Loading...
HomeMy WebLinkAboutExhibit - Geotechnical_Memo � CIVILTECH � � � Memo To: Gary Barber,AIA,Senior Architect;Charlie Conway, Project Manager, KPG Cc: Jonathan Wilson, Airport Manager From: Ming-Fang Chang, PE Date: August 1, 2016 RE: Geotechnical Exploration and Services for RMA Office Renovation, Renton,Washington 1.0 INTRODUCTION To address functional deficiencies and extend the useful life of the Renton Municipal Airport Air Traffic Control Tower (ATCT) in Renton, Washington, the City of Renton (City) plans to remodel and expand the administrative offices on the first floor of the existing building.The City has also elected to investigate the use of a voluntary seismic retrofit of the tower which was constructed in 1960-61 prior to the development of modern seismic design codes. CivilTech Engineering (CivilTech) was engaged by KPG representing the City to perform geotechnical site exploration and evaluation for the proposed office renovation and seismic retrofit. The scope of the geotechnical services include: • Review relevant on-site geotechnical data • Plan and coordinate field exploration work which includes one standard penetration test boring and laboratory testing of soil samples • Compile site exploration results, analyze field data, and interpret subsurface soil conditions • Develop geotechnical recommendations for seismic retrofit and foundation design of the proposed renovated structures The purpose of this memorandum is to provide a summary of the field exploration results and our engineering recommendations. In accordance with generally accepted geotechnical engineering practice, this memorandum has been prepared for KPG and the City for specific application to this project. 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 2.0 EXISITNG BORING Existing Boring#1, located at the northeast corner of the building site,was drilled in 1960 or earlier as part of the building construction. The 52 foot boring log (see Appendix A) indicated that the site is covered by approximately 15 feet of loose sandy FILL below the ground surface (bgs). Underlying the surface fill,the soils consist of approximately 7 feet of inedium dense SAND,which is followed by 16 feet of inedium dense to very dense SAND, and subsequently at 38 feet bgs, by a layer of very dense SAND with gravel which extends to a depth of 52 feet bgs. An unknown sampler was used during the exploration. The sampler was driven into the ground with a 350 pound hammer falling from a height of 12 inches. The registered blow counts, shown as N* in the as-built drawings, provide an indication of the relative density of the subsurface soils. From the soil stratification and N* values, dense sand strata suitable for bearing of deep foundations are expected at approximately 38 feet bgs. Figure 2 provides a correlation between data shown in Boring#1 and current SPT methodology. 3.0 NEW BORING The project site is located along the West Perimeter Road of the Renton Municipal Airport,as shown in Figure 1. The ATCT building measures approximately 46.9 feet by 23.5 feet.A five-story control tower comprises the north half of the building, while an administrative office comprises the south half of the building. The area is open,with airport security fence running along the building's west face and the south end of the site. Outside the fence is a grass area to the southwest of the building and parking space just off the road and in front of the control tower building. New Boring B-1 was completed by Holocene Drilling under the direction of CivilTech on June 24, 2016. The boring location, as shown in Figure 1, is approximately 13 feet south and 11 feet west of the corner of the building. A mud-rotary drilling method using bentonite fluid was used to advance the borehole. The exploration, accomplished by a GEFCO drill rig equipped with an auto-trip safety hammer, included representative soil sampling. Figure 2 provides a correlation between data shown in Boring#1 and estimated N-values based on the current SPT methods. The SPT was performed in accordance with ASTM D1586. A two-inch diameter split spoon sampler, with an inside diameter of 1-3/8", was driven into the soil using a 140-Ib hammer falling for a distance of 30 inches. The standard penetration resistance, known as the N-value, is calculated as the number of blows required for the sampler to achieve the 12 inches of penetration. Sampling was perFormed at regular 2.5-foot intervals for 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 2 the first 35 feet and at 5.0-foot intervals thereafter, and representative soil samples were retrieved at each sampling depth as possible. Results of the soil boring are presented in boring log B-1 in Appendix A. The borehole was backfilled with bentonite chips. Soil samples collected were stored and sealed in plastic storage bags. HWA GeoSciences, Inc. examined the soil samples under the direction of CivilTech. Laboratory tests include moisture content determination, Atterberg Limits tests for cohesive soils and analyses of grain size distributions or the fines content for selected sand samples, using tests following ASTM Standards. Results of these laboratory tests are documented in Appendix B. Soil stratification of Boring B-1 resembles general characteristics of recent Alluvium in the Pacific Northwest. Subsurface conditions are typical of the general geology mapped in the vicinity of the project site. A comparison of the detailed soil stratigraphy at Boring #1 and Boring B-1 indicates that while the soils are essentially sandy soils at the northeast corner of the site (Boring#1), several layers of cohesive materials were encountered at the southwest corner(Boring B-1). Based on Boring B-1,the following subsurface soils were encountered at the project site: - Soil 1 (0-7.5') Very Loose Sandy to slightly Clayey SILT and Silty SAND (N=2) - Soil 2 (7.5-10.9') Soft Clayey SILT(N=3) - Soil 3 (10.9-17.5') Very Loose Silty Sand and Sandy SILT(N=4) - Soil 4(17.5-22.5') Medium Dense Poorly Graded Silty to Sandy GRAVEL(N=17) - Soil 5 (22.5-25') Stiff Highly Plastic Organic clayey SILT trace Gravel (N=11) - Soil 6 (25-27.5') Loose Sandy SILT trace Gravel and Clay(N=4) - Soil 7 (27.5-32') Loose to Medium Dense Sandy SILT to Silty SAND (N=13) - Soil 8(32-40') Medium Stiff Highly Plastic Elastic SILT(N=4) - Soil 9 (40-48') Medium Dense Silty SAND with trace of Decayed Wood (N=12) - Soil 10 (48-60') Medium Dense Poorly Graded Silty SAND (N=20) - Soil 11 (60-65') Very Stiff Low Plasticity SILT(N=18) - Soil 12 (65-75') Very Dense Silty SAND and Sandy SILT(N=55) - Soil 13 (75'-) Very Dense Poorly Graded Silty to Sandy GRAVEL(N=65) The N-values provide an indication of the stiffness or compactness of the soil strata. Boring B-1 indicates a moderate bearing capacity layer might be found at 48 feet depth and below, and competent bearing strata as indicated by N-values of 50 and above are likely present at 65 feet bgs. In contrast, competent bearing strata in Boring#1 are found at approximately 38 feet bgs. 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 3 Groundwater table observation was not possible during the mud-rotary drilling. Groundwater levels commonly fluctuate in response to seasonal precipitation changes and site utilization. Judging from nearby borings from Washington State Department of Natural Resources reviewed earlier by CivilTech, the groundwater table can be assumed at approximately 3 feet bgs for the project site. 4.0 SITE CLASS AND LIQUEFACTION POTENTIAL 4.1 Site Class Following ASCE,the site class for seismic design applications was evaluated based on Boring B-1 N-values. Use of existing Boring #1 was excluded because of nonstandard sampling and penetration procedure. The resistance profile over a depth of 100 feet was considered with the assumption that the N-value of the soils below the Boring B-1 depth of 75 feet is 60, equal to that at the base of the boring. For a conservative estimate of the site class,the plasticity effect of the cohesive soil layers was ignored.The average N-value was found to be 9.3,which is less than 15.The site is classified as Site E for seismic evaluation purposes(see Appendix C). 