Loading...
HomeMy WebLinkAbout03262 - Technical Information Report - Geotechnical , t . � � `� LEVEL 2 ANALYSIS �� FOR m CRISTELLE RIDGE PLAT SE 95�PLACE RENTON, WASHINGTON f�ILE NO. 7 I 9-016-(>; ' PREPARED BY TOUMA ENGINEERS 6632 SOUTH 191 ST PLACE, SUITE E-102 KENT, WA. 98032 (425) 251-0665 �.�a�. � April 19, 2005 �,��s,...--�� �, , . ' ��► "�¢�,� .x.�-��;� � ��-��� �, - ���'��"` �, n:: ,a a � �=:�; 'r��' � 4 f ra�... (,. i �'��(? /��• . t� t �t r, f.t4-e:Lc `fi-,f�/':. ,�,. �" i-:' :._._- __oS._ � _. .__ J SD-REPORT.dce ��>� �, 32�� . . :�;�: TABLE OF CONTENTS TABLE OF CONTENTS Pages I. PROJECT OVERVIEW 1-3 II. CONDITIONS & REQUIREMENTS SUNIMARY 4-5 1[1. OFF-SITE ANALYSIS 6-15 '`�` IV. FLOW CONTROL & WATER QUALITY 16-24 V. CONVEYANCE SYSTEM ANALYSIS AND DESIGN 25-30 V1. SPECIAL REPORTS AND STUDIES 31 VIL BASIN AIVD OTHER COMMUNITY AREAS N/A 31 V111 OTE�ER PERNI[TS 31 IX. EROSION/SEDIMENTATION CONTROL DESIGN 32-33 X. BOND QUANTITIES WORKSHEET h'/A GEOTECHNICAL ENGINEERING STUDY PREPARED BY: GEO GROUP NORTHWEST I sn-arPORT.��: F , ` . ;� �� �rt. f�. PROJECT OVERVIEW The subject property involved in this plat covers an area of approximately 3.54 acres. The property is situated in the north end of the City, and bounded on the north by SE 95th Place Access to the property will be from SE 95`� Place with a cul de sac about 390 feet long. We will design a detention/wetvault facility situated in the northwest corner of the site for flow control and water c�uality measures. Undeveloped property lies to the west and southwest. The Enright short plat and Ridgeview Estates is on the south and southeast. A single residence is situated to the east on a large lot number 26. The project area is hilly and slopes down to the north with average slopes of 20%. There �i� small areas of the property where slopes ranges from 30-45% especially along the northeri� portion of the site adjacent to SE 95�'Place. : The development falls within one basin. The existing surface water flows to the north nortli+.�Yest toward the roadside swale along the south margin of SE 95'�'Place. The surface runoff on tlle site will be directed through smooth lined LCPE pipes to an under-ground system for water quality treatment and peak flow control. The system outflow will be controlled and released to follow the existing roadside swale along SE 95`�' Pl. Detention and water quality systems will be designed using the 1998 King County Surface Water Design Manual to meet the Level 2 flow control release requirements. The runoffwill be tributary to May Creek. See the downstream description later in this report. "�'he soil type of the site is Alderwood AgD, glacial till. Existing groundcover consists mainly of I Alder and Fir forest, with ground cover shrubs. The proposed plat will have 20 (ots with lot ranging in size from 4580 square feet to 8948 s��tiare ��, feet. The plat improvements will be designed to City of Renton Standards and requirements i��r � streets, storm, sewer, water and streetlights. !, See the figures on following pages: Vicinity Map ' � Soils Survey Map � ' ��'• �; 1 Pg. - 1 } � , w - �'. SD-IZL:POR7'.doc �.�z'�� •�. _ ,� ;� , n � u`t.r.�" _$/. .JNS�-�,I4r .°C',arM'" E HS�: � �� ' �� � _����_ _ ST �16��������� '���� � s;��r��' � —�� ,JF 4��sc, � NfWCASTIE �I � ��� . . _ \ _ _ --- - - „ � ,� �' _ _ � ^ ` S[ i�76 _SE ,ISTN P'_ cv s� 1• II � ` ° SE v: �O� � i ,�sE' NE t. _ _ ��ern ^ h -�TH v� � E^ a,. `� r �.� ��� " 44? _ � , ` d' � S� _ - 42f „ E�� � '�� S�.g _ _ - _< ` 5 Y ..,Ir � _ . =.c B�T ^ rr�;ic ,7y.ti V SC�'SF �':�`�'S.���tH P� �' � _ -� � `=' 'S',^..._. _p- �1, gLS, .. ' NE 43RD SE- 9CTH '" ST _� � '^ �, '� ; r - ---- 4:1600� �f��s' s�`�� _W� , , � 139T�V`?`"- I�s�;: S�H_�ar ,�, I ,' � ^ � PL� _ ' � se 74TN - . � `� ;'� � . x � � ... E � ,,,� � --�_144T el P 'i'i`.` .:oc y� ,+��" .l ?/ -� .H a. .":ii, ya = Bp I _ �, 6p i' . � as.aea^ , v: J Q ' , .. - � � Fc PAR ,.�J;, G� ?SF +'9yl °a.► �.y y�'��aE�'fi�ii�.�s ' , : 1 � �� c , e' G � > �µ _"� f,,�.P �i�,� y � I ., 'N � ;�,w '?�: � ' � �T 9G ��^ I J d4rN ,i m � x c�, w�' �' A �..v. I/ N 40TH ST } a0ir !O � �- S- 0 .r `^ " ^ r ' , _ _ ; 1300 �' S � � �u� f ` W _.; � � �.�i �atr -" � z� j eincl , �'j, ,� C �` 'a SE 95iN v' _ K `� �i 1 rw�v� a i o p,�� E _ P: .,�,. "� ��` �`„E„ I 8 ���851� . � � {! /N 3BTH ' STi N i v�ar `N � fo f^4' _ `�.,�'T o � � S 'la,�� G I � SF.'` c II I g ,� o �7� r H�:�o � �. �\�'"��� J� �__ - _ --i � `��.9.rTM,� �n �`rc� _ _p-.c;_�i ,, � �� N g � �.I N�,.� •^ ST a' � v� o � 9-�, s -, .: L ��� i i�` -, m �4 �i i , ti a: N ��36TH 3� NE 36TH _ ` �: 88TH"" y =ST r�.5,�._r o� - y ' 'I � : . ,c,, -a� ;� ST ,✓ _ i160U jsf 39r vt_ �, B9Ty a �' � � N 3 5 T H S 7 ` �o s � v i c- �c�9'S E 8 9 TH S T �9� „ !`'� F o S� � - ";Pp � x I,- , N 34TH 'a 5T ' `�' � ,_ _ S ` r- � � >i `��� '�� P L_. -S� 90TH ST :, ��~ = ����?c � W �: 33RD PL � t �� � �I SE 91ST� ST� �� � � � � I � � _� iE 9157 ST MAY �. 9i5r� � ; 'o �! � � ; 12200� - SE _ N I 33RD STi� � i � 11000 92N0 ST '4,_ �a� � CREfK ^'� T II :5 - � " ' ' �� � �, �" �- � i ', , , w �_ � I 4 ; i t 700 i N 315T $T � �`O �� NE 3157 � :<%��_ o;� �` �REEK �, �� ' � � � � �� �� � N ? 3mTH a' ST �ti �tar � sE�3��f � wv�� SE r � � � d � CREEX PARK __ _., l` '� � 1300 ✓` oSTH �, � i � 700 7H 5 � `° MAY _ - o y` N 29 0 . ... _ _ - - - - - - - � , � T: o,� � . .,... ... � 4N �,��� . ,._ �� ' ^�� � � � f d y � .... .. ' _-i-L--'-�' 7* . _ _ ' � �.. ` G� �� N 28TH PL:� xror _r ��, NE rc zerw�e'28TH _ ST _ ��l _r _ SEr �-t���-C ' _� \ 'fvy 1'��N �V � ' _I �. ? r�,` m F---�-----, _ _�_- - v M� % �H.;_2BTki.� - -Sf — nE �- - '�- S '� T. �a`"y _ �i (� � / . �� �: z�rH �� _ _ z7r ��� ` s•�4RA = _,� _�= J �� � �_ `y <' CT 2 � �� -- y °y � _'91n HE:u'nT� _ � 4E�25TH{ PL "'_'6T" ' ^ I� '- � ,,� c• i t /I q� ; 26n� :xc�, ` z ;' ,�n �� ��SE :COTN ---'-j �4RK o �; �� NE_�25TN CT tcorr: '� <'"SE 1 'T,, ,i f`s� �:- KEN � `sn+ 5r �r� roFzs� n"�'i._. ,,N - � � �` SE a iooTH aL ST '.�� �i �; i� �� � - L 5 Si ?4 - a <� _ SE 100TH ��- - - � ' V , r v �.n � �u i btum r.ua PL N�. � s� � i -_. : k q _24TH :ST¢i �__;._-. �, ss g�¢�. NE PL � I� z a �t -��OZNL� � ST:"x`� �,,NE23 NE ZSRD ST - N `23R �� �{SE 0^ND SN i 1700�1 �..i �� 3 23R0 ',' �t j ` _ y _ �<'1 �\ tt� NE I � � �l � � ..� Z�NE �v�, NE N R S7 b �` '�, � �� SE 103RD ST = 4L c.yW��N�PL Q �Y � Rs.� ' �. _I :.. 1 -�-- �� 23PD S`� 22ND 2500 �g� <' ' � •,� � � � � '� 2 3 - y i M T � :;; sE ioanr or���I�t :,5, �� ��� � '� y � �a� 5 NE 215T �'$T oE ZZN�ST '�' � 4� 1--�--�--T :12900 ST y,rc m�ii� <��7t� s.rj �� �=NC 'a �, � Si z <'; o > J�i 400 t 3 [ T C � �o ', �g�a �>� ¢ $'� • x[2157� _ � SF�105!H � �� 4E � R �� �. 20TH SY , ' � J \ �1 O � � Q: N � ��.. N :2OTH: ST� i NE � .R< 57�� �, b` �./' I m ...�_y¢ � �t o� �E lOaTH ST I O _ NE 20TH /`F�. ��/+`' ; HON CREfK� �> `� i �y� i9Tn cp I �y��9 � ' I ` ����U�� 1700 � . � : z,z� NE 20iH SS St'�.�.y' �4\' 1 . �< = . q l 9 TM_�� . zt y E 1 9 T+ S r �•.� J`�w� 5 O P E�S P A C F L _ 1�N E <."i 9��mlLL�`'ok � �� "�.n���� SE lOSTH PL i . � ,` �. ; � _���,`i i SE �106TN ST . �,��.�,; �y� 5T NE ien� '� zl ��,.: � . � a ' <' aE �NORiH= ��0 13000 ��3800 y,,� � P~� � - - Si nE I �'O`�p i�� i _ . _' i::i � .c:Srr iBtM Si : � HIGHLANDS '�� ,� �.�E_,J� ��� +'��P�/C"'�� �t c�*. 1 <! Z � �� ' �n �PARK1 <' S . t �i= , ;. r[ien�vi c^ \/+ � >.�. F.��Hr ¢ �. V1� '<. PAIKI y1 �F\ t ��'I Y[ ��P� �� cF' I �I �fI �07TH PL, � �.: �' W ¢; ri� � ,'��6n1 `�l..Lrn�sr , NE ;7TN ST � t t SE Ti L o u, o� �;u �; y �T afn[i NE� p01wc�� 4 3i� �� ~ - ` . .-- --- �"--- \ a�wa: �� ,an,�;� O a I �' '�. � � :a.e� ROni- .tiUN(.!! �� � , �400i: ��PLriD � . =4in[ia` � , > ;'�� �',1 _ i W z >, Y,-3, 38OU �,� 2��I - � Z�'��i z.$ ; 2. �. vl . � <�. zc ce: :aTH .. �:c+t o�� V �, � �+ �., s v, . . y±�< �1< _' ��,s Q: � , �1 xty+� r E �� .xa.un�'•� Q I . CC� .v'^ � ' . •.. `p' NE w. a � z�^1 Y �T �� NE taTH `7 _ � 1 - : t z �--_-c�� W NE :3r+ P� i �� i W �, ��+�:»: � _ , <' _ !atH; _ sr^ �; �_— �MID , = nE i�rH s* �� �: `"i i i '�F OJP�� ENE COULaN ��= m; = w ► �nE '.3rH �CIB �' �� cP � �' _• o' ''� �' l , `n' 'l'TON 15Sp'�p:i G MEMl7RlAl ' � � �" NE ¢�S 12TH �;ST i NE ' � �� � ">�' g 1 2 T H J'��; ST �;a �� S E I 112T ST ,� :;Zn� _-• i V EACH PARK � AIJ� , 2500 = .F� + Pu 3400 W; _ ��3700 r --� I _ 2100 wrer M1�, I z, `^ I I 14300 il � [� �j= �� g vo� ra�-* NE 1trN� �. �r- ..'• Ol1VBR M � sc ::zr„ �� y _ A-+-„ `Oukl Ja.. � �/ i il �U I Z• . E L � l N ITH ; �Q,, i!'< ; pU <p� � zi "i�;�'� r`�! wi ; �. i 1H � c1 i � �:Tr+ s1 HAzsN� � �3;,. � p A�.�� � � o-�" � W =� ^� ITM Si..�1� S�'�XE 11T j : ����� � i` .::.� ���1 AQ '�R =. I N IOTH ~VL o �� + S >� N'SI�iHi I <� cxp rrp j ...i' 3 ��G <; ¢ <• - ci i ` ,f ♦ ��� � � , �� ��.x' NrcAu�n { � '�+, 3300 �NE - �tor C'�� 81� i aE lOTH PL _i' > � - j % v.a�;. Q"� ;�� � � NE lOTH ��'�.~�° F� Q� <i I I�f f •�,�rH °C Ci =1 ��< -��` Q � AL'NCH ' , � . - . � F.V`� $ � �Y �� IOTH lN 1 `� � ,� ..e J � � � . � �l � ,' ! T �E ln�� i vi o� �. . 14100 � SE :16TH S' � ��+r�-�' i m NE :OTH ST eE � `bA7 ' � i I�- NEL 1 TH ST „� � �l' �; � i I � eTM ai \ 1 f 4 I asoo �i „ Ne \ �; � NTD. ��� �o r•t\� I + N E 9TH PL S 2 5 1���..`�' 1 .,� ! X� I NG ..I QTH $T � y TH Pl cr i�ur, � 1 i ! � `I l ' ,� t�r�. I h �1 (� ��=�� �� � AkF Ag� � � AgC � �� BMp B �>> �{ _Iil�� e _ � __ _ __ 85 ` ;; i42Q� �= ��r �� ( BeC - -- ----- - - --- I -, --� - - - -- i agC f� - ' y�� j BeC � j �I ,� — 1V 8Wp0 1 ��� — _/'Ur . � i t , ��_ _� � /� � H11�S �� BeC � � � � �l' AgC ---- --.__ - - - -^ �#��;�I'r ; , � ` �� q �� Ag�, - � � �r-c==t BeD i kF ( �� 6eC Ur � � _ - � � gk ' BM BeC � � � Q NCWC1 _.1693 • DeD —� J • •' � _ •'�• 999• •• ir�� • �� 11\ I EvC BeD ••eC I '- .. AmC t I Bh '� i �• �f �' i _�! '� agC - -- •• � � ♦� �--�� _1� .t'���. ,,__1 9 ABC - �P ��� \ � agB � _— •r �� � � �. OvD ��Q � N � BM ---- � -��------ ; � � - ---BM�OgM - ------- -i---- -- g BeC � y ' �:; � 690 692 I in I '�AgC N� � .� c - — '� � AK(. .�� �� ��l � BM ` 1� � • � � o�� � . l 605 � � I I �` : � . � S m ' � �p� '° • � �� , •� n � BeC � • 1 •� 'AgC r I �' .�� � 1 BeD � •X� �� A�D � �� \A D � 34 � 13 /1qC . �c. � g ii I ••, n� ' L� I� �•'�,'\ i�` n • I A \ �� ___ � n � �' . •�,• � �1� I . � • /n• � AkF I OvD \ � AgC Evf3 � � 8eG � EvC � � AgC � (�NA VEL I f'1 I -- I ' • � • � - ' ' •�M ' T. 24 N. � 1 31e� ��a �---- -- — — — �`� , �t=— N=' — ---- ------- BM�11 � - � -- � ovC T 23 N. 1a q _ r �' 811• y � �� �� E�O I . _ qgp J �/,. � � , : •' n r � A C �M� �. Ir_- ` ��� I • • �� ' g II R<tc . � --= 1�� � �� 4S? I - _ . AkF I _ q@> � �. --�--=f�_ •. - . \. O .�kieD [ AniC Z � `; J�, AgC .�, �. r '�,�,' "��i -�� . �-3J .��. •p,. yG,� 1��y �� i � •li�,,�, - -� '' �= . �1�' • J ��{� ~� �I ' -= Ag�'� • . .ti ��EvC' t . .111•.. . Evli. ������� � i � ��C •i% _,% __ � t � i... \ 1 •'� • t: Bh \ . �� ,�� �F ...• .�• . ;:� _ �' ��fr� H, �Sm \\� Tu'. ! �� `! I AmC. � � RdG. ,� ' F1L Y � .Trailer• ark ,'� .. �i,= '� '�; I,• R s rv ir. • � ��-••----•--- --- l - --� J --- • • "_- -- - - � - - 12dC � ��_:.'1 � ��I _ • gM � BM � �� g�vt �'r� ,xt - • • `Ev� '�r�. .. -:�_ '����� • ;ll �' -- " ` � _ • ,� . -- - .. e ° RE �� '� —i ' • I:"�(� _= AR�, I �� = a, i J� -� _ - II _ AgC '� .,ii :' . . I-1 Y Ap('�- . �! g� l� '� � 1_ �4 �- �" ' � ,�o ���� j � i (� �._�� ' � - -� iu' �rz�ic 10' , , N , , , ,' I•lil��� �1r�L"ai� r�l��ain�,:l Ircii�i �,., , . . ; in�ii,i��- .� ii� . .i . _ ._.-- � -- �---� ---.-� . .� - --- - �iii,r�i� i�•.� Polyconic projection. 1`l:'/ Nc�rlh Arn�•rir,in cl,ilu;• 10.000(ooi grid based on Wa�;hington cc�oi�linaaf north zone. '� i ..t -, � i; I-rv: :: � r tii I I?I�'��� � 4�; � I1. PRELIMINARY CONDITIONS SUMMARY �� �!. <:#�: CORE REQUIREMENT #l: DISCHARGE AT NATURAL LOCATION The allowab(e outflow from the site will be discharged to its natural location. The Level 2 11u�� control is calculated to match the developed peak discharge rates to the existing site conditi<►�� peak discharge rates for '/z the 2-year through the 50-year return periods. CORE REQUIREMENTS #2: OFF-SITE ANALYSIS ,}. •;;. ,�;. Kefer to of�site analysis on subsequent pages. � ;-�� rti CORE REQUIREMENT5 #3: FLOW CONTROL ''�� E-.: �*�= Preliminary calculations are provided on subsequent pages addressing runoffrate. The sizit�� �`��� detention and runoffcontrol facility and its routing calculations are included in this report. CORE REQUIREMENTS#4: CONVEYANCE SYSTEM The conveyance system will be designed using the rational method as presented in the Kinc>, County 1998 SWM Manual. Refer to the"Analysis of Conveyance Pipes" calculation provided u►ider this item. E3ased c��� :he topography of the site we anticipate pipe slopes to be equal or�reater than 1.0 %. The 100•.r���ar developed peak flow for the site was calculated at 1.40cfs. The capacity of a l2-inch pipe �v�t.i� l.0% slope is able to handle 3.87 cfs. King County Surface Water Design Manual 1998 rec�t�€s� s to the conveyance pipes to be designed based on 25-year storm. CORE REQUIREMENTS #5: EROSION/SEDIMENTATION CONTROL PLAN The Erosion/Sedimentation control facilities will consist of filter fabric fences to be placed along the north, northeast and northwest boundaries of the site. Temporary Erosion and Sedimentatic�n ponds and ground cover measures will be considered for water quality control during construction of plat improvements. CORE REQUIREMENTS #6: MAINTENANCE ANU OPERATION N/A CORE REQUIREMENTS #7: FINANCIAL GUARANTEES AND LIABILITY N/A ;;. CORE REQUIREMENTS #8 WATER QUALITY The water quality facility proposed for this project consists of a wet-vault. Pg. - 4 SI)-RI�.PORT.doc ,;� ' `F�,' iA.: .cs�. , `ai . � ��1; .�� �,:. SWM SPECIAL REQUIREMENTS ��' ��� ,�, ,N Special Reyuirements#1: Adopted Area Specific Requirements. The site falls within the Honey Creek Drainage Basin. Special Requirements#2: Delineation of the 100-yr Flood Plain. NA Special Requirements #3: Flood Protection Facilities. NA Special Requirements#4: Source Control. NA Special Reyuirements#5: Oil Control NA I t�. ' � �} Pg. - 5 .sF �.�y �.Y#� �i`;� ,°',u. �� SI)-RI:POk7'.dOC �, `�;, ;2;*�'�'::. :z..: ..�. - 1,.:�:. . a4`4 ` f a,,t+ +;_ £'...: ;:z:.. .'y:- lll OFF-SITE ANALYSIS ,.� 1. UPSTREAM The site is the situated south of SE 95th Way�ust west of Coal Creek Parkway and drains generally to the north and west toward SE 95` Way. The basin area upstream of the site cor�sists of short plat which drains to existing 12" pipe on the east boundary of this plat and flows �wrth to Duvall. There were no visible surface swales entering our site from the south. These parcels drain to the northeast and would generate insignificant surface runof�'to our proposed site !'I�e wall drain installed along the south tier of lots will intercept subsurface flows from tax lots 18�, and 43, and direct them through our conveyance system. ;:n; 2. DOWNSTREAM `j`!�' Surf'ace runoff from the proposed plat sheet flows northerly to the top of a slope down to t,i�.: south margin of SE 95�' Way. The runoffthen flows northwesterly along the south roadsiclt� c�itch in the roadside swale and driveway culverts about 700 feet. Then it exits the right of way, southwesterly, at tax lot 0323059095, 13241 SE 95`h Way, and flows westerly in a heavily vegetated brushy ditch, see picture#4, 3' wide and up to about 1' deep about l90'. The drainage is picked up in a catch basin in a low area and continues west about 240' in I S" CMP pipe to a catch basin about 30' east of Union Ave. NE. Then 25' of 15" CMP directs flows to the north to a 125' long ditch. A 10' long 15" CMP stub flows north to a type 1 catch basin at the southcast quadrant of Union Ave NE and SE 95`h Way at the corner of the property. See picture P6. "I�lien 80' of 15" CMP flows east to a type 2 catch basin with an 18" CMP going to the north und�#i SE 95`h Way. There is about 65' of 18" corrugated metal pipe flowing north at about 1.5%to �: riprap outfall on the north side of the road. See picture#8 & #9 , From this point the drainage flows north down the heavily ripraped slopes to the toe and it�i�� May Creek. May Creek is an inventoried salmonid llabitat for Chinook, Coho, and Sockeye salmon. The City of Renton inventoried May Creek as a portion of their"Critical Areas Inventory, City of Renton Wetlands and Stream Corridors" study in June of 1991. It appears that a recent 18" LCPE pipe drainage system was installed to drain the west side of Union Ave NE, the horse pasture, and upland areas from the west side of Union Ave NE. From picture 5 the installation roadway patch is shown. This system ties into and drains to the original 18" CMP outfall with a new 48" catch basin that directs flows north under SE 95`h Way. See '' picture#7. ; . .� � � �� �. :s ' There were no eroding or unstable side slopes for the ditches noted during this analysis in �} � October of 2005. Pg. - 6 �Y � '�'i SD-RIiPOR"I'.da; } `�<;-_ Y _��- � � E � K P � R It a� I � \�,\� . �� �- �� `, � � �,; ' ��;��� � �COUNT PAR'K� �� , �, � � z,. \a /jE�C R E!1 t I 0 N 0 E P T. Y�� ---- -� �� ,,� ��, \ � a-�-so— ---�_ �:, � �_ � ) ti„ - � � - �<< - �- poc_`--1.�_�. � � ' - e '� t` �40 ' ` ,,a �� M Y� - i—_- ---_ a ''� - � ,,(� - �n � � -' �s' � NAY� � _ __- _ -- m o __ � - � , �` ot9.r9 ��- ----- -...�-� 1 [_ _ . ���_•' �` - _._ � . � � iS r', �,. � SCC M4 I � 7� V � ri ' . . " �\ � � � �� �� � e'6 �� � , fn� 1'� (.:�, _ __ - - ��� \ m `I'�n 1 � � C5)� /�.,1- O� �_� , �, � �LJ r �`'-�nc � �", � � ��- ``.'` (i�n� - (i��4� � I � -�/ �J' <. ��`,������� �r�� ,_� j � �•' � �[ p��Ac (nn) �'i V l71 W � fl�,nr.� �"'� (i� �� - (il ��s�n� �� p52nc r,�s� � �s b+l N P�larshail, .Ir V �QDI �� uf,?n� . I JD ryj� � � •' � . /�V �/ t ~-� �t �7 �����!"� \ d i n��.�,,nk � ��' � �. �.9 � (�'j �°e Piqn�lard �� �� 1384 nc � � �'� � �, Q James W ������;��.y � \ iF O I I I(enneth A1ar;���ll � (.� 6� I I ai°o. � I i��=zno' I �,j) ��/�� (�S� / �\ .�`��)nC � �� (�(»� , —� •---1_. r' ��l:f, � � \.: • • —, .�—- ;Y� � r,�� :.� (Rr,l � \ � — bsa,3�— -___ --- �79 r,�: \� � \V � �BOOW� � h� ��\� ';. � '�; 1 � i� ��Gl� ��..,,� � '�. � �i. '.�, . � 1�I�� I ' s , •.�: . . � /G . . I J v�4d y�� � -� ��\ � 11 , . I tl' � � � ' .`4� ��4�.-, .��` ' , c��. sa . ' .. ._._.. � � { P �Ta ���p�__ 3oe '; � � �, _ � � D/ �' 's.�.e �. GL. ,e� � ,� ,7 � "= tD },� ' o>.v�� .\ �= �, � '� -0� �i \ . ,� 7, �A� 7i[�[ �0 6�. � 7�) � � N \r\ ��:N '\ �''' IN SI L-�1 FfC►�n�� `'� �w'.�I ��� =�." ` � , .,.,._., .,,. � - - --- :-�., - --- � � �� � , ,. „ --- � . ,�a s � »i � � . �� ° �•�� �. ��'. �r; �ql � p m 6i� � ;� � � .\ I � �I v" r> >�Ih��I.", �\ . a �/ �o�cnN�,J i°a9 � �`` i�ii5 t�./'t�) �ia�r�ei� � � �� : i o �(��-' F-I G��r c,[- ,�,t<`x;'r �� n .:oF r r I'1 ee .J 1'� •.I �� ^ (�\� „ ipY�+__�_' ._ !3 .oe_ __� �,-Y- �4 F �\1J /� p l �', i t �.��:� ..' /' ��i : ' (IP 't-1 '1 h'_]— {__.. � �Z . 4 ' `� �.t / '. . �.. _... i . ti� �.f� .. .I w ?g� 24s o 77n,. �' yK.. o, v �' �tao ,.,e�i.' roii /o� .���.. . � � q0�5 U .���x��*C .;' I�, � wo '�y�ez cu 9" R � / 27 1�+'�} . � { � Or, .. ; ., , 1 " ���_� 'cF, � e9 /EN o � : � Ze �r� M1 i i ♦g � ������) �.���n�� I �( ..) �1�ry�6� ;'f ;i 5y NE�# �26j11 �-CT 4i,ex ,���. � ... .... ,. I .C. :3_ _. . _�, - _I_ ' _�y�a ° ";��> � � ?I � 1C* o e^t F _ i�n�e {l • ��v I � h� . \'�� ^ I ��� .,... 1� .s i. �y scrr pb �� � ' !1 ' �1 ,31 IO I ln , �fj \ �� �, ,ii j 00; °<C`e^o " �� S ?O .Cn��� ' l��n`b�� i(` f . '/ ;r," h� ^ \ 6 � .. �.PO IN ` /.�4`n._ _"' ',f_��r_ __ � � . f �--.-�.5._ /� I �o,D� � 7l�b—BSn. Qy�� \(��.{�1� `� ..M^... .,i, I !� � ! �1 � ` �„ J ���c r.n��o ^�� ' I ���1 '�' �J`V /!r e ne 5�� ��`� 4A^g Q��� Z 7 Lp n ,Ei�O�� � gnls� P' Di `V � + 'o^ O�� (` . 9 i� ����n � �' ��n. .-,� �L �o�,ti �Io :\.r" � ' ia�� �nn - .l� I -��—_ _. _5_—.��y 1� � 1^ ,+sse : NE y 25TII,wsq,vCT '"'o•^' ' t)�C--- --'— �I^ sac �� _, ' - '; ��' .:t.A�'. _"�c-- so�.� !L n = ' ' � r� ,;1/��'�'� i f i4 � +6 ~ �\ �.S �. 1,1 h/ � u � •f � ','. ,; ���� 3 � 1. q a 10 c � � ��rc / �. �� R � g ^ Z . 0 11 ` �' � � �n �po . Q ,p ° � - �� .. , I�� .. �..�, ' , � . .t ,:. . .. . . , n . ��P . .,t� .�_ f- ��oi d�� , . .�ez- �.�i � �. '"' { J �o m( ' • ' - --- . �. � +� . � . . �9 f J— ..f —i to.se 5�.._. "��� `" ;5 _ ._ '�.M I � II ; �.. 1 ( � ,. .`''I I__..� 'I ��f ,/ ' A.•. �. Y.�/ � ^n• ;.���. r�In/{U� '�I Q J n ��j} ��I�t ,�.r10 � �1"��`� N �S)0 y �y110 +� �61A � � � ♦ � 9 0 1' p v �.i �� �I�q . i ;a � � . 1: . �� 1 f, �/.f p 4��1�� I P J�' ��� � !- ,. �.r. ,�+ s�o � • n.:^ i �er : y .:+'�` .�ie � � ��17• _.. . .a �.., ,^ _._ ���n��p^ ., , �?� •� � ?_7�773 - . . _ _._ ��,,. ,� ,, � � ,.. ; �i44) II Ll p___._ .,_. c___ _.__. _ _ __. _..- � . . � . f._.._t<��. , . C _ Y.�.y . ,.. .. . . � = � i ti ��>' f #f � ~► ; ; �} � � ].r �� ' _ ' `f j y �' ; j � � C.. � 1y �� y ���it� �v Q 4_' �� _l�(.�� 1 � ��i, '`�� � v �\.. r I,� .�:e�{F � f;'� � ' �1 � ` ��`_ j. �.. ' ,� ; � ti"� '�{� i - r..� � ,_-., � (-� 'd C ; �- -J .�•7 . � � ,..,,,�,, ' �.l � ' �:' -�i �. ^L.,,,� �Y "' ' � � �\. { (-j ---- =� ;, ��'�' `' '' «:' i 1c-� I �.I_�,� • "�"-�'_ � '� �:� .� `�N._ 1''� ; � E r , � ? � � �. �=1 't,� 1 ��-�Z =' f � j i �� r,�'"`. �.� , (1'► � ! _' � � i i �-^' ` ! + f � ? ' ; . � ;,,� ,.:-' ' ! J � i l �f�;c�, �o f � , _r � .cj - ; �y ; � i, :r., j' " f �,,.t �.�+ ...^� � �`� �'- � ( i ;�• f � � { �� 1.---,.., 1 ti\ �Y-�'� � . �� � 1✓ i ��.�." �^� � � �i � � ��'� `'.r',� 1 � r'��� � I �,--• ��� � �'►�� ' �,"\''�•-,�1 � ... � �2j � � � "�. � d_ 4 �'--�'` ti'i�-,,i ....,� w ~"� �:.^ '�_'����� ' w--:� ��; � �t�t I ',,�` ,��,,, i �`�" �`'�. '+_�.�"'-� \�`�.�� __-.,. � � ~� � w^ �,�� �� ;,. � I� __.__. _. k� -.._.. . _ ��'�..-y"'�" �`'�.+.^M` ''�. ��..�. - - _.1�j -1-3-... . ~ � � J � �`v�- ! ( 1 �-` . � ��'`L, � h..✓ -•�,,,r,,, ''�.'r �r �1 � �,,�� 0 � � � i �,..±�.-,.. �,,� �`"1� f �'....'..»""-'�^. ,;�`.� .� � � � � � � t�..../�' . ��`'�.�.�"r-�—�'..,.,-�.�.. �1 'r,. � r - � �� z...,.�-�� �� -�, t I-�.l l.L-�C� � ; � 'i c��� �� �.:�,�--�..--�..--_ --,-_ �,,, � � �d ; � � � � � � o.,,,�` w=..�,,, ���.;.� -�,.. , I��y,. a,�,�'.�!�"�`'"+.... '�"'.�j��"-�,.. `'--�.�---,—�'�^.'`^�.�",;- i ( . ,_ ( t�f.,..,i�,.�,,••..