HomeMy WebLinkAbout03262 - Technical Information Report - Geotechnical ,
t .
�
�
`� LEVEL 2 ANALYSIS
�� FOR
m CRISTELLE RIDGE PLAT
SE 95�PLACE
RENTON, WASHINGTON
f�ILE NO. 7 I 9-016-(>; '
PREPARED BY
TOUMA ENGINEERS
6632 SOUTH 191 ST PLACE, SUITE E-102
KENT, WA. 98032
(425) 251-0665
�.�a�. �
April 19, 2005 �,��s,...--�� �, , . '
��► "�¢�,� .x.�-��;�
� ��-��� �,
- ���'��"` �, n::
,a a � �=:�;
'r��'
�
4 f ra�... (,. i
�'��(? /��• .
t� t �t
r, f.t4-e:Lc
`fi-,f�/':. ,�,.
�" i-:' :._._- __oS._ �
_. .__ J
SD-REPORT.dce ��>�
�,
32��
.
.
:�;�:
TABLE OF CONTENTS
TABLE OF CONTENTS
Pages
I. PROJECT OVERVIEW 1-3
II. CONDITIONS & REQUIREMENTS SUNIMARY 4-5
1[1. OFF-SITE ANALYSIS 6-15 '`�`
IV. FLOW CONTROL & WATER QUALITY 16-24
V. CONVEYANCE SYSTEM ANALYSIS AND DESIGN 25-30
V1. SPECIAL REPORTS AND STUDIES 31
VIL BASIN AIVD OTHER COMMUNITY AREAS N/A 31
V111 OTE�ER PERNI[TS 31
IX. EROSION/SEDIMENTATION CONTROL DESIGN 32-33
X. BOND QUANTITIES WORKSHEET h'/A
GEOTECHNICAL ENGINEERING STUDY
PREPARED BY: GEO GROUP NORTHWEST
I
sn-arPORT.��: F
,
` .
;�
��
�rt.
f�.
PROJECT OVERVIEW
The subject property involved in this plat covers an area of approximately 3.54 acres. The
property is situated in the north end of the City, and bounded on the north by SE 95th Place
Access to the property will be from SE 95`� Place with a cul de sac about 390 feet long. We will
design a detention/wetvault facility situated in the northwest corner of the site for flow control
and water c�uality measures. Undeveloped property lies to the west and southwest. The Enright
short plat and Ridgeview Estates is on the south and southeast. A single residence is situated to
the east on a large lot number 26.
The project area is hilly and slopes down to the north with average slopes of 20%. There �i�
small areas of the property where slopes ranges from 30-45% especially along the northeri�
portion of the site adjacent to SE 95�'Place. :
The development falls within one basin. The existing surface water flows to the north nortli+.�Yest
toward the roadside swale along the south margin of SE 95'�'Place. The surface runoff on tlle
site will be directed through smooth lined LCPE pipes to an under-ground system for water
quality treatment and peak flow control. The system outflow will be controlled and released to
follow the existing roadside swale along SE 95`�' Pl. Detention and water quality systems will be
designed using the 1998 King County Surface Water Design Manual to meet the Level 2 flow
control release requirements. The runoffwill be tributary to May Creek. See the downstream
description later in this report.
"�'he soil type of the site is Alderwood AgD, glacial till. Existing groundcover consists mainly of I
Alder and Fir forest, with ground cover shrubs.
The proposed plat will have 20 (ots with lot ranging in size from 4580 square feet to 8948 s��tiare ��,
feet. The plat improvements will be designed to City of Renton Standards and requirements i��r �
streets, storm, sewer, water and streetlights. !,
See the figures on following pages:
Vicinity Map ' �
Soils Survey Map � '
��'•
�;
1
Pg. - 1 } �
,
w -
�'.
SD-IZL:POR7'.doc
�.�z'��
•�. _
,� ;� ,
n �
u`t.r.�" _$/. .JNS�-�,I4r .°C',arM'" E HS�: �
�� ' �� � _����_ _ ST �16��������� '���� � s;��r��' � —�� ,JF 4��sc, � NfWCASTIE �I
� ���
. . _ \
_ _ --- - - „ �
,�
�' _ _ � ^ ` S[ i�76 _SE ,ISTN P'_ cv s� 1• II
� ` ° SE v: �O� � i
,�sE' NE t. _ _ ��ern ^ h -�TH v� � E^ a,. `� r �.� ��� "
44? _ � , ` d' � S� _ - 42f „ E�� �
'�� S�.g _ _ - _< ` 5 Y ..,Ir � _ . =.c B�T ^ rr�;ic ,7y.ti V SC�'SF �':�`�'S.���tH P� �'
� _ -� � `=' 'S',^..._. _p- �1, gLS, .. '
NE 43RD SE- 9CTH '" ST _� � '^ �, '� ;
r - ---- 4:1600� �f��s' s�`�� _W� , , � 139T�V`?`"- I�s�;: S�H_�ar ,�, I
,' � ^ �
PL� _ ' � se 74TN -
. � `� ;'� � . x � � ... E � ,,,� � --�_144T el P 'i'i`.` .:oc y� ,+��" .l
?/ -� .H a. .":ii, ya = Bp I _ �, 6p i' . � as.aea^ ,
v: J Q ' , .. - � � Fc PAR ,.�J;, G� ?SF +'9yl °a.► �.y y�'��aE�'fi�ii�.�s
' , : 1 � �� c , e' G � > �µ _"� f,,�.P �i�,� y � I .,
'N � ;�,w '?�: � ' � �T 9G ��^ I
J d4rN ,i m � x c�, w�' �' A �..v. I/
N 40TH ST } a0ir !O � �- S- 0 .r `^ " ^ r ' ,
_ _ ; 1300 �' S � � �u� f ` W _.; � � �.�i �atr -" �
z� j eincl , �'j, ,� C �` 'a SE 95iN v' _ K `�
�i 1 rw�v� a i o p,�� E _ P: .,�,. "� ��` �`„E„ I 8 ���851� . � �
{! /N 3BTH ' STi N i v�ar `N � fo f^4' _ `�.,�'T o � � S 'la,�� G I � SF.'` c II I
g ,� o �7�
r H�:�o � �. �\�'"��� J� �__ - _ --i � `��.9.rTM,� �n �`rc� _ _p-.c;_�i ,, � �� N g � �.I
N�,.� •^ ST a' � v� o � 9-�, s -, .: L ��� i i�` -, m �4 �i i
, ti a: N ��36TH 3� NE 36TH _ ` �: 88TH"" y =ST r�.5,�._r o� - y ' 'I � : .
,c,, -a� ;� ST ,✓ _ i160U jsf 39r vt_ �, B9Ty a �'
� � N 3 5 T H S 7 ` �o s � v i c- �c�9'S E 8 9 TH S T �9� „ !`'� F o S� � - ";Pp � x I,-
, N 34TH 'a 5T ' `�' � ,_ _ S ` r-
� �
>i `��� '�� P L_. -S� 90TH ST :, ��~ = ����?c � W
�: 33RD PL � t �� � �I SE 91ST� ST� �� � � � � I �
� _� iE 9157 ST MAY �. 9i5r� �
; 'o �! � � ; 12200� - SE _
N I 33RD STi� � i � 11000 92N0 ST '4,_ �a� � CREfK ^'� T II
:5
- � " ' ' �� � �, �" �- � i ',
, , w �_ � I 4 ;
i t 700 i N 315T $T � �`O �� NE 3157 � :<%��_ o;� �` �REEK �, ��
' � � � � ��
�� � N ? 3mTH a' ST �ti �tar � sE�3��f � wv�� SE r � � �
d � CREEX PARK __ _.,
l` '� � 1300 ✓` oSTH �, �
i
� 700 7H 5 � `° MAY _ - o
y` N 29 0 . ... _ _ - - - - - - - �
, � T: o,� � . .,... ... � 4N
�,��� .
,._ �� ' ^�� � � �
f d y � .... .. ' _-i-L--'-�' 7* . _ _ ' � �..
` G� �� N 28TH PL:� xror _r ��, NE rc zerw�e'28TH _ ST _ ��l _r _ SEr �-t���-C ' _� \ 'fvy 1'��N �V � ' _I �.
? r�,` m F---�-----, _ _�_- - v M�
% �H.;_2BTki.� - -Sf — nE �- - '�- S '� T. �a`"y _ �i (� � / .
�� �: z�rH �� _ _ z7r ��� ` s•�4RA = _,� _�= J �� � �_
`y <' CT 2 � �� -- y °y � _'91n HE:u'nT� _ � 4E�25TH{ PL "'_'6T" ' ^ I� '-
� ,,� c• i t /I
q� ; 26n� :xc�, ` z ;' ,�n �� ��SE :COTN ---'-j �4RK o �; �� NE_�25TN CT tcorr: '� <'"SE 1 'T,,
,i f`s� �:- KEN � `sn+ 5r �r� roFzs� n"�'i._. ,,N - � � �` SE a iooTH aL ST
'.�� �i �; i� �� � - L 5 Si ?4 - a <� _ SE 100TH ��- - - � '
V , r v �.n � �u i btum r.ua PL N�. � s� � i
-_. : k q _24TH :ST¢i �__;._-. �, ss g�¢�. NE PL � I� z a �t -��OZNL� � ST:"x`� �,,NE23 NE ZSRD ST - N `23R �� �{SE 0^ND SN i
1700�1 �..i �� 3 23R0 ',' �t j ` _ y _ �<'1 �\ tt� NE I �
� �l � � ..� Z�NE �v�, NE N R S7 b �` '�, � �� SE 103RD ST = 4L c.yW��N�PL Q �Y � Rs.� '
�. _I :.. 1 -�--
�� 23PD S`� 22ND 2500 �g� <' ' � •,� � � � �
'� 2 3 - y i M T � :;; sE ioanr or���I�t :,5, �� ��� �
'� y � �a� 5 NE 215T �'$T oE ZZN�ST '�' � 4� 1--�--�--T :12900 ST y,rc m�ii� <��7t� s.rj �� �=NC 'a �,
� Si z <'; o > J�i 400 t 3 [
T C � �o ', �g�a �>� ¢ $'� • x[2157� _ � SF�105!H � �� 4E � R �� �. 20TH SY , ' � J
\ �1 O � � Q: N � ��.. N :2OTH: ST� i NE
� .R< 57�� �, b` �./' I m ...�_y¢ � �t o� �E lOaTH ST I
O _ NE 20TH /`F�. ��/+`' ; HON CREfK� �> `� i �y� i9Tn cp I �y��9 � ' I
` ����U�� 1700 � . � : z,z� NE 20iH SS St'�.�.y' �4\' 1 . �< = .
q l 9 TM_�� . zt y E 1 9 T+ S r �•.� J`�w� 5 O P E�S P A C F L _ 1�N E <."i 9��mlLL�`'ok � �� "�.n���� SE lOSTH PL i .
� ,` �. ; � _���,`i i SE �106TN ST . �,��.�,; �y� 5T NE ien� '� zl ��,.: � .
� a ' <' aE �NORiH= ��0 13000 ��3800 y,,� � P~� � - - Si nE I �'O`�p i�� i
_ . _' i::i � .c:Srr iBtM Si : � HIGHLANDS '�� ,� �.�E_,J� ��� +'��P�/C"'�� �t c�*. 1 <! Z � �� '
�n �PARK1 <' S . t �i= , ;. r[ien�vi c^
\/+ � >.�. F.��Hr ¢ �. V1� '<. PAIKI y1 �F\ t ��'I Y[ ��P� �� cF' I �I �fI �07TH PL,
� �.: �' W ¢; ri� � ,'��6n1 `�l..Lrn�sr , NE ;7TN ST � t t SE
Ti L o u, o� �;u �; y �T afn[i NE� p01wc�� 4 3i� �� ~ - `
. .-- --- �"--- \ a�wa: �� ,an,�;� O a I
�' '�. � � :a.e�
ROni- .tiUN(.!! �� � , �400i: ��PLriD � . =4in[ia` � , > ;'�� �',1 _ i
W z >, Y,-3, 38OU �,� 2��I
- � Z�'��i z.$ ; 2. �. vl . � <�. zc ce: :aTH .. �:c+t o�� V �, � �+ �., s v, . .
y±�< �1< _' ��,s Q: � , �1 xty+� r E �� .xa.un�'•� Q I . CC� .v'^ � ' .
•.. `p' NE w. a � z�^1 Y �T �� NE taTH `7 _ � 1 - : t
z �--_-c�� W NE :3r+ P� i �� i W �, ��+�:»: � _ , <' _
!atH; _ sr^ �; �_— �MID , = nE i�rH s* �� �: `"i i i '�F OJP��
ENE COULaN ��= m; = w ► �nE '.3rH �CIB �' �� cP � �' _• o' ''� �' l , `n' 'l'TON 15Sp'�p:i G
MEMl7RlAl ' � � �" NE ¢�S 12TH �;ST i NE ' � �� � ">�' g 1 2 T H J'��; ST �;a �� S E I 112T ST ,� :;Zn� _-• i V
EACH PARK � AIJ� , 2500 = .F� + Pu 3400 W; _ ��3700 r --� I _
2100 wrer M1�, I z, `^ I I 14300 il
� [� �j= �� g vo� ra�-* NE 1trN� �. �r- ..'• Ol1VBR M � sc ::zr„ ��
y _ A-+-„ `Oukl Ja.. � �/ i il �U I Z• . E
L � l N ITH
; �Q,, i!'< ; pU <p� � zi "i�;�'� r`�! wi ; �. i 1H � c1 i � �:Tr+ s1 HAzsN� � �3;,.
� p A�.�� � � o-�" � W =� ^� ITM Si..�1� S�'�XE 11T j : ����� �
i` .::.� ���1 AQ '�R =. I N IOTH ~VL o �� + S >� N'SI�iHi
I <� cxp rrp j ...i' 3 ��G <; ¢ <• - ci i
` ,f ♦ ��� � � , �� ��.x' NrcAu�n { � '�+, 3300 �NE - �tor C'�� 81� i aE lOTH PL _i' > � -
j % v.a�;. Q"� ;�� � � NE lOTH ��'�.~�° F� Q� <i I I�f f •�,�rH °C Ci =1 ��< -��` Q �
AL'NCH ' , � .
- . � F.V`� $ � �Y �� IOTH lN 1 `� � ,� ..e J �
� � . � �l � ,' ! T �E ln�� i vi o� �. . 14100 � SE :16TH S'
� ��+r�-�' i m NE :OTH ST eE � `bA7 ' � i I�- NEL 1 TH ST „� � �l' �; � i I
� eTM ai \ 1 f 4 I asoo �i „ Ne \ �; �
NTD. ��� �o r•t\� I + N E 9TH PL S 2 5 1���..`�' 1 .,� ! X� I NG ..I QTH $T � y TH Pl cr i�ur, � 1 i !
� `I l ' ,� t�r�. I
h �1 (� ��=�� �� � AkF Ag� � � AgC � �� BMp
B �>> �{ _Iil�� e _ � __ _ __ 85
` ;; i42Q� �= ��r �� ( BeC - -- ----- - - --- I -, --� - - - -- i
agC f� - '
y�� j BeC � j
�I ,� — 1V 8Wp0 1 ��� — _/'Ur . � i t
, ��_ _�
� /� � H11�S �� BeC � � �
� �l' AgC ---- --.__ - - - -^ �#��;�I'r
; , � ` �� q �� Ag�,
- � � �r-c==t BeD i kF
( �� 6eC Ur � � _
- � � gk ' BM BeC
� � � Q NCWC1 _.1693 • DeD
—� J • •' � _
•'�• 999•
•• ir�� • �� 11\ I EvC BeD ••eC I '- ..
AmC t I
Bh '� i �•
�f �' i _�! '� agC - --
•• � � ♦� �--�� _1� .t'���.
,,__1
9 ABC - �P ��� \ � agB � _— •r
�� � �
�. OvD ��Q � N � BM
---- � -��------ ; � � - ---BM�OgM - ------- -i---- -- g BeC �
y ' �:; � 690 692 I
in I '�AgC N� � .�
c - — '� � AK(.
.�� �� ��l � BM ` 1� � •
� � o�� �
. l 605 � � I I
�` : �
. � S m ' � �p� '° • �
�� , •� n � BeC �
• 1 •� 'AgC r I �' .�� � 1 BeD
� •X� �� A�D � �� \A D � 34 � 13 /1qC
. �c. � g ii I
••, n� ' L� I� �•'�,'\ i�` n • I A \
�� ___ � n � �' . •�,• � �1� I
. �
• /n• � AkF I OvD \
� AgC Evf3 � � 8eG � EvC � �
AgC �
(�NA VEL I
f'1 I -- I
' • � • � - ' ' •�M ' T. 24 N.
� 1 31e� ��a �---- -- — — — �`� , �t=— N=' — ---- -------
BM�11 � - � -- � ovC T 23 N.
1a q _ r �' 811• y �
�� �� E�O I . _ qgp J �/,. � �
, : •'
n r � A C �M� �. Ir_- ` ��� I • •
�� ' g II R<tc . �
--= 1�� � �� 4S? I - _ .
AkF I _ q@> �
�. --�--=f�_ •. - . \. O .�kieD
[ AniC
Z � `; J�, AgC .�, �.
r '�,�,' "��i -�� . �-3J .��. •p,. yG,�
1��y �� i � •li�,,�, - -� '' �= . �1�' • J
��{� ~� �I ' -= Ag�'� • . .ti ��EvC' t . .111•.. . Evli.
������� � i � ��C •i% _,% __ � t � i... \ 1
•'� • t: Bh \ .
�� ,�� �F ...• .�• . ;:�
_ �' ��fr� H, �Sm \\� Tu'.
! �� `! I AmC. � � RdG. ,� ' F1L Y � .Trailer• ark ,'�
..
�i,= '� '�; I,• R s rv ir. • � ��-••----•--- --- l - --� J --- • • "_- -- - - � - - 12dC �
��_:.'1 � ��I _ • gM � BM � �� g�vt �'r� ,xt
- • • `Ev� '�r�. .. -:�_ '����� • ;ll �' -- " ` �
_ • ,�
. -- - .. e
° RE �� '� —i ' • I:"�(� _= AR�, I �� = a,
i J� -� _ - II _ AgC '� .,ii :' . . I-1 Y Ap('�- .
�! g� l� '� � 1_ �4 �- �" ' � ,�o
���� j � i (� �._�� ' � - -� iu'
�rz�ic 10' , ,
N
, , ,
,' I•lil��� �1r�L"ai� r�l��ain�,:l Ircii�i �,., , . . ; in�ii,i��- .� ii� . .i .
_ ._.-- � -- �---� ---.-� . .�
- --- - �iii,r�i� i�•.� Polyconic projection. 1`l:'/ Nc�rlh Arn�•rir,in cl,ilu;•
10.000(ooi grid based on Wa�;hington cc�oi�linaaf
north zone. '�
i ..t
-, � i;
I-rv: ::
� r
tii I I?I�'���
�
4�;
� I1. PRELIMINARY CONDITIONS SUMMARY ��
�!.
<:#�:
CORE REQUIREMENT #l: DISCHARGE AT NATURAL LOCATION
The allowab(e outflow from the site will be discharged to its natural location. The Level 2 11u��
control is calculated to match the developed peak discharge rates to the existing site conditi<►��
peak discharge rates for '/z the 2-year through the 50-year return periods.
CORE REQUIREMENTS #2: OFF-SITE ANALYSIS
,}.
•;;.
,�;.
Kefer to of�site analysis on subsequent pages. �
;-��
rti
CORE REQUIREMENT5 #3: FLOW CONTROL ''��
E-.:
�*�=
Preliminary calculations are provided on subsequent pages addressing runoffrate. The sizit�� �`���
detention and runoffcontrol facility and its routing calculations are included in this report.
CORE REQUIREMENTS#4: CONVEYANCE SYSTEM
The conveyance system will be designed using the rational method as presented in the Kinc>,
County 1998 SWM Manual.
Refer to the"Analysis of Conveyance Pipes" calculation provided u►ider this item. E3ased c��� :he
topography of the site we anticipate pipe slopes to be equal or�reater than 1.0 %. The 100•.r���ar
developed peak flow for the site was calculated at 1.40cfs. The capacity of a l2-inch pipe �v�t.i�
l.0% slope is able to handle 3.87 cfs. King County Surface Water Design Manual 1998 rec�t�€s� s
to the conveyance pipes to be designed based on 25-year storm.
CORE REQUIREMENTS #5: EROSION/SEDIMENTATION CONTROL PLAN
The Erosion/Sedimentation control facilities will consist of filter fabric fences to be placed along
the north, northeast and northwest boundaries of the site. Temporary Erosion and Sedimentatic�n
ponds and ground cover measures will be considered for water quality control during
construction of plat improvements.
CORE REQUIREMENTS #6: MAINTENANCE ANU OPERATION N/A
CORE REQUIREMENTS #7: FINANCIAL GUARANTEES AND LIABILITY N/A
;;.
CORE REQUIREMENTS #8 WATER QUALITY
The water quality facility proposed for this project consists of a wet-vault.
Pg. - 4
SI)-RI�.PORT.doc
,;� '
`F�,'
iA.:
.cs�.
, `ai .
� ��1;
.��
�,:.
SWM SPECIAL REQUIREMENTS ��'
���
,�,
,N
Special Reyuirements#1: Adopted Area Specific Requirements.
The site falls within the Honey Creek Drainage Basin.
Special Requirements#2: Delineation of the 100-yr Flood Plain. NA
Special Requirements #3: Flood Protection Facilities. NA
Special Requirements#4: Source Control. NA
Special Reyuirements#5: Oil Control NA I
t�.
' �
�}
Pg. - 5
.sF
�.�y
�.Y#�
�i`;� ,°',u.
��
SI)-RI:POk7'.dOC �, `�;,
;2;*�'�'::.
:z..:
..�.
- 1,.:�:.
. a4`4
` f a,,t+
+;_
£'...:
;:z:..
.'y:-
lll OFF-SITE ANALYSIS
,.�
1. UPSTREAM
The site is the situated south of SE 95th Way�ust west of Coal Creek Parkway and drains
generally to the north and west toward SE 95` Way. The basin area upstream of the site cor�sists
of short plat which drains to existing 12" pipe on the east boundary of this plat and flows �wrth to
Duvall. There were no visible surface swales entering our site from the south. These parcels
drain to the northeast and would generate insignificant surface runof�'to our proposed site !'I�e
wall drain installed along the south tier of lots will intercept subsurface flows from tax lots 18�,
and 43, and direct them through our conveyance system.
;:n;
2. DOWNSTREAM `j`!�'
Surf'ace runoff from the proposed plat sheet flows northerly to the top of a slope down to t,i�.:
south margin of SE 95�' Way. The runoffthen flows northwesterly along the south roadsiclt� c�itch
in the roadside swale and driveway culverts about 700 feet. Then it exits the right of way,
southwesterly, at tax lot 0323059095, 13241 SE 95`h Way, and flows westerly in a heavily
vegetated brushy ditch, see picture#4, 3' wide and up to about 1' deep about l90'. The drainage
is picked up in a catch basin in a low area and continues west about 240' in I S" CMP pipe to a
catch basin about 30' east of Union Ave. NE. Then 25' of 15" CMP directs flows to the north to
a 125' long ditch. A 10' long 15" CMP stub flows north to a type 1 catch basin at the southcast
quadrant of Union Ave NE and SE 95`h Way at the corner of the property. See picture P6. "I�lien
80' of 15" CMP flows east to a type 2 catch basin with an 18" CMP going to the north und�#i SE
95`h Way. There is about 65' of 18" corrugated metal pipe flowing north at about 1.5%to �:
riprap outfall on the north side of the road. See picture#8 & #9 ,
From this point the drainage flows north down the heavily ripraped slopes to the toe and it�i��
May Creek. May Creek is an inventoried salmonid llabitat for Chinook, Coho, and Sockeye
salmon. The City of Renton inventoried May Creek as a portion of their"Critical Areas
Inventory, City of Renton Wetlands and Stream Corridors" study in June of 1991.
It appears that a recent 18" LCPE pipe drainage system was installed to drain the west side of
Union Ave NE, the horse pasture, and upland areas from the west side of Union Ave NE. From
picture 5 the installation roadway patch is shown. This system ties into and drains to the original
18" CMP outfall with a new 48" catch basin that directs flows north under SE 95`h Way. See ''
picture#7.
; .
.� � �
��
�.
:s '
There were no eroding or unstable side slopes for the ditches noted during this analysis in �} �
October of 2005.
Pg. - 6
�Y
� '�'i
SD-RIiPOR"I'.da;
}
`�<;-_
Y _��- � � E � K P � R It a� I � \�,\�
. �� �- �� `, �
� �,; ' ��;���
� �COUNT PAR'K� �� , �, � � z,.
\a /jE�C R E!1 t I 0 N 0 E P T. Y�� ---- -� ��
,,� ��, \ � a-�-so— ---�_ �:, � �_
� ) ti„ - � � -
�<< - �-
poc_`--1.�_�. � � ' - e '� t`
�40 ' ` ,,a �� M Y�
- i—_- ---_ a ''� - � ,,(�
- �n � � -' �s' �
NAY� � _ __- _ --
m o __ � - �
, �` ot9.r9 ��- ----- -...�-� 1 [_ _ . ���_•' �` - _._ � . � � iS r',
�,.
� SCC M4 I � 7� V � ri ' . . " �\ � � � ��
�� � e'6 �� � , fn� 1'�
(.:�, _ __ - - ���
\ m `I'�n 1 � �
C5)� /�.,1- O� �_� , �, � �LJ r
�`'-�nc � �", � � ��- ``.'` (i�n� - (i��4� � I
� -�/ �J' <. ��`,������� �r�� ,_� j
� �•' � �[ p��Ac (nn)
�'i V l71 W � fl�,nr.� �"'� (i�
�� - (il ��s�n� ��
p52nc r,�s�
� �s b+l N P�larshail, .Ir V �QDI �� uf,?n� .
I JD ryj� � � •' �
.
/�V �/ t ~-� �t
�7 �����!"� \ d i n��.�,,nk
� ��' � �. �.9 � (�'j �°e Piqn�lard
�� �� 1384 nc � �
�'� � �, Q James W ������;��.y �
\ iF O I I
I(enneth A1ar;���ll � (.�
6� I I
ai°o. � I i��=zno' I
�,j) ��/��
(�S�
/ �\
.�`��)nC � �� (�(»� ,
—� •---1_. r' ��l:f, � � \.:
• • —, .�—- ;Y� � r,�� :.� (Rr,l
� \ � — bsa,3�— -___ --- �79 r,�:
\� �
\V � �BOOW�
� h� ��\� ';. � '�; 1 � i� ��Gl�
��..,,� � '�.
� �i. '.�, . � 1�I�� I
' s
, •.�: . . � /G . .
I J v�4d y�� � -� ��\ � 11 , .
I tl' � � � ' .`4� ��4�.-, .��` ' , c��. sa . ' .. ._._..
� � { P �Ta ���p�__ 3oe
'; � � �, _
� �
D/ �' 's.�.e �. GL. ,e� � ,� ,7
� "= tD },� ' o>.v�� .\ �= �, �
'� -0� �i \
. ,� 7, �A� 7i[�[ �0 6�.
� 7�) � � N \r\ ��:N '\
�''' IN SI L-�1 FfC►�n�� `'� �w'.�I ��� =�." `
� , .,.,._., .,,.
� - - --- :-�., - --- � �
�� � , ,. „ --- � .
,�a s � »i � �
. �� ° �•�� �. ��'.
�r; �ql � p m 6i� � ;� � � .\ I
� �I v" r> >�Ih��I.", �\ . a �/ �o�cnN�,J i°a9 � �``
i�ii5 t�./'t�) �ia�r�ei� � � �� : i o �(��-' F-I G��r c,[- ,�,t<`x;'r
�� n .:oF r r I'1 ee .J 1'� •.I �� ^ (�\� „ ipY�+__�_' ._ !3 .oe_ __� �,-Y-
�4 F �\1J /� p l �', i t �.��:� ..' /' ��i :
' (IP 't-1 '1 h'_]— {__.. � �Z . 4 ' `� �.t / '.
. �.. _... i . ti� �.f� .. .I w ?g� 24s o 77n,. �' yK..
o, v �' �tao ,.,e�i.' roii /o� .���..
. � � q0�5 U .���x��*C .;'
I�, � wo '�y�ez cu 9" R � / 27 1�+'�} .
�
{ � Or, .. ; ., , 1 " ���_� 'cF,
� e9 /EN o � : � Ze �r� M1 i i ♦g
� ������) �.���n�� I �( ..) �1�ry�6� ;'f ;i 5y NE�# �26j11 �-CT 4i,ex ,���.
