Loading...
HomeMy WebLinkAbout03285 - Technical Information Report - Stormwater Site Plan _ _ . � Consuiting Engineers N m STORMWATER SITE PLAN FEDERAL RESERVE BANK OF SAN FRANCISCO � LONGACRES OFFICE PARK FRBSF SECOND POND � R. CHqN ��°�w��� Z�i',;�, �yZ :� �r� �4i 155 ,�. �.� .., r��� S�oti.u.:�� �� 23�05 r r;-� ;_x�tREs �511� � � By: NRC KPFF Consulting Engineers 111 SW Fifth Ave, Suite 2500 Portland, OR 97204 Date: September 6, 2005 (Revised November 21, 2005) KPFF Project No. 303211 ,,Y.`,F Fi� ,�� � ECEIVED �V 2 5 �005 ,�� ,-�ci:'�� � 326� TABLE OF CONTENTS I. PROJECT OVERVIEW 1 11. PRELIMINARY SECTION CONDITIONS 2 III. EXISTING SITE HYDROLOGY 3 IV. OFF-SITE ANALYSIS 3 V. PERMANENT STORMWATER CONTROL PLAN 4 VI. CONVEYANCE SYSTEM DESIGN AND ANALYSIS 6 VII. SPECIAL REPORTS AND STUDIES 7 VIII. OTHER PERMITS 7 IX. EROSION/SEDIMENT CONTROL DESIGN 7 I� X. BOND QUANTITIES 8 XI. MAINTENANCE AND OPERATIONS MANUAL 8 Figure 1 Vicinity Map Figure 2 Basin Maps Appendix A Second Pond Detention Calculations Appendix B Second Pond Water Quality Calculations Appendix C FRBSF Conveyance Calculations Appendix D Restrictive Covenant � Appendix E FEMA Floodplain City of Renton Storm Drain Maps Appendix F TIR Worksheet (from 1998 King County Surface Water Design Manual) Appendix G Operations and Maintenance Appendix H Bond Quantity Worksheet (from 1990 King County Surface Water Design Manual) Appendix I FRBSF Erosion Control Sediment Pond Calculations Appendix J Compensatory Storage Calculations I. Project Overview The Federal Reserve Bank of San Francisco's (FRBSF) second pond is a combined I stormwater detention and water quality facility located on the FRBSF Seattle project site and will treat and detain run-off from the proposed facility. The FRBSF Seattle project is located in the Longacres Office Park, Renton, Washington and is bordered by the proposed SW 27tn Street to the north and the South Marsh wetlands to the south (see Figure 1). The FRBSF will develop approximately 9.73-acres of undeveloped area and access will be provided by SW 27tn Street, Phase 1, Segment 1, which is being constructed by the City of Renton as a separate project. The proposed SW 27�' Street and approximately 6.71-acres of the FRBSF site (including the 36-feet wide access road from SW 27"' Street to the site) will be detained , and treated in a combined facility in Tract D, located east of the FRBSF site. The design for Tract D has been submitted under a separate storm drainage report with the SW 27'h Street, Phase 1, Segment 1 project and calculations for this facility are not included in this storm drainage report. The remainder of the FRBSF site (approximately 3.02 acres) being treated and detained in the second pond will contain a portion of the FRBSF inain building, a portion of the access road to the loading docks, and the secure and general loading dock (see Figure 2). The second pond will be designed to the 2001 Washington Department of Ecology (DOE) standards. The FRBSF has indicated that approximately 0.3 acres of additional building space may be added to the main building in the future as the needs of the facility change over time. To accommodate for this future expansion in the storm drainage system, the second pond has I been sized to accommodate the detention and water quality volumes for this additional area, by using a contributing area of 3.32 acres when calculating the required volumes. However, to meet the DOE requirement of matching the existing condition peak flowrates to the pre- developed with the current building area, the orifice in the control structure h"as been sized to release run-off from the 3.02 acres. If the expansion occurs in the future, the second pond basin can remain, but the control structure will need to be modified to account for the additional area being detained and treated. Currently, the 0.30 acres dedicated for expansion is landscaped and is conveyed to Tract D for detention and water quality treatment. The storm drainage calculations for Tract D are in a storm drainage report prepared by KPFF Consulting Engineers entitled "Stormwater Site Plan, Federal Reserve Bank of San Francisco and SW 27th Street, Phase I, Segment I —Tract D pond" dated June 20, 2005. Currently, there are no utilities, structures, or development on the FRBSF project site. The existing 27'h Street, which is a 2 lane paved road, runs through the middle of the FRBSF property. There is an existing overhead power line adjacent to the road that will be removed with the new roadway construction. The existing SW 27`h Street will be demolished and a new five lane roadway will be constructed by the City of Renton. The FRBSF project will construct a new 3-story building, with approximately 67,100-square feet of impervious area; a three lane access road to serve the FRBSF and adjacent Boeing property; a 108-stall employee/visitor parking lot; a secure loading dock; and a general loading dock. New utilities including water, gas, sanitary sewer, power, phone, and cable N will be installed. The storm drainage from the existing roadway and FRBSF site sheet flows in a southerly direction to the south marsh. The marsh contains a drainage ditch which conveys run-off underneath Oakesdale Avenue to another wetland and ultimately to Springbrook Creek. Federal Reserve Bank/Longacres Office Park Page 1 - Second Pond The proposed project will collect and convey run-off to the storm drainage facility for water quality and detention. A binding site plan has been prepared for the Longacres Office Park by Boeing. The binding site plan indicated that run-off from the Boeing property south of 27`n Street was to be conveyed to Tract D for detention and treatment per the "Drainage Report for Conceptual Drainage Plan of Master Plan Development at Longacres Office Park" prepared by Sverdrup Inc. in September, 2000. Due to space constraints, only the FRBSF and SW 27`n Street will be conveyed to Tract D. The remainder of the Boeing property south of 27`h will be conveyed to different water quality and detention facilities, outside of Tract D. Per the City of Renton, the design standards used in the Sverdrup report are grandfathered in, and the FRBSF project could be designed to the 1990 King County Surface Water design guidelines. However, since the project is combining run-off with SW 27"' Street, which is being designed to the 2001 DOE standards, the FRBSF has opted to use 2001 DOE standards as well. The soil type in the area is till (class C), and contains deposits from the Green River basin. A geotechnical report was prepared by PBS Environmental and Engineering on January 2005 and revised in June 2005. The groundwater table in the area is seasonal and dependent on Springbrook Creek. Based on the geotechnical investigation, the average groundwater table is approximately 10-feet below existing grade and the seasonal high groundwater table is approximately 4-feet below existing grade. The FRBSF site gently slopes in a southeasterly direction with an average slope of 3 percent. The 100-year floodplain elevation is 20.58 using the NAVD 88 datum. The City of Renton compensatory storage is 19.18 (NAVD 88 datum). II. Preliminary Section Conditions The FRBSF site is located adjacent to the South Marsh wetland, which is covered by a restrictive covenant prepared by the Army Corps of Engineers for Boeing as part of the binding site plan (see Appendix D). The proposed improvements for the FRBSF project will not enter the restrictive covenant area, nor will they consist of filling, grading, dumping waste, or negatively impacting the wetland. The project is not located in a critical drainage area. Per the City of Renton, a shoreline permit will not be required for the FRBSF project. The storm drainage detention facility will discharge into the wetland buffer via a catch basin dispersal system. The City of Renton has indicated that installing a storm drainage discharge pipe within the buffer is allowed by their codes, and does not require a shoreline or special permit. A SEPA has been prepared and submitted for the FRBSF project and approved by the City of Renton. The floodplain elevation per FEMA for the site is 20.58, using the NAVD 88 datum (see Appendix E). The proposed FRBSF building is not located within the floodplain. There is a small portion of the parking lot on the eastern side of the site that is within the floodplain. The building elevation is set at 27.58 (NAVD 88), ensuring the facility is at least 1-foot higher than the 100-year floodplain. The compensatory storage elevation for the site is 19.18 per the City of Renton. The existing site elevations on the FRBSF site range from 19 to 25 (NAVD 88). The 19.18-foot elevation is located on the southeast corner of the FRBSF site adjacent to the wetland buffer. There is approximately 2,550-square feet of the FRBSF site that falls within the 19.18-foot elevation and this area will be filled. Compensatory storage has been provided by excavating out an Federal Aeserve BanklLongacres Office Park Page 2 Second Pond area of approximately 480 square feet by 0.5-feet in the southern portion of the site within the � wetland buffer. This area will provide approximately 240 cubic feet of compensatory storage volume to compensate for the volume that is being removed within the proposed project limits (see Appendix J). The compensatory storage area will be connected to the floodplain and areas �isturbed during construction will be restored using native plant vegetation. The anticipated average daily traffic for the FRBSF site is approximately 100 trips per day. Since this is less than the DOE requirement of 100 vehicles per 1,000-square feet of gross building area, an oil control facility is not required. III. Existing Site Hydrology Second Pond The existing FRBSF 3.02 acres going to the second pond is undeveloped and contains trees, natural brush, and grass. The property slopes in a southeasterly direction with grades ranging from 25 on the northwest corner to approximately 19 in the southeast corner, using the NAVD 88 datum. The existing SW 27th Street is approximately 40-feet in width and contains asphalt pavement with no curb or gutter. � The CN values and time of concentrations for the existing conditions are based on the , Conceptual Drainage Plan for the Longacres O�ce Park done by Sverdrup, lnc. The CN ; value for the existing condition is 87.31. The peak flowrates were calculated using the � Westem Washington Hydrology Model (WWHM) per 2001 DOE standards. The existing basin � was taken to be 3.02-acres forest. Per DOE minimum requirement #7, the "pre-developed I condition to be matched shall be forested land cover" since reasonable, historic information is not available to say that the site was prairie prior to development. The following are the peak 2, 10, and 50-year, 24 hour flows for existing conditions: Storm Event (24 hour Peak Flow cfs) 2 ear 0.08 10 ear 0.14 50 ear 0.18 IV. Off-Site Analysis The proposed detention and water quality facilities wilf discharge to the South Marsh. Off-site run-off entering the South Marsh is from a drainage ditch that conveys run-off from Orilla Pond and existing improvements south of the marsh. This includes roads and facilities up to NE 43�a Avenue, near the existing railroad tracks. The proposed 3.02-acre FRBSF site contributes a small percentage of the drainage basin feeding the South Marsh, per the City of Renton. Since the project adds more than 5,000-square feet of new impervious area, KPFF Consulting Engineers performed a Level 1 downstream analysis of the marsh on October 7, 2004. The analysis included walking approximately a quarter mile downstream of the proposed project site. At this time, the South Marsh was dry and there were no signs of erosion. Federal Reserve Bank/Longacres Office Park Page 3 Second Pond V. Permanent Stormwater Control Plan Water quality and detention will be provided using a combined detention/stormwater wetland. Per DOE minimum requirement #7, flow control is required since the FRBSF project will add more than 10,000-square feet effective impervious area to the discharge area. Since the project will be adding more than 5,000-square feet of pollution generating impervious surface (PGIS), water quality treatment is being provided in compliance with minimum requirement #6. The water quality design storm is the 6-month, 24-hour storm and water quality flowrates were calculated using W1NHM using the 15-minute time step. Since the discharge from the second pond will be to the South Marsh, which ultimately drains to Springbrook Creek (a fish bearing stream), enhanced water quality treatment is being provided. Per Volume V, section 3.4 of the DOE manual a constructed wetland can be used for the enhanced treatment to remove metals and for basic water quality treatment to remove sediments. The enhanced treatment will remove dissolved copper ranging from 0.003 to 0.02 mg/L, and dissolved zinc ranging from 0.02 to 0.3 mg/L, prior to discharge into the South Marsh. Per DOE minimum requirement #7, the developed discharge rates will match 50% of the existing 2-year to the 50-year peak flowrates. By matching 50% of the 2-year, the "total amount of time that a receiving stream exceeds an erosion-causing threshold based upon historic rainfall and natural land cover requirements" is maintained. Using the WWHM continuous modeling will maintain the natural hydroperiod of a wetland, causing no change in the hydrology of the wetland by not increasing the amount of run-off entering the wetland from developed conditions. Also, per DOE minimum requirement #8, by providing detention and water quality treatment for the proposed improvements, the existing wetland hydrology and quality will be maintained. Detention Upon development of the FRBSF site (not including expansion), the proposed impervious and pervious areas contributing to the second pond detention will be as follows: Im ervious Area Pervious Area � FRBSF 1.73 acres 0.39 acres I Second Pond Area 0.40 acres 0.50 acres � Total Area 2.13 acres 0.89 acres Using WWHM, for the developed conditions the peak flowrates are as follows: Storm Event 24 hour Peak Flow cfs 2 ear 0.58 10 ear 0.80 50 ear 1.00 The detention volume for the second pond has been determined using the WWHM method and matching the existing 3.32-acre and developed 3.32-acre peak flowrates. The required detention volume including the expansion area is 50,835 cubic feet. For the current build-out of 3.02-acres the peak flowrates are as indicated below: Storm Event Existin cfs Develo ed cfs Detention Pond release rate cfs 2 ear 0.08 0.58 0.05 10 ear 0.14 0.80 0.10 50 ear 0.18 1.00 0.17 Federaf Reseroe Bank/Longacres 0lfice Park Page 4 Second Pond In the WWHM program, the detention pond release rates were determined using 3 orifices and an 18-inch riser. The bottom orifice has a diameter of 1.01-inches, the middle orifice has a diameter of 1.4-inches, and the top orifice has a diameter of 0.84-inches and is located 2.5- feet above the 15t orifice. An emergency overflow spillway will be provided in the detention pond to allow the 100-year developed peak flowrate of 1.27 cfs to discharge into the wetland, per DOE Section 3-36 (Volume III). Due to the existing elevations at the wetland buffer and the security fencing around the perimeter of the site, it is not possible to use a broad crested weir for the emergency overflow. Instead the overflow will be provided via a catch basin with a vertical opening 6-feet in length by 0.7-feet in height at the southeastern corner of the pond. When water overflows into this structure, it will be conveyed to the wetland buffer using a 12-inch diameter discharge pipe. The overflow structure has been sized for the expansion area. The 12-inch pipe with a slope of 0.005 ft/ft has a capacity of 2.51 cfs, which is adequate for the 100 year peak flowrate including expansion. Water Quality Per the DOE manual, the constructed wetland volume is determined using the wetpond calculations. Per conversations with the City of Renton, the NCRS and WWHM methods can be used to determine the wetpond volumes. The WWHM method was used in the calculations, since it yields the most conservative design volume. The required water quality volume is 14,615 cf(see Appendix B). In accordance with the DOE manual, the constructed wetland will be divided into two cells. The first cell will provide presettlement using a depth of 4-feet, 1-foot of sediment storage and a minimum water quality volume of 33% of the total water quality volume. The second cell of the pond will contain a sloped bottom for the constructed wetland with a depth of 1-foot on the west side and 1.5-feet on the east side. A 6-inch berm will be constructed in cell #2 to increase the hydraulic flow path. The constructed wetfand will be planted with DOE approved plant material. A 2-foot thick soil liner will be installed under the water quality facility, since a portion of the sediment storage will be within the seasonal groundwater elevations noted. Per the DOE manual, the dead storage of a pond can be within the groundwater table. A treatment liner is recommended. The liner will extend from the bottom of the water quality cell up the sides to the top of the water quality surface. Downstream of the enhanced treatment, the run-off will be conveyed to a catch basin flow dispersion system. Per minimum requirement#4, the run-off must be conveyed to the natural discharge location and an energy dissipater is required at the outFall. Run-off will enter the catch basin and collect in the structure. As the hydraulic head builds in the system, the run-off Federal Reserve Bank/Longacres Office Park Page 5 Second Pond wili reach the rim of the structure and bubbie up through the top. This run-off wili sheet flow into the South Marsh wetland. The flow dispersion catch basin will be installed within the wetland buffer. The discharge elevation of 18.58 was used to determine the invert elevation of the detention pond. During the 100-year flood, the groundwater elevation will be 19.18 per the City of Renton. In this case, the storm drainage from the second pond will back up into the pipe, and will discharge from the second pond via the emergency overflow spillway. Two access roads will be provided to the second for maintenance. Both access roads will be from the general loading dock area. One access road will allow access to the control structure, emergency overFlow, and water quality cell #2. A second access road will be to water quality cell #1. The roads will be 12-feet wide when straight, 15-feet wide when curved, and will have a maximum slope of 15%. The following is a summary of the pond volumes and elevations: Cell #1 Cell #2 Provided Detention cf 50,835 cf total cell #1 and #2 52,232 cf Water Quality 4,823 cf(required) & 12,774 cf 9,646 cf(required) & 27,148 cf rovided 14,374 cf rovided Top of detention 22.38 22.38 elevation Bottom of 19.08 19.08 detention elevation ' Bottom of water 15.08 18.08 to 17.58 uali elevation Bottom of 14.08 Not required sediment stora e Note: The elevations provided above are using the NAVD 88 datum. The volumes indicated are based on the 3.32 acre site. VI. Conveyance System Design and Analysis There are no existing conveyance pipes or structures within the site. The proposed FRBSF conveyance system sizing has been sized using the Rational Method and Manning's equation for the 25-year developed conditions. The rational method (Q=ciA) was used to determine the peak conveyance flowrate in accordance with 1990 King County manual section 4.3.3 since the 2001 DOE manual does not address conveyance. Conveyance pipes were sized using Manning's equation and King County stormwater management manual section 4.3.4. A minimum velocity of 3 feet/second has been provided per Table 4.3.4.A of the King County storm drainage manual where feasible. In a few locations the velocity is less than 3 feeUsecond due to site constraints in upsizing the storm drain line or increasing the slope. In these locations, the velocity in the line is 2.5 feebsecond with one line coming from a roof drain to a catch basin being lower at 2 feeUsecond (see Appendix C). Backwater calculations have been performed to ensure that the elevation of the 25-year storm event is 6-inches below the rim of the catch basins on the FRBSF site. The backwater and conveyance calculations have Federa!Aeserve Bank/Longacres�ce Park Page 6 Second Pond also been analyzed for the 100-year storm to determine if the 100-year backwater system is 6- inches below adjacent grade when the structure overflows per City of Renton standards and the "ovPrflow from a 100-year runoff event does not create or aggravate a severe flooding problem c�r severe erosion problem" per King County stormwater management manual section 1.2.4.1.2. VII. Special Reports and Studies The following reports have been prepared for the site by Boeing as part of the binding site plan: • Wetland Report per the binding site plan • Sverdrup Storm Drain Report A geotechnical report has been prepared for the FRBSF site by PBS Environmental. The floodplain data, and 100-year floodplain elevation of 20.58 (NAVD 88) is based on the FEMA floodplain map for the area (FEMA map 53033C0978F), dated May 16, 1995. The City of Renton is in the process of applying for a FEMA update, which would revise the floodplain I elevation in this area to 19.18 (NAVD 88). �, A restrictive covenant exists for the South Marsh as prepared by the U.S. Army Corps of Engineers Seattle District and the Boeing Corporation on June 28, 1999. The proposed FRBSF second pond and FRBSF improvements will not be located within the covenant area. The covenant is to protect the South Marsh from future development in accordance with the Longacres Office Park binding site plan. VIII. Other Permits In addition to the building permit provided by the City of Renton for the FRBSF, a construction NPDES permit will be required since the FRBSF project will disturb more than 1 acre. A construction stormwater pollution prevention plan will be prepared in compliance with DOE minimum requirement#2 prior to beginning construction for the FRBSF site. IX. ErosionlSediment Control Design Erosion and sediment control parameters such as a sediment fence, gravel construction entrance, interceptor swales, sediment pond, and tree protection will be installed by the FRBSF project during construction of the FRBSF facility. Two sediment ponds will be constructed for the FRBSF using the DOE standards. Since the ponds will discharge to a sensitive area, the 10-year developed peak flow rate was used to calculate the surface area at the top of the riser (see Appendix I). Federal Reserve Bank/Longacres Office Park Page 7 Second Pond i . . . . I X. Bond Quantities, Retention/Detention Facility Summary Sheet, and Declaration of Covenant The t,o��d quantities are included in Appendix H. A retention/detention facility summary sheet is included in Appendix F as the TIR worksheet. A declaration of covenant is not required. XI. Maintenance and Operation Manual Upon, construction, the second pond will become a private drainage facility, owned and operated by the FRBSF. The stormwater wetland shall be inspected twice a year during the first three years during growing and non-growing seasons to observe plant species presence, abundance, and condition; bottom contours and water depths relative to plans; and sediment, outlet, and buffer conditions. Maintenance should be scheduled around sensitive vegetation seasons. Plants may require watering, physical support, mulching, weed removal, and replanting during the first three years. Nuisance plant species shall be removed and replaced with desirable plants. Sediment shall be removed from cell #1 when the sediment depth exceeds 1-foot. The control structure, catch basin flow dispersion, and detention pond shall be maintained as indicated in Appendix G. Federal Reserve BanWLongacres Office Park Page 8 Second Pond I m�•ns•ta � xoi•�u•ca i ��M►+�� �( C aoau ro wnw'oo�w��� ����(o�B��Ntl pNp�� " 1�.,/O � � i � � � �6'/ J g � � ! � t � '� '� . ti O � � y� �� �p� 1� � ' � i � ' �� y Q .. � ��J� � � � � � � � � � � � � _ � � � � � � � �� � � � � � � � � � o � � � � � � � � � W Q W � � J I I � � � il ' I � � � � � � � • � � � � � � � � il � � � � � � - , j �_ � � � � ,....�,��� �3f�;l� /, '; t a,.;,..€' y7/`� � �;,,,,,, ` , ;. f #$��I ; �� y f ��;,� i�� t�j ; f . .......... '., � s-: � ,..,., ��. '�i3� � $/ � i/ � _ � � �l�( >.�.� .. < ��; x �. ¢� t�' , . - �� , � f� � ��5 � , ` � ���"� �.� E �� � Y� a " �:::- � ?��x �xw .u��.�.�.,.?. � +w`•�'' „� tr x r 'x � �`� s." '"� 3 .� ..d �,....... . ,, �a�. .rwK a � .� . v f �� wS��� �5 i„ s # ��A� , ,h7, y k ,. .., .,.. .. .. ... .......m .,.. ..,. .rw _ �' . ... . .. . . ... n...�. ( ' . T� K ...... NaeiY/. .....,.�...5:...r . !v�3 5 ' ���X59w�f �I�'i +/ �6F �'M�WfAWr AW... ��' lY '�M��'.�� � N�'/�15..:w�� $ r....... .... � . f .h . q 'S�.�,�. � f. yy �f �idK'.ayn+"�iiw.....%' ................�..Mvnarwer�e••• ...... �;;',:.s�;"'o...••�^�^+,..... ................ .:..��.... .,....;.,..,... ......................... ........... .f,,. ... ,�..,�,/f„1,�r6r,.�.,���«a W ... ....., �ys� sr� � �r� . ... sY.,v.i�g � ' .,.,,,.. # i � st r, 3.:�� ..._ � .#y" ��`�`! .. � m,i � y �"�i.'�,'`�� �.�s'�- i.:. b.Y .. � e �;5 � " � ? i� � � �n�. .,, i S, � {f ! � �.:::;i"^''^"�`�,.,;��...,;�:� .._.�.'�°"•3�a:'�e,�%a"..bw�". .. .. :,, • . � � :: �! � E;:; •� i`� '�'��� ;, x� ..... �� 1 . f� �..� ,v,M ... .... .� �•,••„ .�.�„ ,�... _... _... -�, .., , � � .�:� . . . �E s r S #' ( s��r'' � f�" 1 £n; Y d . t �:: >E ! � ; Fl ��' �tal !i�a €' .Ei, �� I f� � ¢ n : G s I ta y�; .:�.; .. ' �a, 's r o'�!3 f f� i 3!):. ,�,�.,,...., .t�...,,,. �L� }//.�i � . � ,,. , ,. 4 ,i ( f f .. y �� ..u� .. ....p ...., -;: :# 4# �� �; �s'5�,f#�3 )if '5 €c;:d' f. �„f„R s ) i � � �...i f�y .::��.1 �:Y��� { 5 f• p ..v. ...... . / .#.. r. ...y .�... �f�i< {�. k f:� q {���i �1� S ` ? f;�s���� r� E€ � E5 .... �...,,.-.,� # _£ s � �� �S .�:,W"' C8's :� , } � f{i €( { ` . .. ' . s�'f s f' E k��5, >� � �� 3�... L.�.. ....i s'.....:`.Yt ,D' ...r ... � �S • � "' � f' �� �� ; £f .. s s s J( f '; S i p....,......j r.„..........................y i � f.,# . s.� r4 i�E[`r 'F£Y t i �fi��... .....:1.. 8 } S � . .:F � ri .� ; 3fo S ,�.�r; i i �3 { ....... ..................3 � � . '; .,h � � `- ,�.�... ....�.�.�€. f� i(�rf� �� � S4"�r C%s��n � £..�';i� £ , g� . j ' , .,£.............ri�..m, ��e ^'�;� E�i ¢�� sii 4. � �.r." . "5 £ (l� �'t� , y �� �, � �f��(�k� �z n`... . .. C::::; 8 �..s...sd°o `.jx fii � ; ...,. � , � � r f .. �� f 6� t, � oy o i �(� a., a ; �.; �R� , �£ q7t {t �; � �f��,. t . .� ...,. ' �f��t����� � `x �f s � f _ : , � . ����• ��� ': • rr.f is I.f y . :}�., .. . . ° �� �M� ��£�ff , s'` �'.,. ....,••/ Cs ; ,� , 3 tl<% t: ' ; .,. � ' z � j .... ,.� � , � - ,� ,. � . > . g .. `..Q� f £� °{��}8:_j(� zr � f i �E� f,£ £..:':.: � £:::..: ( � " � �.: � ,,,. ; :� 3 t �s i �. s: s ` 4� f ...............µN..,. . 1� 1} j : � iE �� # ;s i #� ✓ R � . �t s s � i ' ':"s (���� `F�� s 'i' , ........�'� ., If�{f �j � �r�''3 ' �a �,.. . ,� � � 1I{� ` :� r¢ ;������ � 63�f�r t � � p� ��1£� . ../ � ; , y < . , � , / , .; ; �'` ... � . � i �i �, x:r E_,f a� . s���,I �....��.............:.�€f�F� .t............ ..... ....< .�.;;� �.� ��� � � � � r � �; . �� , s 'r (. F( � Y� k.s"7'X pw. �.w . � ([ f� : o . � . : . t .1 .. ... t :. :f; j 31�s�3}� �; '' .£... f � ��. { ��: ; t t;� �3 ; - � �� � � ` �• ' ; `:� `} �;�(�q}t� �( i � �'�i.,� r� �s s � :,l.::l . , � ; , • � ::£ .��xt. s : ��-. .,......� �f�, O. , . �� ' �'I'���`( :' r. � {;. ; ..' J�� f G , .. ,. j , , � � a�f; I s � 3 s , .y !� F� ' ;� .. ��,. ' � _. ' �,'.: ;^ b, 4� , ,�� 'f��, .._ � �� ,l/1 r� �.�� ,�;, . � � �. � ; �� , ......� . .. ,.. �� : ���� �; ,. , w...� � ._ , �. : f: � : ��E�fi '� �; ��'�� ` ' # �;���£•''' � _ , f���¢ f� j //�/°. ��. ,' / „ ; , � � �` 1 ` s t ( ��/ ��� f , P .53�(��5 f�' � ,/ r �' Y �Y f � . ..... .{�.HA q= �....,-,. ../ . . .., . . .. . . . . /�� • ................ ............... .......... . ....... ,� :. .:�� �> or�£��`�`�";�� f,. �1.1� ...... . ............ .:<., .. ,„ . ..v„>,. . ,. .. 4 ' '3 �� . __.... . ' � . � ii�� �3� �' r' ,'�,' X f � " ��� � ' �,� { 3 �£t ,s / . � � �o `,� , , , f , `cf :. .::.w. , ., ,: , �� � �� ,.. , �#t3��,� E: /p, �� , � # .. .�".". f ;. : . , : � f"�#� � � '� 'y �� , ..... � � ' � € .._. ,� ,..�....�. � �� ��. . j , : . � ...�.......�v�......�....w... • .:, "�... t £ .........�.�.�. , . � i . . /s� , '•,.��� �;�,� �> .. � ... ,. ••� � � `<.. $ , � .., 3 y J a.. � G -. � , � �'f . ,.. f .., .. . , , . ; .. , y ,� t � . . ,'�� s i <� ..; ' f ; ` � . ...... ....,..,.. ,�.F,�f f , �. �... ; , ....__. �..... ... ,,...»................ �� '..., i�1 ¢ ,� ��f� �-r- y � � f � i i �'s ' f � � . , ' ° �''✓' 4s s . :,,`.'; t ; E 3 £ ; :s � � . > , (r 4 , .,. ` . � �! ...i r �.,.� � , : S � � �t `���� ��¢�s 's�ti� ( Z � j.,,- � � � € . ,{ , �_@ ? . , � �� �7 9 3�(?�qY�tY � : "� � �' ' :t � �' ; , ,.,.... � � Y 3 3� ?( .3 �? ' �s I : ,� ' ��'�.. � . � 3�'��. �f �� f£ � �I i! W.� � ��:, i ; # ,.N,.t " , ` ' . ,' ,; : y�� . ' � ��?�� i1 ` � � �� E " �`' '�,.,....�,.,,�,,.,,,......�..,..� ��......_., ,,.,.,:!�:.�L.....,.. I�... #1 �y t � �: '�4 g ,� ��'�'�--�'� t � �� � i � .,., � ti ���3� :� ;� � q �) ��^ � ... .. �� '• ��.'w .. .f;.., ....,.... � � I�M'�>�'� . . ;.�;... . ......... ...M, _ i ' � , t f � �� A� t � ,�, , ..,. � � . { j j ,�s �' 4.e. . .. ... ..... ...,.............. ... ii.«. � l�., �'M., ,,,., � L, ' ! j 1 ' , .. j j , .......... ....... .......:r ; F'n F� '�. � ( ».....,. . ..'......":g4..'�...�....,.. .4.:::' � ' � .....,.....,,. `f ........., r � 7 }+ T f ,� . .. # , . ... , � , .... 1 s 4 ,.....,... .�i J ..... ........ , ;. , . �s : . ' , pE�J� �r ,+� � , `,.`�}t {"f^"".�^• ,.,,p................ ..... . ......�„ . • ;�•#���; #�k � � �� ! � € �� � Jjf f � '��} `.�,.. ; _,.,.�....... � � ��" ".�"" ; , o , :' }, i�l, . . � :: ,; , � �,� { ��� � ; � � ,� ,:�., �� f = � � : � ;(:. �:� ��� , , �,.. ' ,� j� �,% �.: ._�...., � �� �� � ................._.._....�..V........_.�,........�.........��,�� _���� . . �'� _ , : ; . ................ ................... .............. _ : . .€; � �4 �'f' � � ,�� , ' / 4 y' � 4'� _........_,,....w.... ..,.... � � , .......-....................... � � , ( E i � ,....... , �...,„ � :.d�' �--� ,. 3 .. , �•�- l i a """ : . ��i ��3.�Y.# f f � € ..v....,.....�wWi,y:.. ...�+^.wi�s!:. ..m..w�...(.....�, am..xsn�i.� µ�.., ..,..... . ��.............. y� .... � �: ... ... � �/�� � E l ° � -� ; .�, .... . ....,,. :' '(jf i� 1 i! ...,..,., ...................... � � s �� t £1# i ��(�, I .,.. ...,..... ,.....,...,...., , � � 4 ; j' " .,...,.,r.. .......... .. ....... ..... . b� ry�,.i.-..e � � 43 i �,, ....... ....... ..... ..:�.£��� �s;; 3 ; : � � � F i i fi �'i E s ' �� ' � 'r� ` �� ; �) � ; i t S ��"l sry g ;;� �� f # ° ^} E ...�"' "Y (.. �:��'� `'p �€ s �� � � �u3 /� �^�, � \ •j£� � I 3 T �. � E � ,., 1 ;g� 3 � t..., f% �� / b � ...� i i3�� 5�� � ' � �f� � ^,�' . :.,. s . . , : , 3 �J/ £r . .,_� � ._ ,.,,... ,. r& . ,.. f �� ....... � � i ^ ��`�+ � .... ...... ...... �.,,. € �€'� . ...,.; �p � ; . . A„ r .....,. , � � .. .F. ..... � , f .e ...,....� . t ,.,i 4 � v....... �' � � �,.�, '"w..,. p �i�I �j ^y✓ �•,.•,...�..................................... ..¢. ....,...........,_..,.i'`'� �.........,.... f y;�: �`� �� „�.,. ..3.,..,.,,.,................._.,......,�,,,„.,,�,«>:.;r.;;;:...::�:�$' .{....,.. ; ...._.,..............,......,..,..., ......,..,..m,,........... .......... ;'�........� ., l , „„ ,. �. � � �., ��. . . � .w "� i [ . ., ..........,.... . .._ } 3 � „�.� ........ .................................,.,,.::n�.,,..,,.........................� � .... �;,�� • ......... . : .� , 3 �,,/ ; . . ......_ 3 .... . 3 ..,..,..,,.„,. ' ,...,:.. ♦ 1 � .. .. . , � i �t �{ „""" �r' � "^'^'� i , � .,..,,..... • „�,...,....w.,..... ........................... � �.,,.. .. ._..,.. ............M.... �.;�;.. -,_.. i , ....... .,.... . .. w w........... .............. , ,....«.......,..�..........,,,_..................�.�....-.,t..sr., i .yfi'( �.,�...: y..+�.- ..+,L.��.�. �.�... ,��H., x , .....�.. ... •" ,., t . ... ... ...........,.,, �� , �� . '�. • ' .. _ .. .,, »�...w.......................,,.,.... „,.. ., , f . �✓ ... .. �..r.. `& �������, r^^ . � .. � ...�w.�..� � ,• , • ,...�• ....,. ;.. ..� . .�.. ^•� ... ...,., ., � . .. ...,. fCKY:e:�'r'i•wrm.�.,. �5 . �. � �..... ..... .... .. . .. ..,..v 1 \. � . _ •9oldy 47Ll�llZf a-al■UZC�-mxuzt in��vr woxi,lZf aeuem�i�q �N�»n_,.a.�it�q��,... vllZf �xltL� :oj-x .,....lWMu �...�....'I.a lo _...-- :Wl�, _._�...1 6Mv. �..�...�.\Iwloh. —.._�LfOf',..,....._.a\:I ..�., , - Shee?No. - — ProjecT F By � n / � Location �l Date �I,-, i -. . � � Consulting Engineers �' ' � "'��' ,�o�No. Client -�\,-,. RevisedN � Portland.Oregon .,.�. \n i � �� � — ' �ate � 2 S "'�'�_ , . ���.� . . tJe���;'}1��1� C�r�its �" �'<}��. � �=�gSi ���z-��, 1 -�; � . � ��G�Ck�L�'l0� l�� . � An��p� �1��-���+ 3���a2 = �2, ��1 � . = i_I_.2oaC� i��.t�,1O.lS= 3o�Ps s� __��— u�aC� 2�,�1��;.�`�:: R(X��.{'1���cC\t!�c i��� ��u�,� - i�`��; �.+ 1���� = ?�'.�;=-i � �� = I_�. ���C_� I a\pc�� = ���14� �23�.0 + 2.i�U{ =t�6� = �'.�.�. �+� Sf-_�� o.2`c C_� � _ I =•�``���, �1 (�U 2'� ��lC�� ��= 1��i�i�.� _ �.C�,Q��a�: + ' ; Ap= �'�+ I�SS� = 1�,t�� c�-� _� o .�ctC'_ � � _ ' �C`U�E �L\�'iC-- �',; :�f'=` � _ "�� i"l.�'_ � (��1�1 C1�� +�C�-l\.� A�= 1\0�3sk = i J C':��-�.. ! U �C�'�1i� � b�u\C�.1v�1, � � ; �=�_ �-�����=�- - i d ������t �� ��� ��: ,�; �T J p� = 4�+�s� _�u. o�ac� 2��-�-s�c'�.L�ct.l� ���_ �01� � _ _c,_o2a�--, �;���C`�.�_.:�:�� C�'� ��.�3� 51�� __------- �k,= �g�3 �{ -'I o c�� ��gS� �N '�2 b�- �1�.�`�,i��j ---�------_ f A��= 5�2i� S-�=1�_ ��c�C__ - . F2�S'� (S `/z o� bU.��,tv� f�,= w,bcx��� ��c ������ p�,na�� ��4�u�>=10�ac � / �1 �_J 1`� W : �' ' ' . ^ Gi �:: . . . . ,. , . . . -.. , , .�.Mi.ctw .A 1�K#�s �. ., a..>. ,� .. ' ...iir.vai � nNr/// /i .....ri r�F .i:ir l ...>3' ......... ......�� l/,.. . '.� . . � "+. .. ..<<. .. . ... ...... .Sf$ Y^�Y+�'Y,w «e..... .. n .. .... .., ...a.n.. usuuu�w r,.,.... .. .. . . :�r/ � ::': ;..f . �.e/ /� ..».vx:' b`f�'.. .�./�' .. ..: �::. ,.af........ � q.ym��y, i.i/�///'/�i�a�i�iviii/��/���� iFaii!/�iiis;!ui:viii//"f,asis� ,,.../H /� f f.. «................. .... S .�:'1�,..... �4� � -:-.., ...,......... .............. ...,.,....... f� ....�.���,,. F . . .. /� .1. ••Y/l/...'/.//fFi, Ya➢�zv... . ' .i S : ...�. .... ,�, �� �.ia��.�„�'/ /'�.��//f 3KY"/fr�5 �.. S Y : �� ) � £ .�J � � .. �� - � � .. �.. yy.. �' „,.r . -: f £ � � s s a �.