAnIQ IIGCS ANl
•iWl wtst sa<
�MXUST N M PM a
I LAWp � i � ' A9LSi RY 10 fN9ED TR1GC
1I �•A�tx�a�
I Ir
A
G O
s
C
Z
K9 RY EIfY ZMd YNI MAI IFTIC
TS06 NO OINI tl' +rr
4r a``6w
s cr Rn
•
). DDr1AAL101 91ALL 1OYY IOf.Algl O AU E\STAG URIIES NO SnUCIII�
.
wrrEC
1
T
5
z
isrwiwwwAls >MUL a ma[clm m _� _
aAMD
r�
F
`J
�
9 nt uR125 )RE FPo1'AIE Uc11S � �
InOW
•cRcs �
TT
\ \
6U
J
7.
Is 1A1 URxLUA911S GIE IYR 1
WL0110ND OOtpn9.
o)H
\\ Y �� _'
\ r`
e
Mm uAoacii 11111 FOi eulnw
Ara EnsrNo-C
p sa.w y I .L IPwry5
I YATOI DEI`4 -
P•
� �4�Iz FOP ]l \ J �Ew�s�� � i �,• :-5�.-�--_---i —5 CBe�IIL�i �
1 .� : It f3^<'xr"r%I6'w33 -h�O iem :x<IR9s
ii A
a'ro, I ; MAn„iRat r tnc tL s tars
sTa— I ;
s [ A C i1 t9p[
i niv. z,.a j MI. eEv w)
�I %a r:° oa � wq ElaTllG ux.9EE :
I N rbm' I
I I R
-- ------ -- - - - -----�
fu9ut Nn turnx]t9 a �\ <e•s<(�, to i�drs: �1 ;•.'n° f 0aSR16 J MATCH 0�111ID
(Qt:RA wf3t xtxi) J I
(P9S9EtE tY Fux ro rM Nam)—� I r'` /-••� :aa)' u�'::L'.xvc La 1 ASPIINr
CITY OF RENTON CONTROL POINTS '1AUTOCAO NOTE
QN0. 00 AN AUTOCAD FILE IS A9NVHLE TO AS9m THE CONTRACTOR I
NORTHING: 175690.972 `1 PA SITE LAYOUT. CITY OF RENTON CONTROL POINTS ARE I
FASTING: 129.16.471 FOR CITY USE mLY. CITY OF RENTON CONTROL POINTS
Qi NO. 201 � SHALL N°7 BE USED FOR9RE LAYOUT.
HORNING: M I793b2f
FASRNG: 12966{6."I
NIMO COUNTY SURVEY CONTROL PE NUMBER ICON (:MT Ox E rn- .TOP OF
GRASS DISK W RNH ENO OF THE NSANTAA FE CONCRETE CFMERUNE OF SW. TTN STREET PFR •R' A TOP OF SORT OF
— W,NCWALL OF BURUNGTON NORTHERN-SAMA iE AARROAD SHORT PUT NO. 0110. .,' W BOON I11'GR/NT, LOCATE➢ WEST
i SRIOGE NUMBER 11.7 OYER SANTA Fr. AVENUE 29, AT PACE 156, RECORDS OF TRIG SIDE OF HARDIE AYE. SW.
ElEVA1WN 35.72 (HAV086) COUNTY, WASHINGTON (S.P.) ELEV. . 2723
TEO ya'�ItI
AI, FBi �M
x
,3 n wla3s
_ Y4f A.� fL=x'.IS xsal
e I.xes �•)uAs E-uex
� la INsm1c
OaF
273
pvF le 2
`e'>M� RY µu01 El
YARN ♦1mwc -W\-W\ . j AY.x5
YY W�Lr�9 r 121
YARN EOSSIx10 J #
c r unr
n•t�Y�
--------- ROLL 1 i9 2 PR 12`0
W11E r SDI
Ma9tc IT ,: ALAI
N GQ]� OF ]Y v 6
p J*-30¢403
•A' IROI YA9116D
TRw 9RW mAZE Tx
OEP 1 " 1 C-r7:to
_ x
Tx i���JJe'cga ats
EC ly
1S IF
a £T f9P[P O lSE1f n..)yN;
.I fl\rt.
12rc9r°NCie
I �cx - M:�xrvr x
I
� 9o/Ewlix wine
YEa9AED rRGII FZN
C
A FwW ;T
Nli��oxcM n.1e
e
/ CALL 40 HOURS
BEFORE YOU DIG
1-800-424-5555 .• •-
I FOR COMPLIANCE CITY OF RENTON
TYSTANDAR05
wnrAlasvr Dr euaue w
°iR �-'a"�
ORAOINOr PAVIN660RAINAOEPEAN
tAa
C2.0
snuu
Vtl
.e., 4 a TI
CD�/t. F•69wJ 9CA,RIED NOY •TECH
R.
AS
GRADING and UTILITIES PLAN
,S,hFS ,-A l H •ASMA.11 pY'b +aBiT
xAtFA Flf^I _
pp L T-11b1vcrpcJon iVral
�-Hnlalpal P1Dl1a Nalhf CwOYCtfOn HTI '
DY OW MAVSYN GNgR6.
ISATE
V
a J z
.y
�n
Y:Wno
•E{ S j Pd
ea0
� a
„ .O}I � I _-r- IDII a -I LI•. l3• %C 1�_,SSt --�\ .. , .f.. }f.N
B 0. OY
Z
1^ N A N RlOIN
sp f D.M 16Iwos1 / Y Y.Id- wmo - a".IrNg f - �i a yam., uc °� < w A
� �/ I \ ..Tom oNTx 6• Ps l Jsl ... •... wxC
Y YY
_ T
o ` •• ^ xA eenvlcr.
}p. , i11 ro�Eui i W i�
/T- //
NEW'K/�.F.C. REST>A RANT' 11,E I [� 1i• S
C) g i;
n 1
®TiaR I f� i:e:= S. (-- _y 1 /e acsr: e•.6•:c Y
1 • . .: p�f�J�3I�S- snub JJI I i°f. Esrs arms. Imc is k
24.
IDl 1 UTILITIES CONTACT LIST
?IN�I �CiI•J�VAXV1Y�\,��,f } �(
M. DAM, AM 6mi- 1 8
;m O rcN IpNAIDfI � -
`•l / I / �f - _ IAI M9R19C�1. _ .. _ _... f� • , NN:RI PI9w„ xM5 0•
/ rnRlIy La.Yt N e D.Im _J �� •r Rnrlrw, Iwul�ilmw'OYs(oss
' �' • � �Fn 6r�RpN �E� "pRL, pE>.T. � = 4 • i i
10.
I1 R
;- I .•.y l •I; � .•..-- -- I2C61 s,S UTIL'ItT1 ,iE56 V -�;
�Nnsr
a I it � /�we• - wen �. �/pieo•�niflnl�sTT,I�'rr Ns
•1! ../ _ _ • / 1 If ifObl ll-NOW � pGi�
�/ / • 1ryl �C•�i:
C
niwryu watr mmkrc R�1{..
C gl.,
Th.N.Mrntx •NI I aNrar.f. Rnd Ilr revey of Invrl• Al I N I uofF Sss=rlm; Fzr. ODS /n
{Ittll4 lA 14R 0.11 - Isfl� f^ a I• 6^ nvlbry I Y .-`---- V`SA,OS C W tl 6
e Ro M pelnb al en n bn bli- utll lr l.., prMlnp,
..s on ln'nd.tlN aw•truct Ion. Nerlly unpinn nt .rico of anY I 101. .SD NrNIRA
1M r
D•a 4•rin. _ IIIC NOTAI�r mf. N C
1N B1V11105r bH^/dnl "� Y N f
6 1. GLl }SS-RDI fOR IIf01fIAT101I NNJI T.. {(YLN S E 1. FN }• Ir 'D.I I W H' 11- -1 -11 ruf0010111tY rn 11'Id chrcW snd I MI i0{
IIyy actin lout0n ol'ell uflllrlu •n1 rlviNlp lyrw'ranr•. I 1}061 Stlsr-11no11 5'055�"}Ni
INSFFCTI01 kR T[6TIIK. NILOIIfI SESER 1111 510E IX 1.TI. IWl - gl.t 1. und.rBrw.1 )nllltl•• Wre,6'en 'born, on tAl• Wrinf (Y, e m �,
E pF Sp•[1 lgi(f1 BDUSE-1 00 My NW1LL rTIA DIxI(D MIL l-1311 11 DI1ENleY '; le<Il lrl i'urp TR' nen9lnlwtlior Rner; r.rtu'f 0.1I.I1 -AfIRR . I 8
I. PRIDR 10 INSTELUTION Of W .- 1-1 WIN41101, h SIDE S0.[R TID 1114LciN. F NAL AFFAOYk ..IS R[ ORNIIYD -1 - FAISTINJ � utlllfln A. D•n ICD.}M. R1v mnrr•ctAR'M.11 W •pl•IT I / i.C. •. T.02 � � N O ^
PEWIT MST D FORCIM6ED TRW TI[ CI IY OF REMgI p S SFPfIC iA1f[ 105 46N PUbfO DUr AW IIL(N YITN fN6. I'vpbnlN. fx .Ay Ivrep. t, vtivrRrpugl INI,IIVIn rr tl I ppvv�R
OEPAI1.1- TIK C... PER SIIDLE R[SIOIIRIAL =XalW I$ rl M-
F50.00. 5. I-L 110E - YIm }I^ NIXIMf1 WYER. EIIATEER .- SIS.)
Ira'hi'Mr.t NY•. _ 1. /J a AWfV
WAICA IS kLCxCD AT TNE:N0AS1 II OIRLET IS S-01. 11 •h.11 Da Ih6 u.irecta'• 11 `•16r_L I.J ` �J� T•TldG f g
1. TYRE. G ^1EF Na IITTIKS T. WI.OE USED IOR SANITARY .,AS l '.cflrltl.. rltA I.GI HIIItV u.M'Ia�ta lvn•rv. 1Mt �I I�Io11111t11N ��
W.LL Of 1PPROYFD By TIE wmThENT a PIALIC LOWS. R. A 6. If SIDE 1- If 10T AVAILABLE• - -A -1.1 IC R -11kE au InrtMltl cm Ily fe M.r-Plan. end IS. ryulrsaalf .1 APPRCVEO'BY GATE
OR IRTP1- DAISES$ AS SPECIIIED .1 iNE NNI.-DAIR S.1 tl A01 ITS INSTNUTI011. RR SIDE HKA SIVLL OE A MI III xW Of 6" 1M IM1v I1R.1 NIIIty o IRS.
USE00. I.-C. ID M.. IF TEE IS IDT AVAIIABLE, TI( RAIR S[RER LIHE 1�ISi BE
""1n 0. AAyy1 plp adl wced se 0• aWl b YMn[o.mf � u p(P Yr
TAPPED 1w0XRl A CART IRON C-L., kl MM -1,I SMFET P,IOR-Lvn ]I canPorv(M 1n SRI C-]I NlVI r�yl� yet tf h
S. A NINIFNI WAGE OF fE 11/1" MR FOOTS WET DE MAINTAINED NITR 01 ,W III- RE MIA RY A LICENSED 1Ap BOIREp Cp11RNl, pp, 6• AlMI I yytla NnwlOro vhorn on than plan( .ra }o ^tap sl PornOy In A M C-111. Ni [P >�IIW fM1llL 1a SlOulloO v1N Co F N
B• PIPE. .11 Tp EVEXT A 21 WADE CA'OIOT BC RAIMAIDEO. RE .11R pW11" (unlr. forts otMrrinl. clan '•tl• 4Ya1l�q 1n ocor6orca'v1111 APA� scv.UNn. ,0 � (Y� _
MST OpAIR h ADE RLLEASE TO THE CV, AM R(N CAI, IMSTML 6" T. At WAR f11LLL DE ACEDW'L Ill. IN ACEDADR.0 NIIN TM W.SNIIKTON v' � l pifv tlavlgroul0)1 F � alru�llaln mAttuiotn�lnldorySN•]51 e,u 11 � � /�y// 8 � a s
PIPE AT A GRADE CT If. IlOufiWk fAffTt AM NAIiN ACf IRISWJ• bmllnm{nWd vM1MfA Clnmr'M bIMOIIp In enuM wIM kth SuOleado. S0' Y W�.B+ c
A
W'
W. &=rxaff x s-W
� wx. rw a•.w.
Ph ALL I .. 1
NT4.
ROLL 179
FR 3'15
IHoP
DRP'1NPrG�
'poll Nn obw� P�NT�Pa/m�RG
f/ELLN.I � YU
�iL�R F•h��bLiR 1k1F1 Pb
%6l•lf/ DWI•
-
SCAnH o W, P
/qy(� lo�ro�9a
APPENDIX B - KCRTS MODELING OUTPUT
KCRTS Flow Frequency Analysis Results for Previous and Revised Basin
Areas
(Filenames with —rev suffix are for revised basin areas)
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report
Basin I
Flow Frequency Analysis
Time Series File:f-i.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
3.22
6
8/27/01
18:00
2.25
8
9/17/02
17:45
6.25
2
12/08/02
17:15
2.60
7
8/23/04
14:30
3.46
5
10/28/04
16:00
3.65
4
10/27/05
10:45
4.40
3
10/25/06
22:45
8.33
1
1/09/08
6:30
Computed Peaks
Flow Frequency Analysis
Time Series File:f-i-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
3.32
6
8/27/01
18:00
2.32
8
9/17/02
17:45
6.43
2
12/08/02
17:15
2.67
7
8/23/04
14:30
3.56
5
10/28/04
16:00
3.76
4
10/27/05
10:45
4.53
3
10/25/06
22:45
8.57
1
1/09/08
6:30
Computed Peaks
City of Renton
Shattuck Avenue Diversion Modeling Report
-----Flow
Frequency
Analysis-------
- - Peaks
- - Rank
Return
Prob
(CFS)
Period
8.33
1
100.00
0.990
6.25
2
25.00
0.960
4.40
3
10.00
0.900
3.65
4
5.00
0.800
3.46
5
3.00
0.667
3.22
6
2.00
0.500
2.60
7
1.30
0.231
2.25
8
1.10
0.091
7.63
50.00
0.980
-----Flow
Frequency
Analysis-------
- - Peaks
- - Rank
Return
Prob
(CFS)
Period
8.57
1
100.00
0.990
6.43
2
25.00
0.960
4.53
3
10.00
0.900
3.76
4
5.00
0.800
3.56
5
3.00
0.667
3.32
6
2.00
0.500
2.67
7
1.30
0.231
2.32
8
1.10
0.091
7.86
50.00
0.980
April 2010
B-1
Basin U
Flow Frequency Analysis
Time Series File:f-u.tsf
Project Location:Sea-Tac
---Annual Pea
Flow Rate Ran
(CFS)
6.04 6
4.22 8
11.78 2
4.87 7
6.49 5
6.86 4
8.25 3
15.77 1
Computed Peaks
k Flow Rates---
k Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
Flow Frequency Analysis
Time Series File:f-u-rev.tsf
Project Location:Sea-Tac
---Annual
Pea
Pe
Flow Rate
Ra
(CFS)
5.48
6
3.83
8
10.67
2
4.41
7
5.89
5
6.22
4
7.49
3
14.30
1
Computed Peaks
Flow Rates---
Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
City of Renton
Shattuck Avenue Diversion Modeling Report
----Flow Frequency Analysis--
- - Peaks -
- Rank
Return
(CFS)
Period
15.77
1
100.00
11.78
2
25.00
8.25
3
10.00
6.86
4
5.00
6.49
5
3.00
6.04
6
2.00
4.87
7
1.30
4.22
8
1.10
14.44
50.00
Prob
0.990
0.960
0.900
0.800
0.667
0.500
0.231
0.091
0.980
-Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
14.30
1
100.00
0.990
10.67
2
25.00
0.960
7.49
3
10.00
0.900
6.22
4
5.00
0.800
5.89
5
3.00
0.667
5.48
6
2.00
0.500
4.41
7
1.30
0.231
3.83
8
1.10
0.091
13.09
50.00
0.980
April 2010
B-2
Basin V1
Flow Frequency Analysis
Time Series File:f-vl.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
9.78
6
8/27/01
18:00
25.33
1
100.00
0.990
6.83
8
9/17/02
17:45
18.98
2
25.00
0.960
18.98
2
12/08/02
17:15
13.35
3
10.00
0.900
7.88
7
8/23/04
14:30
11.10
4
5.00
0.800
10.51
5
10/28/04
16:00
10.51
5
3.00
0.667
11.10
4
10/27/05
10:45
9.78
6
2.00
0.500
13.35
3
10/25/06
22:45
7.88
7
1.30
0.231
25.33
1
1/09/08
6:30
6.83
8
1.10
0.091
Computed Peaks
23.22
50.00
0.980
Flow Frequency Analysis
Time Series File:f-vl-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
7.13
6
8/27/01
18:00
18.51
1
100.00
0.990
4.98
8
9/17/02
17:45
13.84
2
25.00
0.960
13.84
2
12/08/02
17:15
9.73
3
10.00
0.900
5.74
7
8/23/04
14:30
8.08
4
5.00
0.800
7.65
5
10/28/04
16:00
7.65
5
3.00
0.667
8.08
4
10/27/05
10:45
7.13
6
2.00
0.500
9.73
3
10/25/06
22:45
5.74
7
1.30
0.231
18.51
1
1/09/08
6:30
4.98
8
1.10
0.091
Computed Peaks
16.96
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-3
Basin V2
Flow Frequency Analysis
Time Series File:f-v2.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
8.84
6
8/27/01
18:00
6.18
8
9/17/02
17:45
17.72
2
12/08/02
17:15
7.12
7
8/23/04
14:30
9.64
5
10/28/04
16:00
10.18
4
10/27/05
10:45
12.14
3
10/25/06
22:45
24.17
1
1/09/08
6:30
Computed Peaks
Flow Frequency Analysis
Time Series File:f-v2-rev.tsf
Project Location:Sea-Tac
---Annual Peak
Flow Rate Rank
(CFS)
9.50 6
6.64 8
18.88 2
7.65 7
10.32 5
10.87 4
13.03 3
25.60 1
Computed Peaks
-----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
24.17
1
100.00
0.990
17.72
2
25.00
0.960
12.14
3
10.00
0.900
10.18
4
5.00
0.800
9.64
5
3.00
0.667
8.84
6
2.00
0.500
7.12
7
1.30
0.231
6.18
8
1.10
0.091
22.02
50.00
0.980
Flow Rates---
-----Flow
Frequency
Analysis-------
Timeof
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
Period
8/27/01
18:00
25.60
1
100.00
0.990
9/17/02
17:45
18.88
2
25.00
0.960
12/08/02
17:15
13.03
3
10.00
0.900
8/23/04
14:30
10.87
4
5.00
0.800
10/28/04
16:00
10.32
5
3.00
0.667
10/27/05
10:45
9.50
6
2.00
0.500
10/25/06
22:45
7.65
7
1.30
0.231
1/09/08
6:30
6.64
8
1.10
0.091
23.36
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-4
Basin W
Flow Frequency Analysis
Time Series File:f-w.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
1.66
6
8/27/01
18:00
4.46
1
100.00
0.990
1.16
8
9/17/02
17:45
3.29
2
25.00
0.960
3.29
2
12/08/02
17:15
2.28
3
10.00
0.900
1.34
7
8/23/04
14:30
1.90
4
5.00
0.800
1.80
5
10/28/04
16:00
1.80
5
3.00
0.667
1.90
4
10/27/05
10:45
1.66
6
2.00
0.500
2.28
3
10/25/06
22:45
1.34
7
1.30
0.231
4.46
1
1/09/08
6:30
1.16
8
1.10
0.091
Computed Peaks
4.07
50.00
0.980
Flow Frequency
Analysis
Time Series File:f-w-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
1.83
6
8/27/01
18:00
4.90
1
100.00
0.990
1.28
8
9/17/02
17:45
3.62
2
25.00
0.960
3.62
2
12/08/02
17:15
2.51
3
10.00
0.900
1.47
7
8/23/04
14:30
2.09
4
5.00
0.800
1.98
5
10/28/04
16:00
1.98
5
3.00
0.667
2.09
4
10/27/05
10:45
1.83
6
2.00
0.500
2.51
3
10/25/06
22:45
1.47
7
1.30
0.231
4.90
1
1/09/08
6:30
1.28
8
1.10
0.091
Computed Peaks
4.47
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-5
Basin X
Flow Frequency Analysis
Time Series File:f-x.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
8.69
6
8/27/01
18:00
6.07
8
9/17/02
17:45
16.61
2
12/08/02
17:15
7.00
7
8/23/04
14:30
9.25
5
10/28/04
16:00
9.77
4
10/27/05
10:45
11.84
3
10/25/06
22:45
21.93
1
1/09/08
6:30
Computed Peaks
Flow Frequency Analysis
Time Series File:f-rev.tsf
Project Location:Sea-Tac
-----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
21.93
1
100.00
0.990
16.61
2
25.00
0.960
11.84
3
10.00
0.900
9.77
4
5.00
0.800
9.25
5
3.00
0.667
8.69
6
2.00
0.500
7.00
7
1.30
0.231
6.07
8
1.10
0.091
20.16
50.00
0.980
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
9.10
6
8/27/01
18:00
22.96
1
100.00
0.990
6.35
8
9/17/02
17:45
17.41
2
25.00
0.960
17.41
2
12/08/02
17:15
12.37
3
10.00
0.900
7.33
7
8/23/04
14:30
10.24
4
5.00
0.800
9.69
5
10/28/04
16:00
9.69
5
3.00
0.667
10.24
4
10/27/05
10:45
9.10
6
2.00
0.500
12.37
3
10/25/06
22:45
7.33
7
1.30
0.231
22.96
1
1/09/08
6:30
6.35
8
1.10
0.091
Computed Peaks
21.11
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-6
Basin AH
Flow Frequency Analysis
Time Series File:f-ah.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
2.83
6
8/27/01
18:00
8.02
1
100.00
0.990
1.98
8
9/17/02
17:45
5.79
2
25.00
0.960
5.79
2
12/08/02
17:15
3.91
3
10.00
0.900
2.28
7
8/23/04
14:30
3.30
4
5.00
0.800
3.12
5
10/28/04
16:00
3.12
5
3.00
0.667
3.30
4
10/27/05
10:45
2.83
6
2.00
0.500
3.91
3
10/25/06
22:45
2.28
7
1.30
0.231
8.02
1
1/09/08
6:30
1.98
8
1.10
0.091
Computed Peaks
7.28
50.00
0.980
Flow Frequency
Analysis
Time Series File:f-ah-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
3.53
6
8/27/01
18:00
10.12
1
100.00
0.990
2.46
8
9/17/02
17:45
7.27
2
25.00
0.960
7.27
2
12/08/02
17:15
4.87
3
10.00
0.900
2.84
7
8/23/04
14:30
4.12
4
5.00
0.800
3.90
5
10/28/04
16:00
3.90
5
3.00
0.667
4.12
4
10/27/05
10:45
3.53
6
2.00
0.500
4.87
3
10/25/06
22:45
2.84
7
1.30
0.231
10.12
1
1/09/08
6:30
2.46
8
1.10
0.091
Computed Peaks
9.17
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-7
Basin AK
Flow Frequency Analysis
Time Series File:f-ak.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
2.71
6
8/27/01
18:00
1.89
8
9/17/02
17:45
5.48
2
12/08/02
17:15
2.18
7
8/23/04
14:30
2.97
5
10/28/04
16:00
3.14
4
10/27/05
10:45
3.73
3
10/25/06
22:45
7.53
1
1/09/08
6:30
Computed Peaks
Flow Frequency Analysis
Time Series File:f-ak-rev.tsf
Project Location:Sea-Tac
-----Flow
Frequency Analysis-------
- - Peaks
- - Rank
Return
Prob
(CFS)
Period
7.53
1
100.00
0.990
5.48
2
25.00
0.960
3.73
3
10.00
0.900
3.14
4
5.00
0.800
2.97
5
3.00
0.667
2.71
6
2.00
0.500
2.18
7
1.30
0.231
1.89
8
1.10
0.091
6.85
50.00
0.980
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
4.42
6
8/27/01
18:00
12.29
1
100.00
0.990
3.09
8
9/17/02
17:45
8.93
2
25.00
0.960
8.93
2
12/08/02
17:15
6.09
3
10.00
0.900
3.56
7
8/23/04
14:30
5.11
4
5.00
0.800
4.84
5
10/28/04
16:00
4.84
5
3.00
0.667
5.11
4
10/27/05
10:45
4.42
6
2.00
0.500
6.09
3
10/25/06
22:45
3.56
7
1.30
0.231
12.29
1
1/09/08
6:30
3.09
8
1.10
0.091
Computed Peaks
11.17
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-8
Basin AL
Flow Frequency Analysis
Time Series File:f-al.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
4.77
6
8/27/01
18:00
13.21
1
100.00
0.990
3.33
8
9/17/02
17:45
9.63
2
25.00
0.960
9.63
2
12/08/02
17:15
6.57
3
10.00
0.900
3.84
7
8/23/04
14:30
5.52
4
5.00
0.800
5.22
5
10/28/04
16:00
5.22
5
3.00
0.667
5.52
4
10/27/05
10:45
4.77
6
2.00
0.500
6.57
3
10/25/06
22:45
3.84
7
1.30
0.231
13.21
1
1/09/08
6:30
3.33
8
1.10
0.091
Computed Peaks
12.02
50.00
0.980
Flow Frequency Analysis
Time Series File:f-al-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
1.88
6
8/27/01
18:00
5.21
1
100.00
0.990
1.31
8
9/17/02
17:45
3.79
2
25.00
0.960
3.79
2
12/08/02
17:15
2.58
3
10.00
0.900
1.51
7
8/23/04
14:30
2.17
4
5.00
0.800
2.05
5
10/28/04
16:00
2.05
5
3.00
0.667
2.17
4
10/27/05
10:45
1.88
6
2.00
0.500
2.58
3
10/25/06
22:45
1.51
7
1.30
0.231
5.21
1
1/09/08
6:30
1.31
8
1.10
0.091
Computed Peaks
4.74
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-9
Basin AN
Flow Frequency Analysis
Time Series File:f-an.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
3.47
6
8/27/01
18:00
9.83
1
100.00
0.990
2.42
8
9/17/02
17:45
7.10
2
25.00
0.960
7.10
2
12/08/02
17:15
4.79
3
10.00
0.900
2.80
7
8/23/04
14:30
4.04
4
5.00
0.800
3.82
5
10/28/04
16:00
3.82
5
3.00
0.667
4.04
4
10/27/05
10:45
3.47
6
2.00
0.500
4.79
3
10/25/06
22:45
2.80
7
1.30
0.231
9.83
1
1/09/08
6:30
2.42
8
1.10
0.091
Computed Peaks
8.92
50.00
0.980
Flow Frequency
Analysis
Time Series File:f-an-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
4.01
6
8/27/01
18:00
11.35
1
100.00
0.990
2.80
8
9/17/02
17:45
8.20
2
25.00
0.960
8.20
2
12/08/02
17:15
5.53
3
10.00
0.900
3.23
7
8/23/04
14:30
4.67
4
5.00
0.800
4.42
5
10/28/04
16:00
4.42
5
3.00
0.667
4.67
4
10/27/05
10:45
4.01
6
2.00
0.500
5.53
3
10/25/06
22:45
3.23
7
1.30
0.231
11.35
1
1/09/08
6:30
2.80
8
1.10
0.091
Computed Peaks
10.30
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-10
Basin AP
Flow Frequency Analysis
Time Series File:f-ap.tsf
Project Location:Sea-Tac
---Annual
Flow Rate
(CFS)
1.55
1.09
2.97
1.25
1.66
1.75
2.11
3.93
Peak Flow Rates ---
Rank Time of Peak
Computed Peaks
6 8/27/01 18:00
8 9/17/02 17:45
2 12/08/02 17:15
7 8/23/04 14:30
5 10/28/04 16:00
4 10/27/05 10:45
3 10/25/06 22:45
1 1/09/08 6:30
Flow Frequency Analysis
Time Series File:f-ap-rev.tsf
Project Location:Sea-Tac
-----Flow Frequency
- - Peaks -
- Rank
(CFS)
3.93
1
2.97
2
2.11
3
1.75
4
1.66
5
1.55
6
1.25
7
1.09
8
3.61
Analysis-------
ReturnProb
Period
100.00 0.990
25.00 0.960
10.00 0.900
5.00 0.800
3.00 0.667
2.00 0.500
1.30 0.231
1.10 0.091
50.00 0.980
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
1.32
6
8/27/01
18:00
3.33
1
100.00
0.990
0.918
8
9/17/02
17:45
2.52
2
25.00
0.960
2.52
2
12/08/02
17:15
1.79
3
10.00
0.900
1.06
7
8/23/04
14:30
1.48
4
5.00
0.800
1.40
5
10/28/04
16:00
1.40
5
3.00
0.667
1.48
4
10/27/05
10:45
1.32
6
2.00
0.500
1.79
3
10/25/06
22:45
1.06
7
1.30
0.231
3.33
1
1/09/08
6:30
0.918
8
1.10
0.091
Computed Peaks
3.06
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-1 1
Added Basins W & AM
Flow Frequency Analysis
Time Series File:f-wam.tsf
Project Location:Sea-Tac
---Annual Pea
Flow Rate Ran
(CFS)
11.65 6
8.13 8
23.72 2
9.37 7
12.82 5
13.52 4
16.06 3
32.69 1
Computed Peaks
k Flow Rates---
k Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
Flow Frequency Analysis
Time Series File:f-wam-rev.tsf
Project Location:Sea-Tac
----Flow Frequency Analysis
- - Peaks -
- Rank
Return
(CFS)
Period
32.69
1
100.00
23.72
2
25.00
16.06
3
10.00
13.52
4
5.00
12.82
5
3.00
11.65
6
2.00
9.37
7
1.30
8.13
8
1.10
29.70
50.00
Prob
0.990
0.960
0.900
0.800
0.667
0.500
0.231
0.091
0.980
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
11.82
6
8/27/01
18:00
33.14
1
100.00
0.990
8.25
8
9/17/02
17:45
24.04
2
25.00
0.960
24.04
2
12/08/02
17:15
16.30
3
10.00
0.900
9.51
7
8/23/04
14:30
13.72
4
5.00
0.800
12.98
5
10/28/04
16:00
12.98
5
3.00
0.667
13.72
4
10/27/05
10:45
11.82
6
2.00
0.500
16.30
3
10/25/06
22:45
9.51
7
1.30
0.231
33.14
1
1/09/08
6:30
8.25
8
1.10
0.091
Computed Peaks
30.11
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-12
Added Basins Al. AJ & AK
Flow Frequency Analysis
Time Series File:f-aiajak.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
11.96
6
8/27/01
18:00
9.42
8
1/05/02
15:00
25.15
2
12/08/02
17:15
10.98
7
8/26/04
1:00
13.35
5
10/28/04
16:00
15.03
4
10/27/05
10:45
18.90
3
10/25/06
22:45
36.58
1
1/09/08
6:30
Computed Peaks
Flow Frequency Analysis
Time Series File:f-aiajak-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
12.10
7
8/27/01
18:00
10.30
8
1/05/02
15:00
25.93
2
12/08/02
17:15
12.29
6
8/26/04
1:00
14.32
5
11/17/04
5:15
15.91
4
10/27/05
10:45
20.64
3
10/25/06
22:45
38.75
1
1/09/08
6:30
Computed Peaks
City of Renton
Shattuck Avenue Diversion Modeling Report
-----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
36.58
1
100.00
0.990
25.15
2
25.00
0.960
18.90
3
10.00
0.900
15.03
4
5.00
0.800
13.35
5
3.00
0.667
11.96
6
2.00
0.500
10.98
7
1.30
0.231
9.42
8
1.10
0.091
32.77
50.00
0.980
-----Flow
Frequency
Analysis-------
- - Peaks
- - Rank Return
Prob
(CFS)
Period
38.75
1
100.00
0.990
25.93
2
25.00
0.960
20.64
3
10.00
0.900
15.91
4
5.00
0.800
14.32
5
3.00
0.667
12.29
6
2.00
0.500
12.10
7
1.30
0.231
10.30
8
1.10
0.091
34.47
50.00
0.980
April 2010
B-13
Added Basins AB, AP & AC
Flow Frequency Analysis
Time Series File:f-abapac.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank
Return
Prob
(CFS)
(CFS)
Period
5.17
6
8/27/01
18:15
13.52
1
100.00
0.990
4.15
8
1/05/02
15:15
8.64
2
25.00
0.960
8.64
2
12/08/02
17:30
8.02
3
10.00
0.900
5.05
7
8/26/04
1:00
6.41
4
5.00
0.800
6.33
5
11/17/04
5:15
6.33
5
3.00
0.667
6.41
4
10/27/05
11:00
5.17
6
2.00
0.500
8.02
3
10/25/06
22:45
5.05
7
1.30
0.231
13.52
1
1/09/08
6:30
4.15
8
1.10
0.091
Computed Peaks
11.89
50.00
0.980
Flow Frequency Analysis
Time Series File:f-abapac-rev.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates---
-----Flow
Frequency
Analysis-------
FlowRate
Rank
Time of
Peak
- - Peaks
- - Rank Return
Prob
(CFS)
(CFS)
Period
5.03
6
8/27/01
18:15
12.90
1
100.00
0.990
4.02
8
1/05/02
15:15
8.48
2
25.00
0.960
8.48
2
12/08/02
17:30
7.70
3
10.00
0.900
4.87
7
8/26/04
1:00
6.22
4
5.00
0.800
6.14
5
11/17/04
5:15
6.14
5
3.00
0.667
6.22
4
10/27/05
11:00
5.03
6
2.00
0.500
7.70
3
10/25/06
22:45
4.87
7
1.30
0.231
12.90
1
1/09/08
6:30
4.02
8
1.10
0.091
Computed Peaks
11.43
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-14
Sub -Basin V1-1
Flow Frequency Analysis
Time Series File:f-vl-l.tsf
Project Location:Sea-Tac
---Annual Pea
Flow Rate Ran
(CFS)
3.36 6
2.35 8
6.53 2
2.71 7
3.61 5
3.81 4
4.59 3
8.73 1
Computed Peaks
Sub -Basin V1-2
k Flow Rates---
k Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
Flow Frequency Analysis
Time Series File:f-vl-2.tsf
Project Location:Sea-Tac
---Annual Pe
Flow Rate Ra
(CFS)
2.04 6
1.42 8
3.96 2
1.64 7
2.19 5
2.31 4
2.78 3
5.29 1
Computed Peaks
Pea
Ran
Sub -Basin V1-3
Flow Rates---
Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
Flow Frequency Analysis
Time Series File:f-vl-3.tsf
Project Location:Sea-Tac
---Annual Pe
Flow Rate Ra
(CFS)
1.73 6
1.21 8
3.36 2
1.39 7
1.86 5
1.96 4
2.36 3
4.48 1
Computed Peaks
Pea
Ran
Flow Rates---
Time of Peak
8/27/01 18:00
9/17/02 17:45
12/08/02 17:15
8/23/04 14:30
10/28/04 16:00
10/27/05 10:45
10/25/06 22:45
1/09/08 6:30
----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
8.73
1
100.00
0.990
6.53
2
25.00
0.960
4.59
3
10.00
0.900
3.81
4
5.00
0.800
3.61
5
3.00
0.667
3.36
6
2.00
0.500
2.71
7
1.30
0.231
2.35
8
1.10
0.091
8.00
50.00
0.980
----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
5.29
1
100.00
0.990
3.96
2
25.00
0.960
2.78
3
10.00
0.900
2.31
4
5.00
0.800
2.19
5
3.00
0.667
2.04
6
2.00
0.500
1.64
7
1.30
0.231
1.42
8
1.10
0.091
4.84
50.00
0.980
-----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
4.48
1
100.00
0.990
3.36
2
25.00
0.960
2.36
3
10.00
0.900
1.96
4
5.00
0.800
1.86
5
3.00
0.667
1.73
6
2.00
0.500
1.39
7
1.30
0.231
1.21
8
1.10
0.091
4.11
50.00
0.980
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report B-15
Added Sub -Basin V1-2 and V1-3
Flow Frequency Analysis
Time Series File:f-vl-23.tsf
Project Location:Sea-Tac
---Annual
Peak
Flow Rates ---
Flow Rate
Rank
Time of
Peak
(CFS)
3.77
6
8/27/01
18:00
2.63
8
9/17/02
17:45
7.32
2
12/08/02
17:15
3.04
7
8/23/04
14:30
4.04
5
10/28/04
16:00
4.26
4
10/27/05
10:45
5.14
3
10/25/06
22:45
9.77
1
1/09/08
6:30
Computed Peaks
City of Renton
Shattuck Avenue Diversion Modeling Report
----Flow Frequency Analysis-------
- - Peaks -
- Rank
Return
Prob
(CFS)
Period
9.77
1
100.00
0.990
7.32
2
25.00
0.960
5.14
3
10.00
0.900
4.26
4
' 5.00
0.800
4.04
5
3.00
0.667
3.77
6
2.00
0.500
3.04
7
1.30
0.231
2.63
8
1.10
0.091
8.95
50.00
0.980
April 2010
B-16
APPENDIX C - XP-SWMM MODEL OUTPUT
• XP-Tables output (Nodes and Links) for each model scenario.