� ... .... ,. I .C. :3_ _. . _�, - _I_ ' _�y�a ° ";��> � � ?I
� 1C* o e^t F _ i�n�e {l • ��v I � h� . \'�� ^ I ���
.,... 1� .s i. �y scrr pb �� �
' !1 ' �1 ,31 IO I ln , �fj \ �� �, ,ii j
00; °<C`e^o " �� S ?O .Cn��� ' l��n`b�� i(` f . '/ ;r," h�
^ \ 6 � .. �.PO IN ` /.�4`n._ _"' ',f_��r_ __ � � .
f �--.-�.5._ /� I
�o,D� � 7l�b—BSn. Qy�� \(��.{�1� `� ..M^... .,i, I !� � ! �1 � ` �„
J ���c r.n��o ^�� ' I ���1 '�' �J`V /!r
e ne 5�� ��`� 4A^g Q��� Z 7 Lp n ,Ei�O�� � gnls� P'
Di `V �
+ 'o^ O�� (` . 9 i� ����n � �' ��n. .-,�
�L �o�,ti �Io :\.r" � ' ia��
�nn - .l� I -��—_ _. _5_—.��y 1�
� 1^ ,+sse : NE y 25TII,wsq,vCT '"'o•^'
' t)�C--- --'— �I^ sac �� _, ' - ';
��' .:t.A�'. _"�c-- so�.� !L n = ' '
� r� ,;1/��'�'� i f i4 � +6 ~ �\ �.S �.
1,1 h/ � u � •f � ','. ,;
���� 3 � 1. q a 10 c � �
��rc / �. �� R � g ^ Z . 0 11 `
�' � � �n �po . Q ,p ° � - �� .. , I�� ..
�..�, ' ,
� . .t ,:. . .. . . , n . ��P .
.,t� .�_ f- ��oi d�� , . .�ez- �.�i � �.
'"' { J �o
m(
' • ' - --- . �.
� +� . � . . �9 f J— ..f —i to.se 5�.._. "��� `" ;5 _ ._ '�.M I
� II ; �.. 1 ( � ,. .`''I I__..� 'I ��f ,/
' A.•. �. Y.�/ � ^n• ;.���. r�In/{U� '�I Q J n ��j}
��I�t ,�.r10 � �1"��`� N �S)0 y �y110 +� �61A � � � ♦ � 9 0 1' p v �.i �� �I�q .
i ;a � � . 1:
. �� 1 f, �/.f p 4��1�� I P J�' ��� � !- ,.
�.r. ,�+ s�o � •
n.:^ i �er : y .:+'�` .�ie � � ��17•
_.. . .a �.., ,^ _._ ���n��p^ ., , �?�
•�
� ?_7�773 - . . _ _._ ��,,. ,� ,,
�
� ,.. ; �i44) II Ll p___._ .,_. c___ _.__. _ _ __. _..-
� . . � . f._.._t<��. , . C _ Y.�.y . ,.. .. . .
� = � i ti ��>' f #f � ~► ; ; �} �
� ].r �� ' _ ' `f j y �' ; j � � C..
� 1y �� y ���it� �v Q 4_' �� _l�(.�� 1 � ��i, '`�� � v �\.. r
I,� .�:e�{F � f;'� � ' �1 � ` ��`_
j. �.. ' ,� ;
� ti"� '�{� i - r..� � ,_-.,
� (-� 'd C ; �- -J .�•7 . � � ,..,,,�,, ' �.l
� ' �:' -�i �. ^L.,,,� �Y "' ' � � �\.
{ (-j ---- =� ;, ��'�' `' '' «:' i 1c-� I �.I_�,� • "�"-�'_
� '�
�:� .� `�N._ 1''�
; �
E r , � ? � � �.
�=1 't,� 1 ��-�Z =' f � j i �� r,�'"`. �.� ,
(1'► � ! _' � � i i �-^' ` ! + f � ? ' ; . �
;,,� ,.:-' ' ! J � i l �f�;c�, �o
f � , _r �
.cj - ; �y ; � i, :r., j' " f �,,.t �.�+ ...^� �
�`� �'- � ( i ;�• f � � { �� 1.---,..,
1 ti\ �Y-�'� � . �� � 1✓ i ��.�." �^� � � �i � � ��'�
`'.r',� 1 � r'��� � I
�,--• ��� � �'►�� ' �,"\''�•-,�1 �
... � �2j � � �
"�. � d_
4 �'--�'` ti'i�-,,i ....,� w ~"� �:.^
'�_'����� ' w--:� ��; � �t�t I
',,�` ,��,,, i �`�"
�`'�. '+_�.�"'-� \�`�.�� __-.,. � �
~� � w^ �,�� �� ;,. �
I� __.__. _.
k� -.._.. . _
��'�..-y"'�" �`'�.+.^M` ''�. ��..�. - - _.1�j -1-3-... .
~ � � J � �`v�- ! ( 1 �-`
. � ��'`L, � h..✓ -•�,,,r,,, ''�.'r �r �1 �
�,,�� 0 � � �
i �,..±�.-,.. �,,� �`"1� f �'....'..»""-'�^. ,;�`.� .� � � � �
� � t�..../�' .
��`'�.�.�"r-�—�'..,.,-�.�.. �1 'r,.
� r - � �� z...,.�-�� �� -�, t I-�.l l.L-�C� � ; �
'i c��� �� �.:�,�--�..--�..--_ --,-_ �,,, � � �d ; � �
� � �
� o.,,,�` w=..�,,, ���.;.� -�,..
,
I��y,. a,�,�'.�!�"�`'"+.... '�"'.�j��"-�,.. `'--�.�---,—�'�^.'`^�.�",;- i ( . ,_ (
t�f.,..,i�,.�,,••..��v.,,:.J;'� �:�,.,,� � - ..L. _t: ., - -----
('� .r—ti� '`yi` 1� ' ��` ►�'� �
� '�*•�,,,,,,,,/� �
� . :
, �� �,...�,�. �j�j� �d� ,.,,* �� f
�► t� �... -y'°��'�,.� ` �
� �"t �1t �\ � � .I , 1
� i'U/ �,.'�'��� �-�,�—..,��' ,�� � c. _ �. _
�� � �
, E . � ��' �� . .._.
.'['� �f �,1 �"'"�n+ ��
^� j r ,C •L' •�
�.Gr— ��.1� .�` \ _ �,�.,.�,.,.
� �� � � ��
i �� .� . �� �
- �-�--.�.., r�
� � , � �
I � ��Y
, . ..� � - . _-- _ _-_ _
, �`._�_�__.
�� � �
�
{ � ��r ���-,,�;, �:�
'���' � ..,.,.�,." � C �„�'•�
'� .���� `,--.-r-" --�..-M 1..,� . ��u,�� ci
-- '���` ��' �� �
.�,,f _ �
4'� _ " ._.�.. C��I 1��' _. 1-a�1�, ��
t � �
. � -�u ....,�- �,� � �.
��„ � „P�+� �� `� _� ��� ���``�
, ,�., �.,,,,� j �; ��.._ ��1
r k.ti � �.i .��j� � . _ -
` �Rr �
., �`'�,'•. �
' � , � �
� �, �---,�,�, ._ ,
��`� s�� �
� �- � i _
� � - _ _ �- - _
"� .--=- � f� �
► �^
I � -•�-_���� ' ;,� � . �� �
� �..,�--__�� � ,�' � � 1
, �
� � `�.� �'' ..�,.,. � , ,_..._-- �
_� � ,! . _
� � f��' ,� � ;.�'g � �� I �, •. —
�-., � � a:�r • J � � I , ..r
, ..,._ '' _.,--� ' 1� / i � 'J)� :'. � '`, ! ,- �.'��
� � ��rrr (r� , : �1
OFF-SITE �V�L1c�SIS DR.alr aGE S��STE�i T.�BLE
StiRF.-�CE W.aTER DESIG� :�I.a�L'�L, CORE REQC'IRE�[E\T#2 I
Basin: ���r \,�.f�c/.;;���;��: Subbasin Name: /�,a� � ��r-� :� Subbasin �iumber:
Symbol Drainage Drainage Slope Distance Existing Potential Observations of field
Component Type, Component from site Problems Problems inspector, resource
Name, and Size Descri tion dischar e reviewer, or resident
see map Type:sheet flow,swale, drainage basin,vegetation, °!o %ml = 1.320 ft. constrictions. under capacity,ponding, tnbutary area,likelihood of problem.
stream,channel, pipe, cover,depth,rype of sensitive overtopping, flooding,habitat or organism overflow pathways,potential impacts
pond;Si2e:diameter, area,volume destruction,scouring,bank sloughing,
surtace area sedimentation,incision,other erosion
� SITE �u.-Lrr "0 2u�nSiDr- c ' M7 ., prTCN �E�s��� .=X. G � �5 �����-
��" ��r-_� �,��1 a� r ; .3 /, 7 -g5 ��r-
a_� p�r��, F�J�✓ �- ?���°� ��:E Dr,r��-i p ry i o�' CULVF2TS �y�GD-TD GLEA�r gi,E ��cTv�Ftt�gZ
�i�c �� C•�r /'( I ' F�: �Z� !'il^r'� �.�N� ?�P� ~j /D b �j '— c" ulSrDim.Er," ���N � SE ��"W1G/
G,QX�sS �r-� _ -� / r �iG� � icT✓�E a ��
^ ' � �'�TC�I ACQD�S 'F � D �. ,�.-� '/G(�, /�i�r�� �CF_ F c...
� F c� � � 72� ��� �� :,�-r� ,
�5' ' ^„ � _-� ' ;=_ ,w �.v';s� '� � �65= ��?S� /'��-,���ss /.��i.�r
— f� r� I %-r uN� o�.J l I� P,4ST^2r �
� ��j�' !S' �n"Ju -' � � F%L :l-. � F J!�6 , .''.� �1�YG7�..:1 i��L176'i �/y�OM . � I' �.:-' �
D — � �i�r ,.� I�� 1`,� '"" � '.�N���1 r7 rPj � �O � �Z�`. "��5 7pS�':•2r- Nb FLVUG�NL�
_ C�' �= ="^�' ��.�t�FR_ �s�S--i�2G Vr � i �r 9�''G � ��7r'l� N7 FL��G� ^�_
' r l /J ���5 ��Z� /�17 /-'QJl3LF�n5 ��`E I'vCT;✓�L'/fS .''..l.
!y�' (�' ;i/'? -:� :!�:�E2 =E 4�t"' yY.j 0/ �Z�S� � G� �'"-"'F���- /�IDFt� ,Z;i/L�v T> T'�;,'`on�
� - G �-.�- ,q�, "� =(�EE �:��FT� � � ,s !� t 3Z5 �y� F��sr�ti:
yF SL�r'�
\�, " `' r- �'��r - !'� i ..7 '/t .�-.- r;771� ^ ,, ��Z5� �2f�`, ��6 E P►77 r�(�Npi �l� EB�S �J/`' r�i;�'-E[�
_ i_
�
I i i
I �
I I II�
.... .
; ' / �„�'�,�t��= � �� _.' ' ; �'_` •r--- --- _ �� _• �► ,f'.-�,•� ' •'"� � : ,�
.
�--_�_ � ""^ ,. � '� �'�
� -�{-•�-__.--i---. • � ti ; �. „",r � -.-, , .f'�r-•��` # � r�� 1 ,/ � i � j �' __. .._ _ ._ --
J� � J � l��� t 'r � ' ♦..a�.1�! Y ', .�e�� �..�.� -L,4d J � T'.����►j ! � j i �i ♦ t,� ` �
`J � JV �� � i ♦ �� f Z 1� 1 t '�% v I � � � { � ,.�. �; �� V; � �� ..%i. �
t, �,f� ` 1.1, 4 . �� 1 ��� f �/ �L�'i �� r-- -t.- � `( � • t 'i ��� y, , �`, �� ti ..,. „ _. ✓.^!1 .�•ti ..�.
� , ` ~1 y� J� . ��� � ' � � \� 1 � � � S { f� � � 3 { ' ;' : '� j • + ;, - �' , '
�•-� •,V ��, � ,i � 1 ` �� , 3� f r� ,� � '�','y t � l�i 1�Si��,r, •/, �,� 5��• ,� -
.� ' �` �
/1 l 1 t ; � � � ;',f ,{;�t �r �,. ; � �
1 � � � �� � T � � � � � i f � 'i ; ..
r � ��y 1 1 ",��111� �� � j � �•/ � �: . ♦ . . . .
�r � ~���� �� •���''' '�1,V�� �•�4,� � l� �. 1 �� i� � ,` �lJ���//�t '}��.�• ^ .'"'-�� � r�,f'�'. _.
� r` ,,y, 't�t �',+ ?�-�'�`r .�.�.� �� � � � i �` � 1� r ,'; .-�' ', � .. '
� ( ��! ����r iJ� ( � ,�`t ��, � �� �r� �r ` �/�'�� d, ,'1�� �, �,..• +7.,'y —
� `�� � �� � �j .� r �' ,� y �,r{r 1� ,' ���,''�� �;'�� '^-- ti �
�` f
,r 1 � � � //'� i' r
'�Y ,t :r , ,� �/ i t ; I`; �� i ����% (� i � f �;
!��, ' � i f � �
;�} `'���r -�Y ,�,y�.---`� � �� t - '- .. �-- 4�'�'� ���f 4�`}..,�t���,-':=� �� . ..-�-_ _ -- �
}` �I/-J'}�'� ,� r '" - -� '
,.._._ ! ` i� I `� + � f���* � ..�.����*. f 't�, � ;�� ' ♦ /,�'y ��f � ��'t� r s�a�'' �1� i
1' �f *,� W 1 j�'� 1 � ' � '� � �,.
`� �f�1 � ' . � ���`.�{�•� � �y, � , ti �� S i�,�;,` � � . �, a � ,� .�.., :
� S � '� �� j� �/'�� } i I"` � , f t ������ y +.;�f �
���✓�ia � 21 � � +; ; i ' `�.., �+�
—�� i�r��4"� f ���� 1 � +)(� Ii'i j �1 � /�' �{ � � ' S� I ,� f � � / s` 1 ►,f' + ~�—'�'+'• r
r'�`w � �t���1J��J''�) / � � �1 � t ��� \ (� l; � � � ��) i�i 1.`C , . .
���.. � , �l r� .� �• � L -J �
��\\' t ' � � .
+�'�\�'��'�'�E ��'� r'/�•�� ��sS i[ 1��� 3,� � } �. �r � � rj � � ` � �S 31� i 'rtf, r ~ - '
��`����,y� �-1�t�.'�i� F/� �� � k � � r � ' � �)i i' �i r ��� �' � t "^ ��: � i..,.:- .. ,
� 1� _�e. ,� .��. .:.� ITr�: �� � , 'Q j 1 i ' s, � � � � :, � � � t
_ ' �'+�;�.�,y J�"}..� � � � r. ( .,� , � � i � � , �' `� � ��+ � , , � S �•._ t' !
-,�,�, i. .:,_�w `li ' ,f!�{� i � �"' ,�/` � j �r �/ � f i � i \.' t �
' �,r�.t'w �.'� i f f� r�� r�� j � �i � f`< i� � j , � '1
��.��. '�w��• ,� 1 O , � ` � 1 � � !?�I I r,�i � •� � i { i � . ' '`. -=;>. - `-..•- .
'�.�,�•,,s,' �I �./ ��,�'T�, � t � � }. : � ; � ,f � __f r'��1 f�#t � . . � .. , ''� ,�,, i
) r{yi� � ! �, : te � 3t 1t � i � �..
'•���1��. �� t'`~f�f} �/ �✓���j�il�� �� { t��i 1 � / ;'i'���;J•����t i1 ..��:'1'`� '. ...__. _, /s�` :r��: � :
����
.�' � } t ��'r` 1 i �/ �r! �+ ) ` � �i } � ! 7 Y r��� • ►q.`
��; l ��y:. �r,, �fif� � f_=s'�j���� � .� J' ' i�f� ���."`��`f� �f�� •�.�- '_'t l' • f.
s i�'' -�.•'�9' �Y' �f f��' ' � ` �'' � - .��...!`�
,S i �f.+� "� y 1 � , �� ��. , `��.�-
�-
1 ��� } _ �;_��_��j�F� '�' ��y � ... — - -----i��� �: �' �t�i� , -�� "''� y
; � _,.r. . . _ ...._ ._..
._� ,itl • �� Z�i � ���,'`.►� `---r.....r'�r A.: � �i t _ � � t _. _._.. ,. .--- ` y
: �' � 3 t . � � �r , t � �,, L
,�,.�����; �� � � }� �� �• � � f � � �� I �'�f f�?:� •ff,J;,�' f_�_.__ �1 - •-, _ _.....__ -- ,..., 4,i�-..-r
'ti�. ; j .... . :'"'�' � � �P�' �'/ �, •f� � : 1/"r'" , - _
}�t�f'�'� + i �T (�� r �" � s;'; r�,.�'' �'�r��_Y �.A_: � � —' -`',
� .� �i� t�� �' �� :� �'�� � �� � fi= � .�- '"�. ^- ,- �, --- �r--
� , � �����„ � � � '""� � ' � �� � `,�l _�_ ��..�,,� �, , -
� � �` ,� � �� � , --- _ r i .� =,,;.
��' ` � , :� � ``1 � } � !" i � _ _,��.---- `�
�l ' � _ , �N` � � , .r � _�.�-� � .._�__ � -*-�
�� �� � � ;. l ; �� =s _ :� a: � �:.. ___ . __ _--
,�-� � ?,� , , � ,� �'� r ,:� ,��•.: - '""`..�"'�
;��-- -�''�j �� � � 't l� � -, _� - -- ..�..��,,_ -:- �
j'_3��--:. 1r � -� `, �--- ..._ _�� •�� �.�'"'`,,. '.r_�
_,v�,�..rr �� � t t"� � f� � '��ti. ' - `..,,..�r"� .�- i .
L��, •. 1 � � r�� � ._ .
,. . .��,�;"' � �,. �
:�-. . � � � � �"'� M._._. __._ ,3
,� �i. - �, � _ � �-, �� ,..,..
� -"`'"�" ��� � 3'�� �� '� ti �.- t`'� � . - �'� i�� `�
i.��/...� ���`•. ;' ._ ._ ; — - — --t'"S � �� 'r ,���"'- i
�r � �� �� �..,_l, ��,� ^ i �.
—. f ..�r � .1. � �7^� '�� � f �.?' .. S_ � j . . ..+� _
.-� � --�--- +�Y�'��s'r--�—. - __ '.`i"" _ �_ .Y...�� � � � �/ ��
' � � i � -�— - - --�--�_.....�� _.���„� -j �•v �js '..+. }, ;"�, a. , . -
� ��` 4 ' � � ^' � , � t ��-•��`��rW I-r� . . � �>
� - � � � �; ,r
� f �
_,��1 ;} � � ' �1� SZ � 4� �'. ` �
- � •� 4�� 1 f �i� - . " � � i � i ��
.'j �� ' �� � ,' � � - - �� �•� �"
; t . � C� �', � � f � .
�. � � �
�. ���.--------~ .r:� �� �.� � ; � .: t t ti � �� .�..��
� oicT��r PI �-���� sr' q �t� w �� �'
.I�, ��}M�.'��.�..��r �I ;'.;♦ ."�� I � 4 ��:+; �y-A �.�r�ari�r _
1 �_ �`- "A / ."'Y�
�.�;��,R� r�y- {.� -=���'!i °� rt -�� �':� f.�
�r ; `� ��,' �= �� -� ° � � b:��
; � � �;� � - ``F
,�
;�'�I t .��� O ��`� L '
�-�i , �,;�,. .� � .
� ' . /~ ��, � _ . � , ', , �.r,.,.,
iZ' � p�,,a�� �' �,�"_��� '�� "'�.-
C,D N C►2 F�T� ` ;��'� , � `,, ;,_'!111,
� ��� ` � ' ° " ��
i t�r_ ''� :�� '-�.` �_ .'� �
� �'� �� � - .
L�,AJ�r�c2 �f _ �
c T ��F ��' � -` . r� � �. �-�- � -��'�,...�,
P� ; � � � $�:�- .,. �
� ��.
I � ,� �,. , � ,,, �
,♦ � �. a.. ,f i'�_�
3 4 � ' �`.�`,t� . �,` t•��
' 1' ��s!r , �I c ���-'i`�
• ,�' ,, � �`j �'�K„"4._ �.r°i
�� ,6�3. e, n'r ~ .^� �r._ =
� i• , e ' •
/ ` �� �`��� ' ,� �' �r
/ � � � 1 `� �_-�;,,� .
� . � " .
�� � �.I' , �, �� �r• ' ..
� , ' t y �' � • f
i�� � � , �� '�.
�� (�� / ��r�• f� � i��►� �R
�i"fs�./�� �`•� � . � , . .
/.'�'��1arr' ' `,._ � �i�v�.-� `� R,
, �� ,t ,i�,,�•3 �� :�s:
��C 'rt� �r- P� �-LDN G s�� y � " r�y
.- , . —. .�,. - -3 —. .s_ s.. F-� .:' - ..�} �.�� .,.,o:},�, �:F «;;,,, � « �:{-��_,�=-*
�� .:p ��..... Z, (�,.�y � P. -.4. �T n � . , t -i- d.�[
h ftil �-h,�F � � iiw l "J4' � �'� raS .�� l�. ,Y� �'u.�,y � '. ^� �y � •.'*t;�;�
i`����' A'��.�� �t'�•�.r -�@ �t�� sh �`.f�'/`.�is�f ifi�.�m.i�,j1�' hx'+.,ra A .�y' � i[�`��
� � .�+.�e 'R� � - i6 ? ' .a t^n
� "�r y`"` ���}y y if"„�'��" a -.Yr� �'�k�,� r.''1., rt `,+L�s.�� E_�� .,�z,��.,tvL�'t'i' ; �! ,..m .,i,rw.^t�,..;,
p�t -�• �7M�r�y�4l=' )� �cY�l�� �4 � t.t���,L� +� "'r .r•�/'4A't����� '� sl �#4 !'� � 4 �
T`µ�' S ki �.f� .�Y C'1� �Y. �...M. ���i l�. f . $.y� i�,a�(� a l'+
l " .�r�af`R *'+�r`FaJ�` ��"ry°f'`S..t� ��,�r,�`i��3 � ���F �'''��t��t�a.�.�t�+��..�a�?1�F�'f'�.'ir"w��
�.n j:.t 'b 1r Y 'k4I � -.7.,. � �.�R
�'� � ;'t� r�•sy��"�lg i� � ��� �ar} 1t��'� ���"` �'` /fiY1 �s�¢, '�F��+" �,�7 i.� �
. '4 �,�'�L� �� 11�4� ��� ��� +` �°4 !��k'r!� ty!;,5 ���, , �,y;` ";'��,��.�ti'�!�,r:�
s �,y • �
��.�y'� 'l'c "7",t t!4 +�1� ; 6 i s� l� �� ! '.s�,;tb".i',py#�.rr I fL�f�� ��� . .t�;'r�r�t �c s�' �•�
�."".� '���i�f r� �'� �Ss,�Y� �'� y� t e'w 4.�;�`��''�,- •'1'�" '`� ��� � �.�� z :�
*r{1�lfa��tt,, ��'.�"j� r -r '�r• � f�7�'"p $`♦ ,� .+ �` '".f b., �I'•ti ,� :��j !7�/�•+�¢i! ��+'
±�i l '+� ��j ' i�� d�_��y � � _a. ; � 1j �Cit$,.`I�
, �gµ.;��..� � �' s,st, .��OI' .�"�'p` ,ryMj,• .,' V�-`,y,� ..�''� P 1�.
7 '`h-�1 ,(� �P'.-' f^'' '��� ��,�.1.+� :g ..� �� "` +�
1 � �I.liyi ��+ ' �F �ir';, � �E•� .� T u� " �:_
�,��� ,��� "�,.
,�n '`� 1
1 z �� 'x'+1� ��� f � r"•}�M1 ��� :�� ���� s•'
i�' '7��` "�,�i�."'�v'�%���1►, t�'>'S, r` ''�f. �.-'.� 1 t� ..� y; Y .
G C�f=TG ��°+�'��,�y`..'�'" ��� { , �.'�.;-x ����q.�,,,�,�,� ���� �,� ���°�;
O� �:�R�`�K 4.� �l�C..�"��.��'1i.V. ♦ 4�..M �1�_���
F t?J f L/ ' - ...'` !t �}� r
�I ���� ��t^!' s.'!.� � �. ••• `�' �� . ��4, .��ti r1i j \ ��., � b "� �
�Y�'..,�. • 3 r � ,�,i'< �''�� 5�"J.��icy�� r .r�wt ,�'- �s
{�j�;5 �T �r 1�' � ;�it,�,��►�t.�,���t���a�;,.���jj���'�'r�.� .�
��?����x 1 � �M�`�. .- .�....r . �f .i,a h. 7 �� ,��"r � L�k".1 .
3���.q�,��l;,R'� � •��q � �,;r- ;�` r;f+W i��`'�� `�y;� : � ,,�,`•,�;�'
r�,�y k , ,�+ l `� , i,i. ° .,�
� r��p�Tfi'���iy> i� �� f� r�. ! r ��.f�
�p J`�'�t��.� �y�� l��� �./�4 ' ' � �.�
1
� �1� �.,.�;,,,,_,� ..i �y/ v.r .� �.r� F.. r � I '
G'�F�`�! • -
' �.,����#�.i+�`��� ��r'� F r . = t� •_ . .��
� Y" � �-
�`� ��' _.�� • �,��_ � A: � � -`�
� � 3-w w �� :�'� . ,yZ �� � A�* � � s:
�� �" �1 •,� ��j � ?�,+' �t� '� 'Fy, s .:.� 'fi�+:f,
� � '�YMI '��c''.l�y f �„' �Y[..'7�/�:�� �:\A +� { 1 -> �R:
-� 14,p'�� i -y. 7 aft .w � �
t l 1 !" s.
�
'fs� i
�
�� .�1 w{`".@�,r r'y��� �a������s'�l!' ,� �` a� �t ;� '�
` ff�����G��" ���s
�' .1��������',;�.U�;�� � �'� ���� '.7 �.'�����'''.,.z;! .��-,
�f�, ,��,, ��♦ aP �� ��' ;� ���� { • �� �
��,y �+�'�i'�._ ��.�a�f ����73'� � �' ��:�."� .�;,S.
��'��:�rr�'��}.... ,.a.�� ��-�y:l+"w . �r �.
(� A w,y:
fiN��•;y,��`'°fF.. ,��`\� ��t',��y1/fr, rv � �y' '` �� Y
`,l�r�'�I� �T�// ..�X���{' '-s - ::� �,�
"� i �.
�tl....x`r�' � � .ww..r .-���F;�1jYMi��r,%'si�.`�F�/i\._ � � .. '''� . ..��:4a�.. .. �.
i�i.k�. f:M�l�!...:,..
j�,� - I I
, ��Ci i�_�2� P 3 RG�r,r-►� S� 9�`t� cvr�� �. OvILINL N �/ r
o �
r .,, -,;; -�--�tt�-�- ; ie-
� �,« '�:m ,
�
�
� _ .' Y� • / JYt
� , ..;�..r�
� , . ��.�'�
�� s�� �.t�P �., , �� -
,��' f `.
, ,�,, � -
�,� . ,r � ''r i �;�"� . . ..�' .;v,'-r�v.,+!�.,n.•.,�.... ..:._. , . ��:�'
� L a . � °'� � �'fi � �
�, ,.�
y L �
�Foy��y �, � .S . ' .. � ',h� ..��, s... ��Y����+� a�l'"�r,'�^��x�^� ..
7
�,�,�i�'��'4�• � � �� ` �� � �
;:i �.x r
,�,� �� z� . - r ��,��`
� +,�� �i �« ;�,�.
s �. �►...��1� . 4 r� 1 � �r
�`1.� s�— �w� �� �. M '�� ��
(�,{/y� h ^ '9� ,. ��- ��,rt.. ., ., n. • \:4 -_
�Vl�L S '�I/�� ��� . �J� �. � A�,' .'.�� �.� '? '.��y'.
'�l* ♦ �� ���+��.�r �..q� • t'f, e �,TF�F i�p sR�} ��� �
[� �T C�( `�" fh 'er�, + ,fi'� '"� �� ��ti; � s w` �� c-°yqi , �� .v��
' , ,�"y '°�'' � c. '!� . ` r + `�'"�
F r�3. . ..'^ , . , . ��,'�
t�� �� �' 1'��` �! � j � ; �+'`
y i ���,J; t,,� :� j� : SF��.ro �I�f �^'.��.