#:;` - •. . �s�i� s . u �% / .e ...7^. .-a. .... �� � �3 � �, •, £�s� ��r.9Jk??'�.97r r, # �y hj'�. , .,..,, ....... ......... �! 3 r.. �.'i�f 4 ,:,. . ......... . �s�°'^� . ,. . : - � � ,.. � ..... '^ .... . ;, -�£ � � _, � , � : :� :: ;�:- ., . � rf ��, : ; , .�.....� t , . �� , . ' "".;::3 i . . . f . . ; � -3 r�:� <...F>,z.,. £.,' E ......... . . . , . . . . , . . , � , . . „ . . .....�...,....... .. : �, . . , , , . . , . . , � . , . , .. . , . . , � .: r / ' "' f : �£ �: i� :s.; ' j � y . y�; J,........�.......�........... ,..w � � ,, .. ,. ; ,; . ; :: :s:: t f , s�r f- ; , ,, !� r '.N.. ,g ;. . .. .: • ; t : .3, <....... . � - � : . : , , : � , ,,; : � I n , . . ,. H - #! £ �� � �.5 5- :. �. , s .�.............. .... . . .... }.............,......, ... � � . ; ;:; s �: . . . �-" �.. .� . , .. i ...�. :: i. . . ; . :, . , , :... N .. � , , ;. ;, . ..• ..... ,. .... .,... � . ��..... : � >,,, , : �: ; � ii _ 'k s t ; ass � : § �9 .... , � • � ' -' T s; � ,e .,s . . > ,..,,..,,,.. . �..»..,v»................�....., ..,.-. �:.� o ..s,, • � ^ � '� , : : , .. .. ` 7 '- : . : - � . ; .:.t ; � v- i� . . 5 {. Y � £ t _ �� � {F��5 S} ..��f. j � �f � .f............. ... .. . . . . .. �>. D � . ; f 5 � £ f . ........., ,�1 i �.' ss £�� £ s; i��s � ; f ; f �� :..s v,::;..'. f'� , , ..��.,..... .'.. ...i �� V �� a. . i �-Y i. � ��}:'s } s £ t ..v..................................y f..... . f.. .} � � I � ;s : :; ;i : � -� �� �� ss jfs ? : € f� � s � .. 3 —A .. S� � � f f 'S 9 S S % f� �.. S , ,.,.,,.. � � j� � � / � � % f f �:.. ...,..�,....�t €� t'� r ? €5 f,�� r t � �! D p k' c.� .....� . .. ......,.. ........................ � , ����s`��! � � � t �, . UL. Ll- `% ;; , , _,, � � � 4- �� ; _ _ ".: } 4', � � ,,. , < .. ; .. , I, ... s s ,5� i �'/ �'��i �.,,,"'r. ...,._., .,........ 3 .... � f�l ,U'/` '�j.`,,, � � .5 �� ��1 . •..., . . .. : € .,� �, s � -•. ' �� f� ; a t , '•; ,.m,..�,,.....� `z q . g . �_k � !rp�f � £�r ;pps • .. ��� _ s *�� �j ..� # s � . � �; ('� '.,.) (/�✓ : . .. ' } i�3. 3 � ................„ ,... £.................,.,...„� � � 5 ' :i � .� � � i S }#s . ,,. , ss;'.. �,..,�� � q t€ g �'^E UI �n � ,�""; .. ,���i j �s J J J � � � ,.,, ,,.,,.... , t mm�3� � v' " � � > � {� ;, ' � ; � t-�- �. , � r ; ..., g� �IF#€ £ � , .�,/ € �j � ........ f � f' i I'.. 1I ,I � � ,• jq4' � ( t 1 � � ,�:. � � ��� �� / , ° I,'� � # �� ; / � .. ,ss €� s g �r � � s � ; : f�r !s �: ; , ,,,, �s� i / � J { : S y 5 � }�� ��f 6���z # 3 s ... .�. t �f �r,. i p ' � ... , f f� . � ...,,.. .,. _. . „ � '"' � . t ( '.:._ { Sf $. ::���f � < f y f . ,, ; .... ..S .,., . . ,/ �i/ .� f • .. �� ` �. � f 3 . L� , � ( Y �� �f .5 1 : : ; £ /• .!� .. ;; . .. > . .. S S: , t . _... ............ .......... ,....,,.,.. /.. ��' • f: s. S . . . . h ' ' • '? ' ' : : ...,,,., R ...,,.... ' ......._.. . .; � ��,,,,._,.,,.,........b..�. � � 3�si_ £ s_-_....,,, ..,......�.... .� ;S i.,.� �e ' S.ox_�. ,� ,q � ; ^�..,f''`� . s £� ) t . % �.a:r.[tar.....::,E:a .�.r...u,a � . S :i . s t . ; �j �jt' . .. . � �� �� � {�F� � # � S •� '� 3 is � �; £ i .�i� ; � { �° � f��y ' � 3 � �E .......»....»,.,...,�,,,,,,,,,,,,,, �° .. '� : ': . :�f S � : f f k. ..... � f : i 5 �� �..': . :: / , ( f' S�5� � ; ; # � � ��r. s : ; � j $� 5 � � �� ..,..,, . .... 0�. s ,'s , � • ; 4 � . £ t .,.. � ,� .: �s £� � J F E �,g % � ....... ._ f � G ,5 , ` �� � y� £��� 3#.. � � s _ ... _. �� ' .. �� . `,. s� �F, ..�� �...:: � ���������� �� � £ � �� �l� , , � ... ..... � ' v w �,.�. , , � „ ... y : . � . .� s � f ,.... ,� :.. �. - -, , .,r. � . ,r a �5, � ' � ..... . . � � �k a j . . . ......... .,. . .. : � . ,........ ; ..,.. .. . . � � ...'. . : ....... ' „ x;: � � s �j�.r 3.. 3 ,.,.....,, v /� : . :� < . tfs,. ; , : E 3 ; • .Y � � � fq ;£ s, �y � 3 f s } : � }j f £s • f -�5 : : ` � �.' J. : F � � ���� � � € ' � . ' , . . +� $ s :€' , ; C� �, �( f � � ;.� ` .. ; , : . , / • t / ; : €j %�; � o � � ..� ,,, ,, a � �� � � � � f f� F t. t�£ /.: �+�/ � I I��� '��,,� — 3 , 1 �` r € ! �!{ ��r i ypo ��{ ��' v 9 v �9 ; . ° ;t i: � 3 f�� f S; it i3 ° 1 ��' . i � "�� � � £ 7 S � 5�# ,� �E s � s � ..,..,.. /;'' , f . , .... , {�-�r7 �s��� /� � '. t �/ f �3�: <�<i�i . ...... ., i� ...<.,.. .,.x. �r . ;`�:°�'n,'.; . ... ,. , ,. � � :,/ .. , �� �t/ . � : � � .. F :t� .. � � s � .: ; ' ,�� v' .,�i 9s-.:;z� ., y , , � � r . ,� . . �►,:' .� . _ :;; J � �. ..fr.. .���' tf , , :;4 `�; ,� r � 3 i m h �:r; �°5�/ �D: , ' ; ' ��� £�s{ < / n., ,.,, �` F— ;k I: wj O �... .. ...... � � r� / � " '' 0 + I � �. ;� s, s�,:'. � d � � .: ; , . / f _... ` ���� ��s � ! f ' � ° 0 r' £ y € 4 { r ��'l � f j �:� � f. � �.. �� �F {�F , " �` ................��,.,. �� , ,q:.. � f � ; ..., .- . ,, . , Y . � , N t j� � � :....... ..� >a. .. '.'. yh 2 �: � ...... . .. � ' / ...1 f , f . :j.�'; .�x`, : � ,� .5. ., , , : � ^,> /' .:�.�. � . � j l 7 iti' :r.� ��^.?�s t , m . ,� . _. .:�. p • s , ; �s : �5# � • : �s>'�.,...,..... s 4 . �......... .. .f�' �...,i„ ,,,.:,: ; ..:: ; �� � �..; :��..;- .' . f} :n; �, • , .� p�7'y.. , . ..::� :: . ,:k :_G . �.�i O � { ; Ys f �r; f a , fi 3 , Y4 J , $ .. . . : i% .1/y : f L<F : , ` ���S2 5� ��, II :�..I����' � ' ' : .� h ; 3, ' . . .. - .. �•, . y ' ;.... . . . . /./ S ' �.. ,.. u � p 3 '# :� . ':: �j . "-.. � • 9 1.. < ¢ � �. ., � ; �. f ` ; 5 � .... ; I j 3 3 .� `�`' < � ; s � „ , i ; �y : ;' r�, � J �� � h ... ....... M .... � � f �� F ..,,��� .p ,.., i _ < ,ta� 3 e t E. '� � ., `:.,� �: , . ,. si ��£ .i .� . ......... : �( s., s £ � 3 ,�' � �. ! 'r a f3 �t �� .i 3 � � s E f�' �. 3 � � �. k� /f � � s . 5 t��� f� > t f'�. '' < � l�'SF t � s` `��� . \ "' f � � . , ,� < £ � .; � 5 I ' ; j . . s s� 3� s: E . ' �: .3•.: s s ` .s � ,a%.,Y`:.Ii''` , f; j „ � . : : : }f p£ � �'�. $ �. � ��.! .': f'•; ' e�.j..�/.,,. .... ........... .. r..,,,,,,,.�.. s.. ...,._....... .� 3 ...,.. ................f f '�e[ £� 1 � s� s r ;{ £� � � � � i '/ 3 E � �k �t..%=. ? � i ' .i���\ (f :..' : # j ��� � f f ; I,{ ,/� t � if ( 9 f } } ... � . ...,. ,. .... . .... . ' .,. H 3 P. . .............».......... .........................,......... . 3 i i r � 3 � . � .. . . ': �.. ...................,. .. . , j � f 5. . .� . ...i.... ...... .. ... ..... , . ' :.% ; - . {"' ...r SS , . ; . ... .. � , , .., �., f . • ; , N,.i... . } : . , ...�,. f s � .. . .... ..,,. .. ..... £ { s : � ,� : . ;�:; : s s � ; _ 't s t-( .,..., ,..s'........... s : i, .; ,. r,,; � .. , , �. ; ......_. s ._......_... ..: i� : � ,< . . . ,.: s . � ' . _ :� . .. � ;� ,j I ': �,` ;. ;.: � �: � 1s , t: : f Y!�/� j� � �:: s::. � @' s: �q� f � � s � ,. ., ,. ; :i 3� " E3 , , : ., • , f: � : i ; �' '1 . , �� , , � ,: . . ,• . . � s i [ : . �; .; . ..�. : : . . , . .... . / � '�,t � ��� � � ! ' I£ �� >� � :£ �� Q�� � , � �,� �............. ....... f .... , { �r �, � t��: € ,' sz s ,4 l �t f `%' /' # f f jr.3 ........,,.._ .. . , - . .. f . : �I � ��( ` � ... , ,. ,.,�3; ,... :� ;f S� + ,, ; .... ,...�.. :s ( Y �, . / .. . . ....... ,.o......�,,,';;,�i ..... )� ......... ..............»,., .. .... ....................................../..�......... ....... ... j��� .. ; • . � � f , ; F , . . . . . . f f � :�; . . . . ................. .....�...., , .,....:.,,.. ,. ............ ... ,,...,... .........� .... .. .., t %, f f t � s k,`+ �.....,, � /f � .. . .. . ,..r'. .; . . . . . . . ..:. � / $: '�� :S �:: Yi,.y; . .. .'f.�.. „ �£.., £ � I € f f 5 # ,gg / ��.�f � 3�i• ��� � #£ i j� Jf f S F! � 15 :f f { ': �� � f '�S F� ` f f I � � i�} ' �� � ./ � £ j/� ; ( [S � � y , �� � �If � , s • f � �i. t� �£ -��� � ; ; � � ° �� ` ... : : , / �i �i '#� �i s ` ; f; � ,..,.,, , ;^... _ ( / , �i ���� S} g� f,y f 3..., i / e i € t ? , ' y.. ( � ' < ' f`. , . . t �.J£$s -� . � F � ` � k f .I� ' : �' ' .._ ..,.. ................ - / �� w. : � i ��. /�# �� � � ....................: '� ,..' �/� ... . : < ' . ' ' 1 �" € � � � � �, , a....,.. ' +. � �:, .` ` ! ? : i I j' ....._. . . ... ,..,,, . ., .....,. ..,....,. `x ; `+' / " � � . . : . .. ....._. . .. S S 5 5 ' ' F t .. ... ..... ... . . £ .; � �.- � .. ,,.... ... ....... .. _........ ............ ss � ., ... .......... . . l ...... .. ............. ... . , ......,. � E .,.. s, � „ . ..3.. � / • : 5 �,.. � �� „ .. .. . . : :> . • ... � . ; , ... .N � . ,- . � `�'4..�„ . ; ; ,: : s ..,.�.,. �...........M .,. �.. : , ;: ,� " , . . � : � � : , _ < s � .,., ,. -.>,.. .. � F. ..., .... .,.,.. ;r f s�ts �H ,, � ,,.,,. � ` s � i �,.r.....,...,A 1F � y��( ���' € , ` � s 3 „� i��r r'"� . �i � � �� , .,,,....,. . ,....,,,z...,. ... ..............................._ �.._,.. ........... , ....... ...,,,,,..., ��, w ���. �1�. . �$: .,.. .`. � i . ..,.., , .. .. .... .. .... ................ � ,....,. � ....., � ., , ,.,......,..m....w..... .._.. ... . �s . .... . .. b .,,,..,.. ..a ... .�. ..,,.. -........, ...... ............. . � � v�4 . A / ;'�.•...w ....' .� � ...s. . ... .. .,. . Lc�e�� _ ' "���,�'��� Lt�-k �i A _ i 2C�AC� A , �- � �'� b v�C�C ��� � = Al!�:��S �.O(7�1=?A1s �.lDf3C'�C., Jap= Q .ZZ� ' � '- `.� � , � ._ �� . _ _ ���t�:1 �,.1�� y E , '+ , a ,,a�, - �C��C� > �;= o.q5c+c, � 6.3 c � � .� � - �`� � �= 9c� , „�,... = ���C`.U�.C� �C1�C��� A�� C� .53 GlC. "_ C�e��erni Lpo�,;��-t�-? A��= b .2-Sac � � = Sc�ee���� cn� ��d,c�. y A;s o.�I ae *� = C�UQ(� �"� _> W�� U .U1[\(�,. . - �"'�� ��C�I�X!�\k-� l��=b, b'LOIC, - - :,.c1��`X�.lk > A�= D .1�QC • w ��SF (t� .Y2��Y��,= 1•1�nC. .,.,.,.� �R�'�`�,i= (�=, `�2�:'> E�� > b �p n,� ; �. __ .. ..: ... ��....: ..........�...... - _ . �� ....:.:. . �Y. .....:...w:::�:::::::::::::� � �� ,..:.::.r ': .. .,... ... ,..:k.��<:���,.:�: � � :....::. , ,„ .... . ... �f. ,....�..... ..< ... . .�.........�._ ,� . , :.......».........�. - .., ....�,... . ...........,......... .....�......... � , . ..:.:. ........�_.......: ... ......w,.........M...... �x - ,.......� ,»,.� . .�.��.. _.,.. �.......�.�.. :... � �... - - .. _ .... ....�..... .. .:::M.�.. �.._.....� , , , ,, � f ��9 , ..........a,,.,.,....�� � . w., .: f . .. � � _ f � � '`�! .���'. , ,�,p, � . ... j � ', .... i.l'ft:�� f�,......5 . ,. .d .fG!i'v'MZNY1� /!y: '%?f,'h'.. ! � .... ... £ �... �:.:'.i.r�,.....�v.en. � £ � .. � £ f ....... ..�........ . ... �f.. Y�j#' y �& � ..:. ... ... ' . . ..�. �[.x�i�.�� .t�ai"fW1l/aw i��.v.'ieY..: '� ... i .... .. � ...................... � , ��- .,. . ,�.. . � ; 4 S �r ,., %%y . .... �.............. .... 3 . �+,.- ., ^�3��1�^�.��,t� ..''. .... �, f .,. ....... ........ y� ; � . ....� ...,.. ' . j : :� � . . .... :..,h �. . � ,........... 5 , ..,........ , ....�.... �t$ ' .... : �� ...,..... £ ... . . ��O � �_ ]NW . t!00 � ,�.� ......... ......... ........ .....,... .... .............. ....... ............ .. ..... .. i f .. ........ ..�... �� _ "° _........ ....£. £ , ��� ( ..., .... ......... : . - s -• f��... .. ,� � . 4 ... ; -�,..• � .y � .. ,.:..... . . . � ..; . '�....� .. ' '' t _ : : ` '. y �� ',�, ' ; f f ' >�. :.i ._,. ' .:. c. .»:,. • � S . � ,,. :,:.. , .... . .Y.,,1`. .... .�..:.� ......... ...... ........ � ...::,..... . �. ' ; ... .......... ..:::::. . �"..., �~^"'^+�,.,`�� f, { s f s`- �� � �� ' E £ ; �' �\ . �.� ,..� £S� # E , ; . / �. r � : ::. . :. .... �. , . � � t . : � � . .. . ..... ......... . . , . .... .,...., ,.....:,.. ..........., ...,... . ..... ., .,....,..,....,,.,...,......,.,...,..,.... x:;+ : -; .,:, � ' :' .,. . .�� \ ' : .,. � ( � .. . . _ � 5. (.,.... � \ f 1 /F 4�. s + £ � � f / • �: ''. i ! :.� '.. �' .� , .. ....... . �....I • j '. "-. 1 ' ;:.:�. ..; :.. � .. i ' f 5 : ; . . .... .. . . , i .. . . ...: . �. . .: : . ' * � . . �. .... .,, s : . ' -.' .. . '... .•, ;� . .. � . : . ; ... . . .... :' . . . . .. ... ... .. . . . ::... . ... ... . : v.p ; � ; � . . . ,. . � a ... s f�S � �. . ; • ,� .;.. .. . ' i ij .�. �,�i . { .stt:>� .. ., ; �� i�' ��!. �fi/�,. j � Y.�3'i�� r��'s# . . ., ...... �, , ? » ��..... -.. i £�{ '� �v. .. f $ .... . j� � £ }.,. f j�. a s �. S Q : } � . � �a. , 1 ;' � f 1 £# 4 � � �3 �� i . ; = - `�> .�: � ' $� � : ; , . . _, : .. .... ..., . . £ # � � f i � .... t s s � � S t . . . . � �./ ' S .iF � � ; � 's s s. � ' £ .; s ;,.5 s E .,� t i {%. 2 f� } . ,�U RD POST '"�,� s� � I } 4s � �.< � � '� � i.. � � ; ; ' �� .... .... : ; _..., , ;; s . �h' Y� �M:�>ry f S f f4 ( f '• ...... . . . _ ` '�CR ENING �y; ..., b, . _.... ... ............. � j , ,Y.: � � 1 F�'# 3 i t f% L.< r .B.l�! D.l�G t� � €'. �: � �f; N � � ,€.� € : : : a e . t g � ..... .................f...,...... . . ....... . � . . . ,i r .._ . ............ ..... F� :KytQ/�' � . ., t ��-.........,._.............w..,.........,,, .. ..... ... a y�� � y �...... ...._ ...... . . ... _... ;,. �{� °�., "�' .. ..... :.,,. ...'�/�. .���f��-�3�� �:,, >` '...' � '�, % � k ;�� � � ' • ...,. . - � }�4 , € , ,; . , . , � . . ........ : - ..:,. . ...:.. ... . l: I/� .>»� : . .... ... , ��:.. .7�.� ��. ; � , ..... , � .,, �. ,., �... ... ....... . .F d,,.y .. ..... ,,,...... .;3 ., ,.;,.: � �,� .:...... : ...... ..... . � �.,> � �-zs` £ ....... ,. � ........ �� , ` ' � • *� �`.,� ; _.... � ,.,_ , i. ,.., �,.,N , r r .. .__ _, ..... �� � ..:...........�'.......................................�. , �., r� ,• ....',..,./,., � .. °� .�,°" . .............. ....Y. '., .. . ... . . ...... �"�� .. �f .:, �. . .. � : . .. ...< } f � .... ....:.. � � 6' ' . . � , f.....,..... .:.:.: �,.... .. ��..1 . ' ` , �I : 1 / f .� �... ..... �� �c`x � ' . f `•, 'S � . �.... . ..a . �..� � . . .. �.. � . . .. :... . . , . .... , . � � .: ,., .�.. ..c..... ... .... . ... � ...: .� :i L�. f� .�, -.......... . �, ' �. 4n N � i i .. .. � � f��� , � ; , E X(��N_�(C� ,,^,.. , ........� : �,...,� r .� � �^^^��,,�, ': . : . . �,- . _ ; s € f �, �� ; . , . • s i k tr ; , . � Jj 3 , � . ; • � '+�-•.•�..,,-�..�..� , : � �; : . r,+�� ri�°�. .� 4 ( ., '/ (/ � i3� �; l : � ND : . , � ». ; TRA�T.D PO ;, �:; . ,. . FEDERAL . �........� .....�., �.� ' ' , ,: , <.:� � RESERVE BANK � `.............._ExPAr+F io £ : ......................... � OF SAN ;; � . _. ,�' : , FRANCISCO � � , . > _ _ _..._ ....... � - _.._�.__.._,...�.,�.�,M».. . ..: . ..», , ,... ; � , , _ �... . _ _. _ , ; ,� __ f ,,, ... : �,,�'' � f ! ��.� �<a �ri< ; — -- - : < ; �. t • �" - � "�� �/�.,.�-.�. i � �� �'� ��. � �' � �,' � '' / / s ,. ,,, .k , , . . , ' `� w,,'�.�` '.. � � � �; `�� .,. .,:�' / 'SE�URE TRUCiP � ; .. — — -- ...� ,.w. ..� ,, . , , , < a YARD ` ' � � . _ , � . w� � �r: ; ; ...£...,�::d.. O �' '% _ , � , .: ' ' /1CCESS ' ` ._._. . 5.: ° %' > � ....... ...,.�.,.., � ' . _ ... R011D : , � _ , , ; GENERAL 5 --- LOADING DOCK �s � — , ; , __ �-� `. _ �. ',, ' _...... _. ��,�h,� _ . ._ .. .. .��._.............. _. ;. y„..........�� � '" "� -- SECOND POND ,.. { . � ...., � .� ; t , ,, 3 % �_.,.....,.,{%�� . - il �— _. _ _ _ -- - - — �,� ' P�o;ecT � `.3�F BY ,��C SheeTNo. ---- � Locafion Date � � Consulting Engineers , �`� � 1� �� Client Z.2�i Revised C �Ob�O' F•,r..:�.-r_���gr_,r. lJl7l�A , - °°�e �2Z ?03Z�I C o�C� �c�,11��;1C c�e-�.i1��"� v o\'����e -�� 2�'d` �'� 1.��� �u��1�1 - -rl`�1��; � 1�-��c111�;l� L�1�t�l.+�l�:�:t� �`P G� A. 2� -P�� 1�Ct�1\�1 = 131,552 S�= 3 .b2 CtC• ��1� \�1C\, eX���S1'1) �. ��.��.-�fi�r'�0� : al1 ��� �r DdE 11�11i,1(� �C..'fi��1 2.�.���0\1�11� T� J ��a�� _ �.b2. G1C �� �ev�w�� a��11�C�1�'. RC�� `Zd= O.�C�C. -t6,1QC= p,4�C1.C.. ��;r;.'���(1.t(!�= p.�3 C\C.. �� C�e�'�eSct,1 l.G�,C�,= o.2Sc�L. rczg (s'i2� = o .�o ae � ��:�Lt c,�����„rk va l'..���1Q -� -�i�zLue e�(.pC�11���1= �;,�,eL�s-i;� vO�..Lt-t,\_ ��2q�- ����-- ;�FC�c ��1� vc�.�.L�.�� N. s�C�c c� v�t�L-� c�Ce (�1�L�C �iu�.�2 C�SC��_ �����. C�L�C�E'�lt�ti ����Ct�.�� -�„"C�C�.�.� ��. ��\1C,1 \�\C�� . c�r� ������, -���,�� ti��Li�c1�t.�,���� ;:�. �t!. n;;^ir.-��-�� �N .�de JC� _ �43�3 s�-- �L� ��1t��� � �> �'� expc�`���� _ �,i��3s�= 10 .��ac^1 a�a� = c��� La ,��-�e� �L�c�����t�c-��c< (a�i 3����c��\ac1�= 1�4�Q�= o •�o c�C� r���:�;C�1.5- �1.."�C�,� CLS��{- - ������p � ��Y� ���� .'���1C\ e�.�Cl`t1��6��1) �1�ti�.t�= 3.02 C�e - �.��3 - c .q = c ,gq_�C� ti�.. -t".�tC bvec��� v���t�1C i�1 i�l� �t\'� ��.\U C���Q.u� -�t �\l� ��2 , et�C�`;�_�i�11 i�`�'c ���1 �'tl��1Ce ��,-11� � ��C'� �fi� ���;��I `�'�1C�Ch� Y1��.,1:d t,�.1'�1 i1e�i �'!D '� re i�`�1 � '�`Y �'1e�v (;1�-C�C�, C�-�l��''L `rl�i�'�'c C � � � ���'11.:�Q 1 ', z �e�'�\�1�i1C Vc;\L�1>�� t,l�t�.��1,�:I�t1 � �`����1� e�;C��1S'1��1� �.e-4f;�h��� ��\LU11C= C.II�� AC���= � `335 C�. , '� '�°'��\111�1C �!"r� •�v' . �;�C'�\1S1�1 a�����? ..' ,`,.���= o.Asa C + o.S3 ac+ p.2S ae = 1,23 Q�• ', ►��,,,�� ����_��_ � .��1�;- � .�� c�e= c .n�c�c. r�a�� = o •4o ae. . I ;��",; = o.��1 ae - ;�;��c ��_.:�t;e L,ac�l= � ,��1 C�� - � .���tc = d .�2 ac. c���a:�� ix���41 = 3 3 2 ac- � • �b b� �Q = naad� � ��o o�� � -p�,r�� I ���0 0�' 9 =��ip��1� c�u��.�{ i C a� �'�'� � '�b�� � _ �o ��3�,t,Oc1Xa QU 1,�v'� �� ��-vo ��11�t,.���U��aad �,�-1 mc� �1�.ti����. ��LJ�,C11�on }��r�� �,�- �,����.u�'p a.!- `p�n �i��� s�. ��u�u �c��� s���- -.-�u 1 '�� _?�U.S�ro -Q1�� ��m -.t�'��?��Jl 1��Z =S�aC�.9ys �� ' --- .___ - ---- __- ��''v = ��`ooqaa�- ,� + ,��� _�1�'P - - - - �,��Sl,'c'(�Xa � CJ��� l�.l�i�'��1 o�.�,R� ������ 5 11z�o� ea� _ _ � — ,,. _ . . ��� �� ���� s�aau�6u3 Bu�llnsuo� � Z7i e� uoi�o�o� oN+�4S �� Ag � l�afo� � 2"� � �u�� WESTERN WASHINGTON HYDROLOGY MODEL V2 ��,g-`�', PROJECT REPORT Project Name: default �-�'��`'j �t�,'S ��•Df'� � ��'Y1��,Q Site Address: 2nd pond w/out expansion a�'� City . renton � ����w�� � d��et�p�, Report Date : 7/22/2005 � �� � � Gage . Seatac � � ' Data Start . 1998 Data End . 1998 Precip Scale: 1.00 PREDEVELOPED LAND USE Basin . Basin 1 Flows To . Point of Compliance GroundWater: No Land Use Acres TILL FOREST: 3.02 DEVELOPED LAND USE Basin . Basin 1 Flows To . Pond 1 GroundWater: No � Land Use Acres TILL GRASS: 0.89 IMPERVIOUS: 2. 13 RCHRES (POND) INFORMATION Pond Name: Pond 1 Pond Type: Trapezoidal Pond Pond Flows to : Point of Compliance Pond Rain / Evap is not activated. Dimensions Depth: 9 .3ft. Bottom Lenqth: 184.1ft. Bottom Width : 61.36ft. Side slope 1: 2 To 1 Side slope 2: 2 To 1 Side slope 3: 2 To 1 Side slope 4: 2 To 1 Volume at Riser Head: 0. 983 acre-ft. Discharge Structure Riser Height: 3.3 ft . Riser Diameter: 18 in. Orifice 1 Diameter: 1.01 in. Elevation: 0 ft. Orifice 2 Diameter: 1.9 in. Elevation: 2.2011 ft. Orifice 3 Diameter: 0.84 in. Elevation: 2.475 ft. Pond Hydraulic Table Stage{ft) Area(acr) Volume(acr-ft) Dschrg(cfs) Infilt(cfs) 0.000 0.259 0.000 0.000 0.000 0.048 0.260 0.012 0.006 0.000 0.096 0.261 0.025 0.008 0.000 0.193 0.263 0.037 0.010 O.00O I UVU U �'LL G UtSU L 5�� U LLS� L G00 '0 66L'T E90 ' T 6bf�'0 9�S '£ 000'0 9T£'T L60'I Zb£'0 886'� 000'0 068 '0 0£0'T T6E'0 Ob6'E 000'0 Z£S'0 6T0'I Ob�'0 Z6�'E 000'0 8SZ'0 866 "0 6�E'0 66�'E 000'0 6iT'0 Z86 "0 8£E'0 L6Z'£ 000'0 Lii'0 996 '0 9EE'0 66Z'E 000'0 STT '0 OS6 '0 SE£'0 TOZ'£ 000'0 £TI '0 6E6 '0 6E�'0 ESI 'E 000'0 TTT'0 8T6 '0 �££'0 90i '� 000'0 60T '0 Z06 '0 Z££'0 8S0'� 000'0 90T '0 988'0 T££'0 OTO'E 000'0 60T '0 OL8'0 6Z£'0 Z96'Z 000'0 ZOi'0 SS8'0 8Z£'0 6i6 'Z 000'0 660'0 ' 6�8'0 LZ£'0 L98'Z 000'0 960'0 £Z8 '0 9Z�'0 6T8'Z 000'0 660'0 808 '0 SZE'0 iLL'Z 000'0 T60'0 Z6L'0 £ZE'0 EZL 'Z 000'0 880'0 LLL'0 ZZ£'0 9L9 'Z 000'0 680'0 Z9L'0 TZ�'0 8Z9'Z 000'0 T80'0 96L'0 OZE'0 08S'Z 000 '0 LLO'0 TEL'0 6T£'0 Z�S'Z 000'0 TLO'0 9IL'0 8T£'0 686'Z 000'0 L90'0 TOL'0 9iE'0 LE�'Z 000'0 690'0 S89 '0 SIE'0 68£'Z 000'0 090'0 OL9 '0 6I£'0 LbE'Z 000'0 9S0'0 SS9 '0 ET�'0 �6Z'Z 000'0 TSO'0 Tb9 '0 ZT�'0 96Z'Z 000'0 O60'0 9Z9'0 TT�'0 86T 'Z 000'0 6E0'0 Ti9'0 60�'0 OST 'Z .�`a,�-�d •�iZ t�,-000'0 6E0'Q 96S'0 80E'0 ZOZ 'Z 000'0 8£0'0 Z8S'0 LO£'0 6S0'Z 000'0 8�0'0 L9S'0 90E'0 L00'Z 000'0 L�0'0 ZSS'0 SO£'0 6S6 'Z 000'0 L�0'0 8ES'0 60£ '0 TT6'T 000'0 L�0'0 EZS'0 �0�'0 �98'T 000'0 9£0'0 60S'0 T0�'0 9I8'i 000'0 9E0'0 b6b'0 00�'0 89L'I 000'0 S�0'0 08b'0 66Z'0 OZL'I 000 '0 SEO'0 996'0 86Z'0 ZL9 'T 000 '0 bE0'0 ZSb '0 L6Z'0 bZ9 't 000 '0 6E0'0 L�b'0 96Z'0 LLS'i 000'0 ��0'0 EZ�'0 S6Z'0 6ZS'T 000'0 �EO'0 606'0 66Z'0 T8b'Z 000'0 Z�0'0 S6£'0 Z6Z'0 E�6'T 000'0 ZEO'0 T8�'0 I6Z'0 98�'I 000'0 Z�0'0 L9�'0 06Z'0 8E�'T 000'0 OEO'0 6SE'0 68Z'0 06Z'Z 000'0 OEO'0 0�£'0 88Z'0 Z6Z'T 000'0 6Z0'0 9Z£'0 L8Z'0 661'T 000'0 6Z0'0 ZT�'0 98Z'0 L6T'I 000'0 8Z0'0 66Z'0 S8Z'0 660'T 000'0 LZO'0 S8Z'0 £8Z'0 TSO'I 000'0 LZO'0 ZLZ'0 Z8Z'0 £00'I 000'0 9Z0'0 8SZ'0 I8Z'0 9S6'0 000'0 9Z0'0 SbZ'0 08Z'0 806 '0 000'0 SZO'0 iEZ'0 6LZ'0 098'0 000'0 bZ0'0 8iZ'0 8LZ'0 ZT8'0 I 000'0 £ZO'0 SOZ'0 LLZ'0 b9L'0 000'0 £ZO'0 Z6T '0 9LZ'0 LTL'0 000'0 ZZO'0 6LT'0 SLZ'0 699'0 000'0 TZO'0 S9i'0 �LZ'0 IZ9'0 000'0 OZO'0 ZSZ'0 ZLZ'0 ELS'0 000 '0 6T0'0 6�T '0 TLZ'0 9ZS'0 000 '0 6I0'0 9Zi'0 OLZ'0 8L6'0 000 '0 8I0'0 6TT'0 69Z'0 0£6'0 000'0 LTO'0 IOi'0 89Z'0 Z8E'0 000'0 Si0'0 880'0 L9Z'0 bEE'0 000'0 bT0'0 SLO '0 99Z'0 L8Z'0 000'0 �IO'0 �90'0 S9Z'0 6�Z'0 000'0 ZTO'0 OSO'0 b9Z'0 Z5T '0 I�� _ _ _ _____ _ �3. 6�� 0.396 1.096 2.916 0.000 3.679 0.347 1.113 3.541 0.000 3.727 0.348 1.129 9 .207 0.000 3.774 0.350 1. 196 9 .912 0.000 3.822 0.351 1. 163 5.652 0.000 3.870 0.352 1. 179 6.928 0.000 3.918 0.353 1.196 7.236 0.000 3. 966 0.359 1.213 8.076 0.000 4 .013 0.356 1.230 8.947 0.000 4 .061 0.357 1.297 9.848 0.000 4 . 109 0.358 1.264 10.78 0.000 4 . 157 0.359 1.281 11.73 0.000 9 .204 0.361 1.299 12.72 0.000 4 .252 0.362 1.316 13.73 0.000 9 .300 0.363 1.333 14.76 0.000 ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped Return Period Flow(cfs) 2 year 0.077231 5 year 0.120452 10 year 0.143976 25 year 0.167942 50 year 0.182196 100 year 0.193922 Flow Frequency Return Periods for Developed Unmitigated Return Period Flow(cfs) 2 year 0.577756 5 year 0.714183 10 year 0.803485 25 year 0.915995 50 year 0.999923 100 year 1.084172 Flow Frequency Return Periods for Developed Mitigated Return Period Flow(cfs) 2 year 0.051083 5 year 0.080637 I 10 year 0. 109964 ' 25 year 0.141787 ' 50 year 0. 174079 100 year 0.210927 j Yearly Peaks for Predeveloped and Developed-Mitigated Ili Year Predeveloped Developed '� 1999 0.090 0.035 ' 1950 0. 173 0.064 1951 0. 191 0.237 1952 0.059 0.032 1953 0.045 0.057 1959 0.066 0.037 1955 0.117 0.036 1956 0.100 0.091 1957 0.076 0.037 1958 0.082 0.093 1959 0.068 0.036 1960 0.119 0.105 1961 0.069 0.074 1962 0.040 0.032 1963 0.054 0.043 1964 0.068 0.068 1965 0.051 0.082 1966 0.052 0.039 1967 0. 117 0.060 196�. 0.069 0.038 1969 0.068 0.038 1970 0.054 0.054 1971 0.049 0.039 1972 0.192 0.108 1973 U.062 0.082 1979 U.067 0.039 1975 0.102 0.035 1976 0.063 0.038 1977 0.006 0.032 1978 0.055 0.060 1979 0.032 0.029 1980 0.092 0. 110 1981 0.099 0.039 1982 0.093 0.093 1983 0.084 0.039 1984 0.054 0.032 1985 0.029 0.033 1986 0.197 0.061 1987 0.124 0.099 1988 0.045 0.036 1989 0.028 0.033 1990 0.201 0.108 1991 0.175 0. 107 1992 0.058 0.058 1993 0.065 0.032 1994 0.016 0.028 1995 0.092 0.075 1996 0.180 0.119 1997 0.165 0.145 1998 0.034 0.033 Ranked Yearly Peaks for Predeveloped and Developed-Mitigated Rank Predeveloped Developed 1 0. 1908 0.1955 2 0.1800 0.1190 3 0. 1753 0.1096 4 0. 1732 0.1089 5 0. 1654 0.1077 6 0.1467 0.1067 7 0. 1415 0.1048 8 0.1241 0.0989 9 0.1190 0.0933 10 0.1171 0.0913 11 0.1169 0.0820 12 0.1017 0.0818 13 0.1001 0.0750 19 0.0930 0.0743 15 0.0920 0.0678 16 0.0919 0.0695 17 0.0896 0.0606 18 0.0843 0.0600 19 0.0822 0.0600 20 0.0755 0.0581 21 0.0692 0.0574 22 0.0689 0.0539 23 0.0685 0.0431 24 0.0679 0.0929 25 0.0679 0.0391 26 0.0666 0.0390 27 0.0663 0.0389 28 0.0697 0.0389 29 0.0627 0.0386 30 0.0617 0.0380 31 0.0591 0.0379 32 0.0579 0.0378 33 0.0546 0.0373 39 0.0543 0.0370 35 0.0541 0.0359 ' 36 0.0537 0.0356 �� n n��n n n�;G 38 0.0506 0.0354 39 0.0493 0.0352 40 0.0486 0.0330 41 0.0952 0.0328 42 0.0499 0.0328 43 0.0402 0.0320 49 0.0336 0.0320 45 0.0317 0.0319 96 0.0290 0.0318 47 0.0284 0.0317 48 0.0163 0.0294 49 0.0062 0.0285 1/2 2 year to 50 year Flow(CFS) Predev Final Percentage Pass/Fail 0.0386 3773 3697 97.0 Pass 0.0401 3490 2363 67.0 Pass 0.0415 3292 2274 70.0 Pass 0.0430 3037 2203 72.0 Pass 0.0449 2832 2139 75.0 Pass 0.0459 2633 2077 78.0 Pass 0.0473 2953 2029 82.0 Pass 0.0488 2275 1984 87.0 Pass 0.0502 2129 1933 90.0 Pass 0.0517 2000 1865 93.0 Pass 0.0531 1884 1765 93.0 Pass 0.0596 1773 1668 99 .0 Pass 0.0560 1678 1587 99 .0 Pass 0.0575 1584 1483 93.0 Pass 0.0589 1490 1392 93.0 Pass 0.0604 1397 1309 93.0 Pass 0.0618 1315 1232 93.0 Pass 0.0633 1238 1156 93.0 Pass 0.0647 1187 1066 89.0 Pass 0.0662 1114 984 88.0 Pass 0.0676 1056 923 87.0 Pass 0.0691 1004 869 86.0 Pass 0.0705 954 830 87.0 Pass 0.0720 902 802 88.0 Pass 0.0739 860 757 88.0 Pass 0.0749 818 711 86.0 Pass 0.0763 774 684 88.0 Pass 0.0778 738 658 89.0 Pass 0.0792 710 632 89.0 Pass 0.0807 669 603 90.0 Pass 0.0821 643 568 88.0 Pass 0.0836 616 546 88.0 Pass 0.0850 586 522 89.0 Pass 0.0865 566 500 88.0 Pass 0.0879 532 477 89.0 Pass 0.0894 508 442 87.0 Pass 0.0908 974 404 85.0 Pass 0.0923 952 375 82.0 Pass 0.0937 932 342 79.0 Pass 0.0952 918 321 76.0 Pass 0.0966 391 295 75.0 Pass 0.0981 372 266 71.0 Pass 0.0995 353 238 67.0 Pass 0. 1010 392 220 69.0 Pass 0. 1029 322 202 62.0 Pass 0.1039 305 179 58.0 Pass 0.1053 282 145 51.0 Pass 0.1068 273 123 95.0 Pass 0. 1082 260 99 38.0 Pass 0. 1097 295 82 33.0 Pass 0. 1111 233 67 28.0 Pass 0. 1126 224 56 25.0 Pass 0.1140 212 46 21.0 Pass 0. 1155 206 31 15.0 Pass 0. 1169 197 24 12.0 Pass n iion iao � � � n o��� '0.1198 182 9 4.0 Pass 0. 1213 179 8 4.0 Pass 0.1227 168 8 9.0 Pass 0.1242 162 8 4.0 Pass 0. 1256 155 8 5.0 Pass 0.1271 151 8 5.0 Pass 0.1285 145 7 9 .0 Pass 0. 1300 143 7 4.0 Pass 0. 1314 135 7 5.0 Pass 0. 1329 128 7 5.0 Pass 0.1343 120 7 5.0 Pass ; 0.1358 113 7 6.0 Pass � 0. 1372 109 6 5.0 Pass � 0.1387 107 6 5.0 Pass 0.1401 96 5 5.0 Pass 0.1416 90 5 5.0 Pass 0_1930 84 5 5.0 Pass 0.1445 75 5 6.0 Pass 0.1459 72 4 5.0 Pass 0.1479 63 4 6.0 Pass 0.1488 61 4 6.0 Pass 0.1503 58 4 6.0 Pass 0.1517 52 4 7.0 Pass 0.1532 49 4 8.0 Pass 0.1546 47 4 8.0 Pass 0. 1561 43 4 9.0 Pass 0. 1575 39 4 10.0 Pass 0.1590 34 4 11.0 . Pass 0. 1604 31 4 12.0 Pass 0.1619 29 4 13.0 Pass 0.1633 26 4 15.0 Pass 0.1648 25 4 16.0 Pass 0.1662 23 4 17.0 Pass 0. 1677 21 4 19.0 Pass 0. 1691 21 4 19.0 Pass 0. 1706 20 3 15.0 Pass 0.1720 18 3 16.0 Pass 0. 1735 17 3 17.0 Pass 0.1749 14 3 21.0 Pass 0.1769 13 3 23.0 Pass 0.1778 12 2 16.0 Pass 0.1793 10 2 20.0 Pass 0. 1807 7 2 28.0 Pass 0.1822 7 2 28.0 Pass Water Quality BMP Flow and Volume_ On-line facility volume: 0.2776 acre-feet On-line facility target flox: 0.3056 cfs. P,djusted for 15 min: 0.3336 cfs. Off-line facility target flo�r: 0.1729 c£s. Adjusted for 15 min: 0.1888 cfs. program and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regazding the performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall AQUA TERRA Consultants and/or the Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information; business interruption, and the like) arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. � r�,aR��F�ow{c�► 10�..1939 1Q0 • �� i.�822 � � ri� � r �:��z � �� :"I � �l��� ;� � � � � � ': � �. 25 '.1679 � � �; ( ! �� E'`,I- �I i�, , �� ' [ .I;{ , � .^�► �' � r _� �i � ` �` ' �'� � 1A ��a _�.�aao — t���t -- f„ �� t �;I� �ll v I ^ � � I' ' i �-1,' ,� �� � � t �, i�i , � , �5 lzns - �_: �: � � � , � � o Prede � ��� 1 � '�{ ' �; � 10E-1 pP.dt#�itigated 1 � � �x�xx } � <r tvk�'�'� 2 0712 �-i�# �wi�;� � � ;.xv���.��"� �`� III � z , ���� � :1 1�,2 4 � ' i� V = 1 � 1D 20 30 dQ 50 60 70 20 �0 99 b �umulative Probabili Yearly Peaks for Predeveloped Flow Frequency Chart r�art!F�ow 4�? 100-1.084 ' - , ,F � � E, �� , 0.18 � fxeti_. 50 9999 i ' �I (���€ � 'f� � i� � f� ,I r.Devebped vui6�Facility �- � � ���= i � � � � � : , ,�� 25 9160 � ' ' � 4 i : � 0,15 — � � � ti 'i i ���f �� I� `' � f ( { � I +ti 10 :.�D35 �:# 3 � � ti �;�� � ' ` '� � �' � 0.11 k �;�i; ;; ( ' I' ;� I{ �� �� �f f ,, � ' 5 '��.71A2 �3 i , ( � � � �j �I ,� '. � � g ' ' � 4t 0.07 `! ' I � � �' � :° ,� � ,�; � 3 2 .5778 '' � � ��� � �y�' � � �'� " t O.Q4 — ---- _ � '� � � Z____ k. � � �� �- � � �� � �; tE � ... I� ' ` :� k F�` �� 0 i � � �[ t �;- 10E-5 � 10E-4 14E3 10E-2 1�E-1 1 10 . . � i . . 3� � [t � . _ � . ��CC�ti�EXC@�9d'[tl Yearly Peaks for developed W!O Pond Duration Graph t�at';F�ow{�? 100=.2109 li '( . � �, 3! �" ii � �� � �� i �� ���€� E �( ��' f 50 K.1741 � � � `� ( 7 �? 3.:Si ! � � ,�I E t E � �� Ei ; � ii:.i °� � t � �� �� � il 15� ': �3 I� �� �E s� � � � '� _ !, �'� �� � '�: 25 ��.141$ � �� � � � �� i� � ,i ��., � � ; i �i �� l �� �i �� � �� ,€ Ej' i: ��'� } I : f .i � E f �: 3 10 .1DSd t i i! � ' ;� { � �_. � 5 0806 �� I I � �!I l i y _ � � ; 2 0511 �',_ a � U � �r � ��� � �� � �� � Yearly Peaks for Developed WlPond WESTERN WASHINGTON HYDROLOGY MODEL V2 2� �� w� Qk�11S��� PROJECT REPORT C�1\S U� 611�v�l� � roject Name: default �e-��1��� �� "`^" � �ite Address: 2nd pond with expansion �Qvb�`�(-�. ��• ,��.��' City . renton 0 teport Date : 7/22/2005 �d, �age . Seatac Data Start . 1948 �ata End . 1998 � Precip Scale: 1.00 PREDEVELOPED LAND USE 3asin . Basin 1 Elows To . Point of Compliance GroundWater: No Land Use Acres TILL FOREST: 3.32 DEVELOPED LAND USE Basin . Basin 1 Flows To . Pond 1 � GroundWater: No Land Use Acres TILL GRASS: 0.72 IMPERVIOUS: 2 . 6 RCHRES (POND) INFORMATION Pond Name: Pond 1 Pond Type: Trapezoidal Pond Pond Flows to : Point of Compliance Pond Rain / Evap is not activated. Dimensions . Depth: 4 .3ft . Bottom Length: 201.74ft. Bottom Width : 67.25ft . Side slope 1: 2 To 1 Side slope 2: 2 To 1 Side slope 3: 2 To 1 Side slope 4: 2 To 1 Volume at Riser Head: 1. 167 acre-ft.= Sb83SCf Discharge Structure Riser Height: 3.3 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 1.05 in. Elevation: 0 ft. Orifice 2 Diameter: 1 .47 in. Elevation: 2.3011 ft. Orifice 3 Diameter: 0.88 in. Elevation: 2 .575 ft. Pond Hydraulic Table Stage(ft) Area(acr) Volume(acr-ft) Dschrg(cfs) Znfilt(cfs) 0.000 0.311 0.000 0.000 0.000 0.098 0.313 0.015 0.006 0.000 0. 096 0.319 0.030 0.009 0.000 0. 193 0.315 0.045 0.011 0.000 UVU U LDL G UbG L 5UD U L�S L 000'0 808' T T9Z'I £Ob'0 9�S '� 000'0 6Z�'i ZbZ'Z ZOb'0 886'� 000'0 868'0 �ZZ'T T06'0 066 'E 000'0 ObS'0 EOZ'I 66E'0 Z6£'� 000'0 99Z'0 68I 'T 86�'0 bb�'£ 000'0 9Zt'0 59T 'I L6�'0 L6Z'� 000'0 6ZI'0 9bT'T 96�'0 6�Z'� 000'0 ZZI'0 8Zt 'T 66£'0 TOZ'£ 000'0 6Ti'0 60I'I £6�'0 �SZ'£ 000'0 LTi'0 060'I Z6£'0 90i '£ 000'0 6ZT'0 iL0'I 06�'0 8S0'E 000'0 tii'0 �SO'I 68£'0 OTO'� 000'0 60T'0 6E0'T 88£'0 Z96'Z 000'0 90T'0 9i0'T L8£'0 bT6'Z 000'0 £OT'0 L66 '0 S8�'0 L98'Z 000'0 660'0 6L6 '0 68�'0 6T8'Z 000'0 960'0 T96'0 £8�'0 ZLL'Z 000'0 Z60'0 Zb6'0 T8£'0 £ZL' 2 000'0 680'0 6Z6'0 08£'0 9L9'Z 000'0 b80'0 906 '0 6L£ '0 8Z9 '� 000'0 8L0'0 888'0 8L£'0 08S'i 000'0 £LO'0 OL8'0 9L£'0 Z�S'� 000'0 OLO'0 ZS8'0 SL£'0 b86'Z 000'0 990'0 6�8'0 bLE'0 L£b'i 000'0 Z90'0 9T8'0 EL£'0 68E'< Q00'0 9S0'0 86L'0 iL£'0 TbE'� 000'0 660'0 T8L'0 OL£'0 E6Z'Z ' 000'0 £60'0 �9L'0 69E'0 9bZ'C 000'0 £60'0 S6L'0 89£'0 86T '� 000'0 Z60'0 8ZL'0 99£'0 OST'� G00'0 Z60"0 OiL'0 S9£'0 ZOT'Z 000'0 Z60'0 £69 '0 69£'0 6S0'i 000'0 T60'0 9L9 '0 £9�'0 L00'i 000'0 I60'0 8S9 '0 i9�'0 6S6 'T 000'0 O60'0 tb9'0 09E'0 TT6 'T 000'0 O60"0 6Z9'0 6SE '0 �98'1 000'0 6�0'0 LQ9'0 8S�.'0 9i8'1 G00'0 8�0'0 06S'0 9SE'0 89L'Z ' G00'0 8�0'0 �LS'0 SS£'0 OZL'T 000'0 LEO'0 9SS'0 bS£'0 ZL9 '1 000'0 L�0'0 6ES'0 �S£'0 6Z9 'l 000'0 9�0'0 ZZS'0 ZS£'0 LLS'L 000'0 9�0'0 SOS'0 OSE'0 6ZS'T 000'0 S£0'0 686'0 66�'0 186'1 ' 000'0 S�0'0 ZLb'0 8b�'0 ��6'� 000'0 6�0'0 9S6'0 9b£'0 98�'T 000'0 E�0'0 6E6'0 Sb£'0 8��'i 000'0 E�0'0 £Z6'0 66�'0 06Z'1 000'0 Z�0'0 906'0 �V�'0 Z6Z't 000'0 Z£0'0 06£'0 T6�'0 66T'L 000'0 T£0'0 6L£'0 O6£'0 Lbt' 000'0 0£0'0 LS£'0 6££'0 660' 000'0 0�0'0 Tb£'0 8££'0 ZSO' � 000'0 6Z0'0 SZ�'0 L£�'0 £00'Z 000'0 8Z0'0 60�'0 SE�'0 9S6'( 000'0 8Z0'0 E6Z'0 b�£'0 806 'f 000'0 LZO'0 LLZ'0 £�£'0 098'0 000'0 9Z0'0 T9Z'0 Z��'0 ZT8'� 000'0 SZO'0 SbZ'0 IE£'0 69L' 000'0 SZO'0 O�Z'0 6Z�'0 LTL' 000'0 6Z0'0 6IZ'0 8Z�'0 699'0 000'0 �ZO'0 86T'0 LZ£'0 iZ9 '� 000'0 ZZO'0 �8T'0 9Z£'0 ELS'i 000'0 iZ0'0 L91'0 SZ�'0 9ZS'� 000'0 OZO'0 ZSZ '0 £Z£'0 8Lb'0 000'0 610'0 9£i'0 ZZE'0 0�6'� 000'0 8i0'0 IZL'0 ZZE'0 Z8�'i 000'0 LTO'0 90T'0 OZ�'0 6££'� 000'0 9T0'0 060'0 6ZE'0 L8Z'0 000'0 bT0'0 SLO'0 LZ�'0 6EZ'� 000'0 £ZO'0 090'0 9IE'0 i6T ' �. 631 0.906 1.300 2.925 0.000 �.679 0.907 1.319 3.551 0.000 3.727 0.909 1.339 4 .217 0.000 Z.774 0.410 1.358 4. 921 0.000 t.822 0.411 1.378 5. 662 0.000 5.870 0.413 1.397 6.438 0.000 3. 918 0.914 1. 417 7.246 0.000 9.966 0.915 1. 937 8.087 0.000 1 .013 0.917 1.957 8.958 0.000 � .061 0.418 1.477 9.859 0.000 4 . 109 0.419 1.497 10.79 0.000 1 . 157 0.420 1.517 11.74 0.000 1 .209 0.422 1.537 12.73 0.000 � .252 0.423 1.557 .13.74 0.000 9 .300 0.924 1.577 14.78 0.000 ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped ^.eturn Period Flow(cfs) year 0.084903 _� year 0. 132418 10 year 0. 158279 15 year 0.184625 i0 year 0.200295 100 year 0.213186 ?low Frequency Return Periods for Developed Unmitigated teturn Period Flow(cfs) 2 year 0. 686372 5 year 0.843401 , LO year 0.945721 ?5 year 1. 07418 50 year 1 . 169713 L00 year 1 .265384 r'low Frequency Return Periods for Developed Mitigated Return Period Flow(cfs) ? year 0.054892 � year 0.090902 10 year 0.122992 ?5 year 0.175034 i0 year 0.223645 100 year 0.282086 'early Peaks for Predeveloped and Developed-Mitigated �ear Predeveloped Developed 1949 0.099 0.038 1950 0.190 0.069 1951 0.210 0.352 1952 0.065 0.035 1953 0.050 0.066 1959 0.073 0.040 1955 0. 129 0.039 1956 0.110 0.101 1957 0.083 0.040 1958 0.090 0_043 1959 0.075 0.039 1960 0. 131 0.111 1961 0.076 0.077 1962 0.044 0.035 1963 0.060 0.044 1964 0.075 0.076 1965 0.056 0.087 1966 0.057 0.042 1967 0.129 0.065 968 0.076 0.041 _969 G.i�75 0.041 1970 0.060 0.053 971 0.059 0.042 972 0. 756 0.119 �973 0.068 0.086 1979 0.073 0.042 .975 0.112 0.039 .976 0.069 0.091 t977 0.007 0.035 1978 0.060 0.061 �979 0.035 0.032 �980 0.101 0.120 1981 0.053 0.042 1982 0.102 0.100 L983 0.093 0.042 1984 0.059 0.035 1985 0.032 0.036 t986 0.161 0.058 L987 0.136 0.105 L988 0.099 0.039 1989 0.031 0.036 t990 0.221 0.113 L991 0.193 0. 119 1992 0.064 0.058 1993 0.0'71 0.034 1994 0.018 0.031 1995 0.101 0.079 1996 0.198 0. 194 1997 0.182 0.216 1998 0.037 0.036 Ranked Yearly Peaks for Predeveloped and Developed-Mitigated Rank Predeveloped Developed , 1 0.2098 0.2157 � 2 0.1979 0.1935 3 0.1927 0.1196 4 0. 1904 0.1188 5 0.1818 0. 1185 6 0.1613 0. 1131 7 0.1556 0.1108 8 0.1365 0.1053 9 0. 1308 0.1013 10 0. 1287 0. 1002 11 0. 1286 0.0866 12 0.1118 0.0865 13 0.1100 0.0789 14 0.1022 0.0770 15 0. 1011 0.0756 16 0.1010 0.0689 17 0.0985 0.0661 18 0.0927 0.0654 19 0.0903 0.0607 20 0.0830 0.0589 21 0.0761 0.0577 22 0.0757 0.0532 23 0.0753 0.0437 24 0.0747 0.0432 25 0.0797 0.0425 26 0.0732 0.0424 27 0.0729 0.0422 28 0.0711 0.0422 29 0.0689 0.0421 30 0.0678 0.0915 31 0.0649 0.0914 32 0.0637 0.0411 33 0.0601 0.0403 34 0.0596 0.0399 35 0.0595 0.0395 36 0.0590 0.0393 ---- ,. ..,--,� n n�o� �8 0.0556 0.0388 39 0.0542 0.0383 40 0.0539 0.0363 I1 0.0997 0.0360 l2 0.0494 0.0359 43 0.0442 0.0355 44 0.0369 0.0351 15 0.0399 0.0351 l6 0.0319 0.0349 47 0.0313 0.0345 48 0.0180 0.0321 �9 0.0068 0.0311 1/2 2 year to 50 year Elow(CFS) Predev Final Percentage Pass/Fail 0.0925 3771 3656 96.0 Pass 0.0440 3490 2219 63.0 Pass �.0456 3242 2134 65.0 Pass D. 0472 3036 2060 67.0 Pass 0.0488 2832 2009 70.0 Pass 0.0504 2633 1950 74.0 Pass 0.0520 2453 1897 77.0 Pass 0. 