• Output file Table E20 (Junction Flooding and Volume Listing) for each model scenario.
City of Renton April 2010
Shattuck Avenue Diversion Modeling Report
Scenario 1 A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,B1,B2
10.310
20.350
13.106
7.240
None
10
11.310
21.230
15.217
6.010
None
100A
18.640
30.090
26.494
3.600
Allowed
105A
19.000
30.800
26.960
3.840
Allowed
110A
18.790
30.340
27.881
2.460
Allowed
115A_AF,AD
20.850
30.430
28.066
2.360
Allowed
120A
21.110
29.320
28.053
1.270
Allowed
125A
21.180
29.190
28.052
1.140
Allowed
130A
21.640
28.440
28,092
0.350
Allowed
135A AH
21.900
27.750
28.259
-0.510
Allowed
136A
21.950
27.750
28.381
-0.630
Allowed
137A
22.140
27.740
28.514
-0.770
Allowed
138A
22.140
27.870
28.646
-0.780
Allowed
140A
22.340
28.040
28.828
-0.790
Allowed
145A
22.640
28.690
29.248
-0.560
Allowed
15_C,D
12.080
20.300
16.748
3.550
None
150AAIAJAK
23.050
28.750
29.760
-1.010
Allowed
20
12.870
21.540
17.122
4.420
None
235_0,AO
22.000
29.820
26.768
3.050
None
25
12.820
21.520
18.041
3.480
None
26+48Ex
20.470
24.580
24.599
-0.020
Allowed
30
12.830
22.060
18.390
3.670
None
32+10Ex
20.110
25.500
25.549
-0.050
Allowed
32+17Ex
20.150
26.100
25.581
0.520
Allowed
32+23Ex
20.190
25.600
25.600
0.000
None
35
12.900
22.600
19.560
3.040
None
35+21
20.905
26.580
26.158
0.420
None
36+10Ex N
22.450
27.340
26.208
1.130
None
36+60
21.239
27.290
26.443
0.850
None
37+22P,Q,R
21.388
28.480
26.589
1.890
None
4+21 Ex_F
13.770
23.870
23.218
0.650
None
40_E
13.120
22.770
21.316
1.450
None
45
13.210
22.860
21.425
1.430
None
5
10.990
20.940
14.715
6.220
None
56A
14.690
25.790
23.187
2.600
Allowed
57A
14.720
25.820
23.263
2.560
Allowed
58A
15.330
27.330
23.506
3.820
Allowed
59A_W,AM
15.650
22.750
24.000
-1.250
Allowed
596 U
15.330
21.380
23.828
-2.450
Allowed
60A_X
15.960
23.650
24.175
-0.520
Allowed
60B
16.000
24.200
24.293
-0.090
Allowed
65A
16.250
24.400
24.406
-0.010
Allowed
67A
16.490
25.540
24.727
0.810
Allowed
70A
16.750
27.350
24.978
2.370
Allowed
73A
16.770
30.370
25.102
5.270
Allowed
75A_Z,AA,Y
17.140
31.140
26.208
4.930
Allowed
78A
17.260
30.070
26.270
3.800
Allowed
79A
17.370
30.170
26.327
3.840
Allowed
80A ABACAP
17.090
30.220
26.341
3.880 jAllowed
95A_AE
18.250
30.250
26.401
3.850 jAllowed
01 /14/10 13:38:47 112
Scenario 1A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
23.552
2.050
None
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
C641(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
3+63)
18.270
24.240
0.000
0.000
Allowed
4+14)
18.390
24.000
0.000
0.000
Allowed
67)
13.600
24.000
23.137
0.860
None
J
L
14.500
24.430
24.467
-0.040
Allowed
6+48)
14.500
24.570
0.000
0.000
Allowed
5+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
24.680
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14_G
13.780
23.950
23.264
0.690
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
27.171
-2.670
Sealed
MH2385
17.870
24.070
24.070
0.000
None
Node157
16.540
23.940
23.172
0.770
None
Outfall
10.270
17.000
12.968
4.030
None
SH10_KM
19.590
25.070
25.070
0.000
None
SH15
19.170
25.880
25.570
0.310
None
SH20
20.070
25.620
25.620
0.000
None
SH25_L
20.030
25.850
25.850
0.000
None
SH40
20.800
27.410
26.716
0.690
None
SH45
20.930
27.630
27.118
0.510
None
SH50_AN
16.810
28.310
27.416
0.890
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.568
0.420
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31.900
31.900
0.000
None
Tmp Out_V1
14.700
25.600
21.522
4.080
None
VAULT1(1+62)
11.600 123,400
19.755
3.380
Allowed
VAULT2(6+44)
12.140 124.650
20.774
3.750
Allowed
VT3(25+57)
13.050 124.360
24.057
0.300
Allowed
01/14/10 13:38:48 2/2
Scenario 1A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
Length
ft
Max Flow
cfs3/s, m 3/s)
1-Outfall
1_A,61,B2
Outfall
5.500
34.000
173.810
10-5
10
5
5.000
91,600
158.820
100A-95A
100A
95A AE
2.000
46.000
18.530
105A-100A
105A
100A
2.000
220.000
18.290
110A-105A
110A
105A
2.000
309.000
18.340
115A-110A
115A_AF,AD
110A
2.000
62.000
18.420
120A-115A
120A
115A_AF,AD
2.000
80.000
17.800
125A-120A
125A
120A
2.000
27.000
17.810
130A-125A
130A
125A
2.000
110.000
17,840
135A-130A
135A AH
130A
2.000
178.000
17.860
136A-135A
136A
135A AH
2.000
77.000
17.460
137A-136A
137A
136A
2.000
77.000
17.230
138A-137A
138A
137A
2.000
75.000
12.080
140A-138A
140A
138A
2.000
86.000
12.540
145A-140A
145A
140A
2.000
145.000
12.930
15-10
15_C,D
10
5.000
336.000
158.470
150A-145A
150AAIAJAK
145A
2.000
123.000
15.990
20-15
20
15_C,D
5.000
169.000
128.230
235-3722
235_O,AO
37+22P,Q,R
3.000
100.000
22.480
25-20
25
20
5.000
340.900
129.140
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
-11.560
30-25
30
25
5.000
127.600
128.490
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
32.880
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
34.730
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
28.120
35-30
35
30
5.000
470.000
127.990
3521-3223e
35+21
32+23Ex
3.000
298.000
28.510
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.620
3660-3521
36+60
35+21
3.000
139.000
28.570
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.850
4+21 E-50
4+21 Ex_F
VAULT1(1+62)
4.500
306.500 160.710
40-35
40 E
35
5.000
603.400
128.400
45-40
45
40 E
5.000
56.000
111.240
5-1
5
1_A,131,62
5.000
213.300
158.880
56A-55
56A
4+21 Ex_F
5.000
229.000
75.660
57A-56A
57A
56A
4.000
133.000
75.620
58A-57A
58A
57A
4.000
315.000
75.590
59A-59B
59A_W,AM
59B_U
3.000
187.000
71.730
5913-58A
59B_U
58A
3.000
328.000
75.570
60A-59A
60A_X
59A_W,AM
3.000
272.000
59.730
60B-60A
60B
60A X
3.000
100.000
47.310
65A-60B
65A
60B
3.000
199.000
47.320
67A-65A
67A
65A
3.000
353.000
47.330
70A-67A
70A
67A
3.000
252.000
47.340
73A-70A
73A
70A
3.000
125.000
47.360
75A-73A
75A_Z,AA,Y
73A
2.000
210,000
47.380
78A-75A 178A
75A_Z,AA,Y
2.000
172.000
25.780
79A-78A 179A
78A
2.000
154,000
25.740
80A-79A 180A
ABACAP 179A
2.000
38.000
25.770
01/14/10 13:39:02 1/4
Scenario 1A - Links
Name
Upstream
Invert
Elevation
Downstream
Invert
Elevation
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.610
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-596
15.650
15.330
0.171
596-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01/14/10 13:39:02 2/4
Scenario 1A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ft (Height)
Length
ft
Max Flow
Cf 3/s, m 3/s)
s
95A-80A
95A AE
80A_ABACAP
2.000
241.000
19.330
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
55.210
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
55.120
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
55.010
15+7114+35
C635(15+71)_I
CB31(14+35)_H
5.000
136.000
46.870
1797-1571
CB40(17+97)
CB35(15+71)_1
5.000
226.000
38.510
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
38.170
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
-7.600
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-7.800
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-11.500
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
55.180
2648-2557
C650_J
VT3(25+57)
3.000
19.000
39.020
Link139
CB51(26+48)
CB50_J
3.000
72.000
32.070
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-7.090
Link142
C852(28+16)
CB51(26+48)
3.000
168.000
26.980
Linkl41
CB54(29+23)
CB52(28+16)
3.000
107.000
24.360
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
3.660
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-5.580
4+77E4+21E
D8-14_G
4+21Ex_F
3.000
56.000
-19.790
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-6.960
1797el620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-6.630
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
-6.190
1883el797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-10.300
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
5.680
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
27.280
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
10.500
1996el883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-10.480
L109
Mdpoint
59B_U
2.000
830.000
13.580
Link167
MH2385
VT3(25+57)
1.500
18.000
4.880
Linkl71
Node157
Tmp Out_V1
1.500
271.000
8.800
Link166
SH10_KM
MH2385
1.000
220.000
4.950
Link165
SH15
SH10_KM
1.000
215.000
3.560
Link164
SH20
SH15
1.000
22.000
3.560
Link185
SH25_L
SH20
1.000
34.000
3.780
Link184
SH40
SH25_L
1.000
370.000
-1.870
Link183
SH45
SH40
1.000
165.000
-1.880
Link186
SH45
SH50_AN
1.000
116.000
1.890
Link181
SH50_AN
Node157
1.500
550.000
8.850
Link175
SH60_V2
SH50_AN
1.000
455.000
4.590
Link174
SH65
SH60_V2
1.000
579.000
1.380
Link173
SH70_AG
SH65
1.000
413.000
1.380
U0172
SH75_AL
SH70_AG
1.000
71.000
3.440
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULTI(1+62)
45
5.000
650.000
111.190
6+44E4+77E
VAULT2(6+44)
D8-14_G
3.000
167.000
-26.850
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500
55.230
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.000
38.070
01 /14/10 13:39:02 3/4
Scenario 1A - Links
Name
Upstream
Invert
Elevation
Downstream
Invert
Elevation
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
12+68-9+78
13.140
13.270
-0.080
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
-clog
22.020
15.330
0.595
Link167
17.870
13.050
0.000
Link171
16.540
14.700
0.680
Link166
19.590
17.870
0.000
Link165
19.170
19.590
0.000
Link164
20.070
19.170
4.090
Link185
20.030
20.070
-0.120
Link184
20.800
20.030
0.210
Link183
20.930
20.800
0.080
Link186
20.930
16.810
0.000
Link181
16.810
16.540
0.050
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
6+44E4+77E
12.140
13.780
0.042
6+44-4+77
12.140
13.600
0.041
2557-2092
13.050
14.510
-0.013
01 /14/10 13:39:02 4/4
Scenario 1 B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,B1,B2
10.310
20.350
13.360
6.990
None
10
11.310
21.230
14.180
7.050
None
100A
18.640
30.090
25.724
4.370
Allowed
105A
19.000
30.800
26.560
4.240
Allowed
110A
18.790
30.340
27.735
2.610
Allowed
115A_AF,AD
20.850
30.430
27.969
2.460
Allowed
120A
21.110
29.320
27.965
1.360
Allowed
125A
21.180
29.190
27.963
1.230
Allowed
130A
21.640
28.440
27.970
0.470
Allowed
135A AH
21.900
27.750
28.123
-0.370
Allowed
136A
21.950
27.750
28.178
-0.430
Allowed
137A
22.140
27.740
28.296
-0.560
Allowed
138A
22.140
27.870
28.491
-0.620
Allowed
140A
22.340
28.040
28.749
-0.710
Allowed
145A
22.640
28.690
29.221
-0.530
Allowed
15_C,D
12.080
20.300
15.188
5.110
None
150AAIAJAK
23.050
28.750
29.749
-1.000
Allowed
20
12.870
21.540
15.401
6.140
None
235_0,AO
22.000
29.820
23.717
6.100
None
25
12.820
21.520
16.075
5.440
None
26+48Ex
20.470
24,580
20.521
4.060
Allowed
30
12.830
22.060
16.274
5.790
None
32+10Ex
20.110
25.500
22.163
3.340
None
32+17Ex
20.150
26.100
22.223
3.880
INone
32+23Ex
20.190
25.600
22.254
3.350
None
35
12.900
22.600
16.808
5.790
None
35+21
20.905
26.580
23.135
3.440
None
36+10Ex_N
22.450
27.340
23.388
3.950
None
36+60
21.239
27.290
23.473
3.820
None
37+22P,O,R
21.388
28.480
23.599
4.880
None
4+21Ex F
13.770
23.870
18.894
4,980 INone
40_E
13.120
22.770
17.324
5.450
None
45
13.210
22.860
17.349
5.510
None
5
10.990
20.940
13.916
7.020
None
56A
14.690
25.790
19.143
6.650
Allowed
57A
14.720
25.820
19.656
6.160
Allowed
58A
15.330
27.330
21.061
6.270
Allowed
59A_W,AM
15.650
22.750
22.586
0.160
Allowed
59B_U
15.330
21.380
22.191
-0.810
Allowed
60A X
15.960
23.650
22.941
0.710
Allowed
60B
16.000
24.200
23.019
1.180
Allowed
65A
16.250
24.400
23.172
1.230
Allowed
67A
16.490
25.540
23.445
2.100
Allowed
70A
16.750
27.350
23.638
3.710
Allowed
73A
16.770
30.370
23.742
6.630
Allowed
75A_Z,AA,Y
17.140
31.140
24.725
6.420
Allowed
78A
17.260
30.070
25.019
5.050
Allowed
79A
17.370
30.170
25.283
4.890
Allowed
80A ABACAP
17.090 130.220
125.348
14,870
Allowed
95A AE 118.250
130.250
125.552
14.700
jAllowed
01 /14/10 13:39:37 1 /2
Scenario 1 B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
18.730
6.870
None
C821(11+35)
13.140
25.900
21.676
3.320
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22067
3.240
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5(4+67)
13.600
24.000
18.255
5.740
None
CB50 J
14.500
24.430
19.724
4.710
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
DS-14 G
13.780
23.950
18.863
5.090
None
ES-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-138(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
25.568
-1.070
Sealed
MH2385
17.870
24.070
19.222
4.850
None
Node157
16.540
23.940
23.172
0.770
None
Outfall
10.270
17.000
13.219
3.780
None
SH10_KM
19.590
25.070
25.070
0.000
None
SH15
19.170
25.880
25.570
0.310
None
SH20
20.070
25.620
25.620
0.000
None
SH25_L
20.030
25 850
25.850
0.000
None
SH40
20.800
27.410
26 716
0.690
None
SH45
20.930
27.630
27.118
0.510
None
SH50_AN
16.810
28.310
27.416
0.890
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.568
0.420
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31900
31.900
0.000
None
Tmp Out_V1
14.700
25,600
21.522
4.080
None
VAULTI(1+62) 111.600
23.400
19.755
3.380
Allowed
VAULT2(6+44) 112.140
24.650
20.774
3.750
Allowed
VT3(25+57) 113050
24.360
19.191
5.170
Allowed
01 /14/10 13:39.38 2/2
Scenario 1 B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft^3/s, m^3/s)
Cfs
1-Outfall
1_A,61,62
Outfall
5.500
34.000
204.270
10-5
10
5
5.000
91.600
85.270
100A-95A
100A
95A_AE
2.000
46.000
18.760
105A-100A
105A
100A
2.000
220.000
18.860
110A-105A
110A
105A
2.000
309.000
18.960
115A-110A
115A AF,AD
110A
2.000
62.000
19.010
120A-115A
120A
115A_AF,AD
2,000
80.000
16.960
125A-120A
125A
120A
2.000
27.000
16.950
130A-125A
130A
125A
2.000
110.000
16.940
135A-130A
135A_AH
130A
2.000
178.000
16.940
136A-135A
136A
135A_AH
2,000
77.000
16.360
137A-136A
137A
136A
2.000
77.000
16.350
138A-137A
138A
137A
2.000
75.000
15.950
140A-138A
140A
138A
2.000
86.000
12.580
145A-140A
145A
140A
2.000
145.000
13.230
15-10
15_C,D
10
5.000
336.000
85.280
150A-145A
150AAIAJAK
145A
2.000
123.000
16.070
20-15
20
15_C,D
5.000
169.000
69.140
235-3722
235_O,AO
37+22P,O,R
3.000
100.000
22.040
25-20
25
20
5.000
340.900
68.650
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
0.020
30-25
30
25
5.000
127.600
68.460
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
34.300
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
34.140
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
27.990
35-30
35
30
5.000
470.000
68.390
3521-3223e
35+21
32+23Ex
3.000
298.000
28.130
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.310
3660-3521
36+60
35+21
3.000
139.000
28.090
3722-3660
37+22PAR
36+60
3.000
62.000
28.170
4+21E-50
4+21Ex F
VAULTI(1+62)
4.500
306.500
93.560
40-35
40_E
35
5.000
603.400
68.570
45-40
45
40_E
5.000
56.000
54.900
5-1
5
1 A,B1,B2
5.000
213.300
85.220
56A-55
56A
4+21 Ex_F
5.000
229.000
90.360
57A-56A
57A
56A
4.000
133.000
91.090
58A-57A
58A
57A
4.000
315.000
91.330
59A-59B
59A_W,AM
596_U
3.000
187.000
85.640
5913-58A
59B_U
58A
3.000
328.000
91.800
60A-59A
60A_X
59A_W,AM
3.000
272.000
61.650
60B-60A
60B
60A X
3.000
100.000
52.250
65A-60B
65A
60B
3.000
199.000
52.250
67A-65A
67A
65A
3.000
353.000
52.260
70A-67A
70A
67A
3.000
252.000
52.270
73A-70A
73A
70A
3.000
125.000
52,280
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
52.290
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
28.250
79A-78A
79A
78A
2.000
154.000
28.010
80A-79A
80A_ABACAP 179A
12.000
138.000
28.020
01 /14/10 13:39:57 1 /4
Scenario 1 B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.610
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
598-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-606
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01/14/10 13:39:57 2/4
Scenario 1 B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ft (Height)
Length
ft
Max Flow
Cf 3/s, MA 3/s)
s
95A-80A
95A AE
80A_ABACAP
2.000
241.000
22.640
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
50.370
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
50.860
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
51.260
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
45.090
1797-1571
CB40(17+97)
CB35(15+71)_I
5.000
226.000
43.240
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
44.160
CB42_F8-22
C842(21+04)
F8-22(19+96)
2.000
108.000
-0.980
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-0.570
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-0.630
4+21-1+14
CB5(4+67)
VAULTI(1+62)
5.000
304.500
74.180
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
43.360
Link139
CB51(26+48)
CB50_J
3.000
72.000
32.570
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
4.900
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
32.620
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
32.720
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
0.650
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-0.400
4+77E4+21 E
D8-14 G
4+21 Ex_F
3.000
56.000
-23.960
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-4.730
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-3.750
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
0.000
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-2.300
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
0.020
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
33.520
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
0.590
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-1.370
L109
Mdpoint
59B_U
2.000
830.000
15.040
Link167
MH2385
VT3(25+57)
1.500
18.000
5.810
Link171
Node157
Tmp Out_V1
1.500
271.000
8.800
Link166
SH10_KM
MH2385
1.000
220.000
5.810
Link165
SH15
SH10_KM
1.000
215.000
3.560
Link164
SH2O
SH15
1.000
22.000
3.560
Link185
SH25_L
SH2O
1.000
34.000
3.780
Link184
SH40
SH25_L
1.000
370.000
-1.840
Link183
SH45
SH40
1.000
165.000
-1.820
Link186
SH45
SH50_AN
1.000
116.000 11.820
Link181
SH50_AN
Node157
1.500
550.000
8.850
Link175
SH60_V2
SH50_AN
1.000
455.000
4.590
Link174
SH65
SH60_V2
1.000
579.000
1.380
Link173
SH70_AG
SH65
1.000
413.000
1.380
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULTI(1+62)
45
5.000
650.000
54.300
Link187
VAULTI(1+62)
1_A,131,132 16.000
3311.000
105.810
6+44E4+77E
VAULT2(6+44) I
D8-14_G 13.000
167.000
-36.790
6+44-4+77
VAULT2(6+44)
CB5(4+67) 15.000
197.500
75.140
2557-2092
VT3(25+57)
CB41(20+92) 15.000
465.000
46.200
01 /14/10 13:39:58 3/4
Scenario 1 B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
12+68-9+78
13.140
13.270
-0.080
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
C842_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
L109
22.020
15.330
0.595
Link167
17.870
13.050
0.000
Link171
16.540
14.700
0.680
Link166
19.590
17.870
0.000
Link165
19.170
19.590
0.000
Link164
20.070
19.170
4.090
Link185
20.030
20.070
-0.120
Link184
20.800
20.030
0.210
Link183
20.930
20.800
0.080
Link186
20.930
16.810
0.000
Link181
16.810
16.540
0.050
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
Link187
11.600
10.310
0.040
6+44E4+77E
12.140
13.780
0.042
6+44-4+77
12.140
13.600
0.041
2557-2092
13.050
14.510
-0.013
01 /14/10 13:39:58 4/4
Scenario 2A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1 A,61,132
10.310
20.350
13.114
7.240
None
10
11.310
21.230
15,227
6.000
None
100A
18.640
30.090
26.516
3.570
Allowed
105A
19.000
30.800
26.962
3.840
Allowed
110A
18.790
30.340
27.891
2.450
Allowed
115A AF,AD
20.850
30.430
28.076
2.350
Allowed
120A
21.110
29.320
28.061
1.260
Allowed
125A
21.180
29.190
28.056
1.130
Allowed
130A
21.640
28.440
28.090
0.350
Allowed
135A_AH
21.900
27.750
28.262
-0.510
Allowed
136A
21.950
27.750
28.383
-0.630
Allowed
137A
22.140
27.740
28.515
-0.780
Allowed
138A
22.140
27.870
28.646
-0.780
Allowed
140A
22.340
28.040
28.827
-0.790
Allowed
145A
22.640
28.690
29.246
-0.560
Allowed
15_C,D
12.080
20.300
16.795
3.500
None
150AAIAJAK
23.050
28.750
29.758
-1.010
Allowed
20
12.870
21.540
17.149
4.390
None
235_O,AO
22.000
29.820
26.993
2,830
None
25
12.820
21.520
18.047
3.470
None
26+48Ex
20.470
24.580
24.852
-0.270
Allowed
30
12.830
22.060
18.395
3.660
None
32+10Ex
20.110
25.500
25.557
-0.060
Allowed
32+17Ex
20.150
26.100
25.584
0.520
Allowed
32+23Ex
20.190
25.600
25.600
0.000
None
12.900
22.600
19.604
3.000
None
+21
20.905
26.580
26.279
0.300
None
+10Ex N
[4+21
22.450
27.340
27.340
0.000
None
+60
21.239
27.290
26.593
0.700
None
+22P,Q,R
21.388
28.480
26.712
1.770
None
Ex_F
13.770
23.870
23.332
0.540
None
40 E
13.120
22.770
21.442
1.330
None
45
13.210
22.860
21.549
1.310
None
5
10.990
20.940
14.718
6.220
None
56A
14.690
25.790
23.372
2.420
Allowed
57A
14.720
25.820
23.436
2.380
Allowed
58A
15.330
27.330
23.637
3.690
Allowed
59A_KAM
15.650
22.750
24.068
-1.320
Allowed
59B U
15.330
21.380
23.926
-2.550
Allowed
60A_X
15.960
23.660
24.217
-0.570
Allowed
60B
16.000
24.200
24.260
-0.060
Allowed
65A
16.250
24.400
24.399
0.000
Allowed
67A
16.490
25.540
24.750
0.790
Allowed
70A
16.750
27.350
25.001
2.350
Allowed
73A
16.770
30.370
25.125
5.240 jAllowed
75A_Z,AA,Y
17.140
31.140
26.230
4.910
Allowed
78A
17.260
30.070
26.293
3.780
Allowed
79A
17.370
30.170
26.350
3.820
Allowed
80A_ABACAP
17.090
30.220
26.364
3.860
Allowed
95A AE
18.250
30.250 126.424
3.830
Allowed
01/14/10 13:40:55 1 /2
Scenario 2A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
23.704
1.900
None
C82_KM
15.030
24.500
24.576
-0.080
Allowed
CB21(11+35)
13.140
25.900
21.676
3.320
None
C83
15.540
25.200
24.640
0.560
Allowed
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
C835(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
24.685
1.120
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
24.732
2.270
None
CB5(4+67)
13.600
24.000
23.190
0.810
None
CB50_J
14.500
24.430
24.747
-0.320
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
24.680
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
C136
16.900
27.400
24.763
2.640
None
CB7
17.380
27.700
24.744
2.960
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14 G
13.780
23.950
23.358
0.590
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
27.873
-3.370
Sealed
Outfall
10.270
17.000
12.978
4.020
None
SH50_AN
16.810
28.310
24.734
3.580
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.572
0.420
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31.900
31.900
0.000
None
Tmp Out_V1
14.700
25.600
18.736
6.860
None
VAULTI(1+62) 111.600
123.400
119.755
13.380
Allowed
VAULT2(6+44) 112.140
124.650
120.774
13.750
Allowed
VT3(25+57) 113.050
124.360
124.461
-0.100
Allowed
01/14/10 13:40:56
Scenario 2A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft^3/s, m^3/s)
Cfs
1-Outfall
1_A,B1,B2
Outfall
5.500
34.000
174.990
10-5
10
5
5.000
91.600
159.120
100A-95A
100A
95A_AE
2.000
46.000
19.590
105A-100A
105A
100A
2.000
220.000
18.530
110A-105A
110A
105A
2.000
309.000
18.610
115A-110A
115A_AF,AD
110A
2.000
62.000
18.380
120A-115A
120A
115A_AF,AD
2.000
80.000
17.770
125A-120A
125A
120A
2.000
27.000
17.770
130A-125A
130A
125A
2.000
110.000
17.760
135A-130A
135A_AH
130A
2.000
178.000
17,750
136A-135A
136A
135A A
2.000
77.000
17.430
137A-136A
137A
136A
2.000
77.000
17.070
138A-137A
138A
137A
2.000
75.000
12.130
140A-138A
140A
138A
2.000
86.000
12.560
145A-140A
145A
140A
2.000
145.000
12.930
15-10
15_C,D
10
5.000
336.000
159.600
150A-145A
150AAIAJAK
145A
2.000
123.000
15.990
20-15
20
15_C,D
5.000
169.000
129.370
235-3722
235_0,AO
37+22P,Q,R
3.000
100.000
22.480
25-20
25
20
5.000
340.900
128.830
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
14.040
30-25
30
25
5.000
127.600
130.490
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
32.130
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