��v.,,:.J;'� �:�,.,,� � - ..L. _t: ., - ----- ('� .r—ti� '`yi` 1� ' ��` ►�'� � � '�*•�,,,,,,,,/� � � . : , �� �,...�,�. �j�j� �d� ,.,,* �� f �► t� �... -y'°��'�,.� ` � � �"t �1t �\ � � .I , 1 � i'U/ �,.'�'��� �-�,�—..,��' ,�� � c. _ �. _ �� � � , E . � ��' �� . .._. .'['� �f �,1 �"'"�n+ �� ^� j r ,C •L' •� �.Gr— ��.1� .�` \ _ �,�.,.�,.,. � �� � � �� i �� .� . �� � - �-�--.�.., r� � � , � � I � ��Y , . ..� � - . _-- _ _-_ _ , �`._�_�__. �� � � � { � ��r ���-,,�;, �:� '���' � ..,.,.�,." � C �„�'•� '� .���� `,--.-r-" --�..-M 1..,� . ��u,�� ci -- '���` ��' �� � .�,,f _ � 4'� _ " ._.�.. C��I 1��' _. 1-a�1�, �� t � � . � -�u ....,�- �,� � �. ��„ � „P�+� �� `� _� ��� ���``� , ,�., �.,,,,� j �; ��.._ ��1 r k.ti � �.i .��j� � . _ - ` �Rr � ., �`'�,'•. � ' � , � � � �, �---,�,�, ._ , ��`� s�� � � �- � i _ � � - _ _ �- - _ "� .--=- � f� � ► �^ I � -•�-_���� ' ;,� � . �� � � �..,�--__�� � ,�' � � 1 , � � � `�.� �'' ..�,.,. � , ,_..._-- � _� � ,! . _ � � f��' ,� � ;.�'g � �� I �, •. — �-., � � a:�r • J � � I , ..r , ..,._ '' _.,--� ' 1� / i � 'J)� :'. � '`, ! ,- �.'�� � � ��rrr (r� , : �1 OFF-SITE �V�L1c�SIS DR.alr aGE S��STE�i T.�BLE StiRF.-�CE W.aTER DESIG� :�I.a�L'�L, CORE REQC'IRE�[E\T#2 I Basin: ���r \,�.f�c/.;;���;��: Subbasin Name: /�,a� � ��r-� :� Subbasin �iumber: Symbol Drainage Drainage Slope Distance Existing Potential Observations of field Component Type, Component from site Problems Problems inspector, resource Name, and Size Descri tion dischar e reviewer, or resident see map Type:sheet flow,swale, drainage basin,vegetation, °!o %ml = 1.320 ft. constrictions. under capacity,ponding, tnbutary area,likelihood of problem. stream,channel, pipe, cover,depth,rype of sensitive overtopping, flooding,habitat or organism overflow pathways,potential impacts pond;Si2e:diameter, area,volume destruction,scouring,bank sloughing, surtace area sedimentation,incision,other erosion � SITE �u.-Lrr "0 2u�nSiDr- c ' M7 ., prTCN �E�s��� .=X. G � �5 �����- ��" ��r-_� �,��1 a� r ; .3 /, 7 -g5 ��r- a_� p�r��, F�J�✓ �- ?���°� ��:E Dr,r��-i p ry i o�' CULVF2TS �y�GD-TD GLEA�r gi,E ��cTv�Ftt�gZ �i�c �� C•�r /'( I ' F�: �Z� !'il^r'� �.�N� ?�P� ~j /D b �j '— c" ulSrDim.Er," ���N � SE ��"W1G/ G,QX�sS �r-� _ -� / r �iG� � icT✓�E a �� ^ ' � �'�TC�I ACQD�S 'F � D �. ,�.-� '/G(�, /�i�r�� �CF_ F c... � F c� � � 72� ��� �� :,�-r� , �5' ' ^„ � _-� ' ;=_ ,w �.v';s� '� � �65= ��?S� /'��-,���ss /.��i.�r — f� r� I %-r uN� o�.J l I� P,4ST^2r � � ��j�' !S' �n"Ju -' � � F%L :l-. � F J!�6 , .''.� �1�YG7�..:1 i��L176'i �/y�OM . � I' �.:-' � D — � �i�r ,.� I�� 1`,� '"" � '.�N���1 r7 rPj � �O � �Z�`. "��5 7pS�':•2r- Nb FLVUG�NL� _ C�' �= ="^�' ��.�t�FR_ �s�S--i�2G Vr � i �r 9�''G � ��7r'l� N7 FL��G� ^�_ ' r l /J ���5 ��Z� /�17 /-'QJl3LF�n5 ��`E I'vCT;✓�L'/fS .''..l. !y�' (�' ;i/'? -:� :!�:�E2 =E 4�t"' yY.j 0/ �Z�S� � G� �'"-"'F���- /�IDFt� ,Z;i/L�v T> T'�;,'`on� � - G �-.�- ,q�, "� =(�EE �:��FT� � � ,s !� t 3Z5 �y� F��sr�ti: yF SL�r'� \�, " `' r- �'��r - !'� i ..7 '/t .�-.- r;771� ^ ,, ��Z5� �2f�`, ��6 E P►77 r�(�Npi �l� EB�S �J/`' r�i;�'-E[� _ i_ � I i i I � I I II� .... . ; ' / �„�'�,�t��= � �� _.' ' ; �'_` •r--- --- _ �� _• �► ,f'.-�,•� ' •'"� � : ,� . �--_�_ � ""^ ,. � '� �'� � -�{-•�-__.--i---. • � ti ; �. „",r � -.-, , .f'�r-•��` # � r�� 1 ,/ � i � j �' __. .._ _ ._ -- J� � J � l��� t 'r � ' ♦..a�.1�! Y ', .�e�� �..�.� -L,4d J � T'.����►j ! � j i �i ♦ t,� ` � `J � JV �� � i ♦ �� f Z 1� 1 t '�% v I � � � { � ,.�. �; �� V; � �� ..%i. � t, �,f� ` 1.1, 4 . �� 1 ��� f �/ �L�'i �� r-- -t.- � `( � • t 'i ��� y, , �`, �� ti ..,. „ _. ✓.^!1 .�•ti ..�. � , ` ~1 y� J� . ��� � ' � � \� 1 � � � S { f� � � 3 { ' ;' : '� j • + ;, - �' , ' �•-� •,V ��, � ,i � 1 ` �� , 3� f r� ,� � '�','y t � l�i 1�Si��,r, •/, �,� 5��• ,� - .� ' �` � /1 l 1 t ; � � � ;',f ,{;�t �r �,. ; � � 1 � � � �� � T � � � � � i f � 'i ; .. r � ��y 1 1 ",��111� �� � j � �•/ � �: . ♦ . . . . �r � ~���� �� •���''' '�1,V�� �•�4,� � l� �. 1 �� i� � ,` �lJ���//�t '}��.�• ^ .'"'-�� � r�,f'�'. _. � r` ,,y, 't�t �',+ ?�-�'�`r .�.�.� �� � � � i �` � 1� r ,'; .-�' ', � .. ' � ( ��! ����r iJ� ( � ,�`t ��, � �� �r� �r ` �/�'�� d, ,'1�� �, �,..• +7.,'y — � `�� � �� � �j .� r �' ,� y �,r{r 1� ,' ���,''�� �;'�� '^-- ti � �` f ,r 1 � � � //'� i' r '�Y ,t :r , ,� �/ i t ; I`; �� i ����% (� i � f �; !��, ' � i f � � ;�} `'���r -�Y ,�,y�.---`� � �� t - '- .. �-- 4�'�'� ���f 4�`}..,�t���,-':=� �� . ..-�-_ _ -- � }` �I/-J'}�'� ,� r '" - -� ' ,.._._ ! ` i� I `� + � f���* � ..�.����*. f 't�, � ;�� ' ♦ /,�'y ��f � ��'t� r s�a�'' �1� i 1' �f *,� W 1 j�'� 1 � ' � '� � �,. `� �f�1 � ' . � ���`.�{�•� � �y, � , ti �� S i�,�;,` � � . �, a � ,� .�.., : � S � '� �� j� �/'�� } i I"` � , f t ������ y +.;�f � ���✓�ia � 21 � � +; ; i ' `�.., �+� —�� i�r��4"� f ���� 1 � +)(� Ii'i j �1 � /�' �{ � � ' S� I ,� f � � / s` 1 ►,f' + ~�—'�'+'• r r'�`w � �t���1J��J''�) / � � �1 � t ��� \ (� l; � � � ��) i�i 1.`C , . . ���.. � , �l r� .� �• � L -J � ��\\' t ' � � . +�'�\�'��'�'�E ��'� r'/�•�� ��sS i[ 1��� 3,� � } �. �r � � rj � � ` � �S 31� i 'rtf, r ~ - ' ��`����,y� �-1�t�.'�i� F/� �� � k � � r � ' � �)i i' �i r ��� �' � t "^ ��: � i..,.:- .. , � 1� _�e. ,� .��. .:.� ITr�: �� � , 'Q j 1 i ' s, � � � � :, � � � t _ ' �'+�;�.�,y J�"}..� � � � r. ( .,� , � � i � � , �' `� � ��+ � , , � S �•._ t' ! -,�,�, i. .:,_�w `li ' ,f!�{� i � �"' ,�/` � j �r �/ � f i � i \.' t � ' �,r�.t'w �.'� i f f� r�� r�� j � �i � f`< i� � j , � '1 ��.��. '�w��• ,� 1 O , � ` � 1 � � !?�I I r,�i � •� � i { i � . ' '`. -=;>. - `-..•- . '�.�,�•,,s,' �I �./ ��,�'T�, � t � � }. : � ; � ,f � __f r'��1 f�#t � . . � .. , ''� ,�,, i ) r{yi� � ! �, : te � 3t 1t � i � �.. '•���1��. �� t'`~f�f} �/ �✓���j�il�� �� { t��i 1 � / ;'i'���;J•����t i1 ..��:'1'`� '. ...__. _, /s�` :r��: � : ���� .�' � } t ��'r` 1 i �/ �r! �+ ) ` � �i } � ! 7 Y r��� • ►q.` ��; l ��y:. �r,, �fif� � f_=s'�j���� � .� J' ' i�f� ���."`��`f� �f�� •�.�- '_'t l' • f. s i�'' -�.•'�9' �Y' �f f��' ' � ` �'' � - .��...!`� ,S i �f.+� "� y 1 � , �� ��. , `��.�- �- 1 ��� } _ �;_��_��j�F� '�' ��y � ... — - -----i��� �: �' �t�i� , -�� "''� y ; � _,.r. . . _ ...._ ._.. ._� ,itl • �� Z�i � ���,'`.►� `---r.....r'�r A.: � �i t _ � � t _. _._.. ,. .--- ` y : �' � 3 t . � � �r , t � �,, L ,�,.�����; �� � � }� �� �• � � f � � �� I �'�f f�?:� •ff,J;,�' f_�_.__ �1 - •-, _ _.....__ -- ,..., 4,i�-..-r 'ti�. ; j .... . :'"'�' � � �P�' �'/ �, •f� � : 1/"r'" , - _ }�t�f'�'� + i �T (�� r �" � s;'; r�,.�'' �'�r��_Y �.A_: � � —' -`', � .� �i� t�� �' �� :� �'�� � �� � fi= � .�- '"�. ^- ,- �, --- �r-- � , � �����„ � � � '""� � ' � �� � `,�l _�_ ��..�,,� �, , - � � �` ,� � �� � , --- _ r i .� =,,;. ��' ` � , :� � ``1 � } � !" i � _ _,��.---- `� �l ' � _ , �N` � � , .r � _�.�-� � .._�__ � -*-� �� �� � � ;. l ; �� =s _ :� a: � �:.. ___ . __ _-- ,�-� � ?,� , , � ,� �'� r ,:� ,��•.: - '""`..�"'� ;��-- -�''�j �� � � 't l� � -, _� - -- ..�..��,,_ -:- � j'_3��--:. 1r � -� `, �--- ..._ _�� •�� �.�'"'`,,. '.r_� _,v�,�..rr �� � t t"� � f� � '��ti. ' - `..,,..�r"� .�- i . L��, •. 1 � � r�� � ._ . ,. . .��,�;"' � �,. � :�-. . � � � � �"'� M._._. __._ ,3 ,� �i. - �, � _ � �-, �� ,..,.. � -"`'"�" ��� � 3'�� �� '� ti �.- t`'� � . - �'� i�� `� i.��/...� ���`•. ;' ._ ._ ; — - — --t'"S � �� 'r ,���"'- i �r � �� �� �..,_l, ��,� ^ i �. —. f ..�r � .1. � �7^� '�� � f �.?' .. S_ � j . . ..+� _ .-� � --�--- +�Y�'��s'r--�—. - __ '.`i"" _ �_ .Y...�� � � � �/ �� ' � � i � -�— - - --�--�_.....�� _.���„� -j �•v �js '..+. }, ;"�, a. , . - � ��` 4 ' � � ^' � , � t ��-•��`��rW I-r� . . � �> � - � � � �; ,r � f � _,��1 ;} � � ' �1� SZ � 4� �'. ` � - � •� 4�� 1 f �i� - . " � � i � i �� .'j �� ' �� � ,' � � - - �� �•� �" ; t . � C� �', � � f � . �. � � � �. ���.--------~ .r:� �� �.� � ; � .: t t ti � �� .�..�� � oicT��r PI �-���� sr' q �t� w �� �' .I�, ��}M�.'��.�..��r �I ;'.;♦ ."�� I � 4 ��:+; �y-A �.�r�ari�r _ 1 �_ �`- "A / ."'Y� �.�;��,R� r�y- {.� -=���'!i °� rt -�� �':� f.� �r ; `� ��,' �= �� -� ° � � b:�� ; � � �;� � - ``F ,� ;�'�I t .��� O ��`� L ' �-�i , �,;�,. .� � . � ' . /~ ��, � _ . � , ', , �.r,.,., iZ' � p�,,a�� �' �,�"_��� '�� "'�.- C,D N C►2 F�T� ` ;��'� , � `,, ;,_'!111, � ��� ` � ' ° " �� i t�r_ ''� :�� '-�.` �_ .'� � � �'� �� � - . L�,AJ�r�c2 �f _ � c T ��F ��' � -` . r� � �. �-�- � -��'�,...�, P� ; � � � $�:�- .,. � � ��. I � ,� �,. , � ,,, � ,♦ � �. a.. ,f i'�_� 3 4 � ' �`.�`,t� . �,` t•�� ' 1' ��s!r , �I c ���-'i`� • ,�' ,, � �`j �'�K„"4._ �.r°i �� ,6�3. e, n'r ~ .^� �r._ = � i• , e ' • / ` �� �`��� ' ,� �' �r / � � � 1 `� �_-�;,,� . � . � " . �� � �.I' , �, �� �r• ' .. � , ' t y �' � • f i�� � � , �� '�. �� (�� / ��r�• f� � i��►� �R �i"fs�./�� �`•� � . � , . . /.'�'��1arr' ' `,._ � �i�v�.-� `� R, , �� ,t ,i�,,�•3 �� :�s: ��C 'rt� �r- P� �-LDN G s�� y � " r�y .- , . —. .�,. - -3 —. .s_ s.. F-� .:' - ..�} �.�� .,.,o:},�, �:F «;;,,, � « �:{-��_,�=-* �� .:p ��..... Z, (�,.�y � P. -.4. �T n � . , t -i- d.�[ h ftil �-h,�F � � iiw l "J4' � �'� raS .�� l�. ,Y� �'u.�,y � '. ^� �y � •.'*t;�;� i`����' A'��.�� �t'�•�.r -�@ �t�� sh �`.f�'/`.�is�f ifi�.�m.i�,j1�' hx'+.,ra A .�y' � i[�`�� � � .�+.�e 'R� � - i6 ? ' .a t^n � "�r y`"` ���}y y if"„�'��" a -.Yr� �'�k�,� r.''1., rt `,+L�s.�� E_�� .,�z,��.,tvL�'t'i' ; �! ,..m .,i,rw.^t�,..;, p�t -�• �7M�r�y�4l=' )� �cY�l�� �4 � t.t���,L� +� "'r .r•�/'4A't����� '� sl �#4 !'� � 4 � T`µ�' S ki �.f� .�Y C'1� �Y. �...M. ���i l�. f . $.y� i�,a�(� a l'+ l " .�r�af`R *'+�r`FaJ�` ��"ry°f'`S..t� ��,�r,�`i��3 � ���F �'''��t��t�a.�.�t�+��..�a�?1�F�'f'�.'ir"w�� �.n j:.t 'b 1r Y 'k4I � -.7.,. � �.�R �'� � ;'t� r�•sy��"�lg i� � ��� �ar} 1t��'� ���"` �'` /fiY1 �s�¢, '�F��+" �,�7 i.� � . '4 �,�'�L� �� 11�4� ��� ��� +` �°4 !��k'r!� ty!;,5 ���, , �,y;` ";'��,��.�ti'�!�,r:� s �,y • � ��.�y'� 'l'c "7",t t!4 +�1� ; 6 i s� l� �� ! '.s�,;tb".i',py#�.rr I fL�f�� ��� . .t�;'r�r�t �c s�' �•� �."".� '���i�f r� �'� �Ss,�Y� �'� y� t e'w 4.�;�`��''�,- •'1'�" '`� ��� � �.�� z :� *r{1�lfa��tt,, ��'.�"j� r -r '�r• � f�7�'"p $`♦ ,� .+ �` '".f b., �I'•ti ,� :��j !7�/�•+�¢i! ��+' ±�i l '+� ��j ' i�� d�_��y � � _a. ; � 1j �Cit$,.`I� , �gµ.;��..� � �' s,st, .��OI' .�"�'p` ,ryMj,• .,' V�-`,y,� ..�''� P 1�. 7 '`h-�1 ,(� �P'.-' f^'' '��� ��,�.1.+� :g ..� �� "` +� 1 � �I.liyi ��+ ' �F �ir';, � �E•� .� T u� " �:_ �,��� ,��� "�,. ,�n '`� 1 1 z �� 'x'+1� ��� f � r"•}�M1 ��� :�� ���� s•' i�' '7��` "�,�i�."'�v'�%���1►, t�'>'S, r` ''�f. �.-'.� 1 t� ..� y; Y . G C�f=TG ��°+�'��,�y`..'�'" ��� { , �.'�.;-x ����q.�,,,�,�,� ���� �,� ���°�; O� �:�R�`�K 4.� �l�C..�"��.��'1i.V. ♦ 4�..M �1�_��� F t?J f L/ ' - ...'` !t �}� r �I ���� ��t^!' s.'!.� � �. ••• `�' �� . ��4, .��ti r1i j \ ��., � b "� � �Y�'..,�. • 3 r � ,�,i'< �''�� 5�"J.��icy�� r .r�wt ,�'- �s {�j�;5 �T �r 1�' � ;�it,�,��►�t.�,���t���a�;,.���jj���'�'r�.� .� ��?����x 1 � �M�`�. .- .�....r . �f .i,a h. 7 �� ,��"r � L�k".1 . 3���.q�,��l;,R'� � •��q � �,;r- ;�` r;f+W i��`'�� `�y;� : � ,,�,`•,�;�' r�,�y k , ,�+ l `� , i,i. ° .,� � r��p�Tfi'���iy> i� �� f� r�. ! r ��.f� �p J`�'�t��.� �y�� l��� �./�4 ' ' � �.� 1 � �1� �.,.�;,,,,_,� ..i �y/ v.r .� �.r� F.. r � I ' G'�F�`�! • - ' �.,����#�.i+�`��� ��r'� F r . = t� •_ . .�� � Y" � �- �`� ��' _.�� • �,��_ � A: � � -`� � � 3-w w �� :�'� . ,yZ �� � A�* � � s: �� �" �1 •,� ��j � ?�,+' �t� '� 'Fy, s .:.� 'fi�+:f, � � '�YMI '��c''.l�y f �„' �Y[..'7�/�:�� �:\A +� { 1 -> �R: -� 14,p'�� i -y. 7 aft .w � � t l 1 !" s. � 'fs� i � �� .�1 w{`".@�,r r'y��� �a������s'�l!' ,� �` a� �t ;� '� ` ff�����G��" ���s �' .1��������',;�.U�;�� � �'� ���� '.7 �.'�����'''.,.z;! .��-, �f�, ,��,, ��♦ aP �� ��' ;� ���� { • �� � ��,y �+�'�i'�._ ��.�a�f ����73'� � �' ��:�."� .�;,S. ��'��:�rr�'��}.... ,.a.�� ��-�y:l+"w . �r �. (� A w,y: fiN��•;y,��`'°fF.. ,��`\� ��t',��y1/fr, rv � �y' '` �� Y `,l�r�'�I� �T�// ..�X���{' '-s - ::� �,� "� i �. �tl....x`r�' � � .ww..r .-���F;�1jYMi��r,%'si�.`�F�/i\._ � � .. '''� . ..��:4a�.. .. �. i�i.k�. f:M�l�!...:,.. j�,� - I I , ��Ci i�_�2� P 3 RG�r,r-►� S� 9�`t� cvr�� �. OvILINL N �/ r o � r .,, -,;; -�--�tt�-�- ; ie- � �,« '�:m , � � � _ .' Y� • / JYt � , ..;�..r� � , . ��.�'� �� s�� �.t�P �., , �� - ,��' f `. , ,�,, � - �,� . ,r � ''r i �;�"� . . ..�' .;v,'-r�v.,+!�.,n.•.,�.... ..:._. , . ��:�' � L a . � °'� � �'fi � � �, ,.� y L � �Foy��y �, � .S . ' .. � ',h� ..��, s... ��Y����+� a�l'"�r,'�^��x�^� .. 7 �,�,�i�'��'4�• � � �� ` �� � � ;:i �.x r ,�,� �� z� . - r ��,��` � +,�� �i �« ;�,�. s �. �►...��1� . 4 r� 1 � �r �`1.� s�— �w� �� �. M '�� �� (�,{/y� h ^ '9� ,. ��- ��,rt.. ., ., n. • \:4 -_ �Vl�L S '�I/�� ��� . �J� �. � A�,' .'.�� �.� '? '.��y'. '�l* ♦ �� ���+��.�r �..q� • t'f, e �,TF�F i�p sR�} ��� � [� �T C�( `�" fh 'er�, + ,fi'� '"� �� ��ti; � s w` �� c-°yqi , �� .v�� ' , ,�"y '°�'' � c. '!� . ` r + `�'"� F r�3. . ..'^ , . , . ��,'� t�� �� �' 1'��` �! � j � ; �+'` y i ���,J; t,,� :� j� : SF��.ro �I�f �^'.��. ?' � �fi`�` ��i,:"�rl�f. �� +� '�d ..1� '�! ti;�{#���-,i t t ��l c_ `,�? 4. ;�!t ��' � r._. � y, .' � �" y.£ 7 . 1'��; � � * �«'�� W �':t "�. ,�`f .�i:►' .i"b�� . • :-} .� ���',' � '� j ��p� J�� . . �.y � G � f�:�1 l�"�� ��, � , � ����� � ��r ; - , <, ; x�. .�c;� e� . �x,. , •�' 4'� .e�^X ta E� A�%�i� � ��i',4 f �1p•1 _.d, •!. � �y��1�(�w� ✓ .r:`a� ;;.• �1��Y� '�eRr �- ��� . '� � '��,�..�,`�,��'.,�� �a~1 1,�,� � �... �R� �. . „�� .1r :L, ..ei�.�`7 �Ic rr��� �� /�t-�v sr �) St�'tu�y t-,��i�t,v� u�, r��,� � vL� LD� S L-' � r�iC7"(�t?E ,��� v;, � _ -:R• •�: si.� "'�u'�. �c�'r' " E �•�- ,b?�.�; ��#����� 7� �'_.}�,.�`'�4� �. J �; `� �i� ������" ���f 1 . :�r �t t74 v� .,�{ f. Y tY�, s ,,� �. �r .f ���.� R� I 4 j 1--1 9 0� y�� ... �,>. n� rc _ r� ._�.� �:� . � � '; � �E�.. �v r S .v / �, ''� ��r,� s���.� ��'�: ' A v r� i � � � � � ':�t�*r �� ' �r�4's� ,t�' d��'$�'���. � �- � �x ' � k ' V�.'� �� O r� '?��+� n'� -.,, se�,� - cl �" � �I,. r�n W/� �" `/ ".f � � � ` ' Y � � `Jr q'� 1 ~ a �' �''�s��''3}���� H�,+s �'� '�'��* ` '� 3�3•" i �� .!! "X W � �.t 1�, x�ii�'�i J d r�. . ., - :h � r • .4�;N�� •r� � ����'��4a�.t��.,�"�"��' �,°j' y i�°� ...Q� r� r =` '��'' �6'� f� .�,�. .� ,y�..��a'�`.�,.� ,,,� -.� t .�„ r � � L.' � ��,h •�� . a .'•ryy� y'� "�. .� �y�.M•��„trtua'c�•� v�r` � �,�����'F�'±�. ��t'��'c `x:� x.,. :.a � " . _ ..1 �'.;- ,g,,,�t�,`���r� F n;.r� -� �; • r A��`�'�°�,� ,�y:i�c: e'� � ,``' ~ 3 r, �t"r1�+.� � - t 4���f�����,�•. 's� '�d�'8�+5 �. 'a� '�`� ' � . -.' n� �� a �,. }�'��) Z.. ✓ �T 7 Y �- ���r _ � t ��a 1. y,y�^ � 'y� :t� �� • jJ� � ?�`1�=�1 '�1:�.'1f'�` l�p , 3,yl�� � '�_ � - � k �ijt, vr ,' r..,. .-}. � i���Si.�. ��i}� �iTei'� ,.� `����� � �.� ���� -t ��?:�.� � A, r,sif� � � ��:. '�� ,� - .�'y:,.'� � r� . .�: � �s « :� �' � � �+t a� �ti• ���J>1�i� ' Tw � ,.. ',xCv� � � 1�E�'"y � �j_�,�y � _�r 1 � p�: a���5'.r . �► �'Lx��y�K"��it � �r w �'�. I��A ��� iT. - � ��`y, ���y�y'C .�A 4 , ''r `�'���y �`+! � #i!���a ��+Y, -i: w�� �- y A� �� � �� � !C'���� �� � ���'���,�_� �" � � •�� 1 '�� f :��.a - �` � ' �.t ' - ��. '�,.-�.� .�. Y tk ;It;S� '�,+c•'`•��' ;w 'y. �t - �• r'�``S, � ��} R` ��,``. �� r P � �, -�' � '+�� � J' '� �� �� f r rt � t 'i.. a. t j�''1 � �`F���'�,� . . �,����a� �'�''��.� � h,s ,.��-%�i,�,� ,,�f`+�.:'�"c: .�,, �:s:. . '�. ,�.V ��' ,{f; `�>,: d ._ !~,�� � � r, � . �,; .l ;,�v y�: � �j,M�,, i .f,� s t�`Y�"J �`'r'�es�g �{`r{��� y� '�,'��y�j -4'�#���� i � � .r �A' r �I��i !iTM`l�'� r�'���~�T �.. F�� aa +rn '�� � ��' a:-q�' ., �t� �'frc•�' S.�t=`_� „�y��- � • `� � /�,'-� � ��3�vt�� .�5�,�C._KdP� ���' �,�,`�rt,�t�, �i��Y}�e,.�a ..''�,�. .tif,�° y .=^4.r� .� .�,.t'� a12e' 1�y+1.�i{�r .�,_-[y k k-�: •.-.�-°. � +iY.j'� � ?« �F'�S� \�/ t r �"��", ��4f � !{ "� � J.„S,f "k � r .r i�`ii �Yy�� � `F'� "� i 'a a� 'yY�,�+. �+' ��y,t��'Y• � :1�*`if'� yr8�" '� ,� �� �'H�:1'i V' �-c""' �+�,� � �y �`f' A`f�d'� -I�'�3 � � ��! �"i,-. •-<I ','J��.�iti � iDC � �'�;�/�'�R�'�� . . �n..2��.".Y ��`b i� r '+�w4c���X1ii�'� �� �-� � �- i{+`� �' t�� j��t r�.� � y,. ; t,��� +.��� ,� a � �yr,�v ����,c5� 4��'�'e t�` � �_ '�,,�¢ r i:4S.��r�' f• ryi �.�1t.. �'.,�,k3 t!':4 i��j���� 4� � `�' �f' * `rk' "�+fy'•�'���,3��' ' -�at,h'1�y�'?�35�y t 'r�r��� '�'`�1i'Y.F�.''�6�'���'���G'L°a� '� �� a�„ Y�h�e� .��,;`4 �� y `Y a L�$N t{,'��� � IGT ��1��� Y;y '�,��.f,� '� �` ' . 9;�� #r �.'``���. ��``c� Y•{t; .. a�...�� �. .�'$ t, i ���:�, .r, 'Sc�4!��`�*i�L�4} �Lpkr ,�.�r 2Q'�+�` !'�g"�f��p--':�. ` { � -'�`�- �`y� - �Y.;.- , -�yi"���«,r�3�,b:�y,t�e�';�` �'� ��{�'`�`' ��r' p��''`:,�su s�,c ..� 1 n Z\ � � �{ �1 ^« f '�'yr,i.!lc +t "t�'t `f(sF �S `1 � w � �` ' , .b-y( � 1!�`��. ;STN°.�k'�r5s�R� ':`��{t����r" �� r�:zy,�� � ,���" i l rf 7f 1�•\ \ 6 ?,� '� .�` •F.�.� ; 5�,� . •-", d,�.`. ,�,. .�s�''" s�� `a���a f��9" '�'�`ti r ,,��,�� . b �"}-/i} t 'C'� s�` �.r�'- � � '�j� �'�2.G,�t��e', ti�3��+"'', 4� � F,�r !' .: � ����f \ �. a �' �( .:��w e� ;� � �. r� dt ��,�,o S `r ; � s r ���. � . ,�' '. " r�, � ' t�,. 1 .�4�.'.��I 5 ..,���FS ;F�. .�. ��� ����� ��' �� � ;I �� . . .f, �..�4'. �.� . � � • � 'i �`� r+�' r 3P �. �s r .: . ��.r,• ' i��; d �' �k� l�;. �i. r � �;?� �'��'� , s � �.. �.. �� �.` F�#(t$ � 4}* A"i 4«y 4j, �£� ar '- i, t t �/ GS ��; �j,�,tl 1 .�� i j ,.,iitla� F»Y����- �,, �.Y,, �s''." !P!"/�/�/���!'R' (,` ' ����` s i' - �` �'!t�� �1":9t'�,}s�� �, `�`�9 ' ��� - �, a m � �,� � , �� ,�.� _ �,� �, � . � d+,fH ,�. ��x'0.�;�1'��. 'rc�rt � ��J . , r � �.5?y,� -�i• �� . �� '����`S ��;����1,��`�jry�,i d y "1 �y r�' � �,�iSA Lr't'�'� g� r ;�.va`t+s�f•��z ' � b' � ' S�� ' �+ �`'�� ' � u., + { �. ,� •V'�� r ,x'i-Fl � . �,4� i "� .� iM � i '� � ��} ' t �.� � � �� 'P q�� ,{ ` � r 9t; , `� r� �'.-.y , b� e�" � �5 ► ,� � ] `_'� 1 �r�r; ��f ��`/� �f`�f�` �{����aS,$�F {��"� ���i�<l'-,.ti��` .. � ��1 t� ,�, �.P'lj � � d '. � ! �:�r��10�i���y9u`�,1� ��} �7'�F ..:;� f ..�yr��t-��t4i'�'_��y � ; �. -d'' � . � _ � ��: �, r'� i p �t�,"1��'`���9 F: -+ �^ ,atl���rr�'.t � ... t � . - i� ,�`���, �.� .�t ti �'�,�� � rt t�^�� R�'� F7 C ;' :�.��u'' "'t ':` "� � ,,,,. :..�',' s �', '. �-yX �� ��:� � ;.t:?�'�. { I� ����X" .71if' I � �L � . � �i �r ,� � `7f :r ��_ e t�'+ . " _P- . ,� � � y�°�'� ��� . x- . . • � ,.i` .�� ,;.Y' �„ ,�x.�*7 �� i �. ,`ai��j':, b /�1�J' .� ;;.: �'��-� � _ _.�� ...,�:��: �'j __ :�; ..r:c�__,. . .. _ ��,"'! v� C7 �1�, �► �r� ,�r ,��� ;r� �,�., w� -����� � �r �N��+��� �� ������1d. � u � - ,�s a��� -f - '.�y�� � � �y�����{ ��. � . ' �i. :.:�T � �".�� �g'i'� .��� ' Rq�' � .Y-1}'S"s' f 1t �}- '�•� ~"�s��� � G�� d d .1 � � ����Gf����� t i� / \r�, xss '4� � r �' ,�.��r-r-? t ���„ �tti �i - Z'j � p .�F- -'� . ,�'� �'' _ '; -� �. �i'��..,$� '"" vW ,.i��'d�.rJ',.����.�,�;..�,F,Y 1,�1'��.,.{t� �, .Y� '7�. �� � � '"R � • µ' r sl1 7 ��Frt :a1 - � ��,,,�y ��} r. t , y F"', F'�i s'S' s.'f,�,� d5. r'��'�, �z�r c�, :� ,t•' � Y �� r ������ �. �� � �•6 � .� p�, ��� K �'. I1�.4�%rt�(�'i."iY+ _ �` 4 •..k t s � • s��� . ,C�� ,�.4 :J I�a��-a Lr �qp 'wr �' �_' � ��1 l_ Vv` G�� •r z �� ° • ► �s.> ..`l a �: . � � ' +'� �'� 5 , Q� - a�-�� � `_� O '^� �+ �'"i . 7�-.�� F ... . . . .�y� �t ���,-E#- o . L� i'�� �_ �i., g„���.s�r.� • . t1 '�7 1 i1 �,y t8?»�,..``� 7� {y• • �f, �,� , t Ss -r-�s ��; '7 r ,.���- k� ci� "�7E ��?�`��'i za�.+,�,`�-a,�'<i i � � . � g _ ��.���'"�{Dau�$��r'z3.`,;� .� �.,'y,,ar�� �a.�y .. .�', �--••^�: Y .:: '�Y'a : 'yt r� 4�°�""'` .'+ .` AF' ."��`'s- �Y+,��-�+� :-#4 d'°F i' ..r-+� -4 . � f". � �`�`,y �'.rr�s� `�-.# S a�M��i»b„� "`.Y`''`� ,��"y�„'T.`,�� QE"0.' '�`"' � x 7-'�'�,.�.Z AT`� *"'y�$ hr�.:.� • 4�-.. ��,,.,:�•� 3�t'a rL r� ���,�, e !� �i. . � ' s � �:'".i.�' �y +-c : ��t� .��.��w a-L� - t� ,� , �r - t '4 �.u��. N75's *4 3'_ "'f� .. } � - � t a . ���a� A ' � 4 .. .� . ':. � i�.`-' '_ �. . �y r yb� '� .�..-...- ���� � i�'{� J�1�17� . ��*„{a,,..b3R7�"' �. � S .. . .. . . . . . � . �� '- r ..�ti�. > `i`! J ���1.�` . . � .� �..K. _.. . .. :. y, '.O Y '.�r-,'„'a'i` k-. ,. .. .. �`/�I(Ny� .�� �.w����� � .. . 4 ^ i �3' �' ' / .�n=� NaiNM �d �-^���'�� �-��r ; , -r. °���>: ��:� _ _ _ �S� z � �6�'�� ;` � �� �'V`� -'r"� , _ . ---- 1. � . .. _'_. N' _ __ • � �Ni�+o(�'1 Sc� a2�+b�1��� ' • ����ru�� l- P7 I pJN�r�� 1v. j u C�r_rT ��4i—C� I t � - ., � _--t-- -------- -�t �: � ''�'�� A .._ . b � �' }��> . ,I> {�"f + y.� �, t�� �3�y �'� : � C�,�c��� 'i�d.�� �* ° �'0 j���P �,�'� .s�' �'3"`����rA+py�i �'fe� Y .� ;4, � s� IJI' F.:�� � y 54� 4 ' } :�d ��� � �y. i,��,�Y'� . t�:��� . �� � a� j �� ��.� y'��'� r i�- i't� � a r � f�� �e�.: 3c�s �. 'i� r' .�.�„ �,.p a,'¢$�}: .� � < N E V� r," - .yf'Y'�'�t ..'� '(_� !�� i 1 ,L'i� �1�, F�`�'1.�-� !�r �.,: 1 }''.. i_ : R „�f �', Q��( � � ". " • :s-s ' ' f . 'b� � �S ' ', ',� - �, [� ' t a., � ' a T�� 'l 6 . ��,:- .. 4 �� ��...� k � �as t t{ S�,�r F ��,� :�dF �, � � r+ i e h �g " �..c P ,E �;�-'�`�`� �,,f��� F�.} ,� �� -; �� .,.�:����1�t "���#��'���:R�R� �3^`:� ��ia��.�,�^�'��}1 ��# }��',:� -�s v.,,� � g �t Q�, � �'+ ;��a�g"� �£��tk~.�+� �f__.�_ r �.. ��-„y.� �� ��`. � �� H, �� t�� -.g��.� P � � �§ �A r' � � '� ���t,> t�'�>�` a'rk�3 � -�'s' #`_ 4 p11 `+�",s'{�b CcS�i7;,$� .._� x• ... , �� � -,� � �k r�H'�'' . �� jv � `�0 ' '� � _ -� � � '°., 'w�� z"''a' �1 ',, �� tl��"�¢� ,� . r ei�� � �,c c•��n'�� , �' re �� �$ a � �`�s''� '��,.�' '' � ,�.��#�. +�� a S t � �t ��� ��� ��A���.� . �'`P�',��ry'•�;�.�� '�'T � ; ��r•� r.f t._ f }f�' ,L�j��'�'F ;� 3�.�; . �r � t r - . f �- '°r`!+ �'�3 � � I- �,.,���' P 1,� * . -��'�'^�t C�t�: �� s`'y : s 'k--+ !�; a r„ J� �r W}� � ���-: � K"�r�R'v- -• c= .�� `..�i7". �..- r�,4�-,:d�'!-t� . �• s�' ,r� �� .�jS.. -.-_�'� �" r s'S�>,`{._'�„�• ,� � t � -� '°tr.�'...,.. } y�'`�f�,� �r y o.��t'Sr � 4 p, ���*�iK� �4�n k4^I tt�e.w `d trc}h ��x f �s c����t'"�, '�},���'�� �� :�?"S�.���6���. ��,,.��`'�r�ti7�:''��� � ������'",��r`�yi i&' �r��"S�4i�� .�.3 €* ,wx, "�-_,,. r < .,,�:,�1 u is•,�.'��':,�n,�;r,�r .�C', ` �:, •�-^ - c�-'f�t �� ,r, r, k•;� �'�"_n'���. �� C Y' ��V �LT �t dZ C F� t`� `'� ' , '�' r� ,4�.-=' y " \g ��' ,,r w; � .� � � �� � ' � � y �"',i3�� 'c I� '���. �� 1,�� LvVi��e�l G � � ,ti�r � n;,� �x ��.��<, -�`��.������.�� ,�, ,�= U (J�''� vn v�T F✓-�-�� �` �� :� .�::f`�, ���h':� �i -��,ry� � V � � ., '�',E `�,. , !'N,= �`.� Rt �:y�! t �'f � . t S��'R 1 t.�, t �.� ` '.'�! � :�.. W . x���,i�.�- � � : �. � l� 'i . : ��~ z ��!� i �- �� . y ! 'f d -i:. -�R�c ,(� ��r 'by�"�.. .�� , A` ,"� � c. r � �� Qy -,�� t � .: � 4 � T {L� ',y � Y � '�� �` � ��� y, '.T: -�E �ir�:����+"Y��e— i•'�'�" ► ' f e �}�, -.a`. 3► �+;�K R ..`� � ~ �'.. +� ry�_��,���.,r* �.y,: . '� �. , . . ' � . . ti. 4+ lE x'�� ` �l��$ , ! f.,'E7 . - . . . .r•i 17 F� �� � ��_. �� �t.'