4.2 Liquefaction Liquefaction potential of the site was evaluated using the Boring B-1 data and the software LIQUEFYPRO. Results indicate that under a design-level earthquake of magnitude 7.0 and a peak ground acceleration of 0.40g, the liquefiable zone include soils in the upper 17.5 feet, soils between 25 and 30 feet bgs, and soils between 40 and 48 feet bgs (see Appendix C). Settlement of up to 10.5 inches is anticipated as a result of liquefaction. Based on engineering judgement, liquefaction in the two deeper zones is likely to be restricted due to the presence of cohesive soil stratum directly above each zone. 5.0 EXISTING FOUNDATIONS 5.1 Foundation Capacity Based on the ATCT as-built drawings,the tower is supported by grade beams resting on timber piles in clusters of 2 to 4 piles per column. The existing administrative wing is supported on interconnected grade beams resting on single piles,one at each of the six column locations.As-built drawings indicate the piles are"25 ton" piles to be driven to a minimum of 38 feet bgs. The term "25 ton" implies the structural capacity of the pile assuming a continuously supported condition assuming adequate bearing has been provided. Per the as-built drawings, piles were to be driven to 38 feet bgs, minimum. Records of pile driving log have not been located 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 4 and have not been verified. Under static conditions, these piles have provided safe support to the tower to date.The condition of the piles is unknown and outside this scope of work. 5.2 Timber Pile Capacity The vertical geotechnical capacity has been evaluated for a 38-foot long single timber pile with diameter reducing from 12 inches at the butt level to 7 inches at the tip level as per the as-built general notes. Based on Boring B-1,these piles would terminate in a high plasticity SILT(Stratum 5), rather than a very dense sand layer as indicated in Boring#1. With the taper effect of the pile shaft simplified by using average pile diameter,the ultimate vertical capacity using skin friction and end bearing was estimated at 14 tons under the static loading condition and 9.9 tons under the seismic loading condition (see Appendix D). Assuming a pile unsupported length of 17.5' due to liquefaction, the individual pile structural capacity is approximately 10 tons for a like-new condition. If the piles are decayed or damaged in the earthquake, the capacitywill be reduced. Downdrag due to liquefaction is approximately 4 tons.Total dead load of the tower portion of the structure is approximately 109 tons. There are 24 piles located beneath the tower portion of the structure, resulting in a demand of approximately 9 tons/pile assuming uniform distribution of structure weight and downdrag due to liquefaction. Based on the calculated pile capacity, both structural and geotechnical, there is approximately 10% reserve capacity in each pile neglecting the efFects of group effect for the piles and lateral displacement of the structure in a seismic event. 6.0 GEOTECHNICAL CONSIDERATIONS Table 1 shows the soil parameters recommended for the design of deep foundations.The groundwater table is assumed at a depth of 3 feet bgs. Due to low soil strength and potential liquefaction in the upper 17.5 feet, vertical resistance should be ignored in the liquefiable soil when evaluating the pile capacity under a seismic event. 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 5 Table 1 Soil Parameters for Foundation Design Stratum Depth Soil Type Effective Effective Undrained L-Pile Z Shaft Friction Z BGS(ft)1 (with N-value) Unit Weight Friction Shear Parameters Coefficient (pcf� Angle�l� Strength�l� Eso k(pci) ktanS a (�) (psfl 1 17.5 to Poorly Graded Silty 57.6 34° - 50 0.29 22.5 and Sandy GRAVEL (N=17) 2 22.5 to 25 Organic Clayey SILT 47.6 - 1000 0.008 0.70 (N=11) 3 25-27.5 Sandy SILT(N=4) 47.6 28° - 15 0.25 4 27.5 to 32 Silty SAND(N=13) 52.6 32° - 35 0.28 5 32 to 40 High Plasticity 42.6 - 500 0.017 0.50- Elastic SILT(N=4) 0.70�3� 6 40 to 48 Poorly Graded Silty 52.6 32° - 35 0.28 SAND(N=12) 7 48-60 SAND with Silt and 57.6 34° - 60 0.30 Gravel(N=20) S 60-65 Sandy SILT(N=18) 57.6 - 2000 0.007 0.60 9 65-75 Sandy SILTto Silty 62.6 40° - 120 0.35 SAND with Gravel (N=55) 1) Based on SPT resistance and WSDOT Geotechnical Design Manual M46-03.01 (WSDOT 2015) and empirical correlations for granular soils and plasticity index for cohesive soils from local practice. 2) Based on SPT resistance and empirical correlations from local practice. 3) Use lower value for drilled shaft or other cast-in-place piles and higher value for timber and other driven piles. 7.0 FOUNDATION DESIGN RECOMMENDATIONS 7.1 Truss Foundation To provide lateral restraint in a seismic event, the current seismic retrofit concept will use steel frame trusses at three corners of the tower: northeast, northwest and southwest. Each truss will be supported by two drilled shafts. Capacity of drilled shafts should be evaluated based on design parameters presented in Table 1. The ultimate end bearing pressure can be calculated based on using a bearing capacity factor that corresponds to the relevant effective friction angle of the soil at the shaft base. The current seismic retrofit design concept imparts vertical loads of 400 kips, bending moment of 70 k-ft and horizontal loads of 50 kips on each drilled shaft under a seismic event. Based on the soil stratification from Boring B-1, a very dense sand stratum ideal for bearing of deep foundations is present at approximately 65 feet bgs. Stratum 7, a medium dense SAND layer with silt and gravel having an average N-value of 20, is a 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 6 suitable bearing stratum at approximately 48 feet bgs. An embedment of approximately 2.5 x shaft diameter in the bearing stratum would be required for an effective base bearing. Based on an estimated maximum vertical load of 400 kips under the seismic loading condition, excluding downdrag, a minimum diameter of approximately 2.0 feet is structurally required. Axial and lateral capacities were evaluated for drilled shafts ranging from 2.5 to 3.5 feet diameter.The shaft was assumed cantilevered to 17.5 feet bgs to account for liquefaction.The calculated ultimate load capacity ranges from 607 to 1117 kips and is shown in Appendix D.Table 2 shows allowable capacity and lateral ground line deflections from drilled shaft analyses using Program ALLPILE, as well as hand-calculated downdrag forces. Based on these findings, a 3.5-foot diameter shaft is required for the truss foundation. Pile group effects have not been examined nor have pile caps connecting to the drilled shafts. Table 2 Results of Drilled Shaft Analyses Shaft Size Shaft Length Allowable Axial Downdrag Shaft Deflection Adequate (ft) (ft) Load Force (inches) (kips) (kips) 2.5 55 335 22.6 1.97 No 3.0 56 462 27.2 1.28 Yes 3.5 57 608 31.7 0.89 Yes 7.2 Office Expansion Foundation Micropiles are recommended for supporting the office addition. The axial capacity of micropiles, typically 12 inches in diameter or smaller,varies greatly with the selected pile casing size and the subsurface soil condition. Based on site soil conditions, the piles should extend beyond 40 feet depth to bear in a silty SAND layer (Stratum 6). Results of preliminary analyses of micropiles using ALLPILE are presented in Table 3;see Appendix E for calculations. 7.3 Foundation Improvements Because the demand capacity ratio of the timber piles in a seismic event is close to 1.0, consideration may be given to utilizing micro piles to supplement the existing foundation system. Micro piles could be used to provide additional vertical capacity using vertical micro piles or to provide lateral stability through use of batter pi les. 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 7 Table 3 Results of Micropile Analyses Pile Pile Length Allowable Axial Downdrag Diameter (feet) Load Force (inches) (kips) (kips) 7 41.8 16.5 5.3 8.625 42.2 22.9 6.5 10.75 42.7 34.1 8.1 12.75 43.2 48.9 9.6 8.0 CONSTRUCTION CONSIDERATIONS The construction of circular drilled shafts typically involves drilling a vertical shaft with a single-flight auger rig, placing a steel reinforcing cage into the hole, and filling the drilled hole with concrete. Groundwater will likely be encountered within the drilling depths during construction and casing will likely be required to maintain a stable shaft. Concrete may be placed through a hopper if water is not present in the shaft. A tremie pipe should be used if water is present. The top 20 feet of concrete should be vibrated if necessary in order to achieve proper compaction. The concrete should have a minimum slump of 6 inches during placement to minimize segregation.Concrete should be placed as soon as possible after excavation is complete. A qualified geotechnical engineer should observe the excavation and concrete placement during the drilled shaft construction as well as micro pile installation. Survey will be performed by KPG. If underground utilities are encountered, design may be modified if relocation is found to be too expensive. 