32.230
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
25.990
35-30
35
30
5.000
470.000
132.510
3521-3223e
35+21
32+23Ex
3.000
298.000
28.500
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.570
3660-3521
36+60
35+21
3.000
139.000
28.890
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.990
4+21E-50
4+21Ex F
VAULTI(1+62)
4.500
306.500
62.470
40-35
40_E
35
5.000
603.400
129.840
45-40
45
40_E
5.000
56.000
116.850
5-1
5
1_A,B1,B2
5.000
213.300
159.720
56A-55
56A
4+21Ex_F
5.000
229.000
71.010
57A-56A
57A
56A
4.000
133.000
70.990
58A-57A
58A
57A
4.000
315.000
70.960
59A-59B
59A_W,AM
59B_U
3.000
187.000
74.540
596-58A
59B U
58A
3.000
328.000
70.940
60A-59A
60A_X
59A_W,AM
3.000
272.000
60.250
60B-60A
60B
60A X
3.000
100.000
46.990
65A-60B
65A
608
3.000
199,000
47.310
67A-65A
67A
65A
3.000
353.000
47.320
70A-67A
70A
67A
3.000
252.000
47.330
73A-70A
73A
70A
3.000
125,000
47.340
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
47.360
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
25.820
79A-78A
79A
78A
2.000
154.000
25.790
80A-79A 180A.ABACAP
179A
12.000
138.000
25.850
01114110 13:41:18 1 /4
Scenario 2A - Links
Name
Upstream
Elevation
ft
Downstream
Elevrt ation rt
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.03E
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14 690
0-023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
5913-58A
15.330
15 330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090 117.370
-0.737
01 /14/10 1141:21 2/4
Scenario 2A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
Cf 3/s, m 3/s)
cfs
95A-80A
95A_AE
80A_ABACAP
2.000
241.000
20.390
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
63.760
Link193
CB2_KM
VT3(25+57)
4.000
200.000
36.820
12+68-9+78
CB21(11+35)
C817(9+78)
5.000
157.000
63.760
Link192
CB3
CB2_KM
4.000
176.000
29.760
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
63.770
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
57.590
Link191
C84_L
C63
4.000
87.000
29.070
1797-1571
CB40(17+97)
CB35(15+71)_1
5.000
226.000
51.080
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
49.950
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
-6.740
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-7.450
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-9.590
Link190
CB5
CB4_L
4.000
191.000
-15.370
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
59.060
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
37.400
Link139
C851(26+48)
CB50_J
3.000
72.000
34.970
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-7.130
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
19.530
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
23.460
Link189
CB6
CB5
4.000
191.000
-16.330
Link188
CB7
CB6
4.000
165.000
12.800
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.600
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-5.770
4+77E4+21 E
D8-14 G
4+21 Ex_F
3.000
56.000
21.860
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-7.040
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-6.740
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
-3.900
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-8.650
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
5.470
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
26.560
Unk144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
5.520
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-8.590
L109
Mdpoint
59B_U
2.000
830.000
13.500
Link187
SH50_AN
CB7
4.000
116.000
11.570
Link175
SH60_V2
SH50_AN
1.000
455.000
4.800
Link174
SH65
SH60_V2
1.000
579.000
1.390
Link173
SH70_AG
SH65
1.000
413.000
1.380
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULT1(1+62)
45
5.000
650.000
116.800
6+44E4+77E
VAULT2(6+44)
D8-14_G 13.000
167.000
-26.000
6+44-4+77
VAULT2(6+44)
CB5(4+67) 15.000
J59.030
2557-2092
VT3(25+57)
CB41(20+92) 15.000
1465.000
149.880
01/14/10 13:41:21 3/4
Scenario 2A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42 F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Unk141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
L109
22.020
15.330
0.595
Link187
16.810
17.380
0.293
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
6+44E4+77E 112.140
113.780
0.042
6+44-4+77 112,140
113.600
0.041
2557-2092 113.050
114.510
-0.013
icy/fClf[�7iKlCyWY�
4/4
Scenario 2B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,B1,B2
10.310
20.350
13.438
6.910
None
10
11.310
21.230
14.281
6.950
None
100A
18.640
30.090
25.697
4.390
Allowed
105A
19.000
30.800
26.538
4.260
Allowed
110A
18.790
30.340
27.718
2.620
Allowed
115A AF,AD
20.850
30.430
27.953
2.480
Allowed
120A
21.110
29.320
27.948
1.370
Allowed
125A
21.180
29.190
27.946
1.240
Allowed
130A
21.640
28.440
27.958
0.480
Allowed
135A_AH
21.900
27.750
28.113
-0.360
Allowed
136A
21.950
27.750
28.169
-0.420
Allowed
137A
22.140
27.740
28.285
-0.540
Allowed
138A
22.140
27.870
28.480
-0.610
Allowed
140A
22.340
28.040
28.742
-0.700
Allowed
145A
22.640
28.690
29.219
-0.530
Allowed
15_C,D
12.080
20.300
15.299
5.000
None
150AAIAJAK
23.050
28.750
29.747
-1.000
Allowed
20
12.870
21.540
15.522
6.020
None
235_0,AO
22.000
29.820
23.716
6.100
None
25
12.820
21.520
16.206
5.310
None
26+48Ex
20.470
24.580
20.788
3.790
Allowed
30
12.830
22.060
16.412
5.650
None
32+10Ex
20.110
25.500
22.163
3.340
Allowed
32+17Ex
20.150
26.100
22.223
3.880
Allowed
32+23Ex
20.190
25.600
22.254
3.350
None
35
12.900
22.600
16.975
5.630
None
35+21
20.905
26.580
23.135
3.440
None
36+10Ex_N
22.450
27.340
23.388
3.950
None
36+60
21.239
27.290
23.473
3.820
None
37+22P,Q,R
21.388
28.480
23.599
4.880
None
4+21 Ex_F
13.770
23.870
19.177
4.690
None
40 E
13.120
22.770
17.529
5.240
None
45
13.210
22.860
17.557
5.300
None
5
10.990
20.940
14.015
6.930
None
56A
14.690
25.790
19.407
6.380
Allowed
57A
14.720
25.820
19.904
5.920
Allowed
58A
15.330
27.330
21.180
6.150
Allowed
59A_W,AM
15.650
22.750
22.594
0.160
Allowed
59B_U
15.330
21.380
22.199
-0.820
Allowed
60A_X
15.960
23.650
22.946
0.700
Allowed
60B
16.000
24.200
23.023
1.180
Allowed
65A
16.250
24.400
23.177
1.220
Allowed
67A
16.490
25.540
23.449
2.090
Allowed
70A
16.750
27.350
23.642
3.710
Allowed
73A
16.770
30.370
23.738
6.630
Allowed
75A_Z,AA,Y
17.140
31.140
24.694
6.450
Allowed
78A
17.260
30.070
24.988
5.080
Allowed
79A
17.370
30.170
25.253
4.920
Allowed
80A ABACAP
17.090
30.220
25.318
4.900
Allowed
95A_AE
18.250 130.250
125.524
14.730
Allowed
01/14/10 13:42:13 1/2
Scenario 2B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
19.362
6.240
None
C132_KM
15.030
24.500
20.269
4.230
None
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
20.317
4.880
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
20.337
5.460
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
20.357
6.640
None
CB5(4+67)
13.600
24.000
18.634
5.370
None
CB50_J
14.500
24.430
20.648
3.780
None
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
C136
16.900
27.400
20.374
7.030
None
C137
17.380
27.700
20.381
7.320
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14_G
13.780
23.950
19.166
4.780
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
25.655
-1.160
Sealed
Outfall
10.270
17.000
13.297
3.700
None
SH50_AN
17.720
28.310
20.386
7.920
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.559
0.430
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31.900
31.900
0.000
None
Tmp Out_V1
14.700
25.600
18.736
6.860
None
VAULT1(1+62) 111.600
123.400
119.755
13.380
Allowed
VAULT2(6+44) 112.140
124.650
120.774
13.750
Allowed
VT3(25+57) 113.050
124.360
120.210
14.150
Allowed
01 /14/10 13:42:16 2/2
Scenario 2B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft ' 3/s, mA 3/s)
Cfs
1-Outfall
1_A,B1,B2
Outfall
5.500
34.000
214.310
10-5
10
5
5.000
91.600
90.220
100A-95A
100A
95A AE
2.000
46.000
19.390
105A-100A
105A
100A
2.000
220.000
19.380
110A-105A
110A
105A
2.000
309.000
20.360
115A-110A
115A_AF,AD
110A
2.000
62.000
20.450
120A-115A
120A
115A_AF,AD
2.000
80.000
16.880
125A-120A
125A
120A
2.000
27.000
16.880
130A-125A
130A
125A
2.000
110.000
16.870
135A-130A
135A_AH
130A
2.000
178.000
16.860
136A-135A
136A
135A AH
2.000
77.000
16.270
137A-136A
137A
136A
2,000
77.000
16.270
138A-137A
138A
137A
2.000
75,000
16.140
140A-138A
140A
138A
2.000
86.000
12.570
145A-140A
145A
140A
2.000
145.000
13.230
15-10
15_C,D
10
5.000
336.000
90.280
150A-145A
150AAIAJAK
145A
2.000
123.000
16.090
20-15
20
15_C,D
5.000
169.000
74.310
235-3722
235 O,AO
37+22P,Q,R
3.000
100.000
22.040
25-20
25
20
5.000
340.900
73.810
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
0.800
30-25
30
25
5.000
127.600
73.630
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
34.300
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
34.140
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
27.990
35-30
35
30
5.000
470.000
73.500
3521-3223e
35+21
32+23Ex
3.000
298.000
28.130
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.310
3660-3521
36+60
35+21
3.000
139.000
28.090
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.170
4+21E-50
4+21Ex F
VAULT1(1+62)
4.500
306.500
95.150
40-35
40_E
35
5.000
603.400
73.670
45-40
45
40 E
5.000
56.000
60.510
5-1
5
1_A,61,B2
5.000
213.300
90.200
56A-55
56A
4+21 Ex_F
5.000
229.000
88.560
57A-56A
57A
56A
4.000
133.000
89.330
58A-57A
58A
57A
4.000
315.000
89.600
59A-596
59A_W,AM
59B_U
3.000
187.000
85.570
5913-58A
59B_U
58A
3.000
328.000
91.390
60A-59A
60A_X
59A W,AM
3.000
272.000
61.580
60B-60A
60B
60A_X
3.000
100.000
52.380
65A-60B
65A
60B
3.000
199.000
52.420
67A-65A
67A
65A
3.000
353.000
52.480
70A-67A
70A
67A
3.000
252.000
52.540
73A-70A
73A
70A
3.000
125.000
52.600
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
52.650
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
29.730
79A-78A
79A
78A
2.000
154.000
29.580
80A-79A
80A ABACAP
79A
2.000
38.000
29.630
01 /14110 13:42:33 1 /4
Scenario 2B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
59B-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01 /14/10 13:42:34 2/4
Scenario 2B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
Cf 3/s, m 3/s)
cfs
95A-80A
95A AE
80A ABACAP
2.000
241.000
23.410
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
65.080
Link193
C62_KM
VT3(25+57)
4.000
200.000
24.180
12+68-9+78
C821(11+35)
CB17(9+78)
5.000
157.000
65.260
Link192
CB3
CB2_KM
4.000
176.000
21.890
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
65.350
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
60.020
Link191
CB4_L
CB3
4.000
87.000
22.030
1797-1571
C840(17+97)
CB35(15+71)_1
5.000
226.000
54.600
2092-1797
C641(20+92)
CB40(17+97)
5.000
295.000
55.580
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
4.480
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-4.260
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-5.220
Link190
CB5
CB4_L
4.000
191.000
12.760
4+21-1+14
C85(4+67)
VAULT1(1+62)
5.000
304.500
82.790
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
41.880
Link139
CB51(26+48)
CB50_J
3.000
72.000
31.540
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-6.180
Link142
C652(28+16)
CB51(26+48)
3.000
168.000
31.160
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
31.200
Link189
CB6
C65
4.000
191.000
11.510
Link188
C67
CB6
4.000
165.000
11.470
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
4.370
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-4.230
4+77E4+21 E
D8-14 G
4+21 Ex_F
3.000
56.000
-18.580
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-5.960
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
4.860
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
0.000
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
4.780
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
0.810
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
31.790
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
2.180
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2,000
113.000
4.570
L109
Mdpoint
59B_U
2.000
830.000
13.630
Link187
SH50_AN
CB7
4.000
116.000
12.840
Link175
SH60_V2
SH50_AN
1.000
455.000
5.450
Link174
SH65
SH60_V2
1.000
579.000
1.650
Link173
SH70_AG
SH65
1.000
413.000
1.560
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
Pump
Tmp Out V1
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULT1(1+62)
45
5.000
650.000
59.820
Link194
VAULT1(1+62)
1_A,B1,B2
6.000
3311.000
111.080
6+44E4+77E
VAULT2(6+44)
DB-14_G
3.000
167.000
-32.170
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500
83.030
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.000
56.930
01 /14/10 13:42:34 3/4
Scenario 2B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
L109
22.020
15.330
0.595
Link187
17.720
17.380
0.293
Link175
21.670
17.720
0.870
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
Link194
11.600
10.310
0.040
6+44E4+77E 112.140
113.780
10.042
6+44-4+77 112.140
113.600
10.041
2557-2092 113.050
114.510
-0.013
01 /14/10 13:42:34 4/4
Scenario 3A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,61,132
10.310
20.350
13.110
7.240
None
10
11.310
21.230
15.221
6.010
None
100A
18.640
30.090
26.520
3.570
Allowed
105A
19.000
30.800
26.965
3,830
Allowed
110A
18.790
30.340
27.884
2.460
Allowed
115A_AF,AD
20.850
30.430
28.072
2.360
Allowed
120A
21.110
29.320
28.056
1.260
Allowed
125A
21.180
29.190
28.051
1.140
Allowed
130A
21.640
28.440
28.084
0.360
Allowed
135A_AH
21.900
27.750
28.261
-0.510
Allowed
136A
21.950
27.750
28.381
-0.630
Allowed
137A
22.140
27.740
28.512
-0.770
Allowed
138A
22.140
27.870
28.643
-0.770
Allowed
140A
22.340
28.040
28.823
-0.780
Allowed
145A
22.640
28.690
29.244
-0.550
Allowed
15_C,D
12.080
20.300
16.782
3.520
None
150AAIAJAK
23.050
28.750
29.757
-1.010
Allowed
20
12.870
21,540
17.148
4.390
None
235_0,AO
22.000
29.820
26.834
2.990
None
25
12.820
21.520
18.056
3.460
None
26+48Ex
20.470
24.580
24.978
-0.400
Allowed
30
12.830
22.060
18.390
3.670
None
32+10Ex
20.110
25,500
25.572
-0.070
Allowed
32+17Ex
20.150
26.100
25.590
0.510
Allowed
32+23Ex
20.190
25.600
25.600
0.000
None
35
12.900
22.600
19.689
2.910
None
35+21
20.905
26.580
26.570
0.010
None
36+10Ex N
22.450
27.340
27.340
0.000
None
36+60
21.239
27.290
26.682
0.610
None
37+22P,Q,R
21.388
28.480
26.692
1.790
None
4+21 Ex_F
13.770
23.870
23.330
0.540
None
40_E
13.120
22.770
21.448
1.320
None
45
13.210
22.860
21.546
1.310
None
5
10.990
20.940
14.715
6.220
None
56A
14.690
25.790
23.367
2.420
Allowed
57A
14.720
25.820
23.424
2.400
Allowed
58A
15.330
27.330
23.617
3.710
Allowed
59A_W,AM
15.650
22.750
24.029
-1.280
Allowed
59B_U
15.330
21.380
23.889
-2.510
Allowed
60A_X
15.960
23.650
24.180
-0.530
Allowed
60B
16.000
24.200
24.224
-0.020
Allowed
65A
16.250
24.400
24.414
-0.010
Allowed
67A
16.490
25.540
24.754
0.790
Allowed
70A
16.750
27.350
25,005
2.350
Allowed
73A
16.770
30.370
25.129
5.240
Allowed
75A_Z,AA,Y
17.140
31.140
26.234
4.910
Allowed
78A
17.260
30.070
26.297
3.770
Allowed
79A
17.370
30.170
26.353
3.820
Allowed
80A_ABACAP
17.090
30.220
26.367
3.850
Allowed
95A AE
18.250 130.250
126.427
13.820
Allowed
01 /14/10 13:44:17 1 /2
Scenario 3A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
23.746
1.850
None
C62_KM
15.030
24.500
24.673
-0.170
Allowed
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
24.787
0.410
Allowed
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
24.901
0.900
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
25.013
1.990
None
CB5(4+67)
13.600
24.000
23.200
0.800
None
CB50_J
14.500
24.430
24.875
-0.450
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
25.072
2.330
None
C67
17.380
27.700
25.140
2.560
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14 G
13.780
23.950
23.363
0.590
None
ES-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
LP_V1-23
14.700
25.600
17.707
7.890
None
Mdpoint
22.020
24.500
28.003
-3.500
Sealed
Outfall
10.270
17.000
12.973
4.030
None
RA V1-1
20.420
24.400
30.952
-6.550
Sealed
SH50_AN
16.810
28.310
25.182
3.130
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.572
0.420
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31.900
31.900 10,000
None
VAULTI(1+62)
11.600
23.400
19.755 13.380
Allowed
VAULT2(6+44)
12.140 124.650
20.774 13.750
Allowed
V173(25+57)
13.050 124.360
24.585
-0.230
Allowed
01 /14/10 13:44.18 2/2
Scenario 3A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ft (Height)
Length
ft
Max Flow
Cf 3/s, m 3!s)
s
1-Outfall
1_A,131,62
Outfall
5.500
34.000
174.440
10-5
10
5
5.000
91.600
159.000
100A-95A
100A
95A_AE
2.000
46.000
19.510
105A-100A
105A
100A
2.000
220.000
18.490
110A-105A
110A
105A
2.000
309.000
18.510
115A-110A
115A_AF,AD
110A
2.000
62.000
18.330
120A-115A
120A
115A_AF,AD
2.000
80.000
17.760
125A-120A
125A
120A
2.000
27.000
17.750
130A-125A
130A
125A
2.000
110.000
17.740
135A-130A
135A_AH
130A
2.000
178.000
17.730
136A-135A
136A
135A_AH
2.000
77.000
17.420
137A-136A
137A
136A
2.000
77.000
16.960
138A-137A
138A
137A
2.000
75.000
12.120
140A-138A
140A
138A
2.000
86.000
12.550
145A-140A
145A
140A
2.000
145.000
13.040
15-10
15_C,D
10
5.000
336.000
158.730
150A-145A
150AAIAJAK
145A
2.000
123.000
16.000
20-15
20
15_C,D
5.000
169.000
129.360
235-3722
235_O,AO
37+22P,Q,R
3.000
100.000
21.880
25-20
25
20
5.000
340.900
128.830
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
11.020
30-25
30
25
5.000
127.600
128.790
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
29.990
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
30.670
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
25.210
35-30
35
30
5.000
470.000
129.850
3521-3223e
35+21
32+23Ex
3.000
298.000
28.480
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.330
3660-3521
36+60
35+21
3.000
139.000
28.120
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.150
4+21 E-50
4+21 Ex_F
VAULT1(1+62)
4.500
306.500
59.030
40-35
40_E
35
5.000
603.400
130.860
45-40
45
40_E
5.000
56.000
117.290
5-1
5
1_A,61,62
5.000
213.300
159.290
56A-55
56A
4+21 Ex_F
5.000
229.000
70.650
57A-56A
57A
56A
4.000
133.000
70.630
58A-57A
58A
57A
4.000
315.000
70.600
59A-59B
59A_W,AM
59B U
3.000
187.000
74.960
596-58A
59B_U
58A
3.000
328.000
70.570
60A-59A
60A_X
59A_KAM
3.000
272.000
60.350
60B-60A
60B
60A_X
3.000
100.000
48.760
65A-60B
65A
60B
3.000
199.000
46.910
67A-65A
67A
65A
3.000
353.000
47.320
70A-67A
70A
67A
3.000
252.000
47.330
73A-70A
73A
70A
3.000
125.000
47.340
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
47.360
78A-75A
78A
75A_Z,AA,Y 12.000
172.000 125.870
79A-78A
79A 178A
12.000
154.000 125.850
80A-79A 180A.ABACAP
179A
12.000
38.000 125.920
01/14/10 13:44:33 1/4
Scenario 3A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.610
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
5913-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01114/10 13:44:35
Scenario 3A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
Cf 3Is, m 3/s)
cfs
95A-80A
95A AE
80A ABACAP
2.000
241.000
20.240
9+78-8+80
C617(9+78)
VAULT2(6+44)
5.000
314.000
65.680
Link193
C132_KM
V173(25+57)
4.000
200.000
43.240
12+68-9+78
C821(11+35)
CB17(9+78)
5.000
157.000
65.800
Link192
C133
C132_KM
4.000
176.000
36.840
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
65.930
15+7114+35
CB35(15+71)_I
C631(14+35)_H
5.000
136.000
59.850
Link191
CB4_L
C63
4.000
87.000
36.710
1797-1571
C640(17+97)
CB35(15+71)_1
5.000
226.000
53.180
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
51.940
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
-7.780
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-6.450
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-10.170
Link190
C65
CB4_L
4.000
191.000
-22.750
4+21-1+14
CB5(4+67)
VAULTI(1+62)
5.000
304.500
59.480
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
40.500
Link139
CB51(26+48)
CB50_J
3.000
72.000
37.650
15+7115+71
CB52(15+71)
CB35(15+71)_I
2.000
14.000
-7.710
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
32.400
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
32.650
Link189
CB6
C65
4.000
191.000
19.020
Link188
CB7
CB6
4.000
165.000
19.150
2285el996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.850
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-5.810
4+77E4+21E
D8-14 G
4+21Ex F
3.000
56.000
23.290
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-7.570
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-6.990
1797el797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
-4.710
1883el797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-9.050
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
5.670
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
24.340
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
6.140
1996el883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-8.520
Pump
LP_Vl-23
Mdpoint
0.050
10.000
6.900
Pump
LP_V1-23
Mdpoint
0.050
10.000
6.900
L109
Mdpoint
59B U
2.000
830.000
9.380
Link194
RA VI-1
SH50_AN
2.000
550,000
8.340
Link187
SH50_AN
C87
4.000
116.000
19.050
Link175
SH60_V2
SH50_AN
1.000
455.000
4.790
Link174
SH65
SH60_V2
1.000
579.000
1.420
Link173
SH70_AG
SH65
1.000
413.000
1.380
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
50-45
VAULT1(1+62)
45
5.000
650.000
117.280
6+44E4+77E
VAULT2(6+44)
D8-14_G
3.000
167.000
-24.930
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500
59.470
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.00
551.940
01 /14/10 13:44:35 3/4
Scenario 3A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
UAW
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
50157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
L109
22.020
15.330
0.595
Link194
20.420
16.810
0.000
Link187
16.810
17.380
0.293
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
50-45
11.600
13.210
0.040
6+44E4+77E 112.140
113.780
10.042
6+44-4+77
12.140 113.600
10.041
2557-2092 113.050
114.510
-0.013
01/14/10 13:44:35
Scenario 3B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,131,62
10.310
20.350
13.476
6.870
None
10
11.310
21.230
14.323
6.910
None
100A
18.640
30.090
25.999
4.090
Allowed
105A
19.000
30.800
26.712
4.090
Allowed
110A
18.790
30.340
27.742
2.600
Allowed
115A_AF,AD
20.850
30.430
27.958
2.470
Allowed
120A
21.110
29.320
27.945
1.370
Allowed
125A
21.180
29.190
27.945
1.250
Allowed
130A
21.640
28.440
27.984
0.460
Allowed
135A AH
21.900
27.750
28.121
-0.370
Allowed
136A
21.950
27.750
28.165
-0.420
Allowed
137A
22.140
27.740
28.273
-0.530
Allowed
138A
22.140
27.870
28.471
-0.600
Allowed
140A
22.340
28.040
28.736
-0.700
Allowed
145A
22.640
28.690
29.219
-0.530
Allowed
15 C,D
12.080
20.300
15.340
4.960
None
150AAIAJAK
23.050
28.750
29.747
-1.000
Allowed
20
12.870
21.540
15.566
5.970
None
235_0,AO
22.000
29.820
23.716
6.100
None
25
12.820
21.520
16.254
5.270
None
26+48Ex
20.470
24.580
21.121
3.460
Allowed
30
12.830
22.060
16.461
5.600
None
32+10Ex
20.110
25.500
22.163
3.340
Allowed
32+17Ex
20.150
26.100
22.223
3.880
Allowed
32+23Ex
20.190
25.600
22.254
3.350
None
35
12.900
22.600
17.030
5.570
None
35+21
20.905
26.580
23.135
3.440
None
36+10Ex_N
22.450
27.340
23.388
3.950
None
36+60
21.239
27.290
23.473
3.820
None
37+22P,Q,R
21.388
28.480
23.599
4.880
None
4+21Ex_F
13.770
23.870
19.285
4.580
None
40_E
13.120
22.770
17.597
5.170
None
45
13.210
22.860
17.626
5.230
None
5
10.990
20.940
14.055
6.880
None
56A
14.690
25.790
19.520
6.270
Sealed
57A
14.720
25.820
20.061
5.760
Sealed
58A
15.330
27.330
21.398
5.930
Sealed
59A W,AM
15.650
22.750
22.948
-0.200