?' � �fi`�` ��i,:"�rl�f. �� +� '�d
..1� '�! ti;�{#���-,i t t ��l c_ `,�? 4. ;�!t
��' � r._. � y, .' � �" y.£ 7 .
1'��; � � * �«'�� W �':t "�.
,�`f .�i:►' .i"b�� . • :-} .� ���','
� '� j ��p� J�� . . �.y � G
� f�:�1 l�"�� ��, � ,
� ����� � ��r ; - ,
<, ; x�. .�c;� e� . �x,. ,
•�' 4'� .e�^X ta E� A�%�i� � ��i',4
f
�1p•1 _.d, •!. � �y��1�(�w� ✓
.r:`a� ;;.• �1��Y� '�eRr �- ��� .
'� � '��,�..�,`�,��'.,��
�a~1 1,�,� � �...
�R� �.
. „��
.1r :L,
..ei�.�`7
�Ic rr��� �� /�t-�v sr �) St�'tu�y t-,��i�t,v� u�, r��,�
� vL� LD� S L-' � r�iC7"(�t?E ,��� v;, � _ -:R• •�:
si.� "'�u'�. �c�'r' " E
�•�- ,b?�.�; ��#����� 7� �'_.}�,.�`'�4� �. J �;
`� �i� ������" ���f 1 . :�r �t t74 v� .,�{
f. Y tY�, s ,,� �. �r .f ���.� R� I
4 j
1--1 9 0� y�� ... �,>.
n� rc _ r� ._�.� �:� .
� � '; � �E�..
�v r S .v / �, ''� ��r,� s���.� ��'�: ' A
v r� i � � � � � ':�t�*r
�� ' �r�4's� ,t�' d��'$�'���.
� �- � �x ' � k ' V�.'� ��
O r� '?��+� n'� -.,, se�,� - cl �" � �I,.
r�n W/� �"
`/ ".f
� � � ` ' Y � �
`Jr q'� 1 ~ a �' �''�s��''3}���� H�,+s �'� '�'��* ` '� 3�3•"
i �� .!! "X W � �.t 1�, x�ii�'�i J d r�. . .,
- :h � r • .4�;N�� •r� � ����'��4a�.t��.,�"�"��' �,°j' y i�°� ...Q� r�
r =` '��'' �6'� f� .�,�. .� ,y�..��a'�`.�,.� ,,,� -.� t .�„ r � � L.' � ��,h •��
. a .'•ryy� y'� "�. .� �y�.M•��„trtua'c�•� v�r` � �,�����'F�'±�. ��t'��'c `x:� x.,.
:.a � " . _ ..1 �'.;- ,g,,,�t�,`���r� F n;.r� -� �; • r A��`�'�°�,�
,�y:i�c: e'� � ,``' ~ 3 r, �t"r1�+.� � - t 4���f�����,�•. 's� '�d�'8�+5 �.
'a� '�`� ' � . -.' n� �� a �,. }�'��)
Z.. ✓ �T 7 Y �-
���r _ � t ��a 1. y,y�^ � 'y� :t� �� • jJ� � ?�`1�=�1
'�1:�.'1f'�` l�p , 3,yl�� � '�_ � - � k �ijt, vr ,'
r..,. .-}. � i���Si.�. ��i}� �iTei'� ,.� `����� � �.� ���� -t ��?:�.�
� A, r,sif� � � ��:. '�� ,� - .�'y:,.'� � r� . .�:
� �s « :� �' � � �+t a� �ti• ���J>1�i� '
Tw � ,.. ',xCv� �
� 1�E�'"y � �j_�,�y � _�r 1 � p�: a���5'.r . �► �'Lx��y�K"��it
� �r
w �'�. I��A ��� iT.
- � ��`y, ���y�y'C .�A 4 , ''r `�'���y �`+!
� #i!���a ��+Y, -i: w�� �- y A� ��
� �� � !C'���� �� �
���'���,�_� �" � � •�� 1 '�� f :��.a
- �` � ' �.t ' - ��. '�,.-�.�
.�.
Y tk ;It;S� '�,+c•'`•��'
;w 'y.
�t - �• r'�``S,
�
��} R` ��,``. �� r P � �,
-�' � '+�� �
J' '� �� �� f r rt � t 'i.. a. t j�''1 � �`F���'�,�
. . �,����a� �'�''��.� �
h,s
,.��-%�i,�,� ,,�f`+�.:'�"c: .�,, �:s:. . '�. ,�.V ��' ,{f; `�>,:
d ._
!~,�� � �
r, � . �,; .l
;,�v y�: � �j,M�,, i .f,� s t�`Y�"J �`'r'�es�g �{`r{��� y� '�,'��y�j -4'�#����
i � � .r �A' r �I��i !iTM`l�'� r�'���~�T �.. F�� aa +rn '��
� ��' a:-q�' ., �t� �'frc•�' S.�t=`_� „�y��- � • `� �
/�,'-� � ��3�vt�� .�5�,�C._KdP� ���' �,�,`�rt,�t�, �i��Y}�e,.�a ..''�,�. .tif,�°
y .=^4.r� .� .�,.t'� a12e' 1�y+1.�i{�r .�,_-[y k k-�: •.-.�-°. � +iY.j'� � ?« �F'�S�
\�/ t r �"��", ��4f � !{ "� � J.„S,f "k � r .r i�`ii �Yy�� � `F'� "� i 'a
a� 'yY�,�+. �+' ��y,t��'Y• � :1�*`if'� yr8�" '� ,� �� �'H�:1'i
V' �-c""' �+�,� � �y �`f' A`f�d'� -I�'�3 � � ��! �"i,-.
•-<I ','J��.�iti � iDC � �'�;�/�'�R�'�� . . �n..2��.".Y ��`b i� r '+�w4c���X1ii�'� ��
�-� � �- i{+`� �' t�� j��t r�.� � y,. ; t,��� +.��� ,� a � �yr,�v ����,c5� 4��'�'e t�`
� �_ '�,,�¢ r i:4S.��r�' f• ryi �.�1t.. �'.,�,k3 t!':4 i��j����
4� � `�' �f' * `rk' "�+fy'•�'���,3��' ' -�at,h'1�y�'?�35�y t 'r�r��� '�'`�1i'Y.F�.''�6�'���'���G'L°a�
'� �� a�„ Y�h�e� .��,;`4 �� y `Y a L�$N t{,'��� � IGT ��1��� Y;y '�,��.f,�
'� �` ' . 9;�� #r �.'``���. ��``c� Y•{t;
.. a�...�� �. .�'$ t, i ���:�, .r, 'Sc�4!��`�*i�L�4} �Lpkr ,�.�r 2Q'�+�` !'�g"�f��p--':�.
` { � -'�`�- �`y� - �Y.;.- , -�yi"���«,r�3�,b:�y,t�e�';�` �'� ��{�'`�`' ��r' p��''`:,�su s�,c ..� 1
n
Z\ � � �{ �1 ^« f '�'yr,i.!lc +t "t�'t `f(sF �S `1 � w � �`
' , .b-y( � 1!�`��. ;STN°.�k'�r5s�R� ':`��{t����r" �� r�:zy,�� � ,���" i l rf 7f 1�•\ \
6 ?,� '�
.�` •F.�.� ; 5�,� . •-", d,�.`. ,�,. .�s�''" s�� `a���a f��9" '�'�`ti r ,,��,�� . b �"}-/i}
t 'C'� s�` �.r�'- � � '�j� �'�2.G,�t��e', ti�3��+"'', 4� � F,�r !' .: � ����f \
�. a �' �( .:��w e� ;� � �. r� dt
��,�,o S `r ; � s r ���. � . ,�' '. " r�, � ' t�,.
1 .�4�.'.��I 5 ..,���FS ;F�. .�. ��� ����� ��' �� � ;I �� . . .f, �..�4'.
�.� . � � • � 'i �`� r+�' r 3P �. �s r .: . ��.r,• '
i��; d �' �k� l�;. �i. r � �;?� �'��'� , s � �.. �..
�� �.` F�#(t$ � 4}* A"i 4«y 4j, �£� ar '- i, t t �/
GS ��; �j,�,tl 1 .�� i j ,.,iitla� F»Y����- �,, �.Y,, �s''." !P!"/�/�/���!'R'
(,` ' ����` s i' - �` �'!t�� �1":9t'�,}s�� �, `�`�9 ' ��� -
�, a
m �
�,� � , �� ,�.� _ �,� �, �
. � d+,fH ,�. ��x'0.�;�1'��. 'rc�rt � ��J . , r � �.5?y,� -�i• �� .
�� '����`S ��;����1,��`�jry�,i d y "1 �y r�' � �,�iSA Lr't'�'� g� r ;�.va`t+s�f•��z '
� b' � ' S�� ' �+ �`'�� ' � u., + { �. ,�
•V'�� r ,x'i-Fl � . �,4� i "� .� iM � i '� � ��} ' t
�.� � � �� 'P q�� ,{ ` � r 9t; , `� r� �'.-.y , b� e�"
� �5 ► ,� � ] `_'�
1 �r�r; ��f ��`/� �f`�f�` �{����aS,$�F {��"� ���i�<l'-,.ti��` .. � ��1 t� ,�,
�.P'lj � � d '.
� ! �:�r��10�i���y9u`�,1� ��} �7'�F ..:;� f ..�yr��t-��t4i'�'_��y � ; �. -d'' � . � _ � ��:
�, r'� i p �t�,"1��'`���9 F: -+ �^ ,atl���rr�'.t � ... t � . - i�
,�`���, �.� .�t ti �'�,�� � rt t�^��
R�'� F7 C ;' :�.��u'' "'t ':` "� � ,,,,. :..�',' s
�', '. �-yX �� ��:� � ;.t:?�'�.
{ I� ����X" .71if' I � �L � .
� �i �r ,� � `7f :r ��_ e t�'+ . " _P- . ,�
� � y�°�'� ��� . x- . . •
� ,.i` .�� ,;.Y' �„ ,�x.�*7 �� i
�. ,`ai��j':, b /�1�J' .�
;;.: �'��-� � _ _.�� ...,�:��: �'j __ :�;
..r:c�__,. . .. _ ��,"'! v� C7
�1�, �► �r� ,�r ,��� ;r� �,�., w� -����� � �r �N��+��� �� ������1d. �
u � - ,�s
a��� -f -
'.�y�� � � �y�����{ ��.
� . ' �i. :.:�T � �".�� �g'i'� .��� ' Rq�' � .Y-1}'S"s' f 1t �}-
'�•� ~"�s��� � G�� d d .1 � � ����Gf����� t i� /
\r�, xss '4� � r �' ,�.��r-r-? t ���„ �tti �i - Z'j �
p .�F- -'� . ,�'� �'' _
'; -� �. �i'��..,$� '"" vW ,.i��'d�.rJ',.����.�,�;..�,F,Y 1,�1'��.,.{t� �, .Y�
'7�. �� � � '"R � • µ' r sl1 7 ��Frt :a1
- � ��,,,�y ��} r. t , y F"', F'�i s'S' s.'f,�,� d5.
r'��'�, �z�r c�, :� ,t•' �
Y �� r ������ �. �� � �•6 � .�
p�, ��� K �'. I1�.4�%rt�(�'i."iY+ _ �` 4 •..k t s � • s���
. ,C�� ,�.4 :J I�a��-a Lr �qp 'wr �' �_' � ��1 l_ Vv` G��
•r
z �� ° • ► �s.> ..`l a �: . � � ' +'� �'� 5 , Q� - a�-�� � `_� O
'^� �+ �'"i . 7�-.�� F ... . . . .�y� �t ���,-E#- o . L� i'��
�_ �i., g„���.s�r.� • . t1 '�7 1 i1 �,y t8?»�,..``� 7� {y•
• �f, �,� , t Ss -r-�s ��; '7 r ,.���- k�
ci� "�7E ��?�`��'i za�.+,�,`�-a,�'<i i � � . � g _ ��.���'"�{Dau�$��r'z3.`,;�
.� �.,'y,,ar�� �a.�y .. .�', �--••^�: Y .:: '�Y'a : 'yt r� 4�°�""'` .'+ .` AF' ."��`'s-
�Y+,��-�+� :-#4 d'°F i' ..r-+� -4 . � f". � �`�`,y �'.rr�s� `�-.#
S a�M��i»b„� "`.Y`''`� ,��"y�„'T.`,�� QE"0.' '�`"' � x 7-'�'�,.�.Z AT`� *"'y�$
hr�.:.� • 4�-.. ��,,.,:�•�
3�t'a rL r� ���,�, e !� �i. . � ' s
� �:'".i.�' �y +-c : ��t� .��.��w a-L� - t� ,� , �r -
t '4 �.u��. N75's *4 3'_ "'f� .. } � - � t a .
���a� A ' � 4 .. .� . ':. � i�.`-' '_ �. .
�y r yb� '� .�..-...- ���� � i�'{� J�1�17� . ��*„{a,,..b3R7�"' �.
� S .. . .. . . . . . � . �� '- r ..�ti�.
> `i`! J ���1.�` . . � .� �..K.
_.. . .. :. y, '.O Y '.�r-,'„'a'i` k-. ,. .. .. �`/�I(Ny�
.�� �.w����� � .. . 4 ^ i �3' �' ' /
.�n=� NaiNM �d �-^���'�� �-��r ; , -r.
°���>:
��:�
_ _ _ �S� z � �6�'��
;` � �� �'V`� -'r"�
, _ . ----
1. � . .. _'_.
N' _ __
• � �Ni�+o(�'1 Sc� a2�+b�1��� '
• ����ru�� l- P7 I pJN�r�� 1v. j u C�r_rT ��4i—C�
I
t
�
- ., �
_--t-- -------- -�t �: � ''�'��
A .._ . b � �' }��> .
,I> {�"f + y.� �, t�� �3�y �'� :
� C�,�c��� 'i�d.�� �* ° �'0 j���P �,�'� .s�' �'3"`����rA+py�i �'fe� Y
.�
;4, � s�
IJI' F.:�� � y 54� 4 ' } :�d ��� � �y. i,��,�Y'� . t�:��� . ��
� a� j �� ��.� y'��'� r i�- i't� � a r � f�� �e�.:
3c�s �. 'i� r' .�.�„ �,.p a,'¢$�}: .� � <
N E V� r," - .yf'Y'�'�t ..'� '(_� !�� i 1 ,L'i� �1�, F�`�'1.�-� !�r �.,:
1 }''.. i_ : R „�f �',
Q��( � � ". " • :s-s ' ' f . 'b� � �S ' ', ',� - �,
[� ' t a., � ' a
T�� 'l 6 . ��,:- .. 4 �� ��...� k � �as t t{ S�,�r F ��,� :�dF �,
� � r+ i
e
h
�g " �..c P ,E �;�-'�`�`� �,,f��� F�.} ,� �� -; �� .,.�:����1�t "���#��'���:R�R�
�3^`:� ��ia��.�,�^�'��}1 ��# }��',:� -�s v.,,� � g �t Q�, � �'+ ;��a�g"�
�£��tk~.�+� �f__.�_ r �.. ��-„y.� �� ��`. � �� H, �� t�� -.g��.�
P � � �§
�A r' � � '� ���t,> t�'�>�` a'rk�3 � -�'s' #`_
4
p11 `+�",s'{�b CcS�i7;,$� .._� x• ... , �� � -,� � �k r�H'�'' .
��
jv � `�0 ' '� � _ -� � � '°., 'w�� z"''a' �1 ',, �� tl��"�¢� ,�
. r ei�� � �,c c•��n'�� , �' re �� �$ a � �`�s''�
'��,.�' '' � ,�.��#�. +�� a S t � �t
��� ��� ��A���.� . �'`P�',��ry'•�;�.�� '�'T � ; ��r•� r.f t._ f }f�' ,L�j��'�'F ;� 3�.�; .
�r
� t r - . f �- '°r`!+ �'�3 � �
I- �,.,���' P 1,� * . -��'�'^�t C�t�: �� s`'y : s 'k--+ !�; a r„ J� �r
W}�
� ���-: � K"�r�R'v- -• c= .�� `..�i7". �..- r�,4�-,:d�'!-t� . �• s�' ,r� ��
.�jS.. -.-_�'� �" r s'S�>,`{._'�„�• ,� � t � -� '°tr.�'...,.. } y�'`�f�,� �r y o.��t'Sr �
4 p, ���*�iK� �4�n k4^I tt�e.w `d trc}h ��x f �s c����t'"�, '�},���'�� ��
:�?"S�.���6���. ��,,.��`'�r�ti7�:''��� � ������'",��r`�yi i&' �r��"S�4i�� .�.3
€* ,wx, "�-_,,. r < .,,�:,�1 u is•,�.'��':,�n,�;r,�r .�C',
` �:, •�-^ - c�-'f�t �� ,r, r, k•;� �'�"_n'���. �� C Y' ��V
�LT �t dZ C F� t`� `'� ' , '�' r� ,4�.-=' y " \g ��'
,,r w; � .� �
� �� � ' � � y �"',i3�� 'c I� '���. �� 1,��
LvVi��e�l G � � ,ti�r � n;,� �x ��.��<, -�`��.������.�� ,�, ,�= U
(J�''� vn v�T F✓-�-�� �` �� :� .�::f`�, ���h':� �i -��,ry�
� V � � ., '�',E `�,. , !'N,=
�`.� Rt �:y�!
t �'f
� . t S��'R 1 t.�, t �.� ` '.'�! � :�.. W
. x���,i�.�- � � : �. � l� 'i . :
��~ z ��!� i �- �� .
y ! 'f
d -i:. -�R�c ,(� ��r 'by�"�.. .�� , A` ,"� �
c. r � �� Qy -,�� t � .:
� 4 � T {L� ',y � Y
� '�� �` � ���
y, '.T: -�E
�ir�:����+"Y��e— i•'�'�" ► ' f e
�}�, -.a`. 3► �+;�K R ..`� � ~ �'.. +�
ry�_��,���.,r* �.y,: . '� �. , . . ' � . .
ti. 4+
lE x'�� ` �l��$ , ! f.,'E7 . - . . . .r•i
17 F� ��
� ��_. �� �t.'� .. � � .
.��_,r�,�yn�,, �f ' . � �t. ; ..
,� _T'r:\M�jl,,i�Y+w�^ '� orL- t
C
;,� a�� ,y*�tiai,c,.� �f <7°� ..+Y � :.�is � � � � r �. v'`�,...�
��C I � � E �� ; � ��,.-�..'��. r; 's.��:� ���.' '�� - QS�5
�.'sni4� .�. x�'e���.: "� �1��� �'���`�y";-, .�'i i��'� !f,
����. .r i�'"r+'�rr�+; ,•�i�'..,,���tt ����� � ,�.`� ��
� `?y ..''"�� . J X"'�1""m� 1"yi�'Y�".� f.l' �i* i " M ',Yrz.' �
� .� 5 � 1 , ;���.� � �F� ��'ti'sY'� a �� ����
�. � y e.� '��-'
.�+�ic " r��'3 ` . .�'" /j
��
-8�` [t� \ ��. �;� ,�L{ 1 ��
k � t �
� �� i �w j . ;a__.
��'` -� ��' `r.
A'K
� 9 ��i.-� . �� t . � '�+.�
w �.i, r,> „i,' y
� ' ,, < ,,,�„j� �� (. , ,.r�. �. ,,� •.�;y
�� t , �1' .� .� �..ey,
�� ►� (� o�tr�=��-�� .��: � ,�� >���h�
�I� � ��Art �� � � � ' �L ' �,,,�J ' Y
F� ������� .T. v "��s��``��, •� �„��n�� '�,"'�`����'�r
� , _ � �.;� y��
� . t� f� +v = �" wf�- �" t,��� 1
C �` 'd�"r � ,r : ��k,����5 r ;;��+��°�`T".a�Y� �"���� ��i''G�6)i
� O•�O" � � ��V � y ��ti � �i��h� ���/�� � ����� �z;
.y � t^ p"'Jy`i}r�.u; Wi - �..; �
A N� �4
�y� Grl r�— � �� £' j � �Y � � . <<���rr'���
3 ��.:
�� �•��'��`' � '` �� ��
' f -,� �. .'t..�,a��zxL�.�k-,.At.� 4f� � '��'
�.. ,� i �i � ,• � '` '� �r ' 4~}
:�' ; .,� Aye,'''>� �`}f�,��p��F�' `te�t
�� 'r
` i �` �t���� �� tl£.��
� � . rt'� ��,. , a .�i;.,
� .'� .:3' ��.( y r � %�����
,�,
� y� ,� ;I t,. .�r� t _ �S.'t.r=: t �.�' .. .T i v . �n ~� fiFBti"�
. r��'_ '7 - . _ ,
I � /{�
i �� !
Map Output Page 1 of 1 ,
� King County � --�� �l,�- � • -
iMAP - Pro ert Information Plannin
'` �� .. . .-
±� �.
�� '� f.
�t .�' •I �� � � � ��.
� �
�
, 5 ��� �. �- .�
;�� `; .,�•.: .rwu'"aw��.�,`y � �-- '' -
.s-'.y e.,f ..` .� e�e. ,...!�_
��.� ����
�� . � -
� � ��� �� � ��� � r
:�� � �
_ ;R_�, _ \
�-:� _
:� f � ; �� .,.
" ;� � _� �.�i ;i : `i��
., .� �
Y � ► . �
i � ��.
- 'b' �� —�-•--••.i.,y�.
�����4r:r '���'� ��r� '� � F�=
�4f',.., ".- .;.,. .., : � �.� �� .
, , l -� �;�
y� �„ �" ' --a��a�r.L..M...rr�a..� ,�'� "r � _�-.�
� ♦T: s ���� � {tiw >I J
� � , `�,�j`� F��I� t'-��`�` � �.
� 't.w�°'=ti.�.a.'L,.� .«.- ��1'..�-
�- ` � �
� :.. p�_��,�, � ,
x�'Y} h � l k�`�t;:jN � �„y �.i.��'=� r.-��; �'.....
� ,. � _., `� ., ... " r, J" r<� � aa s.�.�R �'; r � ��
} �;r�z1�. �` ! ,'r��'0+�� '� i ��# � Ir:•���! .�,�-_��Il�+`
��_. ±i�i tt*rry� ,� � �7���1• `* �M� r� r' ,�
� � • � _ .7� ,;i ri�.. I��'I�'.11'Y': v•�_ .� �t .f
1 � 1�� � " "•"� r���L+•�,��'^' �� � t� �� ,��39�r,��wi
��. _���. _ _ ���'����`�� � •. ���� � ��"
...,.,.:�;,,�;.�,,�w��� �� - ., ,.� � , l� ���.
� , � , �:� v r'' .�` : � �.
J,K , ����� � � �,.1 '1'�`~�
��;,�� ���:.�:.�
��� ' �����"�1��'���� �" ���!���'��
�ciroosK,�ec�°��" � �:•b.l�t''� : - r�.... r_ G(] 5z9
The information included on thfs map has been compiled by King Counry staff from a variety of sources and is subject to change without notice.
King County makes no representations or warranties,express or implied,as to accuracy,completeness,timeliness,or rights to the use of such
nformation. King County shall not be liable for any generai,special,indirect,incidental,or consequential damages including,but not limited to,
ost revenues or lost profits resulting from the use or misuse of the information contained on this map Any sale of this map or information on
his ma is rohibited exce t b written permission of Kin Coun .
King Counry�GIS Center�News �Services�Comments� Search
By visiting this and other King County web pages,you expressly agree to be bound by terms and conditions of the site. T he deta�i�
1 ' �= �1 DD '
j'� ._. 1�� .
htt�, ,' ������:;.inclnikc ��,��'s��r�lct,�com.csii.c�rin�a��.l�.sritnap'?Ser�ic�:N�tn��• �,����•, i�,�.�E�!_�I_. I�' f; �+)(1S
FLOW CONTROL AND WATER QUALITY
The Plat subdivision Level 2 Analysis will be based on the 1998 KCSWDM using the Level 2
flow control method to match '/Z the 2 year through the 50 year developed peak flows to the
existing conditions peak flow rates.
The area of the plat to be developed is 3.54 acres, to include asphalt paving, driveways, houses
and landscaping. The frontage along SE 95'}' Way will not be improved at this time because the
City of Newcastle is planning an extensive intersection redesign and renovation at SE 95'h Way
and Coal Creek Parkway intersection.
The plat drainage basin, new added houses, asphalt paving and driveways wiil be directed
through a detention/wet-vault for peak flow control and Water Quality measures. The roof runof�
from the new houses will be collected in catch basin pick-ups and directed to the conveyance
system.
Pre-Developed Conditions
Pervious
Forest 3.54 acres (153,986 SF)
Post-Developed (3.54 AC)
Impervious
For this Level 2 analysis of the 20 lot preliminary plat we will use 4000 SF/lot per Section
3.2.2.1 KCSWDM).
Lot/area SQ. FT. Imp Area Used
20 X 4000 SF =80,000 SF = 1.83 AC.
Asphalt 15,050 SF = 0.35 AC.
TR. B asphalt 3,640 SF = 0.08 AC. Included for future
Sidewalk 5,l00 SF = 0.12 AC.
TR. B sidewalk 1,160 SF = 0.03 AC. lncluded for future
Total 104,950 SF = 2.41 AC.
Pervious
Lawn & Landscaping (49,036 SF) = 1.13 AC
The above information will be used in the King County KCRTS computer program to establish I
the existing and proposed time series for the peak flow analysis. The calculated vault will be
120' S2' x 8.5' of live storage depth, inside measure. There will be a wetpool volume for water
quality within the same vault as calculated below. I,
Pg. - 16
si�-Rrr�R�r.a�
WATER QUALITY
The wet-vault permanent pool will be sized per section 6.4.1.1, page 6-68 of the KCSWUM. The
V�_ (0.9A; + 0.25Atg+ O.lOAtf+O.OIAo) x (R/12) ;
V�= volume of runof�from mean annual storm
A; = area of impervious SF
A,g= area of till grass soil covered with grass SF
A��= area of till forest soil covered with forest SF
A�,= area of outwash soil covered with grass or forest SF
R = rainfall from mean annual storm(figure 6.4.I.A) = 0.47"
V�_ {09(104950) + 0.25(49036) )x (0.47/l2)
_ (94455 + 12259) 0.47/12 =(106,714)(0.47/12) = 4,180 CF
Vb = 3(4,180}= 12,540 CF
The required depth of the wetpool is 12,540 CF/(120x52) = 2.09' calculated.
Per the King County SWDM the depth of the wetpool should be 3', with 1' average depth for
sediment storage.
This volume will be accommodated within the bottom of the detention/wetvault to be designed
and constructed in the northwest corner of this proposed 20 lot subdivision.
The overall inside depth of the vault will have to be:
1' sediment storage
3' dead storage for the wetpool
8.5' live storage for detention
0.5' top clearance
l3' total dept}�
B10-FILTRATION
We have accommodated for the water quality within the wet-vault as designed above.
STORM WATER PEAK FLOW CONTROL:
Refer to the following pages for the wet-vault sizing calculations.
Pg. - 17
�u-K�;i���iz�r�t�,�
CREp?E at ns� Time Series
Production of RunofF ?ime Series
Pro,�ect Lacation : Sea-'fac
Comput ing Series : PRfiDEU.tsf �2 E - i.7E V/_:� t_.� i�F i�
Regional Scale Pactor : 1.88
Data iype : Reduced
Creating Ilourly ?ia�e Series File
Loading Ti�ne Series Pile:C:�HC_S�IDM�HC�ATp�ST?F60R_rnf 9
?ill Porest 3.54 a�cres Scaling Yr= 9
?otel Area� � 3.54 ecres
Pe�k Dischargtes 8.286 CPS et 9:80 on Jdn 9 in Yenr 8
Storing Ti�e Series File-PRfiDfiU.tsf 8
Time Series Computed
1fCR7S Coa�mand ^ � r �
eRit RCRrS Progran�
1(CRiS Progre� Version 4.4Zb run complete �
`__
------------------------
Production of Runoff Time Series ;
Pro,ject Location : Sea-Iac
Computing Se�•ies : DEU.tsf �psT- L�r_ vr. �o�='/=I�
Regional Sc�le Pactor : i.e0
pata Type : Reduced
Crcatin,y llourly T9me Series Pile
Loading iime Set•ies Pile:C:�l(C_SUIDH�I(C�117A�S71G6AR_z•nf 8
iil]. Grass 1.24 acres Sc�ling Y�-: 8
Loading Time Series Pile:C:�H�_SWD11�1fC__DA'Ip�SiE160R.�-nf 8
linperviou� 2.23 acres Adding Yr= B
7ata1 Area : 3.47 acres �
Peak Discharge : 1 .32 CFS at 6:00 on Jan 9 in Yeai• 8
Storing Time 5ef-ies Fi1e:DFU.tsf 8
7ime Series Computed
----------------------- -
KCRiS Command
eKit 1(CRrS Frogre�r�
KCRiS Program Version 4.42b run complete
CREAI'E r new 7'ime Series i
Production of RunofF Time Series
Pf•oject L�►cation = Sea-7ar.