0536 2274 1836 80.0 Pass 0. 0552 2129 1777 83.0 Pass 0.0568 1998 1711 85.0 Pass 0.0589 1889 1605 85.0 Pass 0.0600 1773 1522 85.0 Pass 0.0616 1678 1943 85.0 Pass 0.0632 1589 1361 85.0 Pass 0.0648 1490 1288 86.0 Pass 0. 0664 1397 1207 86.0 Pass 0.0680 1315 1125 85.0 Pass 0.0696 1238 1099 84 .0 Pass 0.0712 1187 963 81.0 Pass 0.0727 1114 886 79.0 Pass 0.0743 1056 820 77.0 Pass 0.0759 1004 768 76.0 Pass 0.0775 954 728 76.0 Pass 0.0791 902 692 76.0 Pass 0.0807 861 664 77.0 Pass 0.0823 818 637 77.0 Pass 0.0839 774 612 79.0 Pass 0.0855 738 586 79.0 Pass 0.0871 710 558 78.0 Pass 0.0887 669 539 80.0 Pass 0.0903 693 515 80.0 Pass 0.0919 616 495 80.0 Pass 0.0935 586 459 77.0 Pass 0.0951 566 431 76.0 Pass 0.0967 532 399 75.0 Pass 0.0983 508 370 72.0 Pass 0.0998 474 346 " 72.0 Pass 0. 1014 454 318 70.0 Pass 0.1030 432 297 68.0 Pass 0.1046 418 273 65.0 Pass 0.1062 391 298 63.0 Pass 0. 1078 372 220 59.0 Pass 0. 1094 353 197 55.0 Pass 0.1110 390 168 49.0 Pass 0.1126 322 144 94 .0 Pass 0.1142 306 126 41.0 Pass 0.1158 283 110 38.0 Pass 0. 11�4 273 90 32.0 Pass 0.1190 260 67 25.0 Pass 0.1206 245 51 20.0 Pass 0.1222 233 34 14.0 Pass 0.1238 229 27 12.0 Pass 0.1254 212 21 9.0 Pass 0. 1270 206 17 8.0 Pass 0. 1285 197 17 8.0 Pass - - _ � � � n,�� .1317 182 19 7.0 Pass �.1333 179 19 8.0 Pass 0.1399 168 19 8.0 Pass -i.1365 159 19 8.0 Pass i.1381 155 19 9.0 Pass �.1397 151 19 9.0 Pass 0.1413 195 19 9.0 Pass i.1429 143 14 9.0 Pass 1.1995 135 14 10.0 Pass �.1961 128 14 10.0 Pass 0.1477 122 13 10.0 Pass ).1493 113 13 11.0 Pass 1.1509 109 13 11.0 Pass U.1525 107 13 12.0 Pass 0.1591 96 13 13.0 Pass 1.1557 89 12 13.0 Pass 1.1572 89 12 14.0 Pass 0.1588 75 10 13.0 Pass �.1609 72 10 13.0 Pass �, ).1620 63 10 15.0 Pass ).1636 61 10 16.0 Pass 0.1652 58 10 17.0 Pass �.1668 52 10 19.0 Pass ).1689 99 9 18.0 Pass ). 1700 47 9 19.0 Pass 0. 1716 43 9 20.0 Pass �.1732 39 9 23.0 Pass ). 1748 39 9 26.0 Pass J.1769 31 8 25.0 Pass 0. 1780 29 8 27.0 Pass ). 1796 26 8 30.0 Pass ). 1812 25 8 32.0 Pass J. 1828 23 7 30.0 Pass 0. 1894 21 7 33.0 Pass ).1859 21 7 33.0 Pass ).1875 20 7 35.0 Pass U.1891 18 7 38.0 Pass 0.1907 17 7 41.0 Pass J.1923 14 7 50.0 Pass J.1939 13 6 46.0 Pass 0.1955 12 6 50.0 Pass 0.1971 9 6 66.0 Pass �.1987 7 6 85.0 Pass �.2003 7 6 85.0 Pass Nater Quality BMP Flox and Volume. �n-line facility volume: 0.3355 acre-feet = �Q,IQ�S Cf. bn-line facility target £Iow: 0.3716 cfs. Adjusted for 15 min: 0.9099 cfs. �ff-line facility target flow: 0.211 cfs. Adjusted for 15 min: 0.2325 cfs. �rogram and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regardir.c t�e performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Department of Ecology disclaims.all warranties, either expressed or implied, including but not limited to implied warzanties of program and accompanying documentation. In no event shall AQIIA TERRA Consultants and/or the Washington State Department of Ecology be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the washington State Department of Ecology has been advised of the possibility of such damages. TFJ4R FLOW{cfsl 18.0 10�J 2132 I � t�1 � ' f I I +,. �, .,0 =.2003 �i � �: � � �f � €� E��.� i I i 25 ..1846 : ` i� ��' � � iEllf ,� � ; � � � f }f�_ F �E (E! �3 1 � ... . . . t si i � 'E1, � � � { � 1A � � �,€ Ii 10 .1583 �i ;G � [ ' '� f ' � � 1 1 f 3 � � r� i z�i�� f#t � 1 ��1 ��� a� �� ' � �� � � 3i� ��sE t ��€ � I � i , � 5 1324 ,i ; �i I` I �;; � 0 PfCd t�'86[�d € ` � �� � '� � 1UE-i �'i&�F�lltig3ted ` � � ��x"� � �� ,+ :���� � � � � ����� I � k?�.o;+.�ti�.�-��x� 2 ��0849 � -�"'" ,f � xn�=�• �� � '� � � �� 10E,2 � , ' 1 ° 10 20 3tl 40 5A 60 70 �0 90 99 ' Cumulative Probabili Yearly Peaks for Predeveloped Flow Frequency Chart 7FJiR FLOW(cfs) 100 1.265 , ,� � , � , � E o Predeveloped 'i �` �� I i�s ��G E� E,( 1� � ''j i x Developed wi9� Facility `0 .1.170 ��� ��I �ji �I ;�� �I� � �; � i!I 2S ':1A74 '�i (I, ' il';; i ��; 0.16 , ' �� i� � � , �� {a � �: i{ 10 `.9457 ` � t ' , i:� ' ;� i :I�� (1 i ,� 0.12 � �I � ;! � , � :3 i � 8434 +� ' �' � �� �� ; I �' 'y( ��4r ' � � ��'��,��' dt O.Q8 — �; �.,, � � �' I'. � 3 ? 6864 , � � � � � ��,,1 � - � � � t,�al ,��� f �;��� � � o.a�� �i= ; ' � ` '� ; �,� ;�� � � ��� � ���� ,t g; ' ( � � ::"{ ���=,i �� C� � ... , ;;I _�f .�i1 t �; � i ` i, ( ' E ' � 1�E•5 �� 1QE•4 10E•3 10E•2 10E-1 1 10 �� � i-_. ,f ,._E._. , , �I P�rcent Exceed�n Yearly Peaks for developed W/O Pond Duration Graph r�nR F�ow{�r 100 2821 � i � � I' i € ' i � �� � �E a � ( ���� : � E: � �� � ! � '� � �Ij:€ t �! i # �S � � {� � � 1 �l�l I �� �( `0 .2236 s' � �� ';I 4 � f � � � ; I �. :i � ! �': � ;, ' 3� I 1 �{ E �: � �� �Z �' ' !k E. ,�. '�5 .1750 'I,I 1 ' },;t� �� �j � i�i�{� E � I� � , € ' ll�� s ; � ' �� I � � � : , � 'I ,�; I � � i� , , 10 '.1230 � �a 'f �, ; � ,' (' '� � �<i � ' ;� F O 5 0909 � � � t � i�� ,, 2 0549 � —'— � �,y' ,��J ' C+`J �..�W E'��:�`� v?9���. [_� � �3 _ ... Yearly Peaks for Developed W/Pond _ `� �_� c,���r��� _._. __ �, _ : ,.. a - ��, � �,��: , , � L�t -� A ti-- 1. ���:�....� l�.� �_� .u . , . , , _ >� �.� ,:: :. _ ^� __I _ �� _ .. ..�,:s�` ��� �1' ..:: '�� .. _ . ?�"� _.._. _, � �� �r , �)(.}r��(,��w�•7 Il, =: .�C`)(.1,�.'. �t, ._ U _ } :':. ._.__ .,..... ` s _.. �� ..�......,.. . ��t -�-�___ ,cg;�' -I� ............ sA_......_. � .. . . ,.. ... .....,..,. Zr� .............._, i � � � - ��`��(�� _•�r � �,i( t.� ��.,���t�.� ,�i�_.��1(�' _ ,,, ..... � � ... - ,�„n�,„. '�. j y ._ _..___. - _. _ _ . .._ �.Y,+ .. ....... ;� , �1 � � ........... � � .. . .... ., .._,...... . , . .._.... . .,._.. � � .. ..-. ..._. .. � --.....: .,. ._.... ...... .....,.... .,.... .,F .. . ..... . , � „) �� � �>>�•.. __.,.. — .....,....,„ .. _....'........ ... ' l _. " ' � �w. .__� ,� ...........t �,� .,�.w.�n.,:�., "' , ,,i�t; ,.i t� �, - .. 1. ..� � ,::.�..,��!t— f1 � � E � c .,,, ..., � . _......,._.... ., , � - T ...,.................,.... �w� { (\ _ ���� _ ��! � ...... - •� . ,. rls���._� ��o . .Mwr.. - J1�(( F r�� ,..,4..,�11 �I ���'��� i Y 1. " �,�.�� �� � . .� — ` � . .1.., . >.:...f�<... �» i __ ' �• � w ,:(,���� , \�1 !r� �',�('1� `,�� _ � ����1� , �� #��,t�" ,��.,.w. � � �i�' �(�C( u`�;} �-.,,1 ,r., �i ^, . L � � ..,_ _ � '� �' >> I � ... . f �� _ .. ..... �_ � � \ �� � � �\R�_,��\�.� ,� _ � �1\'� ,`� ,r�4,1�;�r �'�'{ ti. �' u . , # � � \ �:��C1r"l,\.)�.�...�.�'•'- -=;.�� � r, 1c� -� , . � \\ \ �� . 1, ,_. . .... ^ ,�� .... �/ f 1 � - y,., •,� \� ............................................. t F { �� � t�, :,- �, .,' i � \� '- �\y \ � �', i r I � - — � � ,�>I1i���',�C,�+ ��f<l/� �+l_',KKE.���;�.'-� il� �`ihF1�'�� D - - - ' I t�{f'�j 1�I1_l- C�ll:+ tL �. �'� 1,(;�-:��> II.PGC� .: � L�-- _ __ � '�t � DEvC:�apCV1C tv7: _. \ ' � ` � _� t�CPF}N�It�N i=��.EF1 C�.f�RFN��I.`l (�O�Ni_� ��'�� �. . �ti� PbND -r��-�tt w��� (��ti�l��,CiIE. f f:�,�� � • t i \ L(1NuS(�nPC 1� '�T C%��lll_.D lt�tl:� _ � -� � " "�,� l�ON;I �C\;�tJ;>��1�:'( �\tiE� f `�'�� \ �\ �. . . i,, � f 1 I-r _._ _._.. ._.. :1 :� �� I rI_1111�`�' -' � ` \ � � F�vi�'f1P�.J�I(',r;� � � � ��. i � I ���, ` � ' I -- « i ;3�.::�• t•" �- � \ • '�,\� R � \ � �L��,�h„ � r — ' �� � E I�_" i `\"�. .. � \ � � � ��Y,`I l 1 � ���OAM� —___ �'.�� � � �. r— . _._ ��7 \ \``�. ����` �3 �� L._.. ._ _� f (� ~\`'yf� _-•.r���._'---.� ' r] ! G 5 _ - - ____. - � \ �'�. �\ ..i • . a M: i ��. � � £ ,�� � . ,�'�•\. � I 1 s � \ ��` -.., "�"-- E � '-•-.... l I ; _i< < ; � •� .. I Il I �,� z(iS �1: ?j � —_" -- I i : �� � �_ -- -- : � f� ���( : , �.. �.I_ � Qr��f��Q�O ��..�J ,q`�': I Y .. :� '2 ._ _�_. _._� .a � 3 �f � Y� � � � � �. I 3 � ' ? �a � � �� — �_� I I �� I �� � �';wF��y '� �;e .,� r�.vik`$F�'%..e.; _" to� �1 -- _� Q � YMD �'� � � � ' :i�n . ''�.�k..t :::J a� - �—C� -- t 1 i � ,., -- - � _-- _—OQFRAL LOAONO DOO( y� � -■ '�;. �� _ ��IUP � �R SK�' 'i zL 1 t f _� ; I'F' (_. ir—�;..�..� .. J...:..?f f 1 I� _^:(.��`�.�.� :�.i_,_,ir�1--'��' 1►:�t> rl`.� �FUTURE E�(PANS r� .� .�> -- — 10�f /�R��S� Riser Overflow. The nomograph in Figure 3.24 can be used to determine the head (in feet) above a riser of given diameter and for a given flow , (usually the 100-year peak flow for developed conditions). �oo � I 72 54 48 � 42 j 36 33 30 J 27 24 21 �D W oe � t8 ¢ a L n a � �� 4 15 � 0 a � Q t2 � I �o ! �,� � � �� . o.� ���a HEAD IN FEET (measu�red from crest of riser) �� Q«�r=8.T39 Dil�n Qoru�o.33.782 D:Htn Q irt cfa, D and H in feet Slop• Chsnge ocsurs af �reir•orifiee transitfon Figure 3.24 Riser Inflow Curves 3-58 Volume 11!-Hydrologic Analysis and Flow Control BMPs August 2001 Ra�� �, N�e sr,eer nyo. � ��can«, oore / Consulting fngineers 2. � C�� �_ Revised Job No. ,,,, ��� �e 3032�1 Ps�e�� ��e e�ti'�.K�,C1��ve�{��j -- ____ .:_. _ ��bd1=� , � �v.� � �e�.�� -��c� � pe,n��-�e� p��e�i�n , o, o�c`ve1 ea�e� ove'� (� v�; �� �, � ��� � � - �o �� �^� e��stc ��VG.� a�ec-�6v� �c�.ize ��c�- ti� Cec������c�� ��o�p cc�e� v�r _ � 1� 23 b8 . �----- .__ �'� L— �l -----�- - — P -- - _ __ i �E-20.2 � I II',' 2. we�c ����V '1. � - _ `�� 2 Q - c�� o .2��rt � t�_ -��_ �.2� e� ��� -� eXpo,,;�b�n� �, e= 3.2�� a .4oN�P. ' P= 2� 13 C= 3.2� � p .4b�b ��2 It3�= 3,40 L= IQ,V�'1 H= b.� �. �.2� = 3.4b�L - b.2�0 �����o ����z ,.2� s �3.4� - d. 4�l��d.�q L= b.��t-�. '�u��no� -cyp��r - 4g� �g . G���e��= Z�rr= 2-��Z�= 12.�� '(�(1Q��f. `Q.1A�'1= ��'�o o� G���= �Q .4�t . �V1C9�. C2(� tS�U� iS '�(t.U.�(1 � -�V1Ql►i� �(•1Q.��� - lS.� ��Z GCC��- l�.U�0�1= �` �,�c����� �� �+�: � � $lepQ.= e��sb�1�-• �� x S°�S = 3s,St�x(o•6Ls�b.s _ .�1 e ? 1�2� e 6k-� I � , The diameter of the orifice is calculated from the flow. The orifice equation is often useful when expressed as the orifice diameter in inches: 36.88Q d = � (equation 5) where a= orifice diameter(inches) Q = flow (cfs) h= hydraulic head (ft) Rectangular Sharp-Crested Weir. The rectangular sharp-crested��veir design shown in Figure 3.21 may be analyzed using standard weir � equations for the fully contracted condition. H - D L� � . P �-- PLAN rrrs SECTION � Figure 3.21 Rectangular, Sharp-Crested Weir Q=C (L - 0.2H)H '- (equation 6) ' �i�here Q = flo����(cfs) C = 3.27 + 0.40 H/P (ft) H. P are as shown above L = length (ft) of the portion of the riser circumference as necessary not to exceed 50 percent of the circumference D= inside riser diameter(ft) ,�'ote that this equation accounts for side contractions by subtracting 0.1 H �i•om L.for each side of the notch weir. Augusf 2001 Volume !!1-Hydrologic Analysis and Flow Control BMPs 3-55 . .. .--- -� �- - --- — R�t ! BY �� SheelNo. C � . Location SY�� Dafe OG ' Consulting Engineers =� Job No. Client Revised Portlac� ,_;-:r. n 1LYA Dale '3��L1� G- �b�e - �P�e.Crniv'� u�-C : vo1U.�l� -�-1�fV�. 2'� p�"�Cd 5����� , ���e�ua,�V� �� ��u.re e���� � _ _ ' ------------------- - � -- - - � � - __ __ �, -- - -__ __ - ------ - -- — �-- -- p�e.�e..c��v� �..�fi�tt��,�i aa e0��_ -.--- - -- _--- : - - -� ;- �- - beve�r��� =� P�i <coo�� �de a�k��_ �.23ae. =_ - __ ;_ ._ __ - - -- -- ---- _ _ - -- -= - - A-, ��a�d,��= o .Sb ae . , _. - � - - - ' _-- ----_ --- _-- --- -- _= -_ ? -- ------ �prd= b.4b ac� - --- ------- - - — - -- --- _ �-- - --- ---=---�_ ; - - - - _ _- - - ---- _ _-:- --- P�pe�v = o . �al aC - --- - = =- � _ ----------_.-___ _ - -------------- �—�--i-- - ---- — -� . --- ---- ----- �1��1 UJUJ�� - �� �b�\�1(� -- .-- _ , - - ��l � u�,� � = 14 ��\�c� . - - - --- --- ._. - -- �,C�t���� �b\va�►� � Cf� ��r � ����r��iCt1U�(Yl) � ��� = 33�d b� l�� O\�1�-= 4823 e� . � ; r�,-�2= t�t��Ia o� v.X� ��1�►��._ �1�4t� �� , __- - --- ---_ _ — -_ _ __ -------- _ .. _ _ � - -- -- - - __._ _. _. -- ..--�- -_ ___ --- ---- --- ___ _ _ ___ _ ._. _ ._ _ _ --- - ---_ ._- --- ___ _ _ _ _ - _ __._._ _ _ _- - . _. : _ _ _ - - _ _ __ -- ; _. __ _. . _ __-_- __.: �.__. � --__-;__ _ ___--- :_._; __ � - --- ---------- ----- ------ ------=-- ----- - - , . - - , � -----�---- --- _ : - -: -- �_; � - --- ___ �vQ vb1US�'L� WESTERN WASHINGTON HYDROLOGY MODEL V2 PROJECT REPORT Project Name: default Site Address: 2nd pond with expansion City . renton Report Date : 7/22/2005 Gac�e . Seatac Data Start . 1948 Data End . 1998 Precip Scale: 1.00 PREDEVELOPED LAND USE Basin . Basin 1 Flows To . Point of Compliance GroundWater: No Land Use Acres I� TILL FOREST: 3.32 �I DE�IELOPED LAND USE Basin . Basin 1 Flows To . Pond 1 GroundWater: No Land Use Acres TILL GRASS: 0.72 IMPERVIOUS: 2. 6 ' RCHRES (POND) INFORMATION ' Pond Name: Pond 1 � Pond Type: Trapezoidal Pond Pond Flows to : Point of Compliance Pond Rain / Evap is not activated. Dimensions Depth: 4.3ft. Bottom Length: 201.74ft. Bottom Width : 67 .25ft. Side slope 1: 2 To 1 Side slope 2: 2 To 1 Side slope 3: 2 To 1 Side slope 4: 2 To 1 Volume at Riser Head: 1. 167 acre-ft . Discharge Structure � i , Riser Height: 3.3 ft. Riser Diameter: 18 in. �r�ric� 1 Diameter: 1.05 in. Elevation: 0 ft. Ori.fice 2 Diameter: 1.47 in. Elevation: 2.3011 ft. Orif.ice 3 Diameter: 0.88 in. Elevation: 2.575 ft. Pond Hydraulic Table Stage{ft) Area(ac=) Volume(acr-ft) Dschrq(cfs) Infilt(cfs) c. :� o.31i o. 000 o.000 o.000 O.u4& 0.313 0.015 0.006 0.000 0.096 0.314 0.030 0.009 0.000 0.143 0.315 0. 045 0.011 0.000 0. 191 0.316 0.060 0.013 0.000 0.239 0.317 0.075 0.019 0.000 0.287 0.319 0.090 0.016 0.000 0.334 0.320 0.106 0.017 0.000 0.382 0.321 0.121 0.018 0.000 0.930 0.322 0.136 0.019 0.000 0.478 0.323 0.152 0.020 0.000 0.526 0.325 0.167 0.021 0.000 0.573 0.326 0.183 0.022 0.000 0.621 0.327 0. 198 0.023 0.000 0. 669 0.328 0.214 0.024 0.000 0.717 0.329 0.230 0.025 0.000 0.764 0.331 0.295 0.025 0.000 0.812 0.332 0.261 0.026 0.000 0.860 0.333 0.277 0.027 0.000 0.908 0.334 0.293 0.028 0.000 0. 956 0.335 0.309 0.028 0.000 1.003 0.337 0.325 0.029 0.000 1.051 0.338 0.391 0.030 0.000 1.099 0.339 0.357 0.030 0.000 1.147 0.340 0.374 0.031 0.000 1.194 0.341 0.390 0.032 0.000 1.242 0.343 0.406 0.032 0.000 1.290 0.394 0.423 0.033 0.000 ', 1.338 0.345 0.439 0.033 0.000 1.386 0.346 0.456 0.034 0.000 �I 1.933 0.348 0.472 0.035 0.000 �i 1.481 0.349 0.489 0.035 0.000 I 1.529 0.350 0.505 0.036 0.000 1.577 0.351 0.522 0.036 0.000 1. 624 0.353 0.539 0. 037 0.000 1. 672 0.354 0.556 0. 037 0.000 1.720 0.355 0.573 0. 038 0.000 1.768 0.356 0.590 0. 038 0.000 1. 816 0.358 0.607 0. 039 0.000 1. 863 0.359 0. 624 0.090 0.000 1.911 0.360 0. 641 0.040 0.000 . 1.959 0.361 0.658 0.041 0.000 2.007 0.363 0. 676 0.091 O.00C 2.054 0.364 0.693 0.042 0.000 2. 102 0.365 0.710 0.042 0.000 2.150 0.366 0.728 0.042 0.000 2.198 0.368 0.745 0.093 0.000 2.246 0.369 0.763 0.093 0.000 2.293 0. 3i0 0.781 0. 044 O. 000 2.341 0.371 0.798 0.056 0.000 2.389 0.373 0.816 0.062 0.000 . 2.437 0.374 0.834 0.066 0.000 2. 984 0.375 0.852 0.070 0.000 2. `,3� 0.376 0.870 0.073 0.000 2.5�G 0.378 0.888 0.078 0.000 2.628 0.379 0.906 0.084 0.000 2.676 0.380 0. 924 0.089 0.000 2.723 0.381 0.942 0.092 0.000 2.771 0.383 0. 961 0.096 0.000 2.819 0.384 0. 979 0.099 0.000 2.867 0.385 0. 997 0.103 0.000 2. 914 0.387 1.016 0.106 0.000 2.962 0.388 1.034 0.109 0.000 3.010 0.389 1.053 0.111 0.000 3.058 0.390 1.071 0.114 0.000 3.106 0. 392 1.090 0.117 0.000 3.153 0. 393 1.109 0.119 0.000 3.201 0.394 1.128 0.122 0.000 3.299 0.396 1.196 0.124 0.000 3.297 0.397 1. 165 0. 126 0.000 3.344 0.398 1. 184 0.266 0.000 3.392 0.399 1.203 0.590 0.000 3.440 0.901 1.223 0.898 0.000 3.988 0.902 1.242 1.324 0.000 3.536 0.903 1.261 1.808 0.000 3.583 0.905 1.280 2.343 0.000 3. 631 0.906 1.300 2. 925 0.000 3. 679 0.407 1.319 3.551 0.000 3.727 0.409 1.339 9 .217 0.000 3.779 0.410 1.358 9 . 921 0.000 3.822 0.411 1.378 5. 662 0.000 3.870 0.413 1.397 6.438 0.000 3.918 0.414 1.917 7.246 0.000 3. 966 0.415 1.937 8.087 0.000 9 .013 0.917 1.957 8. 958 0.000 4.061 0.918 1.977 9. 859 0.000 4.109 0.919 1.997 10.79 0.000 4.157 0.920 1.517 11.79 0.000 4.209 0.422 1.537 12.73 0.000 4.252 0.423 1.557 13.74 0.000 4.300 0.424 1.577 14.78 0.000 ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped Return Period Flow(cfs) 2 year 0.084903 5 year 0.132418 10 year 0.158279 25 year 0.18462� 50 year 0.200295 100 year 0.213186 Flow Frequency Return Periods for Developed Unmitigated Return Period Flow(cfs) 2 year 0.686372 5 year 0.843401 10 year 0. 945721 25 year 1.07918 50 year 1.169713 100 year 1 .265384 Flow Frequency Return Periods for Developed Mitigated Return Period Flow(cfs) 2 year 0.054892 5 year 0.090902 10 year 0.122992 25 year 0.175034 50 year 0.223645 100 year 0.282086 Yearly Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed 1949 0.099 0.038 1950 0.190 0.069 1951 0.210 0.352 1952 0.065 0.035 1953 0.050 0.066 1954 . 0.073 0.040 1955 0. 129 0.039 1956 0. 110 0.101 1957 0.083 0.040 1958 0.090 0.043 1959 0.075 0.039 1960 Q.131 0.111 1961 0.076 0.0?7 1962 0.044 0.035 1963 0.060 0.044 1969 0.075 0.076 1965 0.056 0.087 1966 0.057 0.042 - 1967 0.129 0.065 1968 0.076 0.091 1969 0.075 0.091 1970 0.060 0.053 1971 0.054 0.092 1972 0.156 0.119 1973 0.068 0.086 1974 0.073 0.092 1975 0.112 0.039 1976 0.069 O.Cyl 1977 0.007 0.035 1978 0.060 0.061 1979 0.035 0.032 1980 0. 101 0.120 1981 0.053 0.042 1982 0.102 0.100 1983 0.093 0.042 1984 0.059 0.035 1.98` 0.032 0.036 1986 0.161 0.058 19R�� 0.136 0. 105 ' 1988 0.049 0.039 ?.5:�' 0.031 0.036 1��C 0.221 0.113 1 1991 0.193 0.119 1992 0.064 0.058 199:; 0.071 0.034 1994 0.018 0.031 1995 0.101 0.079 ] 99E 0.198 0.194 i997 0.182 0.2T6 1998 0.037 0.036 Ranked Yearly Peaks for Predeveloped and Developed-Mitigated Rank Predeveloped Developed I 1 0.2098 0.2157 ' 2 0. 1979 0.1935 � 3 0.1927 0. 1196 � 4 0.1904 0.1188 I 5 0.1818 0.1185 I� 6 0.1613 0. 1131 I 7 0.1556 0.1108 8 0.1365 0.1053 9 a.1308 0.1013 10 0.1287 0.1002 11 0.1286 0.0866 12 0.1118 0.0865 13 0.1100 0.0789 14 0.1022 0.0770 15 0.1011 0.0756 16 0.1010 0.0689 17 0.0985 0.0661 18 0.0927 0.0654 19 0.0903 0.0607 20 0.0830 0.0584 21 0.0761 �.0577 22 0.0757 0.0532 23 0.0753 0.0437 24 0.0797 0.0932 25 0.0747 0.0425 26 0.0732 0.0424 27 0.0729 0.0422 28 0.0711 0.0422 29 0.0689 0.0921 30 0.0678 0.0415 31 0.0649 0.0414 32 0.0637 0.0411 33 0.0601 0.0403 39 0.0596 0.0399 35 0.0595 0.0395 36 0.0590 0.0393 37 0.0572 0.0393 38 0.0556 0.0388 39 0.0542 0.0383 40 0.0539 0.0363 91 0.0497 0.0360 42 0.0494 0.0359 93 0.0442 0.0355 44 0.0369 0.0351 45 0.0349 0.0351 46 0.0319 0.0399 47 0.0313 0.0395 48 0.0180 0.0321 49 0.0068 0.0311 1/2 2 year to 50 year Flow(CES) Predev Final Percentage Pass/Fail 0.0425 3771 3656 96.0 Pass 0.0440 3490 2219 63.0 Pass 0.0456 3242 2134 65.0 Pass 0.0472 3036 2060 67.0 Pass 0.0488 2832 2004 70.0 Pass 0.0504 2633 1950 74.0 Pass 0.0520 2453 1897 77.0 Pass 0.0536 2274 1836 80.0 Pass 0.0552 2129 1777 83.0 Pass 0.0568 1998 1711 85.0 Pass 0.0589 1884 1605 85.0 Pass 0.0600 1773 1522 85.0 Pass 0.0616 1678 1943 85.0 Pass 0.0632 1584 1361 85.0 Pass 0. 0648 1490 1288 86.0 Pass 0.0664 1397 1207 86.0 Pass 0.0680 1315 1125 85.0 Pass 0.0696 1238 1094 84.0 Pass 0.0712 1187 963 81.0 Pass 0.0727 1114 886 79.0 Pass 0.0793 1056 820 77.0 Pass 0.0759 1004 768 76.0 Pass I 0.0775 954 728 76.0 Pass 0.0791 902 692 76.0 Pass 0.0807 861 664 77.0 Pass 0.0823 818 637 77.0 Pass 0.0839 774 612 79.0 Pass 0.0855 738 586 79.0 Pass 0.0871 710 558 78.0 Pass 0.0887 669 539 80.0 Pass 0.0903 693 515 80.0 Pass 0.0919 616 495 80.0 Pass 0.0935 586 454 77.0 Pass 0.0951 566 431 76.0 Pass 0.0967 532 399 75.0 Pass 0.0983 508 370 72.0 Pass 0.0998 479 346 72.0 Pass 0.1019 454 318 70.0 Pass 0.1030 432 297 68.0 Pass 0.1046 418 273 65.0 Pass , 0.1062 391 248 63.0 Pass 0. 1078 372 220 59.0 Pass 0.1094 353 197 55.0 � Pass - 0.7110 340 168 49.0 Pass 0. 1:?6 322 144 49.0 Pass 0.:1142 306 126 41.0 Pass 0.1158 283 110 38.0 Pass 0.1179 273 90 32.0 Pass 0.1190 260 67 25.0 Pass . 0.1206 245 51 20.0 Pass 0.1222 233 34 14.0 Pass 0.1238 229 27 12.0 Pass 0.1254 212 21 9.0 Pass 0.1270 206 17 8.0 Pass 0. 1285 197 17 8.0 Pass 0.1301 189 15 7.0 Pass 0.1317 182 14 7.0 Pass 0.1333 179 14 8.0 Pass 0.1349 168 14 8.0 Pass 0.1365 159 14 8.0 Pass 0.1381 155 14 9.0 Pass 0.1397 151 14 9.0 Pass 0.1913 195 14 9.0 Pass 0.1929 193 14 9.0 Pass 0.1945 135 14 10.0 Pass 0.1461 128 14 10.0 Pass 0.1477 122 13 10.0 Pass 0.1493 113 13 11.0 Pass 0.1509 109 13 11.0 Pass 0.1525 107 13 12.0 Pass 0.1541 96 13 13.0 Pass 0.1557 89 12 13.0 Pass 0.1572 84 12 14.0 Pass 0.1588 75 10 13.0 Pass 0.1604 72 10 13.0 Pass j 0. 1620 63 10 15.0 Pass 0.1636 61 10 16.0 Pass 0.1652 58 10 17.0 Pass 0.1668 52 10 19.0 Pass 0.1684 49 9 18.0 Pass 0.1700 47 9 19.0 Pass 0.1716 43 9 20.0 Pass 0.1732 39 9 23.0 Pass 0.1748 34 9 26.0 Pass 0.1764 31 8 25.0 Pass 0. 1780 29 8 27.0 Pass 0.1796 26 8 30.0 Pass 0.1812 25 8 32.0 Pass 0.1828 23 7 30.0 Pass 0.1849 21 7 33.0 Pass 0.1859 21 7 33.0 Pass 0.1875 20 7 35.0 Pass 0.1891 18 7 38.0 Pass 0.1907 17 7 41.0 Pass 0.1923 19 7 50.0 Pass 0.1939 13 6 46.0 Pass 0.1955 12 6 50.0 Pass 0.1971 9 6 66.0 Pass 0.1987 7 6 85.0 Pass i � 0: 2���i 3 7 6 �85.0 Pass Water uuality Bt� FloM and Volume. On-line facility volume: 0.3355 acre-feet = \�{��\S e� ��,�e�� t,,�,m;fi��� I Oi,-],ne facility tarqet flow: 0.3716 cfs. Ad7usted for 15 min: 0.9094 cfs. Off-line facility target flo�v: 0.211 cfs. I Adjusted fo= 15 min: 0.2325 c£s. I program and accompanying documentation as provided 'as-is' without warranty of any kind. I rhe en� .re risk regarding the performance and results of this program is assumed by the user. 1�QUA TERRA Consultants aad the Washington State Department of Ecology disclaims all warzanties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shal� AQUA TERRA !'onsnitants and/or the Washington State Department of Ecology be liable for any damages wi,atsoevc-�r (including without limitation to damages for loss of business profits, loss of busi.ness information, business interruption, and the like? arising out of the user of, or ' inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. ! . � � � _�. . � . ..._. R t �o S� BY � Sheet No. �C /` / � �a�, [,�� �„a Z b oS � , Consulting Engineers JOb NO. Cfent Revised . F. �,:� . ,����� 3v32i� C�mv lcs. °O1e - l vvt�-Qiv'V'. �4 re�,�.-���= ac) �iirt� � (S� = ac) R-o o F, D�Z���� mas(2D) d tn�a-t��za-fu,r� 3�to�o ��' _ -S� � N, Se�.�Trk. yrd. I y9�5 = . 3�fLf � � N� SeC�TrK. �/rd, 10�/D = . 2�f� � � Sec,T�� �/�►- 7yoo = . �7o ( � � SP.C•TrK. ��rd, 1525 - , D� (��►r,�, Sld�. �flo�n = . 10� �Gc,�d �+ 8J . 35v - , ooa �S ��t,v�, �d �c,k 2� = , O co f G�-�ch 6asr n A-r�o�S (1� �. ��' �rn. (��d�, 2y(�O = �.(�5(0 �'� s� = 0. Oc�q o�-� C� til. oF S�rn. Bld�. { ll�ll = 0. 2�2 ( 3�yy = o.n�l � �Su,rrtl�+-►�J C� .P 6tC�. � IIv57D = �. 38C� � 505� = d. I I(v ; � �h t,-a�r� 3�0�� = o.o� ; — C5� til. Pk. l�o� 874y = D. 2D / � `�3�f�o = 8. too i ((p� �. c�' �rn. t31d�. �(�7� = �. 222 ; 2?�1�2 — �,D52 � ^ I I di S�, Trk. yrd. 23187 D,532 ; , � V�l. of C��m.l,d. �oc.K ►352,0 - D, 3!o j 3�r 3 = d,O8� i� � C��, (,d. Dock r12c�0 = (�. 257 � ' � d �l v� t��e.d � �� s. oF w�-�- �.u-�-, ��o� = o. �35 � 5ony = a.1 r5 Q S. c�F � I(�3(� = d.3�� ; 3�52 = o.c� � S. c�� � �t?I 7 = �. 22 j 22 28 = �.D51 � S, v F � �y 35 J = D.3 30 j ��1 = D� l2 7 I � � � ��, .F2 P�.S� � �p �,No. i . Lxalion Q��/�.'�/j�� Da1e /I f n S �/l Consalting fngineers �f ��� �'��� ClienT p�Z�v ��`� Revised � JobNo. k iz".,.� Gwt�and.O�egon � I Dafe l rn�Prn/ �c�. �XV, /�rPGi- ��� -0�C� /�re� Dru.'r�S (A) ►D I�. o� 81d�. �1�37q �F = 1, 0�20,� � W. oF �x�►. F31d�. 3�� = p.p �i (,� v�l. o F� �k ��1�y = �. 39�f Q �, a� �-v► K 83 Z� = o. i R I CQ �� oF P�. �o� t�,�l = o. �sv I� l�I, Sv�c�.1� � ?�q�� = o, q i c� -� S� a+�ac I�+.e.d S�ef�ti fv►- crn�-f�i I�-fi v� �nrect s � �.I�.�c k s�z� o f eav���ce �S� �or 25 y�r �rirvn owid !o� �(�►- S-tr�rm � I'� ,��h�. C�u�l y Su�fa c�- IN�v l�?�ua l- d l��irv►�►i�i� Pea K -�(ObvYOI.� �'o .eacl� Ow'.eec.- � � K:�-Sv✓a� s-ec.tio� l. 2.y• l — 2 S ��r S� � � �u,-fi'av►�I ✓�,�,2-FhOc�, �Q -G� A� �rea �` y c= ►�,�o�-� c�e-F�' _ �.�o (►�') (� �r� Ta� 3.2.i.H o� �w�►v►� � = a�r�a = D,�ac � = IZ�I►'1�O1�I lY►�'�i� ��CI R) P2 = preci���-f-a-�o� (2s yr. S�m) = 3•�l IhGh�S <��ru'�'► ��. 3.2, I.G o�' �.�� bR �� = a2 ���� aR= 2.(�(� �� Tabl.2 3•2 - 1• �� �,� = p.(�5 (� Tah� 3,2. i. �� T= -f�Y�.� o-F Cr,v����-f�u�-�iv►� - o�/ L = (;Prv�� = 10 2' J = VQIDCI�t,� = kR-�/ So ! kR= �irYJ� �� Co��rn f�t-fl� v.e�acrfy �a�r = 20,U �� �rr/m T l� 3-2 . I j C,� So = slo� a� -Flow �zN� _ !/ ± = a,o� - -- ---- sAeet No. Praject By / , ���, �e 3 Consulting Engineers Job No. Clfent Revised PUf�or,I .r,eqnn DO1@ \j= 20� O,O I = 2 � = !02���Z� = p.�5 rnin L f�,3 mi►�. h'l�niw►ww►, So u.sc, C0.3 w�iv�, �R = 2,(0(� ((�,3�-°`�°5 = a.Q�D , � = 3,�f i►�c�s o.�o� _ �:?.inch.�S Q= 0��0 (2.�)�p,ogS) = 0.2 � - e�s � S-ee- Spre�.dS�-�-S �n- a�-�r �Sr nS � � D��t�rYn i�n� Pi� s;� � u.Si✓►� ✓�'�w►n in�s �c��t�� . c� = I , �{q � ��3 S o•s n ' n = o,o i 3 (� ra� �/.2.1, D- pvL p�� � �t,v�i�►� �low� A= a,ma p,�, = g ,, SD , _ ,r�'r 2 s fi(y;r�- X � F� 2 - D 35f'f� i2��,) . � = we�+e.d pQ,+�i me�r = A = �� � r = y i� ,� 1 F� p, I��f. '', P 2�K 2 2 12i�, - ; S = Slo�.e. = o.0 2 �f�Ft (�= I, y9��,35�/p, l��2�3�p,�2�o�s _I�.�y C�'S p,o�3 Q ,��d = (�, Zl C�'s � l���f C�'s ��p�� � � � �cKw�t,-� eA- ICwIG.+i� �inGe, Ou--�I,e,�- pi P.e. -�-v Tra��- � i s �bm��d. �►�.-��, � 2� y�a,,� � -r�+ � = 2�,25 ��,,, ,�,� ►-�} ; Et.�-h'rM � 10o c�ca�r-�- t rrn.c� D = 2I. 3� (p� ww+�rn) � , �' wLt-F�v o�r�(�5i s � V_GSw Dh� Se��i� 4.2.1 �See A-�-Fme(n-e d �rea��.e--�� �t� �e,siqrv� �IUVY(Q) _ (�.3� C�'S ���e, 1'Yb�'�hin�s �q. Tiacf � �o S�� �2� CZ) c,vv►� p��x. = 3�. 25 (3) p�� si ze = l 8', (y) Yv��„�►��►��-5 ��v� '� = o,o� i (7a�,►� y.2. � -��►- l�c�wa-�� (S�0�.�lQ.l- Q I.PrYd �-j p'V� _ !5, y �(�� i ►� 1��- �(Q/VGt.-�-i Ovt = lS. (�2 . . - � — — - �q�� BY SheeT No. I , locafion DcJle �/ ConsuJting Engineers Client Revaed ��No. Por��...o . Date � (�7) �.�r��e-I 4�rra. ��Ik GYt�ss �f-`rov� �2a d-� �r�e.� = I, 77 �,E-z j ��) ��� �J�1ocr-�.� = col. CI) � �o/, (�) = c�-3� C�'s��.�� �t2 � 3, (� -Fps , I (�t) �o�rr¢1 Y�loc�f y h�d � 2? = �2 ° = 32 2 ��s2 = � �3��2 = 4.202 � 2( ) � f�y�y � i(�o) TvJ ,�(�r�/�t.-f-i r�v-� ; , --�v�/ = !J t olc, � -� �. TJ+ d c, , 1�' � �*d� , -�-� rtw= Hw o�Pr�viow� ; T►N= Z�.2� 2 2 �r� (� �) �ri e�-i�nn �o.s� S� x(, (.= 38.2r I 2 S� _ �n U � n.o►t k 3; � � O.OU2Co x 38,25 = 0• 1 `1•2'�R '33 2.22� �2 x l�2 r,s3 (��) r�C�� _ �,'c�o�-, t oss � TV✓ .e l�.Y = �o I. �►�) -� Cvl,(�o) = b. ► + 21,25= 2/•35 (1�,� FV�-�rt�v�� {�.2 Gk� (oSs = ke �� ) 0�7 x d.2D2 - CJ. 1 y l4 k� = p.� ( �',v�, Ta►�� y.3�i ,� rn;-F�-� +z� �mforn�► �o -�'1 t SI�-.� 2 '�c�� Fu��r�ud �o�s = V.e.1�� -�Sf�d o��s+�,�,►�, _ � X 2 �, �xf, r�ea,d �o�ss = 1 X co1.Ca) _ � x o.2�2 = 0•2oz � '(�5) p�t.e-f Cv�� -�(a,v. F Col(IZ) �- Cal, �3� t Col(/y� = 2�.35+ 6• I 4/y+D•202 �2►.�q (►�) i n i��- C v���vl .��2�v: * al��rmir� i � i✓11,�� ��S s�.briti�'�td' Q _ �p,37c�s o S = 2.q� G 3�� �o (,� Sr.z{�n��, � /�Do,s ^ �1�����ZXl,S�'� ' N�w ��n�m �►��u•re y,3. �.� � = I,o N-w= I x 1�5�'� _ �, 5�. D i v�i�{- �.,(�it�t.-�-ia� = 15� (v 2 �- /, S = I 7, I 2 ��nce 2 ��25 > l7�l2 U.� �iic-�(�t C�fr� 1 (17) AP�Y�ac �, v�,�ocr-� I�.ead 2 n� �� -�- ��`� p►�� So �-P�'-���, ,���. ��.d = 2 -� s,� �-+ �� � � � a�mac� hec�-a' = �-oc�r -- ..__. _. ._ . �a�T � Sheei No. � . Location Dafe Consultrng Engineers . Client Revised J��. � PorYar�.:.J��r� Date (1�) �e��d �'�.�ccd (aSS Kb x v 2. �oi�i-�� �-�� �d lass Coe�#: ��►� . 4,2,f K � 2 �v� l� � ;��` � �d h.eu-d t oss = O , ,, Q� = 2.�,�FS � � �l�1) Jwv1 c,+i av, InQ��.d It�ss C�i �.� y .2 . 1 , L) a ' � " �v,�7 = k� � �- o� k j x c o►.0►�) a3 =3,v 9 �' �� - �Q3 Q, )/ r,►g fin.c�3 (c�31Q, ) �3,2�;� `�.,8,, � ( ( � �� a kf = 3.y9 Z 2��� �,��+-�.�3 �2;� = o.c�� u �.20� = D,�3 (2v) I�v�/ _ �ccd vuu+--�v -e (.��.+�� Cvi. C2�� = C�I (1y cv f fc� --Col(17) �- �r�l(1�� tC�/(! g� ���ol . 20 = 2 r, (� `f � CY�oo se 1 s o�, �(� , wk�c f�-e�ve�v �� �-red�`e�. � � ; r-- - ip�q�, � �Ef No. i �/I . �xarbn Date Consulting Engineers � � Client R�� Job No. - Forliu:�.c ._,ir��r,r� Dale �I'1 ��t.�' C(11'I�{1'b� �2��V', '. � l�,tvrm i�L i F Sv�b rr��.P�vt�,c,d oY �,vr� �wbw�irc�d Apo.s � 3�S -t� Qp >�1 +� ' Wv�B�bri��ed �!b S �bv��a�. � (� tJ� �u.hrv���c-d p= ol.i'a (�+�) In I�-�- = IJ x k/�5 "� f ��� k _ a� 5 3y ��Tb) �J.3, 1,�4� Om�� t HD GZ- ��w✓ (c�s) Et�,v� A = b0�rr�e( �recc(Sf� M= 0, �33 ��, y.3 � � �R� � � �' ��,�,hy►���.,r,�,r,l � C��(u.�IF✓w�.r�d InIP� ��yr�p�►,,, . .�..,�� l✓► I�-� — D k 2 C,= b.o►q� fTa�� �l-3.�.A� c.w�+�t a a�5 + Y - 0�55 �- ��. `I = o.�� C-r'��.e.y. ��. �► ) �(.e.v. S = Slc�c.�(���) Ap�roa�h V�lo�r�y N�a� : ' A-p�. V.�1. t�aa� = 8a.rre( V�Icxr-h-� o� �-�S�reG�rn �i� (►'�' mort, -f�a�, I , �.►�.�,,, �����;�..� 8�d ►-�ce�.d �,.�s �nd� N�ec�a �oss — I�b k � C h kb = �v►d loss Ca� �rvw� ��. y.2.t.�� loci-1� ,� !� � qo` =i,o h.e u ol D�f� f�ivl Bn�1 f-�a d lass JuM��iov� }-�.e.a-d L�ss = Q3 C� = -�lov,��C�S� �'netv�.�#ec� �oss = Kj '` a����{,�.�. k� = C�, Q3l I�-ea�-�I � l,�a� (��3� Q, J ; � Q 3 i Q� An'L (�S-h'�'Cl F� Pt '�1G�3 � W i� u �3 � Qr , �` !� �-�hPir� 0�►',[- > 2 U��2G�iY►� �i�S,-�-�^ev� QSS�,�n�� (�3 = lar�S}� E C?� = Sm�1L4S�-, U I i Federal Reserve Bank of San Francisco II, Conveyance Calculations Rational Method for 25 year storm event � Date: August 29, 2005 Constants Precipitation (25 years from Figure 3.2.1.C) 3.4 inches Ar(from Table 3.2.1.6) 2.66 Br(from Table 3.2.1.6) 0.65 C for pavements/roofs (from Table 3.2.1.A) 0.9 C for landscape areas (from Table 3.2.1.A) 0.25 kR for Time of Concentration (Table 3.2.1.C) 7 (lawns/landscape) 20 (pavement) (Note: the Time of concentration does not account for the time in the pipe and accounts for the time that run-off takes to flow to the basin. This yields a more conservative flowrate. The minimum time of concentration is 6.3 minutes) Equation Q=cIA Area# Total Area Area Im . Area perv Wei hted C Tc Len th slo e Velocit Tc Tc used ir Ir Q (acres) (acres) (acres) (feet) (ft/ft) (fps) (min) (minutes) (inches) (cfs) 1 0.07 0.06 0.01 0.81 52.00 0.005 1.414 0.61 6.30 0.80 2.73 0.14 2 0.34 0.26 0.08 0.75 106.00 0.005 1.414 1.25 6.30 0.80 2.73 0.70 3 0.50 0.38 0.12 0.75 349.00 0.005 1.414 4.11 6.30 0.80 2.73 1.01 4 0.09 0.09 0.00 0.90 102.00 0.005 1.414 1.20 6.30 0.80 2.73 0.21 5 0.30 0.20 0.10 0.68 79.00 0.005 1.414 0.93 6.30 0.80 2.73 0.56 6 0.27 0.22 0.05 0.78 178.00 0.005 1.414 2.10 6.30 0.80 2.73 0.58 7 0.53 0.53 0.00 0.90 122.00 0.005 1.414 1.44 6.30 0.80 2.73 1.31 8 0.40 0.31 0.09 0.76 148.00 0.005 1.414 1.74 6.30 0.80 2.73 0.82 9 0.26 0.26 0.00 0.90 110,00 0.005 1.414 1.30 6.30 0.80 2.73 0.63 11 0.25 0.14 0.12 0.60 108.00 0.005 1.414 1.27 6.30 0.80 2.73 0.41 12 0.46 0.38 0.09 0.78 166,00 0.005 1.414 1.96 6.30 0.80 2.73 0.98 13 0.27 0.22 0.05 0.78 145.00 0.005 1.414 1.71 6.30 0.80 2.73 0.58 14 0.46 0.33 0.13 0.72 172.00 0.005 1.414 2.03 6.30 0.80 2.73 0.90 � � Area# Total Area Area Im . Area erv Wei hted C Tc Len th slo e Velocit Tc Tc used ir Ir Q I (acres) (acres) (acres) (feet) (fUft) (fps) (min) (minutes) (inches) (cfsj I 15 1.04 0.00 1.04 0.25 329.00 0.005 0.495 11.08 11.08 0.56 1.89 0.49 A2 0.07 0.00 0.07 0.25 98.00 0.005 0.495 3.30 6.30 0.80 2.73 0.0� A3 0.39 0.00 0.39 0.25 252.00 0.005 0.495 8.49 8.49 0.66 2.25 0.22 A4 0.19 0.00 0.19 0.25 77.00 0.005 0.495 2.59 6.30 0.80 2.73 0.13 A5 0.16 0.00 0.16 0.25 117.00 0.005 0.495 3.94 6.30 0.80 2.73 0.11 A6 0.92 0.00 0.92 0.25 270.00 0.005 0.495 9.09 9.09 0.63 2.15 0.49 RD1 0.89 0.89 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 2.18 RD2 0.34 0.34 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.85 RD3 0.25 0.25 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.61 RD4 0.17 0.17 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.42 RD5 0.04 0.04 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.09 RD6 0.11 0.11 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.26 RD7 0.01 0.01 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.02 RD8 0.06 0.06 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.80 2.73 0.15 Federal Reserve Bank of San Francisco Conveyance Calculations Manning's Equation for 25-year storm event Constants n (from Table 4.2.1.D) 0.013 � Pipe Chart Mv= 1.49/n*A"R^2/3 Pi e Size Area R Mv inches s ft 6 0.20 0.13 5.59 8 0.35 0.17 12.04 10 0.55 0.21 21.85 12 0.79 0.25 35.56 15 1.23 0.31 64.52 18 1.77 0.38 104.98 24 3.14 0.50 226.31 j (Note: Surcharge is when the Q pipe is greater than the Q required) Area From Area To Pi e Size Mv Slo e Q i e Q re uired Len th i e Velocit Surchar e Pi e Area (inches) (ft/ft) (cfs) (cfs) (ft) (fps) 14 13 12 35.56 0.005 2.49 0.90 118.58 3.17 NO 0.79 13 12 12 35.56 0.005 2.51 1.47 90.00 3.20 NO 0.79 12 SDMH3 12 35.56 0.008 3.18 2.46 102.94 4.05 NO 0.79 ' 11 SDMH3 8 12.04 0.020 1.70 0.41 47.65 4.88 NO 0.35 SDMH3 TRACTD 12 35.56 0.010 3.56 2.87 41.42 4.53 NO 0.79 RD2 7 6 5.59 0.028 0.94 0.85 61.70 4.80 NO 0.20 , RD3 7 6 5.59 0.022 0.83 0.61 79.95 4.22 NO 0.20 RD4 7 6 5.59 0.020 0.78 0.42 89.00 3.99 NO 0.20 , RD5 7 6 5.59 0.005 0.40 0.09 101.24 2.01 NO 0.20 7 8 18 104.98 0.008 9.39 1.96 152.00 5.31 NO 1.77 � _ Area From Area To Pi e Size Mv Slo e Q i e Q re uired Len th i e Velocit Surchar e Pi e Area (inches) (ft/ft) (cfs) (cfs) (ft) (fps) A3 WYE 6 5.59 0.047 1.21 0.22 28.45 6.15 NO 0.20 6 8 12 35.56 0.004 2.36 0.80 98.04 3.00 NO 0.79 8 10 18 104.98 0.010 10.50 3.58 51 5.94 NO 1.77 RD8 9 6 5.59 0.020 0.79 0.15 100.31 4.00 NO 0.20 9 10 18 104.98 0.010 10.50 0.78 106.97 5.94 NO 1.77 10 OUTFALL 18 104.98 0.006 8.13 4.36 72.58 4.60 NO 1.77 RD6 COTG1 6 5.59 0.023 0.84 0.26 11.46 4.29 NO 0.20 COTG1 1 6 5.59 0.008 0.48 0.26 21.68 2.46 NO 0.20 I 1 WYE 8 12.04 0.010 1.20 0.41 23.14 3.45 NO 0.35 , A2 2 6 5.59 0.008 0.50 0.05 92.53 2.53 NO 0.20 2 WYE 8 12.04 0.0049 0.84 0.75 83.52 2.42 NO 0.35 �' COTG2 COTG4 12 35.56 0.0072 3.02 1.15 56.7 3.84 NO 0.79 COTG4 15 12 35.56 0.0115 3.81 1.15 19.57 4.86 NO 0.79 RD7 15 6 5.59 0.0526 1.28 0.02 61.22 6.53 NO 0.20 15 SDMH1 15 64.52 0.0129 7.33 1.67 30.23 5.97 NO 1.23 3 SDMH1 10 21.85 0.016 2.76 1.01 47.67 5.07 NO 0.55 4 A6 8 12.04 0.02 1.70 0.21 15 4.88 NO 0.35 A6 SDMH1 15 64.52 0.0041 4.13 0.70 63.07 3.37 NO 1.23 A5 WYE 6 5.59 0.04 1.12 0.11 57.28 5.69 NO 0.20 SDMH1 SDMH2 18 104.98 0.0072 8.91 3.49 77.22 5.04 NO 1.77 RD1 5 12 35.56 0.0072 3.02 2.18 48.63 3.84 NO 0.79 A4 5 6 5.59 0.0356 1.05 0.13 80 5.37 NO 0.20 5 SDMH2 12 35.56 0.0196 4.98 2.88 59.25 6.34 NO 0.79 SDMH2 TRACTD 18 104.98 0.0058 8.00 6.37 38.25 4.52 NO 1.77 Federal Reserve Bank of San Francisco Conveyance Calculations Backwater Calculations for 25 year storm event column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Barrel Ent. Ent. Exit Outft Inlet Appr Bend Junc Lengt Pipe Outlet Inlet Barrel Barrel Vel. TW Frictio HGL Head Head Cntrl Cntr Vei Head Head HW w/6" proposed Area Q h Size "n° Elev. Elev. Area Vel. Head Elev. n Loss Elev loss Loss Elev Elev Head Loss Loss HW Elev. freeboard rim ok (y/n) From To (cfs) (ft) (in.) (ft) (ft) (sf) (fps) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) 14 13 0.90 119 12 0.01 17.1 17.68 0.79 1.14 0.02 22.55 0.053 22.6 0.01 0.02 22.6 18.2 0 0 0 22.63258 23.133 23.20 YES 13 12 1.47 90 12 0.01 16.65 17.1 0.79 1.88 0.055 22.38 0.109 22.5 0.03 0.055 22.6 17.8 0.02 0 0 22.54859 23.049 24.65 YES 12 SDMH3 2.46 103 12 0.01 15.83 16.65 0.79 3.13 0.152 21.86 0.348 22.2 0.08 0.152 22.4 17.4 0.05 0 0 22.37743 22.877 25.46 YES 11 SDMH3 0.41 48 8 0.01 17.61 18.9 0.35 1.18 0.022 21.86 0.039 21.9 0.01 0.022 21.9 19.3 0 0 0 21.92754 22.428 26.20 YES SDMH3 TRACTD 2.87 41 12 0.01 15.41 15.83 0.79 3.65 0.207 21.25 0.19 21.4 0.1 0.207 21.8 17 0.15 0.073 0.184 21.85631 22.356 26.40 YES RD2 7 0.85 62 6 0.01 20.25 22.00 020 4.31 Q.289 22.32 0.993 23.3 0.14 0.289 23.7 23.2 0 0 0 23.74304 24.243 27.58 YES RD3 7 0.61 80 6 0.01 20.25 22.00 0.20 3.08 0.148 22.32 0.658 23 0.07 0.148 23.2 23.1 0 0 0 23.19657 23.697 27.58 YES RD4 7 0.42 89 6 0.01 20.25 22.00 0.20 2.13 0.07 22.32 0.35 22.7 0.04 0.07 22.8 22.4 0 0 0 22.77273 23.273 27.58 YES RD5 7 0.09 101 6 0.01 20.25 20.63 0.20 0.44 0.003 22.32 0.017 22.3 0 0.003 22.3 20.9 0 0 0 22.33856 22.839 27.58 YES 7 8 1.96 152 18 0.01 18.03 19.25 1.77 1.11 0.019 22.16 0.037 22.2 0.01 0.019 22.2 20 0.15 0.041 0.197 22.31721 22.817 23.10 YES REDESIGN A3 WYE 0.22 28 6 0.01 20.19 21.25 0.20 1.13 0.02 22.22 0.031 22.3 0.01 0.02 22.3 21.6 0 0 0 22.28252 22.783 22.78-LANDSCAPE 6 8 0.80 98 12 0.01 18.99 19.40 0.79 1.02 0.016 22.16 0.035 22.2 0.01 0.016 22.2 19.9 0.02 0.021 0 2222131 22.721 23.80 8 10 3.58 51 18 0.01 17.52 18.03 1.77 2.03 0.064 22.01 0.042 22 0.03 0.064 22.1 19 0.02 0.02 0.017 22.16076 22.661 22.88 YES REDESIGN RD8 9 0.15 100 6 0.01 20.01 22.00 0.20 0.76 0.009 22.01 0.051 22.1 0 0.009 22.1 22.3 0 0 0 22.27396 22.774 27.58 YES 9 10 0.78 107 18 0.01 17.52 18.59 1.77 0.44 0.003 22.01 0.004 22 0 0.003 22 19.2 0.01 0.001 0 22.00603 22.506 22.58 YES REDESIGN 10 OUTFAL 4.36 73 18 0.01 17.08 17.52 1.77 2.47 0.095 21.70 0.089 21.8 0.05 0.095 21.9 18.5 0.06 0.066 0.072 22.00523 22.505 23.23 YES RD6 COTG1 0.26 11 6 0.01 20.74 21.00 0.20 1.34 0.028 22.15 0.018 22.2 0.01 0.028 22.2 21.3 0 0 0 22.20559 22.706 24.80 YES COTG1 1 0.26 22 6 0.01 20.52 20.74 0.20 1.34 0.028 22.08 0.034 22.1 0.01 0.028 22.2 21.1 0.03 0.019 0 22.14587 22.646 24.18 YES 1 WYE 0.41 23 8 0.01 20.12 20.35 0.35 1.17 0.021 22.04 0.019 22.1 0.01 0.021 22.1 20.8 0.03 0.019 0 22.07916 22.579 24.00 YES Barrel Ent. Ent. Exit Outlt Inlet Appr Bend Junc Lengt Pipe Outlet Inlet Barrel Barrel Vel. TW Frictio HGL Head Head Cntrl Cntr Vel Head Head Area Q h Size "n" Elev. Elev. Area Vel. Head Elev. n Loss Elev loss Loss Elev Elev Head Loss Loss HW Elev. From To (cfs) (ft) (in.) (ft) (ft) (sf) (fps) (ft) (ft) (ftj (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) A2 2 0.05 92.5 6 0.01 19.75 20.48 0.20 0.24 9E-04 22.37 0.005 22.4 0 9E-04 22.4 20.7 0 0 0 22.37632 22.876 22.00-LANDSCAPE 2 WYE 0.75 83.5 8 0.01 19.17 19.58 0.35 2.14 0.