Allowed
59B_U
15.330
21.380
22.495
-1.110
Sealed
60A_X
15.960
23.650
23.310
0.340
Allowed
60B
16.000
24.200
23.386
0.810
Allowed
65A
16.250
24.400
23.539
0.860
Allowed
67A
16.490
25.540
23.812
1.730
Allowed
70A
16.750
27.350
24.013
3.340
Allowed
73A
16.770
30.370
24.119
6.250
Allowed
75A Z,AA,Y
17.140
31.140
25.077
6.060
Allowed
78A
17.260
30.070
25.356
4.71
Allowed
79A
17.370
30.170
25.605
4.560
Allowed
80A ABACAP
17.090 130.220
125.667
4.550
Allowed
95A AE
18.250 130.250
125.851
4.400
Allowed
01 /14/10 13:45:26 1 /2
Scenario 3B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
19.558
6.040
None
CB2_KM
15.030
24.500
20.677
3.820
None
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
20.749
4.450
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71) I
13.570
25.310
22.067
3.240
None
C134_L
15.970
25.800
20.790
5.010
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
C65
16.350
27.000
20.826
6.170
None
CB5(4+67)
13.600
24.000
18.747
5.250
None
CB50_J
14.500
24.430
20.996
3.430
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
20.853
6.550
None
C67
17.380
27.700
20.873
6.830
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14_G
13.780
23.950
19.279
4.670
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
None
F8-22(19+96)
18.200
25.480
22.471
3.010
None
LP_V1-23
14.700
25.600
17.707
7.890
None
Mdpoint
22.020
24.500
23.446
1.050
Sealed
Outfall
10.270
17.000
13.335
3.670
None
RA V1-1
20A20
24.400
21.476
2.920
Sealed
SH50_AN
16.810
28.310
20.888
7.420
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.572
None
SH70_AG
22.800
31.200
31.200
None
SH75_AL
23.200
31.900
31.900
None
VAULT1(1+62)
11.600
23.400
19.755
23.750]Allowed
Allowed
VAULT2(6+44)
12.140
24.650
20.774
VT3(25+57)
13.050
24.360
20.585
Allowed
01 /14/10 13:45:28 2/2
Scenario 3B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
Cf 3/s, m 3/s)
cfs
1-Outfall
1_A,B1,B2
Outfall
5.500
34.000
219.150
10-5
10
5
5.000
91.600
92.050
100A-95A
100A
95A_AE
2.000
46.000
19.380
105A-100A
105A
100A
2.000
220.000
20.320
1IOA-105A
110A
105A
2.000
309.000
20.480
115A-110A
115A_AF,AD
110A
2.000
62.000
20.460
120A-115A
120A
115A_AF,AD
2.000
80.000
16.850
125A-120A
125A
120A
2.000
27.000
16.850
130A-125A
130A
125A
2.000
110.000
16.840
135A-130A
135A AH
130A
2.000
178.000
16.830
136A-135A
136A
135A_AH
2.000
77.000
16.240
137A-136A
137A
136A
2.000
77.000
16.230
138A-137A
138A
137A
2.000
75.000
15.940
140A-138A
140A
138A
2.000
86.000
12.560
145A-140A
145A
140A
2.000
145.000
13.230
15-10
15_C,D
10
5.000
336.000
92.090
150A-145A
150AAIAJAK
145A
2.000
123.000
16.100
20-15
20
15_C,D
5.000
169.000
75.830
235-3722
235_O,AO
37+22PAR
3.000
100.000
22.040
25-20
25
20
5.000
340.900
75.420
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
1.680
30-25
30
25
5.000
127.600
75.190
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
34.310
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
34.140
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
28.000
35-30
35
30
5.000
470.000
75.160
3521-3223e
35+21
32+23Ex
3.000
298.000
28.130
3610e3217e
36+10Ex_N
32+17Ex
1.750
393.000
6.320
3660-3521
36+60
35+21
3.000
139.000
28.090
3722-3660
37+22PAR
36+60
3.000
62.000
28.170
4+21 E-50
4+21 Ex_F
VAULTI (1+62)
4.500
306.500
99.150
40-35
40 E
35
5.000
603.400
75.410
45-40
45
40 E
5.000
56.000
60.770
5-1
5
1_A,B1,B2
5.000
213.300
92.010
56A-55
56A
4+21Ex_F
5.000
229.000
93.890
57A-56A
57A
56A
4.000
133.000
94.720
58A-57A
58A
57A
4.000
315.000
95.140
59A-59B
59A_W,AM
596_U
3.000
187.000
79.340
59B-58A
59B_U
58A
3.000
328.000
95.100
60A-59A
60A_X
59A_W,AM
3.000
272.000
61.440
608-60A
60B
60A_X
3.000
100.000
52.490
65A-60B
65A
60B
3.000
199+000
52.510
67A-65A
67A
65A
3.000
353.000
52.550
70A-67A
70A
67A
3.000
252.000
52.590
73A-70A
73A
70A
3.000
125.000
52.630
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
52.670
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
29.590
79A-78A
79A
78A
2.000
154.000
29.640
80A-79A 180A.ABACAP
179A
2.000 138.000
29.690
01/14/10 13.45:42 1/4
Scenario 3B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.040
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
59B-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260 10,136
80A-79A 117.090
17.370
-0.737
01/14/10 13:45:43 2/4
Scenario 3B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft^3/s, m^3/s)
cfs
95A-80A
95A_AE
80A_ABACAP
2.000
241.000
23.470
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
71.170
Link193
C82_KM
VT3(25+57)
4.000
200.000
27.920
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
70.440
Link192
C133
CB2_KM
4.000
176.000
25.540
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
69.980
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
65.620
Link191
CB4_L
CB3
4.000
87.000
25.710
1797-1571
CB40(17+97)
CB35(15+71)_I
5.000
226.000
56.680
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
56.800
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
5.170
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-5.070
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-6.070
Link190
CB5
C64_L
4.000
191.000
17.840
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
86.280
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
41.460
Link139
CB51(26+48)
CB50_J
3.000
72.000
31.200
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-6.960
Link142
C652(28+16)
CB51(26+48)
3.000
168.000
30.500
Link141
C654(29+23)
CB52(28+16)
3.000
107.000
30.560
Link189
C66
C65
4.000
191.000
16.070
Link188
CB7
C66
4.000
165.000
15.980
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.060
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-5.120
4+77E4+21E
D8-14_G
4+21Ex F
3.000
56.000
-18.560
1620057le
E8-11(16+20)
CB52(15+71)
2.000
49.000
-6.720
1797el620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
5.810
1797el797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
0.280
1883el797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
5.690
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
1.540
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
31.010
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
2.910
1996el883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
5.390
Pump
LP_Vl-23
Mdpoint
0.050
10.000
6.900
Pump
LP_Vl-23
Mdpoint
0.050
10.000
6.900
L109
Mdpoint
59B_U
2.000
830.000
7.330
Link194
RA_V1-1
SH50_AN
2,000
550,000
6.420
Link187
SH50_AN
CB7
4.000
116.000
18.170
Link175
SH60_V2
SH50_AN
1.000
455.000
4.790
Link174
SH65
SH60_V2
1.000
579.000
1.410
Link173
SH70_AG
SH65
1.000
413.000
1.380
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
50-45
VAULTI(1+62)
45
5.000
650.000
60.750
Link195
VAULT1(1+62)
1_A,131,62
6.000
3311.000
114.280
6+44E4+77E
VAULT2(6+44)
D8-14 G 13.000
1167.000
-32.140
6+44-4+77
VAULT2(6+44)
CB5(4+67) 15.000
1197.500
186.250
2557-2092 1
VT3(25+57)
CB41(20+92) 15.000
1465.000
159.340
01 /14/10 13:45:43 3/4
Scenario 3B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
L109
22.020
15.330
0.595
Link194
20.420
16.810
0.000
Link187
16.810
17.380
0.293
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
50-45
11.600
13.210
0.040
Link195 111.600
110.310
10.040
6+44E4+77E
12.140 113.780
0.042
6+44-4+77
12.140 113.600
10.041
2557-2092 113.050
114.510
-0.013
01/14/10 13:45:43 4/4
Scenario 4A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,B1,B2
10.310
20.350
13.109
7.240
None
10
11.310
21.230
15.219
6.010
None
100A
18.640
30.090
26.474
3.620
Allowed
105A
19.000
30.800
26.927
3.870
Allowed
110A
18.790
30.340
27.876
2.460
Allowed
115A AF,AD
20.850
30.430
28.067
2.360
Allowed
120A
21.110
29.320
28.051
1.270
Allowed
125A
21.180
29.190
28.046
1.140
Allowed
130A
21.640
28.440
28.080
0.360
Allowed
135A_AH
21.900
27.750
28.250
-0.500
Allowed
136A
21.950
27.750
28.373
-0.620
Allowed
137A
22.140
27.740
28.506
-0.770
Allowed
138A
22.140
27.870
28.639
-0.770
Allowed
140A
22.340
28.040
28.821
-0.780
Allowed
145A
22.640
28.690
29.242
-0.550
Allowed
15_C,D
12.080
20.300
16.767
3.530
None
150AAIAJAK
23.050
28.750
29.756
-1.010
Allowed
20
12.870
21.540
17.146
4.390
None
235_O,AO
22.000
29.820
27.109
2.710
None
25
12.820
21.520
18.065
3.460
None
26+48Ex
20.470
24.580
24.945
-0.370
Allowed
30
12.830
22.060
18.409
3.650
None
32+10Ex
20.110
25.500
25.563
-0.060
Allowed
32+17Ex
20.150
26.100
25.586
0.510
None
32+23Ex
20.190
25.600
25.600
0.000
None
35
12.900
22.600
19.577
3.020
None
35+21
20.905
26.580
26.580
0.000
None
36+10Ex N
22.450
27.340
26.252
1.090
None
36+60
21.239
27.290
27,051
0.240
None
37+22P,Q,R
21.388
28.480
27.145
1.330
None
4+21Ex F
13.770
23.870
23.320
0.550
None
40 E
13.120
22.770
21.243
1.530
None
45
13.210
22.860
21.349
1.510
None
5
10.990
20.940
14.714
6.230
None
56A
14.690
25.790
23.357
2.430
Allowed
57A
14.720
25.820
23.413
2.410
Allowed
58A
15.330
27.330
23.597
3.730
Allowed
59A_W,AM
15.650
22.750
24.002
-1.250
Allowed
59B_U
15.330
21.380
23.861
-2.480
Allowed
60A_X
15.960
23.650
24.158
-0.510
Allowed
60B
16.000
24.200
24.211
-0.010
Allowed
65A
16.250
24.400
24.351
0.050
Allowed
67A
16.490
25.540
24.703
0.840
Allowed
70A
16.750
27.350
24.953
2.400
Allowed
73A
16.770
30.370
25.078
5.290
Allowed
75A_Z,AA,Y
17.140
31.140
26.185
4.950
Allowed
78A
17.260
30.070
26.248
3.820
Allowed
79A
17.370
30.170
26.306
3.860
Allowed
80A_ABACAP
17.090
30.220
26.320
3.900
Allowed
95A_AE
18.250
30.250 126.380
3.870 JAIlowed
01/14/10 13:46:44 112
Scenario 4A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
23.828
1.770
None
C132_KM
15.030
24.500
24.667
-0.170
Allowed
C621(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
24.800
0.400
Allowed
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
24.905
0.890
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
25.010
1.990
None
CB5(4+67)
13.600
24.000
23.331
0.670
None
C1350_J
14.500
24.430
24.845
-0.410
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
25.089
2.310
None
CB7
17.380
27.700
25.151
2.550
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14 G
13.780
23.950
23.352
0.600
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
LP_V1-2
14.700
25.600
17.699
7.900
Sealed
Mdpoint
22.020
24.500
27.365
-2.860
Sealed
Outfall
10.270
17.000
12.973
4.030
None
RA V1-1
20.420
24.400
26.693
-2.290
Sealed
RA V1-3
19.690
23.820
24.916
-1.100
Sealed
SH50_AN
16.810
28.310
25.173
3.140
None
SH60_V2
21.670
29.630
29.630
0.000
None
SH65
21.990
30.990
30.572
0.420
None
SH70_AG
22.800
31.200
31.200
0.000
None
SH75_AL
23.200
31.900
31.900
0.000
None
VAULT1(1+62)
11.600
23.400
19.755
3.380
Allowed
VAULT2(6+44)
IVT3(25+57)
12.140
24.650
20.774
3.750
Allowed
j
13.050
24.360
24.579
-0.220
Allowed
01 /14/10 13:46:46 2/2
Scenario 4A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft^3/s, m^3/s)
cfs
1-Outfall
1 A,131,132
Outfall
5.500
34.000
174.410
10-5
10
5
5.000
91.600
159.070
10OA-95A
100A
95A_AE
2.000
46.000
19.820
105A-100A
105A
1ODA
2.000
220.000
18.570
110A-105A
110A
105A
2.000
309.000
18.340
115A-110A
115A_AF,AD
110A
2.000
62.000
18.410
120A-115A
120A
115A AF,AD
2.000
80.000
17.740
125A-120A
125A
120A
2.000
27.000
17.780
130A-125A
130A
125A
2,000
110.000
17.850
135A-130A
135A_AH
130A
2.000
178,000
17.890
136A-135A
136A
135A_AH
2.000
77,000
17.400
137A-136A
137A
136A
2.000
77.000
17.000
138A-137A
138A
137A
2.000
75.000
16.270
140A-138A
140A
138A
2.000
86.000
12.550
145A-140A
145A
140A
2.000
145.000
13.070
15-10
15_C,D
10
5.000
336.000
158.750
150A-145A
150AAIAJAK
145A
2.000
123.000
16.010
20-15
20
15_C,D
5.000
169.000
129.240
235-3722
235_O,AO
37+22P,Q,R
3.000
100.000
22.450
25-20
25
20
5.000
340.900
129.000
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
-11.470
30-25
30
25
5.000
127.600
128.510
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
30.130
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
32.440
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
26.280
35-30
35
30
5.000
470.000
128.360
3521-3223e
35+21
32+23Ex
3.000
298.000
28.180
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.310
3660-3521
36+60
35+21
3.000
139.000
30.510
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.870
4+21E-50
4+21Ex_F
VAULT1(1+62)
4.500
306.500
60.470
40-35
40_E
35
5.000
603.400
129.610
45-40
45
40_E
5.000
56.000
117.170
5-1
5
1_A,B1,B2
5.000
213.300
159.150
56A-55
56A
4+21Ex_F
5.000
229.000
69.030
57A-56A
57A
56A
4.000
133.000
69.020
58A-57A
58A
57A
4.000
315.000
69.010
59A-59B
59A_W,AM
59B_U
3.000
187.000
75.110
596-58A
596 U
58A
3.000
328.000
69.000
60A-59A
60A X
59A_W,AM
3.000
272.000
60.340
60B-60A
60B
60A_X
3.000
100.000
47.360
65A-60B
65A
60B
3.000
199.000
47.360
67A-65A
67A
65A
3.000
353.000
47.370
70A-67A
70A
67A
3.000
252.000
47.380
73A-70A
73A
70A
3.000
125.000
47.400
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
47.420
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
26,610
79A-78A 179A
78A
2.000
154.000
25.990
80A-79A 180A_ABACAP
79A
2.000
38.000
25.970
01/14/10 13:47:01 1/4
Scenario 4A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.040
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21139
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-5913
15.650
15.330
0.171
596-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A 117.090
17.370
-0.737
01/14/10 13:47:02 2/4
Scenario 4A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft 3/s, m 3/s)
ofs
95A-80A
95A_AE
80A_ABACAP
2.000
241.000
20.840
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
66.560
Link193
C62_KM
VT3(25+57)
4.000
200.000
37.460
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
66.580
Link192
CB3
C62_KM
4.000
176.000
35.150
14+3512+68
C831(14+35) H
CB21(11+35)
5.000
300.000
66.610
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
60.380
Link191
C134_L
C63
4.000
87.000
35.140
1797-1571
C840(17+97)
CB35(15+71)_I
5.000
226.000
53.690
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
51.450
C842_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
-6.000
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-7.010
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-9.640
Link190
CB5
CB4_L
4.000
191.000
-18.020
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
59.470
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
34.840
Link139
CB51(26+48)
CB50_J
3.000
72.000
26.780
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-7.830
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
21.030
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
21.030
Link189
CB6
CB5
4.000
191.000
18.860
Link188
CB7
C66
4.000
165.000
19.640
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.720
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-5.690
4+77E4+21 E
D8-14 G
4+21 Ex_F
3.000
56.000
23.960
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-7.700
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-7.380
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
-8.350
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-10.040
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
5.450
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
25.400
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
8.270
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-8.640
Pump
LP VI-2
Mdpoint
0.050
10.000
6.900
Pump
LP_V1-2
Mdpoint
0.050
10.000
6.900
L109
Mdpoint
59B_U
2.000
830.000
6.160
Link194
RA_V1-1
SH50_AN
2.000
550.000
8.230
Link196
RA_V1-3
E8-13B(18+83)
2.000
545.000
4.950
Unk187
SH50_AN
CB7
4.000
116.000
19.490
Link175
SH60_V2
SH50_AN
1.000
455.000
4.790
Unk174
SH65
SH60_V2
1.000
579.000
1.420
Link173
SH70_AG
SH65
1.000
413.000
1.380
Unk172
SH75_AL
SH70_AG
1.000
71.000
3.440
50-45
VAULT1(1+62) 145
5.000
650.000
117.160
6+44E4+77E
VAULT2(6+44)
D8-14 G
3.000
167.000
-25.930
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500
59.460
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.000
51.440
01 /14/10 13:47:02 3/4
Scenario 4A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
L ink 141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797el620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
L109
22.020
15.330
0.595
Link194
20.420
16.810
0.000
Link196
19.690
17.530
0.400
Link187
16.810
17.380
0.293
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
50-45
11.600 113.210
10.040
6+44E4+77E
12.140
13.780 10.042
6+44-4+77
12.140
13.600 10.041
2557-2092
13.050 114.510
-0.013
01 /14/1013:47:03
Scenario 4B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1 A,B1,B2
10.310
20.350
13.452
6.900
None
10
11.310
21.230
14.284
6.950
None
100A
18.640
30.090
25.573
4.520
Allowed
105A
19.000
30.800
26.438
4.360
Allowed
110A
18.790
30.340
27.660
2.680
Allowed
115A_AF,AD
20.850
30.430
27.906
2.520
Allowed
120A
21.110
29.320
27.906
1.410
Allowed
125A
21.180
29.190
27.907
1.280
Allowed
130A
21.640
28.440
27.929
0.510
Allowed
135A_AH
21.900
27.750
28.091
-0.340
Allowed
136A
21.950
27.750
28.148
-0.400
Allowed
137A
22.140
27.740
28.261
-0.520
Allowed
138A
22.140
27.870
28.460
-0.590
Allowed
140A
22.340
28.040
28.727
-0.690
Allowed
145A
22.640
28.690
29.214
-0.520
Allowed
15_C,D
12.080
20.300
15.299
5.000
None
150AAIAJAK
23.050
28.750
29.746
1.000
Allowed
20
12.870
21.540
15.524
6.020
None
235_0,AO
22.000
29.820
23.716
6.100
None
25
12.820
21.520
16.209
5.310
None
26+48Ex
20.470
24.580
21.104
3.480
Allowed
30
12.830
22.060
16.414
5.650
None
32+10Ex
20.110
25.500
22.163
3.340
Allowed
32+17Ex
20.150
26.100
22.223
3.880
Allowed
32+23Ex
20.190
25.600
22.254
3.350
None
35
12.900
22.600
16.977
5.620
None
35+21
20.905
26.580
23.135
3.440
None
36+10Ex N
22.450
27.340
23.388
3.950
None
36+60
21.239
27.290
23.473
3.820
None
37+22P,Q,R
21.388
28.480
23.599
4.880
None
4+21 Ex_F
13.770
23.870
19.162
4.710
None
40_E
13.120
22.770
17.531
5.240
None
45
13.210
22.860
17.560
5.300
None
5
10.990
20.940
14.021
6.920
None
56A
14.690
25.790
19,365
6.420
Allowed
57A
14.720
25.820
19.793
6.030
Allowed
58A
15.330
27.330
20.953
6.380
Allowed
59A_W,AM
15.650
22.750
22.342
0.410 jAllowed
59B_U
15.330
21.380
21.890
-0.510
Allowed
60A_X
15.960
23.650
22.720
0.930
Allowed
60B
16.000
24.200
22.798
1.400
Allowed
65A
16.250
24.400
22.955
1.450
Allowed
67A
16.490
25.540
23.244
2.300
Allowed
70A
16.750
27.350
23.467
3.880
Allowed
73A
16.770
30.370
23.577
6.790
Allowed
75A Z,AA,Y
17.140
31.140
24.565
6.580
Allowed
78A
17.260
30.070
24.860
5.210
Allowed
79A
17.370
30.170
25.125
5.050
Allowed
80A ABACAP
17.090
30.220
25.191
5.030
Allowed
95A AE 118.250
130.250
125.396
14.850
Allowed
01/14/10 13:47:36 1/2
Scenario 4B - Nodes
Name
IC132
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
19.504
6.100
None
KM
15.030
24.500
20.648
3.850
None
CB21(11+35)
13.140
25.900
21.676
3.320
None
C63
15.540
25.200
20.717
4.480
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
C134_L
15.970
25.800
20.756
5.040
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
20.789
6.210
None
CB5(4+67)
13.600
24.000
18.671
5.330
None
CB50_J
14.500
24.430
20.966
3.460
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
20.816
6.580
None
CB7
17.380
27.700
20.834
6.870
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14 G
13.780
23.950
19.158
4.790
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
LP_V1-2
14.700
25.600
17.704
7.900
None
Mdpoint
22.020
24.500
23.105
1.400
Sealed
Outfall
10.270
17.000
13.311
3.690
None
RA VIA
20.420
24.400
21.473
2.930
Sealed
RA V1-3
19.690
23.820
20.364
Sealed
SH50_AN
16.810
28.310
20.843
None
SH60_V2
21.670
29.630
29.630
None
SH65
21.990
30.990
30.572
INAllowed
None
SH70_AG
22.800
31.200
31.200
None
SH75_AL
23.200
31.900
31.900
None
VAULT1(1+62)
11.600
23.400
19.755
VAULT2(6+44)
12.140 124.650
120.774
13.750
jAllowed
VT3(25+57)
13.050 124.360
120.559
13.800
lAllowed
01 /14/10 13:47:38 2/2
Scenario 4B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
(ft 3/s, m 3/s)
cfs
1-Outfall
1_A,131,132
Outfall
5.500
34.000
216.080
10-5
10
5
5.000
91.600
90.130
100A-95A
100A
95A_AE
2.000
46.000
19.360
105A-100A
105A
100A
2.000
220.000
20.440
110A-105A
110A
105A
2.000
309.000
20.490
115A-110A
115A_AF,AD
110A
2.000
62.000
20.460
120A-115A
120A
115A_AF,AD
2.000
80.000
16.830
125A-120A
125A
120A
2.000
27.000
16.820
130A-125A
130A
125A
2.000
110.000
16.820
135A-130A
135A_AH
130A
2.000
178.000
16.810
136A-135A
136A
135A AH
2.000
77.000
16.210
137A-136A
137A
136A
2.000
77.000
16.200
138A-137A
138A
137A
2.000
75.000
15.980
140A-138A
140A
138A
2.000
86.000
12.560
145A-140A
145A
140A
2.000
145.000
13.230
15-10
15_C,D
10
5.000
336.000
90.160
150A-145A
150AAIAJAK
145A
2.000
123.000
16.110
20-15
20
15_C,D
5.000
169.000
74.360
235-3722
235_0,AO
37+22P,Q,R
3.000
100.000
22.040
25-20
25
20
5.000
340.900
73.850
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
1.540
30-25
30
25
5.000
127.600
73.670
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
34.300
3217e3210e
32+1-Ex
32+10Ex
3.000
12.000
34.140
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
28.000
35-30
35
30
5.000
470.000
73.590
3521-3223e
35+21
32+23Ex
3.000
298.000
28.130
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6.320
3660-3521
36+60
35+21
3.000
139.000
28.090
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.170
4+21E-50
4+21Ex_F
VAULTI(1+62)
4.500
306.500
95.010
40-35
40_E
35
5.000
603.400
73.790
45-40
45
40 E
5.000
56.000
60.240
5-1
5
1_A,B1,B2
5.000
213.300
90.140
56A-55
56A
4+21 Ex F
5.000
229.000
86.850
57A-56A
57A
56A
4.000
133.000
89.130
5BA-57A
58A
57A
4.000
315.000
87.360
59A-59B
59A_W,AM
59B_U
3.000
187.000
85.590
596-58A
596_U
58A
3.000
328.000
90,200
60A-59A
60A_X
59A_W,AM
3.000
272.000
61.690
606-60A
60B
60A X
3.000
100.000
52.420
65A-60B
65A
60B
3.000
199.000
52.450
67A-65A
67A
65A
3.000
353.000
52.490
70A-67A
70A
67A
3.000
252.000
52.550
73A-70A
73A
70A
3.000
125.000
52.600
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
52.640
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
29.610
79A-78A
79A
78A
2.000
154.000
29.650
80A-79A
80A_ABACAP 179A
2.000
38.000
29.700
01/14/10 13:48:00 1/4
Scenario 4B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.040
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.610
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-5913
15.650
15.330
0.171
596-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01 /14/10 13:48:01 2/4
Scenario 4B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ft (Height)
Length
ft
Max Flow
Cf 3/s, m 3/s)
s
95A-80A
95A_AE
80A_ABACAP
2.000
241.000
123.570
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
71.120
Link193
CB2_KM
VT3(25+57)
4.000
200.000
28.360
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
71.200
Link192
CB3
CB2_KM
4.000
176.000
26.000
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
71.230
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
65.640
Link191
CB4_L
CB3
4.000
87.000
26.260
1797-1571
CB40(17+97)
CB35(15+71)_I
5.000
226.000
56.070
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
57.520
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
4.460
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-4.850
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-5.690
Link190
CB5
CB4_L
4.000
191.000
17.090
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
85.420
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
41.500
Link139
CB51(26+48)
CB50_J
3.000
72.000
31.230
15+7115+71
CB52(15+71)
CB35(15+71)_I
2.000
14.000