Cnmputing Series : DEV-BYP_tsf pogT- �r_ `/� L r7 1-'�= /-�
Regic►nal Scalc Factor : 1.0e � �/_ I�A � �� � -r ���- ���'�;� G=
Data 7ype : Reduced
Ct•eating Nourly I'ime Series Pile
Lo�ding Time Se�•fes File:C:�HC_S1JDf1�HC_DATA�STEI6gR_�•nf A
imper�ious 0.�7 acres Scaling Y�•: B
Tot�l Area = 0.87 acres
Peak Discharge= 0.033 CFS at 6=80 on J�n 9 in Year 8 ,
Storing Time Ser3es File:DEU-BYP.trxf 8 I�
Time Serfes Compute�i
--------------------------------------------------------------------------------
HCRiS Coinmand
eXit KCRrS Program
------------------ , .
HCRTS Pr�r.�ram Uers ion 4.42b run complete !�nf ! � '
� ---
_ �
Flow Frequency Analysis
� Time Series File:predev.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CES) (CFS) Period
0.223 2 2/09/O1 18:00 0.285 1 100.00 0.990
a.060 7 1/06/02 3:00 0.223 2 25.00 0.960
0. 165 4 2/28/03 3:00 0. 172 3 10.00 0.900 �
0.006 8 3/24/04 20:00 0. 165 4 5.00 0.�00
0.098 6 1/05/05 8:00 0. 145 5 3.00 0.667
0.172 3 1/18/06 21:00 0.098 6 2.00 0.500
0.195 5 11/24/06 4:00 0.060 7 1.30 0.231
0.285 1 1/09/08 9:00 0.006 8 1.10 0.091
Computed Peaks 0.265 50.00 0.980
Flow Frequency Analysis
Time Series File:dev.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
0.652 6 2/09/O1 2:00 1.32 1 100.00 0.990
0.533 8 1/05/02 16:00 0.842 2 25.00 0.960
0.783 3 2/27/03 7:00 0.783 3 10.00 0.900
0.579 7 8/26/04 2:00 0.696 9 5.00 0.800
0.696 9 10/28/04 16:00 0.692 5 3.00 0.667
0.692 5 1/18/06 16:00 0.652 6 2.00 0.500
, 0.892 2 10/26/06 0:00 0.579 7 1.30 0.231
1.32 1 1/09/08 6:00 0.533 8 1.10 0.091
Computed Peaks 1. 16 50.00 0.980
Flow Frequency Analysis
Time Series File:dev-byp.tsf
Project Location:Sea-Tac ��
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
0.017 6 2/09/O1 2:00 0.033 1 100.00 0.990
0.015 B 1/05/02 16:00 0.026 2 25.00 0.960
0.020 3 12/08/02 18:00 0.020 3 10.00 0.900
0.017 7 8/26/04 2:00 0.020 4 5.00 0. 800
0.020 4 10/28/04 16:00 0.018 5 3.00 0.667
0.018 5 1/18/06 16:00 0.017 6 2.00 0.500
0.026 2 10/26/06 0:00 0.017 7 1.30 0.231
0.033 1 1/09/08 6:00 0.015 8 1. 10 0.091
Computed Peaks 0.031 50.00 0.980
PREDEV - BYPASS = ALLOWABLE
0.285 - 0.033 = 0.252 - I��Y� I�,.�`r'G K. V %� t_ ;17 (=.
0.223 - 0.026 = 0.197 -� Z5��12
0.172 - 0.020 = 0. 152 (�'h �I� - �lz zy)/�3�"' )
0.165 - 0.020 = 0. 145 (�Z 3N - , p'Y/��3 S ^ �v0`�'�
0.145 - 0.018 = 0. 127
o.o9s - o.ol� = o.os1�Z-�B - �/Z �1e_ . Dy► Fi �2sT I �1"rF��,iAt_
0.060 - 0.017 = 0. 043
0.265 - 0.031 = 0.234^�50-`l� SO�p Z Y2 � , ��{1
��3 � %z l���� � �%; �. U�11 ) - .>>' � ';
�G - � ��
J
�
CF.ISTELL,A RIDGE
Retention/Detention Facility
Type of Facility: Detention Vault
Facility Length: 120.00 ft � n� � � �� i�-_ � ��;(.:
Facility Width: 49.00 ft V� N �� ` �
Facility Area: 5880. sq. ft
Effective Storage Depth: 8.50 ft
Stage 0 Elevation: 347.50 ft
Storage Volume: 49980. cu. ft
Riser Head: 8.50 ft
Riser Diameter: 12.00 inches
Number of orifices: 2
Full Head Pipe
Orifice # Height Diameter Discharge Diameter
(ft) (in) (CFS) (in)
1 0.00 0.81 0.053
2 4.95 1.63 0. 136 4 .0
Top Notch Weir: P7one
Outflow Rating Curve: None
Stage Elevation Storage Discharge Percolation
(ft) (ft) (cu. ft) {ac-ft) (cfs) (cfs)
0.00 347.50 0. 0.000 0.000 0.00
0.01 397.51 59. 0.001 0.002 0.00
0.02 347.52 118. 0.003 0.002 0.00
0.03 347.53 176. 0.004 0.003 0.00
0.04 347.54 235. 0.005 0.004 0.00
0.05 347.55 299. 0. 007 0.004 0.00
0.06 347.56 353. 0.008 0.004 0.00
0.07 397.57 412. 0. 009 0.005 0.00
0.21 347.71 1235. 0. 028 0.008 0.00
0.36 347.86 2117. 0.049 0.011 O.On
0.50 348.00 2940. 0.067 0.013 0.00
0.64 348.14 3763. 0.086 0.014 0.00
0.79 348.29 4645. 0.107 0.016 0.00
0. 93 348.43 5468. 0. 126 0.017 0.00
1.08 348.58 6350. 0.196 0.019 0.00
1.22 348.72 7174. 0. 165 0.020 0.00
1.36 398.86 7997. 0.184 0.021 0.00
1.51 349.01 8879. 0.204 0.022 0.00
1.65 349.15 9702. 0.223 0.023 0.0�
1. 80 349.30 10584. 0.243 0.024 0.00
1.94 349.44 11407. 0.262 0.025 0.00
2.08 349.58 12230. 0.281 0.026 0.00
2.23 349.73 13112. 0.301 0.027 0.00
2.37 349.87 13936. 0.320 0.028 O.00�
2.52 350.02 14818. 0.340 0.029 O.Oc
2. 66 350. 16 15641. 0.359 0.029 0.0�_
2.81 350.31 16523. 0. 379 0.030 O.00.
2.95 350.45 17346. 0.398 0.031 O.00
3.09 350.59 18169. 0.417 0.032 0.00
3.24 350.74 19051. 0.437 0.032 O.Or�
3.38 350.88 198?4. 0.456 0.033 0.0�
3.53 351.03 20756. 0.477 0.034 O.00
3.67 351. 17 21580. 0.495 0.035 O.00
3. 81 351.31 22403. 0. 514 0.035 0.00
3.96 351.46 23285. 0.535 0.036 0.00
4. 10 351.60 24108. 0.553 0.036 0.00
4.25 351.75 24990. 0.574 0.037 0.00
4.39 351.89 25813. 0.593 0.038 0.00
4.53 352.03 26636. 0.611 0.038 0.00
9 . 68 352. 18 27518. 0. 632 0.039 0.00
4.82 352.32 28392. 0.651 0.040 0.00 � _ �Q
. _ . . . .. . .. ..--._ ... _ _ . __ . .. .__
9. 95 352.95 29106. 0.668 0. 040 0.00
• 9.97 352.47 29224. 0.671 0.091 0.00
4.98 352.48 29282. 0.672 0.042 0.00
5.00 352.50 29400. 0.675 0.045 0.00
5.02 352.52 29518. 0.678 0.049 0.00
5.03 352.53 29576. 0.679 0.054 0.00
5.05 352.55 29694. 0.682 0.060 0.00
5.07 352.57 29812. 0.684 0.065 0.00 �
5.09 352.59 29929. 0.667 0.067 0.00 I
5.23 352.73 30752. 0.706 0.079 0.00
5.37 352.87 31576. 0.725 0.089 0.00
5.52 353.02 32458. 0.745 0.097 0.00
5.66 353.16 33281. 0.764 0.104 0. 00
5.81 353.31 34163. 0.784 0.110 0.00
5.95 353.45 34986. 0.803 0. 116 0.00
6.09 353.59 35809. 0.822 0. 122 0.00
6.24 353.74 36691. 0.842 0.127 0.00
6.38 353.88 37514. 0.861 0.132 0.00
6.53 354.03 38396. 0.881 0.137 0.00
6.67 354.17 39220. 0.900 0.141 0.00
6.81 354.31 40043. 0.919 0.145 0. 00
6.96 354.46 40925. 0.940 0.150 0.00
7.10 354.60 41748. 0.958 0.154 0.00
7.25 354.75 42630. 0.979 0.158 0.00
7.39 354.89 43453. 0.998 0.162 0.00
7.53 355.03 44276. 1.016 0.165 0.00
7.68 355.18 45158. 1.037 0. 169 0.00
7.82 355.32 45982. 1.056 0. 173 0.00
7.97 355.47 46869. 1.076 0. 176 0.00
8.11 355.61 47687. 1.095 0.179 0.00
8.26 355.76 48569. 1.115 0.183 0.00
8.90 355.90 49392. 1. 134 0. 186 0.00
8.50 356.00 49980. 1.147 0.188 0.00
8.60 356.10 50568. 1.161 0.998 0.00
8.70 356.20 51156. 1.174 1.060 0.00
8.80 356.30 51749. 1.188 1.800 0.00
8.90 356.40 52332. 1.201 2.590 0.00
9.00 356.50 52920. 1.215 2.870 �.00
9.10 356.60 53508. 1.228 3.130 0.00
9.20 356.70 54096. 1.242 3.370 0.00
9.30 356.80 54689. 1.255 3.590 0.00
9.40 356.90 55272. 1.269 3.800 0.00
9.50 357.00 55860. 1.282 3.990 0.00
9.60 357.10 56448. 1.296 4.180 0.00
9.70 357.20 57036. 1.309 4.360 0.00
9.80 357.30 57624. 1.323 4.530 0.00
9.90 357.40 58212. 1.336 4.690 0.00
10.00 357.50 58800. 1.350 4.850 0.00
10. 10 357.60 59388. 1.363 5.000 0.00
10.20 357.70 59976. 1.377 5. 150 0.00
10.30 357.80 60569. 1.390 5.300 0.00
10.40 357.90 61152. 1.404 5.940 0.00
Hyd Znflow Outflow Peak Storage
Target Calc Stage Elev (Cu-Ft} (Ac-Ft)
1 1.32 0.25 0.23 8.51 356.01 50053. 1. 199
2 0.84 ******* 0.04 4.17 351.67 24543. 0.563
3 0.78 ******* 0. 15 7.02 354.52 41260. 0.947
4 0.70 ******* 0.03 2.09 349.59 12309. 0.283
5 0. 69 ******* 0.09 5.42 352. 92 31861. 0.731
6 0.65 ******* 0. 17 7.75 355.25 45544. 1.046
7 0.58 ******* 0.03 3.08 350.58 18099. 0. 415
8 0.53 ******* 0.07 5.10 352.60 30008. 0. 689
-------------------------------- `-,
Route Time Series through Facility �"� ��� �
�
� Inflow Time Series File:dev.tsf � •
, Outflow Time Series File:rdout
Inflow/Outflow Analysis
Peak Inflow Discharge: 1.32 CFS at 6:00 on Jan 9 in Year 8
Peak Outflow Discharge: 0.226 CFS at 13:00 on Jan 9 in Year 8
Peak Reservoir Stage: 8.51 Ft
Peak Reservoir Elev: 356.01 Ft __ � Dn -�� f /' r- I � �` � '
Peak Reservoir Storage: 50053. Cu-Ft
. 1.149 Ac-Ft
Flow Duration from Time Series File:rdout.tsf
Cutoff Count Frequency CDF Exceedence Probability
CFS $ ?s �
0.003 26561 93.315 43.315 56.685 0.567E+00
0.008 7172 11.696 55.011 44 . 989 0.450E+00
0.013 6390 10.421 65.432 34.568 0.346E+00
0.018 6421 10.471 75.903 24 . 097 0.241E+00
0.023 5502 8.973 84.876 15. 124 0. 151E+00
0.028 3481 5.677 90.553 9.447 0.945E-01
0.033 2441 3.981 99.534 5.466 0.597E-01
0.038 2234 3.643 98.177 1. 823 0.182E-01
0.043 609 0.993 99. 170 0. 830 0.830E-02
0.048 42 0.068 99.238 0.762 0.762E-02
0.053 15 0.024 99.263 0.737 0.737E-02
0.059 19 0.031 99.294 0.706 0.706E-02
0.064 17 0.028 99.322 0.678 0.678E-02
0.069 37 0.060 99.382 0.618 0. 618E-02
0.079 33 0.054 99.436 0.564 0.564E-02
0.079 38 0.062 99.998 0.502 0.502E-02
0.089 45 0.073 99.571 0.429 0.429E-02
0.089 23 0.038 99.609 0.391 0.391E-02
0.099 42 0.068 99.677 0.323 0.323E-02
0.099 16 0.026 99.703 0.297 0.297E-02
0.104 17 0.028 99.731 0.269 0.269E-02
0.109 25 0.041 99.772 0.228 0.228E-02 I
0. 114 16 0.026 99.79B 0.202 0.202E-02
0.120 8 0.013 99.811 0.189 0.189E-02
0.125 10 0.016 99.827 0. 173 0. 173E-02
0. 130 12 0.020 99.847 0. 153 0.153E-02 ;�
0. 135 12 0.020 99.866 0.134 0.134E-02 !
0.140 14 0.023 99.889 0.111 0. 111E-02
0. 145 16 0.026 99.915 0.085 0. 846E-03
0.150 8 0.013 99. 928 0.072 0.716E-03
0.155 B 0.013 99.941 0.059 0.587E-03
0. 160 6 0.010 99.951 0.049 0.489E-03
0.165 11 0.018 99.969 0.031 0.310E-03
0. 170 4 0.007 99.976 0.024 0.245E-03
0. 175 6 0.010 99.985 0.015 0. 147E-03
0. 181 6 0.010 99.995 0.005 0.489E-04
Duration Comparison Anaylsis
Base File: predev.tsf
New File: rdout.tsf
Cutoff Units: Discharge in CFS
-----Fraction of Time----- ---------Check of Tolerance------- I
Cutoff Base New $Change Probability Base New �Change ,,, '
0.042 I 0.13E-01 0.85E-02 -34.5 � 0.13E-01 0.042 0. 040 -5.4 � ' ��" �'
0.054 � 0.79E-02 0.79E-02 -6.6 I 0.79E-02 0.054 0.046 -15.5
0.066 � 0.59E-02 0.66E-02 12.2 I 0.59E-02 0.066 0.071 7.4
0.078 � 0.47E-02 0.51E-02 6.7 � 0.47E-02 0.078 0.081 3.8
0.090 I 0.36E-02 0.38E-02 3.1 I 0.36E-02 0.090 0.091 1. 1
0. 102 � 0.29E-02 0.28E-02 -2.2 I 0.29E-02 0. 102 0. 100 -1.5
0. 114 � 0.23E-02 0.20E-02 -11.3 I 0.23E-02 0. 114 0. 109 -4.3
0. 126 � 0.17E-02 0.17E-02 1.0 � 0. 17E-02 0.126 0. 126 0.3 ��� -��
0.136 � 0.12E-02 0.12E-02 0.0 � 0.12E-02' �:138 0.138 0.3
- 0. 150 � 0.77E-03 0.72E-03 -6.4 � 0.77E-03 0.150 0. 148 -1.0
0. 162 � 0.51E-03 0.42E-03 -16.1 I 0.51E-03 0. 162 0. 159 -1. 6 �-���'6� ��y C
0.174 � 0.29E-03 0.16E-03 -44.4 � 0.29E-03 0.179 0.165 -5.0
0. 186 � 0.21E-03 O.00E+00 -100.0 I 0.21E-03 0.186 0.172 -7.5
Maximum positive excursion = 0.006 cfs ( 9.8$) Dk �ESS �h�1aM -}' (D'
occurring at 0.061 cfs on the Sase Data:predev.tsf
and at 0.067 cfs on the New Data:rdout.tsf
Maximum negative excursion = 0.010 cfs (-19.9�)
occurring at 0.051 cfs on the Base Data:predev.tsf
and at 0.041 cfs on the New Data:rdout.tsf
n o2 c -�rrr-�N ��z �+2 r-_ �c=s S �_�r-�A�� O
`
�� -Z 3
CHRISTELLE RIDGE �
• Flow Frequency Analysis
Time Series File:rdout.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) (ft) Period
0.182 2 2/09/O1 21:00 0.226 �r 8.51 1 100. 00 0.990
0. 068 7 1/06/02 22:00 0.182 oK 8.21 2 25.00 0.960
0.152 3 3/06/03 22:00 0. 152 91� 7.02 3 10. 00 0. 900
0.032 6 8/26/04 8:00 0. 143oK 6.75 4 5.00 0. 800
0.071 6 1/OS/05 1:00 0.094 �C 5.46 5 3.00 0.667
0.094 5 1/19/06 1:00 0.071�K 5. 13 6 2.00 0.500
0. 143 4 11/29/06 8:00 0.068 � 5.10 7 1.30 0.231
0.226 1 1/09/08 13:00 0. 032 WZ 3.08 8 1. 10 0.091
Computed Peaks 0.211 0� 8.51 50.00 0. 980
i �-� r �2 D �cn`r P G�l-K S r� 2 F �, c��i4-� 7 r� n�' c. F � s
`I-►-►�a�� I� �-l� Y� � �� w ►4r3 �r-_ 2GLI�A � r, �1 � �GA��Hc.pngv
��l �� � � II � r- j hl !S 2G �o/z.T
�� - z��
i ,
V. CONVEYANCE SYSTEM ANALYSIS AND DES(GN
The capacity of 12 storm water drain pipe is estimated with a full-�low manning's equation
calculation for a preliminary evaluation. We intend to use smooth wall LCPE pipe, commonly
designated as N-l2 pipe.
The rational method calculations on the following pages indicate peak runof�'from the 100 year
storm is 3.71 cfs.
Note that the l00 yr. peak flow is 3.26 cfs. per KCRTS with 15 minute timesteps.
Refer to the following pages for pipe flow capacity check calculations. A 12" pipe AT S=1.00%
will carry the 3.26 CFS in about 8.46" of depth with a total capacity of 3.85 CFS.
Pg. - 2�
Sll-RI:PORT.doc;
o��,[Inactive KCRTS] •{'-t- ,y �- - �
� Froduction oF Runoff iime Series
Pro,ject Location : Sea-iac
Computing Set•ies : DEU-15.tsf
Regional Sr.ale Pacto�• : 1.00
1)�t� Type : Reduced
Creating 15-mi�t�te Time Series Pile
I,oadi.ng Time Series Pile:C:�HC_S41Dn\1(C_UAr(1�SI [GiSR_rrtif 8
Till Grass 1_?_4 acres ScAling Yt•: 8
I,oading Time Series File:C:�KC_SlJDH`I(C_DA7A�STF.i 1;R_rnf 8
Imper�iaus 2.23 acres fidding Yt•: 8
1'otal Area = 3.47 acres
Penk Discl�ar��e: 3.26 CFS a�t 6=30 on Jan 9 in Year B
Stoi•i�g 'Iirne Ser•ie^ Fi]e :DEU-I_5.t^f fi
T�me Series Computed
--------------- -
1fCRiS Command
eXit ItCRrS Program
KCRiS Proyram Uers ion 4.42b t•un complete
�p2 C��i �ir_ y /-� ri � r
Flow Frequency Analysis
Time SeLies File:dev-15.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----FI_ow Fr.equency Analysis-----
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Proh
(CFS) (CFS) Period
1.06 6 8/27/O1 18:00 3.26 1 100. 00 0. 9U�?
0.753 8 1/05/02 15:00 2.28 2 25.00 0.960
2.28 2 12/08/02 17:15 1.48 3 10.00 0.900
0.855 7 8/23/04 14:30 1.30 9 5.00 0.800
1. 30 4 11/17/04 5:00 1.27 5 3.00 0.667
1.27 5 10/27/05 10:45 1.06 6 2.00 0.500
1.48 3 10/25/06 22:45 0.855 7 1.30 0.231
3.26 1 1/09/08 6:30 0.753 8 1. 10 0.091
Computed Peaks 2. 93 50. 00 O.Q80
i
P .� `' �'
�
tmp#l.txt
Manning Pipe Calculator
Given Input Data:
shape . . . . . . . . . . . . . . . . . . . . . . . . . Circular
solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow
Diameter . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in
Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs
slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0100 ft/ft
Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0120
' Computed Results:
Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4569 in
Area . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7854 ft2
wetted Area . . . . . . . . . . . . . . . . . . . . . 0.5916 ft2
wetted Perimeter . . . . . . . . . . . . . . . . 23.9122 in
IPerimeter . . . . . . . . . . . . . . . . . . . . . . . 37 6991 in
velocity . . . . . . . . . . . . . . . . . . . . . 5. 5108 fps
Hydraulic Radius . . . . . . . . . . . . . . . . 3. 5624 in
Percent Full . . . . . . . . . . . . . . . . . . . . 70.4743 %
Full flow Flowrate . . . . . . . . . . . . . . 3.8597 cfs
Full flow velocity . . . . . . . . . . . . . . 4.9143 fps
critical Information
critical depth . . . . . . . . . . . . . . . . . . 9.5828 in
critical slope . . . . . . . . . . . . . . . . . 0.0067 ft/ft
Critical velocity . . . . . . . . . . . . . . . 4.7160 fps
Critical area . . . . . . . . . . . . . . . . . . . 0.6913 ft2
Critical Perimeter . . . . . . . . . . . . . 26.0151 in
Critical hydraulic radius . . . . . . . 3.8263 in
Critical top width . . . . . . . . . . . . . . 12.0000 in
Specific energy . . . . . . . . . . . . . . . . . 1.1731 ft
Minimum energy . . . . . . . . . . . . . . . . . . 1.1978 ft
Froude number . . . . . . . . . . . . . . . . . . . 1.2754
Flow condition . . . . . . . . . . . . . . . . . . supercritical ;
Page — ;' /
DD�,�/N ST�eRrn tmp#1..txt
channel Calculator
Given Input Data:
shape . . . . . . . . . . . . . . . . . . . . . . . . Advanced
solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow
Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs --- ln. o - yF � k,
slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft
Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0175
Height . . . . . . . . . . . . . . . . . . . . . . 18.0000 in
Bottom width . . . . . . . . . . . . . . . . . . . . 6.0000 in
Left radius . . . . . . . . . . . . . . . . . . . . . 0.0000 in
Right radius . . . . . . . . . . . . . . . . . . . . 0.0000 in
�eft slope . . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft
Right slope . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft
computed Results: , '
Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7809 i n _�._'-�--.-_ � K ,
velocity . . . . . . . . . . . . . . . . . . . . . . . . 6. 5804 fps
Flow area . . . . . . . . . . . . . . . . . . . . . . . 0.4954 ft2
Flow perimeter . . . . . . . . . . . . . . . . . . 22.2993 in
Hydraulic radius . . . . . . . . . . . . . . . . 3.1992 in
Top width . . . . . . . . . . . . . . . . . . . . . . . 15.0412 in
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2500 ft2
Perimeter . . . . . . . . . . . . . . . . . . . . 49.2666 in
Percent full . . . . . . . . . . . . . . . . . . . . 37.6717 %
DOWNSTREAM CHANNEL CONVEYANCE CHECK
THE 100-YEAR 15 MINUTE PEAK FLOW IS 3.26 CFS. IT WILL BE CONTAINED WITHIN THE DITCH.
THE MANNING,S N VALUE IS FOR STEMMY GRA55 OR BRUSITY GROWTH.
I
�
Page Z g
--- _ I
D�w�1 ST►2�pr�j p#l.txt
channel Calculator
Given Input Data:
shape . . . . . . . . . . . . . . . . . . . . . . . . Advanced
solving for . . . . . . . . . . . . . . . . . . . . . Depth of Flow
Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 2.2800 cfs ---- Z �- Yr'� '�
slope . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft
Manning's n . . . . . . . . . . . . . . . . . . . . . 0.0175
Height . . . . . . . . . . . . . . . . . . . . . . 18.0000 in
Bottom width . . . . . . . . . . . . . . . . . . . . 6.0000 in
�.eft radius . . . . . . . . . . . . . . . . . . . . . 0.0000 in
Right radius . . . . . . . . . . . . . . . . . . . . 0.0000 in
�eft slope . . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft
Right slope . . . . . . . . . . . . . . . . . . . . . 1. 5000 ft/ft
Computed Results:
Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6007 in -- (7 K
velocity . . . . . . . . . . . . . . . . . . . . . . . . 6.0225 fps
Flow area . . . . . . . . . . . . . . . . . . . . . . . 0.3786 ft2
Flow perimeter . . . . . . . . . . . . . . . . . . 19.4623 in
Hydraulic radius . . . . . . . . . . . . . . . . 2.8011 in
Top width . . . . . . . . . . . . . . . . . . . . . . . 13.4675 in
Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2500 ft2
Perimeter . . . . . . . . . . . . . . . . . . . . 49.2666 in
Percent full . . . . . . . . . . . . . . . . . . . . 31.1147 %
DOWNSTREAM CHANNEL CONVEYANCE CHECK
THE 25-YEAR 15 MINUTE PEAK FLOW IS 2.28 CFS. IT WILL BE CONTAINED WITHIN THE DITCH
WITH 1' OF FREEBOARD. THE MANNING,S N VALUE IS FOR STEMMY GRA55 OR BRUSITY GROWTH.
, ;
Page i
.
poWtil ST�C►�►--►'� tmp#1.txt
Culvert Calculator
Entered Data:
shape . . . . . . . . . . . . . . . . . . . . . . . . . Circular
Number of Barrels . . . . . . . . . . . . . . . 1
solving for . . . . . . . . . . . . . . . . . . . . . Headwater
Chart Number . . . . . . . . . . . . . . . . . . . . 1
Scale Number . . . . . . . . . . . . . . . . . 1
Chart Description . . . . . . . . . . . . . . . CONCRETE PIPE CULVERT; NO BEVELED RING
ENTRANCE
Scale Decsription . . . . . . . . . . . . . . . SQUARE EDGE ENTRANCE WITH HEADWALL
Flowrate . . . . . . . . . . . . . . . . . . . . . . . . 3.2600 cfs � ioo- y r A ��
Manning's n . . . . . . . . . . . . . . . . . . 0.0130
Roadway Elevation . . . . . . . . . . . . . . . 102.8000 ft
Inlet Elevation . . . . . . . . . . . . . . . . . 101.4000 ft
outlet Elevation . . . . . . . . . . . . . . . . 100.0000 ft
Diameter . . . . . . . . . . . . . . . . . . . . . . . . 12.0000 in
Length . . . . . . . . . . . . . . . . . . . . . . . . . . 40.0000 ft �
Entrance �oss . . . . . . . . . . . . . . . . . . . 0.0000 .
Tailwater . . . . . . . . . . . . . . . . . . . . . . . 0.5650 ft , L��P-1 � I �h ���� F�. �!'' ; ,"': r� .. , , <
Computed Results:
Headwater . . . . . . . . . . . . . . . . . . . . . . . 102.7382 ft From Inlet
slope . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 ft/ft
velocity . . . . . . . . . . . . . . . . . . . . . . . . 8.4441 fps
SEE SKETCH BELOW
CULVERTS WITH 6�� OF COVER WILL NOT OVERTOP ROADS OR DRIVEWAYS FOR THE 100 YEAR , 15
MINUTE PEAK FLOWS. SOME CULVERTS MAY NEED TO BE CLEANED.
102 .80 ' I�
v '
�a� . 4a � oo .