�71 22.04 0.226 22.3 0.04 0.071 22.4 20.1 0 7E-04 0 22.37035 22.870 23.80 YES COTG2 COTG4 1.15 56.7 12 0.01 18.43 18.8 0.79 1.47 0.034 21.94 0.042 22 0.02 0.034 22 19.4 0.07 0.074 0 22.0378 22.538 27.50 COTG4 15 1.15 19.6 12 0.01 18.2 18.43 0.79 1.47 0.034 21.91 0.015 21.9 0.02 0.034 22 19 0.03 0.003 0 21.94243 22.442 25.70 YES RD7 15 0.02 61.2 6 0.01 18.78 22 0.20 0.1 2E-04 21.91 5E-04 21.9 0 2E-04 21.9 22.1 0 0 0 22.14013 22.640 24.50 YES 15 SDMH1 1.67 30.2 15 0.01 17.64 18.03 1.23 1.36 0.029 21.83 0.014 21.8 0.01 0.029 21.9 18.7 0.03 0.006 0.052 21.90807 22.408 24.50 YES 3 SDMH1 1.01 47.7 10 0.01 18.05 18.48 0.55 1.86 0.054 21.83 0.072 21.9 0.03 0.054 22 19.4 0 0 0 21.97968 22.480 22.90 YES 4 A6 0.21 15 8 0.01 20 20.3 0.35 0.6 0.006 21.84 0.003 21.8 0 0.006 21.9 20.6 0 0 0 21.85245 22.352 23.90 YES A6 SDMH1 0.70 63.1 15 0.01 18.22 20.4 1.23 0.57 0.005 21.83 0.005 21.8 0 0.005 21.8 20.9 0.01 0.006 0 21.84091 22.341 IE=19.25 YES SWALE WILL BACK UP&FILL THIS AREA A5 WYE 0.11 57.3 6 0.01 17.18 19.47 020 0.55 0.005 21.83 0.015 21.8 0 0.005 21.8 19.7 0 0 0 21.8488 22.349 22.80 YES SDMH1 SDMH2 3.49 77.2 18 0.01 15.62 16.18 1.77 1.98 0.061 21.67 0.061 21.7 0.03 0.061 21.8 17.1 0.03 0.03 0 21.82675 22.327 24.42 RD1 5 2.18 48.6 12 0.01 19.15 19.5 0.79 2.78 0.12 22.32 0.13 22.5 0.06 0.12 22.6 20.2 0 0 0 22.63205 23.132 27.58 YES A4 5 0.13 80 6 0.01 19.65 22.5 0.20 0.66 0.007 22.32 0.031 22.4 0 0.007 22.4 22.8 0 0 0 22.76163 23.262 22.50-LANDSCAPE 5 SDMH2 2.88 59.3 12 0.01 18 19.15 0.79 3.66 0.209 21.67 0.274 21.9 0.1 0.209 22.3 20.3 0.12 0.01 0.172 22.32213 22.822 24.25 YES SDMH2 TRACTD 6.37 38.3 18 0.01 15.4 15.62 1.77 3.6 0202 21.25 0.1 21.3 0.1 0.202 21.7 16.8 0.21 0.1 0.13 21.67413 22.174 25.70 YES � � _ _ __ , __ , _ _ Federal Reserve Bank of San Francisco Conveyance Calculations Rational Method for 100 year storm event Date: August 29, 2005 Constants Precipitation (100 years from Figure 3.2.1.D) 3.9 inches Ar(from Table 3.2.1.6) 2.61 Br (from Table 3.2.1.6) 0.63 � C for pavements/roofs (from Table 3.2.1.A) 0.9 C for landscape areas (from Table 3.2.1.A) 0.25 kR for Time of Concentration (Table 3.2.1.C) 7 (lawns/landscape) 20 (pavement) (Note: the Time of concentration does not account for the time in the pipe and accounts for the time that run-off takes to flow to the basin. This yields a more conservative flowrate. The minimum time of concentration is 6.3 minutes) Equation Q=cIA Area# Total Area Area Im . Area erv Wei hted C Tc Len th slo e Velocit Tc Tc used ir Ir Q (acres) (acres) (acres) (feet) (fUft) (fps) (min) (minutes) (inches) (cfs) 1 0.07 0.06 0.01 0.81 52.00 0.005 1.414 0.61 6.30 0.82 3.19 0.17 2 0.34 0.26 0.08 0.75 106.00 0.005 1.414 1.25 6.30 0.82 3.19 0.82 3 0.50 0.38 0.12 0.75 349.00 0.005 1.414 4.11 6.30 0.82 3.19 1.18 4 0.09 0.09 0.00 0.90 102.00 0.005 1.414 1.20 6.30 0.82 3.19 0.24 5 0.30 0.20 0.10 0.68 79,00 0.005 1.414 0.93 6.30 0.82 3.19 0.66 6 0.27 0.22 0.05 0.78 178.00 0.005 1.414 2.10 6.30 0.82 3.19 0.68 7 0.53 0.53 0.00 0.90 122.00 0.005 1.414 1.44 6.30 0.82 3.19 1.53 8 0.40 0.31 0.09 0.76 148.00 0.005 1.414 1.74 6.30 0.82 3.19 0.96 9 0.26 0.26 0.00 0.90 110.00 0.005 1.414 1.30 6.30 0.82 3.19 0.74 11 0.25 0.14 0.12 0.60 108.00 0.005 1.414 1.27 6.30 0.82 3.19 0.48 12 0.46 0.38 0.09 0.78 166.00 0.005 1.414 1.96 6.30 0.82 3.19 1.15 13 0.27 0.22 0.05 0.78 145.00 0.005 1.414 1.71 6.30 0.82 3.19 0.67 14 0.46 0.33 0.13 0.72 172.00 0.005 1.414 2.03 6.30 0.82 3.19 1.05 � � Area# Total Area Area Im . Area erv Wei hted C Tc Len th slope Velocit Tc Tc used ir Ir � (acres) (acres) (acres) (feet) (ft/ft) (fps) (min) (minutes) (inches) (cfs) 15 1.04 0.00 1.04 0.25 329.00 0.005 0.495 11.08 11.08 0.57 2.24 0.58 A2 0.07 0.00 0.07 0.25 98.00 0.005 0.495 3.30 6.30 0.82 3.i 9 0.06 A3 0.39 0.00 0.39 0.25 252.00 0.005 0.495 8.49 8.49 0.68 2.65 0.26 A4 0.19 0.00 0.19 0.25 77.00 0.005 0.495 2.59 6.30 0.82 3.19 0.15 A5 0.16 0.00 0.16 0.25 117.00 0.005 0.495 3.94 6.30 0.82 3.19 0.13 A6 0.92 0.00 0.92 0.25 270.00 0.005 0.495 9.09 9.09 0.65 2.53 0.58 RD1 0.89 0.89 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 2.55 RD2 0.34 0.34 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.99 RD3 0.25 0.25 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.71 RD4 0.17 0.17 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.49 RD5 0.04 0.04 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.10 RD6 0.11 0.11 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.31 RD7 0.01 0.01 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.02 RD8 0.06 0.06 0.00 0.90 100.00 0.005 1.414 1.18 6.30 0.82 3.19 0.18 Federal Reserve Bank of San Francisco Conveyance Calculations Manning's Equation for 100-year storm event Constants n (from Table 4.2.1.D) 0.013 Pipe Chart Mv= 1.49/n`A*R^2/3 Pi e Size Area R Mv inches sf ft 6 0.20 0.13 5.59 8 0.35 0.17 12.04 10 0.55 0.21 21.85 12 0.79 0.25 35.56 15 1.23 0.31 64.52 i 18 1.77 0.38 104.98 24 3.14 0.50 226.31 (Note: Surcharge is when the Q pipe is greater than the Q required) Area From Area To Pi e Size Mv Slo e Q i e Q re uired Len th i e Velocit Surchar e Pi e Area (inches) (fUft) (cfs) (cfs) (ft) (fps) 14 13 12 35.56 0.005 2.49 1.05 118.58 3.17 NO 0.79 13 12 12 35.56 0.005 2.51 1.72 90.00 3.20 NO 0.79 12 SDMH3 12 35.56 0.008 3.18 2.87 102.94 4.05 NO 0.79 11 SDMH3 8 12.04 0.020 1.70 0.48 47.65 4.88 NO 0.35 SDMH3 TRACTD 12 35.56 0.010 3.56 3.35 41.42 4.53 NO 0.79 RD2 7 6 5.59 0.028 0.94 0.99 61.70 4.80 0.20 RD3 7 6 5.59 0.022 0.83 0,71 79.95 4.22 NO 0.20 RD4 7 6 5.59 0.020 0.78 0.49 89.00 3.99 NO 020 RD5 7 6 5.59 0.005 0.40 0.10 101.24 2.01 NO 0.20 7 8 18 104.98 0.008 9.39 2.28 152.00 5.31 NO 1.77 � Area From Area To Pi e Size Mv Slo e C� i e C1 re uired Len th i e Velocit Surchar e Pi e Area (inches) (fUft) (cfs) (cfs) (ft) (fps) A3 WYE 6 5.59 0.047 1.21 0.26 28.45 6.15 NO 0.20 6 8 12 35.56 0.004 2.36 0.94 98.04 3.00 NO 0.79 8 10 18 104.98 0.010 10.50 4.18 51 5.94 NO 1.77 RD8 9 6 5.59 0.020 0.79 0.18 100.31 4.00 NO 0.20 9 10 18 104.98 0.010 10.50 0.91 106.97 5.94 NO 1.77 10 OUTFALL 1 S 104.98 0.006 8.13 5.10 72.58 4.60 NO 1.77 RD6 COTG1 6 5.59 0.023 0.84 0.31 11.46 4.29 NO 0.20 ', COTG 1 1 6 5.59 0.008 0.48 0.31 21.68 2.46 NO 0.20 �� 1 WYE 8 12.04 0.010 1.20 0.48 23.14 3.45 NO 0.35 ' A2 2 6 5.59 0.008 0.50 0.06 92.53 2.53 NO 0.20 2 WYE 8 12.04 0.0049 0.84 0.87 83.52 2.42 0.35 COTG2 COTG4 12 35.56 0.0072 3.02 1.35 56.7 3.84 NO 0.79 ' COTG4 15 12 35.56 0.0115 3.81 1.35 19.57 4.86 NO 0.79 RD7 15 6 5.59 0.0526 1.28 0.02 61.22 6.53 NO 0.20 15 SDMH1 15 64.52 0.0129 7.33 1.95 30.23 5.97 NO 1.23 3 SDMH1 10 21.85 0.016 2.76 1.18 47.67 5.07 NO 0.55 0.00 4 A6 8 12.04 0.02 1.70 0.24 15 4.88 NO 0.35 A6 � SDMH1 15 64.52 0.0041 4.13 0.82 63.07 3.37 NO 1.23 0.00 A5 WYE 6 5.59 0.04 1.12 0.13 57.28 5.69 NO 0.20 SDMH1 SDMH2 18 104.98 0.0072 8.91 4.09 7722 5.04 NO 1.77 RD1 5 12 35.56 0.0072 3.02 2.55 48.63 3.84 NO 0.79 A4 5 6 5.59 0.0356 1.05 0.15 80 5.37 NO 0.20 5 SDMH2 12 35.56 0.0196 4.98 3.36 59.25 6.34 NO 0.79 SDMH2 TRACTD 18 104.98 0.0058 8.00 7.45 38.25 4.52 NO 1.77 Federal Reserve Bank of San Francisco Conveyance Calculations Backwater Calculations for 100 year storm event column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Barrel Ent. Ent. Exit Outlt Inlet Appr Bend Junc Pipe Outlet Inlet Barrel Barrel Vel. TW Frictio HGL Head Head Cntrl Cntr Vel Head Head HW w/6" proposed Area Q �ength Size "n" Elev. Elev. Area Vel. Head Elev. n Loss Elev loss Loss Elev Elev Head Loss Loss HW Elev. freeboard rim ok (y/n) From To (cfs} (ft) (in.) (ft) (ft) (sf) (fps) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) 14 13 1.05 118.6 12 0.01 17.10 17.68 0.79 1.34 0.028 23.02 0.073 23.09 0.01 0.028 23.14 18.27 0 0 0 23.13519 23.70 23.20 YES 13 12 1.72 90.0 12 0.01 16.65 17.10 0.79 2.19 0.075 22.79 0.149 22.94 0.04 0.075 23.05 17.79 0.03 0 0 23.02065 25.15 24.65 YES 12 SDMH3 2.87 102.9 12 0.01 15.83 16.65 0.79 3.66 0.208 22.08 0.474 22.55 0.1 0.208 22.86 17.47 0.07 0 0 22.78728 25.96 25.46 YES 11 SDMH3 0.48 47.7 8 0.01 17.61 18.90 0.35 1.37 0.029 22.08 0.053 22.13 0.01 0.029 22.17 19.32 0 0 0 22.17385 26.70 26.20 YES SDMH3 TRACTD 3.35 41.4 12 0.01 15.41 15.83 0.79 4.27 0.283 21.25 0.26 21.51 0.14 0.283 21.93 17.07 0.21 0.1 0.251 22.07672 26.90 26.40 YES RD2 7 0.99 61.7 6 0.01 20.25 22.00 0.20 5.03 0.393 22.54 1.354 23.90 02 0.393 24.49 23.37 0 0 0 24.48614 28.08 27.58 YES RD3 7 0.71 80.0 6 0.01 20.25 22.00 0.20 3.6 0201 22.54 0.897 23.44 0.1 0.201 23.74 23.13 0 0 0 23.74101 28.08 27.58 YES RD4 7 0.49 89.0 6 0.01 20.25 22.00 0.20 2.49 0.096 22.54 0.477 23.02 0.05 0.096 23.16 22.40 0 0 0 23.16309 28.08 27.58 YES RD5 7 0.10 101.2 6 0.01 20.25 20.63 0.20 0.51 0.004 22.54 0.023 22.56 0 0.004 22.57 20.87 0 0 0 22.57108 28.08 27.58 YES 7 8 2.28 152.0 18 0.01 18.03 19.25 1.77 1.29 0.026 22.33 0.051 22.38 0.01 0.026 22.42 20.07 0.2 0.056 0.268 22.54198 23.60 23.10 YES A3 WYE 0.26 28.5 6 0.01 20.19 21.25 0.20 1.33 0.027 22.41 0.043 22.45 0.01 0.027 22.50 21.58 0 0 0 22.49597 23.28 22.78 YES 6 8 0.94 98.0 12 0.01 18.99 19.40 0.79 1.2 0.022 22.33 0.048 22.38 0.01 0.022 22.41 19.97 0.03 0.028 0 22.41149 24.30 23.80 YES 8 10 4.18 51.0 18 0.01 17.52 18.03 1.77 2.37 0.087 22.12 0.057 22.17 0.04 0.087 22.30 19.03 0.03 0.027 0.023 22.32865 23.38 22.88 YES RD8 9 0.18 100.3 6 0.01 20.01 22.00 0.20 0.89 0.012 22.12 0.069 22.19 0.01 0.012 22.21 22.29 0 0 0 22.28834 28.08 27.58 YES 9 10 0.91 107.0 18 0.01 17.52 18.59 1.77 0.52 0.004 22.12 0.006 22.12 0 0.004 22.13 19.19 0.01 0.001 0 22.11755 23.08 22.58 YES 10 OUTFALL 5.10 72.6 18 0.01 17.08 17.52 1.77 2.88 0.129 21.70 0.121 21.82 0.06 0.129 22.01 18.58 0.09 0.09 0.098 22.11647 23.73 23.23 YES RD6 COTG1 0.31 11.5 6 0.01 20.74 21.00 0.20 1.57 0.038 22.48 0.024 22.50 0.02 0.038 22.56 21.35 0 0 0 22.55647 25.30 24.80 YES corGi 1 0.31 21.7 6 0.01 20.52 20.74 0.20 1.57 0.038 22.38 0.046 22.43 0.02 0.038 22.49 21.09 0.04 0.026 0 22.47504 24.68 24.18 YES 1 WYE 0.48 23.1 8 0.01 20.12 20.35 0.35 1.36 0.029 22.33 0.025 22.35 0.01 0.029 22.40 20.77 0.04 0.026 0 22.38409 24.50 24.00 YES Barrel Ent. Ent. Exit Outlt Inlet Appr Bend Junc Pipe Outlet Inlet Barrel Barrel Vel. TW Frictio HGL Head Head Cntrl Cntr Vel Head Head Area Q Length Size "n" Elev. Elev. Area Vel. Head Elev. n Loss Elev loss Loss Elev Elev Head Loss Loss HW Elev. From To (cfs) (ft) (in.) (ft) (ft) (sf) (fps) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) A2 2 0.06 92.5 6 0.01 19.75 20.48 0.20 0.28 0.001 22.78 0.006 22.79 0 0.001 22.79 20.68 0 0 0 22.78927 22.50 22.00-LANDSCAPE 2 WYE 0.87 83.5 8 0.01 19.17 19.58 0.35 2.5 0.097 22.33 0.308 22.64 0.05 0.097 22.78 20.09 0 9E-04 0 22.78113 24.30 23.80 YES COTG2 COTG4 1.35 56.7 12 0.01 18.43 18.80 0.79 1.72 0.046 22.20 0.058 22.26 0.02 0.046 22.32 19.44 0.1 0.101 0 22.32768 28.00 27.50 YES COTG4 15 1.35 19.6 12 0.01 18.20 18.43 0.79 1.72 0.046 22.15 0.02 22.17 0.02 0.046 22.24 19.07 0.05 0.004 0 22.19765 26.20 25J0 YES I RD7 15 0.02 61.2 6 0.01 18.78 22.00 0.20 0.12 2E-04 22.15 7E-04 22.15 0 2E-04 22.15 22.15 � 0 0 22.15185 25.00 24.50 YES I 15 SDMH1 1.95 30.2 15 0.01 17.64 18.03 1.23 1.59 0.039 22.04 0.02 22.06 0.02 0.039 22.12 18.78 0.05 0.008 0.07 22.1508 25.00 24.5Q YES 3 SDMH1 1.18 47.7 10 0.01 18.22 18.65 0.55 2.17 0.073 22.04 0.099 22.14 0.04 0.073 22.25 19.62 0 0 0 22.24791 23.40 22.90 YES 4 A6 0.24 15.0 8 0.01 20.00 20.30 0.35 0.7 0.008 22.06 0.004 22.06 0 0.008 22.07 20.64 0 0 0 22.07463 24.40 23.90 YES A6 SDMH1 0.82 63.1 15 0.01 18.22 20.40 1.23 0.67 0.007 22.04 0.007 22.05 0 0.007 22.06 20.96 0.01 0.008 0 22.05889 23.50 23.00 YES A5 WYE 0.13 57.3 6 0.01 17.18 19.47 0.20 0.64 0.006 22.04 0.02 22.06 0 0.006 22.07 19.73 0 0 0 22.06945 23.30 22.80 YES SDMH1 SDMH2 4.09 77.2 18 0.01 15.62 16.18 1.77 2.31 0.083 21.83 0.083 21.91 0.04 0.083 22.04 17.17 0.04 0.041 0 22.03939 24.92 24.42 YES RD1 5 2.55 48.6 12 0.01 19.15 19.50 0.79 3.25 0.164 22.71 0.177 22.89 0.08 0.164 23.14 20.29 0 0 0 23.13634 28.08 27.58 YES A4 5 0.15 80.0 6 0.01 19.65 22.50 0.20 0.78 0.009 22.71 0.042 22.76 0 0.009 22.77 22.78 0 0 0 22.77536 23.00 22.50 YES r'J SDMH2 3.36 59.3 12 0.01 18.Q0 19.15 0.79 4.28 0.284 21.83 0.374 22.20 0.14 0284 22.63 20.39 0.16 0.013 0.234 22.71375 24.75 24.25 YES SDMH2 TRACTD 7.45 38.3 18 0.01 15.40 15.62 1.77 4.22 0.276 21.25 0.137 21.39 0.14 0.276 21.80 16.82 0.28 0.137 0.178 21.83019 26.20 25.70 YES ; � , . ,-; •t, , , , ._. , , ,,w, �s ; .. :� , , ,,, , �; . .... : _ .... ..... , _ _._ ,y . • ' ,.. . ,; , : . __. . �r ` ;.. : ; � : ..., , � , � `r 1 1 3 /1 r_ �\ n«� � ,� � -- , f: ? ; � �F i � f � c^� . J f J f', '�— _._ -- � ,'�' , f � .� { _ -_� —_ � ___\ � _ Y �\ � A . '' :. ,;, ' �..., ,. .: ,�';; '' , ... ... ......._ . ' • . . �� ' '� �'`E . i�/ � ._.. .. - �` ' . ,s .� i� Iv� r _ � , . � —,,._.. � �� � ,,� ..... • � ��` w � . . ... � ... . ��; �ii- ' .: i . .... __.. . . ...�; �� � ��� s��x� . [ ..:.� _. . �1 n ✓yv��:,'.�y,,,� , "�'` � I �' SCREEMINO � —— , �.' �-� �;: `: �< �OF SAN FR/WdS00 K �7 r�.- ; r . ,s ` T —� , �„ _.. ,_, ;, ; ' �� , , ....._. j _ ,�,,� , ---. �, .+.aJ'ii.. '� . �3 � rLD I � �.� � .w�, A � � � �� ;:... �aN. �vE eu�nc (: i ,�;„: %; oF s�w �rt�wasco � - •-x � �� � � : �� ----< � , . /h� • �. . / �,. . �. .. x °. . p ,,3,rf —' — . . ........ ...__.. ................_... i : �i% �> , � y .... : �j" .............. f ; . �,. .�..... .. .. ` :.'--..5 � �... �': ev; .`ds � i ' ��i � A� �j� ; �.. ..�:: � : � Q.r� Qt�� _ _. ;, ..... _ ,......... _. ; . _ .. � �_�. .. ,... ...3 t.4.,....,. ....._.. S # i .. ,....,,..... ,.,,.....j�...,.,,, , ..,. � ;... ` � � / . \ �0 _. i.... __ < __. ` � SE YARD ' l3 . . _ u , .❑ o � � _ � � __ � : 0 , C� -- ` : � ; ......... q . ..�..., . . . . . �'�� � • • rrv +(� �. ,. ...... ;�. �. . �; � N :' :. . .I���... :'` . ...... . .. �' ..... �w . .. ..... � � ; ,�: � _, � �� ,t' _ .. ; . t � . _. . . �.. . ._... __ „ E. � ...-.f.... ..... _...�:. , . . ., . :, --- __ �- . � � .,: _ ��. - � � \ �N. ooac .;•:.' < i,-,� : �4.:_ :.�. 24 � ,,A!r. i � 6 i�:. \ � � #� �� : I�Y. �- .;; ., �: � ��� � � .� Y :. � : '..... .. � ': i .... .. ..., ...... ........... .. . ......... ......:. .......... . ..... ... ........... ........ . ...... .. .... �.... ... .. .Y.M. j•. t� ... ...... ��� '�. . ,�.�� � �y. ; ., .�� •.. . � _...... ................. ............... '� . 4 �•�� ..... ......... * ' . rL... . . .., ., .. ... . . + . .. os.a�.,_. . ....... .................r...,. .. �: . r.. ... .... �.' , � �, ' __.. : 0� �L�� j��r- ,...,._ � � f rn'tVl���`' <: � ` �- 4.2.1 PIPE SYSTEMS—METNODS OFANALYSIS FIGURE 4.2.1.I BACKWATER CALCULATION SHEET NOT'ES Column(1) - Design flow to bc conveyed by pipe segment. (�d�. I Column(2) - Length of pipe segment/ Colomn(3) - Pipe Siu;indicate pipe diameter or span x rise.� ', Column(4) - Manning's"n"value. � Column(5) - Oudet Elevation of pipe segment Column(6) - Inlct Elevation of pipe segroent. Column(7) - Barrel Area;this is the full cross-sectionat area of the pipe� Column(8) - Barrel Vclociry;this is the full velocity in the pipe as decermined by: V = Q!A or Col.(S) = Col.(1.}/Col.(7) �Q�,���t= �J�� Coiumn(9) - Barrei Velocity Head = VIl2g or (Col.(8))�lZg where g=32 2 fVsec2 (acceleration due ro graviry) . I Column(10) - Tailwater(7�Elevation;this is the water surface elevation at the oudet of the pipe segment. If the pipe's oudet is not submer�ed by the TW and the 7'W depth is Iess than(D+d�)/2,set TW equal to(D+d�)/2 to keep the analysis simple and sull obtain re�.sonable ! results(D=pipe barre!height and d�=criucal depth,both in feet. See Figare 4.3.l.F(p.4-47)for determinanon of d�)� ' Column(11) - FricdonLoss = S�xL [or S�xCol.(2)]✓ where 5�is the Friction slope on c�ad loss per linear foot of pipe ac determined by Mannino s equation expressed in the form: Sl = (nl7Z12.22 Rt.33 Column(12) - Hydraulic Grade Line(HGL)Elevaoon just inside the entiance of the pipc barrel;this is determined by adding the friction loss to the 7W eievation: � Col.(12) =Col.(!1)+Col.(10) i lf this elevation falls below the pipe's inlet crown,it no longcr represents the we HGL when computed irt this manner. The we HGL will fall somewhere between the pipe's crown and either normal flow depth or critical flow depth,whichever is greater. To , I keep the analysis simpje and still obtain rcasonable results(i.e.,ecring on the conservauve side),set the HGL elevation equal to � the crown elevation.� Column(13) - En�ance Head Loss = K x V'`/2g [or K�x Col.(9)J where K� = Entr.►nce L.oss CcefFicient(from"I�able 4.3.1.B,p.4-40). This is the head lost due ro flow contractions at the pipe entrance. Column(14) - Exit Head Loss = 1.0 x V2/2g or I.0 x CoL(9) � This is the velociry head lost or tiansfeRed downsueam. Column f 15) ' - Oudet Control Elevation = Col.(12)+CoL(13)+Col.(14)'� 7�his is the maximum headwater elevation assuming the pipe's batrel and inleUoudet characteristics are controlling capacity. It does . not include strucnvt losses or approach velocity considerrtions.� Column(16)� - Inlet Control Elevarion(see Secdon 4.3.1.2,page 4-37,for computadon of inlet convnl on culverts);this is the maximum headwater elevadon a�suming the pipe's inlet is convolling cap�city. It does not include structure losses or approach velocity considerations.� Column(17) - Approach Velocity Head;this is the amount of head/energy bein_e supplied by the discharge from an upstream pipe or channel secuon,which serves to reduce the headwater elevadon. If the discharge is from a pipe,the approach velocity head is equal to the barrel velocity head computed for the upstream pipe. If the upstream pipe oudet is significandy higher in eleva[ion(as in a drop rnanhole)or Jower in elevaoon such that its discharge energy would be dissipated,an approach velocity head of zero should be assumed. � Column(I S) - Bend Head Loss = Kn x VZ/2g [or Ka x Col.(17)] where Kb = Bend Loss Coe 5cient(from Figuce 4.2.1.K.p.4-25). This is the loss of head/energy required to change direction of flow in an access structure. Coiunm(]9j - Junetion Head Loss. This is the loss in head/enerey which resulct from the turbulence created when two or more streams are merged into one within the access swcture. Figure 4_2.I.L(p.4-26)c�n be used to determine this loss,or it can be computed using the following eqvatio�u derived from Fgure 4.2.I.L: Junction Head Loss = K�x VZ/2g [or K�x CoL(l7)J whero K�is the Juncuon Loss Ccefficient determined by: Ki = (Q�Qi)�(1.18+0.63(Q�Q�)) Column(20) - Headwater(H�')Elevation;this is detcrminod by combinin�the ener�y heads in Columns 17. 18,and 19 with the hiehest control elevauon in either Column 15 or 16,as follows: y CoL(20) = CoL(15 or 16) -Col.(1?)+CoL(18)+CnL(191 199fi Surface Water Design Ntanual 9/�/98 4-23 SECTION 43 CULVERTS AND BRIDGES T�BLE�.3.1.B ENTRr1NCE LOSS COEFFICIENTS Type of Siructure and Design Entrance Coefficient,K� � Pi�e, Concrete. PVG Spira! Rib, Df. and LCPE Projecting from fil�, socket(bell) end 0.2 � Projecting from fifl, square cut end 0.5 Headwail, or headwall and wingwalls _ Socket end of pipe (groove-end) 0.2 Square-edge 0.5 Rounded (radius='/,ZD) 0.2 �� Mitered#o conform to fill sfope 0.7 End section conforming to fill slope' 0.5 -- Beveled edges, 33.7°or 45°beveis 0.2 Side-or slope-tapered inlet 0.2 Piqe. or Pipe-Arch, Corruqated Metal and Other Non-Concrete or D.I. Projecting from fill (no headwall) 0.9 Headwall, or headwall and wingwalls(square-edge) 0.5 Mitered to conform to fill sfope (paved or unpaved slope) 0.7 , End section conforming to fill slope' 0.5 � Bevel�d edges, 33.7°or 45°bevels 02 Side- or slope-tapered inlet 0.2 Box, Reinforced Concrete � Headwall parallel to embankment(no wingwalls) Square-edged on 3 edges 0.5 , Rounded on 3 edges to radius of'/12 barrel dimension or beveled 0.2 edges on 3 sides Wingwalls at 30°to 75°to barre( � ' i Square-edged at crown d.4 I Crown edge rounded to radius of'/,Z barrel dimension or beveled top 0.2 � edge Wingwall at 10°to 25°to barrel"` Square-edged at crown 0.5 Wingwalls parallel (extension of sides) Square-edged at crown 0.7 Side-or slope-tapered inlet 0.2 ' Noie: "End section conforming to fill slope"are the sections commonly available from manutacturers. From limited hydraulic tesfs they are equivalent in operation to a headwal!in bofh in/et and out/et control. Some end sections incorporating a closed taper in their design have a superior hydraulic performance. 9/1/98 � 1998 Surface Water Design Manual 4-40 � 4.3.1.2 METHODS OF ANALYSIS - This seciion presents the methods of analysis for designing new or evaluating existing culverts for compliance wich the conveyance capacity requirements set forth in Section 1.2.4, "Core Requirement#4: � Conveyance System." ❑ DESIGN FLOWS � Design flows for sizing or assessing the capacity of culverts shall be determined using the hydrologic analysis methods described in Chapter 3. � 0 CONVEYANCE CAPACITY The theoretical analysis of culvert capacity can be extremely complex because of the wide ranee of possible flow conditions that can occur due to various combina[ions of inlet and outlet submeraence and flow regime within the culvert barrel. An exact analysis�Usually involves detailed backwater calculations, energy and momentum balance, and agplication of the results of hydraulic model s[udies. � However, simple procedures have been developed where the various flow conditions are classified and _ analyzed on the basis of a control section. A control section is a location where there is a unique relationship be[ween the flow rate and the upstream water surface elevation. Many different flow conditions exist over time,but at any given time the flow is either governed by the culvert's inlet geometry (inlet conrron or by a combination of inlet geometry,barrel characteristics, and tailwater elevation (outlet contron. Figure 4.3.1.A(p.4-42)illustrates typical conditions of inlet and outlet control. The procedures presented in this section provide for the analysis of both inlet and outlet control conditions to determine which governs. Inlet Control Analysis Nomographs such as those provided in Figure 43.1.B (p.4-43) and Fieure 4.3.1.0 (p. 4-44)can be used [o deternvne the inlet control headwater depth at design flow tor various types of culverts and inlet configurations. These nomographs were originally developed by the Bureau of Public Roads—now the Federal Highway Administration (FHWA}—based on their studies of culvert hydraulics. These and other nomographs can be found in the FHWA publication Hydraulic Design of Highway Culverts, HDS 1'�'0. m� � (Report No. FHWA-IP-85-15), September 1985; or the WSDOT Hydraulic Manual. Also available in the FHWA publication are the desion equations used to develop the inlet control nomographs. These equations are presented below: For unsubmerged inlet conditions (defined by Q/AD°5<3.�j; � Form 1*: HW/D = H�ID+K(Q/ADo.$)"'_O.SS** (4-3 j Form?*: Hi�'lD = K(QIADo.s�M ���� For submerged inlet conditions (defined by Q/AD0�5>4.0}; HWID =c(QIADo.s�z+ Y- O.SS** (4-: ���here HW = headwater depth above inlet invert(ft) D = interior height of culvert barrel (ft} H� = specific head (ft)at critical depth (dc+ Vc'/2g) Q = fiow (cfsj A = full cross-sectional area of culvert barrel (sf� 1998 Surface VJater Desi�n Manual � 4-37 FIGURE 4.3.1.B� � HEADWATER DEPTH FOR SMOOTH INTERIOR PIPE CULVERTS WITH INLET CONTROL i so i o,000 168 8,0� EXAMPLE �1� �2� �3� ENTRANCE TYPE s. � 156 6,000 D=02 incAes (�.o teec)- 6. a_�2o�t, 5 S�UARE EDGEWITH �44 5,000 6 H EADWALL 4,000 Hw• Hw 5' 132 ° (��t> 4. � ;_ 3,000 5. q ,.. �t) z.s s.e 12D �z) 2.t �.a I I � 2�D0� �3) 2.2 �-� , -4• � � 3. � 108 3. •D in feet 96 3• f PLAN ��� 1,000 GROOVE END WITH 800 __ __� HEADWALL � 84 6U0 / 2. 2_ �7f 500 �/ 2 i ��� 72 400 � 0 � I � � I = 300 �.�,Pj/ = 1 5 � 5 I Z N / ''r 60 V 200 � ¢ 1.5 'S.� PLAN �2� Z W Z � � GROOVEEND � 54 � � PROJECTING Q a �W _ � aa / ¢ 80 = � _ � / a � i.o �.o � �� x tL 42 eVn 50 W � 0 p Hw SCALE ENTRANCE o � Q �� 40 p TYPE Q • � 36 30 ��� Square edge with Q 4 •9 �• �3� W headNall � 3 '9 Q33 2D �Z� Groove en uh' W �31 � hsa {I 2 .a g 30 :;• � .8 (3) oove sn¢1 ��8 proiec� 27 - , 1 U �;,f� � 0.�4 �i .7 7_ 24 6 ;�� /�/� .7 s e scale or(3) � 21 5 ��=, orizo y to s� . then 4 /'� stroight ' line through D an , or reverse •s ,s 3 usl .6 .6 18 / .s / 2 ���' 15 �r � .5 � .5 ( �� 1.0 _ .5 _ I ,i --_-- __-_-_ — 1�� – �`�`'� ���ri:;� "�a[�r li�siRn ibl::r.u:l 9lI198 � -�--�? � ---_ � FIGURE 4.2.1.K BEND HEAD LOSS£S IN STRUCTiJRES I I I I I I iz I ='_, � p � - I _ •` � � I a�, --- _ __ _ __ I 1.0 � � Y I I Y oa�' I � 0.8 c ( °' Bend at Manhole, � " no Special Shaping � � U �68 � N � o Deflector I J ' 0.6 _ ; Curved � - � — � I o�-+T-- __ � nd at Manhole, � i �k� I urved or Deflector� � a` Y � I �, � � , ; �� 0.4 � '�� o.,3 1 � ��; ; i , o� Curved Sewer �� � _ ` r!D-2 I ;i 0 2� � ----o.=� - -- � I;; I `� �i: 0.2 ii �:. ;, ! i� � I 'i ' �� '�� � � S�wer r!D>6 1�� � I !;� ,f ' I ,�i ; � � .'; 0.0 00 20� �' 60° 80° 90� 100' �; Deflection Angle 7, Degrees �r '�i I{. �4 1998 Surface Water Design Manual 9/1/98 ��. 4-25 'i�k ;��. k �,, �! SECTION 4.2 PIPES,OUTFALLS,AND PUMPS �`! FIGURE 4.2.1.L JUNCTION HEAD LOSS IN STRUCTURES ' 3.4 3.2 Q� -► y QZ Q3 _ ��0% 3.o Q, 2.a Q3 � 2 6 Typical junction chamber Q3= 130.Q2= 195,Q3 = 65 '' V1 =13.5, V2 =12.3 ' 2.4 4s''Q�=0.50(50%) Head Loss=0.94' 2.2 Q3 = 50°'0 � 2.0 Q� w ai 1.8 0 � ' � _ �.s 1•4 Q3 = 30% Q1 �b 1.2 ag 4 23.2 1.0 Graphic Example Zm �g� .8 ��lo �n.4 .6 �G'3 _ ��% Q1 � � .4 .2 � � 2 4 6 8 10 12 14 16 18 20 � Velocity in upstream pipe, V (fps) � 911/98 1998 Surface Nater Design Manual . 4 �6 � 4.3.1 CULVERTS—METHODS OF ANALYSIS 4.3.1.2 METHODS OF ANALYSIS This section presents the methods of analysis for designing new or evaluating existing culverts for compliance with the conveyance capacity requirements set forth in Section 1.2.4, "Core Requirement#4: Conveyance System." ❑ DESIGN FLOWS Design flows for sizing or assessing the capacity of culverts shall be determined using the hydrologic analysis methods described in Chapter 3. ❑ CONVEYANCE CAPACITY The theoretical analysis of culvert capacity can be extremely complex because of the wide range of possible flow conditions that can occur due to various combinations of inlet and outlet submergence and flow regime within the culvert barrel. An exact analysis usually involves detailed backwater calculations, energy and momentum balance,and application of the results of hydrauiic model studies. However,simple procedures have been developed where the vario�s flow conditions are classified and analyzed on the basis of a conuol section. A control section is a location where there is a unique relationship between the flow rate and the upstream water surface elevation. Many different flow conditions exist over time, but at any given time the flow is either governed by the culvert's inlet geometry (inlet control)or by a combination of inlet geometry,barrel characteristics,and tailwater elevation (outlet contro�. Figure 4.3.1.A(p.4-42)illustrates typical conditions of inlet and outlet control. The procedures presen[ed in this section provide for the analysis of both inlet and outlet control conditions to determine which governs. Inlet Control Analysis , Nomographs such as those provided in Figure 43.1.B (p.4-43)and Figure 43.1.0(p.4-44}can be used to determine the inlet control headwater depth at design flow for various types of culverts and inlet configurations. These nomographs were originally developed by the Bureau of Public Roads—now the Federal Highway Adminisuation (FHWA}--based on their studies of culvert hydraulics_ These and other nomographs can be found in the FHWA publication Hydraulic Design of Highway Culvens, HDS No. #� (Repon No. FHWA-IP-85-I S), September 1985; or the WSDOT Hydraulic Manual. Also available in the FHWA publication are the design equations used to develop the inlet control nomographs. These equations are presented below. For unsubmerged inlet conditions (defined by Q/AD0'S<3.5); Form 1*: HWlD = H�ID+ K(QIADos�ar_O.�S** (4-3) �L Form 2*: HWID = K(Q/ADo.s�ar �4�� For submerged inlet conditions (defined by Q/AD°5>4.0); � HW/D = c(QIADD�S)2+ Y- O.SS** (45) where HW = headwater depth above inlet invert (ft) D = interior height of culvert barrel(ft) H� = specific head (ft)at critical depth (dc+ Vc2/2g) Q = flow (cfs) A = full cross-sectional area of culvert barrel(sfl 1998 Surface Water Design Manual 9!1/98 4-37 SECTION 43 CULVERTS AND BRIDGES - S = culvert barrel slope(fUft) K,M,c,Y = constants from Table 4.3.1.A. The specified head H�is determined by the following equation: H� = dc+V�2/2g (4-6) where dc = critical depth(ft);see Figure 4.3.1.F(p_4-47) Vc = flow velocity at critical depth (fps) g = acceleration due to gravity(32.2 ft/sec2). * 7fie appropriate equation form for various inlet types is specified in Table 4.3.1.A(p.4-38 ** For mitered inlets,use+0.75 instead of-O.SS. Note:Between the unsubmerged and submerged conditions, there is a transition Zone (3.5< Q/AD0�5 < 4.0)for which there is only limited h}�draulic study information. The transition zone is defned empirically by drawing a curve beriveen and tangent to the curves defined by the unsubmerged and submerged equations. In most cases, the transition zone is short and rhe curve is easily constructed. TABLE 4.3:1.A CONST�INTS FOR INLET CONTROL EQUATI�NS* Unsubmerged Submerged Shape and Material Iniet Edge Description Equation Form K M c Y Circular Concrete Square edge with headwall 1 0.0098 2.0 O.Q398 0.67 , Groove end with headwall O.OQ78 2.0, 0.0292 0.74 Groove end projecting 0.0045 2.0 0.0317 0.69 Circular CMP Headwall 1 0.0078 2.0 0.0379 0.69 Mitered to slope 0.0210 1.33 0.0463 0.75 Projecting 0.0340 1.50 0.0553 0.54 Recfangular Box 30°to 75°wingwall flares 1 0.026 1.0 0.0385 0.81 90°and 15°wingwall flares 0.061 0.75 Q.0400 0.80 0°wingwall flares 0.061 0.75 0.0423 0.82 CM Boxes 90°headwal) 1 0_0083 2.0 0.0379 0.69 Thick wall projecting 0.0145 1.75 0.0419 0.64 Thin wall projecting 0.0340 1.5 0.0496 0.57 Arch CMP 90°headwall 1 0.�083 2.0 0.o496 0.57 Mitered to slope 0.0300 1.0 0.0463 0.75 Projecting 0.0340 1.5 0.0496 0.53 Bottomless Arch 90°headwalt 1 Q.0083 2.0 0.0379 0_69 CMP Mitered to slope 0.0300 2.0 0.0463 0_75 Thin wall projecting 0.0340 1.5 0.0496 0.57 ! Circular with Smooth tapered inlet throat 2 0.534 0.333 0.0196 0.89 Tapered In(et Rough tapered inlet throat 0.519 0.64 0.0289 0.90 , ' Source: FHWA NDS No. 5 9/I/98 1998 Surface W'ater Desi�n?�9anual 4-38 � '� ___ �_._...� - _ .. . .y .,._.._. .._. _. .. ........ ...,... .�..... - --_ --- _..__- __. __ __. __. -- � - � �r � � � Qo o � i n � � o � � rn �, �. � I m A I `� �' n p WS=105.84 N II I--1 � Z CB#2 = �..� � CB#t Wg_ O 103.90 HGL � PROJ. � � WS= - - � WLET � r I 103.26 HGL �6�,5 � ��„ i -= 4� G�p IE=104.0 � a . Q�6 cfs �r'�a ,�o ia � TW=102.0 �-{GL �� 9 218 � .ty - U-`1�s � 5 s � 110'�18"CP � `d � 0.91% � � . 80'-18'�CP � � C� 0.63% IE=101.5 � Y IE=100.5 � ',,�, IE=100.0 � � � �7 n B A C K W A T E R C A L C U L A T I O N S H� E � �-�seloct the greater elevation n ��) �2) �3) �4� �5) �s) ��� �8) �9� ���) �1�) �12) �13) ��4) �15) ��6) ���) �i8) �19) �2�) C � ✓ Barrel Frio- Entr Entr Exit OuUI Inlet Appr Bend Junc y P�Pe Outlet InUet Barrel Barrel Vel TW tion HGL Head Head Conlr Conlr Vel Hoad Head HW H Segment Q Length Pipe "n" Elev Elev Area Vel Head Elev Loss Elev Loss Loss Elev Elev Head Loss Loss Elev � CB to CB (cfs) (ft) Size Value (it) (it) (sqft) (ips) (t1) (fQ ((t) ((1) (It) (It) ((t) (fl) ((t) (1t) (p) (iq z Out ,� � (all � �0 80 16" 0.o 12 t OD.00 1 d0.50 1.77 5.65 0.50 t 02.00 0.62 102.62 0.25 0.50 �03.37 102.75 -0.18 0.002 0.07 103.26 � ;a 7 � 1 2 6 110 18" 0.012 100.50101.50 1.77 3.39 0.18 103.26 0.31 103.57 0.09 0.18 103.84 102.95 •0.18 0.24 0.0 103.90 r � �, (104.9) � � 2 Inle� 6 90 18" 0.024 101.50 104,00 1.77 3.39 O.iB 103.90 1.00 105.5 0.16 0.16 105.84 105.80 •0.0 0.0 0.0 105.84 � � � -, d � � oa' � S � C d � ,� '� � w� . . SECITON 1.2 CORE REQUIREMEIVTS I.