7.560
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
30.470
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
30.530
Link189
CB6
CB5
4.000
191.000
15.380
Link188
CB7
CB6
4.000
165.000
15.840
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
4.500
Link147
CB-EX(22+85)
CB45(23+63)
2.000
78.000
-4.560
4+77E4+21 E
D8-14 G
4+21 Ex_F
3.000
56.000
-15.040
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
7.400
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
7.010
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
0.410
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
6.870
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
1.500
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
30.710
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
3.070
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
4.460
Pump
LP VI-2
Mdpoint
0.050
10.000
6.900
Pump
LP_V1-2
Mdpoint
0.050
10.000
6.900
L109
Mdpoint
59B_U
2.000
830.000
5.980
Link194
RA_V1-1
SH50_AN
2.000
550.000
6.550
Link196
RA_V1-3
E8-13B(18+83)
2.000
545.000
3.230
Link187
SH50_AN
CB7
4.000
116.000
18.090
Link175
SH60_V2
SH50_AN
1.000
455.000
4.790
Link174
SH65
SH60_V2
1.000
579.000
1.410
Link173
SH70_AG
SH65
1.000
413.000
1.380
Link172
SH75_AL
SH70_AG
1.000
71.000
3.440
50-45
VAULT1(1+62)
45
5.000
650.000
59.640
Link197
VAULTI(1+62)
1_A,B1,B2
6.000
3311.000
112.980
6+44E4+77E
VAULT2(6+44)
D8-14 G
3.000
167.000
-29.430
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197,500
86.110
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.000
60.340
01/14/10 13:48:01 3/4
Scenario 4B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Unk149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Unk139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link141
17.530
16.170
1.271
Unk189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21 E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-11200
1996e1883e
18.200
17.530
0.549
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
L109
22.020
15.330
0.595
Link194
20.420
16.810
0.000
Link196
19.690
17.530
0.400
Link187
16.810
17.380
0.293
Link175
21.670
16.810
0.000
Link174
21.990
21.670
0.060
Link173
22.800
21.990
0.200
Link172
23.200
22.800
0.560
50-45
11.600
13.210
0.040
Link197
11.600
10.310
0.040
6+44E4+77E
12.140
13.780
0.042
6+44-4+77
12.140
13.600
0.041
2557-2092
13.050
14.510
-0.013
01 /14110 13:48:02 4/4
Scenario 5A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,131,82
10.310
20.350
13.115
7.230
None
10
11.310
21.230
15.229
6.000
None
100A
18.640
30.090
26.585
3.510
Allowed
105A
19.000
30.800
27.017
3.780
Allowed
110A
18.790
30.340
27.886
2.450
Allowed
115A_AF,AD
20.850
30.430
28.071
2.360
Allowed
120A
21.110
29.320
28.057
1.260
Allowed
125A
21.180
29.190
28.054
1.140
Allowed
130A
21.640
28.440
28.095
0.340
Allowed
135A_AH
21.900
27.750
28.279
-0.530
Allowed
136A
21.950
27.750
28.397
-0.650
Allowed
137A
22.140
27.740
28.525
-0.780
Allowed
138A
22.140
27.870
28.653
-0.780
Allowed
140A
22.340
28.040
28.829
-0.790
Allowed
145A
22.640
28.690
29,248
-0.560
Allowed
15_C,D
12.080
20.300
16.781
3.520
None
150AAIAJAK
23.050
28.750
29.759
-1.010
Allowed
20
12.870
21.540
17.135
4.400
None
235_0,AO
22.000
29.820
27.259
2.560
None
25
12.820
21.520
18.085
3.430
None
26+48Ex
20.470
24.580
24.988
-0.410
Allowed
30
12.830
22.060
18.433
3.630
None
32+10Ex
20.110
25.500
25.555
-0.060
Allowed
32+17Ex
20.150
26.100
25.584
0.520
Allowed
32+23Ex
20.190
25.600
25.600
0.000
None
35
12.900
22.600
19.613
2.990
None
35+21
20.905
26.580
26.580
0.000
None
36+10Ex N
22.450
27.340
26.393
0.950
None
36+60
21.239
27.290
26.924
0.370
None
37+22P,Q,R
21.388
28.480
27.054
1.430
None
4+21 Ex_F
13.770
23.870
23.406
0.460
None
40_E
13.120
22.770
21.301
1.470
None
45
13.210
22.860
21.409
1.450
None
5
10.990
20.940
14.722
6.220
None
56A
14.690
25.790
23.444
2.350
Allowed
57A
14.720
25.820
23.504
2.320
Allowed
58A
15.330
27.330
23.694
3.640
Allowed
59A_W,AM
15.650
22.750
24.105
-1.350
Allowed
59B_U
15.330
21.380
23.972
-2.590
Allowed
60A_X
15.960
23.650
24.247
-0.600
Allowed
60B
16.000
24.200
24.326
-0.130
Allowed
65A
16.250
24.400
24.503
-0.100
Allowed
67A
16.490
25.540
24.839
0.700
Allowed
70A
16.750
27.350
25.088
2.260
Allowed
73A
16.770
30.370
25.211
5.160
Allowed
75A_Z,AA,Y
17.140
31.140
26.308
4.830
Allowed
78A
17.260
30.070
26.369
3.700
Allowed
79A
17.370
30.170
26.424
3.750
Allowed
80A_ABACAP
17.090
30.220
26.437
3.780
Allowed
95A AE
18.250
30.250
26.495
3.750
Allowed
01/14/10 13:48:40 1/2
Scenario 5A - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
23.838
1.760
None
C62 KM
15.030
24.500
24.912
-0.410
Allowed
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
25.245
-0.050
Allowed
CB31(14+35) H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
25.309
0.490
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
C135
16.350
27.000
25.297
1.700
None
CB5(4+67)
13.600
24.000
23.278
0.720
None
CB50_J
14.500
24.430
24.912
-0.480
Allowed
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
24.680
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
25.370
2.030
None
CB7
17.380
27.700
25.463
2.240
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14_G
13.780
23.950
23.440
0.510
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
27.733
-3.230
Sealed
Outfall
10.270
17.000
12.977
4.020
None
SH50 AN
17.720
28.310
25.535
2.780
None
SH60_V2
19.093
29.630
26.257
3.370
None
SH65
20.840
30.990
30.411
0.580
None
SH70_AG
22.086
31.200
30.553
0.650
None
SH75_AL
22.300
31.900
30.937
0.960
None
Tmp Out_V1
14.700
25.600
18.736
6.860
None
VAULTI(1+62) 111.600
123.400
119.755
13.380
Allowed
VAULT2(6+44) 112.140
124.650
120.774
13.750
Allowed
VT3(25+57) 113.050
24.360 124.730
-0.370
Allowed
01/14/10 13:48:41 2/2
Scenario 5A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height) ft
Length
ft
Max Flow
Cf 31s, m 3/s)
cfs
1-Outfali
1_A,131,62
Outfall
5.500
34.000
174.910
10-5
10
5
5.000
91.600
159.230
10DA-95A
100A
95A_AE
2.000
46.000
18.650
105A-100A
105A
100A
2.000
220.000
18.270
110A-105A
110A
105A
2.000
309.000
18.310
115A-110A
115A_AF,AD
110A
2.000
62.000
18.400
120A-115A
120A
115A_AF,AD
2.000
80.000
17.850
125A-120A
125A
120A
2.000
27.000
17.900
130A-125A
130A
125A
2.000
110.000
17.950
135A-130A
135A AH
130A
2.000
178.000
17.970
136A-135A
136A
135A AH
2.000
77.000
17.450
137A-136A
137A
136A
2.000
77.000
17.090
138A-137A
138A
137A
2.000
75.000
16.480
140A-138A
140A
138A
2.000
86.000
12.530
145A-140A
145A
140A
2.000
145.000
12.970
15-10
15_C,D
10
5.000
336.000
159.220
150A-145A
150AAIAJAK
145A
2.000
123.000
15.980
20-15
20
15_C,D
5.000
169.000
129.920
235-3722
235_0,AO
37+22P,Q,R
3.000
100.000
22.230
25-20
25
20
5.000
340.900
129.400
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
8.220
30-25
30
25
5.000
127.600
131.770
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
32.440
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
32.570
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
26.380
35-30
35
30
5.000
470.000
132.180
3521-3223e
35+21
32+23Ex
3.000
298.000
27.930
3610e3217e
36+10Ex N
32+17Ex
1.750
393.000
6,330
3660-3521
36+60
35+21
3.000
139.000
28.820
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.600
4+21E-50
4+21Ex_F
VAULTI(1+62)
4.500
306.500
62.050
40-35
40_E
35
5.000
603.400
130.650
45-40
45
40 E
5.000
56.000
118.160
5-1
5
1_A,131,62
5.000
213.300
159.660
56A-55
56A
4+21 Ex_F
5.000
229.000
72.800
57A-56A
57A
56A
4.000
133.000
72.780
58A-57A
58A
57A
4.000
315.000
72.760
59A-59B
59A_W,AM
5913_U
3.000
187.000
71.820
596-58A
59B_U
58A
3.000
328.000
72.740
60A-59A
60A_X
59A_W,AM
3.000
272.000
59.980
60B-60A
60B
60A_X
3.000
100.000
45.940
65A-60B
65A
60B
3.000
199.000
46.250
67A-65A
67A
65A
3.000
353.000
47.160
70A-67A
70A
67A
3.000
252.000
47.170
73A-70A
73A
70A
3.000
125.000
47.190
75A-73A
75A_Z,AA,Y
73A
2.000
210.000
47.200
78A-75A
78A
75A_Z,AA,Y
2.000
172.000
25.790
79A-78A
79A
78A
2.000
154,000
25.760
80A-79A
80A_ABACAP
79A
2.000
38.000
25.810
01 /14/10 13:48:56 1 /4
Scenario 5A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
58A-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
596-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-60B
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01 /14/10 13:48:59 2/4
Scenario 5A - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
(Height)
ft
Length
ft
Max Flow
Cf 3/s, m 3/s)
cfs
95A-80A
95A_AE
80A ABACAP
2.000
241.000
20.310
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
65.080
Link193
CB2_KM
VT3(25+57)
4.000
200.000
44.990
12+68-9+78
CB21(11+35)
CB17(9+78)
5.000
157.000
65.110
Link192
CB3
C132_KM
4.000
176.000
66.450
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
65.140
15+7114+35
CB35(15+71)_I
CB31(14+35)_H
5.000
136.000
61.400
Link191
C64_L
CB3
4.000
87.000
59.940
1797-1571
CB40(17+97)
CB35(15+71)_I
5.000
226.000
54.620
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
53.770
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
5.980
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-5.700
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-9.740
Link190
CB5
CB4_L
4.000
191.000
42.970
4+21-1+14
CB5(4+67)
VAULTI(1+62)
5.000
304.500
59.990
2648-2557
CB50_J
VT3(25+57)
3.000
19.000
39.560
Link139
CB51(26+48)
CB50_J
3.000
72.000
36.580
15+7115+71
CB52(15+71)
CB35(15+71)_I
2.000
14.000
-7.500
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
29.510
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
22.710
Link189
C66
CB5
4.000
191.000
42.270
Link188
CB7
C66
4.000
165.000
41.730
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.970
Link147
CB-EX(22+85)
C845(23+63)
2.000
78.000
-5.970
4+77E4+21E
D8-14 G
4+21Ex F
3.000
56.000
21.440
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-6.950
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-6.100
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
-6.050
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
-9.670
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
5.490
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
26.960
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
7.860
1996e1883e
F8-22(19+96)
E8-13B(18+83)
2.000
113.000
-9.210
L109
Mdpoint
59B_U
2.000
830.000
13.490
Link187
SH50_AN
CB7
4.000
116.000
41.590
Link175
SH60_V2
SH50_AN
3.000
455.000
33.710
Link174
SH65
SH60 V2
3.000
579.000
-22.980
Link173
SH70_AG
SH65
3.000
413.000
12.740
Link172
SH75_AL
SH70_AG
3.000
71.000
6.180
Pump
Tmp Out VI
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULT1(1+62)
45
5.000
650.000
118.140
6+44E4+77E
VAULT2(6+44)
D8-14 G
3.000
167.000
-25.950
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500 159.990
2557-2092
VT3(25+57)
CB41(20+92) 15.000
1465.000
153.750
01/14/10 13:48:59 3/4
Scenario 5A - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
Link 141
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
L109
22.020
15.330
0.595
Link187
17.720
17.380
0.293
Link175
19.093
17.720
0.300
Link174
20.840
19.093
0.300
Link173
22.086
20.840
0.300
Link172
22.300
22.086
0.300
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
6+44E4+77E
12.140
13.780
0.042
6+44-4+77 112.140
113.600
0.041
2557-2092 113.050
114.510
-0.013
01 /14/10 13:48:59
4/4
Scenario 5B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
1_A,B1,B2
10.310
20.350
13.527
6.820
None
10
11.310
21.230
14.403
6.830
None
100A
18.640
30.090
25.708
4.380
Allowed
105A
19.000
30.800
26.545
4.250
Allowed
110A
18.790
30.340
27.721
2.620
Allowed
115A_AF,AD
20.850
30.430
27.956
2.470
Allowed
120A
21.110
29.320
27.995
1.320
Allowed
125A
21.180
29.190
28.000
1.190
Allowed
130A
21.640
28.440
27.962
0.480
Allowed
135A_AH
21.900
27.750
28.119
-0.370
Allowed
136A
21.950
27.750
28.175
-0.430
Allowed
137A
22.140
27.740
28.297
-0.560
Allowed
138A
22.140
27.870
28.492
-0.620
Allowed
140A
22.340
28.040
28.750
-0.710
Allowed
145A
22.640
28.690
29.224
-0.530
Allowed
15_C,D
12.080
20.300
15.433
4.870
None
150AAIAJAK
23.050
28.750
29.751
-1.000
Allowed
20
12.870
21.540
15.665
5.880
None
235_0,AO
22.000
29.820
23.716
6.100
None
25
12.820
21.520
16.353
5.170
None
26+48Ex
20.470
24.580
21.822
2.760
Allowed
30
12.830
22.060
16.565
5.500
None
32+10Ex
20.110
25.500
22.481
3.020
Allowed
32+17Ex
20.150
26.100
22.499
3.600
Allowed
32+23Ex
20.190
25.600
22.508
3.090
None
35
12.900
22.600
17.156
5.440
None
35+21
20.905
26.580
23.135
3.450
None
36+10Ex_N
22.450
27.340
23.388
3.950
None
36+60
21.239
27.290
23.473
3.820
None
37+22P,Q,R
21.388
28.480
23.601
4.880
None
4+21Ex_F
13.770
23.870
19.478
4.390
None
40 E
13.120
22.770
17.756
5.010
None
45
13.210
22.860
17.789
5.070
None
5
10.990
20.940
14.133
6.810
None
56A
14.690
25.790
19.704
6.090
Allowed
57A
14.720
25.820
20.202
5.620
Allowed
58A
15.330
27.330
21.378
5.950
Allowed
59A_W,AM
15.650
22.750
22.660
0.090
Allowed
598_U
15.330
21.380
22.309
-0.930
Allowed
60A_X
15.960
23.650
22.988
0.660
Allowed
60B
16.000
24.200
23.060
1.140
Allowed
65A
16.250
24.400
23.204
1.200
Allowed
67A
16.490
25.540
23.471
2.070
Allowed
70A
16.750
27.350
23.664
3.690
Allowed
73A
16.770
30.370
23.760
6.610
Allowed
75A_Z,AA,Y
17.140
31.140
24.709
6.430
Allowed
78A
17.260
30.070
25.004
5.070
Allowed
79A
17.370
30.170
25.267
4.900
Allowed
80A ABACAP
17.090
30.220
25.333 14.890
Allowed
95A_AE
18.250
30.250
25.537 14,710
jAllowed
01/14/10 13:49A0 1/2
Scenario 5B - Nodes
Name
Invert
Elevation
ft
Ground
Elevation (Spill
Crest)
Max Water
Elevation
ft
Freeboard
ft
Ponding Type
CB17(9+78)
13.270
25.600
19.951
5.650
None
CB2_KM
15.030
24.500
21.424
3.080
None
CB21(11+35)
13.140
25.900
21.676
3.320
None
CB3
15.540
25.200
21.529
3.670
None
CB31(14+35)_H
13.990
25.400
21.903
3.630
None
CB35(15+71)_I
13.570
25.310
22.067
3.240
None
CB4_L
15.970
25.800
21.581
4.220
None
CB40(17+97)
13.980
25.170
22.277
2.890
None
CB41(20+92)
14.510
25.640
22.544
3.100
Allowed
CB42(21+04)
18.250
25.200
22.729
1.860
Allowed
CB45(23+63)
18.270
24.240
0.000
0.000
Allowed
CB46(24+14)
18.390
24.000
0.000
0.000
Allowed
CB5
16.350
27.000
21.631
5.370
None
CB5(4+67)
13.600
24.000
19.003
5.000
None
CB50_J
14.500
24.430
21.698
2.730
None
CB51(26+48)
14.500
24.570
0.000
0.000
Allowed
CB52(15+71)
17.350
24.790
22.091
2.700
None
CB52(28+16)
16.170
25.100
0.000
0.000
Allowed
CB54(29+23)
17.530
24.860
0.000
0.000
Allowed
CB6
16.900
27.400
21.691
5.710
None
CB7
17.380
27.700
21.734
5.970
None
CB-EX(22+85)
18.340
24.590
22.729
1.860
Allowed
D8-14 G
13.780
23.950
19.477
4.470
None
E8-11(16+20)
17.620
24.920
22.133
2.790
None
E8-13A(17+97)
16.670
24.790
22.279
2.510
None
E8-13B(18+83)
17.530
26.130
22.361
3.770
None
EXCB(31+02)
20.900
25.790
0.000
0.000
Allowed
EXCB(31+05)
19.300
25.360
0.000
0.000
Allowed
F8-22(19+96)
18.200
25.480
22.471
3.010
None
Mdpoint
22.020
24.500
25.660
-1.160
Sealed
Outfall
10.270
17.000
13.386
3.610
None
SH50_AN
17.720
28.310
21.754
6.560
None
SH60_V2
19.093
29.630
22.081
7.550
None
SH65
20.840
30.990
22.179
8.810
None
SH70_AG
22.086
31.200
23.054
8.150
None
SH75_AL
22.300
31.900
23.099
8.800
None
Tmp Out_V1
14.700
25.600
18.736
6.860
None
VAULT1(1+62)
11.600
23.400
19.755
3.380
Allowed
VAULT2(6+44) 112.140
124.650
120.774
3.750
Allowed
VT3(25+57) 113.050
124.360
121.290
3.070
Allowed
01 /14/10 13:49:40 2/2
Scenario 5B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ftHeight)
Length
ft
Max Flow
(Cfs m 3/s)
1-Outfall
1_A,61,132
Outfall
5.500
34.000
225.690
10-5
10
5
5.000
91.600
96.130
100A-95A
100A
95A_AE
2.000
46.000
19.340
105A-100A
105A
100A
2.000
220.000
19.350
110A-105A
110A
105A
2.000
309.000
20.240
115A-110A
115A_AF,AD
110A
2.000
62.000
20.380
120A-115A
120A
115A_AF,AD
2.000
80.000
16.910
125A-120A
125A
120A
2.000
27.000
16.910
130A-125A
130A
125A
2.000
110.000
16.900
135A-130A
135A_AH
130A
2.000
178.000
16.890
136A-135A
136A
135A_AH
2.000
77,000
16.310
137A-136A
137A
136A
2.000
77.000
16.300
138A-137A
138A
137A
2.000
75.000
16.150
140A-138A
140A
138A
2.000
86.000
12.600
145A-140A
145A
140A
2.000
145.000
13.290
15-10
15_C,D
10
5.000
336.000
96.180
150A-145A
150AAIAJAK
145A
2.000
123.000
16.090
20-15
20
15_C,D
5.000
169.000
79.680
235-3722
235_0,AO
37+22P,Q,R
3.000
100.000
22.060
25-20
25
20
5.000
340.900
79,210
2648e-2648
26+48Ex
CB51(26+48)
2.000
10.000
5.090
30-25
30
25
5.000
127.600
78,980
3210e3102e
32+10Ex
EXCB(31+05)
3.000
105.000
34.180
3217e3210e
32+17Ex
32+10Ex
3.000
12.000
34.160
3223e3217e
32+23Ex
32+17Ex
3.000
11.000
28.040
35-30
35
30
5.000
470.000
78.870
3521-3223e
35+21
32+23Ex
3.000
298.000
28.130
3610e3217e
36+10Ex_N
32+17Ex
1.750
393.000
6.320
3660-3521
36+60
35+21
3.000
139.000
28.080
3722-3660
37+22P,Q,R
36+60
3.000
62.000
28.210
4+21E-50
4+21Ex F
VAULT1(1+62)
4.500
306.500
96.850
40-35
40_E
35
5.000
603.400
79.210
45-40
45
40 E
5.000
56.000
64.870
5-1
5
1_A,B1,B2
5.000
213.300
96.170
56A-55
56A
4+21 Ex_F
5.000
229.000
87.780
57A-56A
57A
56A
4.000
133.000
88.780
58A-57A
58A
57A
4.000
315.000
88.970
59A-59B
59A_W,AM
59B_U
3.000
187.000
85.580
5913-58A
59B_U
58A
3.000
328.000
91.000
60A-59A
60A_X
59A_W,AM
3.000
272.000
61.590
60B-60A
60B
60A X
3.000
100.000
52.380
65A-60B
65A
60B
3.000
199.000
52.450
67A-65A
67A
65A
3.000
353.000
52.500
70A-67A
70A
67A
3.000
252.000
52.560
73A-70A
73A
70A
3.000
125.000429.600
52.620
75A-73A
75A_Z,AA,Y
73A
2.000
210.00052.670
78A-75A
78A
75A Z,AA,Y
2.000
172.00029.490
79A-78A
79A
78A
2.000
154.00029.550
80A-79A
80A ABACAP
79A
2.000
38.000
01/14/10 13:54:05 1/4
Scenario 5B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
1-Outfall
10.310
10.270
0.118
10-5
11.310
10.990
0.349
100A-95A
18.640
18.250
0.848
105A-100A
19.000
18.640
0.164
110A-105A
18.790
19.000
-0.068
115A-110A
20.850
18.790
3.000
120A-115A
21.110
20.850
0.138
125A-120A
21.180
21.110
0.259
130A-125A
21.640
21.180
0.286
135A-130A
21.900
21.640
0.146
136A-135A
21.950
21.900
0.065
137A-136A
22.140
21.950
0.247
138A-137A
22.140
22.140
0.000
140A-138A
22.340
22.140
0.233
145A-140A
22.640
22.340
0.207
15-10
12.080
11.310
0.229
150A-145A
23.050
22.640
0.333
20-15
12.870
12.080
0.467
235-3722
22.000
21.388
0.612
25-20
12.820
12.870
-0.015
2648e-2648
20.470
14.500
0.700
30-25
12.830
12.820
0.008
3210e3102e
20.110
19.300
0.395
3217e3210e
20.150
20.110
0.364
3223e3217e
20.190
20.150
0.364
35-30
12.900
12.830
0.015
3521-3223e
20.905
20.190
0.240
3610e3217e
22.450
20.150
0.585
3660-3521
21.239
20.905
0.240
3722-3660
21.388
21.239
0.240
4+21 E-50
13.770
11.600
0.098
40-35
13.120
12.900
0.036
45-40
13.210
13.120
0.161
5-1
10.990
10.310
0.319
56A-55
14.690
13.770
0.380
57A-56A
14.720
14.690
0.023
5BA-57A
15.330
14.720
0.194
59A-59B
15.650
15.330
0.171
596-58A
15.330
15.330
0.076
60A-59A
15.960
15.650
0.040
60B-60A
16.000
15.960
0.040
65A-6013
16.250
16.000
0.025
67A-65A
16.490
16.250
0.068
70A-67A
16.750
16.490
0.083
73A-70A
16.770
16.750
0.096
75A-73A
17.140
16.770
0.176
78A-75A
17.260
17.140
-0.012
79A-78A
17.370
17.260
0.136
80A-79A
17.090
17.370
-0.737
01/14/10 13:54:06 2/4
Scenario 5B - Links
Name
Upstream
Node Name
Downstream
Node Name
Diameter
ft (Height)
Length
ft
Max Flow
„
Cf 3/s, m 3/s)
s
95A-80A
95A AE
80A ABACAP
2.000
241.000
23.400
9+78-8+80
CB17(9+78)
VAULT2(6+44)
5.000
314.000
79.180
Link193
CB2_KM
VT3(25+57)
4.000
200.000
38.720
12+68-9+78
CB21(11+35)
C817(9+78)
5.000
157.000
79.170
Link192
C133
CB2_KM
4.000
176.000
36.180
14+3512+68
CB31(14+35)_H
CB21(11+35)
5.000
300.000
79.170
15+7114+35
C635(15+71)_I
C831(14+35)_H
5.000
136.000
73.110
Link191
CB4_L
CB3
4.000
87.000
36.190
1797-1571
CB40(17+97)
CB35(15+71)_I
5.000
226.000
63.440
2092-1797
CB41(20+92)
CB40(17+97)
5.000
295.000
63.590
CB42_F8-22
CB42(21+04)
F8-22(19+96)
2.000
108.000
5.760
Link148
CB45(23+63)
CB46(24+14)
2.000
51.000
-7.400
Link149
CB46(24+14)
VT3(25+57)
2.000
143.000
-8.730
Link190
C65
CB4_L
4.000
191.000
24.650
4+21-1+14
CB5(4+67)
VAULT1(1+62)
5.000
304.500
91.640
2648-2557
C650_J
VT3(25+57)
3.000
19.000
40.220
Link139
CB51(26+48)
C650_J
3.000
72.000
29A50
15+7115+71
CB52(15+71)
CB35(15+71)_1
2.000
14.000
-7.610
Link142
CB52(28+16)
CB51(26+48)
3.000
168.000
28.580
Link141
CB54(29+23)
CB52(28+16)
3.000
107.000
28.640
Link189
CB6
CB5
4.000
191.000
24.210
Link188
CB7
C136
4.000
165.000
25.210
2285e1996e
CB-EX(22+85)
CB42(21+04)
2.000
181.000
5.770
Link147
CB-EX(22+85)
C645(23+63)
2.000
78.000
-6.350
4+77E4+21E
D8-14 G
4+21Ex_F
3.000
56.000
-16.620
1620e1571e
E8-11(16+20)
CB52(15+71)
2.000
49.000
-7.310
1797e1620e
E8-13A(17+97)
E8-11(16+20)
2.000
177.000
-5.800
1797e1797
E8-13A(17+97)
CB40(17+97)
2.000
10.000
0.980
1883e1797e
E8-13B(18+83)
E8-13A(17+97)
2.000
86.000
5.940
Link157
EXCB(31+02)
26+48Ex
1.750
457.000
4.380
Link140
EXCB(31+05)
CB54(29+23)
3.000
182.000
30.160
Link144
EXCB(31+05)
EXCB(31+02)
1.750
10.000
5.060
1996e1883e
F8-22(19+96)
EB-13B(18+83)
2.000
113.000
5.900
L109
Mdpoint
59B_U
2.000
830.000
13.700
Link187
SH50_AN
C87
4.000
116.000
27.880
Link175
SH60_V2
SH50_AN
3.000
455.000
24.280
Link174
SH65
SH60_V2
3.000
579.000
7.270
Link173
SH70_AG
SH65
3.000
413.000
7.340
Link172
SH75_AL
SH70_AG
3.000
71.000
3.750
Pump
Tmp Out VI
Mdpoint
0.050
10.000
13.500
Pump
Tmp Out_V1
Mdpoint
0.050
10.000
13.500
50-45
VAULT1(1+62)
45
5.000
650.000
64.430
Link194
VAULTI(1+62)
1_A,B1,B2
6.000 13311.000
116.520
6+44E4+77E
VAULT2(6+44)
D8-14 G
3.000
167.000
-30.210
6+44-4+77
VAULT2(6+44)
CB5(4+67)
5.000
197.500 192.720
2557-2092
VT3(25+57)
CB41(20+92)
5.000
465.000 167.000
01 /14/10 13:54:06 3/4
Scenario 5B - Links
Name
Upstream
Invert
Elevation
ft
Downstream
Invert
Elevation
ft
Conduit Slope
95A-80A
18.250
17.090
0.427
9+78-8+80
13.270
12.140
-0.131
Link193
15.030
13.050
0.290
12+68-9+78
13.140
13.270
-0.080
Link192
15.540
15.030
0.290
14+3512+68
13.990
13.140
0.283
15+7114+35
13.570
13.990
-0.309
Link191
15.970
15.540
0.490
1797-1571
13.980
13.570
0.181
2092-1797
14.510
13.980
0.180
CB42_F8-22
18.250
18.200
0.100
Link148
18.270
18.390
-0.235
Link149
18.390
13.050
-0.217
Link190
16.350
15.970
0.200
4+21-1+14
13.600
11.600
0.059
2648-2557
14.500
13.050
0.263
Link139
14.500
14.500
0.000
15+7115+71
17.350
13.570
-0.714
Link142
16.170
14.500
0.994
LinkW
17.530
16.170
1.271
Link189
16.900
16.350
0.290
Link188
17.380
16.900
0.290
2285e1996e
18.340
18.250
0.100
Link147
18.340
18.270
0.090
4+77E4+21E
13.780
13.770
0.018
1620e1571e
17.620
17.350
0.551
1797e1620e
16.670
17.620
-0.537
1797e1797
16.670
13.980
-26.300
1883e1797e
17.530
16.670
0.942
Link157
20.900
20.470
0.000
Link140
19.300
17.530
0.973
Link144
19.300
20.900
-13.200
1996e1883e
18.200
17.530
0.549
L109
22.020
15.330
0.595
Link187
17.720
17.380
0.293
Link175
19.093
17.720
0.300
Link174
20.840
19.093
0.300
Link173
22.086
20.840
0.300
Link172
22.300
22.086
0.300
Pump
14.700
22.020
0.000
Pump
14.700
22.020
0.000
50-45
11.600
13.210
0.040
Link194
11.600
10.310
0.040
6+44E4+77E 112.140
13.780 10.042
6+44-4+77 112.140
13.600 10.041
2557-2092 113.050
14.510
-0.013
01 /14/10 13:54:06 4/4
Scenario 1 A
Table E20 - Junction Flooding and Volume Listing. I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max I
volume at any time. The volume in the I
flooded storage area is the total volumel
above the ground elevation, where the I
flooded pond storage area starts. l
I The fourth column is instantaneous, the fifth is thel
I sum of the flooded volume over the entire simulation)
Units are either ft^3 or m^3 depending on the units.)