� .. � � . .��_,r�,�yn�,, �f ' . � �t. ; .. ,� _T'r:\M�jl,,i�Y+w�^ '� orL- t C ;,� a�� ,y*�tiai,c,.� �f <7°� ..+Y � :.�is � � � � r �. v'`�,...� ��C I � � E �� ; � ��,.-�..'��. r; 's.��:� ���.' '�� - QS�5 �.'sni4� .�. x�'e���.: "� �1��� �'���`�y";-, .�'i i��'� !f, ����. .r i�'"r+'�rr�+; ,•�i�'..,,���tt ����� � ,�.`� �� � `?y ..''"�� . J X"'�1""m� 1"yi�'Y�".� f.l' �i* i " M ',Yrz.' � � .� 5 � 1 , ;���.� � �F� ��'ti'sY'� a �� ���� �. � y e.� '��-' .�+�ic " r��'3 ` . .�'" /j �� -8�` [t� \ ��. �;� ,�L{ 1 �� k � t � � �� i �w j . ;a__. ��'` -� ��' `r. A'K � 9 ��i.-� . �� t . � '�+.� w �.i, r,> „i,' y � ' ,, < ,,,�„j� �� (. , ,.r�. �. ,,� •.�;y �� t , �1' .� .� �..ey, �� ►� (� o�tr�=��-�� .��: � ,�� >���h� �I� � ��Art �� � � � ' �L ' �,,,�J ' Y F� ������� .T. v "��s��``��, •� �„��n�� '�,"'�`����'�r � , _ � �.;� y�� � . t� f� +v = �" wf�- �" t,��� 1 C �` 'd�"r � ,r : ��k,����5 r ;;��+��°�`T".a�Y� �"���� ��i''G�6)i � O•�O" � � ��V � y ��ti � �i��h� ���/�� � ����� �z; .y � t^ p"'Jy`i}r�.u; Wi - �..; � A N� �4 �y� Grl r�— � �� £' j � �Y � � . <<���rr'��� 3 ��.: �� �•��'��`' � '` �� �� ' f -,� �. .'t..�,a��zxL�.�k-,.At.� 4f� � '��' �.. ,� i �i � ,• � '` '� �r ' 4~} :�' ; .,� Aye,'''>� �`}f�,��p��F�' `te�t �� 'r ` i �` �t���� �� tl£.�� � � . rt'� ��,. , a .�i;., � .'� .:3' ��.( y r � %����� ,�, � y� ,� ;I t,. .�r� t _ �S.'t.r=: t �.�' .. .T i v . �n ~� fiFBti"� . r��'_ '7 - . _ , I � /{� i �� ! Map Output Page 1 of 1 , � King County � --�� �l,�- � • - iMAP - Pro ert Information Plannin '` �� .. . .- ±� �. �� '� f. �t .�' •I �� � � � ��. � � � , 5 ��� �. �- .� ;�� `; .,�•.: .rwu'"aw��.�,`y � �-- '' - .s-'.y e.,f ..` .� e�e. ,...!�_ ��.� ���� �� . � - � � ��� �� � ��� � r :�� � � _ ;R_�, _ \ �-:� _ :� f � ; �� .,. " ;� � _� �.�i ;i : `i�� ., .� � Y � ► . � i � ��. - 'b' �� —�-•--••.i.,y�. �����4r:r '���'� ��r� '� � F�= �4f',.., ".- .;.,. .., : � �.� �� . , , l -� �;� y� �„ �" ' --a��a�r.L..M...rr�a..� ,�'� "r � _�-.� � ♦T: s ���� � {tiw >I J � � , `�,�j`� F��I� t'-��`�` � �. � 't.w�°'=ti.�.a.'L,.� .«.- ��1'..�- �- ` � � � :.. p�_��,�, � , x�'Y} h � l k�`�t;:jN � �„y �.i.��'=� r.-��; �'..... � ,. � _., `� ., ... " r, J" r<� � aa s.�.�R �'; r � �� } �;r�z1�. �` ! ,'r��'0+�� '� i ��# � Ir:•���! .�,�-_��Il�+` ��_. ±i�i tt*rry� ,� � �7���1• `* �M� r� r' ,� � � • � _ .7� ,;i ri�.. I��'I�'.11'Y': v•�_ .� �t .f 1 � 1�� � " "•"� r���L+•�,��'^' �� � t� �� ,��39�r,��wi ��. _���. _ _ ���'����`�� � •. ���� � ��" ...,.,.:�;,,�;.�,,�w��� �� - ., ,.� � , l� ���. � , � , �:� v r'' .�` : � �. J,K , ����� � � �,.1 '1'�`~� ��;,�� ���:.�:.� ��� ' �����"�1��'���� �" ���!���'�� �ciroosK,�ec�°��" � �:•b.l�t''� : - r�.... r_ G(] 5z9 The information included on thfs map has been compiled by King Counry staff from a variety of sources and is subject to change without notice. King County makes no representations or warranties,express or implied,as to accuracy,completeness,timeliness,or rights to the use of such nformation. King County shall not be liable for any generai,special,indirect,incidental,or consequential damages including,but not limited to, ost revenues or lost profits resulting from the use or misuse of the information contained on this map Any sale of this map or information on his ma is rohibited exce t b written permission of Kin Coun . King Counry�GIS Center�News �Services�Comments� Search By visiting this and other King County web pages,you expressly agree to be bound by terms and conditions of the site. T he deta�i� 1 ' �= �1 DD ' j'� ._. 1�� . htt�, ,' ������:;.inclnikc ��,��'s��r�lct,�com.csii.c�rin�a��.l�.sritnap'?Ser�ic�:N�tn��• �,����•, i�,�.�E�!_�I_. I�' f; �+)(1S FLOW CONTROL AND WATER QUALITY The Plat subdivision Level 2 Analysis will be based on the 1998 KCSWDM using the Level 2 flow control method to match '/Z the 2 year through the 50 year developed peak flows to the existing conditions peak flow rates. The area of the plat to be developed is 3.54 acres, to include asphalt paving, driveways, houses and landscaping. The frontage along SE 95'}' Way will not be improved at this time because the City of Newcastle is planning an extensive intersection redesign and renovation at SE 95'h Way and Coal Creek Parkway intersection. The plat drainage basin, new added houses, asphalt paving and driveways wiil be directed through a detention/wet-vault for peak flow control and Water Quality measures. The roof runof� from the new houses will be collected in catch basin pick-ups and directed to the conveyance system. Pre-Developed Conditions Pervious Forest 3.54 acres (153,986 SF) Post-Developed (3.54 AC) Impervious For this Level 2 analysis of the 20 lot preliminary plat we will use 4000 SF/lot per Section 3.2.2.1 KCSWDM). Lot/area SQ. FT. Imp Area Used 20 X 4000 SF =80,000 SF = 1.83 AC. Asphalt 15,050 SF = 0.35 AC. TR. B asphalt 3,640 SF = 0.08 AC. Included for future Sidewalk 5,l00 SF = 0.12 AC. TR. B sidewalk 1,160 SF = 0.03 AC. lncluded for future Total 104,950 SF = 2.41 AC. Pervious Lawn & Landscaping (49,036 SF) = 1.13 AC The above information will be used in the King County KCRTS computer program to establish I the existing and proposed time series for the peak flow analysis. The calculated vault will be 120' S2' x 8.5' of live storage depth, inside measure. There will be a wetpool volume for water quality within the same vault as calculated below. I, Pg. - 16 si�-Rrr�R�r.a� WATER QUALITY The wet-vault permanent pool will be sized per section 6.4.1.1, page 6-68 of the KCSWUM. The V�_ (0.9A; + 0.25Atg+ O.lOAtf+O.OIAo) x (R/12) ; V�= volume of runof�from mean annual storm A; = area of impervious SF A,g= area of till grass soil covered with grass SF A��= area of till forest soil covered with forest SF A�,= area of outwash soil covered with grass or forest SF R = rainfall from mean annual storm(figure 6.4.I.A) = 0.47" V�_ {09(104950) + 0.25(49036) )x (0.47/l2) _ (94455 + 12259) 0.47/12 =(106,714)(0.47/12) = 4,180 CF Vb = 3(4,180}= 12,540 CF The required depth of the wetpool is 12,540 CF/(120x52) = 2.09' calculated. Per the King County SWDM the depth of the wetpool should be 3', with 1' average depth for sediment storage. This volume will be accommodated within the bottom of the detention/wetvault to be designed and constructed in the northwest corner of this proposed 20 lot subdivision. The overall inside depth of the vault will have to be: 1' sediment storage 3' dead storage for the wetpool 8.5' live storage for detention 0.5' top clearance l3' total dept}� B10-FILTRATION We have accommodated for the water quality within the wet-vault as designed above. STORM WATER PEAK FLOW CONTROL: Refer to the following pages for the wet-vault sizing calculations. Pg. - 17 �u-K�;i���iz�r�t�,� CREp?E at ns� Time Series Production of RunofF ?ime Series Pro,�ect Lacation : Sea-'fac Comput ing Series : PRfiDEU.tsf �2 E - i.7E V/_:� t_.� i�F i� Regional Scale Pactor : 1.88 Data iype : Reduced Creating Ilourly ?ia�e Series File Loading Ti�ne Series Pile:C:�HC_S�IDM�HC�ATp�ST?F60R_rnf 9 ?ill Porest 3.54 a�cres Scaling Yr= 9 ?otel Area� � 3.54 ecres Pe�k Dischargtes 8.286 CPS et 9:80 on Jdn 9 in Yenr 8 Storing Ti�e Series File-PRfiDfiU.tsf 8 Time Series Computed 1fCR7S Coa�mand ^ � r � eRit RCRrS Progran� 1(CRiS Progre� Version 4.4Zb run complete � `__ ------------------------ Production of Runoff Time Series ; Pro,ject Location : Sea-Iac Computing Se�•ies : DEU.tsf �psT- L�r_ vr. �o�='/=I� Regional Sc�le Pactor : i.e0 pata Type : Reduced Crcatin,y llourly T9me Series Pile Loading iime Set•ies Pile:C:�l(C_SUIDH�I(C�117A�S71G6AR_z•nf 8 iil]. Grass 1.24 acres Sc�ling Y�-: 8 Loading Time Series Pile:C:�H�_SWD11�1fC__DA'Ip�SiE160R.�-nf 8 linperviou� 2.23 acres Adding Yr= B 7ata1 Area : 3.47 acres � Peak Discharge : 1 .32 CFS at 6:00 on Jan 9 in Yeai• 8 Storing Time 5ef-ies Fi1e:DFU.tsf 8 7ime Series Computed ----------------------- - KCRiS Command eKit 1(CRrS Frogre�r� KCRiS Program Version 4.42b run complete CREAI'E r new 7'ime Series i Production of RunofF Time Series Pf•oject L�►cation = Sea-7ar. Cnmputing Series : DEV-BYP_tsf pogT- �r_ `/� L r7 1-'�= /-� Regic►nal Scalc Factor : 1.0e � �/_ I�A � �� � -r ���- ���'�;� G= Data 7ype : Reduced Ct•eating Nourly I'ime Series Pile Lo�ding Time Se�•fes File:C:�HC_S1JDf1�HC_DATA�STEI6gR_�•nf A imper�ious 0.�7 acres Scaling Y�•: B Tot�l Area = 0.87 acres Peak Discharge= 0.033 CFS at 6=80 on J�n 9 in Year 8 , Storing Time Ser3es File:DEU-BYP.trxf 8 I� Time Serfes Compute�i -------------------------------------------------------------------------------- HCRiS Coinmand eXit KCRrS Program ------------------ , . HCRTS Pr�r.�ram Uers ion 4.42b run complete !�nf ! � ' � --- _ � Flow Frequency Analysis � Time Series File:predev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CES) (CFS) Period 0.223 2 2/09/O1 18:00 0.285 1 100.00 0.990 a.060 7 1/06/02 3:00 0.223 2 25.00 0.960 0. 165 4 2/28/03 3:00 0. 172 3 10.00 0.900 � 0.006 8 3/24/04 20:00 0. 165 4 5.00 0.�00 0.098 6 1/05/05 8:00 0. 145 5 3.00 0.667 0.172 3 1/18/06 21:00 0.098 6 2.00 0.500 0.195 5 11/24/06 4:00 0.060 7 1.30 0.231 0.285 1 1/09/08 9:00 0.006 8 1.10 0.091 Computed Peaks 0.265 50.00 0.980 Flow Frequency Analysis Time Series File:dev.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.652 6 2/09/O1 2:00 1.32 1 100.00 0.990 0.533 8 1/05/02 16:00 0.842 2 25.00 0.960 0.783 3 2/27/03 7:00 0.783 3 10.00 0.900 0.579 7 8/26/04 2:00 0.696 9 5.00 0.800 0.696 9 10/28/04 16:00 0.692 5 3.00 0.667 0.692 5 1/18/06 16:00 0.652 6 2.00 0.500 , 0.892 2 10/26/06 0:00 0.579 7 1.30 0.231 1.32 1 1/09/08 6:00 0.533 8 1.10 0.091 Computed Peaks 1. 16 50.00 0.980 Flow Frequency Analysis Time Series File:dev-byp.tsf Project Location:Sea-Tac �� ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.017 6 2/09/O1 2:00 0.033 1 100.00 0.990 0.015 B 1/05/02 16:00 0.026 2 25.00 0.960 0.020 3 12/08/02 18:00 0.020 3 10.00 0.900 0.017 7 8/26/04 2:00 0.020 4 5.00 0. 800 0.020 4 10/28/04 16:00 0.018 5 3.00 0.667 0.018 5 1/18/06 16:00 0.017 6 2.00 0.500 0.026 2 10/26/06 0:00 0.017 7 1.30 0.231 0.033 1 1/09/08 6:00 0.015 8 1. 10 0.091 Computed Peaks 0.031 50.00 0.980 PREDEV - BYPASS = ALLOWABLE 0.285 - 0.033 = 0.252 - I��Y� I�,.�`r'G K. V %� t_ ;17 (=. 0.223 - 0.026 = 0.197 -� Z5��12 0.172 - 0.020 = 0. 152 (�'h �I� - �lz zy)/�3�"' ) 0.165 - 0.020 = 0. 145 (�Z 3N - , p'Y/��3 S ^ �v0`�'� 0.145 - 0.018 = 0. 127 o.o9s - o.ol� = o.os1�Z-�B - �/Z �1e_ . Dy► Fi �2sT I �1"rF��,iAt_ 0.060 - 0.017 = 0. 043 0.265 - 0.031 = 0.234^�50-`l� SO�p Z Y2 � , ��{1 ��3 � %z l���� � �%; �. U�11 ) - .>>' � '; �G - � �� J � CF.ISTELL,A RIDGE Retention/Detention Facility Type of Facility: Detention Vault Facility Length: 120.00 ft � n� � � �� i�-_ � ��;(.: Facility Width: 49.00 ft V� N �� ` � Facility Area: 5880. sq. ft Effective Storage Depth: 8.50 ft Stage 0 Elevation: 347.50 ft Storage Volume: 49980. cu. ft Riser Head: 8.50 ft Riser Diameter: 12.00 inches Number of orifices: 2 Full Head Pipe Orifice # Height Diameter Discharge Diameter (ft) (in) (CFS) (in) 1 0.00 0.81 0.053 2 4.95 1.63 0. 136 4 .0 Top Notch Weir: P7one Outflow Rating Curve: None Stage Elevation Storage Discharge Percolation (ft) (ft) (cu. ft) {ac-ft) (cfs) (cfs) 0.00 347.50 0. 0.000 0.000 0.00 0.01 397.51 59. 0.001 0.002 0.00 0.02 347.52 118. 0.003 0.002 0.00 0.03 347.53 176. 0.004 0.003 0.00 0.04 347.54 235. 0.005 0.004 0.00 0.05 347.55 299. 0. 007 0.004 0.00 0.06 347.56 353. 0.008 0.004 0.00 0.07 397.57 412. 0. 009 0.005 0.00 0.21 347.71 1235. 0. 028 0.008 0.00 0.36 347.86 2117. 0.049 0.011 O.On 0.50 348.00 2940. 0.067 0.013 0.00 0.64 348.14 3763. 0.086 0.014 0.00 0.79 348.29 4645. 0.107 0.016 0.00 0. 93 348.43 5468. 0. 126 0.017 0.00 1.08 348.58 6350. 0.196 0.019 0.00 1.22 348.72 7174. 0. 165 0.020 0.00 1.36 398.86 7997. 0.184 0.021 0.00 1.51 349.01 8879. 0.204 0.022 0.00 1.65 349.15 9702. 0.223 0.023 0.0� 1. 80 349.30 10584. 0.243 0.024 0.00 1.94 349.44 11407. 0.262 0.025 0.00 2.08 349.58 12230. 0.281 0.026 0.00 2.23 349.73 13112. 0.301 0.027 0.00 2.37 349.87 13936. 0.320 0.028 O.00� 2.52 350.02 14818. 0.340 0.029 O.Oc 2. 66 350. 16 15641. 0.359 0.029 0.0�_ 2.81 350.31 16523. 0. 379 0.030 O.00. 2.95 350.45 17346. 0.398 0.031 O.00 3.09 350.59 18169. 0.417 0.032 0.00 3.24 350.74 19051. 0.437 0.032 O.Or� 3.38 350.88 198?4. 0.456 0.033 0.0� 3.53 351.03 20756. 0.477 0.034 O.00 3.67 351. 17 21580. 0.495 0.035 O.00 3. 81 351.31 22403. 0. 514 0.035 0.00 3.96 351.46 23285. 0.535 0.036 0.00 4. 10 351.60 24108. 0.553 0.036 0.00 4.25 351.75 24990. 0.574 0.037 0.00 4.39 351.89 25813. 0.593 0.038 0.00 4.53 352.03 26636. 0.611 0.038 0.00 9 . 68 352. 18 27518. 0. 632 0.039 0.00 4.82 352.32 28392. 0.651 0.040 0.00 � _ �Q . _ . . . .. . .. ..--._ ... _ _ . __ . .. .__ 9. 95 352.95 29106. 0.668 0. 040 0.00 • 9.97 352.47 29224. 0.671 0.091 0.00 4.98 352.48 29282. 0.672 0.042 0.00 5.00 352.50 29400. 0.675 0.045 0.00 5.02 352.52 29518. 0.678 0.049 0.00 5.03 352.53 29576. 0.679 0.054 0.00 5.05 352.55 29694. 0.682 0.060 0.00 5.07 352.57 29812. 0.684 0.065 0.00 � 5.09 352.59 29929. 0.667 0.067 0.00 I 5.23 352.73 30752. 0.706 0.079 0.00 5.37 352.87 31576. 0.725 0.089 0.00 5.52 353.02 32458. 0.745 0.097 0.00 5.66 353.16 33281. 0.764 0.104 0. 00 5.81 353.31 34163. 0.784 0.110 0.00 5.95 353.45 34986. 0.803 0. 116 0.00 6.09 353.59 35809. 0.822 0. 122 0.00 6.24 353.74 36691. 0.842 0.127 0.00 6.38 353.88 37514. 0.861 0.132 0.00 6.53 354.03 38396. 0.881 0.137 0.00 6.67 354.17 39220. 0.900 0.141 0.00 6.81 354.31 40043. 0.919 0.145 0. 00 6.96 354.46 40925. 0.940 0.150 0.00 7.10 354.60 41748. 0.958 0.154 0.00 7.25 354.75 42630. 0.979 0.158 0.00 7.39 354.89 43453. 0.998 0.162 0.00 7.53 355.03 44276. 1.016 0.165 0.00 7.68 355.18 45158. 1.037 0. 169 0.00 7.82 355.32 45982. 1.056 0. 173 0.00 7.97 355.47 46869. 1.076 0. 176 0.00 8.11 355.61 47687. 1.095 0.179 0.00 8.26 355.76 48569. 1.115 0.183 0.00 8.90 355.90 49392. 1. 134 0. 186 0.00 8.50 356.00 49980. 1.147 0.188 0.00 8.60 356.10 50568. 1.161 0.998 0.00 8.70 356.20 51156. 1.174 1.060 0.00 8.80 356.30 51749. 1.188 1.800 0.00 8.90 356.40 52332. 1.201 2.590 0.00 9.00 356.50 52920. 1.215 2.870 �.00 9.10 356.60 53508. 1.228 3.130 0.00 9.20 356.70 54096. 1.242 3.370 0.00 9.30 356.80 54689. 1.255 3.590 0.00 9.40 356.90 55272. 1.269 3.800 0.00 9.50 357.00 55860. 1.282 3.990 0.00 9.60 357.10 56448. 1.296 4.180 0.00 9.70 357.20 57036. 1.309 4.360 0.00 9.80 357.30 57624. 1.323 4.530 0.00 9.90 357.40 58212. 1.336 4.690 0.00 10.00 357.50 58800. 1.350 4.850 0.00 10. 10 357.60 59388. 1.363 5.000 0.00 10.20 357.70 59976. 1.377 5. 150 0.00 10.30 357.80 60569. 1.390 5.300 0.00 10.40 357.90 61152. 1.404 5.940 0.00 Hyd Znflow Outflow Peak Storage Target Calc Stage Elev (Cu-Ft} (Ac-Ft) 1 1.32 0.25 0.23 8.51 356.01 50053. 1. 199 2 0.84 ******* 0.04 4.17 351.67 24543. 0.563 3 0.78 ******* 0. 15 7.02 354.52 41260. 0.947 4 0.70 ******* 0.03 2.09 349.59 12309. 0.283 5 0. 69 ******* 0.09 5.42 352. 92 31861. 0.731 6 0.65 ******* 0. 17 7.75 355.25 45544. 1.046 7 0.58 ******* 0.03 3.08 350.58 18099. 0. 415 8 0.53 ******* 0.07 5.10 352.60 30008. 0. 689 -------------------------------- `-, Route Time Series through Facility �"� ��� � � � Inflow Time Series File:dev.tsf � • , Outflow Time Series File:rdout Inflow/Outflow Analysis Peak Inflow Discharge: 1.32 CFS at 6:00 on Jan 9 in Year 8 Peak Outflow Discharge: 0.226 CFS at 13:00 on Jan 9 in Year 8 Peak Reservoir Stage: 8.51 Ft Peak Reservoir Elev: 356.01 Ft __ � Dn -�� f /' r- I � �` � ' Peak Reservoir Storage: 50053. Cu-Ft . 1.149 Ac-Ft Flow Duration from Time Series File:rdout.tsf Cutoff Count Frequency CDF Exceedence Probability CFS $ ?s � 0.003 26561 93.315 43.315 56.685 0.567E+00 0.008 7172 11.696 55.011 44 . 989 0.450E+00 0.013 6390 10.421 65.432 34.568 0.346E+00 0.018 6421 10.471 75.903 24 . 097 0.241E+00 0.023 5502 8.973 84.876 15. 124 0. 151E+00 0.028 3481 5.677 90.553 9.447 0.945E-01 0.033 2441 3.981 99.534 5.466 0.597E-01 0.038 2234 3.643 98.177 1. 823 0.182E-01 0.043 609 0.993 99. 170 0. 830 0.830E-02 0.048 42 0.068 99.238 0.762 0.762E-02 0.053 15 0.024 99.263 0.737 0.737E-02 0.059 19 0.031 99.294 0.706 0.706E-02 0.064 17 0.028 99.322 0.678 0.678E-02 0.069 37 0.060 99.382 0.618 0. 618E-02 0.079 33 0.054 99.436 0.564 0.564E-02 0.079 38 0.062 99.998 0.502 0.502E-02 0.089 45 0.073 99.571 0.429 0.429E-02 0.089 23 0.038 99.609 0.391 0.391E-02 0.099 42 0.068 99.677 0.323 0.323E-02 0.099 16 0.026 99.703 0.297 0.297E-02 0.104 17 0.028 99.731 0.269 0.269E-02 0.109 25 0.041 99.772 0.228 0.228E-02 I 0. 114 16 0.026 99.79B 0.202 0.202E-02 0.120 8 0.013 99.811 0.189 0.189E-02 0.125 10 0.016 99.827 0. 173 0. 173E-02 0. 130 12 0.020 99.847 0. 153 0.153E-02 ;� 0. 135 12 0.020 99.866 0.134 0.134E-02 ! 0.140 14 0.023 99.889 0.111 0. 111E-02 0. 145 16 0.026 99.915 0.085 0. 846E-03 0.150 8 0.013 99. 928 0.072 0.716E-03 0.155 B 0.013 99.941 0.059 0.587E-03 0. 160 6 0.010 99.951 0.049 0.489E-03 0.165 11 0.018 99.969 0.031 0.310E-03 0. 170 4 0.007 99.976 0.024 0.245E-03 0. 175 6 0.010 99.985 0.015 0. 147E-03 0. 181 6 0.010 99.995 0.005 0.489E-04 Duration Comparison Anaylsis Base File: predev.tsf New File: rdout.tsf Cutoff Units: Discharge in CFS -----Fraction of Time----- ---------Check of Tolerance------- I Cutoff Base New $Change Probability Base New �Change ,,, ' 0.042 I 0.13E-01 0.85E-02 -34.5 � 0.13E-01 0.042 0. 040 -5.4 � ' ��" �' 0.054 � 0.79E-02 0.79E-02 -6.6 I 0.79E-02 0.054 0.046 -15.5 0.066 � 0.59E-02 0.66E-02 12.2 I 0.59E-02 0.066 0.071 7.4 0.078 � 0.47E-02 0.51E-02 6.7 � 0.47E-02 0.078 0.081 3.8 0.090 I 0.36E-02 0.38E-02 3.1 I 0.36E-02 0.090 0.091 1. 1 0. 102 � 0.29E-02 0.28E-02 -2.2 I 0.29E-02 0. 102 0. 100 -1.5 0. 114 � 0.23E-02 0.20E-02 -11.3 I 0.23E-02 0. 114 0. 109 -4.3 0. 126 � 0.17E-02 0.17E-02 1.0 � 0. 17E-02 0.126 0. 126 0.3 ��� -�� 0.136 � 0.12E-02 0.12E-02 0.0 � 0.12E-02' �:138 0.138 0.3 - 0. 150 � 0.77E-03 0.72E-03 -6.4 � 0.77E-03 0.150 0. 148 -1.0 0. 162 � 0.51E-03 0.42E-03 -16.1 I 0.51E-03 0. 162 0. 159 -1. 6 �-���'6� ��y C 0.174 � 0.29E-03 0.16E-03 -44.4 � 0.29E-03 0.179 0.165 -5.0 0. 186 � 0.21E-03 O.00E+00 -100.0 I 0.21E-03 0.186 0.172 -7.5 Maximum positive excursion = 0.006 cfs ( 9.8$) Dk �ESS �h�1aM -}' (D' occurring at 0.061 cfs on the Sase Data:predev.tsf and at 0.067 cfs on the New Data:rdout.tsf Maximum negative excursion = 0.010 cfs (-19.9�) occurring at 0.051 cfs on the Base Data:predev.tsf and at 0.041 cfs on the New Data:rdout.tsf n o2 c -�rrr-�N ��z �+2 r-_ �c=s S �_�r-�A�� O ` �� -Z 3 CHRISTELLE RIDGE � • Flow Frequency Analysis Time Series File:rdout.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) (ft) Period 0.182 2 2/09/O1 21:00 0.226 �r 8.51 1 100. 00 0.990 0. 068 7 1/06/02 22:00 0.182 oK 8.21 2 25.00 0.960 0.152 3 3/06/03 22:00 0. 152 91� 7.02 3 10. 00 0. 900 0.032 6 8/26/04 8:00 0. 143oK 6.75 4 5.00 0. 800 0.071 6 1/OS/05 1:00 0.094 �C 5.46 5 3.00 0.667 0.094 5 1/19/06 1:00 0.071�K 5. 13 6 2.00 0.500 0. 143 4 11/29/06 8:00 0.068 � 5.10 7 1.30 0.231 0.226 1 1/09/08 13:00 0. 032 WZ 3.08 8 1. 10 0.091 Computed Peaks 0.211 0� 8.51 50.00 0. 980 i �-� r �2 D �cn`r P G�l-K S r� 2 F �, c��i4-� 7 r� n�' c. F � s `I-►-►�a�� I� �-l� Y� � �� w ►4r3 �r-_ 2GLI�A � r, �1 � �GA��Hc.pngv ��l �� � � II � r- j hl !S 2G �o/z.T �� - z�� i , V. CONVEYANCE SYSTEM ANALYSIS AND DES(GN The capacity of 12 storm water drain pipe is estimated with a full-�low manning's equation calculation for a preliminary evaluation. We intend to use smooth wall LCPE pipe, commonly designated as N-l2 pipe. The rational method calculations on the following pages indicate peak runof�'from the 100 year storm is 3.71 cfs. Note that the l00 yr. peak flow is 3.26 cfs. per KCRTS with 15 minute timesteps. Refer to the following pages for pipe flow capacity check calculations. A 12" pipe AT S=1.00% will carry the 3.26 CFS in about 8.46" of depth with a total capacity of 3.85 CFS. Pg. - 2� Sll-RI:PORT.doc; o��,[Inactive KCRTS] •{'-t- ,y �- - � � Froduction oF Runoff iime Series Pro,ject Location : Sea-iac Computing Set•ies : DEU-15.tsf Regional Sr.ale Pacto�• : 1.00 1)�t� Type : Reduced Creating 15-mi�t�te Time Series Pile I,oadi.ng Time Series Pile:C:�HC_S41Dn\1(C_UAr(1�SI [GiSR_rrtif 8 Till Grass 1_?_4 acres ScAling Yt•: 8 I,oading Time Series File:C:�KC_SlJDH`I(C_DA7A�STF.i 1;R_rnf 8 Imper�iaus 2.23 acres fidding Yt•: 8 1'otal Area = 3.47 acres Penk Discl�ar��e: 3.26 CFS a�t 6=30 on Jan 9 in Year B Stoi•i�g 'Iirne Ser•ie^ Fi]e :DEU-I_5.t^f fi T�me Series Computed --------------- - 1fCRiS Command eXit ItCRrS Program KCRiS Proyram Uers ion 4.42b t•un complete �p2 C��i �ir_ y /-� ri � r Flow Frequency Analysis Time SeLies File:dev-15.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----FI_ow Fr.equency Analysis----- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Proh (CFS) (CFS) Period 1.06 6 8/27/O1 18:00 3.26 1 100. 00 0. 9U�? 0.753 8 1/05/02 15:00 2.28 2 25.00 0.960 2.28 2 12/08/02 17:15 1.48 3 10.00 0.900 0.855 7 8/23/04 14:30 1.30 9 5.00 0.800 1. 30 4 11/17/04 5:00 1.27 5 3.00 0.667 1.27 5 10/27/05 10:45 1.06 6 2.00 0.500 1.48 3 10/25/06 22:45 0.855 7 1.30 0.231 3.26 1 1/09/08 6:30 0.753 8 1. 10 0.091 Computed Peaks 2. 93 50. 00 O.Q80 i P .� `' �' � tmp#l.txt Manning Pipe Calculator Given Input Data: shape . . . . . . . . . . . . . . . . . . . . . . . . . Circular solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow Diameter . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0100 ft/ft Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0120 ' Computed Results: Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4569 in Area . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7854 ft2 wetted Area . . . . . . . . . . . . . . . . . . . . . 0.5916 ft2 wetted Perimeter . . . . . . . . . . . . . . . . 23.9122 in IPerimeter . . . . . . . . . . . . . . . . . . . . . . . 37 6991 in velocity . . . . . . . . . . . . . . . . . . . . . 5. 5108 fps Hydraulic Radius . . . . . . . . . . . . . . . . 3. 5624 in Percent Full . . . . . . . . . . . . . . . . . . . . 70.4743 % Full flow Flowrate . . . . . . . . . . . . . . 3.8597 cfs Full flow velocity . . . . . . . . . . . . . . 4.9143 fps critical Information critical depth . . . . . . . . . . . . . . . . . . 