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 8 REFERENCES AASHTO (2015). LRFD Bridge Design Specifications, 7th Edition (with Interm Revisions), 2015. City of Renton (1960). AS-Built Plans and Drawings, Airport Control Tower, Renton Municipal Airport, City of Renton,July 11. 1960 Washington State Department of Natural Resources, http://Fortress.wa.gov/dnr/geology Washington State Department of Transportation (2015). Geotechnical Design Manual M46-03.11, May 2015 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 Page 9 •� _� - ' " �� � � �'V , � � 4 � . „' -_'� ', 4 a �i r� � � _ � � � �t ,�C �ti - _ � �x ��• �, ,��� ; � , r �, � �h� i1' � i 'J�•.9� u 6 I�` _ � I' � - 1 �I � l�i��_� d ' ��� L ; ,. `� � : � , Boring#1 � _ �� � � � � `�� � ';I � � � ��,�: `� � -, Control Tower ` � r , - �,�� - � � ,. :�� � ,�,�,��,� I -- ,! ,,r, � � � � '��� � �, � �,��' � � , - �. � � � . � ��:- ; ��- � ,,,.- . � �, , . �� p . �, �,��_` - i S �� 'w' �, _-� . - . w.;.��,�. � ' _ ��� ���� � ; y ' , � - �.. ' �,.�— � �, �. � ; �' ,� r Y Boring B-1 , � � � �� ' , � 1 i � ��- F - :+�� "� . 1� � � • ."� � �� f �� - ��� � � � �' � � 4.�=,A1�11..I���'l�f� � ' � i ' � � e.� , , . � '� ;� �� • � � �, ';, � ' t �,,1 _ ' . ����� � � � CI � � , e A , � a . . : . �� �� .'�° � �l -. . , . Fig 1 Vicinity Map and Locations of Boring B-1 and Boring#1 Boring B-1 Completed on June 24, 2016 by CTE; Boring#1 Drilled in 1960 or Earlier by Unknown Driller � CIV�LTECH � � � �'•� �_..__.._, �...,.,..,f. PROJECT NO ��o��" SHEET NO PROJECT�✓ L!f� �"Fr�� ��'�-'�� ���-� r�-y?OV�`'�' __COMPLITED BY � �� IIATE '�I�"���� SllBJECT �� ��✓''^� CHECKED BY DATE � J e`+r �-C� �X� f c e.�:,d r'�v�1`"� �,e d r�s� �3��h 9 1�,� ��,/t �;�;�.� ��-►, Tr� r, , � qLo < �-� �,A-y �•, /��r�.1;�r �1) �t- �r;-��,� ,� l ,0,�� w��D ul) "'�"�p g�' s / �/ n 1 i O �L 1 Z.�r � ��.1�� �1'itT��C ln P✓� KP S"Jt�n.r.t-_{ 1 �Y»s��p ��F����a �,, r� qyr e r•t:r t, __ �:�4[� 1 ) _ — — 5 f�rGw�1�++f�x � " ��']��P.cwS �/� ¢� �jv..�+ ��PK+T� � e�� , �fU��lri�cmn�f ��,l.��/C A4o�'���l.mh.{w. t f7Fn� IZ /rr'•-P.9iU� �r �Fnc�� _�e�w� w'� ''ialWt�r�-+�Wa�r.� P(�;�AS-- �`• � r � l�Z�st� ' ` �' I'¢' •- /b �a^� �"'w! p � ` �� Nc'e�K ��1`�E�'�� a.� �t�iiz��o^S �C� �'�/L�� 1�� Ld�,s� `��, �..� . �ri.�[ �,'�.c ���,.�.1, ��� �� _ .,.�.�. y{� �1++1� nJ r r'( r/Ae/��'rswve�E ���`��'� � a�' � ��lrTTE "�.se V� �K1� � ,J ���.��'�..T� C.++1�� '��cn�? �...d � �'�f � LqA�, , a��M;G�,����1� � � d � C �� } � �� - - . ,,. . � ���r n r C ]�'^t '��] 1�''',ra�. �.�nl� 1�i 3� � , Ch�' ] T � �S �4 �/'� �+� .s��,�.� � MR f, �'.�../b d+r��� �t�,t/yr+c.���'�vt� ��,1���� � /�$''_��u ��-4 � �l��r�� r.i.�� �+�:n �..�.��s .�� � ]6�t,.t.��w d� L o rt�..► �� , � � Ga Figure 2 - Correlation of N-Values with N* Values APPENDICES Appendix A Logs of Boring B-1(Pages A.1-A.3)and Boring#1 (Page A.5) Appendix B 'Laboratory Report from HWA GeoSciences(Pages B.1-6.9) Appendix C Site Class and Liquefaction Potential (C.1—C.3) Appendix D Engineering Calculations of Drilled Shafts(Pages D.1—D.9) Appendix E Engineering Calculations of Timber and Micropiles(Pages E.1—E.7) 400112TM Ave NE,SuiTe 120 • BELLEVUE,WA 98004 • (425)453-6488 • Fax(425)453-5848 � CIVILTECH � APPENDIX A Address:400—112`h Ave. NE,Suite 120,Bellevue,WA 98004 T: (425)453-6488 F: (425)453-5848 �__ 4 � N B_�O�! A N W � ' __ _ � Surface Elevation: EL 26 m� y ���� yti'� �c•�`y ,��Q� �.p�� Boring Date: 6-24-2016 � wr a�� .y�.`�; p'�� ��'� ��� �� Boring Location: Renton Municipal Airport y O�� Q�e� t�a` V� '�b�� �a`�� �a� Drilling Method: Mud Rotary v � nn� V. Laase Brownssh Gray Slightly C6ayey SILT w€th Gravel, � aa � damp � y Zero Recovery - 3 -� o m 2 U � � d m � _ _... � 2e 'f `=� :. :: snn V. Laase�rownish Gray�iity 5A{VD trace Gravel i N . � Y•'•'�•I • C �" 1 ,� nn� Saf�D�rk �liv�Brown Clayey SiLT with C}rganics ��.� �: LL=42,P1=8 as 100 2 � ' � � 10 � Y FC=6% 23 5 ; � SP-SM Log��:V. Dark Brown Medium tv Coarse 5AIVD c , ;'`i��� i y _ `' FC=35% si 90 0 -' ; snn V.�oose V. i]ark Dlive Brawn Sifty Fine SAIVQ trace decayed � v" � � wood and organics � � ¢ �5 se 1 M� V. L.aase Dark�iive�rawn Sandy SIL1` � 2 ` g 4 � 9 6 �� , GP-GM Med. Dense Qark i�live Srawn poorly grad�d GRAVEL with � � 7 ��� Silt and Sand � , ,F�, ' Z� Zero Recovery • 11 ��; , a �� �w� °' FC=2% 20 !�� � � 4 '��'� oH St�fDark�live Brown Qrganic Clayey SILT � ' o LL=107,P1=42 sa 5 �;;;�: u 6 ''•''' I � .. vi�t��. � 25 �:;' •� FC=59°/o 36 2 ML Loase 4�ark Cllive Bcown V. Fine�andy 51LT trace Clay and 3 2 G ravel 3 a ' FC=38% as 4 •; :�; snn Looase to Med. Qense Qark�live 8rawn Silfy PVledium SANb � ` 5 3 r 0 � 30 36 3 ; g.� U � � 1 MH SvPt l7ar�c Grayish Brown Clayey SILT a LL=50,P1=12 61 � i N � 35 -- - � LOG OF BORING C�V�L TECH ENGINEERIIVG RMA Office Rennovation p�ate � Project No. 15032 �... �> m ' B-1 N i O�1 ^ I m G - � SurFace Elevation: EL 26 �� �y t���� �y�'� a�C��'� ,�.��� �.p��' Boring Date: 6-24-2016 o, tir a� ,�,�J �Q°y y�` q��' �m� Boring Location: Renton Municipal Airport y' Oee Q-�� '�°� d� �r�� �s�� ��' Drilling Method: Mud Rotary t��35 _ - o Zerts Recov2ry_ -- - - - �---� -- MH So�t�ark Grayish Brown Clayey 51LT c� � � � a- d o_ . ro a' �i m �—40 g s� Med. aense�7ark Grayish�r�w�'iity SAN4]wi6h Ftock �h o, a�s�a 69 8 sP-�sM Fragments �'_ i YeApwish �ecayed 1NOC]D trace sarrd and silt a ,.:: � Med. �ense�ark Grayss�s�rov�n po�rfy graded SA�If�r�rith � k Sikt �- 45 � �I I Y,_ FC=7% 2s � 5 i I `';;:,i'� I c 6 ''.��� �, I �' � i . z! � i �'- °' S0 I ` # � �_ FC=10% 2a O � .::::�, i N � :��, �_ ' q l �. I � ��l� y'- I � N� � : � �-i , � ��_ ��55 �� , `''.� i "� FC=9% za 10 j ; I a; a�`- �. °u � � `.( ! - - - ' .�'�60 25 9 ML V. Sti�f�ark Grayish �rown �IL7 with Gravei . 3` 9 3 ��-. ��_ m � 3 - x � o. �, 65 Zero Recovery 22 snn V.Dense Das'k t7fve Brown Si�ty SAIUC� � - - 35 '��'���'���� . _ _ o- nn� V. Dense Dark C]hve Brown Sandy SlLT a- 2s 119 � y --7� LOG OF BORING C/V/L TECH EIV'GIIVEERING RMA Office Rennovation plate z Project No. 15032 '�...1 m N B_�OI N A I m A � __ ' a Surface Elevation: EL 26 m� y �t'� �� �,�'`�' ,���m a�`�`� Boring Date: 6-24-2016 � �,r a�� ,�,�.`�i ��� �'Q Q�m Q� Boring Location: Renton Municipal Airport y O�� Q-e� �°� �� ��p� Gs�� S�`�� Drilling Method: Mud Rotary �'—70 �g M� V. Dense C�ark C7iive 8rown 5ar�dy 51LT 0 26 c� 25 � a— d o— m' a, e�— •` W--75 is 23 ` �� GP-GM V. CJense E]a�k�live Brauvn GRAVEL wifh 5ilt anci Sand F, o — 36 END garing completed at 75.45 f�et � � � ' � _— a � � , c' � a � � � r I � o'' 80 i � i �� . � I s� � , i ��� � � ; o � I � , i �� , � �, � � � � � o! i : i � 85 � � � � �= , � � ° I � ^r 1 � �� � I � � �� � i j � y� i+ �i 9� � � i I I f =i� � 1 ! I i�r � i I I o� � 1 ' � F I � � � -- a � ;'�95 �u 3 L ;� 3� y' �, � m 3-- � y-10d � u �_ .� U a� 0 : m - a � y 10�— LOG OF BORING C/V/L TECH ENG►NdL',ERING RMA Office Rennovation plate 3 Project No. 15032 A4 :� .� �`c � *� G " l t::2 lLEYA'�0� 72� i !L ' �e,•�e•��� c't'�rl�C A4da r+CY9. Mew farlr 4� 9lerr�te Ql�il� S&E N�s! I.. rc�ex.�ctv �...� �.trr �ava: '�.4-r.cr L�� ,1 - - r,Mfrr 1F�ea �vA✓ N'r;l�[}eiw.tniia, i`k.l�f9 k3-1L�:��1.i * � �7SR11/Tlol ►1WLl s+i►+ nwr �awsy ►.aar rrw rt�:�cs 4Mr rooacn�ss r;.� � i� Lk��S -. _., rre�a� �vC t�tr�yas�iie � . b �I a� w..�r .wwe wrr�a�ws � wn riae wie an�wt�,-'w4ti� �` � _. . « ruaa+e 'wb caw�F'91�rsr�te i�cA,u;+�s SFNO Car'lriT I� 4 I .ipf.f 'f!N!TQc wtii7Y��IY 1�Yf IM16G'�wA.TtLt" L"'"dt' I :�uir�.S> R��M� F' i�iRLf ��MC .r2w p�tl4 8%iwr[.. • . lwaOil�fl7tY' Tl�M S"=r � , LL'a _ _- G�n r�tL�s** eaav?+�ae�.�e rywr�s+rn .aY�aes ew �wa�•` �4 � y,,� LwW 'aai+ w.er al#+�rre Wltr�tR C .�+��4+�lSi�ltL� . �� as�r�. aeu,v�� G� ■ e..l`� . sawa ��.a={i •.,,.ri T�7 �l5,.,y.� �i� ]'� , . . f' �> • �Lpi�'y rsxL TO�Mlfr Sv, #�rfF 7��ri .••Cfl1CY�.�S� ;r�lrl�k". �� � 'RlVM1 af�S �.ff•SY� �^Co � � iMLRC�4:.�14 fiRiYS: C�NSlL�; � • i�re: ca�tiew�r �lc�+wl, k�.�:�o��4i �.'S ■ �1cua�_�1�. tw+� LNtt�.S ,e� 4�CiMlr:riw �:rtiti E�.,; r,aa 5.rr�vrr �rsa�a ��T� �. r�@. OF �,4aw� ��s7'p �o nr?•�rF raf rta•;. �'swr���t�, r v Sx�.�+s.l PP G►�tE Fo<aT +�'"'"» t r� �ra GF 95�. s T � S T '� � � ti � � hG $GA+�f v_, ._ . . �_- -__-�.