Pa9e 3 O
(
. I
VI. SPECIAL REPORTS AND STUDIES - NONE
VII. BASIN AND OTHER COMMUNITY AREAS - NONE
VIII. OTHER PERMiTS - NONE
�'g- - 31
si�-RrroRT.�i�x
IX. TEMPORARY EROSION
The Temporary Erosion Plan will be designed to the 1998 King County Surface Water Design
Manual, Appendix D.
A rock construction entrance will be shown on the plans at the entrance road to the site. The
detail will be included on the plans. A silt fence is to be erected at the bottom of slopes.
TEMPORARY SEDIMENT TRAP
Two traps should be constructed, one for the area south and west of the road and the other for the �
north and east of the road. Sediment trap #1 on the west side of the entrance roa� for about 2.34
acres and Sediment trap #2 on the east side of the entrance road for about 1.2 acres
The surface area of the trap:
SA = 2 X (Qz/0.00096) = 2080 sf/cfs of the 2yr developed peak
The 2 year developed peak for the site is 0.652 cfs.
Sediment Pond peak flow= 0.652 cfs, SA = 0.652(2080) = 1356 SF
Try a pond with 4' of depth that measures 25' x 56' at the top of the weir= 1,400 square feet.
SEDIMENT TRAP #1
Depth Elev. Dimension
5.00' 359.00 31'x62' Top of Berm
4.00' 358.00 25'x56' Top of weir— 1,400 SF
3.00' 357.00 19'x50'
2.00' 356.00 13'x44'
1.00' 355.00 7'x38' E
0.00' 354.00 1'x32' Bottom of sediment storage
SEDIMENT TRAP #2
Depth Elev. Dimension �
5.00' 359.00 3l'x62' Top of Berm
4.00' 358.00 25'x56' Top of weir— 1,400 SF
3.00' 357.00 19'x50'
2.00' 356.00 13'x44'
I.00' 355.00 7'x38' E
0.00' 354.00 1'x32' Bottom of sediment storage
Two sediment traps can be constructed at the existing low areas at the northwest corner of the
site.
Pg. -32
SI)-RI?P()IZ"I�.�cx�
r
. �
SHEETI
_- ___ __ _---- -
WEIR CALCULATION
_ _ - --- ---- --
EMERGENCY OVERFLOW
_ _ - ---- _ ---- --- ------
Q100 = 3.21(LH3� + 2.4H ) -
- - -- - ----
- . __- -- ------ - -
L= [Q��/(3.21•H�]-2.4"H or 6' min.
-- _-------- - —
H=(F� 0.17
- - _-- - - - --- - -----
-_ - - -- Q=(CFS) -- 1.32 CFS rpQ
L= 5.4587 LN. FT. REQUIRED
- ----- --- -_-_�__ -
;
�
i
�
I '
Page - � �
_ , _
GEOTECHNICAL ENGINEERING STUDY
CHRISTELLE RIDGE SUBDIVISION
RENTON, WASHINGTON
G1821
Prepared For
Mr. Jeff Rieker
Christelle Inc.
1075 Bellevue Way NE, #1500
Bellevue, Washington 98004
June 21, 2004 �I
By
GEO GROUP NORT�iWEST, [NC. !
13240 NE 20th Street, Suite 12
Bellevue, Washington 98005
Phone: (425) 649-8757
TGeotechnical Engineers,Geologists
� G r o u p N o r t h w e s t, 1�C• &Environmental Scientists
June 21, 2004 Job No. G-1821
Mr. JeffRieker
Christelle Inc.
]075 Bellewe Way NE, #1500
Bellewe, Washington 98004
Subject: Geotechnical Engineering Study
Christelle Ridge Subdivision
Renton, Washington
Dear Mr. Rieker,
Geo Group Northwest, Inc., is pleased to present our Geotechnical Engineering Study report for
the proposed Christelle Ridge Subdivision in Renton, Washington. "The purpose of this study is to
evaluate the geotechnica) site issues and provide earthwork recommeiidations for the proposed
twenty-two lot development, including utility infrastructure, grading, cul-de-sac, home sites,
foundations, walls, and drainage. From a geotechnical perspective the main geotechnical issues
for the site development are the large cuts and fills required to achieve the proposed final grades.
Cuts of up to 28 feet (f) are required to achieve the proposed final site grades, with final slopes
generally in the 25 percent or less range, and fill slopes up to 50 percent (2H:1 V) although these ,
may be reduced by the construction of rockery retaining walls.
Geo Group Northwest, Inc. explored the subsurface site conditions by excavating eight test pits �
with a track-hoe. The site soils consist of a thin layer of top soil generally about 6 inches thick,
generally underlain by medium dense to dense, brown weathered Glacial Till soils, and glacially
consolidated very dense cemented Glacial Till. The Glacial Till soils consist of Silt with varying i
amounts of sand and graveL
It is our opinion that the site is geotechnically suitable for the proposed development, provided I
the geotechnical recommendations are followed. Our recommendations, along with other
geotechnically related aspects of the project, are discussed in detail in the text of the attached �
report. We appreciate this opportunity to serve you. If you have any questions about the
13240 NE 20th Street, Suite 12 • Bellevue, Washington 98005
Phone 4251649-8757 • FAX 4251649-8756
�
I
June 21, 2004 G-1821
Christelle Ridge Subdivision Page ii
Geotechnical Engineering Study
contents of this report, or if we can be of further assistance, please feel free to call us.
Sincerely, A W a s' ,� �
GEO GROUP NORT��WEST, INC. '�'j����:o
��. � , '�;� �
; � `�. -
��
��//^ ,� � � .
� � A�'� ,,,.,� � np��+o Aeo+oqr, ti.
_ ✓ 'F� ���6 �,�
/ r � ��o� .
Wade J. Lassey � �� , �Sse "
Engineering Geologist '�`�
n
C _� ' /'��/� ZAM C
���j,�c�- c�'CC tiv�'o� �'9,y
.S� p���
William Chang, P.E. � `—! �
Principal ,� :
zo�t�
O,�+���0 G
�O1vAl., �
EXPiRES: 2/19/
Geo Grou Northwest Inc. I'
p ' I
TABLE OF CONTENTS
G-1821
1.0 INTRODUCTION Pa�e
1.1 PROJECT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SCOPE OF SERVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.0 SITE CONDITIONS
2.1 Sc�FncF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 S[�stJxrnc�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 GROUNI�WATER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.0 SITE STABILITY&SEISMICITY
3.1 SI7'E S'I'AE3ILI"TY EVAI,UA'I'ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 LIQ[JEFAC'I'[ON ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 GROUNU MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 UI�IIFORM BUII.DWG CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.0 DISCUSSIONS AND RECOMMENDATIONS
', 4.1 GF,Nk?RA1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 SI1�E PRF,PARA'f[ON,GRAllWGANI�EARTF�WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2.1 Temporary Erosion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2.2 Excavations and Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2.3 Structural Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 INFRASTRUCTURF_RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3.1 Roadway Subgrade and Pavement Section Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3.2 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.3 Cantilever Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.4 Rockery Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3.5 Segmented Block Retaining Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 l,
4.4 LOT DEVF:LOPI�NT RECOIvIIv�NDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . �. . . . . . . . . . . 14
4.4.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2 Basement Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IS
4.4.3 Slab-on-grade Floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4.4 Drainage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.0 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.0 PLAN REVIEW & CONSTRUCTION MONITORING . . . . . . . . . . . . . 19
[LLUSTRATIONS Plate 1 - Vicinity Map
Plate 2 - Site Plan
Plate 3 - Typical Basement Wall Backfill & Drainage Detail
APPENDIX A Test Pit Logs
Geo Group Northwest, Inc.
GEOTECHNICAL ENGINEERING STUDY
CHRISTELLE RIDGE SUBDIVISION
RENTON,WASHINGTON
G-1821
1.0 INTRODUCTION
1.1 PROJEC'T DESCRIPTION
The subject property is located west of the intersection of SE 95`'' Way and Duvall Avenue NE
(Coal Creek Parkway SE) in Renton, Washington, as indicated on the Vicinity Map, Plate l.
The proposed subdivision consists of twenty-two single-family residential lots and a new cul-de-
sac roadway. The parcel slopes moderately up to the southwest, as shown on the Site Plan, Plate
2. The proposed new cul-de-sac access road enters the property off of SE 95"' Street at the north
end of the parce) and climbs at a proposed gradient of 14.41 percent. Construction of the access
road will require cuts of up to 28 feet. Grading for the proposed lots will require cuts on the
order of up to 22 feet on the west side of the access road and retained fills of up to 16 feet along
the right-of-way of SE 95`'' Way and sioped fills of up to 18 feet ���est of the cul-de-sac I
We anticipate the new homes will consist of two or three-story wood frame structures, most with �
daylight basements. Geo Group Northwest, Inc. should be consulted to review the validity of t}�t�
recommendations contained in thi� rer�rt if there �re �i��nific��nt chan��e� tn eite �je��el����ient
�lans a� descrihed herr�
1.2 Sc���i�F: ��H SH:uvicF.s
The scope of work for this geotechnical study was conducted in general accordance with our
proposal dated May 27, 2004 and includes:
• Excavating eight test pits with a track hoe to characterize the subsurface conditions.
Col(ection of soil samples. Analysis of sample moisture content and preparation of test
pit logs.
• Evaluation of the subsurface conditions, engineering analysis, and geotechnical
recommendations and design criteria for the proposed subdivision.
Geo Group Northwest, Inc.
June 2 l, 2004 G-1821
Christelle Ridge Subdivision Page 2
Geotechnical Engineering Study
• Preparation of this written report with our activities, findings, conclusions, and
geotechnical recommendations.
2.0 SITE CONDITIONS
2.1 SURFACE
The subject property is undeveloped and consists of approximately 3.6 acres. The property is ,
irregular in shape and is bordered by residential development to the west and south and SE 95°i
Way along its northwest property boundary. Based on the site survey, elevations across the site
range from 352 feet at the north end along SE 95'h Way to 440 feet at the southeast corner. The
property generally slopes��p to the southwest at an average gradient of about 23 percent. No
water was observed on the property. Vegetation on the property consists of fir trees, ferns and
underbrush.
2.2 SUBSURFACE
According to the area geologic map the project site is underlain by Quaternary-age Advance I
Outwash (Qva) glacial drift deposits associated with the Vashon Stade of the Fraser Glaciation. ,
Advance Outwash generally consists of stratified sand and gravel deposited in fluvial streams in
advance of the glacier. �
Geo Group Northwest explored the site conditions by excavating eight test pits on June 3, 2004.
The site soils consist of glacially deposited Glacial Till soils, consisting of a non-sorted mixture of
silt, sand, gravel, and some cobbles. The till color varies from weathered brown to unweathered �
gray. In general, the looser material near the surface is highly weathered and the material
becomes denser and more cemented as the degree of weathering decreases with depth. A
detailed description of the soils is presented on the Test Pit Logs in Appendix A. The
approximate locations of the test pits are shown on the Site Plan, Plate 2.
Geo Group Northwest, Inc.
i ,
June 2 l, 2004 G-1821
Christelle Ridge Subdivision Page 3
Geotechnical Engineering Study
2.3 GROUNDWATER
No water seepage was observed in the test pits and no seepage was observed on the surface of the
project site. No water seepage is anticipated during the site development, although permeable
sand layers within the glacial till may contain water.
3.0 SLOPE STABILITY & 5EISMICITY
3.1 SITE STABILITY EVALUATION
No indicators of slope instability problems, such as past slumps or slides, were observed on the
project site. The site soils are glacially consolidated and there is minimal risk of deep seated
sliding at the site. After grading, the overall stability of the site wi(1 be improved as a result of the
removal of the looser su�cial material and a reduction in the steepness of the site grades.
3.2 LIQUEFAC'TIOIV ASSESSMENT
Liquefaction is a phenomenon where loose granular materials below the water table temporarily
behave as a liquid due to strong shaking or vibrations, such as earthquakes. Clean, loose and
saturated granular materials are the soils susceptible to liquefaction phenomena. The site soils do
not consist of clean loose saturated sand and it is our opinion that the site soils have no potential
risk of soil liquefaction during a seismic event.
3.3 GROUND MOTION
Based on the subsurface conditions encountered, anticipated damage to the proposed structtire
would be caused by the intensity and accelerations caused by a strong motion earthquake and not
by liquefaction or lateral movement of the site soils.
3.4 UNIFORM BUILDING CODE
According to the 1997 Uniform Building Code (UBC), western Washington is classified as
Seismic Zone 3 (Figure 16-2), which is assigned a Seismic Zone Factor, Z, of 0.30 (Table 16-1).
Geo Group Northwest, Inc.
June 2 l, 2004 G-182 l
Christelle Ridge Subdivision Page 4
Geotechnical Engineering Study
The soil conditions encountered at the site during our investigation correspond best to a Soil
Profile Type of S� and Soil Profile/Description of very dense soils {Table 16-J ). Based on a
Seismic Zone Factor(Z) of 0.3 and a Soil Profile Type of S�, the Seismic Coefficient Ca is 0.33
(Table 16-Q) and the Seismic Coefficient Cv is 0.45 (Table 16-R) for the site.
4.0 DISCUSSION ANll RECOMMENDATIONS
4.1 �iF,NERAL
Based on the results of�this study, it is our opinion that the site is geotechnically suitable f�r the
proposed subdivision development. The main geotechnical issues are:
• Moisture sensitivity of the site soils and wet weather earthwork considerations;
• The cuts and fills required to achieve the proposed finished site grades;
• Fill compaction requirements for under buildings, pavements, and behind rockeries;
• Potential settlement of the thick fill, even if compacted to the structural fill
specifications herein;
• Settlement impact and mitigation;
• Difficulty in engineering tall rockery retaining walls facing fills and the alternative of
co�structing modular block reinforced retaining walls.
The following discussions address the site development infrastructure and provide lot
development recommendations, including an evaluation of site stability, recommendations f'or site
preparation, grading and earthwork, structural fill placement and compaction, use of the site sc�ils
for fill, roadway subgrade preparation, pavement section design, utilities, fc�undation desi�n
criteria, slab floors, and drainage.
4.2 SITE PREPARATIUN,GRADING AND EAR'I'F�WORK
The site should be stripped and cleared of surface vegetation, topsoil, and soils containin� large
tree roots or other organics. The stripping should occur in areas to be cut and areas to receive
fill. The stripped soil should not be used as structural fill below building areas, pavernerits,
Geo Group Northwest, Inc.
June 21, 2004 (i-182 l
Christelle Etidge Subdivision Page 5
Geotechnical Engineering Study
sidewalks, or as fill behind walls.
Areas to receive filis should be benched, creating a terraces on the sloped portions of the site.
Filis placed in building areas, below pavement areas, driveways, and behind retaining walls should
be compacted to structural fill specifications. To mitigate potential settlement of the fill will
require quality control monitoring including the site preparation, fill material, fill placement, and
its compaction.
Structures may be supported on conventional spread footings and where feasible footings should
bear directly on the dense undisturbed glacially consolidated soils or on structural fill that extends
down to suitable bearing soils.
The silty site soils are moisture sensitive and it will be difficult to achieve structural fill
compaction specifications if the soil has a moisture content that is higher or lower than optimum.
'1�he site soils will not be usable as structural fill during wet weather. Site grading and earthwork
should be performed during the dry summer months and the implementation of permanent erosion
control should be completed by mid October.
4.2.1 Temporary Erosion Contrvl
"remporary erosion control measures, such as perimeter silt fencing, should be installed prior to
tlie start of grading. A crushed rock construction entrance should be used to mitigate the tracking
of mud onto the street. During wet weather, exposed site soils should be covered with straw
mulch and cut slopes should be protected with plastic sheeting to minimize erosion. Temporary
settlement ponds, crushed rock check dams, and hay bales and silt fencing should be used to
reduce suspended sediment in the surface water runoff and to reduce the velocity of the runoff.
4.2.2 Excavations and Slopes
i
The majority of the site grading will result in permanent cut slopes. Temporary cuts will be used
for installation of utilities. The stability of temporary cut slopes is a function of many factors,
including soil type, geometry, surcharge loads, amount of time the cut is open, and the presence
of subsurface seepage. It is the responsibility of the contractor to maintain safe slope
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 6
Geotechnical Engineering Study
configurations. If groundwater seepage is encountered, excavation of cut slopes should be halted
and the stability of the cut slope evaluated by the geotechnical engineer.
Temporary cuts greater than four feet in depth should be sloped at an inclination no steeper than
1 H:1 V (Horizontal:Vertical) in the loose to medium dense weathered till soils and 1 H:2V in the
hard cemented glacial till. Permanent cut and fill s(opes should be inclined no steeper than 2H:1 V.
4.2.3 Structural Fill
Fill material used to support building foundations, slab-on-grade floors, pavements, and sidewalks
should meet the compaction requirements for structural fill. During dry weather, any compactable
non-organic soil may be used as structural fill, provided the material is near the optimum moisture
content for compaction purposes, and the material achieves the compaction specifications. The
silty site soils may be used as structural fill only if the soil moisture and weather conditions allow
the soil to be compacted to structural fill compaction requirements. During wet weather we
recommend that imported pit run sand and gravel be used as structural fill having the following
specifications:
l. Be free draining, granular material, which contains no more than 5 perc�ent fines (silt
and clay-size particles passing the No. 200 mesh sieve);
2. Be free of organic and other deleterious substances;
3. Have a maximum size of three-inches.
Structural fiil material should be placed at or near the materials optimum moisture content. The I
optimum moisture content is the water content in soil that enables the soil to be compacted to the
highest dry density for a given compaction effort. Structural fil) should be placed in thin
horizontal lifts not exceeding l0-inches in loose thickness to the following compaction
specifications:
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 7
Geotechnical Engineering Study
STRUC"TURAL FILL COMPACTION SPECIFICATIONS
APPLICATION MINIMUM COMPACTION
% ot Mazimum Dry Density
95%for the top 12-inches
Roadway Fills and Under Pavements 90%belo�v the top 12-inches
Based on ASTM D-1557 - Modified Proctor
Qackfill Behind Rockeries, Segmental Block 9�%
Retaining Walls & Basement Walls B�ed on ASTM D-1557 - Modified Proctor
Roadway Fills 95%
Within the Sewer Easement Based on ASTM D-1557 - Modified Proctor
(Verify With Local Utility District)
Under Building Foundations and 95%
Slab-On-Grade Floors Based on ASTM D-1557 - Modified Proctor
Below building areas, structural fill should be compacted to a minimum of 95 percent of the
materials maximum dry density, as determined by ASTM Test Designation D-1557 (Modified
Proctor). Structural fill below the foundation elements should extend down and out from the
footings creating a 1 H:1 V structural prism below the footings. Under pavements structural fill '
should be compacted to at least 90 percent maximum dry density, with the exception of the top
l2-inches which should be compacted to at least 95 percent maximum dry density. The Utility '
District may require 95 percent within sewer easements. Granular fill materials are best
compacted with vibratory compaction equipment, such as a vibratory drum roller or hoe-pack.
Silty soils, such as those at the subject site, are best compacted with a"sheeps-fobt" compactor. �
Geo Group Northwest, lnc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 8
Geotechnical Engineering Study
4.3 INFRASTRUCTURE
4.3.1 Roadway Subgrade and Pavement Section Design
The adequacy of site pavements is strictly related to the condition of the underlying subgrade. If
this is inadequate, no matter what pavement section is constructed, settlement or movement of the
subgrade will be reflected up through the paving. To avoid this situation, the subgrade should be
compacted to the structural fill specifications and proof-rolled with a loaded dump truck under the
observation of the geotechnical engineer prior to paving. Areas of soft, wet or unstable subgrade
may require over-excavation and replacement with compacted structural fill or crushed rock.
Subgrade stabilization recommendations should be provided by the geotechnical engineer based
on an evaluation of the site conditions
Provided the subgrade is dense and unyielding, the parking and driveway pavement section design
may consist of the fo(lowing:
MINIMUM PAVEMENT SECTION
HEAVY TRAFFIC AREAS ,
Class "B" Asphalt Concrete (AC) 3-inches, over
Crushed Rock Base (CRB) 6-inches, or
Asphalt Treated Base (ATB) 3-inches
LIGHT TRAFFIC AREAS II
Class "B" Asphalt Concrete (AC) 2-inches, over i
Crushed Rock Base(CRB) 4-inches, or �
Asphalt Treated Base (ATB) 2-inches �
The minimum pavement section may not be acceptable if there is evidence of instability in the
subgrade. In the event of poor, yielding, or unstable subgrade conditions, we should be requested I
to review the site conditions and provide subgrade stabilization recommendations.
Geo Group Northwest, Inc.
__
' I
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 9
Geotechnica( Engineering Study
4.3.2 [Jtilities
Trenching is anticipated for water, sewer, gas and electrical utilities. For safety, utility trench
sidewall slopes should follow the criteria described in the F.xcavations and Slopes Section of this
report. We recommend utility lines be bedded in 6 inches of sand above and below the pipe, or
follow the 1996 Standard Specifications for Road, Bridge and Municipal Construction, published
by Washington State Department of Transportation and American Public Works Association
(APWA) specifications Sections 69-03.15 and 69-03.16. Trench backfill above the pipe bedding
may consist of the native granular or imported granular soils provided the material achieves the
compaction requirements presented in the Stri�cturnl Fill section of this report.
4.3.3 Cantilever Retaining VValls
Basement and retaining walls restrained horizontally on top are considered unyielding and should
be designed for a lateral soil pressure under the at-rest condition; while conventional reinforced
concrete walls free to rotate on top should be designed for an active lateral soil pressure.
Active Earth Pressure
Conventional reinforced concrete walls that are designed to yield an amount equal to 0.002
times the wall height, should be designed to resist the lateral earth pressure imposed by an
equivalent fluid with a unit weight of 35 pcf for level backfill above the wall,
For the sloped ground behind the wall, a surcharge load equivalent to 50 percent of the soil height
above the wall should be considered in addition to the above soil pressures. Z'raf�ic arid surc}iarge
loads, if applicable, also should be considered in addition to the above soil pressures.
Recommended passive and base coefficient of friction:
• Passive Earth Pressure: 350 pcf equivalent fluid weight
• Base Coef�cient of Friction: 0.35
The walls should be drained to prevent the buildup of hydrostatic pressure. We recommend using
a vertical drain mat and granular free-draining backfill material to faci(itate drainage as discussed
in the DrninaKe section.
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 10
Geotechnical Engineering Study
4.3.4 Rockery Retaining Walls
Rockery walls are not engineered retaining walls. Their construction is to a large extent an art not
entirely controllable by engineering methods. For this reason, we recommend rockery walls
facing fill soils be limited to a height of 8 feet. Taller rockery walls may be constructed if facin�
dense stable cuts.
It is imperative that rockeries be constructed in a proper manner by contractors experienced in,
and with a proven capability in, rockery construction. Rockery walls should be constructed in
accordance with the "Standard Rockery Construction Guidelines" specified by the Association of
Rockery Contractors. Construction should be monitored by the geotechnical engineer to verify
that bearing conditions are adequate, cut slopes are stable, fill meets compaction requirements,
and proper installation of drainage.
A rockery wall is not intended to function as an engineered structure to resist lateral earth
pressures, as an engineered reinforced concrete retaining wall would be. The primary function of
the rockery wall is to cover the exposed cut slope face and thereby retard the erosion process
However, some lateral support is provided by virtue of the weight of the rock. Therefore, the
larger the rock the greater the mass and the more lateral load resistance available. However, since
this support depends on the contact areas and characteristics between individual rocks, it is
virtually impossible to predict or provide for a specific lateral resistance.
The stability of the cut slope protected by the rockery face should inherently be stable with no
water seepage. The rock used to construct the wall should be hard, sound, durable, free of searns
and cracks, and broken in generally tabular to cubical shapes. Preferably, the rock density �hc���Id
be at least one hundre�i si�tv-five (lE�) pcf. allh��u�h rock densifics ��i11 var�� ft���n� s��urce t�,
�c>i u c�
IZockery �Valls Facii�l�ill Soils
Rockeries facing fills greater than 4 feet hi�h, should be reintorced witti ge��rid to pr�vi�le late<<�I
resistance to wall movement. The engineering for the geogrid reinforcement should be provideci
by Geo Group Northwest, Inc. based on the wall and surcharge conditions.
Geo Group Northwest, Inc.
June 21, 2004 G-l 82 l
Christelle Ridge Subdivision Page 1 l
Geotechnical Engineering Study
Keyway, Drainage and Rock Placement
The basal coarse of rock is "keyed" into the ground, with the keyway width and depth
determined by the basal rock size and height of the wall. The subgrade soils should be dense/stiff
to provide proper wall support and base stability. Incline the keyway back in towards the face to
be protected to create a 1 H:6V wall batter.
Good drainage is essential for wal) stability. For drainage, instal( a four-inch diameter perforated
rigid PVC drain pipe at the base of the wall, surrounded by free-draining ballast or crushed rock.
The pipe should be directed to a positive and permanent discharge.
The first basal layer of rock should be carefully "slammed" into p(ace. The basal rocks should be
placed in as close contact with each other as possible. Each row of rock should be well seated
and thoroughly tamped and driven into place having as few voids as possible. Since the rockery
derives its support partially from friction between individual rocks, point contact of rocks should
be avoided wherever possible. Succeeding layers of rock should be placed so that rocks overlap
each other. The face of the rockery wall should be inclined at a slope of approximately 1 H:6V.
Crushed drain rock and geogrid reinforcement, if applicable, should be installed concurrently as
the wall is constructed. The drain rock behind the wall should consist of a well-graded crushed
angular rock with a three-inch maximum size. The rock layer should not be less than twelve (12)
inches in thickness behind the rockery walL ,
4.3.5 SEGMENTED I3LOCK RETAINING WALLS
Segmented block walls facing fill soils should be geogrid reinforced and should be engineered by
Geo Group IVorthwest, Inc. Segmented biock walis should be designed for the following soil
parameters:
• Internal angle of friction (�): 3 5 degrees
• Total unit weight (y): 130 pounds per cubic foot (pc� for structural fill.
The wall should be designed for a minimum FS of 2.0 with respect to overturning and bearing
capacity, and a minimum FS equal to 1.5 with respect to sliding. The wall desi�n should account
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page l 2
Geotechnical Engineering Study
for any additional surcharge loading due to buildings, slopes, parking, traffic, etc., and may be
inclined up to 3 degrees from vertical.
Terraced Segmental Block Walls
For terraced walis, the distance between the walls should be a minimum of 1.5 times the height of
the lower terrace (for a 4 foot tall lower terrace wall, the upper terrace should be set back a '
minimum of 6 feet). Walls more than two terraces high should be evaluated on a case-by-case
basis by Geo Group Northwest, Inc.
Segmental Block Wall Construction
For the finished wall to have a uniform horizontal level appearance, the preparation of the base
leveling pad is critical. The foundation soils should be prepared to create a stable, non-yieldin�
subgrade base. After selecting the location and length of the wall. the base trench should be
excavated so the base row of block is embedded a minimum of l.5 inches for each foot of wall
height (6-inches for a 4-foot tall wall) and to allow enough width for the drain and drain rock
behind the wall. The base should be leveled with a 4-inch minimum thickness of compacted 5/8
inch minus crushed rock (do not use pea-gravel). Level walls built on a sloping grade require
stepping the base row of block. Start the leveling pad at the lowest elevation of t}ie �vall Wor k
out the stepped base as the wall steps up in elevation.
The first course of blocks are placed side by side, with sides touching. The blocks should be
level, side to side and front to back, with primary attention to the basal coarse. Blocks should be
interlocked as recommended by the block manufacturer, if appropriate. KeystoneT" block units
are interlocked with fiberglass pins. The position of the pins controls the setback (batter), the
amount of angle to the wall face. The front hole position results in a near vertical (1/8") setback,
and the rear holes result in a 7 degree(1-1/4") setback. For constructing curved walls, the best
results are achieved using the front, near vertical, pin position. After setting the first course, the
fiberglass pins are inserted into the paired holes of each block. Pins of adjoining units shoulci be
12 inches on center for proper alignment of the additional courses. For other block
manufactures, follow their recommendations.
Segmental Block Wall Draina�e
Fill in the voids, inside and between the block, and create a 2 foot drainage zone behind the wail
Geo Group Northwest, lnc.
'
� .
June 2 l, 2004 G-1821
Christelle Ridge Subdivision Page 13
Geotechnical Engineering Study
using '/z" to 3/4" clean crushed rock. Rounded rock such as pea gravel should not be used. At the
base of the wall, install a slotted or perforated 4" rigid PVC drain line. Geotextile filter fabric,
such as Mirafi 140N or equal, should be installed to separate the crushed drain rock from the
backfill behind the drainage zone and to protect the drain pipe. We recommend drain cleanouts
be installed at intervals of 40 feet or less.