9.5828 in critical slope . . . . . . . . . . . . . . . . . 0.0067 ft/ft Critical velocity . . . . . . . . . . . . . . . 4.7160 fps Critical area . . . . . . . . . . . . . . . . . . . 0.6913 ft2 Critical Perimeter . . . . . . . . . . . . . 26.0151 in Critical hydraulic radius . . . . . . . 3.8263 in Critical top width . . . . . . . . . . . . . . 12.0000 in Specific energy . . . . . . . . . . . . . . . . . 1.1731 ft Minimum energy . . . . . . . . . . . . . . . . . . 1.1978 ft Froude number . . . . . . . . . . . . . . . . . . . 1.2754 Flow condition . . . . . . . . . . . . . . . . . . supercritical ; Page — ;' / DD�,�/N ST�eRrn tmp#1..txt channel Calculator Given Input Data: shape . . . . . . . . . . . . . . . . . . . . . . . . Advanced solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs --- ln. o - yF � k, slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0175 Height . . . . . . . . . . . . . . . . . . . . . . 18.0000 in Bottom width . . . . . . . . . . . . . . . . . . . . 6.0000 in Left radius . . . . . . . . . . . . . . . . . . . . . 0.0000 in Right radius . . . . . . . . . . . . . . . . . . . . 0.0000 in �eft slope . . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft Right slope . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft computed Results: , ' Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7809 i n _�._'-�--.-_ � K , velocity . . . . . . . . . . . . . . . . . . . . . . . . 6. 5804 fps Flow area . . . . . . . . . . . . . . . . . . . . . . . 0.4954 ft2 Flow perimeter . . . . . . . . . . . . . . . . . . 22.2993 in Hydraulic radius . . . . . . . . . . . . . . . . 3.1992 in Top width . . . . . . . . . . . . . . . . . . . . . . . 15.0412 in Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2500 ft2 Perimeter . . . . . . . . . . . . . . . . . . . . 49.2666 in Percent full . . . . . . . . . . . . . . . . . . . . 37.6717 % DOWNSTREAM CHANNEL CONVEYANCE CHECK THE 100-YEAR 15 MINUTE PEAK FLOW IS 3.26 CFS. IT WILL BE CONTAINED WITHIN THE DITCH. THE MANNING,S N VALUE IS FOR STEMMY GRA55 OR BRUSITY GROWTH. I � Page Z g --- _ I D�w�1 ST►2�pr�j p#l.txt channel Calculator Given Input Data: shape . . . . . . . . . . . . . . . . . . . . . . . . Advanced solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 2.2800 cfs ---- Z �- Yr'� '� slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0175 Height . . . . . . . . . . . . . . . . . . . . . . 18.0000 in Bottom width . . . . . . . . . . . . . . . . . . . . 6.0000 in �.eft radius . . . . . . . . . . . . . . . . . . . . . 0.0000 in Right radius . . . . . . . . . . . . . . . . . . . . 0.0000 in �eft slope . . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft Right slope . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft Computed Results: Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6007 in -- (7 K velocity . . . . . . . . . . . . . . . . . . . . . . . . 6.0225 fps Flow area . . . . . . . . . . . . . . . . . . . . . . . 0.3786 ft2 Flow perimeter . . . . . . . . . . . . . . . . . . 19.4623 in Hydraulic radius . . . . . . . . . . . . . . . . 2.8011 in Top width . . . . . . . . . . . . . . . . . . . . . . . 13.4675 in Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2500 ft2 Perimeter . . . . . . . . . . . . . . . . . . . . 49.2666 in Percent full . . . . . . . . . . . . . . . . . . . . 31.1147 % DOWNSTREAM CHANNEL CONVEYANCE CHECK THE 25-YEAR 15 MINUTE PEAK FLOW IS 2.28 CFS. IT WILL BE CONTAINED WITHIN THE DITCH WITH 1' OF FREEBOARD. THE MANNING,S N VALUE IS FOR STEMMY GRA55 OR BRUSITY GROWTH. , ; Page i . poWtil ST�C►�►--►'� tmp#1.txt Culvert Calculator Entered Data: shape . . . . . . . . . . . . . . . . . . . . . . . . . Circular Number of Barrels . . . . . . . . . . . . . . . 1 solving for . . . . . . . . . . . . . . . . . . . . . Headwater Chart Number . . . . . . . . . . . . . . . . . . . . 1 Scale Number . . . . . . . . . . . . . . . . . 1 Chart Description . . . . . . . . . . . . . . . CONCRETE PIPE CULVERT; NO BEVELED RING ENTRANCE Scale Decsription . . . . . . . . . . . . . . . SQUARE EDGE ENTRANCE WITH HEADWALL Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs � ioo- y r A �� Manning's n . . . . . . . . . . . . . . . . . . 0.0130 Roadway Elevation . . . . . . . . . . . . . . . 102.8000 ft Inlet Elevation . . . . . . . . . . . . . . . . . 101.4000 ft outlet Elevation . . . . . . . . . . . . . . . . 100.0000 ft Diameter . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in Length . . . . . . . . . . . . . . . . . . . . . . . . . . 40.0000 ft � Entrance �oss . . . . . . . . . . . . . . . . . . . 0.0000 . Tailwater . . . . . . . . . . . . . . . . . . . . . . . 0.5650 ft , L��P-1 � I �h ���� F�. �!'' ; ,"': r� .. , , < Computed Results: Headwater . . . . . . . . . . . . . . . . . . . . . . . 102.7382 ft From Inlet slope . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft velocity . . . . . . . . . . . . . . . . . . . . . . . . 8.4441 fps SEE SKETCH BELOW CULVERTS WITH 6�� OF COVER WILL NOT OVERTOP ROADS OR DRIVEWAYS FOR THE 100 YEAR , 15 MINUTE PEAK FLOWS. SOME CULVERTS MAY NEED TO BE CLEANED. 102 .80 ' I� v ' �a� . 4a � oo . Pa9e 3 O ( . I VI. SPECIAL REPORTS AND STUDIES - NONE VII. BASIN AND OTHER COMMUNITY AREAS - NONE VIII. OTHER PERMiTS - NONE �'g- - 31 si�-RrroRT.�i�x IX. TEMPORARY EROSION The Temporary Erosion Plan will be designed to the 1998 King County Surface Water Design Manual, Appendix D. A rock construction entrance will be shown on the plans at the entrance road to the site. The detail will be included on the plans. A silt fence is to be erected at the bottom of slopes. TEMPORARY SEDIMENT TRAP Two traps should be constructed, one for the area south and west of the road and the other for the � north and east of the road. Sediment trap #1 on the west side of the entrance roa� for about 2.34 acres and Sediment trap #2 on the east side of the entrance road for about 1.2 acres The surface area of the trap: SA = 2 X (Qz/0.00096) = 2080 sf/cfs of the 2yr developed peak The 2 year developed peak for the site is 0.652 cfs. Sediment Pond peak flow= 0.652 cfs, SA = 0.652(2080) = 1356 SF Try a pond with 4' of depth that measures 25' x 56' at the top of the weir= 1,400 square feet. SEDIMENT TRAP #1 Depth Elev. Dimension 5.00' 359.00 31'x62' Top of Berm 4.00' 358.00 25'x56' Top of weir— 1,400 SF 3.00' 357.00 19'x50' 2.00' 356.00 13'x44' 1.00' 355.00 7'x38' E 0.00' 354.00 1'x32' Bottom of sediment storage SEDIMENT TRAP #2 Depth Elev. Dimension � 5.00' 359.00 3l'x62' Top of Berm 4.00' 358.00 25'x56' Top of weir— 1,400 SF 3.00' 357.00 19'x50' 2.00' 356.00 13'x44' I.00' 355.00 7'x38' E 0.00' 354.00 1'x32' Bottom of sediment storage Two sediment traps can be constructed at the existing low areas at the northwest corner of the site. Pg. -32 SI)-RI?P()IZ"I�.�cx� r . � SHEETI _- ___ __ _---- - WEIR CALCULATION _ _ - --- ---- -- EMERGENCY OVERFLOW _ _ - ---- _ ---- --- ------ Q100 = 3.21(LH3� + 2.4H ) - - - -- - ---- - . __- -- ------ - - L= [Q��/(3.21•H�]-2.4"H or 6' min. -- _-------- - — H=(F� 0.17 - - _-- - - - --- - ----- -_ - - -- Q=(CFS) -- 1.32 CFS rpQ L= 5.4587 LN. FT. REQUIRED - ----- --- -_-_�__ - ; � i � I ' Page - � � _ , _ GEOTECHNICAL ENGINEERING STUDY CHRISTELLE RIDGE SUBDIVISION RENTON, WASHINGTON G1821 Prepared For Mr. Jeff Rieker Christelle Inc. 1075 Bellevue Way NE, #1500 Bellevue, Washington 98004 June 21, 2004 �I By GEO GROUP NORT�iWEST, [NC. ! 13240 NE 20th Street, Suite 12 Bellevue, Washington 98005 Phone: (425) 649-8757 TGeotechnical Engineers,Geologists � G r o u p N o r t h w e s t, 1�C• &Environmental Scientists June 21, 2004 Job No. G-1821 Mr. JeffRieker Christelle Inc. ]075 Bellewe Way NE, #1500 Bellewe, Washington 98004 Subject: Geotechnical Engineering Study Christelle Ridge Subdivision Renton, Washington Dear Mr. Rieker, Geo Group Northwest, Inc., is pleased to present our Geotechnical Engineering Study report for the proposed Christelle Ridge Subdivision in Renton, Washington. "The purpose of this study is to evaluate the geotechnica) site issues and provide earthwork recommeiidations for the proposed twenty-two lot development, including utility infrastructure, grading, cul-de-sac, home sites, foundations, walls, and drainage. From a geotechnical perspective the main geotechnical issues for the site development are the large cuts and fills required to achieve the proposed final grades. Cuts of up to 28 feet (f) are required to achieve the proposed final site grades, with final slopes generally in the 25 percent or less range, and fill slopes up to 50 percent (2H:1 V) although these , may be reduced by the construction of rockery retaining walls. Geo Group Northwest, Inc. explored the subsurface site conditions by excavating eight test pits � with a track-hoe. The site soils consist of a thin layer of top soil generally about 6 inches thick, generally underlain by medium dense to dense, brown weathered Glacial Till soils, and glacially consolidated very dense cemented Glacial Till. The Glacial Till soils consist of Silt with varying i amounts of sand and graveL It is our opinion that the site is geotechnically suitable for the proposed development, provided I the geotechnical recommendations are followed. Our recommendations, along with other geotechnically related aspects of the project, are discussed in detail in the text of the attached � report. We appreciate this opportunity to serve you. If you have any questions about the 13240 NE 20th Street, Suite 12 • Bellevue, Washington 98005 Phone 4251649-8757 • FAX 4251649-8756 � I June 21, 2004 G-1821 Christelle Ridge Subdivision Page ii Geotechnical Engineering Study contents of this report, or if we can be of further assistance, please feel free to call us. Sincerely, A W a s' ,� � GEO GROUP NORT��WEST, INC. '�'j����:o ��. � , '�;� � ; � `�. - �� ��//^ ,� � � . � � A�'� ,,,.,� � np��+o Aeo+oqr, ti. _ ✓ 'F� ���6 �,� / r � ��o� . Wade J. Lassey � �� , �Sse " Engineering Geologist '�`� n C _� ' /'��/� ZAM C ���j,�c�- c�'CC tiv�'o� �'9,y .S� p��� William Chang, P.E. � `—! � Principal ,� : zo�t� O,�+���0 G �O1vAl., � EXPiRES: 2/19/ Geo Grou Northwest Inc. I' p ' I TABLE OF CONTENTS G-1821 1.0 INTRODUCTION Pa�e 1.1 PROJECT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 SCOPE OF SERVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 SITE CONDITIONS 2.1 Sc�FncF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 S[�stJxrnc�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 GROUNI�WATER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.0 SITE STABILITY&SEISMICITY 3.1 SI7'E S'I'AE3ILI"TY EVAI,UA'I'ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 LIQ[JEFAC'I'[ON ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 GROUNU MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.4 UI�IIFORM BUII.DWG CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4.0 DISCUSSIONS AND RECOMMENDATIONS ', 4.1 GF,Nk?RA1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 SI1�E PRF,PARA'f[ON,GRAllWGANI�EARTF�WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2.1 Temporary Erosion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2.2 Excavations and Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2.3 Structural Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.3 INFRASTRUCTURF_RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3.1 Roadway Subgrade and Pavement Section Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3.3 Cantilever Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3.4 Rockery Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.3.5 Segmented Block Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 l, 4.4 LOT DEVF:LOPI�NT RECOIvIIv�NDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . �. . . . . . . . . . . 14 4.4.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4.2 Basement Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS 4.4.3 Slab-on-grade Floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4.4 Drainage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.0 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.0 PLAN REVIEW & CONSTRUCTION MONITORING . . . . . . . . . . . . . 19 [LLUSTRATIONS Plate 1 - Vicinity Map Plate 2 - Site Plan Plate 3 - Typical Basement Wall Backfill & Drainage Detail APPENDIX A Test Pit Logs Geo Group Northwest, Inc. GEOTECHNICAL ENGINEERING STUDY CHRISTELLE RIDGE SUBDIVISION RENTON,WASHINGTON G-1821 1.0 INTRODUCTION 1.1 PROJEC'T DESCRIPTION The subject property is located west of the intersection of SE 95`'' Way and Duvall Avenue NE (Coal Creek Parkway SE) in Renton, Washington, as indicated on the Vicinity Map, Plate l. The proposed subdivision consists of twenty-two single-family residential lots and a new cul-de- sac roadway. The parcel slopes moderately up to the southwest, as shown on the Site Plan, Plate 2. The proposed new cul-de-sac access road enters the property off of SE 95"' Street at the north end of the parce) and climbs at a proposed gradient of 14.41 percent. Construction of the access road will require cuts of up to 28 feet. Grading for the proposed lots will require cuts on the order of up to 22 feet on the west side of the access road and retained fills of up to 16 feet along the right-of-way of SE 95`'' Way and sioped fills of up to 18 feet ���est of the cul-de-sac I We anticipate the new homes will consist of two or three-story wood frame structures, most with � daylight basements. Geo Group Northwest, Inc. should be consulted to review the validity of t}�t� recommendations contained in thi� rer�rt if there �re �i��nific��nt chan��e� tn eite �je��el����ient �lans a� descrihed herr� 1.2 Sc���i�F: ��H SH:uvicF.s The scope of work for this geotechnical study was conducted in general accordance with our proposal dated May 27, 2004 and includes: • Excavating eight test pits with a track hoe to characterize the subsurface conditions. Col(ection of soil samples. Analysis of sample moisture content and preparation of test pit logs. • Evaluation of the subsurface conditions, engineering analysis, and geotechnical recommendations and design criteria for the proposed subdivision. Geo Group Northwest, Inc. June 2 l, 2004 G-1821 Christelle Ridge Subdivision Page 2 Geotechnical Engineering Study • Preparation of this written report with our activities, findings, conclusions, and geotechnical recommendations. 2.0 SITE CONDITIONS 2.1 SURFACE The subject property is undeveloped and consists of approximately 3.6 acres. The property is , irregular in shape and is bordered by residential development to the west and south and SE 95°i Way along its northwest property boundary. Based on the site survey, elevations across the site range from 352 feet at the north end along SE 95'h Way to 440 feet at the southeast corner. The property generally slopes��p to the southwest at an average gradient of about 23 percent. No water was observed on the property. Vegetation on the property consists of fir trees, ferns and underbrush. 2.2 SUBSURFACE According to the area geologic map the project site is underlain by Quaternary-age Advance I Outwash (Qva) glacial drift deposits associated with the Vashon Stade of the Fraser Glaciation. , Advance Outwash generally consists of stratified sand and gravel deposited in fluvial streams in advance of the glacier. � Geo Group Northwest explored the site conditions by excavating eight test pits on June 3, 2004. The site soils consist of glacially deposited Glacial Till soils, consisting of a non-sorted mixture of silt, sand, gravel, and some cobbles. The till color varies from weathered brown to unweathered � gray. In general, the looser material near the surface is highly weathered and the material becomes denser and more cemented as the degree of weathering decreases with depth. A detailed description of the soils is presented on the Test Pit Logs in Appendix A. The approximate locations of the test pits are shown on the Site Plan, Plate 2. Geo Group Northwest, Inc. i , June 2 l, 2004 G-1821 Christelle Ridge Subdivision Page 3 Geotechnical Engineering Study 2.3 GROUNDWATER No water seepage was observed in the test pits and no seepage was observed on the surface of the project site. No water seepage is anticipated during the site development, although permeable sand layers within the glacial till may contain water. 3.0 SLOPE STABILITY & 5EISMICITY 3.1 SITE STABILITY EVALUATION No indicators of slope instability problems, such as past slumps or slides, were observed on the project site. The site soils are glacially consolidated and there is minimal risk of deep seated sliding at the site. After grading, the overall stability of the site wi(1 be improved as a result of the removal of the looser su�cial material and a reduction in the steepness of the site grades. 3.2 LIQUEFAC'TIOIV ASSESSMENT Liquefaction is a phenomenon where loose granular materials below the water table temporarily behave as a liquid due to strong shaking or vibrations, such as earthquakes. Clean, loose and saturated granular materials are the soils susceptible to liquefaction phenomena. The site soils do not consist of clean loose saturated sand and it is our opinion that the site soils have no potential risk of soil liquefaction during a seismic event. 3.3 GROUND MOTION Based on the subsurface conditions encountered, anticipated damage to the proposed structtire would be caused by the intensity and accelerations caused by a strong motion earthquake and not by liquefaction or lateral movement of the site soils. 3.4 UNIFORM BUILDING CODE According to the 1997 Uniform Building Code (UBC), western Washington is classified as Seismic Zone 3 (Figure 16-2), which is assigned a Seismic Zone Factor, Z, of 0.30 (Table 16-1). Geo Group Northwest, Inc. June 2 l, 2004 G-182 l Christelle Ridge Subdivision Page 4 Geotechnical Engineering Study The soil conditions encountered at the site during our investigation correspond best to a Soil Profile Type of S� and Soil Profile/Description of very dense soils {Table 16-J ). Based on a Seismic Zone Factor(Z) of 0.3 and a Soil Profile Type of S�, the Seismic Coefficient Ca is 0.33 (Table 16-Q) and the Seismic Coefficient Cv is 0.45 (Table 16-R) for the site. 4.0 DISCUSSION ANll RECOMMENDATIONS 4.1 �iF,NERAL Based on the results of�this study, it is our opinion that the site is geotechnically suitable f�r the proposed subdivision development. The main geotechnical issues are: • Moisture sensitivity of the site soils and wet weather earthwork considerations; • The cuts and fills required to achieve the proposed finished site grades; • Fill compaction requirements for under buildings, pavements, and behind rockeries; • Potential settlement of the thick fill, even if compacted to the structural fill specifications herein; • Settlement impact and mitigation; • Difficulty in engineering tall rockery retaining walls facing fills and the alternative of co�structing modular block reinforced retaining walls. The following discussions address the site development infrastructure and provide lot development recommendations, including an evaluation of site stability, recommendations f'or site preparation, grading and earthwork, structural fill placement and compaction, use of the site sc�ils for fill, roadway subgrade preparation, pavement section design, utilities, fc�undation desi�n criteria, slab floors, and drainage. 4.2 SITE PREPARATIUN,GRADING AND EAR'I'F�WORK The site should be stripped and cleared of surface vegetation, topsoil, and soils containin� large tree roots or other organics. The stripping should occur in areas to be cut and areas to receive fill. The stripped soil should not be used as structural fill below building areas, pavernerits, Geo Group Northwest, Inc. June 21, 2004 (i-182 l Christelle Etidge Subdivision Page 5 Geotechnical Engineering Study sidewalks, or as fill behind walls. Areas to receive filis should be benched, creating a terraces on the sloped portions of the site. Filis placed in building areas, below pavement areas, driveways, and behind retaining walls should be compacted to structural fill specifications. To mitigate potential settlement of the fill will require quality control monitoring including the site preparation, fill material, fill placement, and its compaction. Structures may be supported on conventional spread footings and where feasible footings should bear directly on the dense undisturbed glacially consolidated soils or on structural fill that extends down to suitable bearing soils. The silty site soils are moisture sensitive and it will be difficult to achieve structural fill compaction specifications if the soil has a moisture content that is higher or lower than optimum. '1�he site soils will not be usable as structural fill during wet weather. Site grading and earthwork should be performed during the dry summer months and the implementation of permanent erosion control should be completed by mid October. 4.2.1 Temporary Erosion Contrvl "remporary erosion control measures, such as perimeter silt fencing, should be installed prior to tlie start of grading. A crushed rock construction entrance should be used to mitigate the tracking of mud onto the street. During wet weather, exposed site soils should be covered with straw mulch and cut slopes should be protected with plastic sheeting to minimize erosion. Temporary settlement ponds, crushed rock check dams, and hay bales and silt fencing should be used to reduce suspended sediment in the surface water runoff and to reduce the velocity of the runoff. 