� � '' 1.2.4 CORE REQUIRENIENT #4: CONVEYANCE SYSTEM I,� � All en�ineered conveyance system elements for proposed projects must be ana]yzed, designed, and i � constructed to provide a minimum level of protection against overtopping,flooding,erosion, and structural �`'�' E failure as specined in the following groups of requirements: �,°, • "Conveyance Requirements for New Systems," Section 1.2.4.1 (below) T • "Conveyance Requirements for ExistinQ Systems," Section 1.2.4.2 (p. 1-39) • "Conveyance System Implementation Requirements," Section 1.2.4.3 (p. 1-�0) Intent: To ensure proper design and construction of engineered conveyance system elements. =' Conveyance rystems are natural and engineered drainage facilities that collect,contain, and provide for the flow of surface and storm water. This core requirement applies to the engineered elemencs af conveyance ,� systems—primarily pipes,culvens, and ditches/channels. 1.2.4.1 CONVEYANCE REQUIRENTENTS FOR NEW SYSTEMS � Al]new conveyance system elements,39 both onsite and offsite,shali be analyzed, designed, and constructed according to the following requirements. � Pipe Systems l. New pipe svstems shall be desi�ned with su�cient capaciry to convev and contain (at minimum) the � 25�ear�eak flow:assuming developed conditions for onsite tributary areas and existing conditions for any offsite tributary areas. 2. Pipe system structures may overtop for runoff evenu that exceed the 2�-year design capacity, , provided the overflow from a 1d0-year runoff event does not create or a��ravate a "severe flooding ' problem" or"severe erosion problem" as defined in Core Requirement#2,Section 1.2.2 (p. 1-31). ' �ny overflow occurring onsite for runoff events up to and including the 100-year event must discharge at che natural location for[he project site. In residential subdivisions, such overt�ow must , be contained within an onsite draina�e easement,tract, covenant, or public right-of-way_ 3. The upscream end of a pipe system that receives remoff from an open drainage feature(pond, ditch, � etc.) shall be analyzed and sized as a culvert as described below. ', . Culverts 1. New culverts shall be designed with sufficient capacity to meet the headwater requiremen�s in Section � 4.31 and convey (at minimum) the 25-year peak flow,assuming deveIoped conditions for onsite tributary areas and existing conclitions for any offsite tributary areas. � 2. New culvens must also convey as much of the 100-year peak flow as is necessary to preclude creating or aQgravating a"severe flooding problem" or"severe erosion problem" as defined in Core Requiremen[#2, Section 1.22(p. 1-31). Any overflow occurring onsite for runoff events up to and inciuding the 100-year event must dischar�e at the natural location for the project si[e. In residential subdivisions,such overflow must be contained within an onsite drainage easement, tract. covenant, or public riah�-of-way. 3. New culverts proposed in Class 1 streams or Class 2 streams with salmonids shall be desiQned to � provide for fish passage as detailed in Section 4.3.3. Note: The SAO or the state Department of Fish and 6Vildlife may require a bridge to facilitate fcsh passage_ I I 39 New conveyance system efements are those that are proposed to be constructed where there are no existing constructed conveyance elements. � I9���9g 1998 Surface Water Design Manua! , 1-38 3.2.I RATIONAL MEI'HOD 3.2.1 RA TIONAL METHOD ' The Ratir�nal Method is a simple,conservative method for analyzing and sizing conveyance elements serving small drainage subbasins, subject to the following specific limitations: • Unly for use in predicting peak flow rates for sizing conveyance elements • Drainage subbasin area A cannot exceed 10 acres for a sin;le peak flow calculation • The time of concent � ted using the method described below and cannot exceed 100 minutes. It 2s als� t r .;nat co 6.3 minutes hen computed to be less than 63 minutes. Note: Unlike other methods of computing times of concentration, the 6.3 minutes is not an initial collecrion time to be added to the total computed time of concentration. 0 RATIONAL METHOD E�UATION The following is the traditional Rational Method equation: QR = CIRA (3-1) where QR= peak flow (cfs) for a storm of return frequency R C = estimated runoff coefficient(ratio of rainfall tha[becomes runoffl IR = peak rainfall intensity(inches/hour)for a storm of return frequency R A = drainage subbasin area(acres) "C' Values � The allowable runoff coefficients to be used in this method are shown in Table 3.2.1.A (p. 3-13) by type of ' land cover. These values were selected following a review of the values previously accepted by King County for use in the Rational Method and as described in several engineering handbooks. The valaes for sin�le family residential areas were computed as composite values (as illustrated in [he following equation)based on the es[imated percentage of coverage by roads, roofs, yards,and unimproved areas for each density. For drainage basins containing several land cover types, the following formula may be used to compute a composite runoff coefficient, C�: C�_(CiAI + CZAZ+... + C,=A„)/AJ (3-2) where A� = total area(acres) A�,2._„0= areas of land cover types(acres) Cf,2,.__„= runoff coefficien[s for each area land cover type "IA" Peak Rainfall IntensEty The peak rainfall intensity IR for[he specified design storrn of retum frequency R is determined usine a unit peak rainfall intensity fac[or iR in the following equation: IR=�PR���R� (3-3) where PR = the total precipitation at the project site for the 24hour duration storm event for the given retum frequency. Total precipi[a[ion is found on the Isopluvial Maps in Figure 3.2.I.A through Figure 3.2.1.D beginning on page 3-14. iR = the unit peak rainfall intensity factor 1998 Surface Water Design blanual 9/l/98 . 3-11 ___ _._ ,.�,��vrr I:UMPUI'ATION AND A, AI,'V YSIS METHODS The unit peak rainfall intensity factor iR is determined by the following equation: � �R = �aR)�T�)�-�'� (3-4) I where T� = time of concentration (minutes),calculated using the method described below and sub'ec[to e uation limitations (63 <_T<<_ 100) J 9 aR,bR= coefficients from Table 3.2.1.B (p. 3-13)used to adjust the equation for the desien storm remrn frequency R This "iR"equation was developed by DNR from equations originally created by Ron Mayo, P.E. I[ is b d 'Q' Seattle Intensit /Duration/Fre ue ase on the on��nal Renton/ y q ncy(I.D.F.) curves. Rather[han requiring a family of curves for various locations in King County, this equacion adjusts proportionally the Renton/Seattle I.D.F. curve data by using the 24hour duration to[al precipitation isopluvial maps. This I adjustment is based on the assumption that the tocalized geo-climatic conditions that con[rol the total �', volume of precipitation at a specific location also control the peak intensities proportionalIy. � Note: Due to the mathematical limits of the equation coeffcients, values of T�less than 6.3 minutes or greater than 1 DO minutes cannot be used. Therefore, real valc�es of T�less than 6.3 minutes must 6e assumed to be equal to 6.3 minutes, and values greater than 100 minutes must be assumed to be equal to 100 minutes. "T�"Time of Concentration The time of concentration is defined as the time it takes runoff to travel overland(from the onset of precipitation) from the most hydraulically distant locadon in the drainage basin to the point of discharge. .Note_ 6Vhen C�(see Equarion 3-2)of a drainage basin exceeds 0.60, it may be imporrant to compute T�and peak rate of flow from the impervious area separately. The computed peak ra[e of flow for the impervious surface alone may exceed tha[for the entire drainage basin using the value at T�for the total drainage basin. The hijher of the two peak flow rates shall then be used to size the � conveyance element. T�is computed by summation of the travel times T�of overland flow across separate flowpath segments defined by the six categories of land cover listed in Table 32.1.0 (p. 3-I3), which were derived from a chart p�blished by the Soil Conservation Service in ]97�. The equation for time of � concentration is: T�= Tl + TZ+...+T„ (3-5) � where T�,Z,_._„ = travel time for consecutive flowpath segments with different land cover . categories or flowpath slope � Travel time for each segment t is computed using the following equation: L (3-6) � Tr = — 60V where Tr = travel time(minutes) Note: T� through an open water body(such as a pond)shall be I assumed to be zero with this method L = the distance of flow across a given segment(feet) ' V = average velocity(fps)across the land cover = kR so I' where kR = time of concenaation velocity factor;see Table 3.2.1.0 s„ = slope of flowpath (feet/fee[) 91]/98 1998 Surface Water Desi�n Manual 3-12 3.2.1 RATIONAL METHOD TABLE 3.Z.1.A RUNOFF COEFFICIENTS-"C"VALUES FOR THE RATIONAL NIETHOD • General Land Covers Single Family Residentiai Areas� Land Cover C Land Cover Density C Dense forest 0.10 ' 0.20 DU/GA (1 unit per 5 ac.) 0_17 • Light forest 0.15 0.40 DU/GA(1 unit per 2.5 ac.) 0.20 Pasture 0.20 0.80 DUlGA (1 unit per 1.25 ac.) 0.27 Lawns 0.25 1.00 DU/GA 0.30 Playgrounds 0.30 1.50 DU/GA 0.33 , Gravel areas 0.80 2.00 DU/GA 0.36 Pavement and roofs 0.90 2.50 DU/GA 0.39 Open water(pond, 1.00 3.00 DU/GA 0.42 lakes,wetlands) 3.50 DU/GA 0.45 4.00 DU/GA 0.48 � 4.50 DU/GA 0.51 5.00 DU/GA 0.54 5.5�DU/GA 0.57 ! 6.00 DU/GA 0.60 � Based on average 2,500 square feet per lot of impervious coverage. i For combinations of land covers listed above, an area-weighted "C�:x A," sum should be computed based on the equation C�: x A,_ (C,x A,)+ (Cz x A2) + ...+(C�x AR),where A,_ (A, +Az + ...+A„), the total drainage basin area. TABLE 3.2.1.8 COEFFICIENTS FOR THE RATIOI�IAL 1�IETROD"iR"EQUATION Design Storm Return Frequency aR bR � 2 years 1.58 0_58 � 5 years 2.33 0.63 � 10 years 2.44 0.64 I 25 years . 6 0.65 5�years 2.75 0.65 � 100 years 2.61 0.63 � . TAI3LE 3.2.1.0 kR VALUES FOR T,USING THE RATTONAL METHOD Land Cover Category kR � Forest with heavy ground litter and meadow 2.5 Fallow or minimum tillage cultivation 4.7 Short grass pasture and lawns 7.0 Nearly bare around 10.1 � Grassed waterwav 15.0 Paved area (sheet flow) and shallow gutter flow 20.0 1998 Surface�'�'ater Desion�lanual 9/1/98 � 3-13 SECTION 3.2 RUNOFF COMP[TTATION A��1D ANALYSIS MEiNODS � FIGURE 3.2.1.0 25-YEAR 24-HOUR ISOPLiJVIALS L� �S _- _"' --' - - '_ sw HouisH coun�r �6 •���• •�� . . .—_ `(- -��_ �__�� �� �._ _ K�HG COUHTv ?� , . _ *�f ` _'__ �/ 2 8 �e � ; � m � , 30 � � -- --'-- — - . ..,. �5 �� ` '��. . � I �2 . .,.. � . o i �, - . 3 b: _ � ' .� � 3 - _ _. � 3S Q ,;', m; o - . :. , � �-� � �. _ � _ _ _ `— ' � << � �o � ��,.,r .�,... ,- �, t� ` . _ _ �; _ li ,., �,- - _ � ' _. _. �-. �� - - ,. , - � � ' '� 5.0 � , ,. — ��— ,� _ ... � _ , ', � - � - �' � :.� ; � .� �\ • _—` � ii�� .,. ...,. -� ,..,,, � � � __ .�._ � I .�...� �< � � � .a. ��-'��.` i ; .... -��� -- _ ` /✓ , � ...� �� - ' - � . - . , r - _ ` ,r . �3 . _ . � , � ._ __ _ ; ' . `� ' .,,.. ... � �� S�� . - - j � L �' t{t � 101 � ;` . �' ......� i�. �.- ' , c � � %,. � � `� @ J' � � ` � /� �''-, �. h .., .. Cp `� � � �• �' ��_ .�.�_"'—-r... _r��c eounrr ��_ ... �. i�EqGE COUNiY �'�_ " � WESTERN � ,� <,: , � KING COUNTY `,-^� ------ ., Ss � y � , s.v � 4.5 25-Year 24-Hour �• � � �� �� �• ,� I Precipitation � ;-;;..� i n I n c h es 0 2�4 Miles `�' �•�� ��- �- � � 9/1/98 ]998 Surface Water Design Manual I 3-16 3.2.1 RATTONAL METHOD FIGURE 3.2.1.D 100-YEAR 24-HOUR ISOPLUVIALS � 3 ` �C/ i 3O�! ��— ���� ��� � 10 COUNTY ��T - .. --- -- -- n couhrr 2 � .w...,. ,.. , �� .. � .�:. .". ,_� � . _ ._ r _. ,. � �Q �` . . �, . ,�, -- �j� 3S � 1'. �_. �9.8 ,�.._, '. ... .,., .,... '\ _ � � '. ` �: .� �, - 42 _ r.. �:+.,:�� � ---� �3 ��.� .--- � � _..- ` � . � ' �. J _ ..., `�� r�,��, S � - - ._ �, ., . , _` � � , �s . ti , - ':- . _ � .,.....,., ;�� � _ ��� • � ' _,�--� C _ � � �� ....e _._ - - . ,� �i �.�... � _ ..� _ `� _ � � � ' �J ` ��� � � �. � �.�-�'� . • r , . ��, - � � ' %� � , __ _ - . .�_ � _ ,.<, __. _. . _ �v-�� � .... -'" � � ,� v� ,.. ,. . t+b�t S° - � .. , � . . � -- : \ r - � � � � . ..... ..... � Q� `\ ' .m.� � � , /•, n O , � � `� �. ..,,.. �. � _��Gr. __�_ K O COI:H1v � , . PiE CL COUnTv VUESTERN � `� � '��- `�' �- s.� KtNG COUNTY o ,� - ---- �- ,., s.o N � ���, -,\ 5.5 100-Year 24-Hour a'� �.�- � - � !^�� Precipitation °`�,� --� ;_�,�.-.,� - , in Inches O�Miles �o � �.} �� 1998 Surface Water Design Manual 9!1l98 . 3-17 Ft�,�'1 1 g �C�ti ��J�1h11�1,,-�. 4.2.1 PIPE SYSTE1vIS—METHODS'U�AN� l����1 17���.�A� 4.2.1.2 METHODS OF ANALYSIS � This section presents the methods of analysis for designing new or evaluating existinQ pipe systems for compliance with [he conveyance capacity requirements set forth in Section 1.2.4, "Core Requirement##4: Conveyance System." ❑ DESIGN FLOWS Design flows for sizing or assessing the capacity of pipe systems sfiall be determined using the hydrologic analysis methods described in Chapter 3. ❑ INLET GRATE CAPACITY The methods described in Chapter 5, Sections 4 and 5,of the Washington State Deparrment of Transponation (WSDOT}Hydraulics Manual can be used in deternuning the capacity of inlet grates when , capacity is of concern,with the following exceptions: 1. Use design flows as required in Section 12.4 of this manual. 2. Assume grate areas on slopes are 80%free of debris; "vaned" grates, 95%free. 3. Assame grate areas in sags or low spots are 50% free of debris; "vaned" grates, 75%free. ❑ CONVEYANCE CAPACITY Two methods of hydraulic analysis usin,Manning's equation are used sequentially for the design and analysis of pipe systems. First, the Uniform Flow Analysis method is used for the preliminary design of new pipe systems. Second,the Backwater Analysis method is used to analyze both proposed and existing pipe systems to verify adequate capacity. See Core Requiremen[#4, Section 1.2.4, for sizing requiremen[s of pipe systems. Note: Use of the Uniform Flow Analysis method to determine preliminary pipe sizes is only suggested as a fcrst step in the design process and is not required. Results of the Back►vaterAnalysis method determine final pipe sizes in al1 cases. . Uniform Flow Analysis Method This method is used for preliminary sizing of new pipe systems to convey the design fiow(i.e., the 10-year or 25-year geak tlow rate as specified in Core Requirement#4, Section 1.2.4). Assumptions: � Flow is uniform in each pipe(i.e.,depth and velocity remain constant throughout the pipe for a given flow). • Friction head loss in the pipe barrel alone controls capacity. Other head Iosses (e.a.,en[rance,exit, junction, etc.)and any backwater effects or inlet control conditions are not specifically addressed. Each pipe within the system is sized and sloped such tha[its barrel capacitr at normal fu11 flow (computed by Manning's equation) is equal to or greater than the design flow. The nomograph in Figure 4.2.1.F(p.4-20)can be used for an approxima[e solution of Manning's equation. For more precise � results,or for partial pipe full conditions, solve:�Sanning's equation directly: I998 Surface Water Design Manual 9/1/98 • 4-17 —_.,,r.,.v ruMYJ V _ 1.49 Rv3 S�n (4-1) n or use the continuity equation, Q=A V, such that: Q _ 1.49 A R�S�r_ (a--2) n where Q = discharge (cfs) V = velociry(fps) A = area(sfl n = Manning's roughness coe�cient; see Table 4.2.1.D below R = hydraulic radius=area/wetted perimeter(ft) S = slope of the energy grade line(f[/ft) � I For pipes flowing partially futl,the actual velocity may be estimated from the hydraulic properties shown �I in Figure 4.2.1.G by calculating Q�,fi and V�,u and using the ratio Q�,;g„/Q�rr to find V and d(depth of �;� � floW>. ; Table 4.2.1.D provides the recommended Manning's "n" values for preliminary design using the ' Uniform F1ow Analysis method for pipe systems. Note: The "n"values for this method are 1�°lc higher in ,� i order to account for entrance, ezit,junction, and bend head losses. i � TABLE�.2.1.D iYi.�NNING'S "n"VALUES FOR PIPES ���'; Type of Pipe Material Analysis Method I�� ! Uniform Flow Backwater Flow (Preliminary (Capacity design) Verification) e� , � �� A. Concrete pipe and LCPE pipe 0.014 0.012 B. Annular Corrugated Metal Pipe or Pipe Arch: � � 1. 2-2/3"x 1/2"corrugation (nveted}: a. plain or fully coated 0.028 0.024 b. paved invert(40%of circumference paved): 1) flow at full depth 0.021 0.018 ; 2) flow at 80%full depth 0.018 0.016 3) flow at 60%fuli depth 0.015 0.013 c. treatment 5 0.015 0.013 2. 3"x 1"corrugation 0.031 0.027 3. 6"x 2"corrugation (field bolted) 0.035 0.030 C. Helical 2-2/3"x 1/2"cbrrugation and CPE pipe 0.028 0.024 D. Spiral rib metal i e and°f'VC pipe 0.013 0.011 E. Ductile iron pipe cement lined 0.014 0.012 F. SWPE pipe.(butt fused only� 0.009 0.009 9/1/98 1998 Surface Water Design Manual 4-18 � 4.2.i PIPE SYS"TEMS—METHODS OF ANALYSIS Backwater Analysis Method 'This method is used to analyze the capacity of both new and esisting pipe systems to convey the required design flow (i.e.,either the 10-year or 25-year peak flow,whichever is specified in Core Requirement#4, Section 1.2.4). In either case,pipe system stractures must be demonstrated to contain the headwater surface (hydraulic grade linej for the specified peak flow rate. Structures may overtop for the 100-year peak flow as aIlowed by Core Requirement#4. When this occurs, the additional flow over the oround surface is analyzed using the methods for open channels described in Section 4.4.12 (p. 4-59) and added to the flow capaciry of the pipe system. This method is used to compute a simple backwater profile (hydraulic grade line) through a proposed or existing pipe system for the puiposes of verifying adequate capacity. It incorporates a re-arranged form of Manning's equation expressed in terms of,friction slope(slope of the energy grade line in fVft). The friction slope is used to determine the head loss in each pipe segment due to barrel friction, which can then be combined with other head losses to obtain water surface elevations at all structures along the pipe system. The backwater analysis begins at the downstream end of the pipe system and is compuced back throuah each pipe segment and structure upstream. The friction,entrance, and exit head losses computed for each pipe segmen[are added to that segmenPs tailwater elevation (the water surface eleva[ion at the pige's outlet)to obtain its outlet control headwater elevation. This elevation is then compared with the inlet control headwater elevation,computed assuming the pipe's inlet alone is controlling capacity using the methods for inlet control presented in Section 4.3.1.2 (p.4-37). The condition that creates the hiQhest headwater elevation determines the pipe's capacity. The approach velocity head is then subtracted from the controlling headwater elevation, and the junction and bend head losses are added to compu[e [he total headwater elevation, which is then used as the tailwater elevation for the upstream pipe segment. The Backwater Calculation Sheet in Figure 42.1.H(p. 4-22)can be used to compile the head losses and headwater elevations for each pipe segment. The numbered columns on this sheet are described in ' Figure 4.2.1.I(p.4-23). An example calculation is performed in Figure 4_2.1.J (p.424). Note: This method should not be used to compute stage/discharge curves for level pool routing purposes. Instead, a more sophisticated backwater analysis using the computer softx�are provided wirh this manual is recommended as described below. Computer Applications The King County Backwater(KCB�computer program includes a subroutine BWPIPE which can be used to quickly compute a family of backwater profiles for a given range of flows through a proposed or existing pipe system. A schematic description of the nomenclature used in this program is provided in Figure 4.3.1.G(p.448). Program documentation providing instrucdons on the use of this and the other KCBW subroutines is available from DNR. I _�. 1 � � 1998 Surface Water Design hlanual 9/1/98 • 4-19 - I l�-:.t -`::�i•i`�K [�4�: ,r --,5 ,,,.�;,-`"t+.:.•. t -jt,.,`, t��K.��- A.W WRITINC,TEXT,IMIIALS,REVISIONS OR NOTARY SEAL APPEARII�IG OUTSIDE THESE MARGINS MAY D16QUpLIFY TAIS D(?CUME,*R'FOR RECORD(NG DECLARATION OF' RES'TRIC'ITVE COVENANTS THIS DECLARATION OF RESTRICTNE COVENANTS is made this�� day of c.� �-` , 19�by T1�e Boeing Company, a Delaware corporarion, and its subsidiary Longacres Pazk Inc., a Delaware corporation ' (collectively refened to as "Declarant"}. REC�T_4LS WHEREAS, Dec�arant is the owner of certain real property located in King County, Washington, and more particularly described on EXHIBIT A attached hereto and incorporated by reference ("South Marsh Property"); and . WHEREAS, as compensatory mitigation under federal and state law far Department of the Army Permit No. 93-4-Q0059 ("Permit") issued by the U,S. Army Corps of En�ineers, Seattle District("Corps" ar "Seattle District"), and certification issued by the Washington Depar�nent af Ecalogy("DDE"), and in recognirion af continuing scenic, resource, environmental and other benefits to the South Marsh Properry, and for the proteciion of waters of the United States; Declarant has agreed j to place certain restrictive covenants on the South Marsh Property to allow it to remain substantially in its natural condition forever, NOW THEREFORE, Declarant hereby declares that the South Marsh Properiy shall be held, transferred, conveyed, Ieased, occupied or otherwise disposed of and � used subject to the following resrricrive covenants, which shall run with the land and be bindi.ng on a[1 heirs, successors, assigns, lessees and all other occupiers and users. 1. Prohibitions_ Deciarant is and shalI be prohibited from the follawing, subject to the exceprians set forth below: filling, draining, flaoding, dredging, � impounding, clearing, buaning, cutting or destroying vegetation, cultivatirig, e�cavating,.ezect�g, constructing, releasing,wastes intp or othezwi�e doing any work on the Sout���,Propertyy The f�llowing are expressly excepted from this ' paragraph: (a) niinor impacts assvciated with hunting (excluding pianting or burnuig), ? fishing, �nd qt��E,re�creation$l;or.�d�c�riori�dtivitie'�; cbn5i�teqt'vvith the cantinuing " _ natural condiriott at`ihe South:Ma�"s�Prop�'rt�;(b}re�ioyal,or`Fi-imming of'vegetation ` hazardous to per�ns or the�St�tlth I���h��`r�ieity,`o�a�f timbei edowned or damaged due to natural disaster; (c) rest�ration or mitigation required or that,�nay be requued DECLAR/�TION dF RESi�RIC7'i�C�OVE��lV�: PAQE i (00000-0ODOhE991a00.Id714 �' 6R2/99 i ANY WRITINC.TEXT,WiT1AI.5,RF,VISIONS OR NOTARY SEAI.APPEARI.*(G OUT6IDE TFiFSE MARGINS ML1l' DISQUALIFY THIS DOCU MENT FOR RF,CO RDI^i G peu�suant ta pennit or by law inciudin�, withaut limitation., mitigation activities describeri in a report entitled Longacres Office Park Surfacti Water Management Praject, Conceptual Mitigation Plan; dated December I998, revised January 1944, and approved by the Pemut; and (d)work or activities that may be rec}uired for the public safety of adjacent properties. Z. Amendment After recording, these restrictive covenants may be amended only by a recorded document signed by the Corps, DOE and Declarant. Araendment shall be allowed at the discretion af the Corgs and DOE, in consuitation with reso�rce agencies as appropriate. Mitigation for amendment i.mpacts wilI be required pursuant to Seattle District mitigation policy at the time of amendment. 3. Notice to Government. Any peim.it agplication or request far certificati�n or modificatian that may,affect the Sauth Marsh Property rnade ta any governmental entity with authority over wettands or other waters of the United States shall expressly reference and inciude a copy(with the recording stamp) of these restrictive covenants. 4. Reserved Rights. It is expressly understood and agree�tl�at rhese , restrictive covenants are created s�lely for the protectian of the South Marsh Property, ' and for the consideration and values set forth above. I3eclarant reserves the vwnership of the fee s�nple estate and all riehts pertaining thereto including, without li.mitation, the right to exciude others and to use the South Marsh Property for all purposes not inconsistenc with these restrictive covenants. 5. South Marsh I2roaertv Transfers. Declarant shall include the following nodce on all deeds, mortgages, plats, Qr any other legal insbniments used to convey any interest in the Sonth Marsh Progerty (failure to comply with this garagraph does � not imga.ir the validity or enforceability of these restrictive covenants): NOTICE: The South Mazsh Property is subject to a declaratian of restrictive covenants recarded at[insert book and page references, counry{ies) and date of recording]. 6. Markin� of South Marsh Propertv. The perimeter af the South Marsh Property shall at all times be plainly marked by permanent signs saying, "Protected Natura]A.rea," or by an equivalent, permanent marking system. D�ct.axArtaN oF ttEsr�tct�vE covErifwrs PAGE 2 (00000-O400/SH941446]07)4 6R?199 ArtY WRITING,TEXT,INITW.S,REVISIONS 08 NOTA3tY SEAL APPEAWIrG OUT6IDE TfiESE hLtRGINS AfAY � DiSQUALIFY'IHiS UOCUMEM FOR RECORDIIVG ' � 7. Recordin�of Plat A survey depicting the boundaries of the Saath Mazsh � � Property shall be recorded in the King County Auciitor's Office prior to the recording of these restrictive covenants. 8. Severabilitv. Should any part of these restrictive cavenants be held contrary to law, the remainder shall continue in fuil force and effect. � L'�I WITNESS WT-�REOF, the Dectarant has duly executed this declaratian of Restrictive Covenants as of the date ahove written. LONGACRES PAR.K, INC. By .3. elson Vice President THE BOEING COMP�NY � B . . elson Vice President, Facilities Asset j Management Boeing Commercial Aiiplane Group DECLARA7ION OF R£STRICTIVE COVENANTS PAGE 3 [D0000-0OOO/SB99T400 107)4 6I�Z,19g `i ANY WRTTING,TEXT,INITIALS,REVISIONS OR yOTARY SEAL APPF 4RING OUI'SIDE"fHESE?vIARGINS MAl' DiSQUAI.IFY TffiS DOCfJME3Y7 FOR RECORDING STATE OF WASHINGTON ) �SS. �ot�rrrY o� x�rrG � On this �8'��day of �wne_ , 1999, before me, the undersigned, a � Notary Public in and for the State of Washing#on, duly commissioned and sworn, personally appeared J. J. Nelson to me known to be the person who signed as vice president of LONGACRES PARK,INC., the corporation that executed the within and foregoing instrument, and ac�owledged said instrument to be the free and voluntary act and deed of said corporation for the uses and purposes therein mentioned, and on oath sta#ed that he was dtily elected, qualified and acting as said officer of the corporation, that he was authorized ta execute said instrument and that the seal , affixed, if any, is the corporate seal of said corporation. IN WI7NESS WHEREOF I have hereunto set my hand and official seal the day and year first above written. , � ' ,���tiu����rrr�,,,� � � ����,� ,N. R u eFy.,� (Signattue of Notary) ```��Q.Z►.a�;ft1DN� tiq+�' I �v�� NOTARr�9� [��t`�>0. W . 1�v l7�flv...�'�2 f' _ —•— ' = (Print or stamp name of Notary) �-�t~ ou$"` �. .� NOTARY PUBLI� in and for the State of �'.,�GyF 1 5 ..��$'�4?� T • �''�FeF w�s���;.�` Washington, residiug at I'�o(.� \l . ����JfllllNilti���, 1Viy Appointment Expires !�/t 5_�� DECLARATION OF RESTRiCTiVE COVE;d�S PAGE 4 �ODOOD-0060ISB99144Q 10 i t4 b�22�99 � ANY wRITlNG,TEX'f,1Nri'IA1,5,RE�TSIONS OR NOTARY SEAI.AFPF.ARING OUTSIDE THESE hL1RGINS h1n1' DiSQUALiFY THIS DOCUMEIYT FOR RECOADtl'�G � �I STATE OF�1J.4SHINGTON ) ��I )ss. � I COtJNTY OF KING ) � .rr,,� On this .� day of ��,urL,Q�-- , 1999, befare me, the undersigned, a Notary Public in and for the State of Washington, duly commissioned a.nd swom, personally appeared 3. J. NeIson to me lrnown ro be the person who signed as vice gresident of TI-� BOEING (:OMPANY, the corporation that execated the within and � foregoing instrument, and acknowledged said instrument to be the free and v�luntary , act and deed of said corporation for the uses and purgoses therein mentioned, and on ' oath stated that he was duly eiected, qualified and acting as said officer of the ' corporation, that he was authorized t� execnte said instrument and that the seal affixed, if any, is the corporate seal of said corporation. ! IN WITNESS WHEItEOF I have heree�nto set my hanci and official seal the day and year first above written. L���Q-Cm o�.c�c.� l ���at�►r r rrr�� ��� {Signature of Nc�tary) �.��``,��.-�ioii Bf�`��''. �'��pTAA��*9� �or.�o�. ���b e n�..�r = —�-- c (Print or stamp name of Natary) : ':.. PUBL�G� �` = �d,'•,G ���: :,�'�j:�F � 5 ?2°a�°��` NOTARY PUBLIC in and for the 5tate of � ��������FrWAS�`,���`� Washington, residing at /�Q.o�.e l/�-- �- - My Appointrnent Exgires oo{ � DECLARATION OF RESTRICT'iVc COVENANTS PAGE S � (QQ000-0OOOBH491400 167�4 6122199 AN'Y WRITING,TEXT,INTTlALS,REVISlONS OR NO'fARY SFAL?3PEARInG OUTSlDE TSESE MARGINS MA1' DISQU,�LIFY TH25 DOCIiM£NT FOR RECORDING EXHIBIT A Legal Description of Sonth Marsh Property .4 parcel of land situate the SW 'l� �f the NE '/4 of Section 25, Township 23 North, Range 4 East, �.M, and being a portion of Parcel "G" as shown in Auditors File Nv. 924I 169002, records of King County, Washington, rnore particularly described as follows: Commencing at the southeast comer of said Parcei "G"; thence North 87°57'42" West, 37.�4'feet along the soutll Iine of sai�i Parcel "G" to the POIIV'f OF BEGWNiNG; thence continuing Narth 87°57'42" West, 1085.76 feet along the south line of�said Parcel "G"; thence North 2°02'18" East, 44.02 feet; thence North 28°53'16" East, 45.46 feet; thence North 40°56'08" West, 42.61 feet; thence South 49°47'44" West, ; 45.84 feet; thence South 22°27'35" West, 68.12 feei;thence south 2°02'18" West, 21 Q9 feet:to the south line of said Parcel "G"; thence J north 87°57'42"' West, 191,O1 feet along the s.outh line of said Parcel "G"; thence Nor[h 2°02'1$" East, 44.25 feet; thence north 77°17'Q 1" East, 84.19 fee�; thence narth 72°06'32" East, 107.6D feet; thence North 62°00'07" East, 57.30 fee'�; thence North 40°51'08" East, ��2.73 feet; thence south 70°2�'S1" East, 93.85 feet; thence South 78°IQ'13" East, � 99.27 feet; thence North b2°O1'S3"-East, 319.03 feet; thence North . 31°48'03" East, 205.92 feet; thence Narth 58°39'12" East, 21.72 feet; thence North 58°OS'27" East; 51.95 feet; thence South 85°39'S8" East, 48.64 feet; thence Narth 13°49'09" East, b5.83 feet; thence North 18°17'33" East,�55.05 feet; t�ence North 34°fl1'49" East, 40.21 feet; thence Narth 62°47'35" East, 45�31 feet; theace North 49`38'09" East, 37.80 feet; thence North 79°19`2b" East, 57_21 feet; thence South 84°OZ'19" East, 64.63 feet; thence South 85°36'4Q" East, 47.52 feet; thence Sonth 87°47'46" Easc, 49.3'7"feet; thence South 74°59'S2" East, 54.20 feet; thence South 40°39'03" East, 40.82 feet; thence South I6°53'29" East,`75.$7 feeE; thence SouEh 1°07'S9" West, 133.87 feet; ' thence Sauth 0°4$'S9" East, 13b.84 feet; thenee South 0°24'41" West, ' 124.94 feet; thence S��th 1°IS'46" West, 137.28 feer, thence South 4°59'36" West, 63.89 feet ta the POINT OF BEGINNING. DECL.ARATION OF AESTRICTIVE COVENANTS PAGE 6 ' �00000-0QOD/5H99140D 147J4 6/22199 � � � � a � � � > � B � � � SECTION 25, TOWNSHfP 23 NORTH, RANG� 4 CAST W.M, � xk � � 1V r� � I � i �M'� � � mID �� — ' . �j � t�� � . ��- C� � . , z � � / z ��� � � � SCALE . . � o�� N�� � 2�� � �Q� 2�� 4i?� , o � � ��� �r� � -� � • o � 0 � I� ( FEET ) . . N � o C 1 INCH = 200 FT � = c,, . � � � a � � � 50UTH MARSF-1 � v � ' "10.923 ACRES Q y � � Y . o � ,,,�, m o � , o � �. . � � � � -------- — PO1NT OF BEGINNING � (A � SOUTH LINE' OF PARCEL "G" � n �+ n � PER AFN No.92L1�169002 ,c°a � „L,�• � � m � �� 0 Q � \ � . ~ I O � sr Eo+r: 5 1 i 99 Ftnr [��7E: 5 11'"99 i � 1 _� � - To det<rmine !f flooC insurance is available,contact en ins�rance ager.t or Icall the Naticnal Flood insurance Progrem a:Ifi00)63&-6620. 4 _ :.PPRvXIP�1ATE SCALE IN FEET 50G 0 500 I i ' � I�I NATIONAL FLOOD INSURANCE PRQGRAM � � I - ' FI RNI j Ft00D INSURANCE RATE MAP _ STREEF . � � KING COUNTY, _ � WASHINGTON AND � i{ INCORPORATED AREAS � I w � I � Z PANEC 978 OF 1125 W ¢ SSEE MAP INDEX FOA PANELS NOT PRINTEDI � � o I Z I ' CONTAINS: 1` COPAMUNlTY NUM8ER PAN£L SUFFIX ET _ _ + I K��J7.qTY OF 5�0080 097B F � REN?ON.CITY OF 530088 0978 F � Tl1K�VIVi.CITY OF 530091 0979 F z J�,�J� > P Q 2 /F- m 31 � � ` T �� Q � °= ���� �� �'' MAP NUMBER ; 4 �r '�� �i��� � ' 53033C0918 F 1 - - r .j�..--,.. -- ._.___.��. �. FLOODING EPFECTS fROM i �P�' SPRINGBROOK CREEK MAP REVISED. � ZONE AE �,��Y�dq'�, lEL 23� 47°26'15" ��G �'�'''�, MHI �6, 1995 122°13'07" e � � � :a0�y o��� Federal Emergency Management Agency --•._ -+ �._ y ""' "_' .�— � � =D -a'+ � ° < b srRv =----�'� � a � ° � p soUTH oRivE - � 0 t1L�9 ,/�� m S 3�V-- �y� W y U �---- -�, ,��� m / +�q�� �� �'"+ � � ,�C�• y � � y K �,�.+ ��,, ,�' �21 ,"i r�,,w,p,'��`�' �'��sr� �, �'cr, �,C� � y ao � : ..� ' �4„�T ��'r��� � � �j'�i � Z- l.evte i lji i y� I;�',�r � i � �9 Ji C;�, � � ��}����j�i�ii i � , � �' ��s r' q� �� � � � .�� �'-� �� ��, � � �� '� 1 �e '� � �� 1�� � �� , p� I,.�. Z ' ° N k �.��.9:. �� i• � . y1� � � �� __� (w.l �� � q'� ,. � c� �' �.., w W � �°�'� m.y F iL . i.�) CI7 d ��� �'-�L }t `S, ' � n '�(�+ j IT1 � � � �, ° � � b ����!� 1, I�� .a, N o0 ✓� �d "�1'`, �, Z R� _ �`; ., q0 .n Q ��y,' '�o � m avo�f �,���dn M , U ��� , � � � y � �� ,s �� r' ,� "' � � wEST �� ,` N � VALLEY ROAD j � I' ,i .,,�I"-----�" O m .�c� ��` r n1 (� 3�dld N3Sl3N N ���,�` � �D m N �Z / _ � m ----�----+�.-.__-_.�-,- �— ___�-------.--� --,--, —+-----T--_._, -Ni rn D �Ij1J'dd 'JOINf) ,-__.___� v= , --r—, +-_--i --�----+------i------_ ..r r ���. -�---� --�-. ________ C I TY 0 F TU K W I LA---�---� C�TI' OF RENTON — �- -----______,��__-�._. N ----- _ O Z m X N U-1 ,�,�,;��,,5� , i����it� ��t.��� ���''/�i�� . �:� ��''���� :�u���n�Vljyttf}�n�i1�M n� i�a G Y h5� hl �d N j�'w�t f�t}� .�i i ��r:Sr ��t f 3�1 7 ��h'��i1F.r1 ni�"� I��YS / r i .U'�i ��..1�`f�w�i�p�i�i ��i� �i�ufi'�Uj�H� iv °r dilt r�l �tia i�i�� � ���� t ii I r i �i J h L l i��� i� �J��f;I���f���i i ril�����r � . ��i i �i��i i�L��y�r� }�t3i���it'',j��i�,��r��'�.i. �� i it. qk�t+N r+l S�";Yt�' n'�i��r - � .....�-- .r-"._-.� � i f i � i�ho � i 1i�9 ,ri{i I '� � _ � i r . +d �q'yfk�..dJ�v � . o � ��i�,. i ;�I � t t i� vf F � ri - 1 i i�� i .�.--""'��._... � I �! �i a�� ri i '� i.A �p ���'� � � . � ,j v +�•� p _� a � � l 1t'� 4 1 )�� )H.. � �� 1� �, j� I �1 � �i Y � �� � i i ', '.I rt iI Y� fi. rY i..