SeQmental B(ock Wall Backfill & Compaction
Backfill and compaction should be completed behind each course before installing additional
courses. Compact the fill to a minimum of 90 percent of the materials maximum dry density, as
determined by ASTM Test Designation D-1557 (Modified Proctor), and to 95 percent if the fill
will provide structural support. Walls providing support to structural elements should be
reviewed by Geo Group Northwest. Only walk-behind mechanical compaction equipment should
be used within 3 feet of the wall.
�
I
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 14
Geotechnical Engineering Study
4.4 LOT DEVELOPMENT RECOMMENDATIONS
4.4.1 I�oundations
Conventional spread footing foundations can be used to support future residential structures.
Strip and column footings should be supported by the dense/hard soils, or by compacted
structural fil) that extends down to suitable bearing soils. Loose disturbed soils underlying
foundations should be removed and rep(aced with fill compacted to the structural fill
specifications.
If the site soils will be exposed to weather in footing trenches, we recommend the footing trench
be protected with a 2 to 4-inch layer of lean mix concrete or controlled density fill (CDF) to
protect the subgrade. Alternatively, the Silt can be over-excavated and replaced with compacted
crushed rock.
Conventional spread footings should be designed according to the following criteria:
- Allowable bearing pressure, including all dead and live loads �I
• Medium dense and stif�'site soils = 2,000 psf
• Structural fill = 2,000 psf
• Dense/hard native soil = 4,000 psf
- Minimum depth to bottom of perimeter footing be(ow adjacent
i
final exterior grade = 18 inches
- Minimum depth to bottom of interior footings below top of floor slab = 12 inches
- Minimum width of wall footings = 16 inches
- Minimum lateral dimension of column footings = 24 inches
- Estimated post-construction settlement
• Medium dense to hard site soils: = 1/4 inch
• Structural fill over 10 to 15 feet thick: = 1/2 inch*
Geo Group Northwest, Inc.
�
;. .
June 21, 2004 G-1821
Christelle Ridge Subdivision Page I S
Geotechnical Engineering Study
- Estimated post-construction differential settlement; across building width
• Medium dense to hard site soils: = 1/4 inch
• Structural fill over l0 to 15 feet thick: = 1/2 inch*
* Limiting the amount of fill settlement will require tight quality control on the site
preparation, fill placement, and compaction.
Lateral Force Resistance - lateral loads can also be resisted by friction between the foundation and
the supporting compacted fill subgrade or by passive earth pressure acting on the buried portions
of the foundations. For the latter, the foundations must be poured "neat" against the existing
undisturbed soil or be backfilled with a compacted fill meeting the requirements for structural fill.
Our recommended parameters are as follows:
- Passive Pressure (Lateral Resistance}
• 350 pcf equivalent fluid weight for compacted structural fill & dense site soils
- Coefficient of Friction (Friction Factor)
• 0.35 for compacted structural fill & dense site soils
4.4.2 Basement Walls
Permanent basement walls restrained horiaontally on top are considered unyielding and should be
designed for a lateral soil pressure under the at-rest condition; whereas conventional reinforced
concrete walls free to rotate on top should be designed by a structura) engineer for an active
lateral soil pressure.
Active Earth Pressure '�
Conventional reinforced concrete walls that are designed to yield an amount equal to 0.002
times the wall height, should be designed to resist the lateral earth pressure imposed by an �
equivalent fluid with a unit weight of
• 3 S pcf for level backfill behind yielding retaining walls
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 16
Geotechnical Engineering Study
At-Rest Earth Pressure
Walls supported horizontally by floor slabs are considered unyielding and should be
designed for lateral soil pressure under the at-rest condition. The design lateral soil
pressure shou(d have an equivalent fluid pressure of:
• 45 pcf for level ground behind unyielding retaining walls
The above values are based on the use of the site soils for backfill and that the wall backfill is fully
drained. They do not include the effects of surcharges. For the sloped ground behind the wall, a
surcharge load equivalent to 50 percent of the soil height above the wall should be considered in
addition to the above soil pressures. Traffic surcharge loads can be assumed equivalent to 2 feet
of soil.
Passive Earth Pressure
• 350 pcf equivalent fluid weight for structural fill & dense site soils
Base Coefficient of Friction
• 0.35 for structural fill & dense site soils
Basement walls should be waterproofed and a vertical drain mat, such as Miradrain 6000, or free-
draining material be used to facilitate drainage, and a footing drain be incorporated into the
design. Please refer to the Draiirage section of this report.
Backfill material ad'acent to ermanent concrete basement should be com acted to 90 ercent as
J P P P
specified in the Structural Fill section. Compact with hand held equipment or a hoe-pack. Heavy
compacting machines should not be allowed within a horizontal distance to the wa(1 equivalent to
one half the wall height, unless the walls are designed with the added surcharge.
4.4.3 Slab-on-grade Floors
Slab-on-grade floors should be placed on dense soils, or on structural fill that extends down to
suitable bearing soils. Structural fill should be compacted to 95 percent as specified in the
Strrrctriral I ill section.
Geo Group Northwest, Inc.
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 17
Geotechnical Engineering Study
To avoid moisture build-up on the subgrade and to prevent wicking of moisture up to the slab,
slab-on-grade floors should be placed on a capillary break. The capillary break should consist of a
minimum of six (6) inch thick free-draining layer of l.5 inch minus gravel or 2 inch size crushed
rock containing no more than five (5) percent fines passing the No. 4 (1/4-inch) sieve. A 10-mil
reinforced vapor barrier should be placed between the capillary break and slab, such as Moistop�'
by Fortifiber, to reduce water vapor transmission through the slab. Two to four inches of sand
may be placed over the membrane for protection during construction.
4.4.4 Drainage
Water should not be allowed to stand in any area where footings, slabs or pavements are to be
constructed. During construction, loose surfaces should be sealed at night by compacting the
surface to reduce the potential for moisture infiltration into the soils. Final site grades should
allow for drainage away from building structures. We suggest that the ground be sloped at a
gradient of three (3) percent for a distance of at least ten feet away from buildings except in areas
that are to be paved. Final site grades and impervious areas should be designed to collect surface
water into catch basins and tightlines for discharge into the storm system.
If water seepage is encountered in excavations during construction, we recommend sloping tl�e
bottom of the excavation to one or more shallow sump pits. The collected water can then be
pumped to a temporary detention pond for settlement prior to discharge into the storm system.
Please refer to the Seepage a�rd Slope Stability Considerations section of this report for
additional discussion regarding water seepage considerations.
Perimeter footing drains should be installed around foundations and behind basementlretaining
walls and rockeries. Drain lines should consist of a minimum four (4) inch, perforated or slotted, �
rigid drain pipe laid at or just below the invert of footings with a gradient suf�icient to generate
flow as illustrated on the Typical Basement Wall & Footing Drain Detail, Plate 3 of Illustrations. I
The drain line should be bedded in a minimum of 10-inches of washed-drain rock or other free-
draining gravel material and wrapped with a geotextile non-woven filter fabric, such as Mirafi i
140N. .
Geo Group Northwest, Inc.
— 1
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 18
Geotechnical Engineering Study
We recommend that a vertical drain mat (sheet drain), such as Miradrain 6000 or equivalent, be
used to facilitate drainage behind basement walls and retaining walls. The drain mat core is placed
against the basement wall with the filter fabric side facing the backfill. The drain mat extends
from the finished surface grade, down to the footing drain pipe. A minimum of 18 inches of
ciean, free-draining, washed rock or crushed rock should be placed in the bottom of the wall
trench around the footing drain, The drain rock should be protected by wrapping with a
geotextile non-woven filter fabric, such as Mirafi 140N. The advantage to using a vertical drain
mat is the ability to use the native granular site soils to backfill behind the wall provided the
material can be compacted to 90% of the materials maximum dry density. This minimum
compaction standard is required for the drain mat to function properly.
Under no circumstances should roof downspout drain lines be connected to the footing drain,
under slab drain or crawl space drain system. All roof downspouts must be separately tightlined
to discharge into the storm-sewer. We recommend that sufficient cleanouts be installed at
strategic locations to allow for periodic maintenance of the footing drain and downspout tightline
systems.
�
Geo Group Northwest, Inc.
i
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 19
Geotechnical Engineering Study
5.0 LIMITATIONS
This report has been prepared for the specific application to the subject project site, for the
exclusive use of Christelle, Inc., and the project design team. The findings and recommendations
stated herein are based on our field observations, the subsurface conditions encountered in our
site exploration, our experience, and judgement. The recommendations are our professional
opinion derived in a manner consistent with the level of care and skill ordinarily exercised by other
members of the profession cunently practicing under similar conditions in this area and within the
budget constraint. No warranty is expressed or implied. In the event that soil conditions vary
during site work, Geo Group Northwest, Inc. should be notified and the recommendations herein
re-evaluated, and where necessary, be revised.
6.0 PLAN REVIEW AND CONSTRUCTION MONITORING
It is recommended that we be retained to perform a general review of the final design and
specifications to verify that the earthwork, foundation, and other recommendations have been
properly interpreted and implemented in the design and engineering plan documents.
It is recommended that we be retained to provide geotechnical monitoring services during
construction. This will allow us to confirm that the subsurface conditions are consistent with
those described in this report and allow design changes in the event subsurface cnnditions dif�'er
from those anticipated prior to the start of construction. It will allow us to evaluate whether the
erosion control, earthwork, and foundation construction activities conform to the intent of the
contract plans and specifications. While on the site during construction, we will not direct or
supervise the contractor or the contractors work, nor will we be responsible for providing or
reviewing on-site safety or dimensional measurements.
INSPECTIONS
The following items should be inspected by the geotechnical engineering firm during
constntction:
• Erosion control
• Site preparation, clearing, and grubbing '
• Excavations
Geo Group Northwest, Inc.
�I
June 21, 2004 G-1821
Christelle Ridge Subdivision Page 20
Geotechnical Engineering Study
• Structural fill placement and compaction testing
• Proof-rolling& roadway subgrade preparation
• Subgrade stabilization
• Verification of allowable soil bearing conditions for foundation footings
• Retaining wall construction
• Placement of capillary break material below slab-on-grade floors
• Installation of subsurface drainage
The contractor should provide a minimum of 24 hours advance notice to perform the above
inspections so that we can arrange to have personnel available.
We appreciate the opportunity to provide you with this geotechnical engineering study. Please
contact us if you have any questions regarding this report or if additional information is needed.
Sincerely, o� vv a s h;�
GEO GROUP NORTHWEST, INC. �°/� 9� '
ro
0
-, / •�
� ,y; . ,�+� '
G,��c��J { � ��� � — �-
�' ��.�p:-�+"9��a� ,y ,
_ '�A 1116 oc,�` i
, �sed Ge°�
Wade J. Lassey
Engineering Geologist Wade J. Lassey
�'1 � 1
M
� R i-�y ��� „ ti A C�
�-�('.�LGu-�-�.� � ��`'� ti�' o� w'�+Yq,9'1.
l � �� �� c'�G�
�
� �� 2
William Chang, P.E.
Principal �, ����� ,�
p � �`�.-
��fONAL-
EXPIRES: 2/19/ �' •
Geo Group Northwest, Inc.
ILLUSTRATIONS
G-1821
. ,
� I
Geo Group Northwest, Inc.
I
�
y �%� Ir» 1N�EX AV� j s4�\ N��';�. ��� � � �I�� ° ��utrijPi iE �l� N � S ��r
�.,"' p~y� �NE � J �� . `��' C! �RAI , ' ,« �,,,,� �� �v� f�.D� Hle l�o �". ,��mT .
`� �:,p�� JE�FERSON µq�( sHiGurus ���i PE � r, „r�ne`�� e`'rt `�`, 12oT � o��
� .. . � ,
II � � � � m NE p�. Y S� LM�1"ti� .IEf�ERSON AV Nfi y�:.*�."�cr�> c'�ny;��� r A��^�.sa. '` AV �, � o/
�- � ICIRKLANqo �b<;�C}.4Fu.Fa � J" r+
_,
• � P�,�V _NE-y� F ��, �, �f 5� xY�c,�'� SE'v,
I I y�, :'Y_.-�.�......� 7F ��+ °� ,�� I"' ��.r r,�x a x„ rz�sr_-i �` �
V� ^ �\'��Jj �VF � �"i�,,,,`r��. �`-�'�'�' Sj"��'. i".f � �g I� ��j ��s�,�,; :. .�•,.�:._35 l� � I
C y 1 � ,a � n`: x KIAKlANO-, / n �l ��as i ��x#*�'� �zzxn �, q`R.at
_ ..� ,�,��- ,��. �`�'' I-u't?R PC� ryE' , ,! " ,�'�P?Mwdlinv �,�ai��� � °� sE �tz3 w- _
" *•-' ': .--,
Q oa ' : , $ �- , ,- . 1��� {,�til���,�` ="", oI �sE �1�Zt ;
k �
„ �+ : n �,y�u A'� N� � ^'� ,�_,�, _ s� �.� ' �--5-ed.-� -
p� -� �-^-+�o�.r....., -^�f�"_'".Z"�4{.�.�- A u'� Al�� ,R�i.�-�_��_. ^` �p .� (,�� �i ^� ,
, i� �' r., n va ,t r, �i s c�:; y <y�Vi �, y�� b . •� �� �_.J7`� v u�i
�-y �-' � TS 1UOJN3N��L
,'a gt � j Iy�, A� N AV dE� �i_ ^+ a �?.- r � o � ^, s� � � � � �:: 5,� , �1;5j '" d.,-��
� � d �" •.,,i.. _S`E_ '� �� �,,���" ;� ��i,�;�, � '�'`��`�&i �''�`�I�_.� �P�6� � ""j �.. i ''-�'�` � � , ,°�SE �S ��
s�'�: +35l��t!� r,J' „ i - ���- �7 C�7 � � .�c �ro ' �,`.,-. �
� ro � , �.1r%. PI�E.�71fACE AV r�F_�� � ^ r157A^�,�� �_.� 1 � .,�, �i � � '�:.;-'�'c 1 �„^�ME�r:�.��o�� . �� 12 TH.�.
CE AV NE Pl;� Nf z HE ; � I - t Z( �� � 3 i
.�-� °?- � �'f' __ -. WEFN Ir� AV � ;- � I�. 3$�,o �� `.'C�� 2�rH � i rr k12 � Z7TN
� � i
G1 � � �� � .. �. "' NE -. �t°md+' y `�� t�.� r „),r> .�.��.t � �n
I� � `" „AV NE � QUEF�, A4 N ��128TH AV� �$E "��".� � ��J,.� �il ('i �-^l,
,�, � � � ' _c; � �,�` ,...�. - x'', T J �^ q o '� j , �r: 3s �� I
°` ,$ � � � � �: m �, ' �` ��v� 4 2 _�v sE �s
� �. e� � 8 REDMONDW qv m � _ �r �s M ah s 8�y,;,� �s izvzH. _..
� � AV �N� � % � �'��,��a� ��.
� i--i �'� %;`c' sr+E�roN av.� �N N' �,.���ira,s�<�'�" �����
130 AV SE
� p' � ( � ;��` C HE,..� Q�,�'+,�' a c/1 0� 1 j a± �; � l� � ;
,7 � -n+,l� I. � �.�'�r/ ..zl o �1�� -1 .;I�N y m L}�� I l,,�r, -`_,\J, p,..
� • - � :mi N` � �z
..._.-.- � I
1( � E i-� _ � ��— �1P�I�P1--�—A1�— N - , '`� � � -. - �<;�
� �;��.
� ,;'. �' ��` ��� : y nsyori� � 5 1 c,�, ,�:, r ;.oNaeT__ s Sf
x � G� ,-��r Ci Nfi ` `� A$HO ' '� 'I r'ry y '1 '- \� e4'
��..� m 6� z�YASNONM .
I 1�' � �� � � ��4l\� r VASypN UNION CT I7MAN� �� ����, �z,' 35�_.�.vol,rF r�ti� s�� ��
_ N i i q� ��
N�� Ne' � . , 1. ' ��N� �;` �� �.AV N�,- :�"N �,WHI � � t,<x � � .. �s y �1�, ^ ..N ,`c
n ,�. '�*t N �. 7 s,' ,lh a �v� �'�� y d 1 �
x $�r �� t � ���Pr:'-�y' �:3NI�AV ��°�l��N �r�9V N ��'�`� �i ' 35 �� ,.',._��� 13 ly i
C CORTE1 A�..NE � ti�'?*s �"� �:�-NE�t� �I� �'S, �M � ��� ^:G�RE�K ,,�5' �`d � � O
'_.:._. ;. , .. . . `--f- �-'I� BREMERT�._AV.. E� � �S r., � ::�' . m ./
� n .... Nf �. , �. I lo�lm 1,,•.T ('m. .� � � �. ��.� I PK:WY SE ba �
�" L, I �_ i��� �� �� � �—� -- , cn � �
��c� � � � � � �-, ��� ��� � � '�� � �' � �� '��
sE; ca I,� � A����N� r �r- S � ,, ,r � �
� �-�3 C o (DU�ALL'AV) � .I� I .vr'� � i � � ' _.,.....n�_..H18£I �..;�:<..: � i
� r �"'� ��, �� � 13.'�H 'I�"�,a��'AU � S m 1��J�x1.;� ' �'�_ � -.,i . .-eas�z� �
�] ��'m� I''h - ..�U�.�-�+ - -',,.".""t � "_'�! Vi
r,T,____� = , g----$�'-,�� �.- �� /
� O C� � ;�"' —��. - � , AV NE ��� s; � 8 V „ ''_ '� �` 'pf� m in
� � Cs7 ,.�"iy 2 I� ! FI�LD^AV NEh � �`e�Etpf�y_,�+^ ?� �I,�� �i� � ,%" � C m C
� �' � F�/ I - - � .� �a'� i�.`'�v'�' t\ GPA1 ..AV N� I �I A f� �
�.�� 1' ,. i ( , �. IA � N � �
y � �"'3 �.v�..'L._1�N� `AV__SE rfi'+�� �� �"µcr � f� nv se ~ ,�p. .�, � CT Sf� °
'z � r- Ia
a��
I G� ,��, � I� g � ,�c� p�s��.J� I<q '`{�� �u� h� �ia� ��� ^..� � � sr � H�,�,�d s
��o z � � �'�� -;la `,`.�Q .�V NE�� '� o ' SE 1-�i . �g a+ �...
� rn t0 � Oy 1441 H ,yf. . -� r L _ � f ` , ��_ •�TS' ^`�y �� O ..a
O C7 � , m � AV SE 'i in '�, ''`�'�,�i � � ' � l�F, �5���.1;%` )y`� -�
Im S Q
Z � � A��� 145TH PL �` m Ti.LYONS I`-� �'''�1�AV _ i ; yl1� x. � N19�*, �' ^ -
:: n�. SE � � f'�� _. .SE�- I ',,o i� ����_.-�...�_ m�_�" ��. ., /•.�� `I/� j � �j;,.����ps
a 9 !S i� yx � `n -�'m ! - y_ � ry x �
a � E-w � � �opG � � y �a�T�, nv N, -+ �1 � �; x�i
I ---- q � - � � �
`� �� ia�iu�� nv sE 9y � ,_ �._.. SE -� � _1^ ' � ,
I ,_ .�,1
I --- - -- --�1 - -� --�----._� ��_ - �,.�� .��h
i �eon� nu:ier /���om v!'cn in�'cn �F �n i0000 :� � �:.een.,.,.r'.: _... _.... _
—� �
/
1
, LEGEND OF SOIL CLASSIFICATION AND PENETRATION TEST
UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)
-- l -
GRDUP
MAJOR DMS10N g�� TYPICAL DESCRIPTION LABORATORY CLASSIFiCATION CRITERIA
�� � WELL GRAOED 6R/lVEL9.GRAVEl�AND Cu={De0!01�grester tfm��
GRAY�S M��'��E��Fl� DEIERMiNE �'(�30J)!(D10'0�be�ween 1 a�d 3
PB2C8JTAGES OF -
GRAVEiS (fdtle a no POORLY GRADm GRAVEIS,AND GRAYH.SANU GRAVEl ANO SANO �T MEETING ABOVE REQUR2E3VAENTS
COARSE- �°�Th�� Rnee� GP MO(7URES L(T'fLE OR NO FlNES FROM GRAIN S2E
GR/UN�SOILS ��Gn�s OISiRiBUTiON ATTB2BERG UMRS BELpW
larya Than Na 4 CURVE
g�� DIRTY GM S1L7Y GRAVELS,GRAVH.SAND-SRT MOCTURES Cp�yT m P.I.IESS T}IAN 4
GRAVEI.S OF FlNES
(with some CLAYEY GRNVELS,GRAYELSAND-CLAY IXCE�DS 12% ATTERBERG L1MR5 A80VE
{��� �C MDCTURES ��RSE GRAM� 'A"UNE
SOJLSARE or P.LMORETHAN 7
CLASS1Fim AS ---
WE1L GRAIJED SAND3,GRAVQLY 3AN0.9, FOLLOW� Cu:(pep I D7�graEx th�n A
SANDS CLEJW � �E OR NO FlNES Ca=(030�)!(O10'060)between t arfd 3
SAN0.S
(More Than HaM
Coarsa Grains mme ar no SP POORLY GRADm SANDS,GRAVEILY SANOS, <5%Fne Gralnad: �MEEiING AHOVE RE�U�tflNENfS
More Than FfaB by fines) t1iTLE OR NO FNES GW.GP,SYV,SP
WeigM Larger Smatler Than No.
Than No.200 4�BP°� AT1F]�862G UMRS BELOW
>12%Fine Grained:
S�e11° DIRTY SM SILTY SAN0.S,SAN0.SILT MDCTURES GM,GC,SM,SC CONTElJT OF "A^LINE
� witl� P 1.LESS THAN 4
RNES
� 5 6012%Fine IXCE�S�� ATTERB£RG UMITS ABOVE
�� SC CLAYEY SANOS;SAND-CLAY MIXTURES Grained:use dual "A"IJNE
fines) symbols wilh P.f.MORETHAN 7
— � �75 — Liquid I�mit M� NJORGANIC SIL75.ROCK FLOUR SANDY SIL7S � -- -
i (Balow Al'me on <5076 OF SIJGHT PlAST1CITY ,
p���,C�q� --- PLqST1C7TY CHART A-{.ine
FaR S01L PASSING �
FlNE�GRAM� NeglgiWe Liquid Limit 9iORGANIC StLTS,MICACEOUS OR 5p -
enie NO.40 S1EVE CH a OH
SOIl3 a9 ) >50ri � DIATOMACEOUS,F11�SANDY OR SILTY SOIL
— � �
�� �q��L� � INORGANIC CLAVS OF LOW PI.AST1CfTY, X qp
<30% � GRAVaLY,SMIOY,OR SI.TY GLAYS,CLENN 0
(Abwe A�.irro on CLAYS Z �
Plasticily ChnR }
Negligibls L��� �NpRGANIC CLAYS OF HIGH PLASTICRY,FAT F�
O�ganic) �� CH �� (� CL or oL
H
Mors Than Halt -- — � �
Weight Large� Liquid Limd 4RGAMC SM.TS AND ORGANIC S1LTV CUVS OF MH nr OH
Than No.200 ORGA��TS 8 <50% �� LOW PlASi1pTY � 10 �
Sinve I
(Bebw A-Line on 7
p��h,C� Uquid Lim�t ON ORGANIC CLAYS OF HIGH PI.AST1GfiY 4 OL M �
>50% D
---�----- ---- 0 �O ZO 30 d0 50 60 70 &1 90 t0� 110
HIGFfl.Y ORGANIC SCILS R PEAT AND OTHE3t HIGF�Y ORGAMC SO4.S LIQUID LIAN�T(%)
SOIL PARTICLE SQE GENE3tAL GU(�ANCE OF SOIL ENGIN�R1NiG
U.S.STANDARD SIEVE PROPQtT1E3 FROM STANOARD PENETRATION TEST(SP�
FRAC710N P�� Refadned SANOY SOILS 51LTY 3 CLAYEY SOILS
_ T__
Slev@ SiZe Siev! S@e Blow RelatNs Friction Blow Ilncanfined
(mm} (mm) �� Density Mgle Oescription Counts ��� Oescnption
SIL7/CLAY i200 0.075 N °R b.de9� N qu.tst �
S{1N0 0-� 0-15 Very Loosa <2 <0.?5 f Very sdt
F1NE N40 Q425 A200 0.075 4-10 15-35 28-30 Loose 2-4 0.25-0.50 �� SaR
MEDIUM �t10 200 #40 0.125 SD-30 35-65 I 28-35 Medi�m Denso 4-8 I 0.50-1.00 � Mediwn Stiff
CpARSE � I 4.75 #10 200 30-50 85-85 35-42 Dense 8-15 I 1.00-200 � St�
GRAVEL 1 >50 85-100 I 38-48 Very Dense 15-30 I 200-4.00 i Very Stifl
I '
FlME I 19 #4 4.75 i '� >4.� � �� 3
i
COARSE i_78 19 ��
C06BLES� 7B mm 50 2U3 mm
' � Group Northwest, Inc.
BOUlDER3� ��mm —
Geotechnical Engineers.Geotogiats,S
ROCX � Errviro nmental Scientists
>�e mm
FRAGYENT3 /3240 NE ZDth Street,Su�te 12 Bellewe,WA 98005
. ..RpC�( >0.78 ctibie meter in volume �e(425)8�9�8757 Fax(425�84&8758 P IATE A 1
TEST PIT NO: TP-1
LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 367 1l+/-
DEPTH SAMPLE Water OTHER TESTS!
ft. USCS SOIL DESCRIPTION No. % COMMENTS
�ML Silty SAND, dark brown, loose to medium dense, moist —
\ (Top Soil) �^
�— -----------------------�
S 1 19.6 -Probe 3"
5 S2 9.9
ML Sandy SILT,brown, some gravel and cobbles,dense,
damp.
S3 1�.3
10
S4 19.5
15
Total depth = 12 feet bgs �
No ground�vater seepage observed
2a
zs
_
TEST PIT BORING LOG
�1 Grou p Northwest, lnc. CRISTELLE RIDGE SUBD[VISION
� SE 95th WAY
� Geotechn�cal Fngineers,Geobgsls,&
Fmronmenta�scientists RENT01�1, WASNINGTON
JOB NO. G-1821 DATE 6/3/�)4 PLATE A2
TEST PIT NO: TP-2
LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. �302 ft +/-
DEPTH SAMPLE Water OTHER TESTS!
ft. USCS SOIL DESCRIPTION No. % COMMENTS
6" Topsoil
ML SILT,brown,with fine sand,dense, moist
S 1 15.9
--- ----------------------------------------
5 -
ML SILT, mottled gray, stiff, moist S2 21.4
---- -----------------------------------------
S3 7.5
� Sandy SILT,brown,with gravel and cobbles,very dense S4 15.3
(Cemcntcd Till)
10
- ------ ------------------------------------------------------
SS 6.9
�s ML Sandy SILT, gray, with gravel and cobbles, moist,very
dense(Cemented Till)
S6 7.G
2U
Total deptl�= 18 feet bgs
No groundwater seepage observed
25 ,
_ TEST PIT BORING LOG
�_ i
1 Group Northwest� 1IlC. CRISTELLE RIDGE SUBDIVISIOIV
�� SE 95th WAY
� xotecnn�ca�5iqmeers,Geo�ogsts,8 RENTON, WASHINGTON
Fsvronrrental Scientats
JOB NO. G-1821 DATE 6/3/O2 PLATE A3
' TEST PIT NO: TP-3
LOGGED BY WJL LOG DATE: 6/3/04 GROUND ELEV. 397 ft+/-
DEPTH SAMPLE Water OTHER TESTS/
R. USCS SOiI DESCRIPTION No. °/. COMMENTS
� SILT,brown,with sand and gravel,weathered, medium
dense, moist S 1 14.7 - Probe 3"
5
----- ------------------------------------------------------
ML SILT,browro, with sand and gravel,cemented, hard, moist. S2 16.8 -Probe 1-2"
S3 8.4
�o Total depth=8 feet bgs
No groundwater seepage observed
15
TEST PIT NO: TP-4
LOGGED BY WIL LOG DATE: 6/3/04 GROUND ELEV. 434 R+/-
�EPTH SAMPLE I Water OTHER TESTS/
ft. USCS SOIL DESCRIPTION No. °� COMMENTS
_ ML__ Sandy SILT,dark brow�n,some gravel,loose,damp _______________
- ---------- S1 13.9 Probe I/4"
ML, S[LT,brown with sand,dense,damp
- ------ ------------------------------------------------------
ML Sandy SILT,mottled,with gravel,very dense(TILL).