4.2.2 Excavations and Slopes i The majority of the site grading will result in permanent cut slopes. Temporary cuts will be used for installation of utilities. The stability of temporary cut slopes is a function of many factors, including soil type, geometry, surcharge loads, amount of time the cut is open, and the presence of subsurface seepage. It is the responsibility of the contractor to maintain safe slope Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 6 Geotechnical Engineering Study configurations. If groundwater seepage is encountered, excavation of cut slopes should be halted and the stability of the cut slope evaluated by the geotechnical engineer. Temporary cuts greater than four feet in depth should be sloped at an inclination no steeper than 1 H:1 V (Horizontal:Vertical) in the loose to medium dense weathered till soils and 1 H:2V in the hard cemented glacial till. Permanent cut and fill s(opes should be inclined no steeper than 2H:1 V. 4.2.3 Structural Fill Fill material used to support building foundations, slab-on-grade floors, pavements, and sidewalks should meet the compaction requirements for structural fill. During dry weather, any compactable non-organic soil may be used as structural fill, provided the material is near the optimum moisture content for compaction purposes, and the material achieves the compaction specifications. The silty site soils may be used as structural fill only if the soil moisture and weather conditions allow the soil to be compacted to structural fill compaction requirements. During wet weather we recommend that imported pit run sand and gravel be used as structural fill having the following specifications: l. Be free draining, granular material, which contains no more than 5 perc�ent fines (silt and clay-size particles passing the No. 200 mesh sieve); 2. Be free of organic and other deleterious substances; 3. Have a maximum size of three-inches. Structural fiil material should be placed at or near the materials optimum moisture content. The I optimum moisture content is the water content in soil that enables the soil to be compacted to the highest dry density for a given compaction effort. Structural fil) should be placed in thin horizontal lifts not exceeding l0-inches in loose thickness to the following compaction specifications: Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 7 Geotechnical Engineering Study STRUC"TURAL FILL COMPACTION SPECIFICATIONS APPLICATION MINIMUM COMPACTION % ot Mazimum Dry Density 95%for the top 12-inches Roadway Fills and Under Pavements 90%belo�v the top 12-inches Based on ASTM D-1557 - Modified Proctor Qackfill Behind Rockeries, Segmental Block 9�% Retaining Walls & Basement Walls B�ed on ASTM D-1557 - Modified Proctor Roadway Fills 95% Within the Sewer Easement Based on ASTM D-1557 - Modified Proctor (Verify With Local Utility District) Under Building Foundations and 95% Slab-On-Grade Floors Based on ASTM D-1557 - Modified Proctor Below building areas, structural fill should be compacted to a minimum of 95 percent of the materials maximum dry density, as determined by ASTM Test Designation D-1557 (Modified Proctor). Structural fill below the foundation elements should extend down and out from the footings creating a 1 H:1 V structural prism below the footings. Under pavements structural fill ' should be compacted to at least 90 percent maximum dry density, with the exception of the top l2-inches which should be compacted to at least 95 percent maximum dry density. The Utility ' District may require 95 percent within sewer easements. Granular fill materials are best compacted with vibratory compaction equipment, such as a vibratory drum roller or hoe-pack. Silty soils, such as those at the subject site, are best compacted with a"sheeps-fobt" compactor. � Geo Group Northwest, lnc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 8 Geotechnical Engineering Study 4.3 INFRASTRUCTURE 4.3.1 Roadway Subgrade and Pavement Section Design The adequacy of site pavements is strictly related to the condition of the underlying subgrade. If this is inadequate, no matter what pavement section is constructed, settlement or movement of the subgrade will be reflected up through the paving. To avoid this situation, the subgrade should be compacted to the structural fill specifications and proof-rolled with a loaded dump truck under the observation of the geotechnical engineer prior to paving. Areas of soft, wet or unstable subgrade may require over-excavation and replacement with compacted structural fill or crushed rock. Subgrade stabilization recommendations should be provided by the geotechnical engineer based on an evaluation of the site conditions Provided the subgrade is dense and unyielding, the parking and driveway pavement section design may consist of the fo(lowing: MINIMUM PAVEMENT SECTION HEAVY TRAFFIC AREAS , Class "B" Asphalt Concrete (AC) 3-inches, over Crushed Rock Base (CRB) 6-inches, or Asphalt Treated Base (ATB) 3-inches LIGHT TRAFFIC AREAS II Class "B" Asphalt Concrete (AC) 2-inches, over i Crushed Rock Base(CRB) 4-inches, or � Asphalt Treated Base (ATB) 2-inches � The minimum pavement section may not be acceptable if there is evidence of instability in the subgrade. In the event of poor, yielding, or unstable subgrade conditions, we should be requested I to review the site conditions and provide subgrade stabilization recommendations. Geo Group Northwest, Inc. __ ' I June 21, 2004 G-1821 Christelle Ridge Subdivision Page 9 Geotechnica( Engineering Study 4.3.2 [Jtilities Trenching is anticipated for water, sewer, gas and electrical utilities. For safety, utility trench sidewall slopes should follow the criteria described in the F.xcavations and Slopes Section of this report. We recommend utility lines be bedded in 6 inches of sand above and below the pipe, or follow the 1996 Standard Specifications for Road, Bridge and Municipal Construction, published by Washington State Department of Transportation and American Public Works Association (APWA) specifications Sections 69-03.15 and 69-03.16. Trench backfill above the pipe bedding may consist of the native granular or imported granular soils provided the material achieves the compaction requirements presented in the Stri�cturnl Fill section of this report. 4.3.3 Cantilever Retaining VValls Basement and retaining walls restrained horizontally on top are considered unyielding and should be designed for a lateral soil pressure under the at-rest condition; while conventional reinforced concrete walls free to rotate on top should be designed for an active lateral soil pressure. Active Earth Pressure Conventional reinforced concrete walls that are designed to yield an amount equal to 0.002 times the wall height, should be designed to resist the lateral earth pressure imposed by an equivalent fluid with a unit weight of 35 pcf for level backfill above the wall, For the sloped ground behind the wall, a surcharge load equivalent to 50 percent of the soil height above the wall should be considered in addition to the above soil pressures. Z'raf�ic arid surc}iarge loads, if applicable, also should be considered in addition to the above soil pressures. Recommended passive and base coefficient of friction: • Passive Earth Pressure: 350 pcf equivalent fluid weight • Base Coef�cient of Friction: 0.35 The walls should be drained to prevent the buildup of hydrostatic pressure. We recommend using a vertical drain mat and granular free-draining backfill material to faci(itate drainage as discussed in the DrninaKe section. Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 10 Geotechnical Engineering Study 4.3.4 Rockery Retaining Walls Rockery walls are not engineered retaining walls. Their construction is to a large extent an art not entirely controllable by engineering methods. For this reason, we recommend rockery walls facing fill soils be limited to a height of 8 feet. Taller rockery walls may be constructed if facin� dense stable cuts. It is imperative that rockeries be constructed in a proper manner by contractors experienced in, and with a proven capability in, rockery construction. Rockery walls should be constructed in accordance with the "Standard Rockery Construction Guidelines" specified by the Association of Rockery Contractors. Construction should be monitored by the geotechnical engineer to verify that bearing conditions are adequate, cut slopes are stable, fill meets compaction requirements, and proper installation of drainage. A rockery wall is not intended to function as an engineered structure to resist lateral earth pressures, as an engineered reinforced concrete retaining wall would be. The primary function of the rockery wall is to cover the exposed cut slope face and thereby retard the erosion process However, some lateral support is provided by virtue of the weight of the rock. Therefore, the larger the rock the greater the mass and the more lateral load resistance available. However, since this support depends on the contact areas and characteristics between individual rocks, it is virtually impossible to predict or provide for a specific lateral resistance. The stability of the cut slope protected by the rockery face should inherently be stable with no water seepage. The rock used to construct the wall should be hard, sound, durable, free of searns and cracks, and broken in generally tabular to cubical shapes. Preferably, the rock density �hc���Id be at least one hundre�i si�tv-five (lE�) pcf. allh��u�h rock densifics ��i11 var�� ft���n� s��urce t�, �c>i u c� IZockery �Valls Facii�l�ill Soils Rockeries facing fills greater than 4 feet hi�h, should be reintorced witti ge��rid to pr�vi�le late<<�I resistance to wall movement. The engineering for the geogrid reinforcement should be provideci by Geo Group Northwest, Inc. based on the wall and surcharge conditions. Geo Group Northwest, Inc. June 21, 2004 G-l 82 l Christelle Ridge Subdivision Page 1 l Geotechnical Engineering Study Keyway, Drainage and Rock Placement The basal coarse of rock is "keyed" into the ground, with the keyway width and depth determined by the basal rock size and height of the wall. The subgrade soils should be dense/stiff to provide proper wall support and base stability. Incline the keyway back in towards the face to be protected to create a 1 H:6V wall batter. Good drainage is essential for wal) stability. For drainage, instal( a four-inch diameter perforated rigid PVC drain pipe at the base of the wall, surrounded by free-draining ballast or crushed rock. The pipe should be directed to a positive and permanent discharge. The first basal layer of rock should be carefully "slammed" into p(ace. The basal rocks should be placed in as close contact with each other as possible. Each row of rock should be well seated and thoroughly tamped and driven into place having as few voids as possible. Since the rockery derives its support partially from friction between individual rocks, point contact of rocks should be avoided wherever possible. Succeeding layers of rock should be placed so that rocks overlap each other. The face of the rockery wall should be inclined at a slope of approximately 1 H:6V. Crushed drain rock and geogrid reinforcement, if applicable, should be installed concurrently as the wall is constructed. The drain rock behind the wall should consist of a well-graded crushed angular rock with a three-inch maximum size. The rock layer should not be less than twelve (12) inches in thickness behind the rockery walL , 4.3.5 SEGMENTED I3LOCK RETAINING WALLS Segmented block walls facing fill soils should be geogrid reinforced and should be engineered by Geo Group IVorthwest, Inc. Segmented biock walis should be designed for the following soil parameters: • Internal angle of friction (�): 3 5 degrees • Total unit weight (y): 130 pounds per cubic foot (pc� for structural fill. The wall should be designed for a minimum FS of 2.0 with respect to overturning and bearing capacity, and a minimum FS equal to 1.5 with respect to sliding. The wall desi�n should account Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page l 2 Geotechnical Engineering Study for any additional surcharge loading due to buildings, slopes, parking, traffic, etc., and may be inclined up to 3 degrees from vertical. Terraced Segmental Block Walls For terraced walis, the distance between the walls should be a minimum of 1.5 times the height of the lower terrace (for a 4 foot tall lower terrace wall, the upper terrace should be set back a ' minimum of 6 feet). Walls more than two terraces high should be evaluated on a case-by-case basis by Geo Group Northwest, Inc. Segmental Block Wall Construction For the finished wall to have a uniform horizontal level appearance, the preparation of the base leveling pad is critical. The foundation soils should be prepared to create a stable, non-yieldin� subgrade base. After selecting the location and length of the wall. the base trench should be excavated so the base row of block is embedded a minimum of l.5 inches for each foot of wall height (6-inches for a 4-foot tall wall) and to allow enough width for the drain and drain rock behind the wall. The base should be leveled with a 4-inch minimum thickness of compacted 5/8 inch minus crushed rock (do not use pea-gravel). Level walls built on a sloping grade require stepping the base row of block. Start the leveling pad at the lowest elevation of t}ie �vall Wor k out the stepped base as the wall steps up in elevation. The first course of blocks are placed side by side, with sides touching. The blocks should be level, side to side and front to back, with primary attention to the basal coarse. Blocks should be interlocked as recommended by the block manufacturer, if appropriate. KeystoneT" block units are interlocked with fiberglass pins. The position of the pins controls the setback (batter), the amount of angle to the wall face. The front hole position results in a near vertical (1/8") setback, and the rear holes result in a 7 degree(1-1/4") setback. For constructing curved walls, the best results are achieved using the front, near vertical, pin position. After setting the first course, the fiberglass pins are inserted into the paired holes of each block. Pins of adjoining units shoulci be 12 inches on center for proper alignment of the additional courses. For other block manufactures, follow their recommendations. Segmental Block Wall Draina�e Fill in the voids, inside and between the block, and create a 2 foot drainage zone behind the wail Geo Group Northwest, lnc. ' � . June 2 l, 2004 G-1821 Christelle Ridge Subdivision Page 13 Geotechnical Engineering Study using '/z" to 3/4" clean crushed rock. Rounded rock such as pea gravel should not be used. At the base of the wall, install a slotted or perforated 4" rigid PVC drain line. Geotextile filter fabric, such as Mirafi 140N or equal, should be installed to separate the crushed drain rock from the backfill behind the drainage zone and to protect the drain pipe. We recommend drain cleanouts be installed at intervals of 40 feet or less. SeQmental B(ock Wall Backfill & Compaction Backfill and compaction should be completed behind each course before installing additional courses. Compact the fill to a minimum of 90 percent of the materials maximum dry density, as determined by ASTM Test Designation D-1557 (Modified Proctor), and to 95 percent if the fill will provide structural support. Walls providing support to structural elements should be reviewed by Geo Group Northwest. Only walk-behind mechanical compaction equipment should be used within 3 feet of the wall. � I Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 14 Geotechnical Engineering Study 4.4 LOT DEVELOPMENT RECOMMENDATIONS 4.4.1 I�oundations Conventional spread footing foundations can be used to support future residential structures. Strip and column footings should be supported by the dense/hard soils, or by compacted structural fil) that extends down to suitable bearing soils. Loose disturbed soils underlying foundations should be removed and rep(aced with fill compacted to the structural fill specifications. If the site soils will be exposed to weather in footing trenches, we recommend the footing trench be protected with a 2 to 4-inch layer of lean mix concrete or controlled density fill (CDF) to protect the subgrade. Alternatively, the Silt can be over-excavated and replaced with compacted crushed rock. Conventional spread footings should be designed according to the following criteria: - Allowable bearing pressure, including all dead and live loads �I • Medium dense and stif�'site soils = 2,000 psf • Structural fill = 2,000 psf • Dense/hard native soil = 4,000 psf - Minimum depth to bottom of perimeter footing be(ow adjacent i final exterior grade = 18 inches - Minimum depth to bottom of interior footings below top of floor slab = 12 inches - Minimum width of wall footings = 16 inches - Minimum lateral dimension of column footings = 24 inches - Estimated post-construction settlement • Medium dense to hard site soils: = 1/4 inch • Structural fill over 10 to 15 feet thick: = 1/2 inch* Geo Group Northwest, Inc. � ;. . June 21, 2004 G-1821 Christelle Ridge Subdivision Page I S Geotechnical Engineering Study - Estimated post-construction differential settlement; across building width • Medium dense to hard site soils: = 1/4 inch • Structural fill over l0 to 15 feet thick: = 1/2 inch* * Limiting the amount of fill settlement will require tight quality control on the site preparation, fill placement, and compaction. Lateral Force Resistance - lateral loads can also be resisted by friction between the foundation and the supporting compacted fill subgrade or by passive earth pressure acting on the buried portions of the foundations. For the latter, the foundations must be poured "neat" against the existing undisturbed soil or be backfilled with a compacted fill meeting the requirements for structural fill. Our recommended parameters are as follows: - Passive Pressure (Lateral Resistance} • 350 pcf equivalent fluid weight for compacted structural fill & dense site soils - Coefficient of Friction (Friction Factor) • 0.35 for compacted structural fill & dense site soils 4.4.2 Basement Walls Permanent basement walls restrained horiaontally on top are considered unyielding and should be designed for a lateral soil pressure under the at-rest condition; whereas conventional reinforced concrete walls free to rotate on top should be designed by a structura) engineer for an active lateral soil pressure. Active Earth Pressure '� Conventional reinforced concrete walls that are designed to yield an amount equal to 0.002 times the wall height, should be designed to resist the lateral earth pressure imposed by an � equivalent fluid with a unit weight of • 3 S pcf for level backfill behind yielding retaining walls Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 16 Geotechnical Engineering Study At-Rest Earth Pressure Walls supported horizontally by floor slabs are considered unyielding and should be designed for lateral soil pressure under the at-rest condition. The design lateral soil pressure shou(d have an equivalent fluid pressure of: • 45 pcf for level ground behind unyielding retaining walls The above values are based on the use of the site soils for backfill and that the wall backfill is fully drained. They do not include the effects of surcharges. For the sloped ground behind the wall, a surcharge load equivalent to 50 percent of the soil height above the wall should be considered in addition to the above soil pressures. Traffic surcharge loads can be assumed equivalent to 2 feet of soil. Passive Earth Pressure • 350 pcf equivalent fluid weight for structural fill & dense site soils Base Coefficient of Friction • 0.35 for structural fill & dense site soils Basement walls should be waterproofed and a vertical drain mat, such as Miradrain 6000, or free- draining material be used to facilitate drainage, and a footing drain be incorporated into the design. Please refer to the Draiirage section of this report. Backfill material ad'acent to ermanent concrete basement should be com acted to 90 ercent as J P P P specified in the Structural Fill section. Compact with hand held equipment or a hoe-pack. Heavy compacting machines should not be allowed within a horizontal distance to the wa(1 equivalent to one half the wall height, unless the walls are designed with the added surcharge. 4.4.3 Slab-on-grade Floors Slab-on-grade floors should be placed on dense soils, or on structural fill that extends down to suitable bearing soils. Structural fill should be compacted to 95 percent as specified in the Strrrctriral I ill section. Geo Group Northwest, Inc. June 21, 2004 G-1821 Christelle Ridge Subdivision Page 17 Geotechnical Engineering Study To avoid moisture build-up on the subgrade and to prevent wicking of moisture up to the slab, slab-on-grade floors should be placed on a capillary break. The capillary break should consist of a minimum of six (6) inch thick free-draining layer of l.5 inch minus gravel or 2 inch size crushed rock containing no more than five (5) percent fines passing the No. 4 (1/4-inch) sieve. A 10-mil reinforced vapor barrier should be placed between the capillary break and slab, such as Moistop�' by Fortifiber, to reduce water vapor transmission through the slab. Two to four inches of sand may be placed over the membrane for protection during construction. 