__,¢_�.._ Boring#1 (Source: As-Built Plans and Drawings, Airport Control Tower, Renton Municipal Airport, City of Renton,July 11, 1960) � CIVILTECH � APPENDIX B Address:400—112`h Ave. NE,Suite 120,Bellevue,WA 98004 T: (425)453-6488 F: (425)453-5848 ��� HWA GEOSCIENCES INC. Gcotcdmicnl Engirien in, •Hvciro�;�nln�,i� •Gcrcm�iroiim�i�(nl •[nspectioii and lcsti�i�* July 14, 2016 HWA Project No. 2014-154-23 Task 500 CivilTech Engineering 400 112th Avenue NE, Suite 120 Bellevue, Washington 98004 Attention: Ming-Fang Chang, P.E. Subject: Materials Laboratory Report Soil Index Testing Renton Municipal Airport Control Tower CivilTech Project No. 15032 Revised—7-14-2016 Dear Mr. Chang; S�PLE I1vFORMAT�oN: The subject samples were delivered to our laboratory on June 27, 2016 by Courier. The samples were contained in one quart re-sealable plastic bags and were designated with borehole number, sample number, and depth of sampling. The soil was classified for engineering purposes in general accordance with ASTM D2487 and ASTM D2488. The results are reported on Figures 1-2, Summary of Material Properties. MOISTURE CONTENT OF SOIL: The moisture contents of all samples (percent by dry mass) were determined in general accordance with ASTM D2216. The results are reported on Figures 1-2, Summaiy of Material Properties. UNIT wE�GxT oF So�L: The wet density of samples specified by the client was estimated for based on the total wet weight of the sample received and length and diameter information provided by the client. The results are shown as wet unit weight on Figures 1-2. PARTICLE SIZE ANALYSIS OF SOILS: Specified samples were tested to determine the particle size distribution in general accordance with ASTM D422 using wet sieve analysis only. The test results are summarized on the attached Particle Size Analysis of Soils reports, Figures 3-6, which also provides information regarding the classification of the samples and the moisture content at the time of testing. PERCENTAGE FINER THAN#200 SIEVE: The pet�centage of material finer than the#200 sieve was determined for specified samples in general accordance with ASTM D1140. The soil was oven dried, and washed over a#200 sieve to determine the percentage of fines. The results are shown on Figures 3 through 6. 2131?30`h I)rive SE Suite 110 Bothell,b��A 98031-7010 TeL�l2�.71�.0106 Fas: l��.17�+.271-+ w�vw.hwageo.can July 14,2016 HWA Project No. 2014-154 T500 LIQUID LIMIT,PLASTIC LIMIT,AND PLASTICITY INDEX OF SOILS(ATTERBERG LIMITS�: Specified samples were tested in general accordance with method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index report, Figure 7. O.O CLosU�: Experience has shown that test results on soil and other natural materials vazy with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested samples may represent. HWA also makes no warranty as to how representative either the samples tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance that affect sample representativeness. No copy should be made of this report except in its entirety. We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service,please call. HWA GEOSCIENCES INC. ' ,-`'� ,-'` =,�i, � �d � \ � ,,r- �,,,i�---."�'`-Z... .� U Jessica Hei-�era Steven E. Greene;L. ., L.E.G. Materials Laboratory Manager Principal Engineering Geologist Vice President Attachments: Figure 1-2 Summary of Material Properties Figure 3-6 Particle Size Analysis of Soils Figure 7 Liquid Limit,Plastic Limit and Plasticity Index of Soils Task 500 Letter Report Revised 7-14-2016 2 HWA GeoSciences Inc. � � � a � � � '� m '—' '—' L (4 tn tn � W .N � � � � r r '3 '3 z uJ � N �� �3 � � L a � � o z z � � > o > Q c�i� c�i� � LL Z � z � cn o a a a Q �J,J � r oi � � � 3 m m o� a N O a �3 � � Q � m � J J o o a� a� ? } Q o � � � �� a c� � a� � c� � � � Q a� >. >. o � � � � W Q o m � � °� o � � Q Q �in � �Q Q Q � � � � ui � p cn �n 2, 'N ? o '� � cn cn m � ln W J w .+L-' ,.L.. O C J O �- � N w w N N p� C C � (n �C J Q r � � �N � 3 Q o cn Q 3 ° 3 w w 3 3 ° o o L 3 c Q a � � � o 0 0 o w � � � � � � � � � � � � � � � � � � � � > > � � Cn � O � � � � � �o � � N � N � � w w .>_ �o �o a� w a� � N > > O � Y Y N N �. N ��, N N ��, �, -p Y Y Y >. B ' � (4 (4 �> ,> (` ,> (` .> ,> (� (� N (4 (4 (4 � C � .. 0 0 � � a a o o a� o a� o o a� a� Q a a a a� 0 0 Y L j Y �. �. Y Y L Y Y Y Y Y Y � �. �. �. Y � G z N � N N N N N � N N N N N N N N N N N C � J O � > > � � J � � � � � � (n > > > � Q U N � .L.. Q' NOIlH�I�ISSHI� J � J J � � J (� a = J � � _ � � � � J � a IIOS W1SH � � � � d � � d � O � cn cn � cn d d d � �4 cn C9 cn cn cn vi � � w S3N1�% � M °r � M � � � � r m `a� 4NHS% o � rn rn L � �i oo � o o � ln N 00 01 'L L � � � � � � O �3nda��ro N °° �, o � � ~ c� � � N � w w ° o � U O � � o � U O H a oo � � � � Z .e > O U o (� � N � L � ^ � Q O � o N � � � d � H a r�Oi c`no ro0i � '� � .� � H � a � � '� LN � J Q L � � � r a � ~ � � L � � � o r o 0 o U � � o �, Q � � � � � � � � � �° � � � J �l�d)AlISN34 13M � � � L � � � Q w � a� o �%)1N31N0'J � � �INHJbO � � � Q `m � � S ° � V1� �%)1N31N0� � M (O I� O V M � ln � 00 (O N N (O � M � M 01 � N � 3anlsiow � N V M N (O M � � ln M V M (O N N N N N N � � N 0 V�iaaJ) �n �n o �n o0 0 �n o �n o �n o �n o �n � �n �n �n �n � N uj � O O M ln o0 N (M ln o0 O (M O O ln O ln O � U �7 H1d34 W01109 � � � � � N N N N M ro c c c �n �n co � w � �� � � w � �n � 1�1 � (�aa;) o o � o cn �n o �n o �n o �n o �n o N o 0 0 0 � � a 0 � � O O N ln I� O N ln I� O N O O ln O ln O � — V U, H1d34 d01 � � � � � N N N N M ro c c c �n �n co � � � o N o r r F N � N V N (O N I� � W � N N M V N (O � N � V NOIlHNJIS34 � � � cmn cmn � � � � � � � � � � � � � � � � NOIlHbOldX3 = _ _ < < _ _ _ _ _ _ _ � � < < � � � � ;� � m m m m m m m m m m m m m m = = m m m m °� � m m o cn z Q � x � � N � m . � w w L W � .� � � J � W � � � 0 N o U � � � � N � W a J 2, � � 11-� � � � w � � J a � 0 a `� 3 °' Q � o � � � � � Cn � O � N � �, � N a� '>. a� o > � > Q �o a� �o 0 0 Y L Y m G Z � J � C O H � U � � w � NOIlH�I�ISSHI� � � c�7 � a IIOS W1SH � N � � w N I� a S3N1�% o � � r m `a� � QNHS% � o � L � � � � � � O �3nda��ro � � v� � c� � � w ° o � U O � � o � U O .� � -� Z a '� � � U o (� � N � L o Q �o � o N � � � a � H a � '� � .� L H � a � � '� LN � J Q L � � � r a � ~ � � N N L � U � � � � � J �- C � � � �p L ��/ ,L,,, � Q LL � � J �l�d)AlISN34 13M o0 L � � � Q w � a� o �%)1N31N0'J � � �INHJbO � � � Q `m � � S ° � V �� w �%)1N31N0'J � � � � '� � 3b�1SIOW N N � � " � � � (�aa;) o u� u� N ° � z � H1d34 W01109 � � � � .,°� � v � w � (�aa;) o 0 0 � � ~ � a H1d34 d01 � � � m '� � � d N o r r F H H w v � N � m r � V NOIlHNJIS34 � �n �n � NOIlHbOldX3 = _ _ � ? m m m o F z Q � x � � o � o �o � � � � N � � LL � M � J � � J o �o O � � U � � Q � � O �� � Np � � � Q � a � � p � wp0 � J = � � O o a U � N o � W � Q � ° J � O U J o U a � � � N c� � � o a a� E m z o � � 0 �- -- -- -- -- ------ H �° v) � �� �� � T L L � � � � > � > J � '�n rn � O � _ J � � t '_ H � �- -- -- -- -- ------ -- -- — — — C� v) c �* � r 3 �� � N 0 O C7 � o _ Z � Z � � � � �- -- -- -- -- ------ -- -- — — w p � � V � � r�l � � � °� U o �- -- -- -- -- ------ -- -- -- — � Q � Q � � o z p at in z rn � U z o J >, �, � U � N i � L '_ •� Q � w � ° Q �N o o a o � � N �- -- -- -- -- ------ -- -- -- — C� o � � � v� Q a � u� � z � � � w o ° � o �n �� a�i w Q Y ' � a� � � � � �� N � � > !n o LL � � �� L � 0 � � a� � rn � O U � � � � � � � t 0 0 g � > � � Uz � � � � � � �- —— —— —— —— — ——— —— —— —— —— � � � � J � � � � � ao o �n ' _ � � N C � �' _ __ __ __ ______ __ __ __ __ O a i i i � M w M Ln O J p O � O ; �- -- -- -- -- ------ -- -- - Q � - -- -- -- -- ------ � �, -- -- -- -- � 'n N V N � V M (n U � _ cn � �j� � N W (6 �' __ __ __ __ ______ __ __ _ J V O _ __ a U � o Q � Z � cn � w a _ _ _ � � M oo � � o � o 0 0 0 0 o m m m � � � O � 1HJI�M A8 2��N1� 1N��2��d � � � � (� N � � � � N � � C'J Q � _ O vJ � � LL� '� � � } N U � � Q � � J o �o ONO� z � U � � Q � � O mo � W � � H c� N � Q � a � � p � wQ0 � J = � � O o a U � N o � W � Q � ° J � O U J o U a � � � m v °c�° � o a a� E m z o � � 0 �- -- -- -- — � �° �, v) -- ----- -- -- — — *k W >, N •L L 0 � � � � � � � � � o J o 0 � �- -- — -- -- ------ -- -- -- -- — (� z �p� ~ c �* � r N cA � O C7 � o Z � � � � � �- —— — —— —— —————— —— —— —— —— � U O W � � � r�l � � °� U o ~ T ~ Z 0 �- -- — -- -- ------ -- -- -- -- O z Q T Q Q U Q � — — Z _ � L Q �' ° � � � oQ ° `� � N � -- - � � N � � � � a — N- — -- -- ------ -- -- -- — C� o � v� � w � o o � '- � �� � > � � o Y N � H W Q t � � � U �n � � �> � �- LL � > � L � U � � � Y Y > � � 0 o g � � � � � U Z -- ^ � �- -- — -- -- ------ -- -- -- -- ,n � � � J � � � �n o �n ' - = N N V C � �' __ _ __ __ ______ __ __ __ __ O a i i i � M w O Ln O J � N N V ; �' __ __ __ __ ______ __ __ _ Q � - -- -- -- -- ------ �, -- -- -- -- � � � � � � � � � � � - �,�7 (6 � __ __ __ __ ______ __ __ _ J V O _ __ a U � o Q � Z � cn � w a _ _ _ � � M oo � � o � o 0 0 0 0 o m m m � � � O � 1HJI�M A8 2��N1� 1N��2��d � � � � (� N � � � � N � � C'J Q � _ � � o � � LL� � � � } N � � � rn rn Q Q `� U o �� aro rn z O �, Q J � o �� N o N — � H Oa � a � � Q � wQ0 � J = � � O o a U � N o � W � Q � ° J � O U J o U a � (n � N N N d' o a a� E m z o � � o w � �N � �- -- -- -- -- ------ -- -- -- — � " � � � O � � � .