-----------------------------------------------------
Junction Surcharged Flooded
Name Time (min) Time(min)
15_C,D
20
25
30
35
40 E
VAULTI(1+6
4+21Ex F
D8-14 G
CB17(9+78)
CB21(11+35
CB31(14+35
CB35(15+71
56A
57A
58A
59B U
CB40(17+97
CB41(20+92
VT3(25+57)
CB50_J
36+60
235 O,AO
37+22P,Q,R
E8-13A(17+
E8-13B(18+
F8-22(19+9
CB-EX(22+8
E8-11(16+2
CB52(15+71
45
59A_W,AM
60B
65A
67A
70A
73A
75A_Z,AA, Y
78A
80A_ABACAP
95A AE
100A
110A
115A_AF,AD
120A
125A
130A
135A AH
140A
Out of
1D-System
(Flooded
Maximum
Volume
Passed to 2D cell
OR Volume Stored
in allowed Flood
Pond of 1D-System
0.0000 0.0000 0.0000 59.0096 0.0000
0.0000 0.0000 0.0000 53.5719 0.0000
8.3583 0.0000 0.0000 65.7027 0.0000
14.3333 0.0000 0.0000 69.9442 0.0000
87.0029 0.0000 0.0000 84.8472 0.0000
137.9874 0.0000 0.0000 104.0579 0.0000
163.6965 0.0000 0.0000 2179.5783 0.0000
160.2676 0.0000 0.0000 119.2297 0.0000
378.1718 0.0000 0.0000 119.4956 0.0000
180.7027 0.0000 0.0000 129.6076 0.0000
190.6395 0.0000 0.0000 132.1572 0.0000
150.8019 0.0000 0.0000 124.0274 0.0000
130.2108 0.0000 0.0000 130.0594 0.0000
126.5566 0.0000 0.0000 107.1606 0.0000
170.5758 0.0000 0.0000 107.4012 0.0000
161.7176 0.0000 0.0000 102.7372 0.0000
177.6237 121.1096 0.0000 52900.7338 60832.7299
23.0917 0.0000 0.0000 125.1976 0.0000
128.7949 0.0000 0.0000 118.9909 0.0000
59.4375 0.0000 0.0000 1463.3489 0.0000
321.5030 7.3500 0.0000 323.2437 198.3884
13.3500 0.1000 15.2115 76.0369 0.0000
12.0083 0.0000 0.0000 71.8290 0.0000
13.0167 0.0000 0.0000 76.6645 0.0000
134.0667 0.0000 0.0000 91.3962 0.0000
119.4367 0.0000 0.0000 81.5557 0.0000
91.1683 0.0000 0.0000 73.5140 0.0000
83.8624 0.0000 0.0000 71.5121 0.0000
123.5021 0.0000 0.0000 79.5992 0.0000
133.8418 0.0000 0.0000 82.7167 0.0000
136.1442 0.0000 0.0000 104.2625 0.0000
197.4569 77.1488 0.0000 12535.8110 13455.6800
180.9478 15.0862 0.0000 659.1282 229.7980
181.3308 1.3677 0.0000 161.9405 24.0479
171.7535 0.0000 0.0000 103.5714 0.0000
165.7880 0.0000 0.0000 103.4375 0.0000
163.8519 0.0000 0.0000 104.7294 0.0000
200.8688 0.0000 0.0000 113.9451 0.0000
217.1459 0.0000 0.0000 113.2794 0.0000
250.3999 0.0000 0.0000 116.4159 0.0000
175.1937 0.0000 0.0000 102.6790 0.0000
170.6199 0.0000 0.0000 98.9823 0.0000
303.7933 0.0000 0.0000 114.2845 0.0000
182.9402 0.0000 0.0000 90.6722 0.0000
185.8667 0.0000 0.0000 87.2765 0.0000
183.6674 0.0000 0.0000 86.3777 0.0000
180.0023 0.0000 0.0000 81.0801 0.0000
183.4783 96.6015 0.0000 3390.2160 3774.9125
184.6917 140.4440 0.0000 6064.7202 7294.8977
145A
183.1644
90.8111
0.0000
3809.3906
4390.2285
150AAIAJAK
179.7242
97.1823
0.0000
8802.0390
9859.5662
105A
205.7487
0.0000
0.0000
100.3487
'
0.0000
60A X
194.8486
61.4647
-2.8337
3550.2128
5162.1651
79A
214.0061
0.0000
0.0000
112.6926
0.0000
136A
185.3331
106.8925
0.0000
4470.7832
4509.6543
137A
183.6333
139.8427
0.0000
5912.2405
6503.8985
138A
186.5588
141.8333
0.0000
5937.4422
'
6967.8005
32+23Ex
17.5500
2.5167
202.3547
67.9821
0.0000
32+17Ex
17.7083
0.0000
0.0000
68.2898
0.0000
32+10Ex
17.8667
6.4250
0.0000
353.9689
295.3709
10
0.0000
0.0000
0.0000
49.1255
0.0000
5
0.0000
0.0000
0.0000
46.8150
'
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
35.1588
0.0000
Outfall
0.0000
0.0000
0.0000
33.9379
0.0000
36+10Ex_N
13.0583
0.0000
0.0000
53.0149
0.0000
26+48Ex
20.2250
9.0333
0.0000
150.1419
'
111.8624
35+21
14.5500
0.3583
81.1616
71.3120
0.0000
CB5(4+67)
159.6745
0.0000
0.0000
120.5950
0.0000
VAULT2(6+4
161.1370
0.0000
0.0000
1741.7119
0.0000
CB51(26+48
20.9917
8.9583
0.0000
241.8571
119.8390
EXCB(31+05
20.6333
0.0000
0.0000
75.3565
0.0000
CB54(29+23
94.6993
11.0583
0.0000
823.5749
732.7960
CB52(28+16
150.9056
11.2667
0.0000
967.9527
925.8501
EXCB(31+02
20.9667
0.0000
0.0000
55.2987
0.0000
CB42(21+04
93.7750
0.0000
0.0000
72.8733
0.0000
CB45(23+63
96.6750
0.0000
0.0000
72.2649
'
0.0000
CB46(24+14
83.1026
2.1500
0.0000
103.3389
22.1281
Tmp Out Vl
2622.8933
0.0000
0.0000
6428.8883
0.0000
Mdpoint
101.0834
84.9612
0.0000
64.7247
93.4164
SH20
347.4219
63.5687
2448.1715
69.7413
0.0000
SH15
380.0951
0.0000
0.0000
80.4931
0.0000
SH10_KM
293.8715
37.2250
2459.2963
68.8617
0.0000
MH2385
136.3294
0.1583
3.0249
77.9092
0.0000
SH50_AN
277.6345
0.0000
0.0000
133.4577
0.0000
Node157
302.4613
0.0000
0.0000
83.3491
'
0.0000
SH75_AL
346.0971
3.9333
41.1006
109.3242
0.0000
SH70_AG
357.9916
128.0154
8529.0296
105.5544
0.0000
SH65
375.8095
0.0000
0.0000
107.9221
0.0000
SH60_V2
378.3744
223.6171
40597.3969
100.0254
0.0000
SH45
239.8989
0.0000
0.0000
78.2659
0.0000
SH40
255.9504
0.0000
0.0000
74.9457
0.0000
SH25_L
363.0168
75.7064
17500.9088
73.1341
0.0000
Scenario 1 B
------------------------------------------------------
Table E20 - Junction Flooding and Volume Listing. I
The maximum volume is the total volume I
in the node including the volume in the I
flooded storage area. This is the max I
volume at any time. The volume in the I
flooded storage area is the total volumel
above the ground elevation, where the I
I flooded pond storage area starts. I
I The fourth column is instantaneous, the fifth is thel
I sum of the flooded volume over the entire simulation)
I Units are either ft^3 or m^3 depending on the units.)
*-------------------------------- ---------------------*
-----------------------------------------------------
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
Time (min)
Time(min)
Volume)
Volume
Pond of 1D-System
---------------
15_C,D
----------
0.0000
---------
0.0000
---------
0.0000
---------
39.0688
-----------------
0.0000
20
0.0000
0.0000
0.0000
31.8074
0.0000
25
0.0000
0.0000
0.0000
40.9077
0.0000
30
0.0000
0.0000
0.0000
43.2774
0.0000
35
0.0000
0.0000
0.0000
49.1145
0.0000
40 E
0.0000
0.0000
0.0000
52.8232
0.0000
VAULT1(1+6
0.0000
0.0000
0.0000
1179.8349
0.0000
4+21Ex F
6.1250
0.0000
0.0000
64.3926
0.0000
D8-14 G
95.6065
0.0000
0.0000
63.8702
0.0000
CB17(9+78)
15.1750
0.0000
0.0000
68.6263
0.0000
CB21(11+35
17.7833
0.0000
0.0000
70.9743
0.0000
CB31(14+35
0.0000
0.0000
0.0000
61.5161
0.0000
CB35(15+71
0.0000
0.0000
0.0000
67.2954
0.0000
56A
0.0000
0.0000
0.0000
55.9557
0.0000
57A
22.0417
0.0000
0.0000
62.0293
0.0000
58A
23.8250
0.0000
0.0000
72.0304
0.0000
59B U
58.9581
21.4250
0.0000
6326.8072
6699.5531
CB40(17+97
0.0000
0.0000
0.0000
62.8308
0.0000
CB41(20+92
0.0000
0.0000
0.0000
56.9830
0.0000
VT3(25+57)
0.0000
0.0000
0.0000
884.2701
0.0000
CB50_J
46.6897
0.0000
0.0000
65.6698
0.0000
36+60
0.0000
0.0000
0.0000
28.2673
0.0000
235 O,AO
0.0000
0.0000
0.0000
21.6292
0.0000
37+22P,Q,R
0.0000
0.0000
0.0000
28.0122
0.0000
E8-13A(17+
0.0000
0.0000
0.0000
28.6203
0.0000
E8-13B(18+
0.0000
0.0000
0.0000
17.8875
0.0000
F8-22(19+9
0.0000
0.0000
0.0000
9.5599
0.0000
CB-EX(22+8
0.0000
0.0000
0.0000
9.1191
0.0000
E8-11(16+2
0.0000
0.0000
0.0000
16.4476
0.0000
CB52(15+71
0.0000
0.0000
0.0000
19.8018
0.0000
45
0.0000
0.0000
0.0000
52.0075
0.0000
59A_W,AM
95.7877
0.0000
0.0000
87.1601
0.0000
60B
83.1960
0.0000
0.0000
88.1990
0.0000
65A
87.1503
0.0000
0.0000
87.0109
0.0000
67A
75.6712
0.0000
0.0000
87.4707
0.0000
70A
68.3633
0.0000
0.0000
86.9312
0.0000
73A
64.3026
0.0000
0.0000
88.0683
0.0000
75A Z,AA,Y
148.9147
0.0000
0.0000
95.7103
0.0000
78A
157.5094
0.0000
0.0000
97.9737
0.0000
80A_ABACAP
172.4130
0.0000
0.0000
104.2432
0.0000
95A AE
103.4343
0.0000
0.0000
92.2427
0.0000
100A
94.7555
0.0000
0.0000
89.5374
0.0000
110A
277.1518
0.0000
0.0000
112.4643
0.0000
115A_AF,AD
122.9681
0.0000
0.0000
89.4694
0.0000
120A
139.9399
0.0000
0.0000
86.5584
0.0000
125A
130.3986
0.0000
0.0000
85.9027
0.0000
130A
118.5000
0.0000
0.0000
79.6509
0.0000
135A AH
145.0411
38.7762
0.0000
2337.0753
2261.5028
140A
153.2000
89.7362
0.0000
5229.0376
6000.0428
145A
151.7615
75.6034
0.0000
3582.2234
4075.3452
150AAIAJAK
129.6053
82.8963
0.0000
8650.0705
9634.5076
105A
173.0410
0.0000
0.0000
95.3801
0.0000
60A X
100.1816
0.0000
0.0000
87.7279
0.0000
79A
158.4829
0.0000
0.0000
99.9108
0.0000
136A
152.9614
73.1733
0.0000
2747.6450
2869.9170
137A
151.3488
88.0514
0.0000
3789.5847
3790.8915
138A
154.7901
89.6801
0.0000
4376.0744
4697.2863
32+23Ex
0.0000
0.0000
0.0000
26.0227
0.0000
32+17Ex
0.0000
0.0000
0.0000
26.1367
0.0000
32+10Ex
0.0000
0.0000
0.0000
25.8700
0.0000
10
0.0000
0.0000
0.0000
36.0615
0.0000
5
0.0000
0.0000
0.0000
36.7801
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
38.3204
0.0000
Outfall
0.0000
0.0000
0.0000
37.0587
0.0000
36+10Ex_N
0.0000
0.0000
0.0000
11.8526
0.0000
26+48Ex
0.0000
0.0000
0.0000
0.6576
0.0000
35+21
0.0000
0.0000
0.0000
28.0263
0.0000
CB5(4+67)
0.0000
0.0000
0.0000
58.4976
0.0000
VAULT2(6+4
0.0000
0.0000
0.0000
1021.8344
0.0000
CB51(26+48
0.0000
0.0000
0.0000
67.9618
0.0000
EXCB(31+05
0.0000
0.0000
0.0000
21.7913
0.0000
CB54(29+23
2.8417
0.0000
0.0000
38.7693
0.0000
CB52(28+16
15.6667
0.0000
0.0000
52.5302
0.0000
EXCB(31+02
0.0000
0.0000
0.0000
1.6947
0.0000
CB42(21+04
0.0000
0.0000
0.0000
9.3799
0.0000
CB45(23+63
0.0000
0.0000
0.0000
9.9397
0.0000
CB46(24+14
0.0000
0.0000
0.0000
8.5723
0.0000
Tmp Out V1
2622.7770
0.0000
0.0000
6428.8580
0.0000
Mdpoint
21.6250
19.8583
0.0000
44.5915
26.9158
SH20
342.7314
21.0771
287.9303
69.7413
0.0000
SH15
378.3618
0.0000
0.0000
80.4231
0.0000
SH10_KM
283.2055
3.0780
27.4225
68.8617
0.0000
MH2385
0.0000
0.0000
0.0000
16.9887
0.0000
SH50_AN
275.6498
0.0000
0.0000
133.4577
0.0000
Node157
301.3395
0.0000
0.0000
83.3490
0.0000
SH75_AL
346.0319
3.9333
41.1006
109.3242
0.0000
SH70 AG
357.9642
128.0325
8529.0126
105.5544
0.0000
SH65
375.7863
0.0000
0.0000
107.9221
0.0000
SH60 V2
378.3512
222.6376
40307.1311
100.0254
0.0000
SH45
236.2538
0.0000
0.0000
78.2658
0.0000
SH40
251.9396
0.0000
0.0000
74.9456
0.0000
SH25_L
359.2538
69.2287
16731.5956
73.1341
0.0000
Scenario 2A
--------------------------------------
I Table E20 -
================-
Junction Flooding and Volume Listing.
I
I
The maximum volume
is the
total volume
I
I
in the node including
the
volume in the
I
I
flooded storage
area. This
is the max
I
I
volume at any
time. The volume
in the
I
I
flooded storage
area is the
total volumel
l
above the ground
elevation,
where the
I
I
flooded pond
storage area
starts.
I
I The fourth column is instantaneous,
the
fifth is thel
i sum of the
flooded volume
over the entire
simulation)
I Units are either ft^3 or m^3 depending
*-----------------------------------------------------
on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
Time (min)
Time(min)
Volume)
Volume
Pond of 1D-System
---------------
15_C,D
----------
0.0000
---------
0.0000
---------
0.0000
---------
59.2674
-----------------
0.0000
20
0.0000
0.0000
0.0000
54.0582
0.0000
25
11.1000
0.0000
0.0000
66.1489
0.0000
30
21.8833
0.0000
0.0000
70.0768
0.0000
35
95.6939
0.0000
0.0000
87.9796
0.0000
40 E
132.5148
0.0000
0.0000
105.8503
0.0000
VAULT1(1+6
162.1727
0.0000
0.0000
2176.6052
0.0000
4+21Ex F
154.5079
0.0000
0.0000
120.1611
0.0000
D8-14 G
380.1412
0.0000
0.0000
120.3752
0.0000
CB17(9+78)
187.6817
0.0000
0.0000
134.2881
0.0000
CB21(11+35
212.5470
0.0000
0.0000
138.1135
0.0000
CB31(14+35
148.6519
0.0000
0.0000
130.8070
0.0000
CB35(15+71
129.7656
0.0000
0.0000
136.9264
0.0000
56A
121.4412
0.0000
0.0000
109.0988
0.0000
57A
168.8307
0.0000
0.0000
109.5263
0.0000
58A
148.1601
0.0000
0.0000
104.4434
0.0000
59B U
170.4154
111.2460
0.0000
58906.8119
63671.6742
CB40(17+97
41.3667
0.0000
0.0000
131.3392
0.0000
CB41(20+92
129.5018
0.0000
0.0000
125.7385
0.0000
VT3(25+57)
88.0731
0.0000
0.0000
1472.3263
0.0000
CB50_J
346.7256
23.2500
0.0000
2004.7899
1941.1984
36+60
24.7096
0.3333
227.8330
76.0394
0.0000
235 O,AO
23.6607
0.0000
0.0000
90.1096
0.0000
37+22P,Q,R
24.3323
0.0500
30.1027
89.1231
0.0000
E8-13A(17+
134.2196
0.0000
0.0000
97.3767
0.0000
E8-13B(18+
121.8378
0.0000
0.0000
95.6116
0.0000
F8-22(19+9
102.8521
0.0000
0.0000
90.7089
0.0000
CB-EX(22+8
99.0522
0.0000
0.0000
78.3878
0.0000
E8-11(16+2
124.4850
0.0000
0.0000
86.6776
0.0000
CB52(15+71
132.8150
0.0000
0.0000
89.7225
0.0000
45
130.5688
0.0000
0.0000
105.9019
0.0000
59A_W,AM
187.5031
75.3467
0.0000
13761.8349
14993.4369
60B
174.5963
21.6902
0.0000
412.4630
368.2960
65A
175.3009
0.2394
0.0000
103.1081
0.3753
67A
165.8800
0.0000
0.0000
103.8293
0.0000
70A
156.9645
0.0000
0.0000
103.7055
0.0000
73A
155.0437
0.0000
0.0000
105.0061
0.0000
75A_Z,AA,Y
192.7610
0.0000
0.0000
114.2251
0.0000
78A
200.3417
0.0000
0.0000
113.5556
0.0000
80A_ABACAP
234.6850
0.0000
0.0000
116.6804
0.0000
95A AE
169.1062
0.0000
0.0000
102.9336
0.0000
100A
163.7725
0.0000
0.0000
99.2246
0.0000
110A
302.5746
0.0000
0.0000
114.3887
0.0000
115A_AF,AD
180.7414
0.0000
0.0000
90.8009
0.0000
120A
184.2888
0.0000
0.0000
87.3626
0.0000
125A
182.0373
0.0000
0.0000
86.4305
0.0000
130A
176.7197
0.0000
0.0000
81.0609
0.0000
135A AH
181.7049
95.4750
0.0000
3416.2406
3791.6686
140A
182.9399
136.6887
0.0000
6050.3458
7199.7134
145A
181.3649
89.4616
0.0000
3793.5153
4337.8704
150AAIAJAK
177.7100
95.2361
0.0000
8772.0752
9742.8095
105A
204.6876
0.0000
0.0000
100.3352
0.0000
60A X
185.3722
60.8678
-3.7732
3915.9449
4681.5950
79A
199.6651
0.0000
0.0000
112.9594
0.0000
136A
183.6229
105.8148
0.0000
4488.6607
4536.3349
137A
181.8377
136.7248
0.0000
5923.8415
6412.9760
138A
184.8206
137.9745
0.0000
5940.3421
6848.5286
32+23Ex
32.1264
5.8417
751.6339
67.9821
0.0000
32+17Ex
33.7675
0.0000
0.0000
68.6200
0.0000
32+10Ex
34.6693
10.0333
0.0000
371.2078
383.3897
10
0.0000
0.0000
0.0000
49.2788
0.0000
5
0.0000
0.0000
0.0000
46.9400
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
35.2498
0.0000
Outfall
0.0000
0.0000
0.0000
34.0278
0.0000
36+10Ex_N
24.1548
0.1667
17.1007
61.4477
0.0000
26+48Ex
39.1167
23.6917
0.0000
1615.3285
1856.8617
35+21
25.3852
0.7417
240.7969
71.3095
0.0000
CB5(4+67)
158.3756
0.0000
0.0000
120.9271
0.0000
VAULT2(6+4
160.5742
0.0000
0.0000
1742.6105
0.0000
CB51(26+48
40.2783
23.5583
0.0000
1720.4786
1710.8199
EXCB(31+05
40.2167
0.1667
0.0000
94.9422
9.6948
CB54(29+23
104.7156
23.0452
0.0000
1540.1036
1577.6171
CB52(28+16
151.7676
23.8357
0.0000
2042.3151
2187.4361
EXCB(31+02
40.5333
0.0000
0.0000
57.0960
0.0000
CB42(21+04
104.6843
0.1583
0.0000
96.2129
3.6264
CB45(23+63
106.0750
15.2500
0.0000
531.6856
492.6143
CB46(24+14
98.7374
22.7417
0.0000
2148.2504
2304.4579
Tmp Out V1
2880.0000
0.0000
0.0000
688.6891
0.0000
Mdpoint
30.7665
25.5549
0.0000
78.2150
711.6996
SH50_AN
49.1273
0.0000
0.0000
130.2074
0.0000
SH75_AL
345.9232
3.9333
41.1006
109.3242
0.0000
SH70_AG
357.8805
127.9735
8528.7254
105.5544
0.0000
SH65
375.7863
0.0000
0.0000
107.9044
0.0000
SH60_V2
378.3512
198.3939
30704.8945
100.0254
0.0000
CB7
57.3750
0.0000
0.0000
125.3134
0.0000
CB6
86.3572
0.0000
0.0000
128.1924
0.0000
CB5
105.4407
0.0000
0.0000
125.5600
0.0000
CB4 L
116.9670
0.0000
0.0000
122.4771
0.0000
CB3
131.4338
0.1167
0.0000
134.8714
15.3881
CB2_KM
153.9885
10.8500
0.0000
637.8475
172.8331
Scenario 2B
-------------
Table E20 - Junction Flooding and Volume Listing.
I
The maximum volume is the
total volume
I
l
in the node including
the
volume in the
I
I
flooded storage
area. This
is the max
I
I
volume at any time.
The volume in the
I
I
flooded storage
area is the total volumel
I
above the ground
elevation,
where the
I
I
flooded pond storage
area
starts.