�t t��� �j � � . �;�� f �` �I i �� �� ���r��i�� ��r�� �r���1 � �i r� ��I .�. � � �� . �� k . � � t`� i� .�� i���..� i �i��il!f iii { i �� i �. � !i!t � r � ai .� 1 vti�l i( 1 . , r i i� S i t �l�P � � �I � y i� � � !f t i �1 n I,n��..��! �I J ��� �rl�! � '.,�I�l�Y�7t�rr���li �4�1��l�L l�l�� �'4 G-.�� d.u� �� �.1...n.(� �� �t ��w� i ti� u�'�I��itr'rµ���i .,�INff�. � l. i1 � .i ,. y � z . �Y �I. . 1 N' !���� f�4}�t�iaA 7lWrd4 C:. � -- Yd t u]!- ii ��r�i; ��n";�1L�1iYFtrl�h�Cfc��'� ryrl�(�.il�(F?' '� � .��r�, ;,j t -�------�_._�_ ��' �.!..,�,�++m.�^^—"^»..� a�.' , h :��rti�,��`';�"�r8�H1�,v ...— - � � ---�-�^ � w � , �r• � ,, i r ��.' 1�^�6 h"���IL�,4.�>r�i�� ���Fu�v�7r 1i�t����� � �'�� F L �' { . ` hi�}v 'i1 ti,l rA1. � i Qr 1`��„�ST.ti� Yi�'ti ry� � �i L ���T4��ri ii t l�llr��V� l ��},�� ���1 ! - Q � _.I �r nr 9 I �tI a^��'�,Y��+ rf al�¢`r� �ti-� �F� � � i u� � .•. ri��7Y r�7}S,J'Y�l4 �4"��t� h.,� � N �i d�, i i �� �II� � �t`�c�„if�.�� i I1'�,�r�'S rlf�F 4 Yo 11 '� O +�i ^ rt- �' 7 i'�i�' �� �I�� t1_ t �� �..�.. � � 1�.��. � � � �' '� � � � � � `�t t� �`'�' ti^��' �� ; n yC m � � r �� � wli�) �A�� ��y :. ��v,+n ��i�..�� ir�r � i:}� � ��N . . � � � � �, �. ,� .fl "� 1 y��l-+' �, j�'[73 S K r r, � r; ( �� � ��,.n�� i���'iyV r 'u � � �"''�Ji � �di i �i I� y �,��a��hvi8�h ,�,�ipi � �r' ^, t ti n,� i {. i �,�� �r'�µi"� i{���t ti s v��t,�,� �V i � � � �:; i i� , ��j.y�i :.4'�'n �as� ��b�,-�� '�l +.1 -��, / �`+ I I 1 '. ^�4...�' �lY��hll '�`'1'J ki����{������4M,� �� 1 V � �.�*, ( �� \\�`�`(-� l��t � ' ry� ��'i������ ��I � 1��1if���lir��y, � �� � �x��J..��! Ad ,,y q '`3�� �. �:i �r.� �'�„ ���`t�.�'4�.1)�Y�� ��� 4 Fl�-+.,m w �Q<7�.�!1. ;�` � Ji . ..�i c f � i i ; �� � J � � ' i� ca i i � � � i �� i iq�� ��� h���r�`,��.h,�t'�N '1�5 1 r i Sa�� y�t r � � ,� r�� � ° � ', � �,��'�y`��^�• ����� V,�j �,� �-1 i°�t �'1�i�'pf i� "{'��i'� }� � , 1 ry �f 1�}'�} ryl Y A1 1)I 1'���4�! t� � i �i ',�, s��� .`� ����''4 I� � r����t����},���r���lii��hSil� iAi� ������ � �. (��3 / �� i C �6J� l, I��°41� y�S ."+y�i� '�}� I� i'4j �N4'z'S�il l tia��q t t��i�� � d ..__.( �'.� i I �. �'A. �.i, �_ : � �V �y F t� n�{��i i t � � � � � �ij� ' � ' i i N, '� `+y "�b�' � 5�u�(d,�� i` � �`1�ir1�����j�AtEr�tn�t�a������" r � �i i� °" Ir � , i \ � � I ��i �� � I � {A�,��a� i���, � �m r t��;ttk�IV �' a }�����i�`��� , l � ...:�,�i I� i � i ,. �� i tx '71'; � �ec Pa u . i� �i�''+� �`'s�.n..i . �a w rr�'03� +' v � ur 1 �i,a,, y ��I.�`�{1���1 ,1 riill � 1 � � ' � �� �� ,��, �� ,�.�„ � . � �. - ��..,. '`, `. .,.. .' �') ��j i� 71(r u..' ni .,A,., � �,. 3 ����ll��������tlril�,�.I�IillTMli iFi;�„�qi,f , � i.:,- .,.:., . --.�.n...�:,,,,�«�,.�,�ti �rx->_� ���;_.�,.� �,....��,.. _ .<<� �h� til �.+�� ;,� 7 i} i�,�� ��i � k � 9!i;'a�l,.., „ ,,,, ,j,, � :,... � , r � ... . r. , �, �, ! � 1 �!� �""'"��� . . . . .r..i�. �...� .. �,.y:_. 1 4 :�..- I- . "''�ayd'MPP � " � � . --- _ .._....:.' �i,....�.._... �,o:. ,�...,.,..� ,,...k>-.. ..,w�,,,,,J.. �{-,,•. �-, , +, ,,- 4 r_..:.� �;=�w«. 1, nY�f 4y..���„�^..�,w�,�;, tk��r �� a''�I i i-.1i��1'MUNL7�•.�:i i _...,..�....... �, �..._M ��� �t�.+;�-+��,��....R,„°�„�`�^�".' ,�4w,.�,q �'` L-"1, -'.n_ m �/'Y �k' r A '.i } n ���� � �'1 � � -j ,,,��.� 1 i; �,.. �k+S���._.,.�-�,�+ 1 �} F�yc r:.� � I I.iiisai�t1 Jr.;� ��Cv+r,�� � �iu.[I � )�i�is ! i ii '' i +�.: .:1. � ;; '', !, ..: .,-; � . ; ' _�. �(S �Y , .:',�,. . .. ���� , ,� ��'. , ,��.. ':', .��i 4'[A��f �..iil 7 �'}.^�--u..�T ��"wh-�r�^M�.Y-'�"-$^�'l,h,^^�:, r� r...+:! . l ' ..� ,.. � � ' ..�.:�� .� .� .�.. ,.:. . . ,� ��,�,r,lia. _ i�F{��,i�= ti , �1°I`= �4 .fr,':'I ���,�.i�Y f�. �'.k i�f�Tld �i � '��� f i t� Lg i.�.:a�:.,�..., _ :, � �"'r� �" t � I r �;"(7 �ii F�1 f l . d �� �i i�i m .i , i� i �i1� iy�,, � i f � III�����I li a'rih i;{��(1 � 1 ,`i � .,v f' ,° d �' . ��:::7 f 1 ` ra J} 1�.1�4�Lw�i a ir��,_i�,i � i" �����5 iI�I ����>� i�ri���)I� ��ti ,�y��1�7n�jt�;��R �� �� �i:; i �.�.1 1 t il'i`�'I �i�f`�V;�� I t;i:lii t r ,�,i4:�,�r�id ,�i,.,�: L y�+i.��.,:ri�.. .i�;:{l �'�� ,.�.1�.{�.7 ,'Ji'-. ..k l �4"� �ill �", ��1� �,�t� li „�i J �dpi„�u�i i-�I a '�,��iilil` i q!.n„ � I�.p�init� ,�,n 1�1.,v�:� _.., v� 'pl � � j, I '�Il�� re . ,i�. S lSi�p1 I�{ti�d'1���P��7,�rl!" �ui;l,mfil'�ii�.�t;.�;Ht S'� , ni,,� 1�;f V, �i �i� � � � ��'� i'{w� f .'i� ���...�.-., ,i � ( j � , .�c Wx v r � ,� ,vfi I y , � i�Li h'!I;'i u i Il i � �I � 'r u � i� i.;;� ,i_ i � `tiPll It. i:r ,�;,.::�,t li z'r{�.,�r �i.,{i��h�;��. 1�., 11}9 P,�' ;���y;�i iT.�p ;;�i',l�S;l � nr144�,. )lro.s ��hpr�J � r �ld.�,,, ' T) '� I.� I f �1_,;i�; '�'�'li� ".j` f i �y�` l�i��ly��� l��yli.. ti . �{I11����,� t�l,�i-.�J�4 i 5�- �},� rll �� i ( � , � � � �1 1 � � j )t .� p "Iy �'Y �,�� i i �liv i f i ��i;� - \ �l�� �� v� i r.:.:4� �� 11 il���� �Nji.J. �I�� r '.� I �i-i� i ���ff I r.�. G 1 � i u� - � sf } E i�tr i� � � ����, .�4 P �� rp�� �i�) +�� � � �'„�b� '� d��'' �s f I i I � �t i �� t 1Su �S � r i [ li. � r 1 ° r.' i r � A;±, i �j � � '' � tl�r',ti�}j�1'd �r'b�, 1;�it t�, i � d 4 �id 1� r � � � 1 ! � � �� �', '�� 1��� n �� 1 �. �. rPi i� ��. � ,' �Y i � , � � .. � ��-1 r r l�,) �L..� ,�...�... �1 '���r; X g I 1 1 �" „ an !��!�� � 14 � i rii u :j. > > ::�� fi G� �'� ,.Gv : � r�i i i i i � �. . (7] ' "� ' al i �h� � �� !,� i i i �i r i � `- � -- � 5 � n �� �S�. '. l��� I �� r .. � �I .u��(7 ��L��.� � U �+, ji i . �i t � Hw?.a'^ ���i+,r-t1�( �r�,�� � ���ti� ��'�F�ri'� ���t���� (�� 17TH S( �,������i � �p' I���,h i(r hi� , n j i a�u ,ia i �p'^$'r*^`^'y+�+. L d �v,� � u � i� ��� i "�'I� u s: i i i t�� ;u J i' I'.i I i I i� ii�'` i� �� �`' i n '��� i li���;) m N ,1: � � �1 ��� I ,� � �, , , „ �„ � � � �� �� �� i�� �� ti�vi�)�}���Or�ll��if�e�t� �n�i����j�i�ai�' -1 T -----_—__�._.._.._, ',."".""�`.4....}���'ry-L..+������ ��i} �li v; ti��'� -----•--- °L-.-�_,��_ LIND AVENUE SOUTHWESi ��� 4 1 GJ C;� N � O Z <n ry� _`-+_------t--�--� -i ,__---� m x �„ -� _�_—..____.—..__ ___..____--------- , JOINS I'ANEL 0979 -" -`-- — A .__-__ -- - - - - - - - _ __ ___ ___ _.... __._ , — _____ _._.. ._._ .� — — — — — ul ' L� �G3N tt�E W 1/2 � -�-- ¢ __ _.__- � �-- . .:. z :�:_:;,� c,:.> ��_ _ ,.. .. �� --'='„ � I � � `, `^1,\ I � -.. ° , ..1 , , ......____...... . .. � , _,.:�.:�o. , ..._.__.. _".. �,�.� � �, , -�-.� _ . _._.. . r,, .- .. � y� • � � � . ... ... ...._.. .. r _^.'_ _. { . , . .._.., � . � � ��','._ ... .�_. \... . ..__._.... ..._ ...�.........�`..�.....\` 1 � � �, 1 1 � � ��}�J I i „q.` __`~'� �. ._. ��, � lf I i � .. . '� �i � . , �__.�_��- /� ' � �. � : ) - , � , �- _._ , '�:��___ � /; �, , � , � , � . � ;Af�, � � ; _ � �-���;���..__�A� �� 7` � � � f. I ._^}w Y: ...� ...... .. . -nr�• � � .: I i,� ;'`,�.�_._� :.�. � ��- --- -:.�, =n: _ - � -_.._ .___. __. _.. ___.. Bow Lake ,� �� � � , ; _ � . � [_ � �`,, ;-;,/'` �, � - � - - _._ __ _._ __ _.^:_ :'� � ;' , /' ;.,`�° �' "`+` � r� � ._ ,. , y,� ,, , ._1_.,.., -_ - . ; .. -a ,�� ;'�/r� : _..__.._. _.... � � � � � / " � -- , ' � r,`(� ;f/ -' �t i _.. W � 1��� 1�y�r i - - _ __ .,. . I � � �i ' _ __ � � � i � � /, i � _....., i �c n, �r�if � ! � � ...._ ..._ � L- ._,. I iil � . ��' f ' � � _ . . ... .._ _ . ,.- o u 1�� I _ _. �- I1 i � 1` t � 1 � . I � � v 111\��' �` °� ��'�� �r- _.. �.�,. � � °' �, �,. �� ` , � > � � _ -_ - - _ _, _ �. �� � ,. _n _. _�. ,^�:_ `�`'(� `\�� �.. ` f,� �\ I � ,. I 't5 _... �'� �``~ . . \ti ♦,,r .s �,/ ¢ _ I � I � � � � I ; � _ � \\�` .,\`ya°�^: __..._� �I ` _._ __... _._ __- -....__.._. _ ..._ ._--.__.. _. I ' I I f v � " � r \ �I �� _ � e Blvd I �!" ' . ��...` � I .r�--� �� � �thander� Bl d '� �', '\� � �._.., ,._ � \,,-. . _� � , I -- . � . I �--�., _ _ �°�-�,..�- �� _ _ � '�;� --- . �� _. . _ _. _..;__. .� / ) . j I�! i l. �'� ' ;; � I Q � ..i��� '�1 -. ,/' � r '1 ' -. ....,� . • ! __. I �`� '� �...�J J;• � �� `��, \ � i � ; \ 1 � ,.. , � I � � , � _. _ _ � . , � � \ � . � �\, , . ; � � � '�� �\ '�, \1� \\11 .�I� . .,`. "...... .`,\\ �\ �' �, I � . . ... � � � . -._ ....:.... { i 1 � ... . .... � \ ♦ ... ........ . � \ ...... �....,. "r \�.�` '� . � `��,� '�f.r• �.... . .._ .�` � . i .... ... .._. . ."" ..,... � ��.-•-� � �. ._ ._.... ...!. ' ��\� �\�. ' �1/ ' . 1 y��\\ �� . � I � � ., ,.� �.. ,� �, . � e '� . � �I, �. . ,, , . � � �� ,� iy�� ��,� i � � ,� �. � � R y . i Dr � �.� �,'�L�;% � I '� � � � � _ \� ,�,wr', _� � � � ,� ;". �.., r7 / ;r� ''� I ��� �5 ��� 1 ,� 1���� GA ..._ �, � � �- –_\\ a2 �9 _ _�. . _._ , � , , � � ___. �.� � �.�---_.. __.._.._ ..__ .... __.. ._ I . , ' �\� a�/ �i'i �,„„,w� _ .. .\__ . ...... I , ,? . , � _ __ _ _ _ ,�;: �\ � iyt �I�„� �., `�._�i f�.: i� � � .'��� /, ; \ .' rP1'S/�G�� __,.... \ �.___ : '`I W � �� � .y � I� `.��'%/ ' n I _� ... „ i , ,v � /,:% �� ._........._.____. . ... � � ._._._. � 1' .. ..... ..._... ........ . _.. � : .��� � ,I . ......._... ...._ .- O . � � W l��/l / �'f \ \` L � 4 / � ��+:�f� '-.. _......_. _ I._ . : _ '� / /� ,r%i \�� ; .I 1 d-_ � I _._._--... ...... _. _ � � i� , rf/," � , 1 I �' .•,`�1�' � ����`=� �d� � � � � ;� N � I � I /� /%'�f \� �\'\ .I .� 11�` w ..__..._ ..___ � O I, ._ . ....____._� �� �f/�� � � . \� � �.� - � � I // /f (� � �T\ I I Q � �� . � /�/�i/ �j! � /_._..._. _.____.._ .. �� �� � � ! ._..._...._.____._._... • .. . .___..._ i_ill �� �� ,�� �` �� ,` I � � ...... ._ � F.'. � � � � \\� y� � I I I ' � �, � ,� C , l+, � � � \ � e I I �� � ..,.. . d. �.. ..-• -'�,-. �1 > �. .._................. .__. ` ' " '." � \ \ ' � � - .�,s ....�. �� �� � IN '\�\ � �� I I '\ ., �.. % I � � � �. , , , ,..� � _._.___ ___ _ ____ .__ . __ _ .__ ._. � _.._ � y�� �� -�- - - j �� .�.. � I i � �. `� �\ — � � ��� _ ..._. ...._.._..._, -. ' � � I \ i ` i � �:=� '�� �. :�� ---_ , � ,,,, �. � � ,, , � ;�� ,�, ; �� � , � � i � ,;. � � r � , � i ' �" "`' ``�: ' ,� �\� : ,, � I I MI�IS Blvd p � '���:� � � .._ _ � , �z-� � ` \ ' _ . , , , r- '_^'._. .�� \�� _"..._...._ � CJ . � .,'=�.i i � _—'^ . , � � �., �_ � 1. .a4.:a»rs. .. �� � I � C_c"'7 _ � ._ _ i --_ __. _ .._.._.._ __...._. , i / j � _ _. ---__ .___ .------ �/ �I � r�; ---------•-- — ' , � I I�1 �' � I . � II�.i�` II.� � . , .i � . � , I . I � +. a ' . : ��, ..- '. I ._.__....._._ _.....,_I ! ' � ' , // r � I , .�_."_' _"__.___...... _ . ,�� 1 . 1/ �. '___'__ ' �� .____ �� �� � "'._"_'.''___.._.._...._�..._ "' ' \ � /y, I �/l � � - ------ � � �� �!' � i i � � `� � ' ' ' �� ~�`.y�..,,r:� if ���..--, � � � � • -a� �:%'y ,�'/ i , � i � .�� ; / _....._ _... .,. ... _..,_.----------.._ / ' �' _ ---...---- .____.._{'...___._:. �s�, ;;,,r; ; . . _.. __._.___ , - ____ _ �.. ._ ,_. , =�_._..----._...___... .` - �_,�,� , __. __. -------_ _ _ , ; �. ,� _ ' �,a ,! „ � �. � / � ( C..� p�r �� ;'��, _ � � ...__� � 1 ' i'�'j�' -, / 4 � ._......... ' i //� -�.'j/ � . L'1 .�%i . . � . � /!y� . .'_ I - "�, ......_..____,._'__'� �� ,.%. / . ES..�=�_-__`_'.`_.'-. ..._--_..:?---... . . � � i i � .� r�. ES.GB-E ` . ..........._....._..i I �%/ , /� 23,D8'9 . �I . \\\ � , , i r� . � ;, � �� � - �� �/ ��,- ES.110'� ;�II � �\,`\ �� /� ,..__.. _..._. ...... I . . . � I / '. / . � "'I ' ' `\\` ,; , f � , ;� � � . . "-- -.._......,� '"--.-__.__..---'._.__..___.. �� .._... esae-s _... � �� :_...------�-----._.��___.---------_ _..._ _ _.., __ ...---- ----� r..--=_--_.�•___.—�---- .._ � ---. , I f � __. --� � � + , --._ __..._T-__�.J_----- ----..�___ � /. •�.� � 3 •I� � \ I'7_.�_�5� -� __�. , � . I 0 . ___ '�� �~ �, �j^� �'��� � __ _ � ���� 1c� � - ��= ��� � Q � � , � - IZ • 36 T23N R4E W 1/2 Q _ 2QO 4Q0 � G��Y �� �I2 „ Storm System 1:48°° � � ` P/B/PW TBCHNICAL 3�RVICE5 ��,����` �,02 25 T23N R4E W `� ,2 5 i� ._ . --- __ � _ r� G2 - 24 T23N R4E E 1/2 � . - ____ , ----,- � � i, � , '` \ � � � , � , i � � � ; �, , � , � �r� . � i1 �` '' . . . . i ' . ���..� j I'I � ��. I, �i � . � .. , \, � � � �_ ,�� , , � � ��\����, ; ; <... � � ' '`� � ; '1 ' � ' � I ^\) . , I , � � ' � �' \ , � �t ! ', ' , . � � .` . ; ; ��� � .: \ , '' 1, ; ,; ` ,. , � � �� : � -- — - ---- --- - „ . , : ' ,� \ � r. , i �, - `.` . � . , i 1 ` es ez- -.. __--- ---- .._. .. ,.)� ._--- -- ,_ \ , . , .. , , ... r, � t ,, . , ,, . -. , , , _ ._ ---...---------- , , � ,. ; _ , ..�. � . . _ ; i - � _ ,, , � , ,` .� . �F i � ,',I ,� .' . . .... �:� ; , . . ' .I;., / t �, � �_____---_ ..Bow Lake Pipeline _ -�_, ,.�,s - --._._...._---- � -----. ,.,. , , ? _ _._ .... ___ ._ .- -�- - -�------�--- It. _'_._ �-_,_ __'" __— __""��-�-..�._ ,T� ..�, E7,GE-i '11 , I � j' � — :a --;— .� _ ��! ; ';� � + '� ; — ; I ,. ! � �! � �� 1 i�I !• . ! as,ce-3 f.:I; _,r� _ -._]f-->� �I I ; �(\�� �, � � � ' ..,11 1 I �. . � � I� /j� '� � ../ � ES.G3'l3 1� �� U�� ;��` I I � �I, . a �� � i - ES.W-12 �-. , � i � �'��.___, �- f , ' ,' ' : ; ; � __ - ;I °' � �I�^ _ . � I r :��' , , „ _ , - . . ._ _ , � , , �.�-,,� � ,: �----_____---.,.,__._ `----- - . _ � ..-1 - ' � 1 --.�__.—,_ - , ...., f� - ----- -- _ _ - � 2 G3 IO I � � l . ''' � � �'.\ '�... . , `. , . __.•__ . . � _-�.�...�. L .._....... . i .� � I y� � �I ,,,� ; I _ , � , � ; �, , -�,.,. 2 .. ,-•- - . . I . _ , � . , - - _ , � , . ;. ._. ;- �. � �i �� , , .. , , , , �.. : �� + �1 � , as a� s.a� , �. � t;' ^ � � _ . i� „ _' ;II �� I i I , — � , . r � r , --�-- ____---�------_--.._�_ � bn � , ; � �, , --;__._�_ —. _.. � ; � 9 �'I .� � � i � _ ; • -- � __ � ; � �.. - � , � i� � h� s.., ,' � , _ � I�j: ` , _�� I��' ¢' i ���J= , . � ' . ., � � i ..� � i i � � e� �ii��' � ,I �! I � �' , �../ . ..� .. t3,G3^ ,i�, - _ ;Ij 1 I. � ,.. �•.. f...�� . , . �+��� ��7,y,� �.•�, � � 4 r<� .G7-2 47.N1-! �-3 _ .J-M�-GJ-YCI->1.,._ ' ! � i- d�, ( ..` � .' _ . , 4_1 BSH4-S ESdH 23.U-2 �I�-+.�.� _ __ � , 1 . � ,R ' y.� `. i . , r � � � , ` '•-_ -�:�, � es e , � � , , _ __.._.. _ , � , �� �_ _ I � H ; , .,_-`�,.,.'�.,.---�---^—"�----- '` �A�,1�� �q.1`d I .__'_ `"� w t �� �� �1 '(! ) ;'`y� t. � r��4P ('I1 oS} � � � i ' I � � I ` 1�I`�� 1 - I I� 1� I 5 I :: { '•. ` ' . 1 , ' j �.... . 1�. /' �� � ' '� ' i i I � I+ l . " `� f .. II � . �1_ T..` I i . I II I � i . 1 R � � I w� I ri� �� � ��. � � ' I i ! I �� k � � 1 f ' `1� I �I I 1 -.� � � i , I `j• � i �� ; � � ,� � � � � S � � � I , � ._ � �\�`" -- •--..- .� D I i „z.�.� � ~� . � � . I.�r•�---�_.._.._.�.�.----�----- �J �` '. j �1 II jl II ...�, _ �, �, � . . � . , �- _._ -._-_..."'._.— ' .__... .._.._.... .. .- , -' l��, r�'\,. ./��lt _ � __ � / ___ "___"""� ...IL.. �I�� ' �' �I� � �� ` 111'����1^ '.."'��r..� �1� � .. 1 {I �� ' . . � � / 1 ._ �� _ � _ _ i � t �1 � i, �:d- ,�f��. I�� � - � —_ _•_-- � ; � � r'� ; ; I -. �• : -_ i ___ : . , . --- '. ^- . ' , ,. � „ , , ` , ' p�,'�' ; ', _w �I ,� --------. _____ � ._�.._ .._�._.--------- - --•- .---------- � `' � � `� I I � .' _'_'._ ...._ .., . 1 I 3 ' { �' ._, -� .� ------------- ---...._. � '� i� ( � , .`, �1 ' • ' I ; , , � �F I �;�.� I�S I .,• �� `! e's;ns�t_ I i ���p- ,�D,�y _ . , , ; l � , �`. •....... �-- --�-- ___ � r -_ -_ .- _ �r \ i _...---- --- �.------ pl U r � � sa 'I�I `.^�` �!- "� ,, � , ' i 'I U L��w..-, � ��` ,���_... 1� � ` �� 29.�3-1 _ - � -. _ � ' ��,25}R 6 2S,N�3 . d J I. ' ... ,. i a _� ^ZS S-4 - '� ` ; - � I' � � I �� , � I � ,;; ,, � '� SW 31st St , �1 i� / . I _--�-' �;P' , '1� .- � � . __ .. ' �� _.__._ � I f `,�� i l �! , ` _ I I I ~�I ,.. _ � � •, y , ; ; i � .�� ,.. 'I� � �� � � 2y�H6-3 ___ . 9 .... , '� i � l I:..... , .�. ..: � `� ' I � _..._......._.._.. ._.... '_ , -�-•---_ -..i� i � . _-+._..._'._' . . I� I � I __ '_ Y__.._.—.�_�.,- . . , ..� ... � . --+-._""___ '�.:._ _..� �. � ' �. " i ��' ' 1,� , . , .._..�.._._.� .-�.-•.--��_"'' '".._._...._,._._....._...__._.....��.... I � ' ...__.....:. i � .� � �. . �__.�_____..- es�'� G+f) .. I �I � I � , , ES,N6-E �� � .v . .. ' I . ' ' ' . . . r �i I� I . �, I��� � � � , � 3.H�-3� . :���'� �i. M � ' ' i . . ,. {I '0y� 23.16-6 . I . �;..) 1 �14....7.�Y11��� •a �� „ -�_.�.�.. . �. . � � � •6'' ' I I esaa-� I 23,16 7 M � i I 23.N6-4 , �~ • " -1� ,_ � ,' . , � r"o�G.t ,�1 b� I �; � � M __ 1, � - '`; , � ' i ,, ' f.��^1����,i) i �, i M _.: - ---------- ----- ; �,�-. , I ; � I , . , M , , . , �, . ,- � , ; , , � ,, ___.._._____.__--- .-.� I,1; ` , - -- x � � z �� .;� i,�� k� i�., %� � �',,' _ ; -.._ ..�.�....., .c-�-•-;..� r 1% �\� , av �i /�� :�, ii = ...--- -- ---� es,rn,-� i i j%� I `���.� / ' _ __ �.. �� ►-+ ' /������' i \) ,/ Z �;/, i. ;i �! / ' �,,,^"- W / /� /'��� \,\ � i' .ry: , j'r��j��//: i r i�_�_�_ , �^'%��'� �\I A _..' -`__"'_"_'_._._'___-_ ----_._ . 87,HB-3 �n'�% � �' ��� +'� � v/ ,,�f��j I,.i�. M �'' $W 38th $t j ,/.�"; �. M � •, , � ����:�%"%` ,-� ) ' , ,` '599� ;,%� '� I � �' ' � es,�+e-e ,�,YJ�� ' � � �� I ------.._- --' ' C ����/�\ j' // I _�.;.._-: /�� �y % �Id "�9th Ct.__..�� __.._ � �, � - ' , - �'�,,����' � � � . �..) j � I � /`f��`/ j ee,te-i ze,ie-e _ � ,.��.._ � �-----____-- ,, . .� ,. _:<,- - ! $� � 5�- . r' t ( � / f Iry . .�._ ._._.- - � _ -'.'I Q t .���� �'� ' , ' 1 �.T I I- r/ �,�� i� �y , '-- -- --=-�...�-_�_ � � �:�� � �; --._.......y. _�._..__,4 � �.� `��,�- ___----- -- _� ' _ ._. __ , =___ _ , , -, , --��----_ ----•----• _ , �_ ,.___ ' `w''B N I -.,. �;� `'"�. -r•:�- - -t- � - ._ .. ,� „ _._ . __..... . ___ ..__ _.__... : - - __.�-_- � ." '--ti�...,� � �'.....,��„"� �� �� C}� rm-...� � /�� . _ .... . } ��.� ...., "b ���L�.__...,,n ,�~ � I� �y � �,:;,�;,� � e C.� t� �::.:..-.� ,:� � � � tl Ca� d� �,,. � ,..� 1 . � I2 • 36 T23N R4E E 1/2 ��_ Y Q ZQo �Qo H 2�. � +�n,j��` StiOrin syStiE'.1X1 i:4eoo �, ��� � PB/PW TBCHI�ICAL SERVICES ���o ��02 25 T23 N R.4� E 1/2 , � --- 432. King County Department of Development and.Environmental Services TECHNICAL INFORMATION REPORT (TIR) WORKSHEET Par� i PR0;3ECT OWNER AND Part 2 PROJECT LOCATION AND: PROJECT ENGINEER DESCRIPTEON Project Owner Project Name F�OF12�11 �FSERLE RAt:ri: bF S��. ���ZC�3EKvF RAN� �� 5�11�I K.�N�1SC0 ��A�CC�E ��EG'\ Address Locatian (�1 1�1 RKET� �At�i �-RI�t�4�iSC0 `(� • � � Township 7�tv Phone G4�o (qiG���1�4- Z�53 Range �1 C-�S� W ��'Yl. Project Engineer -•••-••••••••Section Z� NAtitii �1-FRtir�1�N 1�•E. Company ICP�F (�ONSUL'TIlv�T1 F1�11NE nt sv���F-rt-� av� sv.�� 2� Address/Phone ' Q 56?,� 22� - 325 - Part 3 'TYPE 4F PERMIT Part 4. OTHER REVIEWS ANdPERM1TS' APFLICATION , _ , Subdivison DFW HPA-+(��} ��• Shoreline Management - � ��� �� Short Subdi�ision COE 404 -�� �� Rockery Grading DOE Dam Safety-r(�(� Structurai Vaults-i(�@(�Q Commercial FEMA Flaodplain s� Other Other bU.�1C�\L��,�,���6T��C.L,\Y'l COE etlands -�1�-�1�1�61 C�CQ((�,1 '1 J Part 5>SITE COMMUNITY'AND DRAINAGE BASW Community �c��o�► ;wA I ��tiC�n+A� b�t�� PA�1�� Drainage 8asin SP�Z�NC�t�CZ�c ���� Pad 6' 81TE GHARACTERISTICS River Floodplain FE11'1� �1��= 2b �5 Wetlands S�UTN rnA�SH Stream Seeps/Springs Critical Stream Reach High Groundwater Tabl��-G W�S�QC1�� � � DepressionslSwales � �� �`� ����� Groundwater Recharge qj� � a� Cnn,p . Lake J �.•�� Other Steep Slopes Part 7 SOILS Soil Type Slopes Erosion Potential Erosive Velcoties _ �ILI_ t- 33�0 . � Additional Sheets Attached Part 8 DEVELOPMENT LIMITATIONS I REFERENCE�DESIC�nNED '� LIMITATION/SITE CONSTRAINT 2c�ot DGE R�� Ch. 4—Downstream Analysis Y16Y�P - ��,���(1� \S C�.Gl7�l���YY� 2t�bl DOE �1`1[1,y11b�„�- , 2 � ��(}ILCC�� Additional Sheets Attached Part 9 E5C REQUIREMENTS MINIMUM ESC REQUIREMENTS MINIMUM ESC REQUIREMENTS DURING CONSTRUCTION AFTER CONSTRUCTION Sedimentation Facilities tabilize Ex osed Su Stabilized Construction Entrance Remove and Restore Temporary ESC Facilities erimeter Runoff Control Clean and Remove All Silt and Debris Clearing and Graing Restrictions Ensure O eration of Permanent Facilities Cover Practices Ffag Limits of SAO and open space Construction Sequence preservation areas Other Other Pari 10 SURFACE WATER SYSTEM ; ----— Grass Lined Tank Infiftration Method of Analysis vJ NM Channel Vauit Depression � Pipe System � � Compensation/Mitigati Energy DissapatoJn Flow Dispersal on of Eliminated Site Open Channel etland� Waiver Storage Dry Pond �� . Stream Re ional Wet Pond Detention Brief Description of System Operation - � R � �S �� Z aciiy ae i �i s � Reference ��c�ty Limitation `� � �4 ��1�1(�k�2 �0..��2 \�Cl 1�-�(V� ��� `�_�(� 1�1'1,1� � �� _ . Part 11' STRUCTURAL ANALYSIS Rart 72 EASEMENTS/TRACTS Cast in Place Vault Drainage Easeme -�RRCT � Retaining Wall ccess Easemen� Rockery>4' High Native Growth Protection Easement , Structural on Steep Slope Tract Other ther Part 13 SIGNATURE OF PROFESSIONAL ENGINEER I or a civil engineer under my supervision my supervision have visited the site. Actual site conditions as observed were incorporated into this worksheet and the attachments. To the best of my knowledge the information provided here is accurate. � til :� �. @��v _ p.�" � � �os. Si n d/Date . � � Maintenance General. iVlaintenance is of primary importance if detentifln ponds are to continue to fiinction as originally designed. A local government, a desi�nated aroup such as a homeowners' association, or some individual must accept the responsibilit_y for inaintaininQ the structures and the impoundment area. A specitic maintenance plan must be fonnulated outlining the schedule and scope of maintenance operations. Debris removal in detention basins can be achieved throu�h the use of trash racks or other screening devices. Desian with inaintenance in mind. Good maintenance ��itl be crucial to successful use of the impoundment. Hence, provisions to facilitate maintenance operations must be built into the pro}ect when it is installed. 1�laintenance must be a basic consideration in desi� and in determination of first cost. See Table 3.3 for specific maintenance requirements. Any standin� water removed during the maintenance operation must be disposed of to a sanitary se�ver at an approved dischar�e location Pretreatment mav be necessary. Residuals must be disposed in accordance with state and local solid waste re�ulations (See Minimum Functional Standards For Soiid Waste Handling, Chapter 173-344 WAC). Vegetation. If a shallow marsh is established, then periodic removal of dead vegetation may be necessary. Since decomposing ve�etation can release pollutants captured in the wet pand, especially nutrients, it may be necessary to harvest dead vegetation annually prior to the winter�ret season. Othen��ise the decaying veQetation can export pollutants out of the pond and also can cause nuisance conditions to occur. lf harvesting is to be done in the wetland, a written harvesting procedure should be prepared by a ��etland scientist and submitted with the drainage desi�n to the local goverrunent. Sediment. Maintenance of sediment forebays and attention to sediment accumulation within the pond is extremely iinportant. Sediment deposition should be continually monitored in the basin. Owners, operators, and maintenance authorities should be aware that significant concentrations of inetals (e.g., lead, zinc, and cadmium) as well as some organics such as pesticides, may be expected to accumulate at the bottom of these treannent facilities. Testing of sediment, especially near points of inflow, should be conducted reQularlv to determine the leaching potential and level of accumulation of potentially hazardous material before disposal. '_� Augusf 2001 Volume 11l—Hydrologic Analysis an.d Flow Control BMPs 3-33 Table 3.3 Specific Maintenance Requirements for Detention Ponds �?:,�ntenance Results Expected When Cuinoonent Defect Conditions VVhen 1'Iaintenance Is\eeded l�laintenance Is Performed t` •�;�-ra] ! Trash & Any trash and debris which esceed�cubic Trash anu ceoris cleared ; � Debris feet per 1,000 square feet (this is about from site. equal to the amount of trash it woulc�take i to t"ill up one standard size garbaee canj. In I''i general, there should be no visual evidence of dumping. If less than threshold all trash and debris will be removed as part of nest scheduled ' maintenance. Poisonous Any poisonous or nuisance vegetation which No danger of poisonous h Vegetation may constitute a hazard to maintenance vegetation where and noxious personnel or the public. maintenance personnel or weeds - ?,ny evidence of noxious weeds as defined by the public might normally State or local regulations. be. (Coordinate with local (Apply requirements of'adopted Integrated health department) Pest Management(IPb�I) policies for the use Complete eradication of of herbicides). noxious weeds may not be . possible. Compliance with State or local eradication policies required Contaminants Any evidence of oil, gasoline, contamiaants No contaminants or and Pollution or other pollutants pollutants present. (Coordinate removaUcleanup�vith local water ualit res onse a�ency). Rodent�Ioles Anv evidence of rodent holes if facility is Rodents destroyed and dam '� acting as a dam or berm,or anv evidence of or berm repaired. water piping through dam or berm via (Coordinate wich local j rodent holes. health department and i Ecology Dam 5afety Office if one esceeds 10 acre feetl Beaver Dams Dam results in change or Function of'the Facilicy is returned to facility. design function. (Coordinate trapping of beavers and removal of dams with appropriate ermittin�a�encies) Insects `'Vhen insects such as wasps and hornets Insects destroyed or interfere with maintenance activities. removed from site. Apply insecticides in compliance with adopted IP14i olicies � Tree Growth Tree growth does not allow maintenance Trees do not hinder and Hazard access.,or interferes with maintenance maintenance activities. � Trees activitV(i.e., slope mowing, silt removal, Harvested trees should be vactoring,or equipment movements). If recvcled into mulch or other ; trees are not interfering with access or beneficial uses (e.g., alders maintenance, do not remove for firewood). If dead, diseased, or dying trees are Remove hazard trees identified (Use a certified Arborist to determine health of tree or removal requirements) 3-34 Volume 111—Hydro/ogic Analysis and Flow Control BMPs August 2009 Table 3.3 Specific Maintenance Requirements for Detention Ponds l�Taintenance Results Expected When u �:�>mponent Defect Conditions When b'Iaintenance Is Needed Nlaintenance Is Performed � Side 5lopes Erosion Eroded dama�e over ? inches deep where Slopes should be stabilized of Pond cause of damage is still preser.t or where using appropriate erosion there is potential f'or continued erosion. control measure(s); e.g.. :�ny erosion observed on a compacted berm rock reinf'orcement. embankment. planting of grass, compaction. - If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion. Storage Sediment Accumulated sediment that esceeds 10%of Sediment cleaned out to Area the designed pond depih unless otherwise designed pond shape and specified or affects inletting or outletting depth; pond reseeded if condition of the facilit . necessarv to controI erosion. Liner(If Liner is visible and has more than three 1/4- Liner repaired or replaced. A licable) inch holes in it. Liner is fullv covered. Pond Settlements Any part of berm which has settled 4 inches Dike is built back to the Berms lower than the design elevation. design elevation. (Dikes) If settlement is apparent measure berm to determine amount of settlement. Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the settlement. Piping Discernable water flow through pond berm. Piping eliminated. Erosion Ongoing erosion with potential for erosion to potential resolved. continue. (Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend re air of condition. Emeraency Tree Crowth Tree growth on emergency spillways create Trees should be removed_ If Overflow/S blockage problems and may cause failure of root system is small (base pillway and the berm due to uncontrolled overtopping. less than 4 inches) the root Berms over Tree growth on berms over 4 feet in height system may be left in place. 4 feet in may lead to piping through the berm which Otherwise the mots should height. could lead to failure of the berm. be removed and the berm restored. A licensed civil engineer should be consulted for proper bermis illwav restoration. Piping Discernable water flow through pond berm. Piping eliminated. Erosion Ongoing erosion with potential for erosion to potential resolved. � contin�xe. (Recor�rrmend a Goethechnical engineer be called in to inspect and evaluate condition and recommend re air of condition. ; Emergency Emergency Only one laver of rock exists above native Rocks and pad depth are � Overflow/S Overflow/ soil in area five square feet or larger,or any restored to design pillway Spillway exposure of native soil at the top of out flow standards. path of spillway. (Rip-rap on inside slopes need not be re laced.) Erosion See"Side sla es of Pond' August 2001 Volume 11!—Hydrologic Analysis and Flow Contro/BMPs 3-35 4.fi Maintenance Standards for Drainage Faciiities The facility=specific maintenance standards contained in this section are intended to be conditions for determinina if maintenance actions are required as identif ed through inspection. They are not intended to be measures of the faciiity's required condition at all times between inspections. In other��vords. eYceedence of these conditions at anv time between inspections and,'or maintenance does not automaticall� constitute a violation of these standards. However, based upon inspection observations, the inspection and maintenance schedules shall be adjusted to minimize the lenath of time that a facility is in a condition tha� requires a maintenance action. No. 1 —Detention Ponds Maintenance Defect Conditions When Maintenance Is Results Expected When Component Needed Maintenance Is Performed General Trash & Debris Any trash and debris which exceed 5 Trash and debris cleared from site. cubic feet per 1,000 square feet(this is about equal to the amount of trash it would take to fill up one standard size garbage can). In general,there should be no visual evidence of dumping. If less than threshold all trash and debris will be removed as part of next scheduled maintenance. Poisonous Any poisonous or nuisance No danger of poisonous vegetation Vegetation and vegetation which may constitute a where maintenance personnel or the noxious weeds hazard to rnaintenance personnel or pubiic might normally be. (Coordinate the public. with local health department) Any evidence of noxious weeds as Complete eradication of noxious weeds defined by State or local regulations. may not be possible. Compliance with State or local eradication policies (Apply requirements of adopted IPM required policies for the use of herbicides). Contaminants Any evidence of oil, gasoline: No contaminants or pollutants present. and Pollution contaminants or other pollutants (Coordinate removal/cleanup with local water quality response agency). Rodent Holes Any evidence of rodent holes if Rodents destroyed and dam or berm I facility is acting as a dam or berm, or repaired. (Coordinate with local health �I any evidence of water piping through department; coordinate with Ecology dam�or berm via rodent holes. Dam Safety Office if pond exceeds 10 acre-feet.) � 4-30 Volume V—Runoff Treatment BMPs Augusf 2001 No. 1 — Detention Ponds Maintenance Defect Conditions When Maintenance is Results Expected When !