------ ------------------------------------------------------
$ ML Sandy SILT,gray,with gravel,cemented,hard(TILL) S2 7.0 Probe 1/8"
T'otal depth of boring=5'
No waler seepage was observed.
10
— TEST PIT BORING LOGS
�! Group Northwest, jI1C. CRISTELLE RIDGE SUBDIVISION
� SE 95th WAY
� Geotechnical Engineers,Geologsts.& RENTON WASHINGTON
Ernronrtental Sc ientists ,
JOB NO. G-1821 DATE 6/3/02 PLATE A4
.
' TEST PIT NO: TP-5
LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 435 f�+/-
DEPTH SAMPLE Water OTHER TESTS/
ft. USCS SOIL DESCRIPTION No. % COMMENTS
\IvQ, Sandy SILT,dark brown, (Top Soil) _
�— -----------------------�
MI, SILT,brown,with sand and some gravel,dense S 1 12.2
------ ------------------------------------------------------
5 Sandy SILT,gray, with gravel,very dense, damp Sz �'8
ML
(Cemented Till)
Total depth =4 ieet bgs
No groundwater seepage observed
10
15
TEST PIT NO: TP-6
LOGGED BY WJL lOG DATE: 6/3/04 GROUND ELEV. 402 ft+/-
DEP7H SAMPIE Wate� OTHER TESTS! I
R. USCS SOIL DESCRIPTION No. % COMMENTS '
ML, SILT,brown, with sand,dense, damp
--�- -------------------------------------
------- ---------
Sandy SILT, gray, with gravel,very dense. damp S1 8.�
(Cemented Till)
5
Total depth = 2.5'
No water seepage was observed.
�o
i
_
'I'EST PIT BORING LOGS
_
�1 Group Northwest, j11C. CRISTELLE RIDGE SUBDIVISION
� SE 95th WAY
� Geotechnical Engineers.Geobgsts,8
Envronmenta�scientists RENTON,WASHINGTON
JOB NO. G-1821 DATE 6/3/02 PLATE AS
_ I
TEST PIT NO: TP-7
LOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 402 Ii +/-
DEPTH SAMPLE Water OTHER TESTS/
ft. USCS SOIL DESCRIPTION No. % COMMENTS
ML_ SILT, dark brown2 with sand,loose moist�Top Soil) ________
----------- -----------
S1 18.8
ML SILT,brown,with sand,weathered, loose,damp
---- --------------------------------------
S2 11.8
5 ML SILT, light brown, sU1�; damp
S3 16.6
- ---- ----------------------------------------
ML Silty SAND, mottled gray to brown, with gravel, dense, damp S4 12.2
10
Total depth= 8 feet bgs
No groundwater seepage observed
15
TEST PIT NO: TP-8
IOGGED BY W1L LOG DATE: 6/3/04 GROUND ELEV. 371 fl+/-
—-- --- -- -_ _ ----- _ i
DEPTH SAMPLE Water OTHER TESTS/
it. USCS SOIL DESCRIPTION No. % COMMENTS �I
ML Sandy SILT,brown,witli gravels and cobbles,dense �i
(Weathered Tiil) SI 9.2 -Probe I/4"
- --- ----------------------g------ry--------)------------ I
ML Sandy SILT,brown,with ravel,ve dense(Till
5 Total depth= 3' I
No water seepage observed. '
10 I�
_
TEST PIT BORING LOGS
� 1 Grou p Northwest, jllC. CRISTELLE RIDGE SUBDIVISION
.�� SE 95th WAY
��� Geotechnical Engmeers,Geobgsts,8
En�ironmenta�screntists RENTON,WASHINGTON
JOB NO. G1821 DATE 6/3/02 PLATE AG
.
I3asement 6f'al!
� I'erfical l�rain Afnt
Slope to drain � (Maradrain 6000
r or equivalent)
0 o a
0 0 0 0 0 � .
° BACKFILL � � -
WFiATI�F:RED TII.L � COMPACTED �
I F�:1 V ° TO 90% ° _
— — — — —— — —— — — — ————— — o � � -
o p o 0
CEIv�NTEll GLACIAL TII,L � � �
� � � � -
IH2V ° o p o " _
O o � O .
0 0 -
� o�� - � : ' Sl.rlf3
0
���.....•• ..a . .�..�..T.—.�...�.�.�.�..��.�.
GEOTEX77LE � c�t�ir:E.Jir�rei2F'..:�X:
. .
FU,7ER FABRIC ' _ 1�0071NG ' .
(�Llrrafi 140 N, ar '
e�u�v�re„t� I I I�I I I I
6f�A1,1,I�R.41N
F'ree Urauring Afaterial �Liinimum 4-inch diameter rigid,clotted
(Crashed or washed rock) nr perjorated PVC pipe with positive
gradient to discharge
NOT TO SCALE
NOTES: I
l.) Do not replace rigid PVC pipe with flexiible corrugated plastic pipe. '
2.) Perforated or slotted PVC pipe should be tight jointed and laid with perforations
or slots down, with positive gradient to discharge.
3.) Do not connect roof downspout drains into the footing drain line system.
4.) Backfill on the exterior of the basement wall should be compacted to 90°/a of the
maximum dry density based on Modified Proctor(ASTM D-t557). The top 12-inct�es
to be compacted to 95"/0 of maximum dry density if bac�ll is to support side�valks,
driveway, ete. Fill below slab-on-grade conerete floors should be compacted to
95%maximum dry density.
5.) Capillary Break: Minimum of six(6) inch thick layer of free-draining gravel containing no
more than five(5)percent finer than No. 4 (1/4-inch) sieve. A 10-mil reinforced plastic
vapor barrier, is recommended over the capillary break,protected with sand. I
T'YPICAL BASEMEN'I' WALL
-
�- BACKFILL AND DRAINAGE DETA[L
� 1 Group Northwest, Inc.
: Geotechnical Engineers,Geobgisu,& CIIRISTF,LLF,RII�E SUBllIV"ISION
Envronmemal Scentists RENTON,�VASHINGTON
SCALF, NONE DA'TF. 6/16/04 l4L�DE W1L CHKD WC .lot3 Ho. G-1821 PLA'CE 3 I
' � .
APPENDIX A
TEST PIT SOIL LOGS
G-1821
Geo Group Northwest, Inc.
���
� .
C��,.-�,� �.�� �,��� �,�,_,..�.,�
ED MCCARTHY, P.E.,P.S. Q'`P'"� - �f'��� � ;���
Letter of Transn�itta/
To: Michael D. Dotson, PE
City Hall
1055 S. Grady Way
Renton, WA 98057
From: Ed McCarthy
Date: July 24,2008 Proje� Cristelle Ridge
Re: Cristelle Ridge Revised Pond Design
❑Urgent � For Your Use ❑ Please Comment ❑Please Reply
Enclosed: 3 Copies of Cristelle Ridge—Section 4 of TIR
Comments:
Michael,
The attached report provides documentation for the revised pond at Cristelle Ridge.As we discussed
on the phone,the design includes the following features:
■ Pond sized for Cristelle Ridge and proposed short plat to west
■ Detention and wetpond sized for small area of offsite tributary lawn;this allows us to
eliminate the bypass pipe that was shown on the approved plans
■ I've also show an aftemative wetpond configuration in Appendix D;please consider this
design in your review
Ed McCarthy
Cc:Jce Singh
,3z�2 ����
r +
Cristelle Ridge
TECHNICAL (NFORMATION REPORT ADDENDUM
CirY oF RENrorv Fi�E No. 719-016-031
Prepared by:
Ed McCarthy, P.E., P.S.
9957 1715`Avenue SE
Renton, WA 98059
Tel. (425)271-5734
Fax (425)271-3432
Submitted to:
City of Renton �� M� ��
Ren on�WA 98055 ay ����oF xAsy f����
F � �
� C°d rf
July 22, 2008
O 28576 ,�V
�-2�
�ss1�NALR���
XPIRES: 2/19/09
I r
TABLE OF CONTENTS
4. Flow Control and Water Quality Facility Analysis and Design.................................4-1
APPENDICES
Appendix A. Stormwater R/D System Design
Appendix B. KCRTS Documentation
Appendix C. Hydrologic Model Documentation
Appendix D. Schematic Drawings of Pond Design
LIST OF TABLES
Table 1. Existing and Developed Site Basin Conditions................................................4-4
Table 2. Summary of Performance Standards................................................................4-5
Table 3. Wetpond Design Summary.............................................................................4-11
LIST OF FIGURES
Figure1. Vicinity Map....................................................................................................4-2
Figure2. Basin Map........................................................................................................4-3
Figure 3. Stormwater Design..........................................................................................4-8
Figure 4. Comparison of Flow Durations for R/D Design..............................................4-9
i
Cristelle Ridge TTR—September 2007
t �
4. FLOW CONTROL AND WATER QUALtTY FACILITY ANALYSIS AND DESIGN
This report is an addendum to the Technical Information Report prepared by Touma Engineers
(June 20,2005). The proposed stormwater design,described below is intended to replace the
currently approve combined wetvaulddetention vault with a combined wetpond/detention pond.
The stormwater tract has been expanded on the property to the west. The size of the
wetpond/detention pond is designed to accommodate runoff from a proposed short plat on the
property to the west in addition to stormwater from Cristelle Ridge.
Part A: Existing Site Hydrology
The project site is bounded on the north by SE 95`�Place. Undeveloped property lies to the west.
The site is bordered by existing single-family development to the south. The site generally slopes
drains to the north with an average slope of 20 percent. Some areas on the site have slopes ranging
from 30 to 45 percent. Runoff from the site is predominately sheet flow and is collected in a
roadside swale on the south side of SE 95�' Place.
Cover types on the site primarily include second growth mixtures of native conifer and hardwood
trees. A summary of cover types on the 3.54-acre site under existing conditions is presented in
Table 1. Based on the King County Soil Survey(U.S. Department of Agriculture, 1973)the site
consists of Alderwood soils.
Runoff from properties to the south flows to the east and is collected in a tightline that conveys
drainage down the east properiy line of the site. This runoff is collected in a drainage ditch along
Duvall Avenue and is then conveyed to May Creek.
Part B: Developed Site Hydrology
Under developed conditions the Cristelle Ridge site will have 1.13 acres of landscape and 2.41
acres of impervious surfaces (Table 1). In addition, the pond will be designed to accommodate
runoff from a proposed future 1.46-acre short plat that will be developed on the property to the west
of Cristelle Ridge. Stormwater will be collected in a pipe system and conveyed to an onsite
combined wetpond/detention pond(Figure 1). The wetpond will be sized to treat all contributing
runoff to basic standards. The stormwater pond will discharge to a roadside ditch along the south
side of SE 95`t'Place. T'he pond has been designed to meet Leve12 flow control standards.
The approved stormwater design of the plat(Touma Engineers,June 20, 2005) includes a bypass
pipe system, intended to collect runoff from developed areas south of the site. Upon further field
investigation and record drawing review, it is apparent that a relatively small offsite area to the
south drains to the project area(Figure 2). Basin A,0.75 acres in size, drains to the fuhue short plat.
Basin B, 0.56 acres in size,drains to Cristelle Ridge. Runoff from both of these basins will be
collected in the onsite stormwater system and conveyed to the pond(Figure 3). The bypass pipe
system will be eliminated from the conveyance design.
4-1
G-istefle Ridge T!R-September 2007
, ,
�r�
'�f-�-,.. -,_ 1
YJ. ,.
�l
:� �
�\ ``�.�
,��
l��,�:;, :jf%�
, - � , .�
f,a� �:j �� ��, �
, , .
;}� ) .� ..�.�.,�.�
�
� �.
� �
F : : '� c�
0
f' m
�' n
� i�
�
� �
�
_ .�
S�, �i`\
9�.f�� �\
� Project Slte ay O �
� G` _��_
a� ,
�
m
�
� _, .` `�_.
^ ;t
� ,
�
,Q
�� �` �
;�
soo � �� 3 `�
�
� : ;
���
Vicinity Map , ' -. •
�
Cristelle Ridge Storm Design � 9957171stAvenueSE 7/21/08
2,000 Rernon,was►urgtoo seoss
King County,Washington Feet �'0"e: lazs�z�i-��a Figure 1
Fax: (425)271-3432
^ ,, � 1 �� � ! ��, ! g�n wr�' #�° �', �'a .•'�$ J � ;, !_
�; K � �?w�1 � � , �yy
: 1 �
" � �� z: �� 4, F� ` r M' �. `+ t3 ,t'i r ey�,��� � ✓ `r.
� � "O 7R t'� �i.�. .. �� � � .A'jl ' �. � "►,�v ..��- � ...�'�..:� ,� ,.,� .
� � �� -0� � ,
� i � `� � � �n, . . . , '�+� �►' � ... '`�C , '��� ,,v '��;�� , t k',� ",� � .� '
� , i , ,� ;� �' " � ��;�f> �`�� �1 ;� � ;�.,, + 3 ;�� � �
� ` � � ' �: _ .,., � r��j�'F,� ;,,�;.��,�r�y ��.
` _ -.n, w� �' � �.b�� „ Ir' R y' ` k'
� • w� � �:.. � .^ r . ,..,_�fi�1 � . � �t � „�_,�" �� s'E' E���I.�..�II� ,-�;'!��b���..�; y,�%T� ,�"��* ,.1 '�i��-.... ,-.
`C 4; �1 r ., /f .��y„� � `,� M,za t
� (� � N,,,' ,� . �!'_4��;'��.�i�1 1� ' .1 ��Er��"`� �� S�I��`R+3�' S � � �'4�-���'F` �.'"91 ��� .����" `+�'�'
,
` + ,,;� . rrT �y� n�� . '�.", �;
c� W ' � s ' , � � � + ,� w 4 �,�
�D �1 � � y� �� l�s �
(� � �'�'rp�:� m � �'� w! � r ��" . ,�' � .. .. . -�i'��/,�` •� �n �:.W - ��, . „o,�,,�. `.•..
� (f� d v R1� C �' r n .�'�r��'�' , a'q�.`�� k��� ��r�'�; �i . ;� !�ll �,,��,,w,�.� °'�i J
C) P � �, . � , .
� , } "� i. /��`i" w ,�r�
� • �, .� � ` � ` ,g�` ��T F'"`� ' . � � »����`�� o ,..����� t �:� 1�3. .,� ,�?r+p�.
� � ��aMw, �� t."'• �.._� � � $ '+N ,J� �.�� . �../". � � � � N :��? . �..+.�' �'� \`�Y� � Co.
_ � �`, F�
� (� �''� �4 .. ��. I ► �r�t ^+ ��F ':��T.;j��. � � f�' +� ""�� .:.� � y�.� III,s
C 3 n �'��"���� ��: �,� H� � ""_ mo ni�w Y`` '� '"e.'�t�k��� a�f,���, �,��i +� "�5�^a�N ,�t� ,�x��L���`��4
, • �, `�3,�, t � '� , .:�'� ���",�!� �.( �1 �►: y7 �" ,�y�p;.,,•'�,�� :� i s ��� r'
< �' O f , �y `t � �:`µ�� �`� r 1: w��� �f,,� y+� ,.� �.t. 'J f.,♦-d
� C !` .� � �,;� r ♦ ti.Sy y�^ . ilAy, ° 7 . �X ��'�
? � � � k+`� �• b"� ��. ,� �.,f� f/� i i� ,��� f��'�,46'� ��'�/��':f'i,( `� \';�;�w . '� �_"`" c��rj��.
7 � � +f�',�'� �.���'� � � - � �.� 7 �;j! .�}(�,� � ,Qr� '�,.�,�`�•�� +� s'�� '� ' � �1{if�r�7 �� �
O � F� � �A �.��.. � ..'� ,� ' ,� � '1�p .. ���11'a. �1 � r � �`0��"'7#�,�`, 'PJF��,'. �a��S�y� WL v. t e • .`j'
7 C� ��.., '� "", ���a .r� 4,'� ��+ �-��A ��,�� t .�� <• }�.,� � ��`" T�� ;� �i„ 3�, L�
3 .
'. ` . ;'� J . � ;� ..+ . r'�,�
� 1 ^ , ; x� � R` ♦'a i.d �r , y� a � ��. , t �+'.ti 1 ��.„
t ,
� ��� cn �J;�► x' �M':�,v,, �yT,�.t' ,►..t : :�' ' �',+Li l��a.:���' :y.• ��e.+� r;� ��'� "'�� . ,n� ,y�'��.:�,/� �'
• ,, � `'�'� , ��_ . �*�,.�.'1 _4, .�l ' ,;�.. � ` rT��. ���r..�•?. � � Ya� A5 M��� �4.�x ''�`:;;�+ R.�+���..
,, ��� � �,� ��_ �
cn� ! `' ;�� 1�� �" " �"�" „� t�,"....��� ���`R t kP .t �4 S: ti y��q�, ,J1M►t �'` , . t{ � 2?� �` 4 +�
e '� , .y�, i'tCo'.1c�1 x �� 1 �oT:�9 1 'S. ;a i : f � 4 ,�� m1 .�x1�1 L,*. ,�q}�i �� ,'�;,.
_ �!�,�.�R;�1.�A�1� ���..����7.�'��� '"'t i 1 ti �±���, x.�x���� t ��.,���: �,���I� . • :+��'�r, w�,��� �„,��"' `-,�.` ��,'�R '�+��t�
I ,�`��~ i� � - � � �+� 'W' ��d ��y���r • r�� �� � ���I +", _ �_ +�'
: . AI ps � '" �+�aa,��M
�, „ t'� � ~ � �.c
,,�q�, �+,� v' r6 *�' 'q4�, » �a' +I�� Y�wa . �� �"''!"�». .�' �.* y�. .�, ,�:..� � _� �. r � ?'�
- "?��� ,�'� _ 4 +1 d� ��1 "1 �.•y�T}M ty'g' ,;,`j �,!3�. .h4.�T�y'�*,fyf�t".� ��t" ��' �r�-cw;.} !4+��.� y,,i,�ri���,�ac:%+...� ��s�+�`
a ,� � J-' if � %,��r 'j; 1� t �L'�l'�t v-:R�� }.+'I�ia,�1��^ ��l:L, � �•w��y�,'_1���. ��s ► t��r4"i ,-��#� ��„`�{4�(t1{ ��'�*�',�I m-�:r�f^ ''P,*a r a�..,��:w
�� ".,��, �,.>,�i+.,�t'.,.��� .'�. } ..�• ��,�;�`<t'w:•.�S- •::A:iA; 4 ''"�Y ��s°. ,;+i.^l��r�,� rt�Apti�+e•','�'� �1"�•i�'!i f �''�����+'i�3''/+
� � ��-'�.', i ��.. . , I � `. ` . ���3'�� ��. � .��..���,`�..� ...��. ..� A �'Y"� `Y"R��-
:r. �� � �� � � .�.�.
� �:�.. l��r: � �'i` ��1. �.� l "�.'�'� �'''�� .�•�.�s��",�k.�� •� �:''��� � i� V�;��, ��..�` ����w•y;'6�,-..
�1r �'n w ,1' e x �. 1 � . �.' !`�wt,� }a,
� �
�
.,
s ►� ti1 1
, . ��. k � . � ' ,
. ���ppp
, .. ., .e�. . ,.d� ., `'�t� . E .,�„�' I� _. � t
�: . , .y` '��� .• � Y.W j�� � ..� ��J�Y�(�F '� ;��• � ' �p$� �v
N � I �`.V.�.+�. � ,; '�t �' � '� � � 't�',� :� �i °" ;.�t� +�`�
.. ♦ �
p ' "'°`' E ° ����. � .1 /� � � �� � �►a►°�'rA9� .,a"� �*•� �� �, y, ` z•, 915''��R � �,�a,� _ytir�
.':j ���� . . � e M�" '�` �r.�`G. �'y� �''�..��`4 , ��� .i1/1.� � 11:'��.rr �`�W,,�, �.•j �ix��� ��1i,-�,..�` ^R..`1.. ,M1 "�, `,....;a..
�A � y ���+.y,;� � �+(
.
; � r �� � ( r�.' i�Sr m "•� ,,�.�; v,'�l�� �, ��� ��' ��::� �'��p... ;���� vs "` \ `h .��'ti
, _ ,... , .,, •
, - , � _ . � l� �. : ..
, y , �,;.: � -- '- �,�„ ' �.. 1�
�
� � � 5 ��`�.�� ",�' ��.. r_a 4 �` ,'` �
,. �` L 1 .,� r!* 4 ,�5�N }y x� �'� F � d "'!9 �� "R `���� �t i,�i�,y\ `�ry� � e�� '~N�,�
T 'y• �`'� ,/ i l( I.) '3� :,�.�� .� �: tfi��, <�.j'� �rA.� �� ��n:, $��ti: ,� �/�y�4�'�`„`:w;�e��E i ���:i�"'�
J . .� , y�-
� ` ' "y'i1���'`�. �� -u " . •r —' � .''i`�f �i- �P �, '��} .� ` i �i",,'° a'+ `� �� t
m �,,•� r�'/ * tM,y�}��``s ��, �';'�r � :.'�►i,'� x t �t h.�"\�R � �,�d
,
_. S�� � 4��'f 5Y �n�:� �7`�,.]�_�r•� �!�"��`. � �`A,,.' . - ^� y�� �,41� �1�
� � '. �. . N ." y( , Y`
' , ����►�<.r����2�� ' � , �������.'t... ��'�;.h ^ 44v.�.�� ����` �rF'�a,..�.
. py
�•y-,l 3s`:'�!+� � . ., ,'�� �;�; F,�'1Q11',
,� "A -�-, .1fiA.'!, . � }c'
� "y�9i� :f! ;,��Y. �! r��F�'����v. 1''�1�`� ,,� �y�5�� .. ..5 W�$ �'w ����':- ���'�4�,r'� ,. ;� �..���:,.��az�,. "P1f�.�Q,�'+,�-���,���w,a'��s•L'�'.�,��/ ,r'..�:i��i:.�e�u;s'.:
M(
' q �'+' k ���" y��,
� � �D � ��ja'".�,, �'.u„•�,� „'�'� ,�;;;��.�.,�.. .'h ...,�., "'` �j�A��»:f;:��� �'� v. .�'•�� �� •�:;, �'��'M�� ��'S.4r:'!h ���E�,�^�`'�' 4:r'�' .� "�`t'�"��;.�����F'
,�^ " i
� . :-. , _. - .. e
� � � � . _ `� . . y.:.>,,� .A� ,7'�r�rs'• , a ',►.�- - K*u1lM �°,���i., +,-�. �,�`.�wsf ,,.
j y� �. `� i r y { r S �� � � � �- .�1� r i n� i.! , :,w,
. , . ..�.'.. . y�'
� J f. � � �
� m A'�.._. � ""�.., ��� � � � , .''',� '��_ � � �`���� 1�., o .' y y� '"4'Ir�d f.�M�''.'�'' b rr► n
�' n ����� ��.'YF � � _ '�i_:Y:� O W �^rt..S'���'a ` .sy{ � i �'J� i.h�.`,r:Jn� S'='� � ��4�';.F"" ��- �'Cr'• �%.-i�.*-.. `!'�...{�,
N N � � � � + v..:�1 s�}' ~ � �` �Y 1�.' �, C � � ` ^ �PL]� ��y^ �y�� � �����'� ','.� . . _
cn cn<¢ � �, ., R� ... T ;�qr ' w� .FN C � " !S�, �i �' T k.yr.^'T'�y wyY,�.� ' � » a'v
¢ 7N'^ '� Ul 0 7 .
v o m � � " �: � (p 7 ; � C d � �:.v� 4� "`�"-Yt'�� �1 '�""7� Y�'� • �
r � � 6 i" < (D 7 w; � � + , �.
� V1 � m � �,���q ' �, r'.,\ 4. _ �j ? � m: e; 7. d � N 4�� b r�y:y' '�;:�" c,1',�'//�� �r�' /�
� V q �.�� ., � ` Ti I;� * 4ti� \ •%y'�1 •r'r•V�. � � /1(� 7-1�j� � 4�{� �.�'[� •i.�{".1:� Q� V � l 1
N `S' ffi �' � ' d � •�"t .'0, � � (p p (D 4y ��r''��t � t�. �4,�� �� �>E"� � � � � �
C�� � � ♦ m -, r D �• .�, ;, �w qI� ,s � o � ..
e�� '.��..��; ..,Mr�•� �„�'� � ...r� � 'ik' �. *r� '�U c�D � (A `.. •�`����! ... .�` �, ����� • cp' N � �D
..-� � * �ti. �
�'1 ��`{?'`.rnt 4,°k'`"�y''�a��`�y':-..ti"'4 �r,s;'_,�'�"x,.'4� `��+R',���1 �n '� ."*' 0•C C •N• �� �''"�;.-��w 'h�r� �,'��" '".. � ��♦ as� �� W � W �
�n i i �r • � m i �a '� ,- ',�Fp► � ' ht.,� : � u� eD
� ° � ::.'�� *�;"�'�"~r a�'z�A ,�,*� '*G�� �,�� ��" E � '�'� � � ^• 3 '� "�� �� , � #.� '� `, i O D � N
� � #�� < , s� : H r'; 1 1 � � � �
_ ; ,+�,s�, � � t >��i*� * �, ,�•�y,��� .���a�4 �,�,� ���'_ ? � '�w � �►'aE» ` a m > > C.
(Q o � � �;� �.e�.+; ��71�t�.1.1)t�Y��4' F�A'' ° .x���� �.. �.. ,w, � ; ,� w ` � f x �TL Y- � � O �•
( .� �,�t � Ta� ,
C � � E:�� ; J; „� M�k �M �F �w).; � ��� . u �'�t. � �', s ��. , � � J
1 „��l ,{�+E�TR+.� '�_�i. S c. .�� � �.:.�� � �� . } . .�"i�t . � t s�� ,l���, ��'
� ( .1!, � � .,� :�4 � `:'4i9n °+.'�"`��` . 4 ` '} .i, c � y�,'�' � � r� t�`�'r.! !'+:`t ,4�,{'pi-�i�N���^ b�'; �
t9� a ! N
N { :��q�t,\.� , ',►�'' ������''�w���i �/ .,.�' � ,���„� . "ti�, i '�``:� rwn ''L tt^ � .
� �4�e., ,�r'., . SF� Y. ...,,i�J, �yi*��r �1��,�.I w w � �►� ''�r. 9�,. �s;��Aj f� ��L'���`�` (p
1p` `',�'1 • ,x ';..� "eF �%,� ��y,v J p� _1� ^'�W 1�,� �,�, i.'�' ,�!�`M6�,�y�, a' �}� � �;�,
i i--�—���— �...�- ti J� �:E_ _ �� +� x
Table 1. Existing and Developed Site Basin Conditions
Eaistin Conditions
Subbasins KCRTS Till fores! Till pasture Wetland Till-grass Imperv. Tota!
Basin (AC (AC (AC (AC (AC AC
Site redev 3.54 3.54
Short Plat redev 1.46 1.46
Flow-through—
Basin A dev 0.55 0.20 0.75
Flow-through— �
Basin B dev 0.56 0.00 0.56
5.00 1.11 020 6.31
Develo ed Conditions
Subbasins KCRTS Till forest Til!pasture Wetland T'rll-grass Imperv. Tota!
Basin AC (AC AC (AC (AC (AC) I
Onsite '
Lots/Road and
R/D* dev 1.13 2.41 3.54
Short Plat** dev 1.10 0.36 1.46 '�
Flow-through—
Basin A dev 0.55 0.20 0.75
i Flow-through—
Basin B dev 0.56 0.00 0.56
Total - - - 3.34 2.97 6.31
*T'he area for proposed Cristelle Ridge development assumes 68%impervious.
* *The area for proposed short plat assumes 25%impervious.
Road and sidewalk areas were measured from the site plan(Touma Engineers,June 2005).
Runoff from Basins A and B is treated as"flow-through".
4-4
Giste!!e Ridge 77R—Seplember 1007
Part C: Performance Standards
The stormwater requirements for the project are based on the King County Surface Water Design
Manual(1998). A summary of flow control, conveyance, and water quality treatment performance
standards for the project is presented in Table 2, below.