4.4.4 Drainage Water should not be allowed to stand in any area where footings, slabs or pavements are to be constructed. During construction, loose surfaces should be sealed at night by compacting the surface to reduce the potential for moisture infiltration into the soils. Final site grades should allow for drainage away from building structures. We suggest that the ground be sloped at a gradient of three (3) percent for a distance of at least ten feet away from buildings except in areas that are to be paved. Final site grades and impervious areas should be designed to collect surface water into catch basins and tightlines for discharge into the storm system. If water seepage is encountered in excavations during construction, we recommend sloping tl�e bottom of the excavation to one or more shallow sump pits. The collected water can then be pumped to a temporary detention pond for settlement prior to discharge into the storm system. Please refer to the Seepage a�rd Slope Stability Considerations section of this report for additional discussion regarding water seepage considerations. Perimeter footing drains should be installed around foundations and behind basementlretaining walls and rockeries. Drain lines should consist of a minimum four (4) inch, perforated or slotted, � rigid drain pipe laid at or just below the invert of footings with a gradient suf�icient to generate flow as illustrated on the Typical Basement Wall & Footing Drain Detail, Plate 3 of Illustrations. I The drain line should be bedded in a minimum of 10-inches of washed-drain rock or other free- draining gravel material and wrapped with a geotextile non-woven filter fabric, such as Mirafi i 140N. . Geo Group Northwest, Inc. — 1 June 21, 2004 G-1821 Christelle Ridge Subdivision Page 18 Geotechnical Engineering Study We recommend that a vertical drain mat (sheet drain), such as Miradrain 6000 or equivalent, be used to facilitate drainage behind basement walls and retaining walls. The drain mat core is placed against the basement wall with the filter fabric side facing the backfill. The drain mat extends from the finished surface grade, down to the footing drain pipe. A minimum of 18 inches of ciean, free-draining, washed rock or crushed rock should be placed in the bottom of the wall trench around the footing drain, The drain rock should be protected by wrapping with a geotextile non-woven filter fabric, such as Mirafi 140N. The advantage to using a vertical drain mat is the ability to use the native granular site soils to backfill behind the wall provided the material can be compacted to 90% of the materials maximum dry density. This minimum compaction standard is required for the drain mat to function properly. Under no circumstances should roof downspout drain lines be connected to the footing drain, under slab drain or crawl space drain system. All roof downspouts must be separately tightlined to discharge into the storm-sewer. We recommend that sufficient cleanouts be installed at strategic locations to allow for periodic maintenance of the footing drain and downspout tightline systems. � Geo Group Northwest, Inc. i June 21, 2004 G-1821 Christelle Ridge Subdivision Page 19 Geotechnical Engineering Study 5.0 LIMITATIONS This report has been prepared for the specific application to the subject project site, for the exclusive use of Christelle, Inc., and the project design team. The findings and recommendations stated herein are based on our field observations, the subsurface conditions encountered in our site exploration, our experience, and judgement. The recommendations are our professional opinion derived in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession cunently practicing under similar conditions in this area and within the budget constraint. No warranty is expressed or implied. In the event that soil conditions vary during site work, Geo Group Northwest, Inc. should be notified and the recommendations herein re-evaluated, and where necessary, be revised. 6.0 PLAN REVIEW AND CONSTRUCTION MONITORING It is recommended that we be retained to perform a general review of the final design and specifications to verify that the earthwork, foundation, and other recommendations have been properly interpreted and implemented in the design and engineering plan documents. It is recommended that we be retained to provide geotechnical monitoring services during construction. This will allow us to confirm that the subsurface conditions are consistent with those described in this report and allow design changes in the event subsurface cnnditions dif�'er from those anticipated prior to the start of construction. It will allow us to evaluate whether the erosion control, earthwork, and foundation construction activities conform to the intent of the contract plans and specifications. While on the site during construction, we will not direct or supervise the contractor or the contractors work, nor will we be responsible for providing or reviewing on-site safety or dimensional measurements. INSPECTIONS The following items should be inspected by the geotechnical engineering firm during constntction: • Erosion control • Site preparation, clearing, and grubbing ' • Excavations Geo Group Northwest, Inc. �I June 21, 2004 G-1821 Christelle Ridge Subdivision Page 20 Geotechnical Engineering Study • Structural fill placement and compaction testing • Proof-rolling& roadway subgrade preparation • Subgrade stabilization • Verification of allowable soil bearing conditions for foundation footings • Retaining wall construction • Placement of capillary break material below slab-on-grade floors • Installation of subsurface drainage The contractor should provide a minimum of 24 hours advance notice to perform the above inspections so that we can arrange to have personnel available. We appreciate the opportunity to provide you with this geotechnical engineering study. Please contact us if you have any questions regarding this report or if additional information is needed. Sincerely, o� vv a s h;� GEO GROUP NORTHWEST, INC. �°/� 9� ' ro 0 -, / •� � ,y; . ,�+� ' G,��c��J { � ��� � — �- �' ��.�p:-�+"9��a� ,y , _ '�A 1116 oc,�` i , �sed Ge°� Wade J. Lassey Engineering Geologist Wade J. Lassey �'1 � 1 M � R i-�y ��� „ ti A C� �-�('.�LGu-�-�.� � ��`'� ti�' o� w'�+Yq,9'1. l � �� �� c'�G� � � �� 2 William Chang, P.E. Principal �, ����� ,� p � �`�.- ��fONAL- EXPIRES: 2/19/ �' • Geo Group Northwest, Inc. ILLUSTRATIONS G-1821 . , � I Geo Group Northwest, Inc. I � y �%� Ir» 1N�EX AV� j s4�\ N��';�. ��� � � �I�� ° ��utrijPi iE �l� N � S ��r �.,"' p~y� �NE � J �� . `��' C! �RAI , ' ,« �,,,,� �� �v� f�.D� Hle l�o �". ,��mT . `� �:,p�� JE�FERSON µq�( sHiGurus ���i PE � r, „r�ne`�� e`'rt `�`, 12oT � o�� � .. . � , II � � � � m NE p�. Y S� LM�1"ti� .IEf�ERSON AV Nfi y�:.*�."�cr�> c'�ny;��� r A��^�.sa. '` AV �, � o/ �- � ICIRKLANqo �b<;�C}.4Fu.Fa � J" r+ _, • � P�,�V _NE-y� F ��, �, �f 5� xY�c,�'� SE'v, I I y�, :'Y_.-�.�......� 7F ��+ °� ,�� I"' ��.r r,�x a x„ rz�sr_-i �` � V� ^ �\'��Jj �VF � �"i�,,,,`r��. �`-�'�'�' Sj"��'. i".f � �g I� ��j ��s�,�,; :. .�•,.�:._35 l� � I C y 1 � ,a � n`: x KIAKlANO-, / n �l ��as i ��x#*�'� �zzxn �, q`R.at _ ..� ,�,��- ,��. �`�'' I-u't?R PC� ryE' , ,! " ,�'�P?Mwdlinv �,�ai��� � °� sE �tz3 w- _ " *•-' ': .--, Q oa ' : , $ �- , ,- . 1��� {,�til���,�` ="", oI �sE �1�Zt ; k � „ �+ : n �,y�u A'� N� � ^'� ,�_,�, _ s� �.� ' �--5-ed.-� - p� -� �-^-+�o�.r....., -^�f�"_'".Z"�4{.�.�- A u'� Al�� ,R�i.�-�_��_. ^` �p .� (,�� �i ^� , , i� �' r., n va ,t r, �i s c�:; y <y�Vi �, y�� b . •� �� �_.J7`� v u�i �-y �-' � TS 1UOJN3N��L ,'a gt � j Iy�, A� N AV dE� �i_ ^+ a �?.- r � o � ^, s� � � � � �:: 5,� , �1;5j '" d.,-�� � � d �" •.,,i.. _S`E_ '� �� �,,���" ;� ��i,�;�, � '�'`��`�&i �''�`�I�_.� �P�6� � ""j �.. i ''-�'�` � � , ,°�SE �S �� s�'�: +35l��t!� r,J' „ i - ���- �7 C�7 � � .�c �ro ' �,`.,-. � � ro � , �.1r%. PI�E.�71fACE AV r�F_�� � ^ r157A^�,�� �_.� 1 � .,�, �i � � '�:.;-'�'c 1 �„^�ME�r:�.��o�� . �� 12 TH.�. CE AV NE Pl;� Nf z HE ; � I - t Z( �� � 3 i .�-� °?- � �'f' __ -. WEFN Ir� AV � ;- � I�. 3$�,o �� `.'C�� 2�rH � i rr k12 � Z7TN � � i G1 � � �� � .. �. "' NE -. �t°md+' y `�� t�.� r „),r> .�.��.t � �n I� � `" „AV NE � QUEF�, A4 N ��128TH AV� �$E "��".� � ��J,.� �il ('i �-^l, ,�, � � � ' _c; � �,�` ,...�. - x'', T J �^ q o '� j , �r: 3s �� I °` ,$ � � � � �: m �, ' �` ��v� 4 2 _�v sE �s � �. e� � 8 REDMONDW qv m � _ �r �s M ah s 8�y,;,� �s izvzH. _.. � � AV �N� � % � �'��,��a� ��. � i--i �'� %;`c' sr+E�roN av.� �N N' �,.���ira,s�<�'�" ����� 130 AV SE � p' � ( � ;��` C HE,..� Q�,�'+,�' a c/1 0� 1 j a± �; � l� � ; ,7 � -n+,l� I. � �.�'�r/ ..zl o �1�� -1 .;I�N y m L}�� I l,,�r, -`_,\J, p,.. � • - � :mi N` � �z ..._.-.- � I 1( � E i-� _ � ��— �1P�I�P1--�—A1�— N - , '`� � � -. - �<;� � �;��. � ,;'. �' ��` ��� : y nsyori� � 5 1 c,�, ,�:, r ;.oNaeT__ s Sf x � G� ,-��r Ci Nfi ` `� A$HO ' '� 'I r'ry y '1 '- \� e4' ��..� m 6� z�YASNONM . I 1�' � �� � � ��4l\� r VASypN UNION CT I7MAN� �� ����, �z,' 35�_.�.vol,rF r�ti� s�� �� _ N i i q� �� N�� Ne' � . , 1. ' ��N� �;` �� �.AV N�,- :�"N �,WHI � � t,<x � � .. �s y �1�, ^ ..N ,`c n ,�. '�*t N �. 7 s,' ,lh a �v� �'�� y d 1 � x $�r �� t � ���Pr:'-�y' �:3NI�AV ��°�l��N �r�9V N ��'�`� �i ' 35 �� ,.',._��� 13 ly i C CORTE1 A�..NE � ti�'?*s �"� �:�-NE�t� �I� �'S, �M � ��� ^:G�RE�K ,,�5' �`d � � O '_.:._. ;. , .. . . `--f- �-'I� BREMERT�._AV.. E� � �S r., � ::�' . m ./ � n .... Nf �. , �. I lo�lm 1,,•.T ('m. .� � � �. ��.� I PK:WY SE ba � �" L, I �_ i��� �� �� � �—� -- , cn � � ��c� � � � � � �-, ��� ��� � � '�� � �' � �� '�� sE; ca I,� � A����N� r �r- S � ,, ,r � � � �-�3 C o (DU�ALL'AV) � .I� I .vr'� � i � � ' _.,.....n�_..H18£I �..;�:<..: � i � r �"'� ��, �� � 13.'�H 'I�"�,a��'AU � S m 1��J�x1.;� ' �'�_ � -.,i . .-eas�z� � �] ��'m� I''h - ..�U�.�-�+ - -',,.".""t � "_'�! Vi r,T,____� = , g----$�'-,�� �.- �� / � O C� � ;�"' —��. - � , AV NE ��� s; � 8 V „ ''_ '� �` 'pf� m in � � Cs7 ,.�"iy 2 I� ! FI�LD^AV NEh � �`e�Etpf�y_,�+^ ?� �I,�� �i� � ,%" � C m C � �' � F�/ I - - � .� �a'� i�.`'�v'�' t\ GPA1 ..AV N� I �I A f� � �.�� 1' ,. i ( , �. IA � N � � y � �"'3 �.v�..'L._1�N� `AV__SE rfi'+�� �� �"µcr � f� nv se ~ ,�p. .�, � CT Sf� ° 'z � r- Ia a�� I G� ,��, � I� g � ,�c� p�s��.J� I<q '`{�� �u� h� �ia� ��� ^..� � � sr � H�,�,�d s ��o z � � �'�� -;la `,`.�Q .�V NE�� '� o ' SE 1-�i . �g a+ �... � rn t0 � Oy 1441 H ,yf. . -� r L _ � f ` , ��_ •�TS' ^`�y �� O ..a O C7 � , m � AV SE 'i in '�, ''`�'�,�i � � ' � l�F, �5���.1;%` )y`� -� Im S Q Z � � A��� 145TH PL �` m Ti.LYONS I`-� �'''�1�AV _ i ; yl1� x. � N19�*, �' ^ - :: n�. SE � � f'�� _. .SE�- I ',,o i� ����_.-�...�_ m�_�" ��. ., /•.�� `I/� j � �j;,.����ps a 9 !S i� yx � `n -�'m ! - y_ � ry x � a � E-w � � �opG � � y �a�T�, nv N, -+ �1 � �; x�i I ---- q � - � � � `� �� ia�iu�� nv sE 9y � ,_ �._.. SE -� � _1^ ' � , I ,_ .�,1 I --- - -- --�1 - -� --�----._� ��_ - �,.�� .��h i �eon� nu:ier /���om v!'cn in�'cn �F �n i0000 :� � �:.een.,.,.r'.: _... _.... _ —� � / 1 , LEGEND OF SOIL CLASSIFICATION AND PENETRATION TEST UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) -- l - GRDUP MAJOR DMS10N g�� TYPICAL DESCRIPTION LABORATORY CLASSIFiCATION CRITERIA �� � WELL GRAOED 6R/lVEL9.GRAVEl�AND Cu={De0!01�grester tfm�� GRAY�S M��'��E��Fl� DEIERMiNE �'(�30J)!(D10'0�be�ween 1 a�d 3 PB2C8JTAGES OF - GRAVEiS (fdtle a no POORLY GRADm GRAVEIS,AND GRAYH.SANU GRAVEl ANO SANO �T MEETING ABOVE REQUR2E3VAENTS COARSE- �°�Th�� Rnee� GP MO(7URES L(T'fLE OR NO FlNES FROM GRAIN S2E GR/UN�SOILS ��Gn�s OISiRiBUTiON ATTB2BERG UMRS BELpW larya Than Na 4 CURVE g�� DIRTY GM S1L7Y GRAVELS,GRAVH.SAND-SRT MOCTURES Cp�yT m P.I.IESS T}IAN 4 GRAVEI.S OF FlNES (with some CLAYEY GRNVELS,GRAYELSAND-CLAY IXCE�DS 12% ATTERBERG L1MR5 A80VE {��� �C MDCTURES ��RSE GRAM� 'A"UNE SOJLSARE or P.LMORETHAN 7 CLASS1Fim AS --- WE1L GRAIJED SAND3,GRAVQLY 3AN0.9, FOLLOW� Cu:(pep I D7�graEx th�n A SANDS CLEJW � �E OR NO FlNES Ca=(030�)!(O10'060)between t arfd 3 SAN0.S (More Than HaM Coarsa Grains mme ar no SP POORLY GRADm SANDS,GRAVEILY SANOS, <5%Fne Gralnad: �MEEiING AHOVE RE�U�tflNENfS More Than FfaB by fines) t1iTLE OR NO FNES GW.GP,SYV,SP WeigM Larger Smatler Than No. Than No.200 4�BP°� AT1F]�862G UMRS BELOW >12%Fine Grained: S�e11° DIRTY SM SILTY SAN0.S,SAN0.SILT MDCTURES GM,GC,SM,SC CONTElJT OF "A^LINE � witl� P 1.LESS THAN 4 RNES � 5 6012%Fine IXCE�S�� ATTERB£RG UMITS ABOVE �� SC CLAYEY SANOS;SAND-CLAY MIXTURES Grained:use dual "A"IJNE fines) symbols wilh P.f.MORETHAN 7 — � �75 — Liquid I�mit M� NJORGANIC SIL75.ROCK FLOUR SANDY SIL7S � -- - i (Balow Al'me on <5076 OF SIJGHT PlAST1CITY , p���,C�q� --- PLqST1C7TY CHART A-{.ine FaR S01L PASSING � FlNE�GRAM� NeglgiWe Liquid Limit 9iORGANIC StLTS,MICACEOUS OR 5p - enie NO.40 S1EVE CH a OH SOIl3 a9 ) >50ri � DIATOMACEOUS,F11�SANDY OR SILTY SOIL — � � �� �q��L� � INORGANIC CLAVS OF LOW PI.AST1CfTY, X qp <30% � GRAVaLY,SMIOY,OR SI.TY GLAYS,CLENN 0 (Abwe A�.irro on CLAYS Z � Plasticily ChnR } Negligibls L��� �NpRGANIC CLAYS OF HIGH PLASTICRY,FAT F� O�ganic) �� CH �� (� CL or oL H Mors Than Halt -- — � � Weight Large� Liquid Limd 4RGAMC SM.TS AND ORGANIC S1LTV CUVS OF MH nr OH Than No.200 ORGA��TS 8 <50% �� LOW PlASi1pTY � 10 � Sinve I (Bebw A-Line on 7 p��h,C� Uquid Lim�t ON ORGANIC CLAYS OF HIGH PI.AST1GfiY 4 OL M � >50% D ---�----- ---- 0 �O ZO 30 d0 50 60 70 &1 90 t0� 110 HIGFfl.Y ORGANIC SCILS R PEAT AND OTHE3t HIGF�Y ORGAMC SO4.S LIQUID LIAN�T(%) SOIL PARTICLE SQE GENE3tAL GU(�ANCE OF SOIL ENGIN�R1NiG U.S.STANDARD SIEVE PROPQtT1E3 FROM STANOARD PENETRATION TEST(SP� FRAC710N P�� Refadned SANOY SOILS 51LTY 3 CLAYEY SOILS _ T__ Slev@ SiZe Siev! S@e Blow RelatNs Friction Blow Ilncanfined (mm} (mm) �� Density Mgle Oescription Counts ��� Oescnption SIL7/CLAY i200 0.075 N °R b.de9� N qu.tst � S{1N0 0-� 0-15 Very Loosa <2 <0.?5 f Very sdt F1NE N40 Q425 A200 0.075 4-10 15-35 28-30 Loose 2-4 0.25-0.50 �� SaR MEDIUM �t10 200 #40 0.125 SD-30 35-65 I 28-35 Medi�m Denso 4-8 I 0.50-1.00 � Mediwn Stiff CpARSE � I 4.75 #10 200 30-50 85-85 35-42 Dense 8-15 I 1.00-200 � St� GRAVEL 1 >50 85-100 I 38-48 Very Dense 15-30 I 200-4.00 i Very Stifl I ' FlME I 19 #4 4.75 i '� >4.� � �� 3 i COARSE i_78 19 �� C06BLES� 7B mm 50 2U3 mm ' � Group Northwest, Inc. BOUlDER3� ��mm — Geotechnical Engineers.Geotogiats,S ROCX � Errviro nmental Scientists >�e mm FRAGYENT3 /3240 NE ZDth Street,Su�te 12 Bellewe,WA 98005 . ..RpC�( >0.78 ctibie meter in volume �e(425)8�9�8757 Fax(425�84&8758 P IATE A 1 TEST PIT NO: TP-1 LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 367 1l+/- DEPTH SAMPLE Water OTHER TESTS! ft. USCS SOIL DESCRIPTION No. % COMMENTS �ML Silty SAND, dark brown, loose to medium dense, moist — \ (Top Soil) �^ �— -----------------------� S 1 19.6 -Probe 3" 5 S2 9.9 ML Sandy SILT,brown, some gravel and cobbles,dense, damp. S3 1�.3 10 S4 19.5 15 Total depth = 12 feet bgs � No ground�vater seepage observed 2a zs _ TEST PIT BORING LOG �1 Grou p Northwest, lnc. CRISTELLE RIDGE SUBD[VISION � SE 95th WAY � Geotechn�cal Fngineers,Geobgsls,& Fmronmenta�scientists RENT01�1, WASNINGTON JOB NO. G-1821 DATE 6/3/�)4 PLATE A2 TEST PIT NO: TP-2 LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. �302 ft +/- DEPTH SAMPLE Water OTHER TESTS! ft. USCS SOIL DESCRIPTION No. % COMMENTS 6" Topsoil ML SILT,brown,with fine sand,dense, moist S 1 15.9 --- ---------------------------------------- 5 - ML SILT, mottled gray, stiff, moist S2 21.4 ---- ----------------------------------------- S3 7.5 � Sandy SILT,brown,with gravel and cobbles,very dense S4 15.3 (Cemcntcd Till) 10 - ------ ------------------------------------------------------ SS 6.9 �s ML Sandy SILT, gray, with gravel and cobbles, moist,very dense(Cemented Till) S6 7.G 2U Total deptl�= 18 feet bgs No groundwater seepage observed 25 , _ TEST PIT BORING LOG �_ i 1 Group Northwest� 1IlC. CRISTELLE RIDGE SUBDIVISIOIV �� SE 95th WAY � xotecnn�ca�5iqmeers,Geo�ogsts,8 RENTON, WASHINGTON Fsvronrrental Scientats JOB NO. G-1821 DATE 6/3/O2 PLATE A3 ' TEST PIT NO: TP-3 LOGGED BY WJL LOG DATE: 6/3/04 GROUND ELEV. 397 ft+/- DEPTH SAMPLE Water OTHER TESTS/ R. USCS SOiI DESCRIPTION No. °/. COMMENTS � SILT,brown,with sand and gravel,weathered, medium dense, moist S 1 14.7 - Probe 3" 5 ----- ------------------------------------------------------ ML SILT,browro, with sand and gravel,cemented, hard, moist. S2 16.8 -Probe 1-2" S3 8.4 �o Total depth=8 feet bgs No groundwater seepage observed 15 TEST PIT NO: TP-4 LOGGED BY WIL LOG DATE: 6/3/04 GROUND ELEV. 434 R+/- �EPTH SAMPLE I Water OTHER TESTS/ ft. USCS SOIL DESCRIPTION No. °� COMMENTS _ ML__ Sandy SILT,dark brow�n,some gravel,loose,damp _______________ - ---------- S1 13.9 Probe I/4" ML, S[LT,brown with sand,dense,damp - ------ ------------------------------------------------------ ML Sandy SILT,mottled,with gravel,very dense(TILL). ------ ------------------------------------------------------ $ ML Sandy SILT,gray,with gravel,cemented,hard(TILL) S2 7.0 Probe 1/8" T'otal depth of boring=5' No waler seepage was observed. 10 — TEST PIT BORING LOGS �! Group Northwest, jI1C. CRISTELLE RIDGE SUBDIVISION � SE 95th WAY � Geotechnical Engineers,Geologsts.& RENTON WASHINGTON Ernronrtental Sc ientists , JOB NO. G-1821 DATE 6/3/02 PLATE A4 . ' TEST PIT NO: TP-5 LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 435 f�+/- DEPTH SAMPLE Water OTHER TESTS/ ft. USCS SOIL DESCRIPTION No. % COMMENTS \IvQ, Sandy SILT,dark brown, (Top Soil) _ �— -----------------------� MI, SILT,brown,with sand and some gravel,dense S 1 12.2 ------ ------------------------------------------------------ 5 Sandy SILT,gray, with gravel,very dense, damp Sz �'8 ML (Cemented Till) Total depth =4 ieet bgs No groundwater seepage observed 10 15 TEST PIT NO: TP-6 LOGGED BY WJL lOG DATE: 6/3/04 GROUND ELEV. 402 ft+/- DEP7H SAMPIE Wate� OTHER TESTS! I R. USCS SOIL DESCRIPTION No. % COMMENTS ' ML, SILT,brown, with sand,dense, damp --�- ------------------------------------- ------- --------- Sandy SILT, gray, with gravel,very dense. damp S1 8.� (Cemented Till) 5 Total depth = 2.5' No water seepage was observed. �o i _ 'I'EST PIT BORING LOGS _ �1 Group Northwest, j11C. CRISTELLE RIDGE SUBDIVISION � SE 95th WAY � Geotechnical Engineers.Geobgsts,8 Envronmenta�scientists RENTON,WASHINGTON JOB NO. G-1821 DATE 6/3/02 PLATE AS _ I TEST PIT NO: TP-7 LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 402 Ii +/- DEPTH SAMPLE Water OTHER TESTS/ ft. USCS SOIL DESCRIPTION No. % COMMENTS ML_ SILT, dark brown2 with sand,loose moist�Top Soil) ________ ----------- ----------- S1 18.8 ML SILT,brown,with sand,weathered, loose,damp ---- -------------------------------------- S2 11.8 5 ML SILT, light brown, sU1�; damp S3 16.6 - ---- ---------------------------------------- ML Silty SAND, mottled gray to brown, with gravel, dense, damp S4 12.2 10 Total depth= 8 feet bgs No groundwater seepage observed 15 TEST PIT NO: TP-8 IOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 371 fl+/- —-- --- -- -_ _ ----- _ i DEPTH SAMPLE Water OTHER TESTS/ it. USCS SOIL DESCRIPTION No. % COMMENTS �I ML Sandy SILT,brown,witli gravels and cobbles,dense �i (Weathered Tiil) SI 9.2 -Probe I/4" - --- ----------------------g------ry--------)------------ I ML Sandy SILT,brown,with ravel,ve dense(Till 5 Total depth= 3' I No water seepage observed. ' 10 I� _ TEST PIT BORING LOGS � 1 Grou p Northwest, jllC. CRISTELLE RIDGE SUBDIVISION .�� SE 95th WAY ��� Geotechnical Engmeers,Geobgsts,8 En�ironmenta�screntists RENTON,WASHINGTON JOB NO. G1821 DATE 6/3/02 PLATE AG . I3asement 6f'al! � I'erfical l�rain Afnt Slope to drain � (Maradrain 6000 r or equivalent) 0 o a 0 0 0 0 0 � . ° BACKFILL � � - WFiATI�F:RED TII.L � COMPACTED � I F�:1 V ° TO 90% ° _ — — — — —— — —— — — — ————— — o � � - o p o 0 CEIv�NTEll GLACIAL TII,L � � � � � � � - IH2V ° o p o " _ O o � O . 0 0 - � o�� - � : ' Sl.rlf3 0 ���.....•• ..a . .�..�..T.—.�...�.�.�.�..��.�. GEOTEX77LE � c�t�ir:E.Jir�rei2F'..:�X: . . FU,7ER FABRIC ' _ 1�0071NG ' . (�Llrrafi 140 N, ar ' e�u�v�re„t� I I I�I I I I 6f�A1,1,I�R.41N F'ree Urauring Afaterial �Liinimum 4-inch diameter rigid,clotted (Crashed or washed rock) nr perjorated PVC pipe with positive gradient to discharge NOT TO SCALE NOTES: I l.) Do not replace rigid PVC pipe with flexiible corrugated plastic pipe. ' 2.) Perforated or slotted PVC pipe should be tight jointed and laid with perforations or slots down, with positive gradient to discharge. 3.) Do not connect roof downspout drains into the footing drain line system. 4.) Backfill on the exterior of the basement wall should be compacted to 90°/a of the maximum dry density based on Modified Proctor(ASTM D-t557). The top 12-inct�es to be compacted to 95"/0 of maximum dry density if bac�ll is to support side�valks, driveway, ete. Fill below slab-on-grade conerete floors should be compacted to 95%maximum dry density. 5.) Capillary Break: Minimum of six(6) inch thick layer of free-draining gravel containing no more than five(5)percent finer than No. 4 (1/4-inch) sieve. A 10-mil reinforced plastic vapor barrier, is recommended over the capillary break,protected with sand. I T'YPICAL BASEMEN'I' WALL - �- BACKFILL AND DRAINAGE DETA[L � 1 Group Northwest, Inc. : Geotechnical Engineers,Geobgisu,& CIIRISTF,LLF,RII�E SUBllIV"ISION Envronmemal Scentists RENTON,�VASHINGTON SCALF, NONE DA'TF. 6/16/04 l4L�DE W1L CHKD WC .lot3 Ho. G-1821 PLA'CE 3 I ' � . APPENDIX A TEST PIT SOIL LOGS G-1821 Geo Group Northwest, Inc. ��� � . C��,.-�,� �.�� �,��� �,�,_,..