� •� � J � � � � O o J o 0 c �*- -- -- -- -- ------ -- -- -- � (7 Q � � � N r � °� � O � o Z � � � � � � �- -- -- -- -- ---- -- -- -- -- w 0 � rn U O � r�l � � '� � U o �- — -- -- -- ----- -- -- -- -- � Q `o Q > o z 0 � � z o p Q V z o � Q � U � N — _ _ z _ � Q � Q La w � � � � � o ° � � N � -- -- -- -- ------ -- -- -- -- C� o � N � v� c� a �� � � � � z > � � �, U U W O � Y Y O � '� � m m � � H � o LL � � � � � > � � � > L � U � � � > > � � � 0 o g � � � � � U z .-. � � — —— —— —— —————— —— —— —— —— � � � � J � � � � � �n �n o � - _ � � � c � °� —— —— —— —— —————— —— —— —— —— o a � � � � M w O O O J � � � � ; �- —— —— —— —— —————— —— —— — Q � -- -- -- -- ------ -- -- -- -- � '�n m V � M � v N (n (n � i � (6 �' __ __ __ __ ______ __ __ __ __ Ja �/1 O U � o Q � Z � cn � w a _ _ _ � � M oo � � o � o 0 0 0 0 o m m m � � � O � 1HJI�M A8 2��N1� 1N��2��d � � � � (� N � � � � N � � C'J Q � _ O vJ � O �A 0 C o CO � N � � LL � J � � J O �o � � � U o cn z � � 0 �� � NJ � � OQ � a � � p � wp0 � J = � � O o a U � N o � W � Q � ° J � O U J o U a � � � N � o a a� E m z o � � 0 �- -- — -- -- ------ -- H �° v) � �� �� �� � T L L O � Q � � J � � O � �o J o ._ � - —— — —— —— —————— —— —— —— —— — C� � c �* � r � N i..� z � W � p �- -- -- -- -- ------ -- -- -- -- p U O � N � � U o - z 0 �- -- -- -- -- ------ -- -- -- -- � � Q �> o � o z � U � a� z - . ., L Q � W � � J O Q O � � N �- -- -- -- -- ------ -- -- -- -- C'� " `� v� � a � � *� ° � � .� � �, U U � W O o � • � W Q t � � ~ U N ~ � �> 0 �- � � o � U � � � rn �. �O � � t � � 0 0 g J °' U z � � J (� Q �' � �� �� �� ������ �� �� �� �� � � J � �-' � � � � = O C � �' _ __ __ __ ______ __ __ __ __ p a , � M w O J p O ; �- - -- -- -- ------ -- -- -- -- Q � — -- -- -- ------ -- -- -- — � � m � � � � � �� � �- -- -- -- -- ------ -- -- -- -- a � 0 U � o Q � Z � cn � w a _ � � M oo � � o � o 0 0 0 0 0 00 � � � O � 1HJI�M A8 2��N1� 1N��2��d � � (� N � � � � N � � C'J Q � _ � Q J � � O � � � � JLL � `L N VO � ;� � X � o W � o � Q � (n a � � � JZQ � � a — � � � o a M � � � UO o N � � v r o J H W .. J � � Ln �/1 � Q v� � Z U Q U � � J W o v � cfl Uj a � J a 0 � � � �L � � > �� � � J '� H � Z � O C7 � � O � � � O � U � J c�_n � p � U � � � �o �n � � U o Q � o � �� > o z g � � °' U � a�i � U '� o � L . � H � o O Q � U � J � o � � Q � � � �U U c �n � � j � � '� � � O � � � ~ ; Y Y c G � 0 p p � � U �, O � 2 2 �"' � O � � N � Q-' � o o J o M M = 00 N M H O d � � � N 0 r N M N I� W (n (n � V J J a � � � i Q J � 2 2 2 G/� V m m m �y_ o V 0 0 0 0 0 0 0 � � (O � � M N � m �' w `v �Id) X34N1 JIlI�IlS`d�d � � � � � � O � W N V N V O N m F F Q Q> > _ � CIVILTECH � APPENDIX C Address:400—112`h Ave. NE,Suite 120,Bellevue,WA 98004 T: (425)453-6488 F: (425)453-5848 � .4 � Site Class based on SPT N-Values over 100-ft Depth (Soil Boring B-1) Renton Manicipal Airport Control Tower and Office Building Boring B-1 Depth(Di) SPT Ni di/Ni di Navg 2.5 3 1.666667 5 5 2 1.25 2.5 7.5 3 0.833333 2.5 10 8 0.3125 2.5 12.5 2 1.25 2.5 15 3 0.833333 2.5 17.5 13 0.192308 2.5 20 22 0.113636 2.5 22.5 11 0.227273 2.5 25 4 0.625 2.5 27.5 9 0.277778 2.5 30 16 0.15625 2.5 32.5 3 0.833333 2.5 35 4 0.625 2.5 40 13 0.384615 5 45 11 0.454545 5 50 19 0.263158 5 55 21 0.238095 5 60 18 0.277778 5 65 57 0.087719 5 70 54 0.092593 5 75 67 0.074627 5 80 60 0.083333 S 85 60 0.083333 5 90 60 0.083333 5 95 60 0.083333 5 100 60 0.083333 5 11.06954 102.5 9.3 <15 SITE CLASS E 7/15/2016 mfc C-=2 LIQUEFACTION ANALYSIS RMA Control Tower Office Renovation Hole No.=B-1 Water Depth=3 ft Surface Elev.=26 Magnitude=7 Acceleration=0.40g N-Value Unit Weight-pcf Fines % Soil Description (�Ip 0 100 0 200 0 100 � � � i i i i i i i i i Very Loose SAND and SILT � i i I I ' Soft Organic Clayey SILT Loose Medium to Coarse SAND � 15 Very Loose Sandy SILT Medium Dense Gravel with sand and silt , I ;;,;`,�; Stiff Organic Cfayey SIL7 Loose V. Fiine Sandy SILT ''' Loose to Medium Dense Silty SAND 30 I 1 - - : r I Soft Highly Plastic Clayey SILT I i � i � Medium Dense Silty SAND i 45 I � I I i Medium Oense SAND with Silt i i ' � 60 I � V. 5tiff 51LT with Gravel I � i � Very Dense Sandy SILT i I ' � I 75 ' E SPT or BPT test 0 U L U N � � Q 7 90 N N 3 � 0 � � U i N F ) U a 105 � � Q J CivilTech Corporation Site Liquefaction Potential Plate A-1 C—,� LIQUEFACTION ANALYSIS RMA Control Tower Office Renovation Hole No.=B-1 Water Depth=3 ft Surface Elev.=26 Magnitude=7 Acceleration=0.40g Shear Stress Ratio Factor of Safety Settlement Soil Description f�]� 0 2 0 1 _ 5 0(in) 50 i � Very Loose SAlVD and SILT i � , i I I �I I I�I Soft Organic Clayey SILT I I i < << < � Loose Medium to Coarse SAND 15 ' �IIIIII Very Loose Sandy SILT Medium Dense Gravel with sand and silt � i i i °;�%•�, Stiff Organic Clayey SILT -�,�.. ll�l[I.f Loose V. Fiine Sandy SILT � I Loose to Medium Dense Silty SAND 30 ' i � � Soft Highly Plastic Clayey SILT I I , � Medium Dense Silty SAND i i 45 , i � Medium Dense SAND with Silt � I � i I � 60 � I I I I I I V.Stiff SILT with Gravel � � , � Very Dense Sandy SILT � I I I fs1=1 S=10.50 in. 1 75 C�� CSR (s1— Satural�d — � Shaded Zone has Liquefaction Potential Unsaturat. o — L U N j U � Q 7 90 N N 3 `o � � U N F U a 105 � Q J CivilTech Corporation Site Liquefaction Potential Plate A-1 � CIVILTECH � APPENDIX D Address:400—112`h Ave. NE,Suite 120,Bellevue,WA 98004 T: (425)453-6488 F: (425)453-5848 !� C�vILT�cx � ``"-� �``"`"-" PROjECT NO ��'���` SI-iEET NO �^/ � Y '� PRQJ�4"f" '�� .e�t� I r�J�{ "�'°�� J°�C11/��'�"' CON[PiITCD BY Ih�y�_DATE���C^� , ) "� yn� 2, f_ SLIBJECT. �'�'^•'1dY h C.r+� !�Yl�C I�J t��1 2,'� `�t: ' �'.,t . CHECICED BY DAT'E `'+�.�yS�e� �..c�P 3'1•+ S���f�'�dn,.�� n-� � ' .B.� �- � n-�� �3� � , �y o.� k�`�a s �,L rz,,s-7� ����s s{r �_,� / � ,'� r ,J r�� �--t, #_�f '' . ,1.'r E• 1-� � �..Y E. . ,�, r. t 'r-�. .}� t� ' � r „.� _�'� o ��"�� 1�r� �jL_.f`n,) (�=: �� _ �j`=/�GP�� �, �"-r�+r�.'I`�. � ! D��r '� � ^� � -- �''7 ,cr��_ 33�s � z Q,a4 5 �-- 7:S� �1�.�f�.,.�.!u .r�i G ,��.r► �3 ) �r o �P�f s�� � �, +J I J __ C �. � 1'� �. .. � � � �o rr�...,r:s J q, C�. a��gors i � ��-,fd9 [/✓�"�� a'e/ if��F�-'� ! GB�j � � � �, T �Q 6 �/'} lba3.. �, � =V a,�� t�s'' �y�ro��pr. � �r�+� '��r=�] � Y ��f>'-F � I � ; ' � ' = 11�� �t� !� / � I �h t�� � -F � a � 2�.,L� 1 3�1 S./ �Ir-� ("rJ�J�.� .� lIG'� ''.�� f� •�`4v` f��.$ iI c'�;� I!id � d ,�'� ^ J.�•2_ 1 � �+L �� � �.. ��=�� ��„a/�`ro�r- r; `. ��g7 �, ^.� -, / \ � �7�5 I� , 1¢�, X �d �� SAv�f� J � � !����� � r[` � ! �s.'1� � � � k . � �.,�. : 3.� � �_ --- �7�3 ��. - �',�1 (�=g } �7.r '=�a��"�� � � {� � .�--�,'- f�S3. �� . �'�� t� � , � '�� —. �1�� i^��a � � �Y—I�"� t,,,=r�.� �� x�rl'�� � f � ' -� y,� �, ; � .. ��6 , � ; =g . � a, � , �,�, ����4 r� I E �' `� �'� y'��`3�''t (�c/�?6� r.i � �� ?f"r►� p� �, ' �� ��'° ,� -��k�+�t� � , r4o �1�. � d�3p _ �._�— ��.�. 6-b; ��G�1 �r?.f'�+] G r1�� � �� � 3f'7� C �,6� b / ja5� (�f`ri�� �a �p F ��, �L l.�- 1 �} a�js��t{ ;�3 s ' �;.� � ip o� /�i� �•J�cs�13� � �P�' f=�t�tG,d= Ixr � r � ...._._., .., .---......r _ �_ ��� �� SM����/���� Y 1�����-� �.�g,�.r -ffc � 7a � r a . -��a �= �.x �=_a,3S� [=r��.