I
I The fourth
column is instantaneous,
the fifth is thel
I sum of the
flooded volume over
the entire
simulation)
I Units are either ft^3 or m^3
*-----------------------------------------------------
depending
on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
--------------
Time (min) Time(min)
-------------------
Volume)
---------
Volume
---------
Pond of 1D-System
15_C,D
0.0000
0.0000
0.0000
40.4627
-----------------
0.0000
20
0.0000
0.0000
0.0000
33.3282
0.0000
25
0.0000
0.0000
0.0000
42.5542
0.0000
30
0.0000
0.0000
0.0000
45.0181
0.0000
35
0.0000
0.0000
0.0000
51.2057
0.0000
40 E
0.0000
0.0000
0.0000
55.4059
0.0000
VAULT1(1+6
0.0000
0.0000
0.0000
1229.8195
0.0000
4+21Ex F
12.9075
0.0000
0.0000
67.9640
0.0000
D8-14 G
97.3698
0.0000
0.0000
67.7154
0.0000
CB17(9+78)
21.3548
0.0000
0.0000
76.7161
0.0000
CB21(11+35
24.8437
0.0000
0.0000
79.7317
0.0000
CB31(14+35
14.7092
0.0000
0.0000
71.7435
0.0000
CB35(15+71
8.7583
0.0000
0.0000
77.9575
0.0000
56A
0.0000
0.0000
0.0000
59.2868
0.0000
57A
21.3085
0.0000
0.0000
65.1713
0.0000
58A
22.0240
0.0000
0.0000
73.5188
0.0000
59B U
32.3546
20.1795
0.0000
6413.7515
6710.4984
CB40(17+97
0.0000
0.0000
0.0000
74.0496
0.0000
CB41(20+92
11.0463
0.0000
0.0000
68.8071
0.0000
VT3(25+57)
0.0000
0.0000
0.0000
1031.4023
0.0000
CB50 J
95.0810
0.0000
0.0000
77.3245
0.0000
36+60
0.0000
0.0000
0.0000
28.2711
0.0000
235 O,AO
0.0000
0.0000
0.0000
21.6284
0.0000
37+22P,Q,R
0.0000
0.0000
0.0000
28.0184
0.0000
E8-13A(17+
11.0167
0.0000
0.0000
40.4167
0.0000
E8-13B(18+
7.0000
0.0000
0.0000
30.1096
0.0000
F8-22(19+9
0.0000
0.0000
0.0000
22.0196
0.0000
CB-EX(22+8
0.0000
0.0000
0.0000
21.7135
0.0000
E8-11(16+2
6.6833
0.0000
0.0000
27.4596
0.0000
CB52(15+71
10.3708
0.0000
0.0000
30.5373
0.0000
45
0.0000
0.0000
0.0000
54.6374
0.0000
59A W,AM
51.3664
0.0000
0.0000
87.2565
0.0000
60B
46.9967
0.0000
0.0000
88.2574
0.0000
65A
51.5074
0.0000
0.0000
87.0522
0.0000
67A
48.2357
0.0000
0.0000
87.5010
0.0000
70A
45.2070
0.0000
0.0000
86.7058
0.0000
73A
43.4897
0.0000
0.0000
87.8453
0.0000
75A Z,AA,Y
111.5798
0.0000
0.0000
95.4776
0.0000
78A
134.2398
0.0000
0.0000
97.7421
0.0000
80A_ABACAP
165.5333
0.0000
0.0000
104.0064
0.0000
95A AE
91.9135
0.0000
0.0000
91.9604
0.0000
100A
83.9070
0.0000
0.0000
89.2424
0.0000
110A
275.6026
0.0000
0.0000
112.2343
0.0000
115A_AF,AD
119.4702
0.0000
0.0000
89.7320
0.0000
120A
138.4244
0.0000
0.0000
88.0194
0.0000
125A
127.5404
0.0000
0.0000
87.3414
0.0000
130A
115.6003
0.0000
0.0000
80.7793
0.0000
135A AH
144.9107
34.4204
0.0000
2260.4391
2191.1952
140A
150.3765
88.1493
0.0000
5155.8427
5846.4694
145A
148.9853
73.8322
0.0000
3559.8954
4007.6128
150AAIAJAK
127.2325
82.7934
0.0000
8623.2413
9632.4304
105A
170.6374
0.0000
0.0000
95.0681
0.0000
60A X
68.2833
0.0000
0.0000
87.7976
0.0000
79A
149.4096
0.0000
0.0000
99.6673
0.0000
136A
149.9746
70.1108
0.0000
2672.1207
2787.3450
137A
148.4214
86.2554
0.0000
3693.6452
3700.4927
138A
151.9473
88.0797
0.0000
4278.2513
4621.7887
32+23Ex
0.0000
0.0000
0.0000
26.0233
0.0000
32+17Ex
0.0000
0.0000
0.0000
26.1375
0.0000
32+10Ex
0.0000
0.0000
0.0000
25.8705
0.0000
10
0.0000
0.0000
0.0000
37.3425
0.0000
5
0.0000
0.0000
0.0000
38.0193
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
39.3147
0.0000
Outfall
0.0000
0.0000
0.0000
38.0455
0.0000
36+10Ex_N
0.0000
0.0000
0.0000
11.8526
0.0000
26+48Ex
0.0000
0.0000
0.0000
4.0994
0.0000
35+21
0.0000
0.0000
0.0000
28.0243
0.0000
CB5(4+67)
0.0000
0.0000
0.0000
63.2645
0.0000
VAULT2(6+4
10.8601
0.0000
0.0000
1096.5430
0.0000
CB51(26+48
0.0000
0.0000
0.0000
79.0559
0.0000
EXCB(31+05
0.0000
0.0000
0.0000
27.8068
0.0000
CB54(29+23
13.0083
0.0000
0.0000
47.2860
0.0000
CB52(28+16
24.6369
0.0000
0.0000
61.9062
0.0000
EXCB(31+02
0.0000
0.0000
0.0000
7.7228
0.0000
CB42(21+04
0.0000
0.0000
0.0000
21.8755
0.0000
CB45(23+63
0.0000
0.0000
0.0000
23.0012
0.0000
CB46(24+14
0.0000
0.0000
0.0000
21.7840
0.0000
Tmp Out V1
2880.0000
0.0000
0.0000
688.6891
0.0000
Mdpoint
8.1250
4.4833
0.0000
45.8044
27.4287
SH50_AN
0.0000
0.0000
0.0000
33.6397
0.0000
SH75_AL
294.4633
3.9333
41.1006
109.3242
0.0000
SH70_AG
305.5155
123.3896
8494.8066
105.5544
0.0000
SH65
344.8257
0.0000
0.0000
108.0430
0.0000
SH60_V2
342.1411
137.5295
22678.2417
100.0254
0.0000
CB7
0.0000
0.0000
0.0000
37.8460
0.0000
CB6
0.0000
0.0000
0.0000
43.7343
0.0000
CB5
1.3250
0.0000
0.0000
50.4132
0.0000
CB4_L
9.7750
0.0000
0.0000
54.9404
0.0000
CB3
14.5651
0.0000
0.0000
60.0937
0.0000
CB2_KM
20.5667
0.0000
0.0000
65.8823
0.0000
Scenario 3A
I Table E20 - Junction Flooding and Volume Listing. I
I The maximum volume is the total volume I
I in the node including the volume in the I
I flooded storage area. This is the max I
I volume at any time. The volume in the I
I flooded storage area is the total volume)
I above the ground elevation, where the I
I flooded pond storage area starts. I
I The fourth column is instantaneous, the fifth is thel
I sum of the flooded volume over the entire simulation)
I Units are either ft^3 or m^3 depending on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
Time (min)
Time(min)
Volume)
Volume
Pond of ID -System
15_C,D
0.0000
0.0000
0.0000
59.1425
0.0000
20
0.0000
0.0000
0.0000
53.8007
0.0000
25
11.3417
0.0000
0.0000
65.9744
0.0000
30
22.9917
0.0000
0.0000
70.2352
0.0000
35
97.1556
0.0000
0.0000
85.9313
0.0000
40 E
132.9929
0.0000
0.0000
104.7656
0.0000
VAULT1(1+6
162.9378
0.0000
0.0000
2170.5788
0.0000
4+21Ex F
155.5009
0.0000
0.0000
120.1490
0.0000
D8-14 G
380.5067
0.0000
0.0000
120.4275
0.0000
CB17(9+78)
190.0339
0.0000
0.0000
137.0542
0.0000
CB21(11+35
217.5416
0.0000
0.0000
140.2301
0.0000
CB31(14+35
150.2973
0.0000
0.0000
131.2860
0.0000
CB35(15+71
131.3973
0.0000
0.0000
136.6323
0.0000
56A
121.9023
0.0000
0.0000
109.0477
0.0000
57A
169.6258
0.0000
0.0000
109.3973
0.0000
58A
146.3620
0.0000
0.0000
104.1444
0.0000
59B U
169.9440
110.2699
0.0000
56555.2118
60568.7460
CB40(17+97
43.2850
0.0000
0.0000
132.1785
0.0000
CB41(20+92
131.1268
0.0000
0.0000
127.5829
0.0000
VT3(25+57)
90.9908
0.0000
0.0000
1474.2610
0.0000
CB50_J
350.1594
29.5380
0.0000
2931.9878
2984.8781
36+60
33.2042
0.4583
265.4073
76.0369
0.0000
235 0,A0
31.8857
0.0000
0.0000
88.0894
0.0000
37+22P,Q,R
32.9321
0.0333
11.8383
89.1181
0.0000
E8-13A(17+
135.2734
0.0000
0.0000
98.4079
0.0000
E8-13B(18+
122.9629
0.0000
0.0000
88.6935
0.0000
F8-22(19+9
104.1855
0.0000
0.0000
86.3121
0.0000
CB-EX(22+8
100.8910
0.0000
0.0000
78.4127
0.0203
E8-11(16+2
125.4545
0.0000
0.0000
87.3305
0.0000
CB52(15+71
134.3168
0.0000
0.0000
89.2915
0.0000
45
131.8728
0.0000
0.0000
104.8510
0.0000
59A_W,AM
186.6170
76.6689
0.0000
13058.8844
14209.1225
60B
173.3962
23.2782
0.0000
342.7082
285.2539
65A
174.2639
4.7729
0.0000
183.8995
47.5855
67A
164.7779
0.0000
0.0000
103.8711
0.0000
70A
156.4027
0.0000
0.0000
103.7522
0.0000
73A
154.1301
0.0000
0.0000
105.0544
0.0000
75A_Z,AA,Y
192.7558
0.0000
0.0000
114.2766
0.0000
78A
200.1475
0.0000
0.0000
113.5978
0.0000
80A_ABACAP
230.2873
0.0000
0.0000
116.7088
0.0000
95A AE
168.8324
0.0000
0.0000
102.9504
0.0000
100A
162.9997
0.0000
0.0000
99.2349
0.0000
110A
302.7124
0.0000
0.0000
114.3160
0.0000
115A_AF,AD
180.5958
0.0000
0.0000
90.7489
0.0000
120A
184.3523
0.0000
0.0000
87.3129
0.0000
125A
181.7658
0.0000
0.0000
86.3826
0.0000
130A
176.6039
0.0000
0.0000
80.9782
0.0000
135A AH
181.7668
95.6061
0.0000
3406.2459
3769.9518
140A
183.0326
136.1224
0.0000
6008.8130
7130.2971
145A
181.3008
89.5727
0.0000
3774.6436
4337.7175
150AAIAJAK
177.5036
95.3043
0.0000
8755.5287
9728.3832
105A
204.7826
0.0000
0.0000
100.3203
0.0000
60A X
185.6836
61.3569
-3.7718
3595.3193
4489.5362
79A
199.2514
0.0000
0.0000
112.9904
0.0000
136A
183.6586
105.6992
0.0000
4468.0148
4507.6579
137A
181.9384
133.7995
0.0000
5891.8339
6392.7447
138A
184.8697
137.0336
0.0000
5900.2700
6821.9450
32+23Ex
37.0330
9.3583
1976.5090
67.9821
0.0000
32+17Ex
37.3244
0.0000
0.0000
69.4063
0.0000
32+10Ex
37.6944
13.7833
0.0000
438.6667
483.4008
10
0.0000
0.0000
0.0000
49.2671
0.0000
5
0.0000
0.0000
0.0000
46.8836
'
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
35.1843
0.0000
Outfall
0.0000
0.0000
0.0000
33.9644
0.0000
36+10Ex_N
32.2583
0.2333
29.8139
61.4477
0.0000
26+48Ex
40.9825
31.3812
0.0000
2499.0660
2835.7883
35+21
34.0542
0.8083
285.6967
71.3120
0.0000
CB5(4+67)
159.1774
0.0000
0.0000
123.3945
0.0000
VAULT2(6+4
161.5616
0.0000
0.0000
1745.0488
0.0000
CB51(26+48
42.0217
31.3261
0.0000
2608.4962
3985.0729
EXCB(31+05
41.6267
12.4833
0.0000
322.2213
'
344.6923
CB54(29+23
105.9731
31.7125
0.0000
2473.5699
5070.7352
CB52(28+16
154.6992
26.7465
0.0000
1504.4145
1851.5911
EXCB(31+02
41.9233
0.0000
0.0000
58.7768
0.0000
CB42(21+04
105.7950
0.0000
0.0000
87.0714
0.0000
CB45(23+63
107.6843
18.6333
0.0000
987.7760
951.9451
CB46(24+14
100.6323
27.5083
0.0000
2772.4787
2913.1526
LP V1-23
2880.0000
0.0000
0.0000
510.6567
0.0000
Mdpoint
13.0661
4.7414
0.0000
77.1905
590.8513
SH50 AN
51.2622
0.0000
0.0000
132.8579
'
0.0000
SH75_AL
345.9879
3.9333
41.1006
109.3242
0.0000
SH70 AG
357.8795
127.9765
8528.7618
105.5544
0.0000
SH65
375.7863
0.0000
0.0000
107.9055
0.0000
SH60_V2
378.3512
202.8935
31126.9206
100.0254
0.0000
CB7
61.7804
0.0167
4.0960
129.6811
'
0.0000
CB6
89.6454
0.0000
0.0000
131.6014
0.0000
CB5
107.1183
0.0000
0.0000
130.9095
0.0000
CB4_L
118.4774
0.0000
0.0000
122.8107
0.0000
CB3
133.3866
0.4583
0.0000
167.6349
36.8102
CB2 KM
156.5997
16.6000
0.0000
1061.9942
1436.0518
RA V1-1
39.0167
20.2667
0.0000
139.5471
250.7114
Scenario 3B
---------------======-------- =__=----- =========______-
I Table E20 - Junction Flooding and Volume Listing. I
I The maximum volume is the total volume I
I in the node including the volume in the I
I flooded storage area. This is the max I
I volume at any time. The volume in the I
I flooded storage area is the total volume)
I above the ground elevation, where the I
I flooded pond storage area starts. I
I The fourth column is instantaneous, the fifth is thel
I sum of the flooded volume over the entire simulation)
I Units are either ft^3 or m^3 depending on the units.)
-----------------------------------------------------
Out of
1D-System
Junction Surcharged Flooded (Flooded Maximum
Name Time (min) Time(min) Volume) Volume
----------
15_C,D
----------
---------
---------
0.0000
----
20
0.0000
25
0.0000
30
0.0000
35
0.0000
40 E
0.0000
VAULTI(1+6
0.0000
12
4+21Ex F
0.0000
D8-14 G
0.0000
CB17(9+78)
0.0000
CB21(11+35
0.0000
CB31(14+35
0.0000
CB35(15+71
0.0000
56A
0.0000
57A
0.0000
58A
0.0000
59B U
0.0000
CB40(17+97
0.0000
CB41(20+92
0.0000
VT3(25+57)
0.0000
10
CB50 J
0.0000
36+60
0.0000
235 0,A0
0.0000
37+22P,Q,R
0.0000
E8-13A(17+
0.0000
E8-13B(18+
0.0000
F8-22(19+9
0.0000
CB-EX(22+8
0.0000
E8-11(16+2
0.0000
CB52(15+71
0.0000
45
0.0000
59A_W,AM
0.0000
11
60B
0.0000
65A
0.0000
67A
0.0000
70A
0.0000
73A
0.0000
75A_Z,AA,Y
0.0000
78A
0.0000
1
80A_ABACAP
0.0000
1
95A AE
0.0000
100A
0.0000
110A
0.0000
1
115A_AF,AD
0.0000
120A
0.0000
125A
0.0000
130A
0.0000
135A AH
0.0000
23
140A
0.0000
51
0
0
0
0
0
0
0
11
92
21
24
15
10
0
19
19
29
0
12
0
104
0
0
0
12
9
0
0
9
11
0
48
44
48
45
43
41
109
126
163
89
80
274
117
137
126
113
144
149
0000
0000
0000
0000
0000
0000
0000
2500
9506
5639
7083
0865
3333
0000
2679
6923
7209
0000
4619
0000
0318
0000
0000
0000
2090
7750
0000
0000
1810
5935
0000
2603
2022
9313
67 98
7272
3172
0558
9532
7255
0201
7676
8248
9185
3755
1888
8591
3539
1288
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32
87
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
5000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1083
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
9923
3449
40.9778
33.8807
43.1471
95.6227
51.9212
56.2959
49.3082
69.3768
69.1841
79.0522
82.3085
74.9412
81.2781
60.7321
67.1234
76.3411
90.0986
77.6555
72.8319
85.3713
81.6282
28.2712
21.6269
28.0183
43.8563
33.7440
26.1771
26.9043
30.7981
33.8681
55.5333
82.5110
92.8453
91.6179
92.0153
91.9624
92.5486
99.7562
01.7403
07.8097
95.5652
92.6322
13.3989
90.0614
87.8700
87.1660
80.6796
41.9847
09.8824
Passed to 2D cell
OR Volume Stored
in allowed Flood
Pond of 1D-System
-----------------
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
54.1996
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1179.3608
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
2270.6133
5763.6697
145A
147.7911
72.7691
0.0000
3561.7955
4017.8519
150AAIAJAK
125.9827
80.7167
0.0000
8630.6982
9603.6339
105A
169.5930
0.0000
0.0000
97.6920
0.0000
60A X
55.9350
0.0000
0.0000
92.3922
0.0000
79A
134.1850
0.0000
0.0000
103.5136
0.0000
136A
148.7181
68.9966
0.0000
2648.8362
2761.8357
137A
147.1073
85.2442
0.0000
3591.5463
3592.0320
138A
150.8173
87.2453
0.0000
4195.4180
4536.1391
32+23Ex
0.0000
0.0000
0.0000
26.0235
0.0000
32+17Ex
0.0000
0.0000
0.0000
26.1375
0.0000
32+10Ex
0.0000
0.0000
0.0000
25.8705
0.0000
10
0.0000
0.0000
0.0000
37.8617
0.0000
5
0.0000
0.0000
0.0000
38.5425
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
39.7875
0.0000
Outfall
0.0000
0.0000
0.0000
38.5158
0.0000
36+10Ex_N
0.0000
0.0000
0.0000
11.8527
0.0000
26+48Ex
0.0000
0.0000
0.0000
8.2505
0.0000
35+21
0.0000
0.0000
0.0000
28.0242
0.0000
CB5(4+67)
4.1750
0.0000
0.0000
64.6917
0.0000
VAULT2(6+4
10.2762
0.0000
0.0000
1117.2590
0.0000
CB51(26+48
0.0000
0.0000
0.0000
83.2320
0.0000
EXCB(31+05
0.0000
0.0000
0.0000
30.3759
0.0000
CB54(29+23
14.3250
0.0000
0.0000
50.5133
0.0000
CB52(28+16
25.0813
0.0000
0.0000
65.5143
0.0000
EXCB(31+02
0.0000
0.0000
0.0000
10.2578
0.0000
CB42(21+04
3.0750
0.0000
0.0000
26.2054
0.0000
CB45(23+63
6.1500
0.0000
0.0000
27.6720
0.0000
CB46(24+14
0.0000
0.0000
0.0000
26.6240
0.0000
LP_Vl-23
2880.0000
0.0000
0.0000
510.1144
0.0000
Mdpoint
0.0000
0.0000
0.0000
17.9150
0.0000
SH50_AN
0.0000
0.0000
0.0000
51.2445
0.0000
SH75_AL
345.9677
3.9333
41.1005
109.3242
0.0000
SH70_AG
357.9234
127.9614
8528.5590
105.5544
0.0000
SH65
375.7863
0.0000
0.0000
107.9055
0.0000
SH60_V2
378.3512
176.9588
28440.8523
100.0254
0.0000
CB7
0.0000
0.0000
0.0000
43.9649
0.0000
CB6
0.0000
0.0000
0.0000
49.6843
0.0000
CB5
8.6310
0.0000
0.0000
56.2452
0.0000
CB4 L
12.1821
0.0000
0.0000
60.5714
0.0000
CB3
16.4917
0.0000
0.0000
65.4592
0.0000
CB2_KM
21.2368
0.0000
0.0000
70.9678
0.0000
RA V1-1
0.0000
0.0000
0.0000
13.2865
0.0000
Scenario 4A
*-----------------------------------------------------
Table E20 -
Junction Flooding and Volume Listing.
I
The maximum volume is the
total volume
I
in the node including the
volume in the
I
flooded storage area. This
is the max
I
volume at any
time. The volume
in the
I
flooded storage area is the
total volumel
above the ground
elevation,
where the
I
flooded pond
storage area
starts.
I
The fourth column is instantaneous,
the
fifth is thel
sum of the flooded volume
over the entire
simulation)
Units are either ft^3 or m^3 depending
---------------------------------------
on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
---------------
Time (min)
Time(min)
Volume)
Volume
Pond of 1D-System
15_C,D
----------
0.0000
---------
0.0000
---------
0.0000
---------
59.0267
-----------------
0.0000
20
0.0000
0.0000
0.0000
53.8128
0.0000
25
11.1417
0.0000
0.0000
66.0328
0.0000
30
22.5250
0.0000
0.0000
70.2480
0.0000
35
95.6503
0.0000
0.0000
85.2171
0.0000
40 E
130.3200
0.0000
0.0000
104.3904
0.0000
VAULT1(1+6
162.1485
0.0000
0.0000
2190.0014
0.0000
4+21Ex F
152.9885
0.0000
0.0000
120.0210
0.0000
D8-14 G
380.7297
0.0000
0.0000
120.5357
0.0000
CB17(9+78)
189.7962
0.0000
0.0000
132.8234
0.0000
CB21(11+35
218.3744
0.0000
0.0000
136.5116
0.0000
CB31(14+35
148.8332
0.0000
0.0000
129.7553
0.0000
CB35(15+71
128.9466
0.0000
0.0000
136.3757
0.0000
56A
119.3806
0.0000
0.0000
108.9231
0.0000
57A
168.6940
0.0000
0.0000
109.2390
0.0000
58A
142.1448
0.0000
0.0000
103.8868
0.0000
59B U
168.5447
106.4866
0.0000
54855.2866
58022.3426
CB40(17+97
42.6367
0.0000
0.0000
132.1291
0.0000
CB41(20+92
128.9469
0.0000
0.0000
125.3580
0.0000
VT3(25+57)
90.3745
0.0000
0.0000
1469.7333
0.0000
CB50 J
349.6490
25.8151
0.0000
2693.1784
2615.2609
36+60
27.0068
0.3500
258.5246
76.0394
0.0000
235 O,A0
25.7643
0.0417
17.8944
98.2661
0.0000
37+22P,Q,R
26.7071
0.0250
2.7569
89.1231
0.0000
E8-13A(17+
134.6761
0.0000
0.0000
98.5838
0.0000
E8-13B(18+
121.9148
0.0000
0.0000
90.3544
0.0000
F8-22(19+9
103.5411
0.0000
0.0000
81.7062
0.0000
CB-EX(22+8
99.8007
0.0000
0.0000
78.0440
0.0000
E8-11(16+2
124.2553
0.0000
0.0000
86.2820
0.0000
CB52(15+71
132.7493
0.0000
0.0000
89.1513
0.0000
45
128.5194
0.0000
0.0000
104.5756
0.0000
59A W,AM
184.7348
74.0769
0.0000
12581.9325
13608.0901
60B
172.4359
13.1794
0.0000
281.6199
49.3764
65A
173.1869
0.0000
0.0000
102.3075
0.0175
67A
163.8590
0.0000
0.0000
103.2556
0.0000
70A
153.5383
0.0000
0.0000
103.1274
0.0000
73A
150.9833
0.0000
0.0000
104.4241
0.0000
75A_Z,AA,Y
191.3509
0.0000
0.0000
113.6675
0.0000
78A
198.9431
0.0000
0.0000
113.0055
0.0000
80A_ABACAP
229.3649
0.0000
0.0000
116.1451
0.0000
95A AE
167.4609
0.0000
0.0000
102.4132
0.0000
100A
161.1576
0.0000
0.0000
98.7228
0.0000
110A
304.5053
0.0000
0.0000
114.2329
0.0000
115A_AF,AD
182.4935
0.0000
0.0000
90.6861
0.0000
120A
186.1096
0.0000
0.0000
87.2606
0.0000
125A
183.6182
0.0000
0.0000
86.3329
0.0000
130A
178.5229
0.0000
0.0000
80.9221
0.0000
135A AH
183.6408
94.0361
0.0000
3320.7108
3713.3160
140A
184.5750
137.5769
0.0000
5990.3730
7273.1485
145A
182.7834
96.7174
0.0000
3763.2130
4469.8168
150AAIAJAK
178.8053
109.0507
0.0000
8746.0639
10021.0585
105A
206.5572
0.0000
0.0000
99.9417
'
0.0000
60A X
183.5817
58.8188
-3.8317
3407.1758
4289.2715
79A
198.5287
0.0000
0.0000
112.4179
0.0000
136A
185.5444
104.4893
0.0000
4394.2162
4441.0467
137A
183.5308
135.6159
0.0000
5829.8909
6263.9323
138A
186.7027
137.9802
0.0000
5861.0674
'
6739.9944
32+23Ex
35.2590
7.3833
1439.3017
67.9821
0.0000
32+17Ex
35.7000
0.0000
0.0000
70.5304
0.0000
32+10Ex
36.1603
11.8667
0.0000
531.1019
578.2031
10
0.0000
0.0000
0.0000
49.2979
0.0000
5
0.0000
0.0000
0.0000
46.9789
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
35.1847
0.0000
Outfall
0.0000
0.0000
0.0000
33.9617
0.0000
36+10Ex_N
26.2274
0.2167
43.3852
61.4477
0.0000
26+48Ex
40.2461
26.1564
0.0000
2254.8563
2326.6438
,
35+21
27.8981
0.6583
199.9293
71.3095
0.0000
CB5(4+67)
157.9405
0.0000
0.0000
124.3964
0.0000
VAULT2(6+4
160.9064
0.0000
0.0000
1746.6235
0.0000
CB51(26+48
41.3509
25.7977
0.0000
2375.6645
2297.1850
EXCB(31+05
40.9171
7.8917
0.0000
347.2519
359.1110
CB54(29+23
104.8276
24.1767
0.0000
2078.7571
2148.3803
CB52(28+16
153.0827
0.0000
0.0000
112.1547
0.0906
EXCB(31+02
41.1816
0.1750
0.0000
105.1332
15.0808
CB42(21+04
105.1735
0.0000
0.0000
80.0204
0.0000
CB45(23+63
106.3374
19.2833
0.0000
1095.6691
'
1058.5250
CB46(24+14
99.5418
26.2302
0.0000
2892.2218
2973.9813
LP_V1-2
2880.0000
0.0000
0.0000
510.0899
0.0000
Mdpoint
5.8591
2.7566
0.0000
74.1132
377.3553
SH50 AN
50.8889
0.0000
0.0000
129.8642
'
0.0000
SH75_AL
345.9255
3.9333
41.1006
109.3242
0.0000
SH70_AG
357.9027
127.9736
8528.7403
105.5544
0.0000
SH65
375.8560
0.0000
0.0000
107.9044
0.0000
SH60_V2
378.3977
202.4187
30964.8307
100.0254
0.0000
CB7
61.1095
0.0000
0.0000
126.0242
0.0000
,
CB6
89.0603
0.0000
0.0000
128.3711
0.0000
CB5
105.9630
0.0000
0.0000
127.7298
0.0000
CB4_L
117.1860
0.0000
0.0000
119.8162
0.0000
CB3
131.9282
0.1417
0.0000
156.3243
7.0647
CB2 KM
154.8460
16.1000
0.0000
1027.1273
1006.3887
,
RA V1-1
38.0081
20.1083
0.0000
121.5638
262.5040
RA V1-3
48.3627
22.8372
0.0000
106.4582
190.1136
Scenario 4B
*--------------
-----------------------------------------------------*
I Table E20 - Junction Flooding and Volume Listing. I
I The maximum volume is the total volume I
I in the node including the volume in the I
I flooded storage area. This is the max I
volume at any time. The volume in the I
I flooded storage area is the total volumel
above the ground elevation, where the I
I flooded pond storage area starts. I
The fourth column is instantaneous, the fifth is thel
sum of the flooded volume over the entire simulation]
Units are either ft^3 or m^3 depending on the units.)