�.,� ED MCCARTHY, P.E.,P.S. Q'`P'"� - �f'��� � ;��� Letter of Transn�itta/ To: Michael D. Dotson, PE City Hall 1055 S. Grady Way Renton, WA 98057 From: Ed McCarthy Date: July 24,2008 Proje� Cristelle Ridge Re: Cristelle Ridge Revised Pond Design ❑Urgent � For Your Use ❑ Please Comment ❑Please Reply Enclosed: 3 Copies of Cristelle Ridge—Section 4 of TIR Comments: Michael, The attached report provides documentation for the revised pond at Cristelle Ridge.As we discussed on the phone,the design includes the following features: ■ Pond sized for Cristelle Ridge and proposed short plat to west ■ Detention and wetpond sized for small area of offsite tributary lawn;this allows us to eliminate the bypass pipe that was shown on the approved plans ■ I've also show an aftemative wetpond configuration in Appendix D;please consider this design in your review Ed McCarthy Cc:Jce Singh ,3z�2 ���� r + Cristelle Ridge TECHNICAL (NFORMATION REPORT ADDENDUM CirY oF RENrorv Fi�E No. 719-016-031 Prepared by: Ed McCarthy, P.E., P.S. 9957 1715`Avenue SE Renton, WA 98059 Tel. (425)271-5734 Fax (425)271-3432 Submitted to: City of Renton �� M� �� Ren on�WA 98055 ay ����oF xAsy f���� F � � � C°d rf July 22, 2008 O 28576 ,�V �-2� �ss1�NALR��� XPIRES: 2/19/09 I r TABLE OF CONTENTS 4. Flow Control and Water Quality Facility Analysis and Design.................................4-1 APPENDICES Appendix A. Stormwater R/D System Design Appendix B. KCRTS Documentation Appendix C. Hydrologic Model Documentation Appendix D. Schematic Drawings of Pond Design LIST OF TABLES Table 1. Existing and Developed Site Basin Conditions................................................4-4 Table 2. Summary of Performance Standards................................................................4-5 Table 3. Wetpond Design Summary.............................................................................4-11 LIST OF FIGURES Figure1. Vicinity Map....................................................................................................4-2 Figure2. Basin Map........................................................................................................4-3 Figure 3. Stormwater Design..........................................................................................4-8 Figure 4. Comparison of Flow Durations for R/D Design..............................................4-9 i Cristelle Ridge TTR—September 2007 t � 4. FLOW CONTROL AND WATER QUALtTY FACILITY ANALYSIS AND DESIGN This report is an addendum to the Technical Information Report prepared by Touma Engineers (June 20,2005). The proposed stormwater design,described below is intended to replace the currently approve combined wetvaulddetention vault with a combined wetpond/detention pond. The stormwater tract has been expanded on the property to the west. The size of the wetpond/detention pond is designed to accommodate runoff from a proposed short plat on the property to the west in addition to stormwater from Cristelle Ridge. Part A: Existing Site Hydrology The project site is bounded on the north by SE 95`�Place. Undeveloped property lies to the west. The site is bordered by existing single-family development to the south. The site generally slopes drains to the north with an average slope of 20 percent. Some areas on the site have slopes ranging from 30 to 45 percent. Runoff from the site is predominately sheet flow and is collected in a roadside swale on the south side of SE 95�' Place. Cover types on the site primarily include second growth mixtures of native conifer and hardwood trees. A summary of cover types on the 3.54-acre site under existing conditions is presented in Table 1. Based on the King County Soil Survey(U.S. Department of Agriculture, 1973)the site consists of Alderwood soils. Runoff from properties to the south flows to the east and is collected in a tightline that conveys drainage down the east properiy line of the site. This runoff is collected in a drainage ditch along Duvall Avenue and is then conveyed to May Creek. Part B: Developed Site Hydrology Under developed conditions the Cristelle Ridge site will have 1.13 acres of landscape and 2.41 acres of impervious surfaces (Table 1). In addition, the pond will be designed to accommodate runoff from a proposed future 1.46-acre short plat that will be developed on the property to the west of Cristelle Ridge. Stormwater will be collected in a pipe system and conveyed to an onsite combined wetpond/detention pond(Figure 1). The wetpond will be sized to treat all contributing runoff to basic standards. The stormwater pond will discharge to a roadside ditch along the south side of SE 95`t'Place. T'he pond has been designed to meet Leve12 flow control standards. The approved stormwater design of the plat(Touma Engineers,June 20, 2005) includes a bypass pipe system, intended to collect runoff from developed areas south of the site. Upon further field investigation and record drawing review, it is apparent that a relatively small offsite area to the south drains to the project area(Figure 2). Basin A,0.75 acres in size, drains to the fuhue short plat. Basin B, 0.56 acres in size,drains to Cristelle Ridge. Runoff from both of these basins will be collected in the onsite stormwater system and conveyed to the pond(Figure 3). The bypass pipe system will be eliminated from the conveyance design. 4-1 G-istefle Ridge T!R-September 2007 , , �r� '�f-�-,.. -,_ 1 YJ. ,. �l :� � �\ ``�.� ,�� l��,�:;, :jf%� , - � , .� f,a� �:j �� ��, � , , . ;}� ) .� ..�.�.,�.� � � �. � � F : : '� c� 0 f' m �' n � i� � � � � _ .� S�, �i`\ 9�.f�� �\ � Project Slte ay O � � G` _��_ a� , � m � � _, .` `�_. ^ ;t � , � ,Q �� �` � ;� soo � �� 3 `� � � : ; ��� Vicinity Map , ' -. • � Cristelle Ridge Storm Design � 9957171stAvenueSE 7/21/08 2,000 Rernon,was►urgtoo seoss King County,Washington Feet �'0"e: lazs�z�i-��a Figure 1 Fax: (425)271-3432 ^ ,, � 1 �� � ! ��, ! g�n wr�' #�° �', �'a .•'�$ J � ;, !_ �; K � �?w�1 � � , �yy : 1 � " � �� z: �� 4, F� ` r M' �. `+ t3 ,t'i r ey�,��� � ✓ `r. � � "O 7R t'� �i.�. .. �� � � .A'jl ' �. � "►,�v ..��- � ...�'�..:� ,� ,.,� . � � �� -0� � , � i � `� � � �n, . . . , '�+� �►' � ... '`�C , '��� ,,v '��;�� , t k',� ",� � .� ' � , i , ,� ;� �' " � ��;�f> �`�� �1 ;� � ;�.,, + 3 ;�� � � � ` � � ' �: _ .,., � r��j�'F,� ;,,�;.��,�r�y ��. ` _ -.n, w� �' � �.b�� „ Ir' R y' ` k' � • w� � �:.. � .^ r . ,..,_�fi�1 � . � �t � „�_,�" �� s'E' E���I.�..�II� ,-�;'!��b���..�; y,�%T� ,�"��* ,.1 '�i��-.... ,-. `C 4; �1 r ., /f .��y„� � `,� M,za t � (� � N,,,' ,� . �!'_4��;'��.�i�1 1� ' .1 ��Er��"`� �� S�I��`R+3�' S � � �'4�-���'F` �.'"91 ��� .����" `+�'�' , ` + ,,;� . rrT �y� n�� . '�.", �; c� W ' � s ' , � � � + ,� w 4 �,� �D �1 � � y� �� l�s � (� � �'�'rp�:� m � �'� w! � r ��" . ,�' � .. .. . -�i'��/,�` •� �n �:.W - ��, . „o,�,,�. `.•.. � (f� d v R1� C �' r n .�'�r��'�' , a'q�.`�� k��� ��r�'�; �i . ;� !�ll �,,��,,w,�.� °'�i J C) P � �, . � , . � , } "� i. /��`i" w ,�r� � • �, .� � ` � ` ,g�` ��T F'"`� ' . � � »����`�� o ,..����� t �:� 1�3. .,� ,�?r+p�. � � ��aMw, �� t."'• �.._� � � $ '+N ,J� �.�� . �../". � � � � N :��? . �..+.�' �'� \`�Y� � Co. _ � �`, F� � (� �''� �4 .. ��. I ► �r�t ^+ ��F ':��T.;j��. � � f�' +� ""�� .:.� � y�.� III,s C 3 n �'��"���� ��: �,� H� � ""_ mo ni�w Y`` '� '"e.'�t�k��� a�f,���, �,��i +� "�5�^a�N ,�t� ,�x��L���`��4 , • �, `�3,�, t � '� , .:�'� ���",�!� �.( �1 �►: y7 �" ,�y�p;.,,•'�,�� :� i s ��� r' < �' O f , �y `t � �:`µ�� �`� r 1: w��� �f,,� y+� ,.� �.t. 'J f.,♦-d � C !` .� � �,;� r ♦ ti.Sy y�^ . ilAy, ° 7 . �X ��'� ? � � � k+`� �• b"� ��. ,� �.,f� f/� i i� ,��� f��'�,46'� ��'�/��':f'i,( `� \';�;�w . '� �_"`" c��rj��. 7 � � +f�',�'� �.���'� � � - � �.� 7 �;j! .�}(�,� � ,Qr� '�,.�,�`�•�� +� s'�� '� ' � �1{if�r�7 �� � O � F� � �A �.��.. � ..'� ,� ' ,� � '1�p .. ���11'a. �1 � r � �`0��"'7#�,�`, 'PJF��,'. �a��S�y� WL v. t e • .`j' 7 C� ��.., '� "", ���a .r� 4,'� ��+ �-��A ��,�� t .�� <• }�.,� � ��`" T�� ;� �i„ 3�, L� 3 . '. ` . ;'� J . � ;� ..+ . r'�,� � 1 ^ , ; x� � R` ♦'a i.d �r , y� a � ��. , t �+'.ti 1 ��.„ t , � ��� cn �J;�► x' �M':�,v,, �yT,�.t' ,►..t : :�' ' �',+Li l��a.:���' :y.• ��e.+� r;� ��'� "'�� . ,n� ,y�'��.:�,/� �' • ,, � `'�'� , ��_ . �*�,.�.'1 _4, .�l ' ,;�.. � ` rT��. ���r..�•?. � � Ya� A5 M��� �4.�x ''�`:;;�+ R.�+���.. ,, ��� � �,� ��_ � cn� ! `' ;�� 1�� �" " �"�" „� t�,"....��� ���`R t kP .t �4 S: ti y��q�, ,J1M►t �'` , . t{ � 2?� �` 4 +� e '� , .y�, i'tCo'.1c�1 x �� 1 �oT:�9 1 'S. ;a i : f � 4 ,�� m1 .�x1�1 L,*. ,�q}�i �� ,'�;,. _ �!�,�.�R;�1.�A�1� ���..����7.�'��� '"'t i 1 ti �±���, x.�x���� t ��.,���: �,���I� . • :+��'�r, w�,��� �„,��"' `-,�.` ��,'�R '�+��t� I ,�`��~ i� � - � � �+� 'W' ��d ��y���r • r�� �� � ���I +", _ �_ +�' : . AI ps � '" �+�aa,��M �, „ t'� � ~ � �.c ,,�q�, �+,� v' r6 *�' 'q4�, » �a' +I�� Y�wa . �� �"''!"�». .�' �.* y�. .�, ,�:..� � _� �. r � ?'� - "?��� ,�'� _ 4 +1 d� ��1 "1 �.•y�T}M ty'g' ,;,`j �,!3�. .h4.�T�y'�*,fyf�t".� ��t" ��' �r�-cw;.} !4+��.� y,,i,�ri���,�ac:%+...� ��s�+�` a ,� � J-' if � %,��r 'j; 1� t �L'�l'�t v-:R�� }.+'I�ia,�1��^ ��l:L, � �•w��y�,'_1���. ��s ► t��r4"i ,-��#� ��„`�{4�(t1{ ��'�*�',�I m-�:r�f^ ''P,*a r a�..,��:w �� ".,��, �,.>,�i+.,�t'.,.��� .'�. } ..�• ��,�;�`<t'w:•.�S- •::A:iA; 4 ''"�Y ��s°. ,;+i.^l��r�,� rt�Apti�+e•','�'� �1"�•i�'!i f �''�����+'i�3''/+ � � ��-'�.', i ��.. . , I � `. ` . ���3'�� ��. � .��..���,`�..� ...��. ..� A �'Y"� `Y"R��- :r. �� � �� � � .�.�. � �:�.. l��r: � �'i` ��1. �.� l "�.'�'� �'''�� .�•�.�s��",�k.�� •� �:''��� � i� V�;��, ��..�` ����w•y;'6�,-.. �1r �'n w ,1' e x �. 1 � . �.' !`�wt,� }a, � � � ., s ►� ti1 1 , . ��. k � . � ' , . ���ppp , .. ., .e�. . ,.d� ., `'�t� . E .,�„�' I� _. � t �: . , .y` '��� .• � Y.W j�� � ..� ��J�Y�(�F '� ;��• � ' �p$� �v N � I �`.V.�.+�. � ,; '�t �' � '� � � 't�',� :� �i °" ;.�t� +�`� .. ♦ � p ' "'°`' E ° ����. � .1 /� � � �� � �►a►°�'rA9� .,a"� �*•� �� �, y, ` z•, 915''��R � �,�a,� _ytir� .':j ���� . . � e M�" '�` �r.�`G. �'y� �''�..��`4 , ��� .i1/1.� � 11:'��.rr �`�W,,�, �.•j �ix��� ��1i,-�,..�` ^R..`1.. ,M1 "�, `,....;a.. �A � y ���+.y,;� � �+( . ; � r �� � ( r�.' i�Sr m "•� ,,�.�; v,'�l�� �, ��� ��' ��::� �'��p... ;���� vs "` \ `h .��'ti , _ ,... , .,, • , - , � _ . � l� �. : .. , y , �,;.: � -- '- �,�„ ' �.. 1� � � � � 5 ��`�.�� ",�' ��.. r_a 4 �` ,'` � ,. �` L 1 .,� r!* 4 ,�5�N }y x� �'� F � d "'!9 �� "R `���� �t i,�i�,y\ `�ry� � e�� '~N�,� T 'y• �`'� ,/ i l( I.) '3� :,�.�� .� �: tfi��, <�.j'� �rA.� �� ��n:, $��ti: ,� �/�y�4�'�`„`:w;�e��E i ���:i�"'� J . .� , y�- � ` ' "y'i1���'`�. �� -u " . •r —' � .''i`�f �i- �P �, '��} .� ` i �i",,'° a'+ `� �� t m �,,•� r�'/ * tM,y�}��``s ��, �';'�r � :.'�►i,'� x t �t h.�"\�R � �,�d , _. S�� � 4��'f 5Y �n�:� �7`�,.]�_�r•� �!�"��`. � �`A,,.' . - ^� y�� �,41� �1� � � '. �. . N ." y( , Y` ' , ����►�<.r����2�� ' � , �������.'t... ��'�;.h ^ 44v.�.�� ����` �rF'�a,..�. . py �•y-,l 3s`:'�!+� � . ., ,'�� �;�; F,�'1Q11', ,� "A -�-, .1fiA.'!, . � }c' � "y�9i� :f! ;,��Y. �! r��F�'����v. 1''�1�`� ,,� �y�5�� .. ..5 W�$ �'w ����':- ���'�4�,r'� ,. ;� �..���:,.��az�,. "P1f�.�Q,�'+,�-���,���w,a'��s•L'�'.�,��/ ,r'..�:i��i:.�e�u;s'.: M( ' q �'+' k ���" y��, � � �D � ��ja'".�,, �'.u„•�,� „'�'� ,�;;;��.�.,�.. .'h ...,�., "'` �j�A��»:f;:��� �'� v. .�'•�� �� •�:;, �'��'M�� ��'S.4r:'!h ���E�,�^�`'�' 4:r'�' .� "�`t'�"��;.�����F' ,�^ " i � . :-. , _. - .. e � � � � . _ `� . . y.:.>,,� .A� ,7'�r�rs'• , a ',►.�- - K*u1lM �°,���i., +,-�. �,�`.�wsf ,,. j y� �. `� i r y { r S �� � � � �- .�1� r i n� i.! , :,w, . , . ..�.'.. . y�' � J f. � � � � m A'�.._. � ""�.., ��� � � � , .''',� '��_ � � �`���� 1�., o .' y y� '"4'Ir�d f.�M�''.'�'' b rr► n �' n ����� ��.'YF � � _ '�i_:Y:� O W �^rt..S'���'a ` .sy{ � i �'J� i.h�.`,r:Jn� S'='� � ��4�';.F"" ��- �'Cr'• �%.-i�.*-.. `!'�...{�, N N � � � � + v..:�1 s�}' ~ � �` �Y 1�.' �, C � � ` ^ �PL]� ��y^ �y�� � �����'� ','.� . . _ cn cn<¢ � �, ., R� ... T ;�qr ' w� .FN C � " !S�, �i �' T k.yr.^'T'�y wyY,�.� ' � » a'v ¢ 7N'^ '� Ul 0 7 . v o m � � " �: � (p 7 ; � C d � �:.v� 4� "`�"-Yt'�� �1 '�""7� Y�'� • � r � � 6 i" < (D 7 w; � � + , �. � V1 � m � �,���q ' �, r'.,\ 4. _ �j ? � m: e; 7. d � N 4�� b r�y:y' '�;:�" c,1',�'//�� �r�' /� � V q �.�� ., � ` Ti I;� * 4ti� \ •%y'�1 •r'r•V�. � � /1(� 7-1�j� � 4�{� �.�'[� •i.�{".1:� Q� V � l 1 N `S' ffi �' � ' d � •�"t .'0, � � (p p (D 4y ��r''��t � t�. �4,�� �� �>E"� � � � � � C�� � � ♦ m -, r D �• .�, ;, �w qI� ,s � o � .. e�� '.��..��; ..,Mr�•� �„�'� � ...r� � 'ik' �. *r� '�U c�D � (A `.. •�`����! ... .�` �, ����� • cp' N � �D ..-� � * �ti. � �'1 ��`{?'`.rnt 4,°k'`"�y''�a��`�y':-..ti"'4 �r,s;'_,�'�"x,.'4� `��+R',���1 �n '� ."*' 0•C C •N• �� �''"�;.-��w 'h�r� �,'��" '".. � ��♦ as� �� W � W � �n i i �r • � m i �a '� ,- ',�Fp► � ' ht.,� : � u� eD � ° � ::.'�� *�;"�'�"~r a�'z�A ,�,*� '*G�� �,�� ��" E � '�'� � � ^• 3 '� "�� �� , � #.� '� `, i O D � N � � #�� < , s� : H r'; 1 1 � � � � _ ; ,+�,s�, � � t >��i*� * �, ,�•�y,��� .���a�4 �,�,� ���'_ ? � '�w � �►'aE» ` a m > > C. (Q o � � �;� �.e�.+; ��71�t�.1.1)t�Y��4' F�A'' ° .x���� �.. �.. ,w, � ; ,� w ` � f x �TL Y- � � O �• ( .� �,�t � Ta� , C � � E:�� ; J; „� M�k �M �F �w).; � ��� . u �'�t. � �', s ��. , � � J 1 „��l ,{�+E�TR+.� '�_�i. S c. .�� � �.:.�� � �� . } . .�"i�t . � t s�� ,l���, ��' � ( .1!, � � .,� :�4 � `:'4i9n °+.'�"`��` . 4 ` '} .i, c � y�,'�' � � r� t�`�'r.! !'+:`t ,4�,{'pi-�i�N���^ b�'; � t9� a ! N N { :��q�t,\.� , ',►�'' ������''�w���i �/ .,.�' � ,���„� . "ti�, i '�``:� rwn ''L tt^ � . � �4�e., ,�r'., . SF� Y. ...,,i�J, �yi*��r �1��,�.I w w � �►� ''�r. 9�,. �s;��Aj f� ��L'���`�` (p 1p` `',�'1 • ,x ';..� "eF �%,� ��y,v J p� _1� ^'�W 1�,� �,�, i.'�' ,�!�`M6�,�y�, a' �}� � �;�, i i--�—���— �...�- ti J� �:E_ _ �� +� x Table 1. Existing and Developed Site Basin Conditions Eaistin Conditions Subbasins KCRTS Till fores! Till pasture Wetland Till-grass Imperv. Tota! Basin (AC (AC (AC (AC (AC AC Site redev 3.54 3.54 Short Plat redev 1.46 1.46 Flow-through— Basin A dev 0.55 0.20 0.75 Flow-through— � Basin B dev 0.56 0.00 0.56 5.00 1.11 020 6.31 Develo ed Conditions Subbasins KCRTS Till forest Til!pasture Wetland T'rll-grass Imperv. Tota! Basin AC (AC AC (AC (AC (AC) I Onsite ' Lots/Road and R/D* dev 1.13 2.41 3.54 Short Plat** dev 1.10 0.36 1.46 '� Flow-through— Basin A dev 0.55 0.20 0.75 i Flow-through— Basin B dev 0.56 0.00 0.56 Total - - - 3.34 2.97 6.31 *T'he area for proposed Cristelle Ridge development assumes 68%impervious. * *The area for proposed short plat assumes 25%impervious. Road and sidewalk areas were measured from the site plan(Touma Engineers,June 2005). Runoff from Basins A and B is treated as"flow-through". 4-4 Giste!!e Ridge 77R—Seplember 1007 Part C: Performance Standards The stormwater requirements for the project are based on the King County Surface Water Design Manual(1998). A summary of flow control, conveyance, and water quality treatment performance standards for the project is presented in Table 2, below. Table 2. Summary of Performance Standards Cate o Performance Standard Source Flow Control • Leve12 R/D ■ Flow Control Applications Map Plat Conveyance System ■ Provide conveyance for ■ Surface Water Design Capacity developed 25-year storm Manual Section 1.2.4.1 Water Quality Treatment ■ Basic water quality treatment— ■ Surface Water Design Menu basic wetpond Manual Section 1.2.8.1; Water Quality Applications Map Source Control ■ None proposed Oil Control ■ The site does not meet the ■ Surface Water Design definition of a hi h-use site Manual Section 1.3.5 4-S Cristelle Ridge TIR—September 1007 Part D: Flow Control System KCRTS was used to design the proposed stormwater facility. Procedures and design criteria specified in the 1998 King Counry Surface Water Design Manual were followed for hydrologic modeling. Descriptions of the stormwater system and details of the design analysis are provided below. A plan view of the stormwater system for the site is provided in Figure 1. For stormwater facility designs, the reduced KCRTS time series data set was used for the Seatac rainfall region with a correction factor of 1.0. Documentation of the KCRTS input and output, including descriptions of executable files,reservoirs, and times series is listed in Appendices A and B. Stormwater from the development will be managed with a detention pond. Level 2 R/D standards are required for the single discharge location on the site. The detention pond has been designed by treating these offsite Basins A and B (Figure 2) as"flow-through" by adding the areas of these basins to both the target and developed time series. The facility shown in Figure 1 meets Leve12 R/D criteria and basic water quality requirements. Flow duration curves for the target and developed site conditions are provided at the outlet of the pond(Figure 4). Peak flow rates at the pond outlet, for target and developed site conditions, are provided following Figure 4. The peak flow rates match for the 2-year and 10-year events for target and developed conditions, as do flow durations, indicating that Leve12 R/D criteria are met. The stormwater pond requires 49,737 cubic feet of live storage,as measured at the top of the outlet riser. Considering the conservative stormwater detention criteria for the site, no factor of safety has been added to the pond live storage volume. Part E: Water Quality System Basic water quality standards apply to the site. A basic wetpond will provide treatment for the site. The required wetpond size was determined using procedures provided in Chapter 6 of the 1998 Surface Water Design Manual. The wetpond has been sized to accommodate flows from offsite Basins A and B. Basin areas, runoff volumes, and the required storage volume for the wetpond are summarized in Table 3. The required permanent pool volume of the wetpond is 17,955 cubic feet. 'The wetpond is designed in a U-shape to meet Surface Water Design Manual design requirements on the constrained site. A dividing wall provides a length to width ratio in excess of 4:1 and also allows access to the pond sediment storage and outlet control structure from the plat road. The top of the dividing wall is at the predicted 2-year pond water surface elevation. The City of Renton discourages routing tributary offsite flows through a plat's stormwater facility in situations where doing so would increase maintenance costs of the facility. The runoff from Basin A is from mature landscape and roof. The runoff from Basin B is from landscape and foresdshrub. The lands uses generate low sediment and pollutant loadings. The effects of this runoff on the maintenance costs of the stormwater pond would be insignificant. In actuality, Basin A would be one of the lots in the future short plat and therefore conveyance of this runoff to the 4-6 Cristefle Ridge TTR-September 1007 facility is justified. The small size(0.56 acre)of Basin B does not justify construction of a separate storm conveyance system to bypass these flows around the stormwater facility. 4-7 Crirtelle Ridge T!R—September 1007 . , � -�" _ STORMWATER QUANTITIES � � WETPOND �Xo � � o szj,o ,o DEAD STORAGE EL. 342.4-346.4 � S�, \ �'�= 2O� DEAD VOLUME REQUIRED=17,955 CF �\� DEAD VOLUME PROVIDED=18,100 CF � \ ��?�y � � � 0 10 20 40 DETENTION �` � � y � � � a � LIVE STORAGE EL. 346.4-352.9 �� � 4 � � LIVE VOLUME REQUIRED=49,737 CF p ^ �IVE VOLUME PROVIDED=53,000 CF �' � � F \ h p h ♦ � i � �s � .� � � � 3 � � TW=364 TW=360 TW=355.5 T�35 \ � F �� • BW=360 BW=345 , , , „ BW=346.4 B -3 � \ � � I .� � 130.96 S88 29 35 E � o�`�° � o — D > LL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLtLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�L' LLLLLLLLLLLLLLLLLLLLLLL�ILLLLLLLLLLLLLLLLLLLLLLLLLL�L' �_LLLLLLLLLLLLLLLLLLLLL \ _ LL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLtLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�LLLLLLLLLLLLLLLLLL�LLLi i L�.LLLLLLLLLLLi�i LLLLL�LLLLLLLLi L� i LLLLLL JLLi Li LLLL `O � � J � 3:1 3 4 2.04 3:1 3:1 I 2:1 � �`�' n � . �'� a I I gW 342 4 �2 LF �2" so I jCONTROL STRUCTU � � I I I — W E T P O O L D I V I D I N G W A L L iE 344. T Y P E 2—5 4' � � IM=352.9 N t i I 3:, � - - - - - - - - - - - � . o I � � BOT. SED=341 .4 ~ r � � n p � � I � � � ~ o000 � " �s6 � 3 � I2:1 l IE=344.4 89 . / � 3 ��'� O � I � _ _ _ _ 3_� _ _ _ PERMANENT POOL WSE-346.4 _ � �F 12" � p !� � 1 1 2:1 � — - - - - / / � � 7.Sgq .s3 � U / / M 1 \ 2:i � �, x � 2'� \ � � 100-YR WSE=352.9 � G � :1 \ � — — — — — — — — — — — — — — — — — — — — — — �s � � / � \ � - - - - - - - - - - - - - - - - - - - - - - - � � ` 360 r - - - � � D � - - - - - - - - - - -I---� � _ � s� \ I ' - i �� / �9 \ , i �� � � ./ i r--..v i i � \ I I . ..Y. ��'•� / ��. � � 370 I i � _`- , � �6' � , \ �� - - - - - - - - - - - � ��`; � � �_' , �� x p ,: � � \ 1 ` _ � r 00 ��, , s�ccr or � I � � � ll I � l .. � .eo�or M..oi I 0.6 f E�dsting De�,eloped 0.5 0.4 ��� I � N V � U . I � 0.3 I 3 ' 0 � I �., 0.2 0.1 � � _' }, ' �, T O K 1.00E-05 1.O0E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 Probability of Exceedence Figure 4. Comparison of Flow Durations for R/D Design Duration curves are shown at the outlet of the pond. The pond is designed to meet Leve12 R/D standards. The duration curves include areas from Basins A and B which are treated as "flow-through". 4-9 Cristelle Ridge TIR-September 2007 Target Peak Floa Rates Flow Frequency Analysis Time Series File:predev.tsf - site under forested conditions Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.436 2 2/09/O1 18:00 0.687 1 100.00 0.990 0.175 7 1/05/02 16:00 0.436 2 25.00 0.960 0.398 3 2/28/03 3:00 0.398 3 10.00 0.900 0.071 8 8/26/04 2:00 0.375 9 5.00 0.800 0.225 6 1/05/05 8:00 0.390 5 3.00 0.667 0.375 4 1/18/06 16:00 0.225 6 2.00 0.500 0.390 5 11/24/06 4:00 0.175 7 1.30 0.231 0.687 1 1/09/08 6:00 0.071 8 1.10 0.091 Computed Peaks 0.604 50.00 0.980 Developed Peak Flo� Rates Flow Frequency Analysis Time Series File:rdout.tsf - outflow from proposed pond Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency A�alysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) (ft) Period 0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990 0.101 7 12/29/O1 10:00 0.475 7.21 2 25.00 0. 960 0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900 0.086 8 8/26/09 7:00 0.288 6.08 4 5.00 0.800 0.144 6 1/OS/05 17:00 0.266 5.96 5 3.00 0.66� 0.266 5 1/18/06 23:00 0.144 4.92 6 2.00 0.500 0.391 3 11/24/06 8:00 0.101 4.19 7 1.30 0.23i 1.61 1 1/09/08 9:00 0.086 3.01 8 1.10 0.091 Computed Peaks 1.23 7.39 50.00 0. 980 4-10 Crirtelle Ridge TIR-September 100� Table 3. Wetpond Design Summary Till Till Total Runoff Wetpond Wet Pond Forest Grass Impervious Area Volume Vb/Vr Volume Facility (AC) (AC) (AC) (AC) (CF) (C� Onsite Stormwater Poad Developed Basin to Pond 0.00 1.13 2.41 3.54 4,183 3.0 12,548 Short Plat 0.00 1.10 0.36 1.46 1,022 3.0 3,066 Basin A 0.00 0.55 0.20 0.75 542 3.0 1,625 Basin B 0.00 0.56 0.00 0.56 239 3.0 717 Total 0.00 3.34 2.97 631 5,985 17,955 Mean annual storm = 0.47 inch Equations used in Table 4: V�_(0.9*A;+0.25*A�g+0.10*A�) * (R/12) ub=Vr* ub/ur R=mean annual storm amount=0.47 inch Vb� Vr=3.0 for basic wetpond Crtsrelle Ridge TIX Septenthr�_'l10' APPENDICES Appendix A. Stormwater R/D System Design Appendix B. KCRTS Documentation Appendix C. Hydrologic Model Documentation Grrstelle Ridge TIR-September 20D? Appendix A. Stormwater R/D System Design , Appendix A.1 Stormwater Facility Control and Overflow Design Appendix A.2 KCRTS Pond Design Appendix A.3 Biofiltration Swale Design CristeAe Ridge T/R September 1(X17 Appendix A.1 Stormwater Facility Control and Overflow Design Table A.1. Stormwater Pond Overflow Design Date:7/22/O8 R/D Facility: Cristelle Ridge KCRTS Filename: pond65.rdf Contributing Time Series: devl5.tsf Overflow protection structure: outlet control structure riser(R 1) Emergency overflow stcucture: outlet control structure riser(R 1) Qd�;�,(CFS): 5.19 (KCRTS 15-minute peak rate) Top of Control Structure Riser (FI') 353.00 Min.Top of Berm(FT) 354.00 Structure Head Capacity Elevatio WSE Shucture Size Units (FT) (CFS) n(FT) (FT) Design Operation Riser R1 18 inches 0.00 353.00 353.00 Emergency Overflow Riser RI 18 inches 0.50 5.16 353.00 353.50 Head (FT) Design Head above Required Freeboard: Riser 0.00 Overflow Head 0.50 Overtlow Freeboard 0.50 Total Required Freeboard 1.00 Cristelle Ridge TIR—September 1007 Appendix A.2 KCRTS Pond Design Retention/Detention Facility - Stormv+ater Pond (pond65.rdf) Type of Facility: Detention Pond Side Slope: 2.00 H:lV Pond Bottom Length: 103.92 ft Pond Bottom Width: 51.96 ft Pond Bottom Area: 5400. sq. ft Top Area at 1 ft. FB: 10977. sq. ft 0.252 acres Effective Storage Depth: 6.50 ft Stage 0 Elevation: 396.40 ft Storage Volume: 99737. cu. ft 1.142 ac-ft Riser Head: 7.20 ft Riser Diameter: 18.00 inches Number of orifices: 3 Full Head Pipe Orifice # Height Diameter Discharge Diameter (ft) (in) (CFS) (in) 1 0.00 1.35 0.133 2 9.75 1.75 0.130 9.0 3 5.80 2.20 0.155 6.0 Top Notch Weir: None Outflow Rating Curve: None Stage Elevation Storage Discharge Percolation Surf Area (ft) (ft) (cu. ft) (ac-ft) (cfs) (cfs) (sq. ft) 0.00 346.90 0. 