�•�,�=s6s' �� 7�r VERT1CAL ANALYSIS ��� � Figure 1 Loads: ��e/�� Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% ��I� Shear Condition: Cyclic � P Number of Cycles: 2 Q I „- (with Load Factor) ,� Vertical Load, Q=400.0-kp r �� i ! Profile: � s 2 � � j��' � Pile Length, L= 54.3-ft Top Height, H=0-ft �'r ( Slope Angle,As=0 � -J �'� j Batter Angle,Ab=0 1 j�, "Zero Friction" �� Zero Friction Start: 0-ft End: 17.5-ft l��-' Drilled Shaft (dia >24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -kp/i2 -kplf 0 94.9 25.0 0.00 6 35 0 0.0 30 706.9 94.2 39760.8 3000 {�.735 3 32.5 25.0 0.00 5 35 0 54.3 30 706.9 94.2 39760.8 3000 0.736 17.5 57.9 35.7 0.00 57.7 50 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 60 69.9 0.0 225 708.4 0.61 18 r Vertical Capacity: Ul r� x,1 ' 3� •�' � "�'� J Weight above Ground=0.00 Total Weight=24.24-kp *Soil Weight is not included { r����"S� Sir�e Resistance(Down)= 190.123-kp Side Resistance(Up)= 132.266-kp �� = SS�� '�� � Tip Resistance (�awn}=417.267-kp Tip Resistance (Up)=0.000-kp ��� Total Ulidmate Ca�acit Down Qult=607.391-k ` Tptal Ultimate Ca acit U 156.508-k ° �"9°`� a��6) Y� ) p p Y� P)= P Ts�tal Allowable Capacity(Down) Qallow=335.383-k�otal Allowable Capacity(Up) Qallow=93.069-kp ��!K�� NIG! Qallow< Q ����� � Settlement Calculation: t � r. At Q=400.00-kp Settlement=0.54767-in At Xallow= 1.00-in Q=483.73578-kp Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. CivilTech RMA Control Tower Office Renovation Software 2.5' Drilled Shaft VERTICAL ANALYSIS �� Figure 1 Loads: ����/� Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �� Shear Condition: Cyclic � p Number of Cycles: 2 Q 5 �� (with Load Factor) Vertical Load, Q=400.0-kp f - -q� I I Profile: � Pile Length, L=55.5-ft � R� Top Height, H=0-ft � � �� � = 31 j Slope Angle,As=0 � _��s�_ � j Batter Angle, Ab=0 I j� *Zero Friction" �� Zero Friction Start: 0-ft End: 17.5-ft 1�"� '. Drilled Pile (dia <=24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt � Depth Width Area Per. I E Weight , -ft -Ib/f3 -kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -kp/i2 -kp/f , 0 94.9 25.0 0.00 6 35 0 0.0 36 1017.9 113.1 82448.0 3000 1.060 3 32.5 25.0 0.00 5 35 0 55.5 36 1017.9 113.1 82448.0 3000 1.060 17.5 57.9 35.7 0.00 57.7 50 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 60 69.9 0.0 2.25 708.4 0.61 18 Vertical Capacity: , , ' �` Weight above Ground=0.00 Total Weight=35.67-kp "Soil Weight is not included Lt�� 4=' '�: ''• � . � Side Res�stance (Down)=241.775-kp Side Resistance(Up}= 1��.352-kp '_ �� t�? A-�S") Tip Resistance(Down)=600.844-kp Tip Resistan�e (Up)=0.0{30-kp �� r`� i Total Ultimate Capacity(Down) Qult=842.619-kp"7otal Ultimate Capacity(Up)=202.026-kp - /���?(3w) Total Allowable Capacity(Down) Qallow=461.605-kp Total Allowable Capacity(Up) Qallow= 122.814-kp 9�`3 Ks f OK! Qallow>Q V- '� Settlement Calculation: • � � !4�� At Q=400.00-kp Settlement=0.37117-in At Xallow= 1.00-in Q=582.85980-kp Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. , CivilTech RMA Control Tower Office Renovation Software 3.0' Drilled Shaft VERTICAL ANALYSIS � � � Figure 1 � Loads: �/j ;J� Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �� Shear Condition: Cyclic � P Number of Cycles: 2 ❑ �- (with Load Factor) Vertical Load, Q=400.0-kp r -� i I Profile: � Pile Length, L=56.8-ft '` Top Height, H=0-ft � 4 �� =�L�� j Slope Angle,As=0 � _ �� � ' j Batter Angle,Ab=0 I j.�- *Zero Friction" � � Zero Friction Start: 0-ft End: 17.5-ft . �`�.' Drilled Shaft(dia >24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kplf2 -Ib/i3 °/a -ft -in -in2 -in -in4 -kp/i2 -kpff 0 94.9 25.0 0.00 6 35 0 0.0 42 1385.4 131.9 152745.0 3000 1.443 3 32.5 25.0 0.00 5 35 0 56.8 42 1385.4 131.9 152745.0 3000 1.443 17.5 57.9 35.7 0.00 57.7 50 17 ; 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 , 60 69.9 0.0 2.25 708.4 0.61 18 Vertical Capacity: • � Weight above Ground=0.00 Total Weight=49.66-kp *Soil Weight is not included f ( 1 r .�f�i :jv l.. ��rt�4 Side Resistance(Down)=298.823-kp Side Resistance(Up)=2t3�.$98-kp _ , � ���- � Tip Resistar�ce{�own)=817.771-kp Tip Resistance(l�p)=O.00C?-Ecp 3 ;_• ���. �1� � Total Ultimate Capacity(Down) Qult= 1115.594-kp 7atal Ultimate Capaei#y{Up}=253.562-icp Total Allowable Capacity(Down) Qallow=608.101-kp Total AllowaE�le Gapacity(Up}Qallow= �57.132-kp : •' �1 `. � -�- OK! Qallow>Q � f A,.t,� _ � /� Settlement Calculation: At Q=400.00-kp Settlement=0.11011-in At Xallow= 1.00-in Q=973.99591-kp Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. CivilTech RMA Control Tower Office Renovation .�� Software 3.5' Drilled Shaft 538 Foundation Engineering Handbook �- � When a compressivc load is appl'sed to t�e butt of the shaft, Reissner solutions for a load on a weightless medium,resulting �/�/�� downward displacement oecurs, whicln begins t+� mol�ilize the in soil shearin� resistance. 'This proaess trassFers the load ta the N =tan2(45°+ �/2)exp(n tan�) (14.6) suppvrting sail and results in prragressi�ely smaller laad sn the 9 shaft wich depth,as shown by the dasncd curve in Figure 14.2e. N�_(N9- 1)cot� (note: as �i-�0,N�->5.14) (14.7) For chis curve, t�se lvad transferred to the ti� is guite small, in which ¢=soil friction angle.The NY term is given as G,�rsesponding to point 1� in Fi�ure 14.1. As the hutt laaei is in�reased further ta paint 8'sn Fi�ure 14.1,all of the available � IVY x 2(1Vq+ 1)tan� , (14.8) soil sh�arin� resistan�e is rno6iliaed alvng the shaf`t side and v,,hich is Vesi�'s[1975]approximativn of the�umeriGa4 solutioe any further load transfer then must devefop at �t�e shaft ti�a, by Caquot and Kerisel(1953 J.These bea.ring capacity fa�ta.rs W�en the buti lvad is increased Fursher ta iis maxirnutn value, ;��Shown in Figure 14.3. the full tip resistance is mahi4':zed (puint C in Figrsre 14.1}, ���,a{�dn 14.5 was dev�log�ed fvr ihe ideaLir.ed condizios�s of and the Ioad cransFer pactern is gi�en by th� sol'sd c�srve in g�neral soil shear failure for an it�finitely�on$strip foundaEios� � Figure 14.2c. Duris�g the laac�ing process from B ta C, the �t s�allow d�pth. Ta extend chis equatior� to actual field side resistan6e may incxease, de�rease, or rernai� eonstant, ��nditivns, modifiers have be�n devekoped by a number oF depending an the stress-strain�haraccerisrics aF the soil--shaft authars. Thpse presen�ed below are hased pnmari3y upon interface.Fcsr svils that exhibit signaficant strain-sc�ftenit�g,this the evnsistent interpreta�ivns af ih� ayailable daia by Vesic factor must be evaluated carefully. [�g75) anci Hansen (1374}, with minor modificativns by F�gures 14.1 anc[ 14.2 together 'sllustrate seweral very Kulhawy et al.(1983). � iurpvrianc hekta�ivral sssues far drzlled shafts in eompressian. In'sis general Farrn,the bearing capacity equatian-is given by First, the o�erall load-displacesnent respoase is nonlinear. �c.cpnci.the FuU side resistar�ce�e�elops at ralative�y srnall �utt q„ll=c N���S��a��.+0.5 BY Ny�v,�,,e�,,.+c�N9�qs�9aC9, displaeemencs.'Fhird,ttse#"ull tip resistance deve[ops at large butt (14.9) displxcerrients. And faurtt�,the ioad transfer hetween the side and iip wil1 be primarily a funetton af:t 1�ti�e avaiiahle shearing The � madi�iers extemd ehe cheory tn f�e1d cos�ditions and are resistance adong the side and below t�e t'sp,(2J ttte geometry of dv�sbly subseripted ta indicate whiah term ihcy apply to the shafit, [3} tlae load level, and (�4} ttse relatir+e s€aft'nesses vt (�1�, Ny, N4} and which phenomena ttzey descri�e 4s for Ehe shaft aad soil.All of ihese Factors musi he�v�nsidered when fa�undativn shape,d for fo�andation depth,and r for svil rigidiry}. proportioning a drilled shaft for both capacity requirements F'or foundativus af ciscular cross s�ctian,the modi£�ers are giVen and displacement limits. in Table 14,4. The sha.pe rraadiFiers depend on[y on the soil frictian angfe,¢r.1'he dept'h modi6ers�ary witta�and che shaft de�th-to-diameter ratio, 17]B. Wit� these dept� modifieaa no 14.3 AXIAL COMPRESSION CAPACITY arbitrary de8nitians fvr "shallvw" or "deep"_are needed, beGause A�B�s acc�unted fnrex�Iicitly as a cvntinuous functian. Fram t�e equilibriurs� diagram g'saen in Figure 14.2a, the F':gure F4.4 illustrates a typical variativr�vf�qd snd shvws that cvrnpression capacity(Q�)of a dnlled shaft is given by depth�ariations be��me minor aiter only a mociest fvrsnclatian W (14.1) embedment. Q�=Qx+ Q«- While tt�e shape an� depth mo�.ifers are familiar to all in whic� Q,�=side resistance in cvmpressior�, ��G�tip resis- designers,the r'sgid'sty rnfldifiers,which anclnde¢�aad the rigidity tance in cvmpres5ion, aad w=weight of shafi. As noted ia index, I,,, may nat 6c so familiar. The rig'sdity index tsail Sect'svn 14.2, bot� Q� and Q,� are displacezr�ent-dependent and develap th�ir limiting vafues at signi£�cantly di�f�rent �000 displacertsents. ¢ The side resista�ce represents the interface shearing resistance 500 N4-f anZ�45+¢A21 e'�tO° (i)awailable along the shaft surface and is gi�en by N�=(Nq-I) cot i j Ny-2�Ny+l)fa�¢ V Qx i(z)dz (14.2) � A —�surfaca N - in which z is the depth shown in Figure 14.2a. For a shaft o 100 I `� / with circular cross section,Equation 14.2 becomes � � 'f I '�. � D 50 � �' — 14.3 t �- Q�=n B i(z)dz ( ) � - —� _ .