� Component Needed Maintenance is Qerformed ' �ond Berms � Settlements Any part of berm�nrhich�has settled 4 Dike is buiit back to the design I' ;Dikesj inches iower than the design elevation. ', elevation. ! If settlement is apparent, measure � berm to deTermine amount of settlement. Settling can be an indication of more severe problems with the berm or outlet works. A ficensed civil engineer should be consulted to detennine the source of the settlement. Piping Discernable water flow through pond Piping eliminated. Erosion potential berm. Ongoing erosion with potential resolved. for erosion to continue. (Recommend a Goethechnicai � engineer be called in to inspect and evaluate condition and recommend repair of condition. � Ernergency Tree Growth Tree growth on emergency spillways Trees should be removed. If root Overflow/ creates blockage problems and may system is sma(i (base less than 4 Spiliway and cause failure of the berm due to inches)the root system may be left in Berms over 4 uncontroilsd overtopping. place. Otherwise the roots should be feet in height. removed and the berm restored. A � Tree growth on berms over 4 feet in Iicensed civil engineer should be height may lead to piping through the consulted for praper bermispillway berm which could lead to failure of restoration. the berm. Piping Discernable water flow through pond Piping eiiminated_ Erosion potential berm. Ongoing erosion with potential resolved. for erosion to continue. (Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition. Ernergency Emergency Only one 12yer of rock exists above Rocks and pad depth are restored to OverFlow/ Overflow! native soil in area five square#eet or design standards. Spillway Spillway larger, or any exposure of native soil at the top of out flow path of spillway. (Rip-rap on inside slopes need not be replaced.) Erosi�n See"Side Slopes of Pond" 4-32 Volume V—Runoff Treatment BMPs August 2001 _ _ 1 No. 1 — Detention Ponds Mamtenance Defect Conditions When Maintenance Is Results Expected When Corriponent Needed Maintenance Is Performed Beaver Dams Dam results in change or function of Facility is returned to design function. the facility. (Coordinate trapping of beavers and removal of dams with appropriate permitting agencies) Insects When insects such as wasps and InsecTs destroyed or removed from site. hornets interFere with maintenance activities. Apply insecticides in compliance with adopted IPM policies Tree Growth Tree growth does not allow Trees do not hinder maintenance and Hazard maintenance access or interferes activities. Harvested trees should be Trees with maintenance activity(i.e.,slope recycled into mulch or other beneficial mowing, silt removal, vactoring, or uses (e.g., alders for firewood). equipment movements). If trees are not interfering with access or Remove hazard Trees maintenance, do not remove If dead,diseased, or dying trees are identified (Use a certified Arborist to determine heafth of tree or removal requirements) Side Slopes Erosion Eroded damage over 2 inches deep Slopes should be stabilized using of Pond where cause of damage is still appropriate erosion control measure(s); present or where there is potential for e.g., rock reinforcement, planting of � continued erosion. grass, compaction. Any erosion observed on a If erosion is occurring on compacted compacted berm embankment. berms a licensed civil engineer should be consulted to resolve source of erosion. Storage Area Sediment Accumulated sediment that exceeds Sediment cleaned out to designed pond 10%of the designed pond depth shape and depth; pond reseeded if unless otherwise specified or affects necessary to control erosion. inletting or outletting condition of the facility. Liner(If liner is visible and has more than Liner repaired or replaced. Liner is fully Applicable} three 1/4inch holes in it. covered. .e. . i I August 2001 Volume V—Runoff Treatmenf BMPs 4-31 Na. 4—Control S#ructurelFlow Restrictor N�a�ntenance Defect Condition When Maintenance is Needed Results Expected Co��ponent When Maintenance is Performed i r= .,�:ral Trash and Debris Matenal exceeds 254% of sump depth or 1 Control structure i ;Includes Sedimentl foot below orifice piate. orifice is not blocked. A(I trash and debris removed. Structural Damage Structure is not securely attached to Structure securely manhole wall. attached to wall and outlet pipe. Structure is not in upright position (allow up Structure in correct to 10% from plumb). position. Connections to outlet pipe are not watertight Connections to outlet and show signs of rust. pipe are water tight; structure repaired or replaced and works as designed. Any holes--other than designed holes—in the Structure has no structure. holes other than designed holes. C{eanout Gate Damaged or Missing Cleanout gate is not watertight or is missing. Gate is watertight and works as designed. Gate cannot be moved up and down by one Gate moves up and maintenance person. down easily and is watertight. ChaiNrod leading to gate is missing or Chain is in place and I � damaged. works as designed. � Gate is rusted over 50%of its surface area. Gate is repaired or � replaced to meet design standards. Orifice Plate Damaged or Missing Control device is not working property due to Plate is in place and missing, out of place, or bent orifice plate. works as designed. Obstructions Any trash, debris, sediment, or vegetation Plate is free of all blocking the plate. obstructions and works as designed. Overflow Pipe Obstructions Any trash or debris blocking (or having the Pipe is free of all potential of blocking)the overFlow pipe. obstructions and works as designed. Manhole See"Closed See"Closed Detention Systems"(No. 3). See"Closed Detention Systems" Detention Systems" (No. 3). a (No. 3). Catch Basin See"Catch Basins" See`Catch Basins" (No.5). See"Catch Basins" (No. 5). (No. 5). August 2009 Volume V—Runoff Treatment BMPs 4-35 Nc 5 -� Catch Basins Ma�ntenance Defect Conditions When Maintenance is Needed Results Expected When Component Maintenance is performed Ger e�ai Trash& I Trash or debris which is located immediately No Trash or debris located Debris in front of the catch basin opening or is immediately in front of blocking inletting capacity oi the basin by catch basin or on grate more than 10%. opening. Trash or debris(in the basinj that exceeds 60 No trash or debris in the percent of the sump depth as measured from catch basin. the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe. Trash or debris in any inlet or outlet pipe lnlet and outlet pipes free blocking more than 1!3 of its height. of trash or debris. Dead animals or vegetation that could No dead animals or generate odors that could cause complaints vegetation present within or dangerous.gases (e.g., methane). the catch basin. Sediment Sediment(in the basin)that exceeds 60 No sediment in the catch percent of the sump depth as measured from basin the bottom of basin to invert of the lowest pipe into ar out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe. Structure Top slab has holes larger than 2 square Top slab is free of holes Damage to inches or cracks wider than 1/4 inch and cracks. Frame and/or Top Slab (Intent is to make sure no material is running fnto basin). Frame not sitting flush on top stab, i.e., Frame is sitting flush on separation of more than 3/4 inch of the frame the riser rings or top slab from the top slab. Frame not securely and firmly attached. attached Fractures or Maintenance person judges that structure is Basin replaced or repaired Cracks in unsound. to design standards. Basin Walls/ Bottom Grout fillet has separated or cracked wider Pipe is regrouted and than 112 inch and longer than 1 foot at the secure at basin wall. joint of any inleUoutlet pipe or any evidence of soil particles entering catch basin through cracks. Settlement/ If failure of basin has created a safety, Basin replaced or repaired Misalignment function, or design problem. to design standards. Vegetation Vegetation growing across and blocking more No vegetation blocking than 10% of the basin opening. opening to basin. Vegetation gro�ving in inleUoutlet pipe joints No vegetation or root that is more than six inches tall and less fhan growth present. six inches apart. 4-36 Volume V- Runoff Treatment BMPs August 2001 ___ No. 5— Catch Basins Maintenance Defect Conditions When Maintenance is Needed Results Expected When Component Maintenance is performed Contamination See"Detention Ponds" (No. 1). No pollution present. and Pollution Catch Basin Cover Not in Cover is missing or only partially in place. Catch basin cover is Cover Place Any open catch basin requires maintenance. closed Locking Mechanism cannot be opened by one Mechanism opens with Mechanism maintenance person with proper tools. Botts proper tools. Not Working into frame have less than 1i2 inch of thread. Cover Difficult One maintenance person cannot remove lid Cover can be removed by to Remove after applying normal lifting pressure. one maintenance person. (Intent is keep cover from sealing off access to maintenance.) � Ladder Ladder Rungs Ladder is unsafe due to missing rungs, not Ladder meets design Unsafe securely attached to basin wall, standards and allows misalignment, rust, cracks, or sharp edges. maintenance person safe access. Metal Grates Grate opening Grate with opening wider than 7!8 inch. Grate opening meets (If Applicable) Unsafe design standards. Trash and Trash and debris that is blocking more than Grate free of trash and Debris 20%of grate surface inletting capacity. debris. Damaged or Grate missing or broken member(s)of the Grate is in place and Missing. grate. meets design standards. No. 6—Debris Barriers{e.g.,Trash Racks) Maintenance Defect Condition When Maintenance is Results Expected When Components Needed Maintenance is Performed General Trash and Trash or debris that is ptugging more Barrier cleared to design flow Debris than 20%of the openings in the barrier. capacity. Metal Damaged/ Bars are bent out of shape more than 3 Bars in place with no bends more Missing inches. than 3/4 inch. � Bars. � Bars are missing or entire barrier Bars in piace according to design. missing. Bars are loose and rust is causing 50°�o Barrier replaced or repaired to deteribYation to any part of barrier. design standards. Inlet/Outlet Debris barrier missing or not attached to Barrier firmly attached to pipe Pipe pipe , � li . August 2001 Volume V—Runoff Treatment BMPs 4-37 No. 7— Energy Dissipaters Maintenance Defect Conditions When Maintenance is Results Expected When Components Needed Maintenance is Performed External: Rock Pad Missing or Only one layer of rock exists above i Roc4c pad replaced to design Moved Rock �ative soil in area five square feet or I standards. larger, or any exposure of native soil. Erosion Soil erosion in or adjacent to rock pad. Rock pad replaced to design standards. Dispersion Trench Pipe Accurnulated sediment that exceeds Pipe cieaned/flushed so that it Plugged with 20% of the design depth. matches design. Sediment Not Visual evidence of water discharging at Trench redesigned or rebuilt to Discharging concentrated points along trench (normal standards. Water condition is a"sheet flow"of water along Properly trench). intent is to prevent erosion damage. Perforations Over 112 of perforations in pipe are Perforated pipe cleaned or Plugged. plugged with debris and sediment. replaced. Water Flows Maintenance person observes or Facility rebuilt or redesigned to Out Top of receives credible report of water flowing standards. "Distributor' out during any storm fess than the design Catch Basin. storm or its causing or appears likely to cause damage. Receiving Water in receiving area is causing or has No danger of landslides. Area Over- potential of causing landslide probfems. Saturated Internal: Manhole/Chamber Worn or Structure dissipating flow deteriorates to Structure repiaced to design Damaged 1!2 of original size or any concentrated standards. Post, worn spot exceeding one square foot Baffles, Side which would make structure unsound. of Chamber Other See "Catch 8asins" (No. 5). See"Catch Basins" (No. 5). Defects :5L I 4-38 Volume V—Runoff Treatment BMPs August 2001 _ King county BOND QUANTITIES WORRSHEET Building and Land Development Division `'y COMMERCIAL/MIILTIFAMILY GROIIP `- � W o� Page t of 2 ---- - i � Date: �I�IOs � BACD Project No.: � i � Pro�ect Name: FR�T 21I ��/� � �_ VI i � Si te Address: ��C ,\� �`� Rl.C��C-L 1_K�� �V��L1�V��� ���� C�w 2�� �� I i � Fill in those ite� which pertain to this project and return to the Cortrnercial/Multifamily Group - Site Development Review Unit. (h�. : -t1��S �s 611t�-� dl1-gtt2 F�BSF q1�.0,t�1�eS �� - � � PUBIlC ROADWAT IMPROVEkENTS � PRIVATE ON-SITE [MPROVENEHTS � Unit Price Unit � Ouantity Price � Ouantity Price � � �o�,_ s °\2 �0�O I A.C.Pavertient . . . . . . . . . . S 8.00 ST S � Cement Conc. Curb 8 Gutter . . . 9.00 LF � s � ��� 5 � ,5� � Extruded Asphalt Curb . . . . . 2.50 LF � s � $ � Corxrete Sideualk . . . . . . . 9.00 LF � S � ��Z g�R,� � 6�� pipe . . . . . . . . . . . . 7.50 LF � S � ���1 S�.o ;lo��� 8" pi pe . . . . . . . . . . . . 10.00 L F I S ` 2�- 52.,�� � 12" pipe . . . . . . . . . . . . 15.00 LF � S � q24 $IL� ' is�� pipe . . . . . . . . . . . . 16.00 LF � s � 3a s b I 18" p i pe . . . . • - - . . . . . 20.00 L F ( S � �1�3 % �5,4lQb � 24'� pipe . . . . . . . . . . . . 26.00 lF � S � S � - 36" p i pe . . . _ . . . . . . . . 30.00 L F � S � s � I48" pipe . . . . . . . . . . . . 50.00 LF � Y � $ i 60" pipe . . . . . . . . . . . . 65.00 Lf ( s � 4 � 7Z" pipe . . . . . . . . . . . . 80.00 LF � s I S I Curb Inlet . . . . . . . . . . . 500.00 EA. � s � t � C8 TYPE [ & I-1 . . . . . . . 750.00 EA. � S � �3 s.g�� �, CB TYPE i[ - 48" . . . . . . . . 1400.00 EA_ � S � 7 $�� I CB TYPE fI - 54" . . . . . . . . 2100.00 EA_ I s � g � � CB TYPE II - 72" . . : : : : : . 3400.00 EA. � i � 4 � CB TYPE 11 - 96" . . . 4000_00 EA. � $ � E � Restrictor/Separator 12" . . . . 450.00 cA. � S � i � � Restrictor/Separator 15" : : : : 500.00 EA. � Y � $ � Restrictor/Separator 18" 600.00 EA. � s � s f Restrictor/Separator 24" . . . . 750.00 EA. � s � $ � fencing (arowid pond) . . . . . 10.00 Lf � S � �2.25 $ ti� � � R i prap . . . . . . . . . . . . . 30.00 C7 � S � � $ �S � Rocker Gabion 8 ecol $ � y, ogy uall . 7.00 SF f s � Concrete Retaining ilall . . . . 8.00 SF � s I s � cxcavation for Pond . . . . . . 5.00 CT � S � � $�.���:1�� ^"� � Infittration Trench . . _ . . . 15.00 LF � S � $ ���D Flou Spreader . . . . . . . . . 15.00 LF � S � $ � Trench Drain . . . . . . . . . . 15.00 LF � s � s � 7rash Rack . . _ . . . . . . . . 100.00 EA. � S � 2 $� � Detention Pipe Riser . . . . . . 400.00 EA. � s � � $ �bb � _ � s � s � _ � E ( $ � _ � s � S � 1 � � i I SUBTOTAL : S � SUBTOTAL : =1 ��1A�355•`b0 I � � > � i i 1/90 � - . _._.__��_ - �- � )ND QIIANTITIES AORRSHEET King Camty Buitdin9 and Land Devetoprnent Division - rmercial/Multifamily Group page 2 of 2 � ��� � EROSIOl1/SEDIMENTATION � � COMTROL fACILITIES � Unit � — � - Price Unit ( oua�tity Price � .,i lt Fence . . . . . . . . . . . S 3.00 LF � 3gb S ��gd � Seeding/Mulch . . . . . .- . . . 3000.00 ACRE � S � emporary Pond . . . . . . . . . 5.00 CT � L��(j S�jQ_ � �tandpipe . . . . . . . . . . . 200.00 EA. ( 2 S 4�_ � CB Interim Protection . . . . . 25.00 Ell. � s � ^uarry Spatl/Rip-rap . . . . . . 30.00 CY � 3.S = �QS � ' ock Consiruction Entrance . . . 300.00 EA. � ► S 3pp � .'ipe ( �'L irxh dia.) . . . . . . 15•00 LF � �O�b S O O � . . . _ � s � I • - _ � s � � ( i _� � SUBTOTAL _ s_1�,_�� I � i � � t � � � I � Signature: � Telephone No_: � ! � ' — � 7 � f � firm Name: � ` � i J � � The follouin9 information uill be completed by the Kin9 County Site Develc�pment Review Unit. , . � PUBL(C ROADNAY IMPROVEMEWTS: S PRIYATE ON-S1TE IHPROVEMENTS: S "' ' , EROSION/SEDIMENTATION CONTROL : S � J SUBTOTAL : 5 � 20X CON7IHGEHCY : S , _<t � � � TOTAI BONO AMOUNT : S � � � L ' —' R1GHT-OF-VAY BOND : i #8:BONDSHEE.t1PF • 11/25/1989 � 1/90 � BOND IIANTITIES PRICE SCHEDIILE Q King County Building and land Devetopment Division SUDiVISION PRODUCTS SECTION :_�- �he unit prices shoun on this schedule are recorm�erided minimua prices consultants shall fottow when complet- � ing the BOND oUANTITIES S�ORKSHEET for engineering plan sutxnittals. Unit prices shoun reflect materiai and I instalation costs averaged tran bid quantities compiled by the Department of Public uorks. Unit prices may not deviate fran this schedute unless prior approvat is obtained fran the Subdivision Prod�ts Section. Unit Price Units � Unit MISC.: ROAD CONSTRUC710N: Price Units Rip Rap Outfall Protection. 17.00 CY Clearing 8 Grubbing LS Access Road/Boltards. . . . 500.00 LS � Excavation & Embankment . . S5.00 CY Fencing (aramd pond) : : : 9.00 LF A.C. Pavement 8 Rock ease . 10.00 5T Infiitration Trench . 15.00 LF Cement Conc. Curb & Gutter. 6.Q0 LF Flow Spreader . . . . . . . 15.00 lF � Extruded Asphalt Curb : : : 4.00 LF Trash Racks . . . . . . . . 200.00 LF Concrete Side++alk . 9.OQ LF DRAINAGE PIPE: RETA[NING VALLS 8 STRUCTURES: 12" Culvert . . . . . . . . 15.00 LF Retaining Walls . . . . . . lS 18" Culvert . . . . . . . . 20.00 Lf Bridges . . . . . . . . . . LS 24" Culvert . . . . . . . . 26.00 LF Rockery Facia ualls . . . . 5.00 SF 36" Culvert . . . . . . . . G0.00 LF 48" Culvert . . . . . . . . 5U.00 LF TRAFFiC CHANNELIZATION: 54" Culvert . . . . . . . . 60.00 LF Signalization . . . . . . . LS 60" Culvert . . . . . . . _ 65.00 Lf Channelization. . . . . . . LS 72" Culvert . . . . . . . . 80.00 LF SITE STABLIZATION/EROSION CONTROC: CATCH BASINS: Rock Construction Enirance. 300.00 ea. iMLET 8 Grate . . . . . . . 500.00 ea. Seeding/Nutch . _ . _ _ . _ 3000.00 ACRE CB TYPE I & Grate . . . . _ 750.00 ea_ Silt Fence. . . . . . . . . 4.00 LF CB TYPE II 48" 8 Grate. . . 1400.00 ea. Netting/Jute Mesh . . . . . S_DO SY C8 TYPE !I 54" & Grate. . . 1600.00 ea. Sediment Pond Standpipe . . 200.00 ea. CB TYPE [1 72" & Grate_ . . 3�00.00 ea. CB TYPE II 96" & Grate_ . . 4000.00 ea. Riprap (quarry spalls). . . 17.00 CT RETENTION/DE7ENiI0N CONTROI: - ' Pond Excavation & Spiltuay. 5.00 CY � Restrictor/Separator 12". : 450.00 ea. Restrictor/Separator 18". 600.00 ea. Restrictor/Separator 24". . 750.00 ea. ]/ .. ', ProjeCt �O BY ,,,/* Sheei No. D �`� � ' . Location �e g ' � Consulting fngineers � � CGent Job No. Revisetl . . PCAIor.:� ,.;on . �V�_�� Daie ����� ��e N .� 5. �2�.11'1'12.1� �6ti� �Y C� ��. O�t1C`� v� 0.Ce d��'a►1C�.C����D-jt`'�Q s. �(�C�1 luC..�1Q�"1.0� �v.;�U U� �'c�'� d2�e\��Qd tv �c- �- �6�JCCL'� Z F�(fl��: is .�61'�lC� At��� <<d��� = o.�t ae. � b�U►\C�.1�= b .oaQC R�,;�� = z•��ac. b�esC�= 2.�t�c�e � S� a„ti�P<<d����= 2.�zae. �t�ua�c1:�� _ ►.s�t0.c- � � � ta�= 3 .2�aC, 1����= o .4 ae o�ecc�,i,- �e.�3 ctc - 2�ct�aC= �,�� ae . ��e�e.n`Y��r� �eS�.�- -��c� ��v t�v,��ti�'1 rt.� - _ � ��d - �,� o.4a M�� s.��, = 4,0= �.8 e�. � . � N �p�-�d� '� �. �Lu�,CQ 0.C�@ � ci�,C s� _ � _ � x b.4q e� = I 1021 sf-1 o. ac,o�� b. oboa t� _ _ _ _ _ _�-�-�eeboazd ,L 3.s' -+ea n�er� 3 ��,5� ProleCt Q � SFIeeT NO. CJ �. Locotion Dote Consulting Engineers Client Revlsed Job No. - For!lon�l Oregon Dafe 2. ���51 CCS�GS.-�C�iN1 � t1� C�.��1,�1�te� u���� Fi 4 �28- �Y1CQ C� � � e�3 , �,.�. 1 C-�3 ��b`" � ��,C. _ �. V�- b.1 ' Ao= 2v� �.5 o ,l�X 31�00�C�°s �= p�nd sv,c-fe� aze�.= �oZ� �. ti= o .��-� . T= deu�C��� ��'Vz= 2� �tcs. � �COJ�\�= 3 .2-Ct�S� �o= ( lT 21�2�b .15��°�s = c,.b(�2 s�. d .1Q X 3lp�b�24��3z.2�° �s D= 13.54k 14p = i3,S4 �2 = p, � " >per poE �'`na��.� �U.�� �1`UJ� 1� 2"? � � l� 3" "h�51 5 s. �� � �- �s.c-�,eS� ace.�,@-�p ci�s � _� _ �_ _ ���� o.c�l� o.ooC�i t� 2. bt�C.Q �U�a,t�llS�l 11�= 2.3�. v�l 12� i1�� �b= 3�sot?r2.3� �_�°'s_ o �= b, o3s�. b .1,p X 3lQ 6b C24��32•2� �-- p = 13.�4k �j � .d3 = 2. 2" Pe�-�- "�.blV�Gt= 2 t 2.Z" u�\�V�= q- 2`' �50 l� �" �S � , _.�....... .....�.........�,.: . . ......... : �.......�.....�, �. .�............. . __..�..:........_.......� ..... :, ......w.._1.,..,,...,. . � �.� ............. . y i ,........�..................••...,.,..... � ,.... .»a.,,., ._.,_.........................�..�w.,..... ..........,.. ,. ..... ._ . 7E!� a� � � ---- _. f t�`� . ���w:;::::::�.,,........ . p.. ............... � .... . �!� . � ,,...,.,.. �;�s —r ����: '! 3 � K, -.... . ,_.... . .,.. . ....... . .,... ... �� ..,... -- .. . ..., ; ..'_.. , ..__._ .. ,„, •.—...._.. .....�-..,.,...... ....._. .................. ....... '�1�i ..,..,....,. ...... ...% .......-,..... '`� •.. ' ........�...,... a.._..... .,.,,,_,.. ............ ......... ""'� ..... � .. ... •• f �..y, ,�, # � �k...,,.., .,.-... ............................ . : e,..._.._,.. , ................ .6'..f ....,,....... w. ,....»,,, . .._,...,...,....>. � .,,..,.,, . .,,.,.....................�....... a ;«aw� { £ # � ..... � .. ..............u�. ....,»,..� �o �«.o,r�a»amo» ,.....�..._..,..w.,,, .. ... .......,....... . �.,�.......,.........,,........,.,........�,.......,,.,...... ..,.�. � • .....,.-,.,.• . .....�,,.. � ��.....,., . �..-.�,.. .. •,..f.... ; ._............................. . . ......{.,,. - ......,,„ ; i � .....- .. ........,.,_..w,,,._..............M.... .....,,..,.....................:......................................,,.............,,..,.,.,,..,...,.........�..................................,....,...,....w....w...,.�,, i �,., '� ....w„_........ .. � } --•�•• ..�j.. , _��,�,�.� .�..Y.. �., � .,�,_ � ; �," # � � � � ' .. _ ....1.,,�s •�i : , w,..,w .,,.,. s ; .. ..mv��m..,�. I .� j s.E,aw`^..,, w�'`' .,., ��., .... �,. �� '; �� ��, , �. : a . � .............._....w..,,.,,,...,.........,....,.... .... ...................m.. f �,. , .-�• ............................_..................._....�.:.... -,. �� �..w. � -� � � #�r.�-�•�=; . , ,.K . .. , ... : .i. - `` " t , `., i ``.� � . • $ . f `,+..,,* �"�`�r,' i { # � - �' (' ^�..� ..........- ..,/�,�'� � ,�........ ' h.. 4 / f ..M��1/ `' .«..` � i E '`f' �'�� �,^ (,4 � �� Y`��':. �3 � � . ... i � � p . : r /� F „N j � ' ..< _._��w / ..... � :.. . � ,i � -�LL. � .* .. `•.. i � ' �....� j .., . ..................................................... k ,....,�... �'�, . .. . . . t ' � . . ..... .................................._.,..,... � .: ; ..�,.�. _j..._�.__ ; � tA1�.i � i f � �f ::.;.. `�...., � � y � � � ,� `•� �p �f ... ' ��.. r� . .. . �...i,.,.% f ! 4\.1 �1." ry.�f � .. .!*.�.s'h.�� ��.�w.... r,�,,,�„a��,�,��, y. £ ,r... ..rt � �., .. .... ; £ °4 F . ,�,�,... .�., .� "-wr; : % j �t,� ��'�Xi p{ ` .,� ,�,.. ,x,� .'�E' r .n(. 6. t ���'k. 3 �� ..,�� F ���¢�w����' „� �.y%' �� .'s. ..���� ':�'�$�; ��' .� 4,! o.vt .3�„�i 5� � .f•�-,�i•.�„i;�r .i,"` xe 'r� .,� mr3�, ,�s`� t� ��°' { e d � , , l � �: 4 �k . ^��""' . � � 4 � ' y � i .. 4, �...� ,.�.':,.� �' ; ....... � ^ ti. � '��,k.Z�.� �fI ���!"� � F`i m h..� �° � f ... . ... ................................ �....,...,.w.., y y �, � �'� . .. . _ ., ��� , . , „ �� �( .... , . ;. ,....��1 >, ' S : -. Y �..;�. .:. � � � 5 f �i%, � �....., � . , y `� gp v..... ..."'� ......... +� +fa � ...,.... : . � . ,,.,. f . � �+ 4 '�„� � �'X��� Y� . .. ��3 S � � , � � . . .,.... e ts• . : � * � ' � i � ({�l , f� .- ,M ,�, j a�„�,..rTX� j7 b ,�Sux a . : � � .......,J ,.,.. f . , . : : � ) . `. �... • � .. ..� t ..,.....................c,.... � � ". . 5 ( .��" . 'h.� �,,,,...... �,...,.,...,. �O t �.:.. � '� �. ~ l� � s. .• 3� 3 { �.............. .. { . • ( � �'",�,•..�.�,. � �.� i +,, .,.., ] ( '^�„ ' .,,' '.,... i . �3 ' ""'� } '•,_...,. i "... .... mu ....,...,..�..ry..,... .�, •i a `""`" ' r:. '« ��` ' � ; ' i ( ,� � , .,..... . ..,� "'"..r�� �: 4�''s.4 7 � � 3' R i t� � ., � f . -.... , t � ' �c� ' � ........., e ,.,., , . : ..W ; , .. , : : : { � y ` �,� � � : .ti . t..�.. j � � '�,,,,� s.. .:.. .... , s �.�,� �",: ,,.... p ., ,..__..... •, . �............. .„ -. -.,......,... F � . . . , s f ...».,..,.k ..,.. . � �.�. �� � »,..,,.,,.. � ,.». �� �� 'r,. } �``M .t � ,,,........................... ... ; 'h. ,.,........ !.:�. � �\,s .,,�.;;.....,.. �'��'3. . .. .... �•. �" � � � �. ,,..'' # a„ �, i�. ��......... " t .,. .�✓ i�f � 3 �-,.. .,. .. � - �'��� �{ ,. 3 �""^v.. tit i .� r s i f g��� �„�4 � ..r ..,,,. �i 3 ..., . ........................a.......,,__.,,,....._...�...�.,..,�.,....,,v.,..,.,,.....,,..,..,.,,.... ... ;... , a µ . ; � !i .t �, ti' .... .,.,,. �_...' }�„��� � , �, � � ARC� � �t . PNfl � ;"��� � `" ` , t.. � �.� ,, . ._ ..,.�... , �..... ..�. � ..._..�., r f '�,.w_. � .... .. ... ;� y � .... ,. ... -� ; ...._._......�..�....._...._........_.......�........�....._ �. ; . ._. .. �......,...�. ••- a a "�,,t � .� �...�................_.,., .,,, ,;�' �. .�.... , , . _... < , '� �t . , ,. , . "�,..._..�..... ..�......,�._. _ ,. : , , -. ,... j � �� . . .................... ..................__................,.y6....,.,,,... .....,......_�....._..w_ ...,...........W. ' , , , .................W..... i y _._.. ,,,..,�S;t....................�, ; :� i/ ; ., i,� ; i, : : • ,. ' �4 ............. .....:. '"' •^'r . . , . }, � ...�..................,...,..........„++Q�..� ...,._. ..,,,,.:'........ �� . ,.......�........... � i 4 � . s "'.. �: `"{., ..::: �S .,, .p� 'x. . ...... ik'... "s:u�' ... .................•.,....,,.................,.....,, - .•...ae,.. � � i . �... � � ................................ � o. t . t , .......,h r�� � ,..,�� � c �. t........ �y., . .. ..�,. . > ��C. � � .4 . , ,f: . . ' ...' .. , l. ......,...�,,.. ..,,,,, 5 . ........,,�............. ' . .�..�.............. ; � .,...µ.. ......... % ' . .:... . ,..........................�.......,.........«...,... � . ��S .� .. � '� :...�.,....•..�•....................Y.............,..,. "S S � �.. .. f .w i. Y : � ........................✓i.....,.. � .........................�.».«...�..•........ t ...•••......,�.,�...............,•.......,..... ,..,.,. .....--``^w�� .....•�.......^� .. � �. �•. � l� .....��.........,.� '""^•. 'M. t�...r...........�................ � �: .. ...................,,......... V......riflii�I�.��.5�,.. ..................,..... � ,� �� ........ �..�.... ,.,,., . .. ........ ��'t f / .,,. ' �....' �,.,,,,,,. `�.�.__�4,�...................�,......,.........._ . � . � ..,,... ,.,..,.,,.�.:.<. �--...=�...aAM.l�AM� r ..cn.....r:; .,.. .....,...»... ,. ........ ,,.,�.�..�,,.,..�,..,,.. �,. .,..,,.........— ((.,,,,,,h'"�•,� ...,... . ....���w.,......w... .................w......,,.........,,, ,,. ,,.,; >_;• r, �✓'' � ,i � � ..,.. 6 ,... w..� ... w . "^.-...,�J�f��`,� f i 4 ;� �� ,...: .. ,� � .,�.;,,, :w ���.....,..,. ,,.,� „_ .....,, M f'}f � �: ti� .,\ �� ", % ...,,,. ...,.,,.. .....w.. •. .................. _....,.... • �� -M .... , .. �"., Y�,� � �� ;�...;,.,� .......... .. ........... .......................,..........J..r.........« N^�s 't`....... .� +. ♦ "'",'�'"`�:+'�.'l. �/"� .�........�...� �' ,�.�:i:.�_.:�.+ .i „' �'1'+r ..� ... ` .,. ..� . i N� l .... f � � �.+. .',%`. . ...�.... ..+ ;% VM v'....... y � � ".....,.. � .^4'�.:�',,.t'M ,�` . } �i.i .... �+.� �.,....""...' � ` ` l,t.�..1�'*.,\.. ....v. ...,...'"' ,� ) � .. �:s.. :; ,,,.. 'r' ✓>.,�."k�'� \1.�, ` .......:^ ^'% ( '� �+ r.,. � ., �.t � ._.. v N ,.�j ',...,..../ j /�• ���.. �l � �.� ..�,;�, � - � ... � � �.�.-::.�,w � i �,,f, ,�....�.. ��'��-.�,��- .,�`'"" \�`'� �-... � ,.. ..... f �� ��, . ' ,/"� , ... s , ...���- � �� , :........................ .. ,� � ; , . . : . �n� `', ; ���/lll�jylq,lpp� �,F- .-..�,>::� y° ,/ /` . �� _... ' ! >... � ��� ...!' . � /'` � . ..,, • { s , __ � ............... % �.._.........._.�...,_.............. ,. •` ,..✓'�� � ,,,, ' � i ',....., `• � t ,.-�✓'"'���,,,,,,���/ :,� �' � . � � ,, ^,..., �•,,..�...,M............ .'. .. �... ,,,.,.... N,,,. - /'�� A �/ �✓' !j E / • l .................... »...,.....,..,....,.......... ..,..,.... ,,.,..,�,!,.,.,,,... , /' �� [ �.......... N�'/' � ff �� } J ��.�,� � �.i� .... ..,.. ,,,„...�� � � �. '� ��✓�" ^' / � ; ..,„ � .'^r..............� ^^" / / s ,� � � c ' ,r �� �-„�-�....^.-,....,.�.. �N , • � ,,,, .,,.,.... . .,.,. .., ; "^�.,... �`u........... "" . S'..... ..G., F.,, ; ��.� .,,.... �...� f� / ! //�` �/•• Vµ c �� ��'' . •�..�,......., _ . ' , ....,-...9W..... .�.. ........r . : � . f "'�...x ,...�.. ' ..': / : C w.....n+„"i✓^rr'r", ii� , � � j /� �� ..�" . ; ��, .. .� I +.„,� ..,... .......,...✓ r� �_ a / / '^,...",r �� .%��" � /f%�.�".. f e f . i , ....................•.,••••�..--•••-.,,,` ��� � „ ,. .,� ,` Yrx� ....................... y �+.,s ' ' � :.'' `.. q C .i�✓ .. ..w.. �l. . .,� �S ��5 �. � , t 1 , f ./J ,�" •f �s��`� � xi . �,` i . 3! � �J ' !�t~ � r f. � . e0 � ` i � /i%J !!fJ6! f ���� % ��'4 } a / /` � �' !l�/��/��/��l � t . 3 �4,',ti' i � �3r�rf//�f,/������' i ��4����4��11NIQ�YAIO� ' � � e jj l � �� �t, € r � �,i�i,f,��%�/y� ."�'�,��. ��� �,'� i :❑ ❑ � s i � ,�'� � s ��� � ....- t�t ,j) f �* a _ ; � �i//�; , " ;;�n �/% . c f .,, � , 1 � . . �,�,r " s ; >� � ; � , '�., �t � ; �� s :f �. '/ '1 � � � f f . : , ,, � . .. ; .. .._. _ . , . � . ... ,. � �� , l j.• , � . ^,,,, , `� � •-... . . �, ......................_ ,,., .,,,.. �. �; �"^�.�...... ,� ;, + `-�..r^'' `�.,>} ' < � , ' ,/ �� , �-�,,,.,,..,,.�„„� ~ µ^�.M, �,� ;F � y`4 ;_> � '`; ..,. ..,."`.,�w M��r ""`�.`.l''�.,,,^,.,��� f�i 1`�.' � �� c! i, ��' � �^^-»....,,,,,,� �y`w-. A+M� � � � �� LQAONO OOqf { 3 �w ,, . -�»,.,-.� . � 3 . . . , .� :; ,`.""`�t ...�^".-"�`"+. . , ; � ,W..,,.,.�,v.����.�.�..�...�..�.�.., _,.,......,.w.W,�.......,._..,,.,,...., , .... _ �:, ij� �� t� ,.,,�{ s r f �Jr � �w,1�: `i fl. � / � / !� jr � f�f , �� � f � �,' .., f J� . r' �� `� ' `" -� � e $ f 'f \„ ; I s .� l f �'� 1 ,� .... , r�,�' � � ' r ,�. � ....�- ,� f- # : �. .�. , ,.s ,. ,: ,.. , _ � -a�._...._............. ...�- (/ � * . �..}.. .,� �.`�M1�M, N/ f �Y � f /l �* � `��n.. ..m..r..r..m.. � � ,,S y � • `+� 4� + , .1"�',! /f /. ..f � h�� fs�;a .a `� �, .�,. < i`� ',�., � � , .; � � i,. � � i`.i;s<w<':'t::>i � ,,.�'� f 3 i ~j f� ,!' 3 � � `� �,Ay4,,,�f� ; l�r . ,. i �:www; ' ^�! /� �� t � f �.w`� j� f ' ................ �,' 1 ff . l,• "��+ r M„^.•,�� ,�F, �,y ff.i�,, Y'ii t V' .., �•� l � "'���.c- `� MN Y ',, f� �' T �N F'Yn� �f ... %'' ,V �,,,✓-' l�,: >� j� �,; .�........,,. , � 3 ��,✓ � ,....., » .._..,,�•� Rt �~ �, "`�....�":';"/�f�✓ ,.,� �� � ?-� ,�'�"�� .�:� �� � �N ., -,�,j" � „�;,r,f ..... •-k •, "'1 � .�% .,.- "�';µ�„"'�r `.• � , f �,-. l�� �.,., ��;:,;=-;:;�;;;'' . , �s f'� ''�c� 'd N����,,,,-�,,, �'� ,�,. � O �� M_ ,, ; �..._ ....� �,,� � � ,. .��.,. �.� 't � w� �'".,�� � �`' �......� .u.,. �' # {� °-�,. ��, � D•� �' ; .,...,.,..t��•�., �, �S F�..................) lh \`4 ...l� j /v ....... Mw � �.. , `�, s '•. ._. t ..,' .,. .... . •,....,..,.� _ � ...,..„.... ,..,....�, ......� .. .. ,.. / . . .. � •. ' 'Yil�A! SPiGCR ►��p��l - WESTERN WASHINGTON HYDROLOGY MODEL V2 ��11��' PROJECT REPORT Project Name: default Site Address: north sediment pond City . renton � Report Date : 8/1/2005 Gage . Seatac Data Start . 1948 Data End . 1998 Precip Scale: 1.00 PREDEVELOPED LAND USE Basin . Basin 1 E'lows To . Point of Compliance �roundWater: No Land Use Acres PILL FOREST: 2.95 DEVELOPED LAND USE Basin . Basin 1 rlows To . Pond 1 GroundWater: No �and Use Acres PILL GRASS: 2.15 IMPERVIOUS: 0.8 2CHRES (POND) INFORMATION �ond Name: Pond 1 Pond Type: Trapezoidal Pond ?ond Flows to : Point of Compliance ?ond Rain / Evap is not activated. Dimensions nepth: 7ft. 3ottom Length: 78.35ft. 3ottom Width : 78.35ft. Side slope 1: 3 To 1 "ide slope 2: 3 To 1 ide slope 3: 3 To 1 .,ide slope 4: 3 To 1 Volume at Riser Head: 1.299 acre-ft. )ischarge Structure tiser Height: 6 ft. _ Riser Diameter: 18 in. NotchType . Rectangular lotch Width : 0.010 ft. totch Height: 1.619 ft. Orifice 1 Diameter: 0.883 in. Elevation: 0 ft. Pond Hydraulic Table Staqe(ft) Area(acr) Volume(acr-ft) Dschrg(cfa) Infilt(cfe) 0. 000 0.141 0.000 0.000 0.000 �.078 0.193 0.011 0.006 0.000 i . 156 0.194 0.022 0.008 0.000 UUU U GbU U LGG L LbG U y5L � 000'0 880'0 86T "I 06Z'0 8L9 'S 000'0 680'0 9Li'i 88Z'0 009 'S 000'0 I80'0 bSi'i S8Z'0 ZZS'S 000'0 LLO'0 Z£i'i F8Z'0 666'� 000'0 bL0'0 OTi'I ISZ'0 L9�'� 000'0 iL0'0 880'I 8LZ'0 68Z'� 000'0 890'0 990'I 9LZ'0 TTZ'S 000'0 S90'0 S�0'T 6LZ'0 ��T '� 000'0 Z90'0 6Z0'I TLZ'0 9S0'� 000'0 6S0'0 £00'T 69Z'0 8L6 ' b 000'0 9S0'0 Z86'0 L9Z'0 006 ' b 000'0 bS0'0 i96 '0 69Z'0 ZZ8' E 000'0 TSO'0 ib6 '0 Z9Z'0 66L' � 000'0 660'0 TZ6 '0 09Z'0 L99 ' 6 000'0 Lb0'0 T06 '0 LSZ'0 68S' 6 000'0 S60'0 T88'0 SSZ'0 TTS' E 000'0 6b0'0 i98'0 £SZ'0 �£6 ' E 000'0 £60'0 Tb8'0 iSZ'0 9S£ ' 6 000'0 Z60'0 ZZ8'0 S�Z'0 8LZ' 6 000'0 Zb0'0 £08'0 96Z'0 OOZ' b 000'0 Zb0'0 b8L'0 66Z'0 ZZi ' 6 000'0 i60'0 S9L'0 Z6Z'0 b60' b 000'0 i60'0 9bL'0 06Z'0 L96 '� 000'0 060'0 LZL'0 L�Z'0 688 '� 000'0 060'0 60L'0 S£Z'0 ZT8'E 000'0 060'0 i69'0 £�Z'0 £�L 'E 000'0 6�0'0 £L9'0 Z�Z'0 9S9 '� 000'0 6E0'0 SS9'0 6ZZ'0 8LS '� 000'0 8�0'0 L£9'0 LZZ'0 OOS '� 000'0 8£0'0 OZ9 '0 6ZZ'0 ZZ6 '� 000'0 L£0'0 Z09"0 ZZZ'0 66£ '� 000'0 LEO'0 S8S'0 OZZ'0 L9Z '� 000'0 LEO'0 89S'0 8TZ'0 68T '� 000'0 9E0'0 TSS'0 9IZ'0 TTZ '� 000'0 9£0'0 6£S'0 6TZ'0 £�0'� 000'0 S£0'0 8TS'0 ZTZ'0 9S6 'Z 000'0 S£0'0 TOS'0 OTZ'0 8L8'Z 000'0 6�0'0 S86'0 80Z'0 008 'Z 000'0 b�0'0 696'0 90Z'0 ZZL'Z 000'0 E�0'0 £Sb'0 60Z'0 bb9 'Z 000'0 ££0'0 L£6'0 ZOZ'0 L9S 'Z 000'0 Z£0'0 ZZb'0 OOZ'0 686 'Z 000'0 Z£0'0 906'0 861 '0 TTb'Z 000'0 T�0'0 T6E'0 96T'0 £�E 'Z 000'0 T�0'0 9LE'0 b6T'0 9SZ'Z 000'0 OEO'0 T9E'0 Z6T'0 8LT 'Z 000'0 OEO'0 96£'0 06T'0 OOZ 'Z � 000'0 6Z0'0 T££'0 88T'0 ZZO'Z 000'0 6Z0'0 LZ£'0 98i '0 666 'T 000'0 8Z0'0 Z0�'0 �8T'0 L98'I 000'0 LZO'0 88Z'0 Z8T'0 68L'T 000'0 LZO'0 6LZ'0 08T"0 IIL'i 000'0 9Z0'0 09Z'0 8Lt '0 £E9 'T 000'0 9Z0'0 96Z'0 LLI '0 9SS'T 000'0 SZO'0 E�Z'0 SLi '0 8Lb'T 000'0 6Z0'0 6iZ'0 �LT'0 OOb 'T � 000'0 6Z0'0 90Z'0 TLZ'0 ZZ�'Z • 000'0 £ZO'0 £6I'0 691'0 66Z'Z 000'0 ZZO'0 081'0 L9i'0 L9T 'I 000'0 TZO'0 L9T'0 S91'0 680'i 000'0 TZO'0 bSi'0 69T'0 TIO'T 000'0 OZO'0 T6T '0 Z9T'0 £E6 '0 000'0 6T0'0 6ZI '0 09i'0 9S8'0 000'0 8T0'0 9ZI'0 8ST'0 8LL'0 000'0 LZO'0 60T'0 9ST'0 OOL'0 000'0 9Z0'0 Z60'0 SSi'0 ZZ9 '0 000'0 STO'0 080'0 FST '0 6bS'0 000'0 bT0'0 890'0 ZST '0 L9b'0 000'0 £i0'0 9S0'0 66T '0 68£'Q 000'0 TTO'0 Sb0'0 86T '0 TiE'C 000'0 Oi0'0 E£0'0 96i '0 £�Z'G i.833 0.295 1.244 0.096 0.000 i. 911 0.297 1.267 0.100 0.000 �. 989 0.300 1.290 0.104 0.000 6.067 0.302 1.319 0.357 0.000 0.194 0.305 1.337 0.908 0.000 6.222 0.307 1.361 1.636 0.000 6.300 0.310 1.385 2.507 0.000 6.378 0.312 1.409 3.499 0.000 0.456 0.315 1.434 4.599 0.000 0.533 0.317 1.458 5.797 0.000 6. 611 0.320 1.483 7.086 0.000 6. 689 0.322 1.508 8.461 0.000 �.767 0.325 1.533 9.915 0.000 5.844 0.327 1.558 11.44 0.000 6.922 0.330 1.584 13.05 0.000 7.000 0.333 1.610 14.72 0.000 ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped eturn Period Flow(cfs) year 0.075441 5 year 0. 11766 10 year 0. 190639 ?5 year 0. 164049 i0 year 0.177973 100 year 0.189427 ?low Frequency Return Periods for Developed Unmitigated teturn Period Flow(cfs) 2 year 0.312899 i ear 0.4 .0 vear 0.4866 1 15 year 0.579949 50 year 0.652182 .00 year 0.72679 Flow Frequency Return Periods for Developed Mitigated Return Period Flow(cfs) year 0.032317 year 0.039007 10 year 0.043219 �5 year 0.048367 i0 year 0.052106 �00 year 0.055782 'early Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed 1949 0.088 0.029 950 0.169 0.035 951 0. 186 0.051 1952 0.058 0.026 �953 0.044 0.033 954 0.065 0.032 955 0.114 0.031 1956 0.098 0.039 ' 957 0.074 0.031 958 0.080 0.033 _959 0.066 0.029 1960 0.116 0.041 961 0.067 0.035 962 0.039 0.025 1963 0.053 0.032 1969 0.066 0.033 965 0.099 0.036 966 0.051 0.031 1967 0. 119 0.034 1 1968 0.068 0.031 1969 O.OE,7 0.032 1970 0.053 0.033 1971 U.09� 0.031 1972 0.138 0.093 1973 0.060 0.037 1974 Ci.065 0.033 1975 0.099 0.029 i 1976 0.061 0.031 1977 0.006 0.020 1978 0.053 0.034 1979 0.031 0.023 ', 1980 0.090 0.046 ' 1981 0.047 0.032 1982 0.091 0.038 1983 0.082 0.033 1989 0.052 0.026 1985 0.028 0.024 ' 1986 0.143 0.035 1987 0.121 0.039 1988 0.049 0.026 1989 0.028 0.024 1990 0.196 0.090 1991 0.171 0.039 1992 0.057 0.035 1993 0.063 0.026 1994 0.016 0.022 1995 0.090 0.035 1996 0.176 0.043 1997 0.162 0.064 1998 0.033 0.026 Ranked Yearly Peaks for Predeveloped and Developed-Mitigated 2ank Predeveloped Developed L 0.1864 0.0510 2 0.1758 0.0463 ? 0.1713 0.0428 1 0.1692 0.0425 � 0. 1616 0.0906 6 0.1433 0.0903 � 0.1383 0.0393 3 0.1212 0.0392 a 0.1162 0.0391 10 0.1144 0.0376 ll 0.1142 0.0371 L2 0.0993 0.0365 13 0.0977 0.0355 14 0.0908 0.0352 5 0.0898 0.0352 6 0.0898 0.0349 17 0.0876 0.0346 18 0.0823 0.0349 9 0.0803 0.0336 0 0.0738 0.0333 11 0.0676 0.0332 22 0.0673 0.0332 3 0.0669 0.0331 4 0.0664 0.0330 25 0.0663 0.0329 ?6 0.0650 0.0324 7 0.0698 0.0320 8 0.0632 0.0317 29 0.0612 0.0315 ^�0 0.0602 0.0312 l 0.0577 0.0311 _2 0.0566 0.0311 33 0.0534 0.0307 4 0.0530 0.0307 5 0.0529 0.0306 -G n n��n n n�on 37 0.0508 0.0293 38 0.0494 0.0292 39 0.0982 0.0269 40 0.0474 0.0262 41 0.0942 0.0260 92 0.0439 0.0260 93 0.0393 0.0260 94 0.0328 0.0246 45 0.0310 0.0240 46 0.0289 0.0239 97 0.0278 0.0233 48 0.0160 0.0215 99 0.0061 0.0195 1/2 2 year to 50 year Flow(CFS) Predev Final Percentage Pass/Fail 0.0377 3771 1628 93.0 Pass 0.0391 3491 1121 32.0 Pass 0.0406 3242 766 23.0 Pass 0.0420 3036 483 15.0 Pass �.0434 2832 255 9.0 Pass 0.0498 2633 187 7.0 Pass 0.0462 2950 152 6.0 Pass 0.0976 2275 130 5.0 Pass �.0991 2128 111 5.0 Pass 0.0505 1998 92 4.0 Pass �.0519 1884 70 3.0 Pass J.0533 1771 65 3.0 Pass �.0547 1678 60 3.0 Pass 0.0561 1584 55 3.0 Pass ).0576 1490 50 3.0 Pass ).0590 1397 44 3.0 Pass 0.0604 1316 35 2.0 Pass 4.0618 1238 26 2.0 Pass ).0632 1187 18 1.0 Pass ).0646 1114 0 .0 Pass 0.0661 1056 0 .0 Pass �.0675 1004 0 .0 Pass ).0689 959 0 .0 Pass ).0703 902 0 .0 Pass 0.0717 860 0 .0 Pass �.0731 818 0 .0 Pass ).0796 774 0 .0 Pass ).0760 738 0 .0 Pass 0.0774 710 0 .0 Pass �.0788 669 0 .0 Pass ).0802 643 0 .0 Pass J.0816 616 0 .0 Pass 0.0831 586 0 .0 Pass ).0845 566 0 .0 Pass 1.0859 533 0 .0 Pass J.0873 508 0 .0 Pass 0.0887 979 0 .0 Pass �.0901 452 0 .0 Pass �.0916 432 0 .0 Pass , U.0930 417 0 .0 Pass I 0.0944 391 0 .0 Pass i.0958 371 0 .0 Pass �.0972 353 0 .0 Pass 0.0986 340 0 .0 Pass '1.1001 322 0 .0 Pass �. 1015 305 0 .0 Pass i. 1029 283 0 .0 Pass 0. 1043 273 0 .0 Pass �. 1057 260 0 .0 Pass '. 1071 295 0 .0 Pass �. 1086 233 0 .0 Pass 0. 1100 229 0 .0 Pass .1114 212 0 .0 Pass . 1128 206 0 .0 Pass ., i i n� �o� n n o-,.-.. 0.1156 189 0 .0 Pass D.1171 182 0 .0 Pass J.1185 174 0 .0 Pass 0.1199 168 0 .0 Pass 0. 1213 159 0 . 0 Pass 0. 1227 155 0 .0 Pass d.1241 151 0 .0 Pass 0.1256 145 0 .0 Pass 0. 1270 143 0 .0 Pass 0. 