0.000 0.000 0.00 0. 0.01 396.41 0. 0.000 0.006 0.00 0. 0.03 346.43 0. 0.000 0.008 0.00 0. 0.04 346.94 0. 0.000 0.010 0.00 0. 0.06 396.46 0. 0.000 0.012 0.00 0. 0.07 346.47 0. 0.000 0.013 0.00 0. 0.08 346.48 0. 0.000 0.014 0.00 0. 0.10 346.50 0. 0.000 0.016 0.00 0. 0.11 346.51 0. 0.000 0.017 0.00 0. 0.25 396.65 0. 0.000 0.025 0.00 0. 0.39 346.79 0. 0.000 0.031 0.00 0. 0.59 346.99 0. 0.000 0.036 0.00 0. 0.68 347.08 0. 0.000 0.041 0.00 0. 0.70 347.10 0. 0.000 0.041 0.00 5400. 0.89 397.24 762. 0.017 0.045 0.00 5488. 0.98 347.38 1537. 0.035 0.049 0.00 5576. 1.12 347.52 2323. 0.053 0.052 0.00 5665. 1.26 347.66 3123. 0.072 0.056 0.00 5754. 1.41 347.81 3993. 0.092 0.059 0.00 585� . 1.55 347.95 9819. 0.111 0.061 0.00 59�7- 1.69 348.09 5657. 0.130 0.064 0.00 6033. 1 .83 398.23 6508. 0.199 0.067 0.00 6125. 1.97 348.37 7372. 0.169 0.069 0.00 6218. 2.11 348.51 8249. 0.189 0.072 0.00 6311. 2.25 348.65 9139. 0.210 0.074 0.00 6405. 2.39 348.79 10042. 0.231 0.076 0.00 6499. 2.54 348.94 11025. 0.253 0.079 0.00 6601. 2.68 349.08 11956. 0.274 0.081 0.00 6697. 2.82 399.22 12900. 0.296 0.083 0.00 6794. Cristelle Rrdge T!R-September 2007 2.96 349.36 13858. 0.318 0.085 0.00 6891 . 3.10 349.50 14830. 0.340 0.087 0.00 6989. 3.24 349.64 15815. 0.363 0.089 0.00 7087. 3.38 349.78 16814. 0.386 0.091 0.00 7180. 3.52 349.92 17827. 0.909 0.093 0.00 7286. 3.66 350.06 18854. 0.933 0.095 0.00 7386. 3.81 350.21 19970. 0.458 0.096 0.00 7494. 3.95 350.35 21026. 0.483 0.098 0.00 7596. 4.09 350.99 22097. 0.507 0.100 0.00 7698. 4.23 350.63 23182. 0.532 0.102 0.00 7800. 4.37 350.77 29281. 0.557 0.103 0.00 7904. 4.51 350.91 25395. 0.583 0.105 0.00 8008. 4.65 351.05 26523. 0.609 0.107 0.00 8113. 4.75 351.15 27338. 0.628 0.108 0.00 8188. 4.77 351.17 27502. 0.631 0.109 0.00 8203. 4.79 351.19 27666. 0.635 0.111 0.00 8218. 4.80 351.20 27748. 0.637 0.119 0.00 8225. 4.82 351.22 27913. 0.641 0.119 0.00 8241. 4.84 351.24 28078. 0.695 0.124 0.00 8256. 9.86 351.26 28243. 0.698 0.131 0.00 8271 . 4.88 351.28 28909. 0.652 0.139 0.00 8286. 4. 90 351.30 28575. 0.656 0.141 0.00 8301. 4.91 351.31 28658. 0.658 0.143 0.00 8309. 5.06 351.46 29913. 0.687 0.157 0.00 8923. 5.20 351.60 31099. 0.714 0.168 0.00 8530. 5.34 351.74 32301. 0.792 0.178 0.00 8638. 5.48 351.88 33518. 0.769 0.187 0.00 874n. 5.62 352.02 39750. 0.798 0.195 0.00 8855. 5.76 352.16 35997. 0.826 0.202 0.00 8965. 5.80 352.20 36357. 0.835 0.204 0.00 8996. 5.82 352.22 36537. 0_839 0.207 0.00 9012. 5.85 352.25 36807. 0.895 0.211 0.00 9036. 5.87 352.27 36988. 0.849 0.219 0.00 9051 . 5.89 352.29 37169. 0.853 0.228 0.00 9067. 5.91 352.31 37351. 0.857 0.240 0.00 9083. 5.99 352.34 37624. 0.864 0.254 0.00 9107. 5.96 352.36 37806. 0.868 0.265 0.00 9122. 5.98 352.38 37989. 0.872 0.269 0.00 9138. 6.12 352.52 39276. 0.902 0.295 0.00 9250. 6.27 352.67 90672. 0.934 0.316 0.00 9370. 6.41 352.81 41992. 0.964 0.339 0.00 9482. 6.55 352.95 93327. 0.995 0.351 0.00 9595. 6.69 353.09 44679. 1.026 0.367 0.00 9709. 6.83 353.23 46046. 1.057 0.382 0.00 9829. 6.97 353.37 47929. 1.089 0.396 0.00 9939. 7.11 353.51 48829. 1.121 0.410 0.00 10054. 7.20 353.60 49737. 1.192 0.418 0.00 10129. 7.30 353.70 50754. 1.165 0.889 0.00 10212. 7.40 353.80 51779. 1.189 1.740 0.00 10296. 7.50 353.90 52813. 1.212 2.840 0.00 10380. 7.60 354.00 53855. 1.236 9.150 0.00 10964. 7.70 359.10 54906. 1.260 5.630 0.00 10599. 7.80 354.20 55965. 1.285 7.060 0.00 10639. I 7.90 359.30 57033. 1.309 7.600 0.00 10719. 8.00 354.40 58109. 1.334 8.100 0.00 10804. 8.10 359.50 59199. 1.359 8.560 0.00 10890. 8.20 354.60 60287. 1.384 9.010 0.00 10977, 8.30 354.70 61389. 1.409 9.430 0.00 11063. 8.40 354.80 62500. 1.935 9.840 0.00 11150. 8.50 359.90 63619. 1.460 10.220 0.00 11237. Crirtelle Ridge TIR-Septerrrber 2007 8.60 355.00 64747. 1.486 10.600 0.00 11325. 8.70 355.10 65889. 1.512 10.960 0.00 11412. 8.80 355.20 67030. 1.539 11.300 0.00 11500. 8.90 355.30 68184. 1.565 11.640 0.00 11589. 9.00 355.40 69347. 1.592 11.970 0.00 11678. 9.10 355.50 70520. 1.619 12.290 0.00 11767. Hyd Inflow Outflow Peak Storage Target Calc Stage Elev (Cu-Ft) (Ac-Ft) 1 2.11 ******* 1.61 7.38 353.78 51622. 1.185 2 1.02 ******* 0.47 7.21 353.61 49859. 1.195 3 1.01 ******* 0.34 6.47 352.87 42569. 0.977 4 1.23 ******* 0.29 6.08 352.48 38925. 0.894 5 1.08 ******* 0.27 5.96 352.36 37849. 0.869 6 0.63 ******* 0.14 4.92 351.32 28763. 0.660 7 0.79 ******* 0.10 9.19 350.54 22493. 0.516 8 0.80 ******* 0.09 3.01 349.91 14221. 0.326 ---------------------------------- Route Time Series through Facility Inflow Time Series File:dev.tsf Outflow Time Series File:rdout Inflow/Outflow Analysis Peak Inflow Discharge: 2.11 CFS at 6:00 on Jan 9 in Year 8 Peak Outflow Discharge: 1.61 CFS at 9:00 on Jan 9 in Year 8 Peak Reservoir Stage: 7.38 Ft Peak Reservoir Elev: 353.78 Ft Peak Reservoir Storage: 51622. Cu-Ft . 1.185 Ac-Ft Flow Frequency Analysis Time Series File:rdout.tsf Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) (ft) Period 0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990 0.101 7 12/29/O1 10:00 0.975 7.21 2 25.00 0.960 0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900 0.086 8 8/26/04 7:00 0.288 6.08 4 5.00 0.800 0.144 6 1/05/05 17:00 0.266 5.96 5 3.00 0.667 0.266 5 1/18/06 23:00 0.144 4.92 6 2.00 0.500 0.341 3 11/24/06 8:00 0.101 4.19 7 1.30 0.231 1.61 1 1/09/06 9:00 0.086 3.01 S 1.10 0.091 Computed Peaks 1 .23 7.34 50.00 0.980 Flow Duration from Time Series File:rdout.tsf Cutoff Count Frequency CDF Exceedence Probability CFS $ $ � 0.007 93355 70.703 70.703 29.297 0.293E+00 0.020 2257 3.681 74.389 25.616 0.256E+00 0.033 496 0.809 75.192 24.808 0.298E+00 0.047 4095 6.678 81.871 18.129 0.181E+00 0.060 4941 8.058 89.928 10.072 O.101E+00 0.073 2736 9.462 94.390 5.610 0.561E-01 0.087 1510 2.462 96.853 3.147 0.315E-01 0.100 997 1.626 98.978 1.522 0.152E-01 0.113 519 0.846 99.325 0.675 0.675E-02 Criste!!e Rrdge TTR-September 2007 0.127 48 0.078 99.403 0.597 0.597E-02 0.140 29 0.047 99.450 0.550 0.550E-02 0.153 69 0.113 99.563 0.937 0.437E-02 0.167 97 0.077 99.640 0.360 0.360E-02 0.180 33 0.054 99.693 0.307 0.307E-02 0.193 35 0.057 99.750 0.250 0.250E-02 0.207 99 0.072 99.822 0.178 0.178E-02 0.220 15 0.024 99.847 0.153 0.153E-02 0.233 9 0.007 99.853 0.147 0.147E-02 0.247 8 0.013 99.866 0.134 0.134E-02 0.260 5 0.008 99.874 0.126 0.126E-02 0.273 19 0.023 99.897 0.103 0.103E-02 0.287 12 0.020 99.917 0.083 0.832E-03 0.300 6 0.010 99.927 0.073 0.739E-03 0.313 8 0.013 99.940 0.060 0.603E-03 0.327 S 0.013 99.953 0.047 0.473E-03 0.340 8 0.013 99.966 0.034 0.342E-03 0.353 9 0.007 99.972 0.028 0.277E-03 0.367 2 0.003 99.976 0.024 0.245E-03 0.380 3 0.005 99.980 0.020 0.196E-03 0.399 3 0.005 99.985 0.015 0.147E-03 0.907 3 0.005 99.990 0.010 0.978E-09 0.420 5 0.008 99.998 0.002 0.163E-09 0.939 0 0.000 99.998 0.002 0.163E-09 0.947 0 0.000 99.998 0.002 0.163E-04 0.960 0 0.000 99.998 0.002 0.163E-04 0.479 0 0.000 99. 998 O.002 0. '_E3�-09 Duration Comparison Anaylsis Base File: predev.tsf New File: rdout.tsf Cutoff Units: Discharge in CFS -----Fraction of Time----- ---------Check o` Toierance------- Cutoff Base New oChange Probability Base New oCzange 0.113 � 0.74E-02 0.68E-02 -8.4 � 0.74E-02 0.113 0.109 -3.6 0.138 I 0.55E-02 0.56E-02 1.2 I 0.55E-02 0.138 0.140 1.5 0.163 � 0.43E-02 0.38E-02 -10.7 I 0.43E-02 0.163 0.156 -4.1 0.187 � 0.32E-02 0.28E-02 -12.3 I 0.32E-02 0.187 0.177 -5.4 0.212 � 0.24E-02 0.16E-02 -31.8 I 0.29E-02 0.212 0.195 -8.2 0.237 I 0.17E-02 0.14E-02 -19.8 I 0.17E-02 0.237 0.208 -12.3 0.262 I 0.12E-02 0.12E-02 2.7 I 0.12E-02 0.262 0.265 1.2 0.287 I 0.88E-03 0.83E-03 -5.6 � 0.88E-03 0.287 0.283 -1.4 0.312 I 0.59E-03 0.60E-03 2.8 I 0.59E-03 0.312 0.316 1.5 0.337 I 0.94E-03 0.39E-03 -11.1 I 0.49E-03 0.337 0.329 -2.3 0.362 I 0.20E-03 0.24E-03 25.0 I 0.20E-03 0.362 0.383 5.8 0.386 I 0.13E-03 0.18E-03 37.5 I 0.13E-03 0.386 0.399 3.2 0.411 � 0.49E-04 0.65E-09 33.3 I 0.99E-09 0.911 0.916 1.1 0.436 I 0.16E-04 0.16E-09 0.0 I 0.16E-04 0.436 0.479 8.7 Maximum positive excursion = 0.039 cfs ( 8.9�) occurring at 0.435 cfs on the Base Data:predev.tsf and at 0.474 cfs on the New Data:rdout.tsf Maximum negative excursion = 0.030 cfs (-12.9�) occurring at 0.235 cfs on the Base Data:predev.tsf and at 0.205 cfs on the New Data:rdout.tsf Cristelle Ridge TIR-September 1007 Appendix B. KCRTS Documentation Appendix B.1 KCRTS Time Series Calculations Appendix B.2 KCRTS Peak Flow Rates Criste!!e Ridge 77R—September 2007 Appendix B.i KCRTS Time Series Calculations 1-Hour Time Series KCRTS Command CREATE a new Time Series ------------------------ Production of Runoff Time Series Project Location : Sea-Tac Computing Series : predev.tsf Regional Scale Factor : 1.00 Data Type : Reduced Creating Hourly Time Series File Loading Time Series File:C:\KC_SWDM\KC_DATA\STTF60R.rnf . Till Forest 5.00 acres Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG60R.rnf . Till Grass 1.11 acres Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI60R.rnf . Impervious 0.20 acres -------------- Total Area : 6.31 acres Peak Discharge: 0.687 CFS at 6:00 on Jan 9 'n Year 8 Storinq Time Series ^ile:predev.tsf . Time Series Computed KCRTS Command Enter the Analysis TOOLS Module ------------------------------- Analysis Tools Command ---------------------- Compute PEAKS and Flow Frequencies ---------------------------------- Loading Stage/Discharge curve:predev.tsf . Flow Frequency Analysis -------------------------------------------------------- Time Series File:predev.tsf Project Location:Sea-Tac Frequencies & Peaks saved to File:predev.pks . Analysis Tools Command ---------------------- Compute Flow DURATION and Exceedence Loading Time Series File:predev.tsf . Computing Interval Locations Computing Flow Durations I Durations & Exceedence Probabilities to File:predev.dur . Analysis Tools Command ---------------------- RETURN to Previous Menu ----------------------- KCRTS Command CREATE a new Time Series ------------------------ Cristelle Ridge 77R-September 2007 Production of Runoff Time Series Project Location : Sea-Tac Computing Series : dev.tsf Regional Scale Factor : 1.00 Data Type : Reduced Creating Hourly Time Series File Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG60R.rnf . Till Grass 3.34 acres Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI60R.rnf . Impervious 2.97 acres -------------- Total Area : 6.31 acres Peak Discharge: 2.11 CFS at 6:00 on Jan 9 in Year 8 Storing Time Series File:dev.tsf . Time Series Computed KCRTS Command Enter the Analysis TOOLS Module ------------------------------- Analysis Tools Command ---------------------- Compute PEAKS and Flow Frequencies ---------------------------------- Loading Stage/Discharge curve:dev.tsf . Flow Frequency Analysis Time Series File:dev.tsf Project Location:Sea-Tac Frequencies & Peaks saved to File:dev.pks . Analysis Tools Command ---------------------- Compute Flow DURATION and Exceedence ------------------------------------ Loading Time Series File:dev.tsf . Computing Interval Locations Computing Flow Durations il Durations & Exceedence Probabilities to File:dev.dur . Analysis Tools Command ---------------------- RETURN to Previous Menu KCRTS Command eXit KCRTS Program ------------------ 15-Minute Time Series KCRTS Command CREATE a new Time Series ------------------------ Production of Runoff Time Series Project Location : Sea-Tac Computing Series : devl5.tsf Crrstelle Ridge TIR—September 2007 Regional Scale Factor : 1.00 Data Type : Reduced Creating 15-minute Time Series File Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG15R.rnf . Till Grass 3.34 acres Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI15R.rnf . Impervious 2.97 acres -------------- Total Area : 6.31 acres Peak Discharge: 5.19 CFS at 6:30 on Jan 9 in Year 8 Storing Time Series File:devl5.�sf . Time Series Computed KCRTS Command Enter the Analysis TOOLS Module ------------------------------- Analysis Tools Command ---------------------- Compute PEAKS and Flow Frequencies ---------------------------------- Loading Stage/Discharge curve:devl5.tsf . Flow Frequency Analysis -------------------------------------------------------- Time Series File:devl5.tsf Project Location:Sea-Tac Frequencies & Peaks saved to File:devl5.pks . Analysis Tools Command ---------------------- Compute Flow DURATION and Exceedence ------------------------------------ Loading Time Series File:devl5.tsf . Computing Interval Locations Computing Flow Durations Durations & Exceedence Probabi'_ities to File:devl5.dur . Analysis Tools Command ---------------------- RETURN to Previous Menu ----------------------- KCRTS Command eXit KCRTS Program ---------------- Crrstelle Rrdge TIR-Septenrber 2007 Appendix B.2 KCRTS Peak Flow Rates 1-Hour Time Series Flow Frequency Analysis Time Series File:predev.tsf - site and short plat under forested conditions Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 0.436 2 2�09/O1 18:00 0.687 1 100.00 0.990 0.175 7 1/05/02 16:00 0.436 2 25.00 0.960 0.398 3 2/28/03 3:00 0.398 3 10.00 0.900 0.071 8 8/26/04 2:00 0.375 4 5.00 0.800 0.225 6 1/05/05 8:00 0.340 5 3.00 0.667 0.375 4 1/18/06 16:00 0.225 6 2.00 0.500 0.340 5 11/24/06 4:00 0.175 7 1.30 0.231 0.687 1 1/09/08 6:00 0.071 8 1.10 0.091 Computed Peaks 0.604 50.00 0.980 Flow Frequency Analysis Time Series File:dev.tsf - site and short plat under proposed developed conditions prior to detention Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.02 5 2/09/O1 2:00 2.11 1 100.00 0.990 0.787 8 1/05/02 16:00 1.23 2 25.00 0.960 1.23 2 2/27/03 7:00 1.16 3 10.00 0.900 0.802 7 8/26/04 2:00 1.08 9 5.00 0.800 0.978 6 10/28/04 16:00 1.02 S 3.00 0.667 1.08 4 1/18/06 16:00 0.978 6 2.00 0.500 1.16 3 10/26/06 0:00 0.802 7 1.30 0.231 2.11 1 1/09/08 6:00 0.787 8 1.10 0.091 Computed Peaks 1 .82 50.00 0.980 Flow Frequency Analysis Time Series File:rdout.tsf - outflow from proposed pond Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) (ft) Period 0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990 0.101 7 12/29/O1 10:00 0.475 7.21 2 25.00 0.960 0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900 0.086 8 8/26/04 7:00 0.288 6.06 9 5.00 0.800 0.144 6 1/05/05 17:00 0.266 5.96 5 3.00 0.667 0.266 5 1/18/06 23:00 0.144 4. 92 6 2.00 0.500 0.341 3 11/24/06 8:00 0.101 4.19 7 1.30 0.231 1.61 1 1/09/08 9:00 0.086 3.01 8 1.10 0.091 Computed Peaks 1.23 7.34 50.00 0.980 Crutelle Ridge TIR-September 2007 III � 15-Minute Time Series Flow Frequency Analysis Time Series File:devl5.tsf - site under and short plat proposed developed conditions prior to detention Project Location:Sea-Tac ---Annual Peak Flow Rates--- -----Flow Frequency Analysis------- Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob (CFS) (CFS) Period 1.42 6 8/27/O1 18:00 5.19 1 100.00 0.990 1.09 8 1/05/02 15:00 3.41 2 25.00 0.960 3.91 2 12/08/02 17:15 2.26 3 10.00 0.900 1.14 7 8/23/04 14:30 2.03 9 5.00 0.800 2.26 3 11/17/04 5:00 1.80 5 3.00 0.667 1.80 5 10/27/05 10:45 1.42 6 2.00 0.500 2.03 4 10/25/06 22:45 1.14 7 1.30 0.231 5.19 1 1/09/08 6:30 1.09 8 1.10 0.091 Computed Peaks 4.60 50.00 0.980 Cristelle Ridge T/R—September 2007 1 Appendix C. Hydrologic Model Documentation The following is a description of KCRTS input and output files used in designing the R/D facilities and conducting the downstream drainage analysis for Cristelle Ridge. EXECUTABLE FILES basins.exc: This executable file creates 1-hour time series for all contributing areas to � the downstream system. basinsl5.exc: This executable file creates 15-minute time series for all contributing areas to the downstream system. TIME SERIES FILES R/D Desiqn predev.tsf: Site and short plat under existing conditions. dev.tsf: � Site and short plat under proposed developed conditions. rdout.tsf: ^ime series out of proposed R/D system for site. RESERVOIRS Pond65.rdf: Plat R/D facility managing stormwater from the development. GENERAL NOTES 1. Seatac regional rainfall runoff files with a scale factor of 1.0 were used in the hydrologic simulations. 2. R/D facilities were designed with the 8-year time series data set. 1- hour peak flow rates were used for detention calculations. 3. 15-minute peak flow rates were used for conveyance calculations. 4. Gravel areas were modeled in KCRTS by assuming that 50 percent of the area is impervious and the remaining 50 percent are the same cover type as that surrounding the gravel area. Cristel(e Ridge TIR—Seprember 1007 Appendix D. Schematic Drawings of Pond Design Crisrelle Rrdge TIR--Sep�ember 2007 � _, y I � � � x STORMWATER QUANTITIES � � WETPOND �x � DEAD STORAGE EL. 342.4-346.4 y�� \ \� DEAD VOLUME REQUIRED=17,955 CF �B �i DEAD VOLUME PROVIOED=18,100 CF ` \ �\;�%y \ 1��= 30� DETENTION � \ � '!'' \ � 'a � � LIVE STORAGE EL 346.4-352.5 �\ � LNE VOLUME REQUIRED=49,737 CF 0 15 30 60 LIVE VOLUME PROVIOED=53,000 CF �` \ � � \ \ y � � \ � � � TW=364 TW=360 TW=355.5 �5 � BW=360 BW=345 � � w BW=346.4 8 -3 � � \ � W fi Z ,� __ _ _ � .�, � 130.96 S8879 35 E � 06 � \ a " � � _ O ry � ��J'I l l '_ t_Q -_ _i \ \ \� N P ' 1 345.0 ' '� y 3:1 3:1 3:1 2:1 � n \ \ t � � � � � � _ 342.4 � I � \ 1�'� r __ �h � W 342 4 �2 �r +r s� ��'CONTROL STRUC \ � � � 3 � _ I I I WEf POOL DIVIDING WALL �E �u. TYPE 2-54" � U P �ry . t � � 3:1 � — — — — — IM=352.9 � . T ' \ � I � � BOT. SED=341.4 1 � � I � � � �,�. � `ls6 t�.', '�' \ D = I IE=344.4 ,/ rp`1��Aq� � W � I 2;� �` 2�1 �� _ _ _ _3_� _ _ _ F'ERMANENT POOL WSE-346_4_ � 8g �F �rj D A 7.56 ��� \ � � , / X y I, � � � z:, � . 2:, \ � � �^� � ,;:, s �c - I , \ � - - - - - - - - - - - - - -1Q-0-YR WSE=352.9 - - - � / 2:, � ,� ---�. � -' • � \ � �--------------------------� � � - - - - aso - - - - �/ \ � I \� I� � ; s .. � � \\ \ I i ' ,y� //� `` � � I`-� \ \�� I ' �� a� ,`� � IL � 370 i � / � �. � , � _ _ _ _ _ _ _ _ _ _ _ _ _,� , , 1ti� , ., �, �, �\ i � � g �/ �� 3 � \ �-----------------------J � l � / � � � � �` � / L. �L \ � - - - - 380 - - - - -I / � � V _�--•------- � ' r ++ � r_:- -: �" � � � � � �-�------ � � � � + � i ' � I ,,_ i �� �� � iT'�?+4 390 � I 1+OL} I ,. QP + � � �. \ � ' — — — — —~ — r — ��------- i �— �— — J � � 1 � �. — — — � � • 1 � . � � "' 380 V v � � � �srav iuvo u�s�AL_ WALL a I �9� 386 372 � � � � ' ' ' o^ii.St i(1 SUPFpi'.' iMAll NNEN � � � THF�in�x ACCESS l�/�?ADED � �3�8 �7n �Q� �\2�41.86 NfN1A/AN �� o �----�-- �^ — FAR IHE IVt��I��OA01{'AY Ptn _�._ � —� � � �XJ IRACJ�B � ;Mt �or�v,a;xws. �- - � ` � , . Z }' \ � ' ,' , ,�;�J'y L_i�'� \ v � .3,92 � `'`I --------------------- ----� � � t� � � i � � ` / � � � ` � � � �J � I i � � • � � , ' ` � � � e� I , � • . � i I� � '` � �;� �.` � � ) � . �. � `� .. �b `�, �/ '•� s+�r oF .waso.M� . � y � � STORMWATER QUANTITIES � A�6 \ WEfPOND �x � DEAD STORAGE EL. 342.4-346.4 ��� \ \� DEAO VOLUME REQUIRED=17,955 CF �8 �i DEAO VOLUME PROVIDED= CF ` \ �\?ijL \ 1��= 30� DETENTION ,` \ � 'j` \ � \ � � � LNE STORAGE EL. 346.4-352.9 \ � LIVE VOLUME REQUIRED=49,737 CF 0 15 3� 6Q LNE VOLUME PROVIDED=52,000 CF �' \ \ � y �. � � \ 4 � TW=3� TW=360 TW=355.5 �5 � � , & BW=360 BW=345 , , M BW=346.4 B 3 � W � � � -- — — � .�b � 130.96 58879 35 E � eM � � � \ a ^ � � � � h '1 - �O -_ � \ \ � � a ' . � � � 3:1 342.4 3:1 // 2� � � n � \ �x � � � �� � \ O � ; F o I I I � � � � �`�CONTROL STRUC � \ � (C h �ry = / TYPE 2-54' � � a h . t � � 3.1 � _ — _ � IM=352.9 � ' °� � , . � � � � BOT. SED=341.4 � � � o I � � � ,, - � `�Ss _h,�F' � o \ x � I I ( � OOIE=344.4 I �/ 6`1.��9 \ W � / k�, \ � 2'� 3:1 PERMANENT POOL WSE-346_4_ �� � � � ` 1 2:1 � �,� 1 � � �' � - � }� - - - - - - - z., - I 2:, � � zos LF ,r so � '� / ,�, �c — - - - - - - -1Q0-YR WSE=3�.� - - _ � ' . C 2:1 \ \ � Z � � . / � �� � � ai I � \ � � sso ( r--------------------------� , � � - - - - - - - - - - - -u � � � i � s � L N \ �\ I i � t'°x! �� �` � � \ � I � r / � � `� � � � � o� . � � � a�o I � ' ,' . � � - - - - - - - - - - � � � '�� ' � �. L � \� � �� $ r� / /�/ r�^ +�-� \ I ���---------------------'� � � / v, � � � � / � �L \ � -- - - - - 38� - - - - -I'�-'---' — / / , > � -- J � �../ � � ��'�'���� � � ' � � � � ; I \ � , L �` � � � ' ' � 'i � \ � � �_ � �� —ITYa�.u_ 3so `� I �+a� � �P � � i �� Q � r— � — � ----- � �— J o `" ' � . ___ ''� 3 j - - - - - - - - - � I - - ' �-- � ��� 1 I / � � � • D£5l'QN AND lNSUL! wnu a `f' ?9' 386 380 372 ' ��� '' ,, �, i � on�c /V 5l1PFQR' iYALL WNEN I r " �` i� i� . . , ; ; 1HF�inipc ACCESS �S /�tAVEo � .3I8 .�.. �7n ��Q� `�� ��.86 ►N��7A�itN � �—_-�—� -�[�— _ � �. = �� � j FOR TFIE IVt:�KOADI{AY Ptn Q 1 � --� -.� 4 `� _ /JO IRACJ�B � rrrt a-�or EctyAr,cws. ' ' l �,y Z�_ ` � � _ �`v� '�. ; �`�, �� is•� � ` . � - �� I � — - `_. --�-� .� \ � , � � -,.� .3,92 , � � �-------------------- ----,� _ ` �` '� ` -_ '�.� '_�_,. /' ��_, � i ` ` ' � � � � .. �._ - `-- ___ - - 1 � �� ( i � . s ,�..` Y._ ` �.�' __ \1 `� ,` � I � � \ � '�, ,` �t,1 � � ' ` ._ ... ..�---_.. .%i. . . .. �_�, \ . . .. � I � . � ♦ O � � � . __ .__. . . . N \ �. � ..: ``B .� � !!£T OF � � �� � . `. � �► r � ��. � '�. ��