�..• .r� o "c� :�!; I- The value of i will vary as a function of soil type and loading �o -- r I .r� � ! conditions, as discussed later. '� I The tip resistance is evaluated as a bearing capacity problem � �p �Nc ��- - �' --.� .._ � and is given by � � � � v �•' � 14.4 m 5 Nq �"� Qt�=R��tAup=4�i��BZ/4 � ) /���'� in which q„„=ultimate bearing capacity and At;P=shaft tip � • area. The general salution far q„�� (e.g., Vesic, 1975) is the � �NY i Terzaghi-Buisman equation given below: / �;'� � i � . q„„=cN�+0.5ByNY+qNq (14.5) � � 0 .10 20 30 40 50 in which c=soil cohesion, y=soil unit weight, q =vertical Friction Angle, � �degrees) stress at shaft tip(yD),and N�,Nv,IVq=dsmensionless beartng capacity factors. This equation includes the Prandtl and Fig. 14.3 Bearing capacity factors. �dwfY� ,� krii�7avW ix.�.�� -f"t�� �]v-����/t3�af� �'b'"n�w��Ms� � ��'I �/)µncf.c:�:� C'^ Rdrrt, �� �.�. � ���.�6i.n�l ��^Y7c��[,Jd� �,^ `.� � r �J �G"i /'v�d4�Rrr��t�nho-�F4 . '�.Pw�6`+/� ������=�-` CIVILTECH 4C_.._i C"'i T_ � PROJECTNO ��� 3Z SHEETNO� Jc�0�1� -�-,�.. �w�.w -� M� 8���l b PROJECT �-ti��� I•6=� 7�C.r �`'? a r��..*,.� i,r;r-i C[?Mt'G'I�L=i)€il' 1� �--- UAT[� SUBJECT r �"`h d��^ �''� �'�'�+S�s a�{ �i I I+!� SR�,�/ �f CHECKED BY DATE J J76�„�-�� �-���- _. � _ ���'i�v�e_ -FCNCG.Q M� ��Ff_� � ��.( C✓i�'l-� � S�l s�+/� v�'li--<<-r �� U t s�=%�s ��. t�, '"I'J'�., � �,fi �i .¢��..^F,��.s Q,�s� _ �-� �-5 ��f : ,�� _ �,��►b� , _ � (o,-�-) C=�x����(�➢s) = 7� �r4 �fi/t -F� �_�•�� .�- (/ .a)l3r-�) [3,�� -�- �or' ���T> �G�°r-��o-�3)] (6,6 )� L3.��i6)(Zs) _ (,1��, �, ( �n 3�- � — �Z b�f 3 �'b _ s_�,� �/ _ . �I) � C�,.Q�� �'-+,,.�-;s'�'r•c� �.d,�; .. /,� ��� '�•�� r/�o,7 �`- �� ��`�F, �� ) �jr,,�1� �.��� (a<l cw R i.�e ) � ��! �i� S K �,t rc"`+` ,�l��1!,� � �-,c r� L Qa� �s..r ��w,;r � ��/� ' / ✓+ �N'S� = 4��.{�1?�i� v��-�� � � �� ' �� �� , , ��. ��) �'�`� -� ��;rM:E �r,,.�l.;�/;n., �w 3 � o'¢ s��;�F � L - �r�t'� �,�.,� ����;�.� r�����..�� ) � ': ��� '�; C-�� /-I LL�'�l�� � q I �?�S� � ;-r s,r�-� � ��9�+��.�'� � _ .�7/�� � p ` }�;� K✓ . , 1�'��'c.� �v��Q ��i �r t^', C � / I'�V = J>� -�-G��,'� = 4�0 -t�7,? �4�-j, K < Q�� - 4 ��� �I< � ���, ��) C�•41< -�►� 3,r' � S�,.�f ( C =Y6'�, � �r_ � � k t�'`�'�4� ���� ) � � �.s�: = C�S�G.�,g ) (�a,9gr� ) = 316 97�� = �' l,� � �� � = 4�0� + 3/.7 '' `��yK � �a� �° �K �,I< LATERAL ANALYSIS �� � Figure 2 - �/��i� Loads: Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% ��I� Shear Condition: Cyclic � p Number of Cycles: 2 � �- (with Load Factor) Vertical Load, Q=400.0-kp r �� Shear Load, P=50.0-kp I Moment, M=70.0-kp-f I L Profile: j Pile Length, L=54.3-ft j Top Height, H=0-ft j Slope Angle,As=0 �� Batter Angle, Ab=0 I� � "Zero Friction" � Zero Friction Start: 0-ft End: 17.5-ft Drilled Shaft(dia >24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt ' Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -kp/i2 -kp/f 0 94.9 25.0 0.00 6 35 0 0.0 30 706.9 94.2 39760.8 3000 0.736 3 32.5 25.0 0.00 5 35 0 54.3 30 706.9 94.2 39760.8 3000 0.736 17.5 57.9 35.7 0.00 57.7 50 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 60 69.9 0.0 2.25 708.4 0.61 18 Single Pile Lateral Analysis: Top[]efle�t�on, yt= 1.97000-in � Max. Moment, M=522.50-kp-f Top Deflection Slope, St=-0.01220 N/G! Top Deflection, 1.9700-in, Exceeds the Allowable Deflection= 1.00-in Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not,the pile may fail under the load conditions. CivilTech RMA Control Tower Office Renovation Software 2.5' Drilled Shaft LATERAL ANALYSIS F;gure 2 A, {1 �f L� Loads: Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 � Loads Supported by Pile Cap=0% Shear Condition: Cyclic � p Number of Cycles: 2 Q � „- (with Load Factor) � Vertical Load, Q=400.0-kp r �� � Shear Load, P=50.0-kp I Moment, M=70.0-kp-f I L Profile: [ Pile Length, L=55.5-ft j Top Height, H=0-ft j Slope Angle,As=0 j� Batter Angle,Ab=0 I� � "Zero Friction* � Zero Friction Start: 0-ft End: 17.5-ft Drilled Shaft(dia >24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -kp/i2 -kp/f 0 94.9 25.0 0.00 6 35 0 0.0 36 1017.9 113.1 82448.0 3000 1.060 3 32.5 25.0 0.00 5 35 0 55.5 36 1017.9 113.1 82448.0 3000 1.060 17,5 57.9 35.7 0.00 57.7 50 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 60 69.9 0.0 2.25 708.4 0.61 18 Single Pile Lateral Analysis: Top Deflection, yt= 128000-in `�� Max. Moment, M=591.67-kp-f Top Deflection Slope, St=-0.00709 N/G! Top Deflection, 1.2800-in, Exceeds the Allowable Deflection= 1.00-in Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not,the pile may fail under the load conditions. CivilTech RMA Control Tower Office Renovation � Software 3.0' Drilled Shaft LATERAL ANALYSIS � � Figure 2 Loads: --- ----�t'�'�� Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% � � Shear Condition: Cyclic P Number of Cycles: 2 Q �- (with Load Factor) Vertical Load, Q=400.0-kp � i� Shear Load, P=50.0-kp I Moment, M= 70.0-kp-f I L Profile: j Pile Length, L=56.8-ft j Top Height, H=0-ft j Slope Angle,As=0 j� Batter Angle,Ab=0 I � � "Zero Friction"` � Zero Friction Start: 0-ft End: 17.5-ft Drilled Shaft(dia >24 in. or 61 cm) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -It�lf3 _ -�/f2 -Ib/i3 % -ft �in -in2 -in -in4 -kp/i2 -kp/f 0 94.9 25.0 0.00 6 35 0 0.0 42 1385.4 131.9 152745.0 3000 1.443 3 32.5 25.0 0.00 5 35 0 56.8 42 1385.4 131.9 152745.0 3000 1.443 17.5 57.9 35.7 0.00 57.7 50 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 30 4 27.5 55.6 34.4 0.00 44.4 50 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 50 12 48 59.0 36.4 0.00 67.2 60 20 60 69.9 0.0 225 708.4 0.61 18 Single Pile Lateral Analysis: Top Deflection, yt=0.89200-in �:" Max. Moment, M=678.33-kp-f Top Deflection Slope, St=-0.00456 OK! Top Deflection, 0.8920-in is less than the Allowable Deflection= 1.00-in Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. The Max. Moment calculated by program is an internal force from the applied load conditions. Structural engineer has to check whether the pile has enough capacity to resist the moment with adequate factor of safety. If not,the pile may fail under the load conditions. CivilTech RMA Control Tower Office Renovation Software 3.5' Drilled Shaft � CIVILTECH � APPENDIX E Address:400—112`h Ave. NE,Suite 120,Bellevue,WA 98004 T: (425)453-6488 F: (425)453-5848 � C��i�,T�cx l '� '�� PROjECT NO �����` SI-�EET Np � '� r PRO]ECT `I�"�� .�` I ` �f�L � Y-T"' I'�C7'�/•c��C!i^ L'[J�LIYUTC�BY �� DATE �r � � � SLIB]ECT_�'"ti�1t��t��� ���C '�I �� � � C �"�'��� f�� �'s � CHECKED BY DATE � M�c��E�, � ��:��'6�f� ��R Lf�'y, �l �{J�r��m��r - � ��!�74 p �h,6�JM.�-�F �L = �� � . i='� � .� „� �v,G 1 �` , s c� o ����1� ��- � /�J t—.�M ��� Z� �: �!G�'`� a,y r,_ V�'O,"``� �;r �t.tT' J �' � r � o ,�, � 7 � � :1 � y.�,rl y � � �7'L �� �� } ����Y � II �j{ = f�b r� �`�f �:�'n. +� f�J c =�.3� �`� G�9 � � ��. : �s-� r � •y ..}i �. -� ' � �-s R= o�� �°� �} �, � �'!�-Sd'3 F�/��� �`E� !�T�t..�' � / �� �� � � �� tl ' —��-. ��� � r+� � �j�„� (nr-�7 } a= ����� , � _�,�� �7. __ _ ��s. �'j r � �f = ��� r��� C , .-`> r: : 4_�, �,,r � � ti� ��l ��-jJ`� �� � .c+�t. I c;(�.c�.l� Ca-c.��'�,�au � - a �t>�.� �xr�a � G r-: ..� �� .��' . -�l-� r��-' ,.� x I�'►L �,�V=¢� ?l " �!�,��f �J �= G��1�' � � _ .� = �-, / q � _, � �� �s � � ��.;.P"� � (� �o.'� �, �� �� �'t'� �rV���j � .;�j °T_ ��i+ 4 7�i J E j 1, ' � f P � 4 � / 1 ` (1/ .. ���4 {�eq=��yYit+'dpaT� � - GJ Q ���f 5� o _ �.J ( -,� � -�J` - 1 a's rc.¢ � �, - 3 z-�,+''� �" � M � � � =�"� �'`L � �.�� , ��,�-�-L �- r-,,,� -- - -- - --- - � �� I I - — ` � ., .. . _ � • �F� � s�~s'� ���g�� ,�-� rl S" 1�L� �� - -° M � � � ��, --- — �s� �� ��-s�, C�v���� �"�-E� ��� �:i J�� . C� �4 1�'T� �*+� ! ��. �_ r,;. ;;T _ � • �6+t '�[{ � ��l �!'°�"�"a��q/���� �= d l�"�Fr��`l 7� � ��`�'�� � � �rl �a� CIVILTECH `�-''-"-� PROJECT?JL3 � �Z SHEET NO �� Z PROJ�C.�f' �' >�-' •'� �r,p, .;, : j;.:r /-� ' _ r ;•:r i)�; � � C{),1'l�•l�'1'Eill BY I'�'� FC DATE g�� I]��,_ D �• ` 1 SiIBJECT —�������� � I"^�-�,Lr 1�� �+ �e✓ � �I i e �Q�_�i S CHECKED BY DATE �7�M ��._,��45 � � _ � �{F � ,, S /as,� z,a� -�'�%rr � � �Z �h �i��� � �Z -'G�/32k/7.f� �a7 � �f-t• Z /I ����Y'F �� - � %h ��. _ �'�'�(1 �`- Q►�-V �� �� ! a ? �y, REhS�r t.� / Qt � ���� U�-�v-r.L �L - �a•C/�.J- C,�n�� "l, c���e �, _�v �S� �n Nl M�Sa�/\�,,..�7�� �./� � O� /' ,.f� . � NC, ti / '/_n/ "Y/✓-tl� n� f / �-.�- = Cs-o�) ��l ) = 4�b`z� P`F � _��-s-a-�, ���,y6 �3) � ��3 �� ^- /a� K'f��. d� -�'�r � � S 1,.