Junction
Name
---------------
15_C,D
20
25
30
35
40 E
VAULTI(1+6
4+21Ex F
D8-14 G
CB17(9+78)
CB21(11+35
CB31(14+35
CB35(15+71
56A
57A
58A
59B U
CB40(17+97
CB41(20+92
VT3(25+57)
CB50 J
36+60
235 O,AO
37+22P,Q,R
E8-13A(17+
E8-13B(18+
F8-22(19+9
CB-EX(22+8
E8-11(16+2
CB52(15+71
45
59A_W,AM
60B
65A
67A
70A
73A
75A_Z,AA,Y
78A
80A_ABACAP
95A AE
100A
110A
115A_AF,AD
120A
125A
130A
135A AH
140A
Surcharged Flooded
Time (min) Time(min)
-------------------
0
0
0
0
0
0
0
11
92
22
25
15
11
0
19
19
28
0
13
0
108
0
0
0
13
11
0
0
9
12
0
45
43
48
44
42
41
107
123
162
87
79
274
116
136
125
112
143
148
0000
0000
0000
0000
0000
0000
0000
1833
8113
3086
6094
7813
0375
0000
4897
8564
1878
0000
0564
0000
1213
0000
0000
0000
9146
0964
0000
0000
9250
1589
0000
9319
0648
0631
6406
7241
1596
6774
5885
6544
5106
0347
1359
8501
6275
2330
8194
9983
1723
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32
86
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0156
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2159
6710
Out of
Passed to 2D cell
1D-System
OR Volume Stored
(Flooded
Maximum
in allowed Flood
Volume)
---------
Volume
---------
Pond of 1D-System
-----------------
0.0000
40.4451
0.0000
0.0000
33.3541
0.0000
0.0000
42.5863
0.0000
0.0000
45.0480
0.0000
0.0000
51.2351
0.0000
0.0000
55.4304
0.0000
0.0000
1229.5320
0.0000
0.0000
67.7875
0.0000
0.0000
67.6117
0.0000
0.0000
78.3831
0.0000
0.0000
81.6850
0.0000
0.0000
74.3286
0.0000
0.0000
80.8054
0.0000
0.0000
58.7974
0.0000
0.0000
63.7703
0.0000
0.0000
70.7152
0.0000
0.0000
3400.7292
3439.8815
0.0000
77.2362
0.0000
0.0000
72.4556
0.0000
0.0000
1081.5808
0.0000
0.0000
81.2870
0.0000
0.0000
28.2671
0.0000
0.0000
21.6291
0.0000
0.0000
28.0120
0.0000
0.0000
44.2135
0.0000
0.0000
34.4003
0.0000
0.0000
26.6419
0.0000
0.0000
26.2675
0.0000
0.0000
30.5650
0.0000
0.0000
33.4401
0.0000
0.0000
54.6600
0.0000
0.0000
84.1178
0.0000
0.0000
85.4288
0.0000
0.0000
84.3722
0.0000
0.0000
85.4060
0.0000
0.0000
84.9984
0.0000
0.0000
86.1636
0.0000
0.0000
93.9430
0.0000
0.0000
96.2794
0.0000
0.0000
102.6797
0.0000
0.0000
90.7220
0.0000
0.0000
88.0891
0.0000
0.0000
112.0086
0.0000
0.0000
90.0662
0.0000
0.0000
88.3204
0.0000
0.0000
87.6200
0.0000
0.0000
80.9877
0.0000
0.0000
2109.5295
2042.8840
0.0000
5014.2396
5681.8092
145A
146.8508
72.3536
0.0000
3517.0628
3969.3680
150AAIAJAK
125.0683
80.4321
0.0000
8613.4518
9591.4131
105A
168.7970
0.0000
0.0000
94.3235
'
0.0000
60A X
54.5110
0.0000
0.0000
84.9430
0.0000
79A
130.1999
0.0000
0.0000
98.3140
0.0000
136A
147.7273
68.1059
0.0000
2518.9205
2638.8491
137A
146.1164
84.3051
0.0000
3486.3014
3490.3391
138A
149.8398
86.5496
0.0000
4093.6274
4427.4007
32+23Ex
0.0000
0.0000
0.0000
26.0235
0.0000
32+17Ex
0.0000
0.0000
0.0000
26.1375
0.0000
32+10Ex
0.0000
0.0000
0.0000
25.8705
0.0000
10
0.0000
0.0000
0.0000
37.3763
0.0000
5
0.0000
0.0000
0.0000
38.0862
'
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
39.4924
0.0000
Outfall
0.0000
0.0000
0.0000
38.2221
0.0000
36+10Ex_N
0.0000
0.0000
0.0000
11.8527
0.0000
26+48Ex
0.0000
0.0000
0.0000
7.9707
'
0.0000
35+21
0.0000
0.0000
0.0000
28.0262
0.0000
CB5(4+67)
2.3500
0.0000
0.0000
63.7575
0.0000
VAULT2(6+4
10.4667
0.0000
0.0000
1105.5582
0.0000
CB51(26+48
0.0000
0.0000
0.0000
82.9241
0.0000
EXCB(31+05
0.0000
0.0000
0.0000
30.3246
'
0.0000
CB54(29+23
14.6500
0.0000
0.0000
50.3899
0.0000
CB52(28+16
26.0687
0.0000
0.0000
65.2857
0.0000
EXCB(31+02
0.0000
0.0000
0.0000
10.1922
0.0000
CB42(21+04
4.7000
0.0000
0.0000
26.5320
0.0000
CB45(23+63
6.5083
0.0000
0.0000
27.5759
'
0.0000
CB46(24+14
0.0000
0.0000
0.0000
26.3328
0.0000
LP V1-2
4320.0000
0.0000
0.0000
510.9350
0.0000
Mdpoint
0.0000
0.0000
0.0000
14.4813
0.0000
SH50_AN
0.0000
0.0000
0.0000
50.6985
0.0000
SH75_AL
345.9445
3.9333
41.1005
109.3242
0.0000
SH70_AG
357.9467
127.9614
8528.5662
105.5544
0.0000
SH65
375.7863
0.0000
0.0000
107.9044
0.0000
SH60_V2
378.3512
176.9588
28440.7701
100.0254
0.0000
CB7
0.0000
0.0000
0.0000
43.4045
'
0.0000
CB6
0.0000
0.0000
0.0000
49.2452
0.0000
CB5
8.9808
0.0000
0.0000
55.8091
0.0000
CB4_L
12.9018
0.0000
0.0000
60.1518
0.0000
CB3
17.1591
0.0000
0.0000
65.0588
0.0000
CB2 KM
22.1812
0.0000
0.0000
70.6025
'
0.0000
RA Vl-1
0.0000
0.0000
0.0000
13.2911
0.0000
RA V1-3
0.0000
0.0000
0.0000
8.4675
0.0000
Scenario 5A
Table E20 - Junction Flooding and Volume Listing. I
I The maximum volume is the total volume I
I in the node including the volume in the I
I flooded storage area. This is the max I
I volume at any time. The volume in the I
I flooded storage area is the total volumel
I above the ground elevation, where the I
I flooded pond storage area starts. I
I The fourth column is instantaneous, the fifth is thel
I sum of the flooded volume over the entire simulation)
I Units are either ft^3 or m^3 depending on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
---------------
Time (min)
----------
Time(min)
---------
Volume)
---------
Volume
---------
Pond of 1D-System
15_C,D
0.0000
0.0000
0.0000
59.1378
-----------------
0.0000
20
0.0000
0.0000
0.0000
53.7861
0.0000
25
11.5842
0.0000
0.0000
66.1905
0.0000
30
25.3750
0.0000
0.0000
70.4160
0.0000
35
103.2413
0.0000
0.0000
86.4453
0.0000
40 E
142.6974
0.0000
0.0000
104.8512
0.0000
VAULT1(1+6
170.9677
0.0000
0.0000
2213.3729
0.0000
4+21Ex F
165.6375
0.0000
0.0000
121.0968
0.0000
D8-14 G
383.1487
0.0000
0.0000
121.3883
0.0000
CB17(9+78)
195.7020
0.0000
0.0000
133.4459
0.0000
CB21(11+35
225.3149
0.0000
0.0000
136.0410
0.0000
CB31(14+35
161.2676
0.0000
0.0000
128.0319
0.0000
CB35(15+71
140.8548
0.0000
0.0000
135.0471
0.0000
56A
129.5847
0.0000
0.0000
110.0017
0.0000
57A
176.2457
0.0000
0.0000
110.3796
0.0000
58A
161.3976
0.0000
0.0000
105.1280
0.0000
59B U
176.3866
120.8876
0.0000
61904.4616
66840.3394
CB40(17+97
47.1302
0.0000
0.0000
132.3534
0.0000
CB41(20+92
140.4518
0.0000
0.0000
125.9055
0.0000
VT3(25+57)
96.3406
0.0000
0.0000
1471.6363
0.0000
CB50 J
351.1815
30.7886
0.0000
3222.1027
3148.8478
36+60
34.1493
0.2526
158.4562
76.0394
0.0000
235 O,AO
32.7585
0.0000
0.0000
85.2554
0.0000
37+22P,Q,R
33.9026
0.0000
0.0000
87.0551
0.0000
E8-13A(17+
145.4965
0.0000
0.0000
99.2742
0.0000
E8-13B(18+
132.1191
0.0000
0.0000
91.9462
0.0000
F8-22(19+9
111.0838
0.0000
0.0000
86.1469
0.0000
CB-EX(22+8
107.8911
0.0000
0.0000
77.6847
0.0000
E8-11(16+2
134.8287
0.0000
0.0000
86.0501
0.0000
CB52(15+71
143.7685
0.0000
0.0000
88.1932
0.0000
45
140.6241
0.0000
0.0000
105.0109
0.0000
59A_W,AM
193.2688
80.3366
0.0000
14469.3479
15306.0216
60B
180.7827
46.5044
0.0000
771.6740
1180.2521
65A
181.2761
13.9652
0.0000
647.5075
560.9851
67A
170.1784
0.0000
0.0000
104.9578
0.0000
70A
164.7954
0.0000
0.0000
104.8070
0.0000
73A
162.9274
0.0000
0.0000
106.0911
0.0000
75A_Z,AA,Y
198.3443
0.0000
0.0000
115.2041
0.0000
78A
205.3577
0.0000
0.0000
114.5119
0.0000
80A_ABACAP
241.3329
0.0000
0.0000
117.6113
0.0000
95A AE
174.5563
0.0000
0.0000
103.8432
0.0000
100A
169.2057
0.0000
0.0000
100.0994
0.0000
110A
307.1047
0.0000
0.0000
114.3402
0.0000
115A_AF,AD
185.3728
0.0000
0.0000
90.7371
0.0000
120A
188.8958
0.0000
0.0000
87.3261
0.0000
125A
186.4840
0.0000
0.0000
86.4052
0.0000
130A
182.0492
0.0000
0.0000
81.1200
0.0000
135A_AH
186.6107
98.8323
0.0000
3559.7337
3908.9312
140A
187.3715
141.7904
0.0000
6082.6454
7249.2409
145A
185.9010
98.2819
0.0000
3815.3899
4622.7577
150AAIAJAK
182.7235
105.3603
0.0000
8792.0009
9887.0029
105A
209.1404
0.0000
0.0000
101.0255
0.0000
60A X
192.2692
66.4388
-3.7649
4180.8339
5094.0988
79A
204.5556
0.0000
0.0000
113.9017
0.0000
136A
188.4366
108.7947
0.0000
4617.5265
4661.2753
137A
186.3991
141.7375
0.0000
6031.3247
6608.1760
138A
.189.3383
142.8273
0.0000
6007.1456
6806.6329
32+23Ex
40.3083
4.7053
398.1021
67.9821
0.0000
32+17Ex
40.5583
0.0000
0.0000
68.2867
0.0000
32+10Ex
40.8083
10.5064
0.0000
356.8245
347.3893
10
0.0000
0.0000
0.0000
49.3390
0.0000
5
0.0000
0.0000
0.0000
47.0361
0.0000
1_A,B1,B2
0.0000
0.0000
0.0000
35.2504
0.0000
Outfall
0.0000
0.0000
0.0000
34.0234
0.0000
36+10Ex_N
33.2534
0.0000
0.0000
56.4796
0.0000
26+48Ex
44.4039
31.3462
0.0000
2571.9275
2560.8287
35+21
35.5611
0.6697
214.0609
71.3095
0.0000
CB5(4+67)
167.6169
0.0000
0.0000
122.2596
0.0000
VAULT2(6+4
169.8704
0.0000
0.0000
1743.5522
0.0000
CB51(26+48
45.3033
31.2202
0.0000
2694.9093
2612.0463
EXCB(31+05
44.5033
0.0000
0.0000
76.0351
0.0232
CB54(29+23
112.9307
31.9148
0.0000
1925.7559
1930.0829
CB52(28+16
164.1279
32.1493
0.0000
2693.0502
2828.3466
EXCB(31+02
44.7517
0.0000
0.0000
55.8188
0.0000
CB42(21+04
112.4607
0.0000
0.0000
86.2790
0.0000
CB45(23+63
113.7976
22.4544
0.0000
1602.1102
1559.8223
CB46(24+14
107.6717
30.5333
0.0000
3592.0340
3759.6401
Tmp Out V1
2880.0000
0.0000
0.0000
688.6891
0.0000
Mdpoint
32.2521
26.8405
0.0000
78.9990
853.3807
SH50_AN
55.0759
0.0000
0.0000
131.1725
0.0000
SH75_AL
9.9835
0.0000
0.0000
112.3253
0.0000
SH70_AG
12.6357
0.0917
4.8732
114.5293
0.0000
SH65
32.0331
0.1750
36.5330
127.5485
0.0000
SH60_V2
48.5596
0.3417
59.2342
132.4106
0.0000
CB7
65.7651
0.1833
43.5557
129.6811
0.0000
CB6
95.0861
0.0833
7.3101
131.9430
0.0000
CB5
114.3077
0.0000
0.0000
132.8947
0.0000
CB4_L
127.5855
0.0917
4.4405
123.5238
0.0000
CB3
142.6833
1.5228
0.0000
388.4961
248.0243
C52 KM
165.8842
18.7301
0.0000
2675.5791
2786.4695
Scenario 5B
I Table E20 -
Junction Flooding and Volume Listing.
I
I
The maximum volume is the total
volume
I
in the node including
the volume
in the
I
flooded storage
area. This
is the max
I
I
volume at any time.
The volume
in the
I
I
flooded storage
area is the
total volumel
above the ground
elevation,
where the
I
flooded pond storage
area starts.
I
I The fourth
column is instantaneous,
the
fifth is thel
I sum of the
flooded volume over
the entire
simulation)
Units are either ft^3 or m^3
-------------------
depending
--------------------___
on the units.)
Out of
Passed to 2D cell
1D-System
OR Volume Stored
Junction
Surcharged
Flooded
(Flooded
Maximum
in allowed Flood
Name
Time (min) Time(min)
Volume)
Volume
Pond of 1D-System
15_C,D
0.0000
0.0000
0.0000
42.1297
0.0000
20
0.0000
0.0000
0.0000
35.1302
0.0000
25
0.0000
0.0000
0.0000
44.4081
0.0000
30
0.0000
0.0000
0.0000
46.9384
0.0000
35
0.0000
0.0000
0.0000
53.4840
0.0000
40 E
0.0000
0.0000
0.0000
58.2763
0.0000
VAULT1(1+6
0.0000
0.0000
0.0000
1284.8039
0.0000
4+21Ex F
16.8865
0.0000
0.0000
71.7629
0.0000
D8-14 G
101.0723
0.0000
0.0000
71.6125
0.0000
CB17(9+78)
26.0456
0.0000
0.0000
83.9808
0.0000
CB21(11+35
29.3771
0.0000
0.0000
87.6511
0.0000
CB31(14+35
20.1729
0.0000
0.0000
80.8549
0.0000
CB35(15+71
16.3833
0.0000
0.0000
87.6723
0.0000
56A
2.1904
0.0000
0.0000
63.0357
0.0000
57A
22.8551
0.0000
0.0000
68.9113
0.0000
58A
23.2994
0.0000
0.0000
76.0146
0.0000
59B U
35.4686
21.8363
0.0000
7749.4496
8043.6266
CB40(17+97
0.0000
0.0000
0.0000
84.4667
0.0000
CB41(20+92
18.5137
0.0000
0.0000
80.3235
0.0000
VT3(25+57)
9.0122
0.0000
0.0000
1187.6687
0.0000
CB50 J
113.9431
0.0000
0.0000
90.4724
0.0000
36+60
0.0000
0.0000
0.0000
28.2652
0.0000
235 O,A0
0.0000
0.0000
0.0000
21.6168
0.0000
37+22P,Q,R
0.0000
0.0000
0.0000
28.0149
0.0000
E8-13A(17+
18.2594
0.0000
0.0000
50.6678
0.0000
E8-13B(18+
15.0619
0.0000
0.0000
40.6678
0.0000
F8-22(19+9
10.4053
0.0000
0.0000
33.3268
0.0000
CB-EX(22+8
10.6275
0.0000
0.0000
34.2946
0.0000
EB-11(16+2
14.7333
0.0000
0.0000
37.2958
0.0000
CB52(15+71
17.6269
0.0000
0.0000
40.2870
0.0000
45
0.0000
0.0000
0.0000
57.5560
0.0000
59A_W,AM
53.4139
0.0000
0.0000
88.1011
0.0000
60B
48.9589
0.0000
0.0000
88.7226
0.0000
65A
54.7564
0.0000
0.0000
87.4120
0.0000
67A
50.1824
0.0000
0.0000
87.7703
0.0000
70A
48.0417
0.0000
0.0000
86.9687
0.0000
73A
46.2114
0.0000
0.0000
87.9483
0.0000
75A_Z,AA,Y
111.8763
0.0000
0.0000
95.6061
0.0000
78A
135.4391
0.0000
0.0000
97.8662
0.0000
80A_ABACAP
166.3743
0.0000
0.0000
104.1393
0.0000
95A AE
92.0358
0.0000
0.0000
92.0986
0.0000
100A
84.4460
0.0000
0.0000
89.3792
0.0000
110A
276.4026
0.0000
0.0000
112.2742
0.0000
115A_AF,AD
121.0682
0.0000
0.0000
89.4503
0.0000
120A
139.8820
0.0000
0.0000
87.5915
0.0000
125A
128.9617
0.0000
0.0000
86.8972
0.0000
130A
117.4286
0.0000
0.0000
80.3995
0.0000
135A AH
146.4957
35.5585
0.0000
2301.5732
2222.1363
140A
151.4106
88.9337
0.0000
5241.8105
5856.0904
145A
150.0914
74.4256
0.0000
3602.3648
4007.4984
150AAIAJAK
128.6144
82.9368
0.0000
8672.6904
9633.3735
105A
171.4765
0.0000
0.0000
95.1942
0.0000
60A X
72.2891
0.0000
0.0000
88.3123
0.0000
79A
149.8665
0.0000
0.0000
99.8012
0.0000
136A
151.0737
71.1515
0.0000
2722.0886
2800.2776
137A
149.5450
86.7904
0.0000
3799.1859
3782.0825
138A
153.0179
88.9494
0.0000
4383.0605
4707.7446
32+23Ex
0.0000
0.0000
0.0000
29.2154
0.0000
32+17Ex
0.0000
0.0000
0.0000
29.5894
0.0000
32+10Ex
0.0000
0.0000
0.0000
29.8642
0.0000
10
0.0000
0.0000
0.0000
38.8735
0.0000
5
0.0000
0.0000
0.0000
39.4960
0.0000
l A,B1,B2
0.0000
0.0000
0.0000
40.4263
0.0000
Outfall
0.0000
0.0000
0.0000
39.1534
0.0000
36+10Ex_N
0.0000
0.0000
0.0000
11.8535
0.0000
26+48Ex
0.0000
0.0000
0.0000
17.0038
0.0000
35+21
0.0000
0.0000
0.0000
28.0144
0.0000
CB5(4+67)
11.0600
0.0000
0.0000
67.9019
0.0000
VAULT2(6+4
16.3567
0.0000
0.0000
1161.7311
0.0000
CB51(26+48
0.0000
0.0000
0.0000
91.9982
0.0000
EXCB(31+05
0.0000
0.0000
0.0000
38.4352
0.0000
CB54(29+23
17.6528
0.0000
0.0000
57.9527
0.0000
CB52(28+16
30.6979
0.0000
0.0000
73.4704
0.0000
EXCB(31+02
0.0000
0.0000
0.0000
18.2482
0.0000
CB42(21+04
11.4499
0.0000
0.0000
33.7297
0.0000
CB45(23+63
12.5235
0.0000
0.0000
35.9129
0.0000
CB46(24+14
10.8267
0.0000
0.0000
34.8805
0.0000
Tmp Out V1
2880.0000
0.0000
0.0000
688.7008
0.0000
Mdpoint
8.5040
4.6667
0.0000
46.0300
28.1734
SH50_AN
2.5160
0.0000
0.0000
51.0631
0.0000
SH75_AL
0.0000
0.0000
0.0000
10.0626
0.0000
SH70_AG
0.0000
0.0000
0.0000
12.2180
0.0000
SH65
0.0000
0.0000
0.0000
16.8472
0.0000
SH60_V2
0.2794
0.0000
0.0000
37.7739
0.0000
CB7
7.4744
0.0000
0.0000
55.0927
0.0000
CB6
11.5514
0.0000
0.0000
60.6265
0.0000
CB5
15.9063
0.0000
0.0000
66.7513
0.0000
CB4_L
18.9688
0.0000
0.0000
70.7724
0.0000
CB3
22.3732
0.0000
0.0000
75.4857
0.0000
CB2 KM
27.0403
0.0000
0.0000
80.5144
0.0000
City of Renton Review Comments
Project: Shattuck Ave. S. Storm System Improvement Project
Jurisdiction: City of Renton
Job Number: 200504.1 (RWE)
Review Number: 1
Reviewer Name: Allen Quynn
Review Date: March 25, 2008
Response Date: June 5, 2008 (updated Aug. 2, 2010)
Comment
Number
Sheet No. or
Sec Section
Reviewer's
Initials
Review Comments
Response By
Designer's Reply
Resolution
1
Under model Scenario 2, Section 3.2, there is no description of how much
Hydraulic
drainage area is being diverted to the upsized Shattuck Ave. storm
Report
AQ
system. Figure 1 shows the hatched in area but does not explain which
Kirk Smith
The scenario descriptions in Section 3.2 has been
(Pg. 7)
sub basins are being diverted from the pump station. Report needs to
(KRS)
expanded to describe the area being diverted.
include a better description of proposed drainage to be diverted to
Shattuck Ave.
2
The modeling results show that diverting additional are to an upsized
Shattuck Ave. storm system results in an water surface elevation of 24.44
at the intersection of 7th and Shattuck which is an increase of 0.38 feet
above current water surface elevation of 24.06. The ground elevation
shown on Table 5 is 24.36 which would suggest that the roadway would
A separate memorandum dated 6/18/08 was prepared
flood only 0.08 feet; However, drawing SD01 shows a rim elevation of
that addressed this comment.
Hydraulic
Y
23.46 for the existing catch basin at the northwest corner of S. 7th and
Shattuck (CB2382) which is almost 1 feet of flooding of the 25-year storm.
An error has been found inthe modeling for Scenario 5A.
Repoli
(Pg 14)
AQ
Under current conditions, the 25-yr water surface elevation of 24.04 will
KRS
Node CB2_KM has been corrected to have ponding
I
surcharge the rim of CB2382 by 0.6 feet. Diverting additional are to the
allowed. This causes the HGL at 7th & Shattuck to raise
Shattuck storm system under Scenario 2 will make an existing flooding
to 24.72 from 24.44 stated in the draft report. This has
problem worse.
been corrected in the final version of the report.
Option to consider includes an overflow structure at 4th Place that would
divert flows to the pump station if the HGL at 7th and Shattuck begin to
overtop the rim of CB #1A.
3
Hydraulic
RoseWater's scope of work included modelingonlythe
Report
AQ
Hydraulic Report (General) - Why was the 100-yr event not analyzed in
KRS
25-year event --consistent with previous modeling done
(General)
this report?
by Gray & Osborne for the 7th Street drainage
NI
improvements
4
Hydraulic
The report should include a summary table that shows the 25-yr flow rates
Report
AQ
for existing conditions and with proposed project along Shattuck Ave.
KRS
The flow rates are already included in Tables 4 and 5.
NI
(General)
similar to the Table 5 that shows the hydraulic grade line.
LEGEND: I = Incorporated NI = Not Incorporated TBI = To Be Incorporated NR = Needs Resolution
MEMORANDUM
To DerekAkesson DATE 6/18/08
City of Renton PROJECT No 200504.1
PROJECT Shattuck Ave S
- - _ Storm System Improvement Project
cc Rex Meyer, DMJM Harris
SUBJECT Response to Hydraulic Report Comment #2 FROM Kirk Smith
PAGE 1 OF 2
This memo has been written in response to Hydraulic Report Comment #2 from Allen Quynn,
memo dated 3/25/08. Comment #2 noted that the February 2008 Draft Hydraulic Modeling Report
states that the existing 25-year Hydraulic Grade Line (HGL) at the intersection of 7`h Street and
Shattuck Avenue has an elevation 24.06, which is 0.6 foot above the existing rim of CB 2382. The
comment noted that the proposed stormwater diversion will make the problem worse, and
suggested considering a stormwater diversion at 4 h Place to direct flows to the pump station if the
HGL at 7`h and Shattuck began to overtop the rim of CB # 1 A.
To address this comment, the XP-SWMM hydraulic model was rerun to evaluate the effectiveness
of an overflow weir at 4`h Place and Shattuck Avenue (Node SH50 AN).
The model was also rerun using "existing" hydrologic conditions based on Gray & Osborne's
previous study. The following table shows the results of the additional model runs, in terms of
HGL elevations at 7`h & Shattuck and at the low point of Rainier Avenue below the railroad bridge.
Model
25-yr HGL at 71&
HGL at Rainier
Out of System or
Out of System or
Scenario
Shattuck
Avenue Sag
Ponded Volume
Ponded Volume
("Existing" HGL =
(Ground Elevation
Shattuck Ave,
Shattuck Ave,
24.06, CB Rim =
= 19.4)
North of 4'h Place
South of 4`h Place
23.46)
(ac-ft
ac-ft
I Existing
24.1
21.5
1.04
0.49
Condition
2A Proposed
24.4
17.7
0.90
0.08
Condition
2A revised with
24.3
20.7
0.90
0.05
O.F. Weir Elev.
23.0
2A revised with
24.3
21.0
0.90
0.04
O.F. Weir Elev.
18.0
2A revised with
24.2
17.7
0.80
0.03
existing hydrology
MEMORANDUM O
To Derek Akesson
DATE 6/18/08
PAGE 2 OF 2
Also as part of this additional analysis, the surveyed ground elevations in the vicinity of 7`h Street
and Shattuck Avenue were reviewed. The elevation 24.0 contour stays within the street and right
of way area. The elevation 24.5 contour extends into the yards of two houses on the west side of
the street immediately north of S. Vh Street (641 and 645 Shattuck Avenue S). The finish floor
elevations of residences around the intersection are higher than 25.0; however the floors of
accessory buildings at 641 and 645 Shattuck Avenue S are at the ground elevation.
Based on the additional modeling runs, and a closer review of the existing topography at the
intersection of 7`h Street and Shattuck Avenue, the following observations have been made in
response to Comment #2:
• Adding an overflow weir at 4'h Place and Shattuck Avenue decreases the HGL only
slightly, but causes flooding under the railroad bridge on Rainier Avenue. As a result, an
overflow weir is not recommended.
• Although the model predicts the HGL at 76 Street and Shattuck Avenue to increase 0.38
foot as a result of the Shattuck Avenue drainage improvements, the model predicts the 25-
year flooding volume along Shattuck Avenue between 7th Street and 41h Place to be
decreased by 0.41 ac-ft as a result of the project. Flooding predicted under the railroad
bridge along Rainer Avenue is also eliminated.
• The predicted flooding at 7`h Street and Shattuck Avenue resulting from the proposed
condition 25-year HGL stays below finish floor elevations of the adjacent houses.
• The modeling has been performed using future condition hydrology (full zoning build -out).
Rerunning the model using existing condition hydrology decreases the HGL at 71h and
Shattuck to 24.2.
• It is suspected that even the "existing" hydrologic modeling overestimates peak flow rates
because flooding has not been reported at this location since the 7th Street drainage
improvements were constructed in 2004, despite high -intensity rainfall in December 2006.
This may be due, in part, to a modeling assumption of l 00% directly -connected impervious
surfaces, which rarely occurs in older residential areas. Also, the modeling doesn't fully
take into account restrictions caused by small -diameter storm drain pipes that exist
between some of the tributary drainage basins and Shattuck Avenue.
Based on the modelini and these additional observations, it appears that only minimal flooding is
likely to occur at 7 Street and Shattuck Avenue following construction of the proposed
conveyance improvements, while greatly reducing the overall flooding issues for the system. Since
future upstream development has the potential to increase flooding at this location, it is
recommended that the City place conditions on zoning to address system inadequacies prior to full
build -out.
GHD Inc.
1201 Third Avenue, Suite 1500
Seattle, WA 98101-3033
T: 1 206 441 9385 F: 1206 448 6922 E: seamail@ghd.us.com
@ GHD Inc. 2011
This document is and shall remain the property of GHD Inc. The document may only be used for the purpose
for which it was commissioned and in accordance with the Terms of Engagement for the commission.
Unauthorized use of this document in any form whatsoever is prohibited.
86/14159/4577 Rainier Avenue South Improvement Project - SW Grady Way to S 2nd Street
Surface Water Technical Information Report
www.ghd.com
GA86114159VCADD\DRAY M7GS1TIR166556TIR-TDAM+9
Oc;l
v ,(
0
7
3-7 � r
Ff
i4-4
20,G4-2
0
Lp ,
3°' a I
0 % 1
L�GJ- F101 I f�
20,H2-1
16,D3-5
•16,B3-1 +�-� �+ i
4 3 5322
16,B3-2 °•�'
n p 3 5324
5318 3
53
16, -2 O - fi6,D4-I9 16,E4-
4-3 O 0 ❑ 16, 4-2 2
e� 16,B4-16 �- 6 � 1 ,E4-8
10, Q o `�
LD
b.B4 24,B4- r - >b,1�-Iil-3 t
C3
21,C3-11-•' J I 21,C3-
21,C3-10 21,C3-9
20 H4-2#
H4- 21,B4-1 -
20,H-�'
211
4 r 20)H4-8 ( 21,B - 4 1, 4-4 2li C4_19
-19
21,C4-3
4
21,C4-8
t ,
'a-
0
21 D2 11 ,D2-17 ❑
D2- 4
2t,D2� 4
21,D2-5 i,D2-B
If 21, 2-2 U 21.E2-7
I
21,113-7
j G
21,E3-
21,E3-2
21,D3 16 i,E3
21,D3-15 21
D3-3 21 D3-14 21
21 D4-
1, 1
21,E4
21,D4-39 Q
3 i,D4-4
?J,E4-12
i
1,D4 1
4} oLJ
21,E3-5
0 q--i�:
16,E 7-1
16,E3-5
16, 4-2
I
I6,F -7 14
16.F4-2
16 4-2
I ,F43 ❑
16,F4-32--
1 F4-33
Al
I F4-34
I F5-20
A H
16
j 16,G5-6
❑� I
6�, r6-7
16,G6-5
3
❑ I I
H4
7,B
16,H
qD�
■
._ ; ��■■ � � fit■ �
■ + ■
ti * � i • • !
■
7 ■ r I■■/ 1
mil/ , i ■ ; i i'
•
t
17
17
,DEy-7
17,B5
7,D6
16 H6-8 fj�i7N
0
f j O
/J 0 21,H2- 21 H2-I
2t,E3-11 - -� 21,G3-6 21,H3-
H3-5
21,G3-7 /
H3-12
3-5 21H3-4
} -8 1.G3-11
21,G3- �..� 21,G3-1
00
21,G3-17 21,G -1----� 21,H3-3 •�
21,F3- i,H3-13
F' 21, 3-2
21,E3-9 21 - L�^""21,F3-
t 21, ;3-8 - j 1, 3
`.•.•ems �3Gv 21,G3-13 21,G3-12 1 H -2
- I F3-t - H
_6 2I,G3-14 /
21,H4-17 f
3 21,G3-15 2 -4 l 21,H4-16 21, 4-8
21,H3-
G4-4
21,G4-il
21,G4-I4 22,4-6 J I 1,H4-
'
21, 4-3 21,G4-12 \ -15 H4-11
2F4-4 - 22,G4-7 22,G4 21,H•4-18'
21,G4-1 i
21 21,G4-5 21,G4-3 21,H4-6
21,F4-10 -
2LF4-11 2114-5 - _._.._..__..._.........1] �--. r21 21,H4-13
{ -- ...._.... 21,H4-19
._
4-2
_` 21,F4-6 /I
_
7,L5-1
4g�__
' 1
._..
7,C5-3
jjj 5-2
j �? �✓' O D6-2
17,B6-1 ! 7,C6-2 I 6-12 i
ppp f V 1. 7, b zI 7
17
j 17,C 11 i7, -27 6-24
jj ❑ 19 1
D6-20 I �-
17,C -I
,C6-9 j 2TC6- -2I
J• 17,
n,c7_ 17,C7 i 3 j
0 150 300 600
SCALE: 1`300'
LEGEND
EXISTING PUMP STATION
TRIBUTARY AREA
PREVIOUS BASIN BOUNDARIES
FROM SW 7TH ST PRE -DESIGN
ANALYSIS HYDRAULIC BASEMAP
REVISED BASIN BOUNDARIES
PREVIOUS BASIN BOUNADRIES
THAT HAVE CHANGED
BASIN VI SUB BASIN BOUNDARIES
CLIENTS I PEOPLE PERFORMANCE
CITY OF RENTON
SHATTUCK AVENUE DIVERSION
BASIN MAP
FIGURE 1