1289 135 0 .0 Pass 0. 1298 127 0 .0 Pass 0. 1312 120 0 .0 Pass �. 1326 113 0 .0 Pass J. 1341 109 0 .0 Pass 0.1355 107 0 . 0 Pass 0.1369 97 0 . 0 Pass J. 1383 89 0 .0 Pass ). 1397 83 0 .0 Pass 0. 1411 75 0 .0 Pass 0.1926 72 0 .0 Pass �.1940 63 0 . 0 Pass ).1954 61 0 . 0 Pass 0. 1468 58 0 .0 Pass �. 1482 52 0 .0 Pass ).1496 99 0 .0 Pass �.1511 97 0 .0 Pass 0. 1525 43 0 .0 Pass �. 1539 39 0 .0 Pass ). 1553 34 0 .0 Pass J. 1567 31 0 .0 Pass 0. 1581 29 0 .0 Pass ).1596 26 0 .0 Pass ). 1610 25 0 .0 Pass J. 1624 23 0 .0 Pass 0. 1638 21 0 .0 Pass ). 1652 21 0 .0 Pass ). 1666 20 0 .0 Pass 0. 1681 18 0 . 0 Pass Q. 1695 17 0 .0 Pass ). 1709 14 0 .0 Pass ). 1723 13 0 .0 Pass 0. 1737 12 0 .0 Pass 0. 1751 10 0 .0 Pass ).1766 7 0 .0 Pass ). 1780 7 0 . 0 Pass later Quality Ht+� Flow and Volume. m-line £acility volume: 0.1741 acre-feet Jn-line facility target floM: 0.1389 cfs. • Adjusted fo= 15 min: 0.1436 cfs. ff-line facility target flow: 0.076 cfs. djusted for 15 min: 0.0787 cfa. rogram and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Department of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied ' arranties of program and accompanying documentation. Zn no event shall AQUA TERRA Consultants and/or the Washington I tate Department of Ecology be liable for any damages whatsoever (includinq without limitation to damages for loss of , _usiness profits, loss of business information, business interruption, and the like? arising out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been �dvised of the possibility of such damages. TEJ4R E ROW I�? 100t.1894 � i_ ' I . ; j , ; � 1a0 50 =1780 j � i: , l� � � � � i , 25 '.1640 j 'i i ; � €! ; � � � , � ` � � }� � � �i �: ' �i ! � � '1 i 1_0 10 �.1A06 . i �� � I I�; '; S ! i # + i' � � � ". 5 '_1177 < � � � E� � �:i� { � � � ! �' 1� i 3�� jEl��� I , ! � O PfEd@V�. , ;' ; ��j;; i' �; I r 10E-1 8ped Mitigated !I; � ir 'I� ( II �.? � i i t f!� � �)•�k;•�}y,:XJcki�:XX Z .�75� i..j � j C ��` I I S 3 ,���� Q k��?id%X'��� E �I i i ��# ; �' t ; j � 10E-2 ���!:� +�� � ?� `� �' � 1 0 7U 20 30 d0 58 60 70 8U 98 99 Cumulative Pro�abili Yearly Peaks for Predeveloped Flow Frequency Chart �AR '�FLOW fs) 100 7268 0.18 � ;� � � � �� ,, f : � �I � � x Developed wi�Facility 50 6522 � � ',� � ' i � ` i �� � �, � � � E � !�� i � 0.1d 25 �.5799 ' ;� ��' ! � i� I 3� � i, � l� ��� ; ; 'I � � �! i � '�' � i€ ��I;I ' ' . I i . � 0.11 10 >.4866 ��� � �� ;� �i I�� ' 1� ; � � s ; 1� �€ , i r f � ' � j � � I � ! ( af i� ! ! � f�� � �� : i � �.�7 x � j 1 ! , � � 5 �.d156 i i ( i ( �� �; 7 I` I �f 1 �1 i . � � � +� ' I i �S �� i ��� � ,�) ! � + _ 2 '.31�3 � t ' i � 0.04 . I � � I ,� v � �.. � � � b � � '' '� � `' � � ,') � ' ,, � i; ' � �' ; � ' i ; f �31- ' i'i � � � �� � < <�� � 10E-5 �1UE-4 10E•3 1DE-Z 10E-1 1 10 �� ; ,r�F � I # ��r �I� i� Percent Exceedin Yearly Peaks for developed W/O Pond Duration Graph YEAR ROUO�cis? EA00�.0558 , , I � � ;' ; ; ; I� � '( '��! i :I ` � � � �.0� ( � �� i j; i �� E �� ;s ( �I t� ! 25 �.0484 ; �' ;� �� s' � I� + � I � � � ; :( �� �� �;� �� � i � � � �� ,� ;: , , � i !� ! 1D �.0432 t � � E� �� ' E � � � �� '� � , I i t i} � �. S �.0390 � �I, , , I; � ( °� t,�, � �I .�" I i 1 � ;I { f [� , 2 .0323 j , � , i � � b �; � ��� � i ; i�� � � ,� �; � � ,�; � � ��� , � � , � I � �� ����� . , �f � � i. i�i � i ;{� � � � i� � ;� t' �� ' � � s t.,�:��iil;�;';lr;�,iil;,��!��`i ;.�:�E �tji.�S. Yearly Peaks for Developed WlPond i . � s.�m�d- ���1�� WESTERN WASHINGTON HYDROLOGY MODEL V2 PROJECT REPORT Project Name: default Site Address: south sediment pond City . renton Report Date : 8/1/2005 Gage . Seatac Data Start . 1948 Data End . 1998 Precip Scale: 1.00 � PREDEVELOPED LAND USE Basin . Basin 1 Flows To . Point of Compliance GroundWater: No Land Use Acres TILL FOREST: 7.68 DEVELOPED LAND USE Basin . Basin 1 Flows To . Pond 1 GroundWater: No Land Use Acres TZI,L GRASS: 3.27 IMPERVIOUS: 4 .41 RCHRES (POND) INFORMATION Pond Name: Pond 1 Pond Type: Trapezoidal Pond . Pond �'lows to : Point of Compliance Pond Rain / Evap is not activated. Dimensions Depth: 7ft. Bottom Length: 157.62ft. Bottom Width : 157.62ft. Side slope 1: 3 To 1 Side slope 2: 3 To 1 Side slope 3: 3 To 1 Side slope 4: 3 To 1 Volume at Riser Head: 9 .263 acre-ft. Discharge Structure j Riser Height: 6 ft. �I Riser Diameter: 18 in. NotchType . Rectangular ' Notch Width : 0.017 ft. ', Notch Height: 2. 654 ft. Orifice 1 Diameter: 1.429 in. Elevation: 0 ft. Pond Hydraulic Table Stage(ft) Area(acr) Volume(acr-ft) Dachrg(cfs) Infilt(c£s) 0.000 0.570 0.000 0.000 0.000 , 0.078 0.574 0.044 0.015 0.000 ' 0. 156 0.577 0.089 0.021 0.000 ' � UVU U �bG V ��U P tl➢� U y5L � 000'0 68Z'0 686 '� b68'0 8L9 '� 000'0 08Z'0 £Z6 '£ 6£8'0 009 '� 000'0 TLZ'0 8S8'£ S£8'0 ZZS'S 000'0 £9Z'0 £6L'£ I£8'0 66b '� 000'0 65Z'0 6ZL'£ LZ8'0 L9£'� 000'0 9VZ'0 S99'� £Z8'0 68Z'<_ 000'0 8�Z'0 T09'� 6T8'0 TTZ'S 000'0 0£Z'0 L£S'� St8'0 £ET'� 000"0 ZZZ'0 6L6'� ti8'0 9S0'� 000'0 6TZ'0 TI6'� L08'0 8L6 ' � 000'0 90Z'0 8b£'£ £08'0 006 ' b 000'0 66i'0 98Z'� 66L'0 ZZ8 ' � 000'0 Z6i'0 bZZ'E S6L'0 66L' 000'0 S8T'0 Z9i'£ T6L'0 L99 ' 6 000'0 8LT'0 TOT '£ L8L'0 68S' b 000'0 iLT'0 060'E £8L'0 ITS' t 000'0 69T'0 6L6'Z 6LL'0 E�6' t 000'0 8ST'0 6T6'Z SLL'0 9S� ' 6 000'0 ZST'0 6S8 'Z iLL'0 8LZ' 6 000'0 LbT'0 66L'Z L9L'0 OOZ' t 000'0 Zbi'0 6�L'Z £9L'0 ZZi ' t 000'0 9£I'0 089 'Z 6SL'0 bb0' 6 000'0 IEZ'0 TZ9 'Z 9SL'0 L96 'f 000'0 9ZT'0 £9S'Z ZSL'0 688'f 000'0 IZT'0 60S'Z SbL'0 iT8'F 000'0 91T'0 9b6'Z bbL'0 E�L'£ 000'0 ZIT'0 88�'Z O�L'0 9S9 'F 000'0 LOZ'0 I££'Z 9EL'0 8LS'f 000'0 60t'0 6LZ'Z ZEL'0 OOS '� 000'0 OOi'0 LiZ'Z 6ZL'0 ZZb '£ 000'0 860'0 T9T'Z SZL'0 bb� 'f 000'0 L60'0 60T'Z IZL'0 L9Z'f 000'0 960'0 8b0'Z LiL'0 68T '� 000'0 S60'0 E6b'T £TL'0 TTT '� 000'0 £60'0 L£6'T OTL'0 �£0'f 000'0 Z60'0 Z88'T 90L'0 9S6 'i 000'0 Z60'0 8Z8'T ZOL'0 8L8'� 000'0 060'0 �LL'T 869'0 008 'Z 000'0 880'0 6iL'T S69'0 ZZL'"< 000'0 L80'0 S99 'i t69 '0 669 '"< 000'0 980'0 ZT9'T L89 '0 L9S'Z 000'0 S80'0 8SS'i b89 '0 686'7 000'0 £80'0 SOS'T 089 '0 TT6 '< 000'0 Z80'0 £S6'i 9L9'0 £��'"< 000'0 i80'0 006'T ZL9'0 9SZ'Z 000'0 6L0'0 86£'T 699'0 8LT '7 000'0 8L0'0 96Z'T S99'0 OOT'i 000'0 9L0'0 66Z'T Z99'0 ZZO'i 000'0 SLO'0 E6T'I SS9'0 666 'T 000'0 £LO'0 ZbT'T 6S9'0 L98'T 000'0 ZLO'0 I60't TS9'0 68L'1 000'0 OLO'0 Tb0'T Lb9'0 TiL't 000'0 690'0 i66'0 £69'0 E£9 'i 000'0 L90'0 Tb6'0 Ob9'0 9SS'T 000'0 S90'0 T68'0 9£9'0 SL6 '1 000'0 E90'0 Z68'0 £E9'0 006 't 000'0 Z90'0 E6L'0 6Z9'0 ZZ�'T 000'0 090'0 6bL'0 9Z9'0 b6Z'1 000'0 8S0'0 S69'0 ZZ9'0 L91'1 000'0 9S0'0 Lb9'0 6i9 '0 680'1 000'0 bS0'0 66S'0 Si9'0 iT0'T 000'0 ZSO'0 TSS'0 ZZ9'0 £�6 '( 000'0 OSO'0 bOS'0 809'0 9S8'( 000'0 Lb0'0 LS6'0 S09'0 8LL'� 000'0 S60'0 Oi6'0 T09'0 OOL'0 000'0 Z50'0 �9E'0 86S'0 ZZ9 '( 000'0 060'0 LIE'0 66S'0 66S'( 000'0 LEO'0 TLZ'0 i6S'0 L9b'0 000'0 £EO'0 SZZ'0 L8S'0 68E'� 000'0 0£0'0 08i'0 68S'0 ii�'( 000'0 9Z0'0 6£T'0 i8S'0 £�Z'( �.833 0.852 4 . 120 0.307 0.000 �.911 0.856 4 . 187 0.316 0.000 5.989 0.860 4 .254 0.326 0.000 6.067 0.864 4.321 0.579 0.000 �.144 0.868 4 .388 1.131 0.000 5.222 0.873 4.456 1.860 0.000 6.300 0.877 4.524 2.731 0.000 5.378 0.881 4.592 3.723 0.000 �.956 0.885 4.661 4.824 0.000 �.533 0.889 4.730 6.023 0.000 6.611 0.894 4.799 7.313 0.000 i.689 0.898 4.869 8.687 0.000 i.767 0.902 4. 939 10.14 0.000 >.844 0.906 5.009 11.67 0.000 6.922 0.911 5.080 13.27 0.000 7.000 0.915 5.151 14.95 0.000 ANALYSIS RESULTS Flow Frequency Return Periods for Predeveloped teturn Period Flow(cfs) ? year 0. 196403 5 year 0.306316 10 year 0.366138 25 year 0.427085 �0 year 0.463333 100 year 0.493152 ?low Frequency Return Periods for Developed Unmitigated �teturn Period Flow(cfs) 2 year 1.269969 i year 1.591957 LO vear 1.80411 25 year 2.074191 �i0 year 2.277077 00 year 2.481895 Flow Frequency Return Periods for Developed Mitigated Zeturn Period Flow(cfs) ? year 0.08712 .i year 0. 108712 10 year 0. 123841 >.5 year 0. 143934 i0 year 0. 159635 100 year 0.175983 !early Peaks for Predeveloped and Developed-Mitigated Year Predeveloped Developed '.949 0.228 0.077 950 0.941 0.092 _951 0.485 0.163 1952 0.150 0.070 �953 0.115 0.095 954 0. 169 0.081 955 0.297 0.076 1956 0.254 0.129 957 0.192 0.081 958 0.209 0.085 1959 0. 173 0.080 1960 0.303 0.112 .961 0. 175 0.093 962 0. 102 0.069 1963 0.138 0.087 �.969 0. 173 0.093 .965 0. 129 0.096 .966 0. 132 0.085 L967 0.298 0.093 L968 0.176 0.082 , 1969 0.174 0.084 1970 0.138 0.089 1971 0.J2 5 0.083 L972 0.360 0.139 1973 0.157 0.099 1974 0.169 0.085 L975 0.259 0.078 L976 �.159 0.081 1977 U.016 0.063 t978 0.139 0.089 1979 0.081 0.062 1980 0.234 0.155 1981 0.123 0.084 1982 0.236 0.097 L983 0.214 0.085 1984 0.136 0.069 1985 0.074 0.068 L986 0.373 0.088 L987 0.316 0.103 1988 0..119 0.075 1989 0.072 0.070 L990 0.511 0.106 L991 0.446 0.116 1992 0.147 0.089 1993 0.165 0.066 L999 0.042 0.059 1995 0.234 0.099 1996 0.458 0.140 1997 0.421 0.184 '_998 0.085 0.074 Ranked Yearly Peaks for Predeveloped and Developed-Mitigated tank Predeveloped Developed � 0.4853 0.1632 I 2 0.4577 0.1554 s 0.4959 0.1398 1 0.4905 0.1393 � 0.4206 0.1291 6 0.3731 0.1157 ] 0.3599 0.1116 3 0. 3156 0.1060 � 0.3026 0.1028 10 0.2978 0.0987 �1 0.2974 0.0971 .2 0.2586 0.0956 i3 0.2545 0.0953 , 14 0.2364 0.0940 '_5 0.2339 0.0926 .6 0.2337 0.0925 17 0.2279 0.0925 18 0.2193 0.0922 _9 0.2090 0.0892 ?0 0. 1921 0.0891 21 0. 1761 0.0889 ?2 0.1752 0.0876 ?3 0.1742 0.0874 ?4 0. 1727 0.0859 25 0. 1727 0.0849 ?6 0. 1692 0.0847 ?7 0. 1687 0.0845 �S 0. 1645 0.0842 29 0. 1593 0.0840 0 0.1568 0.0826 1 0.1502 0.0816 32 0.1473 0.0814 33 0.1389 0.0811 34 0. 1380 0.0807 35 0. 1377 0.0800 �G n i ��n n n��G - ------- - J 37 0.1322 0.0770 38 0.1287 0.0758 39 0.1255 0.0753 40 0.1235 0.0735 41 0.1150 0.0698 42 0.1143 0.0695 43 0.1022 0.0695 44 0.0859 0.0686 95 0.0806 0.0680 96 0.0738 0.0664 47 0.0723 0.0632 48 0.0416 0.0622 49 0.0158 0.0592 1/2 2 year to 50 year Elow(CFS) Predev Final Percentage Pass/Fail D.0982 3790 1377 36.0 Pass 0. 1019 3551 1157 32.0 Pass 0.1056 3286 965 29.0 Pass 0.1093 3098 804 26.0 Pass 0.1130 2886 719 29.0 Pass 0. 1166 2657 624 23.0 Pass 0.1203 2968 560 22.0 Pass �.1240 2275 506 22.0 Pass 0.1277 2157 449 20.0 Pass 0.1314 2015 384 19.0 Pass 0. 1351 1885 319 16.0 Pass �. 1388 1791 273 15.0 Pass 0.1425 1688 201 11.0 Pass 0. 1461 1585 173 10.0 Pass �. 1498 1509 129 8.0 Pass J. 1535 1409 99 7.0 Pass 0. 1572 1319 78 5.0 Pass �. 1609 1261 69 5.0 Pass �. 1646 1191 92 3.0 Pass �. 1683 1115 38 3.0 Pass 0. 1720 1071 33 3.0 Pass �.1757 1016 28 2.0 Pass ). 1793 954 22 2.0 Pass J. 1830 902 5 .0 Pass G. 1867 871 0 .0 Pass ).1904 821 0 .0 Pass ). 1941 775 0 .0 Pass J. 1978 796 0 .0 Pass 0.2015 713 0 .0 Pass ).2052 670 0 .0 Pass ).2088 652 0 .0 Pass �.2125 619 0 .0 Pass 0.2162 567 0 .0 Pass :.2199 568 0 .0 Pass ).2236 540 0 .0 Pass 0.2273 510 0 .0 Pass 0.2310 481 0 .0 Pass ).2397 456 0 .0 Pass ).2389 432 0 .0 Pass 0.2420 918 0 .0 Pass �.2457 399 0 .0 Pass ).2494 373 0 .0 Pass ).2531 354 0 .0 Pass 0.2568 349 0 .0 Pass �.2605 323 0 .0 Pass ).2642 305 0 .0 Pass J.2679 285 0 .0 Pass � 0.2715 279 0 .0 Pass ).2752 260 0 .0 Pass • ).2789 298 0 .0 Pass �.2826 233 0 .0 Pass 0.2863 224 0 .0 Pass >.2900 216 0 .0 Pass ).2937 206 0 .0 Pass n �o�n ioo n n D,�� 0.3011 189 0 .0 Pass 0.3097 184 0 .0 Pass 0.3084 174 0 .0 Pass 0.3121 168 0 .0 Pass 0.3158 163 0 .0 Pass 0.3195 155 0 .0 Pass 0.3232 151 0 .0 Pass 0.3269 195 0 .0 Pass 0.3306 194 0 .0 Pass 0.3392 135 0 .0 Pass 0.3379 130 0 .0 Pass 0.3416 123 0 .0 Pass 0.3453 113 0 , .0 Pass 0.3490 109 0 .0 Pass 0.3527 107 0 .0 Pass 0.3564 97 0 .0 Pass 0.3601 89 0 .0 Pass 0. 3638 86 0 .0 Pass 0.3674 75 0 .0 Pass 0.3711 72 0 .0 Pass 0.3798 64 0 .0 Pass 0.3785 61 0 .0 Pass 0.3822 58 0 .0 Pass 0.3859 56 0 .0 Pass 0.3896 49 0 .0 Pass 0.3933 47 0 .0 Pass 0.3969 43 0 .0 Pass 0.9006 39 0 .0 Pass 0.9043 34 0 .0 Pass 0. 9080 31 0 .0 Pass 0. 4117 30 0 .0 Pass 0. 9159 26 0 .0 Pass 0.9191 25 0 .0 Pass 0. 9228 23 0 .0 Pass 0.4265 21 0 .0 Pass 0. 4301 21 0 .0 Pass 0.9338 20 0 .0 Pass 0.9375 18 0 .0 Pass 0.9912 17 0 .0 Pass 0.9949 15 0 .0 Pass 0.9986 13 0 .0 Pass 0.9523 12 0 .0 Pass 0.4560 10 0 .0 Pass 0.4596 7 0 .0 Pass 0.4633 7 0 .0 Pass Water Quality BN� FloM and Vol�e. On-line facility volume: 0.6206 acre-feet On-line facility target floM: 0.6997 cfa. Adjusted for 15 min: 0.6982 cfs. Off-line facility target flow: 0.3619 cfs. Adjusted for 15 min: 0.389 cfs. program and accompanying documentation as provided 'as-is' without warranty of any kind. The entire risk regardinq the performance and results of this program is assumed by the user. AQUA TERRA Consultants and the Washington State Departrnent of Ecology disclaims all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall AQUA TERRA Consultants and/or the Washington State Department of Ecoiogy be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like► arisinq out of the user of, or inability to use this program even if AQUA TERRA Consultants or the Washington State Department of Ecology has been advised of the possibility of such damages. I ��Fiow� �o0 4.1894 , 1Q0 50 �.1780 � �� ��� � ; �i (�� ��:� � �� �E ��j� � �; I 25 �.�6YV f � 1 E � �f i� f $ ! �� � � �' � � ( �� ( � ��' I. �i �� )f� ( .! � 1A , 1D _9406 ' ! � � , � � ti ? ��I `) � _ �' � ;� �j i��� !�I J '', I[ j iy 5 `��.1177 � ('� � I ( �} ' � �� _ ; � � � ;I i� �i { ,I �; ! ��� � oPrede+,� i I' ' � f i �; `'��'� t �ee-1 8ped Mitigated � �i1 i � f � � �_� �� i" '`_ � � �c'.3�?��0{+'d.L„�ti)✓zXJcknYk . ' 2 A754 i � i i; O Fx�:!`""'7ao"� �, x� � �� i.': �� � � � 16E-2 � +_��, :� ' 1 0 10 2B 3� d0 5D 60 70 �0 4Q 94 Cumulative Probabili ' Yearly Peaks for Predeveloped Flow Frequency Chart YEAR;FLOW ? 100�.7268 `� ; �� i I E `� r C I , � 0.18 --o Iqped � ; f �� I! i ! `� x Deveioped wi6�Facility so �.sszz ; � , ; ; � !I ;: � i j� � `� � ' � '� ; i �� E , ; ,;� 0.1a � ' � _-�� �� ' �: , r 25 �.5799 �t 1 i' � t �1 ' i� �ir � � I. �s��� � �i � f 1 �f t ! � � } � � �� � O.�I 1Q �.A$66 € �� �� � ;� � � . � � � �� � .,�. � 5 .4156 � �� I � ` � �� � ( tt3� D.07 i # � �' ( ' � ! � � X;,h ;, �� ;� � ( � � , ,� �; � �i ; '�r � i; `� o.o� x 2 .3929 , ,�,i . � �� �;��� , ( �; � � ' ' C � i 1 �: � � � i � ° : � � � i; i � t I � �Iz �� ,`, �: :�,; . ��'; , � � i 10E-� �10E•4 � 10E•3 10E•2 19E•1 1 10 � . Percent F�cceedin , Yearly Peaks for developed W/O Pond Duration Graph �rt F�ow f�? �oo�.osss �- � , � E' ` � : _ � � �� ,, � . i, ,,` � so �os2� � , i ,I 3 � ,� � ���E, , ! 2s �.oasa �� �� i ' �'" ;�� �' � � t� E I �E ' � ! �� � ( I �'�` `I� '! ' E�4 10 F.9432 3 ( 3 i ') I 1 f �� -� fl E., t � � � ��o�o , � r ,, � ; , � , , � ' '' ' �� ;f ' i; � � - �; 2 �.o�z� , i ���' � ' � �� i '� �� � � � i i �i � £ ,' ; �t` , � � �� � � �� '� , ` �'� ' � � ` �' �� i , - � �I �� � E �, � E �� � . .. ' I_; ; i � � �':I � {� �,�1 � 11�; ;�..( :E ;i � :I� i � t� .. f .��.i.� a :� Yearly Peaks for Developed W/Pond BMP C241: Temporary Sediment Pond PurPose Sediment ponds remove sediment from runoff originating from disturbed areas of the site. Sediment ponds are typically designed to remove sediment no smaller than medium silt (0.02 mm). Consequently, they usually reduce turbidity only slightly. Canditions of Use Prior to leaving a construction site, storm«�ater runoff must pass throu�h a sediment pond or other appropriate sediment removal best management � practice. A sediment pond shall be used where the contributing drainage area is 3 acres or more. Ponds must be used in conjunction with erosion control practices to reduce the amount of sediment flo�ving into the basin. Design and • Sediment basins must be installed only on sites �vhere failure of the Installation structure would not result in loss of life, damage to homes or Specifications buildings, or interruption of use or service of public roads or utilities. Also, sediment traps and ponds are attractive to children and can be very dangerous. Compliance with local ordinances regarding health and safety must be addressed. If fencing of the pond is required, the type of fence and its location shall be shown on the ESC plan. • Structures having a maxiinum storage capacity at the top of the dam of 10 acre-ft (435,600 ft3) or more are subject to the �TJashinaton Dam Safety Regulations (Chapter 173-175 WAC). • See Figure 4.25, Figure 4.26, and Figure 4.27 for details. • If permanent runoff control facilities are part of the project, they should be used for sediment retention. The surface area requirements of the sediment basin must be met. This may require enlarging the permanent basin to comply with the surface area requirements. If a permanent control structure is used, it may be advisable to partially restrict the lower orifice w•ith gravel to inerease residence time while still allowing de«�atering of the basin. • Use of infiltration facilities for sedimentation basins durinQ construction tends to clog the soils and reduce their capacity to infiltrate. If infiltration facilities are to be used, the sides and bottom of the facility must only be rough excavated to a minirnum of 2 feet above final grade. Final grading of the infiltration facility shall occur only when all contributing drainage areas are fully stabilized. The infiltration pretreatment facility should be fully constructed and used with the sedimentation basin to help prevent clogging. • Determining Pond Geometry Obtain the discharge from the hydroloyic calculations of the peak flow for the 2-year runoff event (QZ). The 10-year peak flow shall be used if the project size, expected timing and duration of construction, or do�vnstream conditions wanant a higher level of protection. If no hydrologic analysis is required, the Rational Method may be used. 4-100 Volume 11- Constructron Stormwater Pollufion Preventron August 2001 Principal Spillway: Determine the required diameter for the principal spillway (riser pipe). The diameter shall be the minimum necessary to pass the pre-developed 10-year peak flow (Qip). Use Figure 4.28 to determine this diameter (h = 1-foot). ��r'ote: A permanent control structure may be used instead of a temporary riser. Emergency Overflow Spillway: Determine the required size and design of the emergency overflow spillway for the developed 100-year peak flow using the method contained in Volume III. Dewatering Orifice: Determine the size of the dewatering orifice(s) (minimum 1-inch diameter) using a modified version of the discharge �� equation for a vertical orifice and a basic equation for the area of a circular orifice. Determine the required area of the orifice with the following equation: A, �2h)o.s A° O.bx3600Tg°�' where Ao = orifice area (square feet} AS = pond surface area(square feet) h = head of water above orifice (height of riser in feet) T = dewatering time (24 hours) g = acceleration of gravity (32.2 feet/secondz) Convert the required surface area to the required diameter p of the orifice: D=24x A" =13.54x A„ � The vertical, perforated tubing connected to the dewatering orifice must be at least 2 inches larger in diameter than the orifice to improve flow characteristics. The size and number of perforations in the tubing should ', be large enough so that the tubing does not restrict flow. The orifice should control the flow rate. • Additional Design Specifications The pond shall be divided into two roughly equal volume cells by a I, permeable divider that will reduce turbulence while allo��ing movement of water between cells. The divider shall be at least one- half the height of the riser and a minimum of one foot below the top of the riser. Wire-backed, 2-to 3-foot high, extra strength fiiter fabric supported by treated 4"x4"s can be used as a divider. Alternatively, staked straw bales wrapped with filter fabric (geotextile) may be used. If the pond is more than 6 feet deep, a different mechanism must be proposed. A riprap embankment is one acceptable method of separation for deeper ponds. Other designs that satisfy the intent of 4-104 Volume 1!— Construcfion Stormwater Pollution Prevention August 2001 �o o -- 72 54 48 � I 42 ( � � I 36 � � � 33 I � 30 f 27 24 � i � � d , < < i i ' 21 � � � 1 _ ! � � �� is W � � L � m � m �� � � �J W � �.. � I � U i a � � � I 12 � O i � I i � � 1 ya I , i i � ' i � i � , �•a � e� I 3 � l � , j � � � 3' � � ��� � HEAD�IN FEET (measu�red from crest of riser) 10 Qwe�r=9.739 DH3�z �orit�ee=3.782 D zH�n Q in cts, D and H in feet Slope change oecurs at weir-orifice transition Figure 4.28 - Riser Inflow Curves August 2001 Volume ll- Construction Stormwater Pollution Prevention 4-103 lllethods ofAnalysis Detention Volume and Outflow. The volume and outflow design for detention ponds must be in accordance with Minimum Requirements #7 in Volume I and the hydrologic analysis and design methods in Chapter 1 of this Volume. Design guidelines for restrictor orifice structures are given in Section 3.2.4. Note: The design water surface elevation is the highest elevation which occurs in order to meet the required outflow performance for the pond. Detention Ponds in Infiltrative Soils. Detention ponds may occasionally be sited on till soils that are sufficiently permeable for a properly functioning infiltration system (see Section 3.3). These detention ponds have a surface discharge and may also utilize infiltration as a second pond outflow. Detention ponds sized with infiltration as a second outflow must meet all the requirements of Section 3.3 for infiltration ponds, including a soils report, testing, groundwater protection, pre-settling, and construction techniques. Emergency Overflow Spillway Capacity. For impoundments under 10- acre-feet, the emergency overflow spillway weir section must be designed to pass the 100-year runoff event for developed conditions assuming a broad-crested weir. The broad-crested weir equation for the spillv��ay section in Figure 3.13, for example,would be: � ��2 2 � � Q��= C (2g) [3 LH"' + 15 (Tan 6) HS�= ] (equation 1) Where Qioo = peak flow for the 100-year runoff event (cfs) C = discharge coefficient (0.6) g = gravity(32.2 ft/sec') L = length of weir(ft) H = height of water over weir(ft) B = angle of side slopes Assuming C = 0.6 and Tan 9 = 3 (for 3:1 slopes), the equation becomes: Qi�= 3.21[LH3'z+ 2.4 HSn ] (equation 2) To find width L for the weir section, the equation is rearranged to use the , computed Qioo and trial values of H (02 feet minimum): L = [Qioo/(3.21 H311)] -2.4 H or 6 feet minimum (equation 3) ) 3-36 Volume Nl—Hydrologic Analysis and Flow Control BMPs August 2001 J �� Project � BY ��eeT�o. ,/) Location Date � Consulting Engineers � Client ReV1� 'bb No. P��,�,. ,: .�a� 303211 � --- �fe �, �e��1�w1� �a�1�t,1'�C,���u�e-� �e���.�c c�- �g�te.._. '' �1��: �es �1 s . e-�'�'�G�1 (�� 4���e5) . �j t�-4Ect��t��C C�t�D.. �1��'1 �t;ti2 �C�"1���,11��Cr'���1Z� �v0�1�1 O� 1q.1�� cx�c��i� , \. ���� �C�= ��q-�� z,D�,111���'�C �p1�11C . ; , Ct� �IG�p1C�.1�1 =1q.1� , , :- , � Ex= ►q.t3 � � ! u � �c =I�.� �.�E�,l ��"�_�;b\�u11Q__. � � �o��n-t� _ �'� � C��� ���1c�,�c ��� ������������ � 13 .5- 1ti3 � �t1 b. � 4 •1 l�_i� - Ij.� 10S G• 1 « .S ,�?,.� - I`3. � 14°o b � 1 14�� [� /� i 'Gj ('�- �v � 4Jt7 V• ' ��.g � � �� .�1- ( b �J�1 U . � 3s.� i� (; - !� � ��lG C� � � ��•�P ��. i - 1� i?� ct21 b .�°� -�3.4 231p .1 C� . �ot��.�\1C `VzeS:i�tb ��Ov'�,� _ �r�:-S►�-� 3 �t���c�e ��� F\1C� S. ��C � ���-�- ���h6��'� �`� n P���i.-�_ ,Y �..�C'SF� _ ��C��" �1��.'�1- 0.S� ' -� ' 1.u1ua11C= '��,c , I' �0 LFy V"SD / N !�� � I �J // -5.7� � 1. � CB 1 I4 o f'� � RIM=�4.65 rn � '� �� I E=19;33 f �1� 1. �l. l ! ,: f �� s` t 60 LF- "SD o 15 �� � S=3.2� � IM=24.65 0 � � IE=17.10 I o � II � FOR WAL N TO PARK � � ° LANDSCA � 23.95 -- CB 16 , IE=17.68 -.-�-..-� �` 23.75 , � 23.85 •� � -�>e����pe�� � -12' S S= % �'�E� a� � -E- �;�= 2���. � , f / f � ` ,a.s ,f i'� 1 ` ��� FLOW D PERSION CB � t; ���� RIM=18. 8 �� _ -�� . { ���.� IE=16. f � o� � j : � : � .� � �/ � � � f ) � � �� f f �� �! 60 LF- SD �'o � 15 J �- � S-3.2� �r � j r �; N � � IM=24.65 � / � � � IE-17.10 1 � ,l o � � II ' FOR '� TO F � N /' � ; LA N[ ,� � ; t 23.95 ;J CB 16 ! j , ' IE=17.68 �; t �� { � 23.75 ; � _ ; � ; � � t _ 23.85 1 f ,� , � L -12' S sr' 1 j r j /� l � ! f ��, FLOW DI PERSION CB � �'� �`���� + R I M=18.58 a��� ����� IE=16.� �° � _ �o� � � VD�uJ(Yu- C� �-�• � �,�= b .� � � � � � � ,�a�R�P �F � r f� % � Nalini Chandran '�i From: Ronald Straka [Rstraka@ci.renton.wa.us] I�, Sent: Monday, April 11, 2005 9:37 AM '� To: Nalini Chandran I Cc: Allen Quynn; Jennifer Henning; Jan Illian; Kayren Kittrick ' Subject: RE: Compensatory storage for the Federal Reserve Bank I The exca�ation of compensatory storage in the wetland buffer is allowed, �� since compensatory storage has to be connected to the floodplain and the ' wetland is in the floodplain. You will need to be careful to not disturb the wetland however. You will probably want to have the wetland boundary delineated in the area where the work will be performed to insure that no work will occur in the wetland and if possible, minimize � the work in the buffer. In addition, the disturbed buffer area will have to be re-planted to restore the buffer function to the wetland. Again, the proposed work in the buffer will need to shown on the construction plans along with the buffer restoration work. Thanks »> "Nalini Chandran" <Nalini.Chandran@kpff.com> 04/08/2005 1:52:00 PM »> Hi Ron, I have one more quick question. I'm not sure where we are going to do I the compensatory storage yet, and just wanted to find out if it is possible to do it in the wetland buffer or will this open up a whole bag of worms for permitting?We are just looking at all the options right now. Thanks Nalini -----Original Message----- From: Ronald Straka [mailto:Rstraka@ci.renton.wa.us] Sent: Friday, April 08, 2005 1:34 PM To: Nalini Chandran Cc: Allen Quynn; Jennifer Henning; Jan Illian; Kayren Kittrick Subject: RE: Compensatory storage for the Federal Reserve Bank The King County Surface Water Design Manual describes the compensatory storage requirement as: "Compensatory storage means new excavated storage volume equivalent to � the flood storage capaciry eliminated by filling or grading within the flood fringe. Equivalent shall mean that the storage removed shall be replaced by equal volume between corresponding one-foot contours intervals that are hydraulically connected to the floodway through � their entire depth." You first have to determine flood storage volume that will be displaced when filling area on the site that is below elevation 19.18 (NAVD 88). This is done by performing a volumetric calculation by determining the depth of flood storage(distance between the existing ground elevation , below elevation 19.18 and the compensatory storage elevation of 19.18) 1 times the area below elevation 19.18. The flood storage volume that would be displaced due to the filling would then have to be replaced by excavating an equivalent volume at another location on the site that is connected to the floodway. If you are filling areas that have an existing ground elevation of say elevation 17 (NAVD 88), then the compensatory storage volume should be replaced between elevations 17 and 19.18 (NAVD 88). The idea is to keep the same flood storage volume on the site that existed prior to the project after the project and not displace floodwater onto downstream properties. This calculation will need to be included in the drainage report and the location where the filling will occur that requires compensatory storage and the location where compensatory storage will be provided shown on the construction plans. The plans should show the existing topography and the finished grade contours to show areas of filling and areas of excavation for the equivalent compensatory storage volume. Does the revised topography result in the building footprint being within the FEMA 100-year floodplain (elevation 20.58 NAVD 88). If it does then we will need a elevation certificate for the building prior to occupancy. On the new existing condition site topography map you should delineate where the FEMA 100-year floodplain is located on the parcel and show the portion of the site that lies within the FEMA 100-year floodplain on the site development drainage plan. Please contact me if you have any questions. Thanks Ronald J. Straka, P.E. City of Renton Surface Water Utility Engineering Supervisor 1055 S. Grady Way - 5th Floor Renton WA 98055 Phone: 425-430-7248 Fax: 425-430-7241 Email: rstraka@ci.renton.wa.us »>"Nalini Chandran" <Nalini.Chandran@kpff.com>04/08/2005 8:55:53 AM »> Sorry, I realized after I sent the mail that I had said the NE corner of the FRB site needed compensatory storage but it is actually the SE corner that falls into the compensatory storage area (sorry...it must be a Friday). � Thanks, Nalini > -----Original Message---- > From:Nalini Chandran > Sent: Friday, April 08, 2005 8:47 AM , > To: 'rstraka@ci.renton.wa.us' , > Cc: 'aquynn@ci.renton.wa.us'; Matt Dolan > Subject: Compensatory storage for the Federal Reserve Bank I > ', 2 �I _ 1 > Hi Ron, > > For the Federal Reserve bank project, I had a question regarding compensatory storage requirements. When we did the original drainage report(dated 11/8/04)we were using the Bceing binding site plan information that was on the NGVD 29 datum. With that plan, the FRB site was outside the �ity of Renton compensatory storage elevation of 15.6 (NGVD 29� and we didn't have to address this issue. We now have an updated survey that is in the City of Renton datum (NAVD 88), and when this transitior was completed, there is now about 675 sf of the FRB site in the NE corner that falls within the compensatory storage elevation of 19.18 (NAVD 88). This area is the NE corner of the parking lot and we will be filling it to approximately elevation 23.9. Since we didn't have to worry about compensatory storage before we didn't discuss what this meant. Do you have a document or something that tells me what I have to do for compensatory storage?Our finished floor is still 1' above the 100-year floodplain so we are still okay on that. I > > I'll be sending over a copy of our updated drainage report for Tract D as part of the SW 27th Street submittal coming up next week with Perteet, so that will give your our updated information. > > Thanks > Nalini > 3 _ Nalini Chandran From: Ronald Straka [Rstraka@ci.renton.wa.us] Sent: Friday, April 08, 2005 1:34 PM To: Nalini Chandran Cc: Allen Quynn; Jennifer Henning; Jan Illian; Kayren Kittrick Subject: RE: Compensatory storage for the Federal Reserve Bank The King County Surface Water Design Manual describes the compensatory storage requirement as: "Compensatory storage means new excavated storage volume equivalent to the flood storage capacity eliminated by filling or grading within the flood fringe. Equivalent shall mean that the storage removed shall be replaced by equal volume between corresponding one-foot contours intervals that are hydraulically connected to the floodway through their entire depth." You first have to determine flood storage volume that will be displaced when filling area on the site that is below elevation 19.18 (NAVD 88). This is done by performing a volumetric calculation by determining the depth of flood storage (distance between the existing ground elevation below elevation 19.18 and the compensatory storage elevation of 19.18} times the area below elevation 19.18. The flood storage volume that would be displaced due to the filling would then have to be replaced by excavating an equivalent volume at another location on the site that is connected to the floodway. If you are filling areas that have an existing ground elevation of say elevation 17 (NAVD 88}, then the compensatory storage volume should be replaced between elevations 17 and 19.18 (NAVD 88). The idea is to keep the same flood storage volume on the site that existed prior to the project after the project and not displace floodwater onto downstream properties. This calculation will need to be included in the drainage report and the location where the filling will occur that requires compensatory storage and the location where compensatory storage will be provided shown on the construction plans. The plans should show the existing topography and the finished grade contours to show areas of filling and areas of excavation for the equivalent compensatory storage volume. Does the revised topography result in the building footprint being within the FEMA 100-year floodplain (elevation 20.58 NAVD 88). If it does then we will need a elevation certificate for the building prior to occupancy. On the new existing condition site topography map you should delineate where the FEMA 100-year floodplain is located on the parcel and show the portion of the site that lies within the FEMA 100-year floodplain on the site development drainage plan. Please contact me if you have any questions. Thanks Ronald J. Straka, P.E. City of Renton Surface Water Utility Engineering Supervisor 1055 S. Grady Way- 5th Floor Renton WA 98055 Phone: 425-430-7248 Fax: 425-430-7241 Email: rstraka@ci.renton.wa.us 1 »> "Nalini Chandran" <Nalini.Chandran@kpff.com> 04/08/2005 8:55:53 AM »> Sorry, I realized after I sent the mail that I had said the NE corner of the FRB site needed compensatory storage but it is actually the SE corner that falls into the compensatory storage area (sorry...it must be a Friday). Thanks, Nalini > ----Original Message---- > From:Nalini Chandran > Sent: Friday, April 08, 2005 8:47 AM > To: 'rstraka@ci.renton.wa.us' > Cc: 'aquynn@ci.renton.wa.us; Matt Dolan > Subject: Compensatory storage for the Federal Reserve Bank > > Hi Ron, > > For the Federal Reserve bank project, I had a question regarding compensatory storage requirements. When we did the original drainage report(dated 11/8/04)we were using the Boeing binding site plan information that was on the NGVD 29 datum. With that plan, the FRB site was outside the City of Renton compensatory storage elevation of 15.6 (NGVD 29) and we didn't have to address this issue. We now have an updated survey that is in the City of Renton datum (NAVD 88), and when this transition was completed, there is now about 675 sf of the FRB site in the NE corner that falls within the compensatory storage elevation of 19.18 (NAVD 88). This area is the NE comer of the parking lot and we will be filling it to approximately elevation 23.9. Since we didn't have to worry about compensatory storage before we didn't discuss what this meant. Do you have a document or something that tells me what I have to do for compensatory storage? Our finished floor is still 1' above the 100-year floodplain so we are still okay on that. > > I'll be sending over a copy of our updated drainage report for Tract D as part of the SW 27th Street submittal coming up next week with Perteet, so that will give your our updated information. > > Thanks > Nalini > � 2