��� R�s��s��� �Gs � -�-�, "AS� ��1�.-� � �r' ) �,� �. ���; 1��� si �` '"��Ca��>(��r>C 7�> � . -1-C�/.6) C3re)C�,4) —� (o,�I)�g46)(6�)] (z,g4� = 7.��3 � �,�`-f � � l 2 7 « = S�2-k'�f _ �.,,j � , �? : � �z.�-s� (:� ��T'� ��'�r-,� ) f� _ �[�,� ��r�4�)Cr°� = ��-n��-x =.`9 � ,.� (p�G) �l D'fv� (z.J� _ ��G �� ! 1� -f- �a�zfi)�146',r���,�) �p � l 8� �1 s -f= Co;�) �l�up� C�,r) ;t. �d;��) �l��C�a)� Cs� i4 ) _ 9� 3 �n,� r w �x; r� L.oc,� ��/`��� � Q�, = �t fi 6�1 = o,�-� 9�� y q F'"� �,,.�,..�.� �s���� ����►r -f- �- ► �^,3 `- I 4,d fi�s���, :fr:��e ' �,� R �9 4 � �-.<.,,z.' .,- , �:���`:�=`.: CIVILTECH - - PROJECT NO ��� Z SHEET NO � � �'�S.'r.� �:rii�� ;_Lr' r' - .�/, tt j�._. h nYi�� r �.�.,�. /1/Jr� DATE .�� ' r �, PROJECT�, ���� f,�.U',' � .___ COMPUTED BY SUBJECT CHECKED E3Y DATE 'z �,!( :n�-�d Srl VhCXb. r.X- �s�,�I[ cw� �� P "," ��-�..�(j �S� �vr, ]w�`��/+�1 �� �`� �� � � tQ �� � r�. �,,,r � 7 ,� __ ��? ��-� isaaax ,�f .. ,� `i���� . . � " i� � d� k'p� �-.1��^r � � • ,�q,,n a c N e.n�r :s-t Sri'��C- �nn d i'�ni.r� 0 � �/" i�s'�� 3 �� I 1 C _ ` S-- �c+,S �• x �', � -� xo � � — Z � 6Ztis� � �j � _ � � �n�.t %� _ �„ `r62.,�7� ��►^�� l� �r,,�.� �� ������1 �r �i /1�R���� j�, ��,.�..� , �,. � /�,`�.-aa;'i�S �� = 70 ,, , �',dN '', ia,7r", ��,7r�' �IS�� 3,��r6� i �; �C, S' � ��?� ���7� , �F-�,a �� ��,r k, �.a t�� . �4,) k � 4-�.�� �'�"r"^ A�C.L/�1� � � ! C�,�'� �z'� � �.s� t�3 �� �,s'� , �, I '� , 9,� �. N�� - 41NS� ��tk:��.� � �s� ���s, Z, � - SF�3 P�f (,�� �,�-� ) _ � �� � )��►wb)���)�. f�.�3 �� = �� 3 � �'-� � '' � �'�� - ����� = 1r�U't� 6,�i� �,� �,�� �,� �;,c� - ���r� � Q,/ �� �d - b' , / K �°� ���s�'� f� �'` / T (/�,7t 1 _ q t� �/� -. 9 �1� �.r /l,7���y� A�� r� � l � / � �v �,s*�L},�� �a� cv i�? ��� ��rPa � r VERTICAL ANALYSIS �� Figure 1 Loads: ������ Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �a >a Shear Condition: Static Q �a � rr- �. (with Load Factor) Vertical Load, Q=50.0-kp � �-s Profile: e� Pile Length, L=41.8-ft Top Height, H=0-ft Slope Angle, As=0 - �` Batter Angle,Ab=0 � - "Zero Friction" - :�� � Zero Friction Start: 0-ft End: 17.5-ft � Micropile (MiniPile) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % __ -ft -in -in2 -in -in4 -kp/i2 -kp!€ 0 94.9 25.0 0.00 0.0 0.00 0 0.0 7.00 38.5 22.0 117.9 500 0.013 3 32.5 25.0 0.00 -0.2 0.00 0 41.8 7.00 38.5 22.0 117.9 500 0.013 17.5 57.9 35.7 0.00 57.7 4928 17 �i 22.5 52.7 0.0 1.38 359.6 0.82 11 �t��;��i 25.0 42.4 28.7 0.00 9.1 14.95 4 27.5 55.6 34.4 0.00 44.4 42.16 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 38.42 12 48 59.0 36.4 0.00 67.2 53.92 20 60 69.9 0.0 225 708.4 0.61 18 Vertical Capacity: =��r''�: ��`�R.�"�c"�:�� Weight above Ground=0.00 Total Weight=-fl.10-kp 'Soil Weight is not included � �'� f '��'� Pf� 5ide Resistance (Down)=20.244-kp Side Resistance(Up)=20244-kp �b� �=� ..,.;,I t3V �L3 0» Tip Resistance(Down)=5.960-kp Tip Resistance (Up)=0.000-kp � ���)��� Total Ultimate Capaeity(Down) Qult=26.2Q4-kp Total Ultimate Gapacity(Up�=20.140-kp cy� 2�L�k(�z�- Total Allowable Capacity(Down) Qallow= 18.476-kp Total Allowvable Capacity[Up) Qallow= 10.007-kp _ z�Z� ��� N/G! Qallow<Q � Settlement Calculation: 6���-1G. ! I� J�=z.� ,� �'=3�� At Q=50.00-kp Settlement=99999.00000-in ��` `,ca ' < ' . �. At Xallow= 1.00-in Q=99999.00000-kp - �;�1 �;7�� ; f E � L�����,. Note: If the program cannot find a result or the result exceeds the upper Iimit.The result will be displayed as 9999�. ��' ��`� CivilTech RMA Control Tower Office Renovation . , Software Micropile 7.00" VERTICAL ANALYSIS ��,� h Figure 1 Loads: g���I 6 Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �4 >o Shear Condition: Static � <a � � (with Load Factor) Vertical Load, Q=50.0-kp � y� Profi le: Pile Length, L=42.2-ft Top Height, H=0-ft °° °�'' ;,, d Slope Angle,As=0 °" `' ��s �' _ Batter Angle,Ab=0 x P ��,�� � - "Zero Friction* Zero Friction Start: 0-ft End: 17.5-ft .� Micropile (MiniPile) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % ' -ft -in -in2 -in -in4 -kp/i2 -kp/f 0 94.9 25.0 0.00 0.0 0.00 0 0.0 8.625 58.4 27.1 271.6 500 0.020 3 32.5 25.0 0.00 -02 0.00 0 42.2 8.625 58.4 27.1 271.6 500 0.020 17.5 57.9 35.7 0.00 57.7 49.28 17 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 14.95 4 ' 27.5 55.6 34.4 0.00 44.4 42.16 13 32 51.3 0.0 0.45 49.8 1.62 4 � 40 54.1 33.7 0.00 38.2 38.42 12 48 59.0 36.4 0.00 67.2 53.92 20 60 69.9 0.0 2.25 708.4 0.61 18 Vert�a�ight above Ground=0.00 Tatai We�ght=-0.15-kp *Soil Weight is not included r} '"-� ''-�`f ��s� 5ide Resistance(Down)=26.563-kp Side Resistance (Up)=26.563-kp ��� • '� '' Tip Resistance (Down)= 10.446-kp Tip Resistance(Up)=0.000-kp Total Ultimate Capacity(Down) Qult= 37.010-kp Total Ultimate Capacity(Up)=26.417-kp Total Allowable Capacity(Down) Qallow=22.932-kp Total Allowable Capacity(Up) Qallow= 13.119-kp N/G! Qallow<Q • '. �:,-�. Settlement Calculation: `�� At Q= 50.00-kp Settlement=99999.00000-in At Xallow= 1.00-in Q=99999.00000-kp Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. CivilTech RMA Control Tower Office Renovation �_ Software Micropile 8.625" VERTICAL ANALYSIS ` � � Figure 1 �oads: 8� �/��' Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �a >o Shear Condition: Static Q {a � -�r�sca��� � (with Load Factor) Vertical Load, Q=50.0-kp � �4 Profile: Pile Length, L=42.7-ft Top Height, H=0-ft = ��'���� Slope Angle,As=0 0 t G �` Batter Angle, Ab=0 ��'� � *Zero Friction* Zero Friction Start: 0-ft End: 17.5-ft � � Micropile (MiniPile) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight �ft -Ib/f3 _ _-kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -k� -kp/f ' 0 94.9 25.0 0.00 0.0 0.00 0 0.0 10.75 90.8 33.8 655.5 500 0.032 3 32.5 25.0 0.00 -0.2 0.00 0 42.7 10.75 90.8 33.8 655.5 500 0.032 17.5 57.9 35.7 0.00 57.7 49.28 17 f� 22.5 52.7 0.0 1.38 359.6 0.82 11 a,�3�} ��4 25.0 42.4 28.7 0.00 9.1 14.95 4 27.5 55.6 34.4 0.00 44.4 42.16 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 38.42 12 48 59.0 36.4 0.00 672 53.92 20 _60 _ 69.9 0.0 225 708.4 0.61 18 Vertical Capacity: Weight above Ground=0.00 Total Weight=-0.19-kp '`Soil Weight is not included �{ 19�R � .��3 Ps� Side Resistance (Down)=36.600-kp Side Resistance(Up)=36.600-kp �t• a,6 3n� ' � Tip Resistance(Down)= 19.393-kp Tip Resistance(Up)=0.000-kp °``?� Total Ultimate Capacity (Down) Qult= 55.993-kp Total Ultimate Capacity(Up)= 36.408-kp Total Allowable Capacity(Down) Qallow=34.096-kp Total Allowable Capacity(Up)Qallow= 18.086-kp N/G! Qallow<Q "` Settlement Calculation: � � �{�_ '` � At Q=50.00-kp Settlement=99999.00000-in At Xallow= 1.00-in Q=99999.00000-kp Note: If the program cannot find a result or the result exceeds the upper limit. The result will be displayed as 99999. CivilTech RMA Control Tower Office Renovation Software Micropile 10.75" VERTICAL ANALYSIS ��� ����r� � Loads: ������ Load Factor for Vertical Loads= 1.0 Load Factor for Lateral Loads= 1.0 Loads Supported by Pile Cap=0% �� >o Shear Condition: Static ❑ �o � (with Load Factor) Vertical Load, Q=50.0-kp � v� Profile: Pile Length, L=432-ft Top Height, H=0-ft � Slope Angle,As=0 � t,.j ��2- �` Batter Angle,Ab=0 � *Zero Friction'` Zero Friction Start: 0-ft End: 17.5-ft � � Micropile (MiniPile) Soil Data: Pile Data: Depth Gamma Phi C K e50 or Dr Nspt Depth Width Area Per. I E Weight -ft -Ib/f3 -kp/f2 -Ib/i3 % -ft -in -in2 -in -in4 -kp/i2 -kp/f 0 94.9 25.0 0.00 0.0 0.00 0 0.0 12.75 127.7 40.1 12972 500 0.044 3 32.5 25.0 0.00 -02 0.00 0 43.2 12.75 127,7 40.1 1297.2 500 0.044 17.5 57.9 35.7 0.00 57.7 49.28 17 S S 22.5 52.7 0.0 1.38 359.6 0.82 11 25.0 42.4 28.7 0.00 9.1 14.95 4 27.5 55.6 34.4 0.00 44.4 42.16 13 32 51.3 0.0 0.45 49.8 1.62 4 40 54.1 33.7 0.00 38.2 38.42 12 48 59.0 36.4 0.00 67.2 53.92 20 60 69.9 0.0 2.25 708.4 0.61 18 Vertical Capacity: Weight abave Ground=0.416'�ot�l V'Veight=-4,32-kp `Saii Weight is not included � . , �;9Y Side Resis#ance{Down}-4�.993-kp Side Resistan�e(Up}=47.�93-kp �bb '--� - 3� , �'7 .�'• Tip Resistance{Dawn}=33.818-kp Tip Reskstance{Up}=a.�0�-kp ] ' �,o� Total Ultimate Capacity(Down) Qult=81.811-kp Total Ultimate Capacity(Up)=47.671-kp Total Allowable Capacity(Down) Qallow=48.904-kp Total Allowable Capacity(Up) Qallow=23.639-kp N/G! Qallow< Q ti Settlement Calculation: At Q=50.00-kp Settlement=0.24872-in At Xallow= 1.00-in Q=99999.00000-kp Note: If the program cannot find a result or the result exceeds the upper limit.The result will be displayed as 99999. � CivilTech RMA Control Tower Office Renovation Software Micropile 12.75"