Table 2. Summary of Performance Standards
Cate o Performance Standard Source
Flow Control • Leve12 R/D ■ Flow Control
Applications Map
Plat Conveyance System ■ Provide conveyance for ■ Surface Water Design
Capacity developed 25-year storm Manual Section 1.2.4.1
Water Quality Treatment ■ Basic water quality treatment— ■ Surface Water Design
Menu basic wetpond Manual Section 1.2.8.1;
Water Quality
Applications Map
Source Control ■ None proposed
Oil Control ■ The site does not meet the ■ Surface Water Design
definition of a hi h-use site Manual Section 1.3.5
4-S
Cristelle Ridge TIR—September 1007
Part D: Flow Control System
KCRTS was used to design the proposed stormwater facility. Procedures and design criteria
specified in the 1998 King Counry Surface Water Design Manual were followed for hydrologic
modeling. Descriptions of the stormwater system and details of the design analysis are provided
below. A plan view of the stormwater system for the site is provided in Figure 1.
For stormwater facility designs, the reduced KCRTS time series data set was used for the Seatac
rainfall region with a correction factor of 1.0. Documentation of the KCRTS input and output,
including descriptions of executable files,reservoirs, and times series is listed in Appendices A and
B.
Stormwater from the development will be managed with a detention pond. Level 2 R/D standards
are required for the single discharge location on the site. The detention pond has been designed by
treating these offsite Basins A and B (Figure 2) as"flow-through" by adding the areas of these
basins to both the target and developed time series. The facility shown in Figure 1 meets Leve12
R/D criteria and basic water quality requirements. Flow duration curves for the target and
developed site conditions are provided at the outlet of the pond(Figure 4).
Peak flow rates at the pond outlet, for target and developed site conditions, are provided following
Figure 4. The peak flow rates match for the 2-year and 10-year events for target and developed
conditions, as do flow durations, indicating that Leve12 R/D criteria are met. The stormwater pond
requires 49,737 cubic feet of live storage,as measured at the top of the outlet riser. Considering the
conservative stormwater detention criteria for the site, no factor of safety has been added to the
pond live storage volume.
Part E: Water Quality System
Basic water quality standards apply to the site. A basic wetpond will provide treatment for the site.
The required wetpond size was determined using procedures provided in Chapter 6 of the 1998
Surface Water Design Manual. The wetpond has been sized to accommodate flows from offsite
Basins A and B. Basin areas, runoff volumes, and the required storage volume for the wetpond are
summarized in Table 3. The required permanent pool volume of the wetpond is 17,955 cubic feet.
'The wetpond is designed in a U-shape to meet Surface Water Design Manual design requirements
on the constrained site. A dividing wall provides a length to width ratio in excess of 4:1 and also
allows access to the pond sediment storage and outlet control structure from the plat road. The top
of the dividing wall is at the predicted 2-year pond water surface elevation.
The City of Renton discourages routing tributary offsite flows through a plat's stormwater facility
in situations where doing so would increase maintenance costs of the facility. The runoff from
Basin A is from mature landscape and roof. The runoff from Basin B is from landscape and
foresdshrub. The lands uses generate low sediment and pollutant loadings. The effects of this runoff
on the maintenance costs of the stormwater pond would be insignificant. In actuality, Basin A
would be one of the lots in the future short plat and therefore conveyance of this runoff to the
4-6
Cristefle Ridge TTR-September 1007
facility is justified. The small size(0.56 acre)of Basin B does not justify construction of a separate
storm conveyance system to bypass these flows around the stormwater facility.
4-7
Crirtelle Ridge T!R—September 1007
. ,
�
-�" _
STORMWATER QUANTITIES �
�
WETPOND �Xo � � o
szj,o ,o
DEAD STORAGE EL. 342.4-346.4 � S�, \
�'�= 2O� DEAD VOLUME REQUIRED=17,955 CF �\�
DEAD VOLUME PROVIDED=18,100 CF � \ ��?�y �
� �
0 10 20 40 DETENTION �` � � y
� � � a �
LIVE STORAGE EL. 346.4-352.9 �� � 4 � �
LIVE VOLUME REQUIRED=49,737 CF p ^
�IVE VOLUME PROVIDED=53,000 CF �' � � F
\ h p h
♦
� i � �s �
.� � � � 3 � �
TW=364 TW=360 TW=355.5 T�35 \ � F �� •
BW=360 BW=345 , , , „ BW=346.4 B -3 � \ � �
I .� � 130.96 S88 29 35 E � o�`�° � o
— D >
LL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLtLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�L' LLLLLLLLLLLLLLLLLLLLLLL�ILLLLLLLLLLLLLLLLLLLLLLLLLL�L' �_LLLLLLLLLLLLLLLLLLLLL \ _
LL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLtLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�LLLLLLLLLLLLLLLLLL�LLLi i L�.LLLLLLLLLLLi�i LLLLL�LLLLLLLLi L� i LLLLLL JLLi Li LLLL `O � �
J �
3:1 3 4 2.04 3:1 3:1 I 2:1 � �`�' n � .
�'� a
I I gW 342 4 �2 LF �2" so I jCONTROL STRUCTU � �
I I I — W E T P O O L D I V I D I N G W A L L iE 344. T Y P E 2—5 4' � �
IM=352.9 N
t i I 3:, � - - - - - - - - - - - � . o
I � � BOT. SED=341 .4 ~ r � � n p � �
I � � � ~ o000 � " �s6 � 3 �
I2:1 l IE=344.4 89 . / � 3 ��'� O �
I � _ _ _ _ 3_� _ _ _ PERMANENT POOL WSE-346.4 _ � �F 12"
� p !� �
1 1 2:1 � — - - - - / / � � 7.Sgq .s3 � U
/ / M
1 \ 2:i � �, x �
2'� \ � � 100-YR WSE=352.9 � G �
:1 \ � — — — — — — — — — — — — — — — — — — — — — — �s �
� / �
\ �
- - - - - - - - - - - - - - - - - - - - - - -
� � ` 360 r - - - � � D
� - - - - - - - - - - -I---� � _ � s�
\ I ' -
i �� / �9
\ , i �� �
� ./ i r--..v i i
� \ I I . ..Y. ��'•� /
��.
� � 370 I i � _`- , � �6'
� ,
\ ��
- - - - - - - - - - - � ��`; � � �_' , �� x p ,: � �
\ 1 ` _ � r 00 ��, , s�ccr or
� I � � � ll I � l .. �
.eo�or M..oi
I
0.6
f E�dsting De�,eloped
0.5
0.4 ��� I
�
N V
�
U . I
� 0.3 I
3 '
0
� I
�.,
0.2
0.1 �
�
_' },
' �,
T
O K
1.00E-05 1.O0E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00
Probability of Exceedence
Figure 4. Comparison of Flow Durations for R/D Design
Duration curves are shown at the outlet of the pond. The pond is designed
to meet Leve12 R/D standards. The duration curves include areas from Basins A and B which are
treated as "flow-through".
4-9
Cristelle Ridge TIR-September 2007
Target Peak Floa Rates
Flow Frequency Analysis
Time Series File:predev.tsf - site under forested conditions
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
0.436 2 2/09/O1 18:00 0.687 1 100.00 0.990
0.175 7 1/05/02 16:00 0.436 2 25.00 0.960
0.398 3 2/28/03 3:00 0.398 3 10.00 0.900
0.071 8 8/26/04 2:00 0.375 9 5.00 0.800
0.225 6 1/05/05 8:00 0.390 5 3.00 0.667
0.375 4 1/18/06 16:00 0.225 6 2.00 0.500
0.390 5 11/24/06 4:00 0.175 7 1.30 0.231
0.687 1 1/09/08 6:00 0.071 8 1.10 0.091
Computed Peaks 0.604 50.00 0.980
Developed Peak Flo� Rates
Flow Frequency Analysis
Time Series File:rdout.tsf - outflow from proposed pond
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency A�alysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) (ft) Period
0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990
0.101 7 12/29/O1 10:00 0.475 7.21 2 25.00 0. 960
0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900
0.086 8 8/26/09 7:00 0.288 6.08 4 5.00 0.800
0.144 6 1/OS/05 17:00 0.266 5.96 5 3.00 0.66�
0.266 5 1/18/06 23:00 0.144 4.92 6 2.00 0.500
0.391 3 11/24/06 8:00 0.101 4.19 7 1.30 0.23i
1.61 1 1/09/08 9:00 0.086 3.01 8 1.10 0.091
Computed Peaks 1.23 7.39 50.00 0. 980
4-10
Crirtelle Ridge TIR-September 100�
Table 3. Wetpond Design Summary
Till Till Total Runoff Wetpond
Wet Pond Forest Grass Impervious Area Volume Vb/Vr Volume
Facility (AC) (AC) (AC) (AC) (CF) (C�
Onsite Stormwater Poad
Developed Basin to
Pond 0.00 1.13 2.41 3.54 4,183 3.0 12,548
Short Plat 0.00 1.10 0.36 1.46 1,022 3.0 3,066
Basin A 0.00 0.55 0.20 0.75 542 3.0 1,625
Basin B 0.00 0.56 0.00 0.56 239 3.0 717
Total 0.00 3.34 2.97 631 5,985 17,955
Mean annual storm
= 0.47 inch
Equations used in Table 4:
V�_(0.9*A;+0.25*A�g+0.10*A�) * (R/12)
ub=Vr* ub/ur
R=mean annual storm amount=0.47 inch
Vb� Vr=3.0 for basic wetpond
Crtsrelle Ridge TIX Septenthr�_'l10'
APPENDICES
Appendix A. Stormwater R/D System Design
Appendix B. KCRTS Documentation
Appendix C. Hydrologic Model Documentation
Grrstelle Ridge TIR-September 20D?
Appendix A. Stormwater R/D System Design ,
Appendix A.1 Stormwater Facility Control and Overflow Design
Appendix A.2 KCRTS Pond Design
Appendix A.3 Biofiltration Swale Design
CristeAe Ridge T/R September 1(X17
Appendix A.1 Stormwater Facility Control and Overflow Design
Table A.1. Stormwater Pond Overflow Design
Date:7/22/O8
R/D Facility: Cristelle Ridge
KCRTS Filename: pond65.rdf
Contributing Time Series: devl5.tsf
Overflow protection structure: outlet control structure riser(R 1)
Emergency overflow stcucture: outlet control structure riser(R 1)
Qd�;�,(CFS): 5.19
(KCRTS 15-minute peak rate)
Top of Control Structure Riser
(FI') 353.00
Min.Top of Berm(FT) 354.00
Structure
Head Capacity Elevatio WSE
Shucture Size Units (FT) (CFS) n(FT) (FT)
Design Operation Riser R1 18 inches 0.00 353.00 353.00
Emergency Overflow Riser RI 18 inches 0.50 5.16 353.00 353.50
Head
(FT)
Design Head above
Required Freeboard: Riser 0.00
Overflow Head 0.50
Overtlow
Freeboard 0.50
Total Required
Freeboard 1.00
Cristelle Ridge TIR—September 1007
Appendix A.2 KCRTS Pond Design
Retention/Detention Facility - Stormv+ater Pond (pond65.rdf)
Type of Facility: Detention Pond
Side Slope: 2.00 H:lV
Pond Bottom Length: 103.92 ft
Pond Bottom Width: 51.96 ft
Pond Bottom Area: 5400. sq. ft
Top Area at 1 ft. FB: 10977. sq. ft
0.252 acres
Effective Storage Depth: 6.50 ft
Stage 0 Elevation: 396.40 ft
Storage Volume: 99737. cu. ft
1.142 ac-ft
Riser Head: 7.20 ft
Riser Diameter: 18.00 inches
Number of orifices: 3
Full Head Pipe
Orifice # Height Diameter Discharge Diameter
(ft) (in) (CFS) (in)
1 0.00 1.35 0.133
2 9.75 1.75 0.130 9.0
3 5.80 2.20 0.155 6.0
Top Notch Weir: None
Outflow Rating Curve: None
Stage Elevation Storage Discharge Percolation Surf Area
(ft) (ft) (cu. ft) (ac-ft) (cfs) (cfs) (sq. ft)
0.00 346.90 0. 0.000 0.000 0.00 0.
0.01 396.41 0. 0.000 0.006 0.00 0.
0.03 346.43 0. 0.000 0.008 0.00 0.
0.04 346.94 0. 0.000 0.010 0.00 0.
0.06 396.46 0. 0.000 0.012 0.00 0.
0.07 346.47 0. 0.000 0.013 0.00 0.
0.08 346.48 0. 0.000 0.014 0.00 0.
0.10 346.50 0. 0.000 0.016 0.00 0.
0.11 346.51 0. 0.000 0.017 0.00 0.
0.25 396.65 0. 0.000 0.025 0.00 0.
0.39 346.79 0. 0.000 0.031 0.00 0.
0.59 346.99 0. 0.000 0.036 0.00 0.
0.68 347.08 0. 0.000 0.041 0.00 0.
0.70 347.10 0. 0.000 0.041 0.00 5400.
0.89 397.24 762. 0.017 0.045 0.00 5488.
0.98 347.38 1537. 0.035 0.049 0.00 5576.
1.12 347.52 2323. 0.053 0.052 0.00 5665.
1.26 347.66 3123. 0.072 0.056 0.00 5754.
1.41 347.81 3993. 0.092 0.059 0.00 585� .
1.55 347.95 9819. 0.111 0.061 0.00 59�7-
1.69 348.09 5657. 0.130 0.064 0.00 6033.
1 .83 398.23 6508. 0.199 0.067 0.00 6125.
1.97 348.37 7372. 0.169 0.069 0.00 6218.
2.11 348.51 8249. 0.189 0.072 0.00 6311.
2.25 348.65 9139. 0.210 0.074 0.00 6405.
2.39 348.79 10042. 0.231 0.076 0.00 6499.
2.54 348.94 11025. 0.253 0.079 0.00 6601.
2.68 349.08 11956. 0.274 0.081 0.00 6697.
2.82 399.22 12900. 0.296 0.083 0.00 6794.
Cristelle Rrdge T!R-September 2007
2.96 349.36 13858. 0.318 0.085 0.00 6891 .
3.10 349.50 14830. 0.340 0.087 0.00 6989.
3.24 349.64 15815. 0.363 0.089 0.00 7087.
3.38 349.78 16814. 0.386 0.091 0.00 7180.
3.52 349.92 17827. 0.909 0.093 0.00 7286.
3.66 350.06 18854. 0.933 0.095 0.00 7386.
3.81 350.21 19970. 0.458 0.096 0.00 7494.
3.95 350.35 21026. 0.483 0.098 0.00 7596.
4.09 350.99 22097. 0.507 0.100 0.00 7698.
4.23 350.63 23182. 0.532 0.102 0.00 7800.
4.37 350.77 29281. 0.557 0.103 0.00 7904.
4.51 350.91 25395. 0.583 0.105 0.00 8008.
4.65 351.05 26523. 0.609 0.107 0.00 8113.
4.75 351.15 27338. 0.628 0.108 0.00 8188.
4.77 351.17 27502. 0.631 0.109 0.00 8203.
4.79 351.19 27666. 0.635 0.111 0.00 8218.
4.80 351.20 27748. 0.637 0.119 0.00 8225.
4.82 351.22 27913. 0.641 0.119 0.00 8241.
4.84 351.24 28078. 0.695 0.124 0.00 8256.
9.86 351.26 28243. 0.698 0.131 0.00 8271 .
4.88 351.28 28909. 0.652 0.139 0.00 8286.
4. 90 351.30 28575. 0.656 0.141 0.00 8301.
4.91 351.31 28658. 0.658 0.143 0.00 8309.
5.06 351.46 29913. 0.687 0.157 0.00 8923.
5.20 351.60 31099. 0.714 0.168 0.00 8530.
5.34 351.74 32301. 0.792 0.178 0.00 8638.
5.48 351.88 33518. 0.769 0.187 0.00 874n.
5.62 352.02 39750. 0.798 0.195 0.00 8855.
5.76 352.16 35997. 0.826 0.202 0.00 8965.
5.80 352.20 36357. 0.835 0.204 0.00 8996.
5.82 352.22 36537. 0_839 0.207 0.00 9012.
5.85 352.25 36807. 0.895 0.211 0.00 9036.
5.87 352.27 36988. 0.849 0.219 0.00 9051 .
5.89 352.29 37169. 0.853 0.228 0.00 9067.
5.91 352.31 37351. 0.857 0.240 0.00 9083.
5.99 352.34 37624. 0.864 0.254 0.00 9107.
5.96 352.36 37806. 0.868 0.265 0.00 9122.
5.98 352.38 37989. 0.872 0.269 0.00 9138.
6.12 352.52 39276. 0.902 0.295 0.00 9250.
6.27 352.67 90672. 0.934 0.316 0.00 9370.
6.41 352.81 41992. 0.964 0.339 0.00 9482.
6.55 352.95 93327. 0.995 0.351 0.00 9595.
6.69 353.09 44679. 1.026 0.367 0.00 9709.
6.83 353.23 46046. 1.057 0.382 0.00 9829.
6.97 353.37 47929. 1.089 0.396 0.00 9939.
7.11 353.51 48829. 1.121 0.410 0.00 10054.
7.20 353.60 49737. 1.192 0.418 0.00 10129.
7.30 353.70 50754. 1.165 0.889 0.00 10212.
7.40 353.80 51779. 1.189 1.740 0.00 10296.
7.50 353.90 52813. 1.212 2.840 0.00 10380.
7.60 354.00 53855. 1.236 9.150 0.00 10964.
7.70 359.10 54906. 1.260 5.630 0.00 10599.
7.80 354.20 55965. 1.285 7.060 0.00 10639. I
7.90 359.30 57033. 1.309 7.600 0.00 10719.
8.00 354.40 58109. 1.334 8.100 0.00 10804.
8.10 359.50 59199. 1.359 8.560 0.00 10890.
8.20 354.60 60287. 1.384 9.010 0.00 10977,
8.30 354.70 61389. 1.409 9.430 0.00 11063.
8.40 354.80 62500. 1.935 9.840 0.00 11150.
8.50 359.90 63619. 1.460 10.220 0.00 11237.
Crirtelle Ridge TIR-Septerrrber 2007
8.60 355.00 64747. 1.486 10.600 0.00 11325.
8.70 355.10 65889. 1.512 10.960 0.00 11412.
8.80 355.20 67030. 1.539 11.300 0.00 11500.
8.90 355.30 68184. 1.565 11.640 0.00 11589.
9.00 355.40 69347. 1.592 11.970 0.00 11678.
9.10 355.50 70520. 1.619 12.290 0.00 11767.
Hyd Inflow Outflow Peak Storage
Target Calc Stage Elev (Cu-Ft) (Ac-Ft)
1 2.11 ******* 1.61 7.38 353.78 51622. 1.185
2 1.02 ******* 0.47 7.21 353.61 49859. 1.195
3 1.01 ******* 0.34 6.47 352.87 42569. 0.977
4 1.23 ******* 0.29 6.08 352.48 38925. 0.894
5 1.08 ******* 0.27 5.96 352.36 37849. 0.869
6 0.63 ******* 0.14 4.92 351.32 28763. 0.660
7 0.79 ******* 0.10 9.19 350.54 22493. 0.516
8 0.80 ******* 0.09 3.01 349.91 14221. 0.326
----------------------------------
Route Time Series through Facility
Inflow Time Series File:dev.tsf
Outflow Time Series File:rdout
Inflow/Outflow Analysis
Peak Inflow Discharge: 2.11 CFS at 6:00 on Jan 9 in Year 8
Peak Outflow Discharge: 1.61 CFS at 9:00 on Jan 9 in Year 8
Peak Reservoir Stage: 7.38 Ft
Peak Reservoir Elev: 353.78 Ft
Peak Reservoir Storage: 51622. Cu-Ft
. 1.185 Ac-Ft
Flow Frequency Analysis
Time Series File:rdout.tsf
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) (ft) Period
0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990
0.101 7 12/29/O1 10:00 0.975 7.21 2 25.00 0.960
0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900
0.086 8 8/26/04 7:00 0.288 6.08 4 5.00 0.800
0.144 6 1/05/05 17:00 0.266 5.96 5 3.00 0.667
0.266 5 1/18/06 23:00 0.144 4.92 6 2.00 0.500
0.341 3 11/24/06 8:00 0.101 4.19 7 1.30 0.231
1.61 1 1/09/06 9:00 0.086 3.01 S 1.10 0.091
Computed Peaks 1 .23 7.34 50.00 0.980
Flow Duration from Time Series File:rdout.tsf
Cutoff Count Frequency CDF Exceedence Probability
CFS $ $ �
0.007 93355 70.703 70.703 29.297 0.293E+00
0.020 2257 3.681 74.389 25.616 0.256E+00
0.033 496 0.809 75.192 24.808 0.298E+00
0.047 4095 6.678 81.871 18.129 0.181E+00
0.060 4941 8.058 89.928 10.072 O.101E+00
0.073 2736 9.462 94.390 5.610 0.561E-01
0.087 1510 2.462 96.853 3.147 0.315E-01
0.100 997 1.626 98.978 1.522 0.152E-01
0.113 519 0.846 99.325 0.675 0.675E-02
Criste!!e Rrdge TTR-September 2007
0.127 48 0.078 99.403 0.597 0.597E-02
0.140 29 0.047 99.450 0.550 0.550E-02
0.153 69 0.113 99.563 0.937 0.437E-02
0.167 97 0.077 99.640 0.360 0.360E-02
0.180 33 0.054 99.693 0.307 0.307E-02
0.193 35 0.057 99.750 0.250 0.250E-02
0.207 99 0.072 99.822 0.178 0.178E-02
0.220 15 0.024 99.847 0.153 0.153E-02
0.233 9 0.007 99.853 0.147 0.147E-02
0.247 8 0.013 99.866 0.134 0.134E-02
0.260 5 0.008 99.874 0.126 0.126E-02
0.273 19 0.023 99.897 0.103 0.103E-02
0.287 12 0.020 99.917 0.083 0.832E-03
0.300 6 0.010 99.927 0.073 0.739E-03
0.313 8 0.013 99.940 0.060 0.603E-03
0.327 S 0.013 99.953 0.047 0.473E-03
0.340 8 0.013 99.966 0.034 0.342E-03
0.353 9 0.007 99.972 0.028 0.277E-03
0.367 2 0.003 99.976 0.024 0.245E-03
0.380 3 0.005 99.980 0.020 0.196E-03
0.399 3 0.005 99.985 0.015 0.147E-03
0.907 3 0.005 99.990 0.010 0.978E-09
0.420 5 0.008 99.998 0.002 0.163E-09
0.939 0 0.000 99.998 0.002 0.163E-09
0.947 0 0.000 99.998 0.002 0.163E-04
0.960 0 0.000 99.998 0.002 0.163E-04
0.479 0 0.000 99. 998 O.002 0. '_E3�-09
Duration Comparison Anaylsis
Base File: predev.tsf
New File: rdout.tsf
Cutoff Units: Discharge in CFS
-----Fraction of Time----- ---------Check o` Toierance-------
Cutoff Base New oChange Probability Base New oCzange
0.113 � 0.74E-02 0.68E-02 -8.4 � 0.74E-02 0.113 0.109 -3.6
0.138 I 0.55E-02 0.56E-02 1.2 I 0.55E-02 0.138 0.140 1.5
0.163 � 0.43E-02 0.38E-02 -10.7 I 0.43E-02 0.163 0.156 -4.1
0.187 � 0.32E-02 0.28E-02 -12.3 I 0.32E-02 0.187 0.177 -5.4
0.212 � 0.24E-02 0.16E-02 -31.8 I 0.29E-02 0.212 0.195 -8.2
0.237 I 0.17E-02 0.14E-02 -19.8 I 0.17E-02 0.237 0.208 -12.3
0.262 I 0.12E-02 0.12E-02 2.7 I 0.12E-02 0.262 0.265 1.2
0.287 I 0.88E-03 0.83E-03 -5.6 � 0.88E-03 0.287 0.283 -1.4
0.312 I 0.59E-03 0.60E-03 2.8 I 0.59E-03 0.312 0.316 1.5
0.337 I 0.94E-03 0.39E-03 -11.1 I 0.49E-03 0.337 0.329 -2.3
0.362 I 0.20E-03 0.24E-03 25.0 I 0.20E-03 0.362 0.383 5.8
0.386 I 0.13E-03 0.18E-03 37.5 I 0.13E-03 0.386 0.399 3.2
0.411 � 0.49E-04 0.65E-09 33.3 I 0.99E-09 0.911 0.916 1.1
0.436 I 0.16E-04 0.16E-09 0.0 I 0.16E-04 0.436 0.479 8.7
Maximum positive excursion = 0.039 cfs ( 8.9�)
occurring at 0.435 cfs on the Base Data:predev.tsf
and at 0.474 cfs on the New Data:rdout.tsf
Maximum negative excursion = 0.030 cfs (-12.9�)
occurring at 0.235 cfs on the Base Data:predev.tsf
and at 0.205 cfs on the New Data:rdout.tsf
Cristelle Ridge TIR-September 1007
Appendix B. KCRTS Documentation
Appendix B.1 KCRTS Time Series Calculations
Appendix B.2 KCRTS Peak Flow Rates
Criste!!e Ridge 77R—September 2007
Appendix B.i KCRTS Time Series Calculations
1-Hour Time Series
KCRTS Command
CREATE a new Time Series
------------------------
Production of Runoff Time Series
Project Location : Sea-Tac
Computing Series : predev.tsf
Regional Scale Factor : 1.00
Data Type : Reduced
Creating Hourly Time Series File
Loading Time Series File:C:\KC_SWDM\KC_DATA\STTF60R.rnf .
Till Forest 5.00 acres
Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG60R.rnf .
Till Grass 1.11 acres
Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI60R.rnf .
Impervious 0.20 acres
--------------
Total Area : 6.31 acres
Peak Discharge: 0.687 CFS at 6:00 on Jan 9 'n Year 8
Storinq Time Series ^ile:predev.tsf .
Time Series Computed
KCRTS Command
Enter the Analysis TOOLS Module
-------------------------------
Analysis Tools Command
----------------------
Compute PEAKS and Flow Frequencies
----------------------------------
Loading Stage/Discharge curve:predev.tsf .
Flow Frequency Analysis
--------------------------------------------------------
Time Series File:predev.tsf
Project Location:Sea-Tac
Frequencies & Peaks saved to File:predev.pks .
Analysis Tools Command
----------------------
Compute Flow DURATION and Exceedence
Loading Time Series File:predev.tsf .
Computing Interval Locations
Computing Flow Durations I
Durations & Exceedence Probabilities to File:predev.dur .
Analysis Tools Command
----------------------
RETURN to Previous Menu
-----------------------
KCRTS Command
CREATE a new Time Series
------------------------
Cristelle Ridge 77R-September 2007
Production of Runoff Time Series
Project Location : Sea-Tac
Computing Series : dev.tsf
Regional Scale Factor : 1.00
Data Type : Reduced
Creating Hourly Time Series File
Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG60R.rnf .
Till Grass 3.34 acres
Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI60R.rnf .
Impervious 2.97 acres
--------------
Total Area : 6.31 acres
Peak Discharge: 2.11 CFS at 6:00 on Jan 9 in Year 8
Storing Time Series File:dev.tsf .
Time Series Computed
KCRTS Command
Enter the Analysis TOOLS Module
-------------------------------
Analysis Tools Command
----------------------
Compute PEAKS and Flow Frequencies
----------------------------------
Loading Stage/Discharge curve:dev.tsf .
Flow Frequency Analysis
Time Series File:dev.tsf
Project Location:Sea-Tac
Frequencies & Peaks saved to File:dev.pks .
Analysis Tools Command
----------------------
Compute Flow DURATION and Exceedence
------------------------------------
Loading Time Series File:dev.tsf .
Computing Interval Locations
Computing Flow Durations
il Durations & Exceedence Probabilities to File:dev.dur .
Analysis Tools Command
----------------------
RETURN to Previous Menu
KCRTS Command
eXit KCRTS Program
------------------
15-Minute Time Series
KCRTS Command
CREATE a new Time Series
------------------------
Production of Runoff Time Series
Project Location : Sea-Tac
Computing Series : devl5.tsf
Crrstelle Ridge TIR—September 2007
Regional Scale Factor : 1.00
Data Type : Reduced
Creating 15-minute Time Series File
Loading Time Series File:C:\KC_SWDM\KC_DATA\STTG15R.rnf .
Till Grass 3.34 acres
Loading Time Series File:C:\KC_SWDM\KC_DATA\STEI15R.rnf .
Impervious 2.97 acres
--------------
Total Area : 6.31 acres
Peak Discharge: 5.19 CFS at 6:30 on Jan 9 in Year 8
Storing Time Series File:devl5.�sf .
Time Series Computed
KCRTS Command
Enter the Analysis TOOLS Module
-------------------------------
Analysis Tools Command
----------------------
Compute PEAKS and Flow Frequencies
----------------------------------
Loading Stage/Discharge curve:devl5.tsf .
Flow Frequency Analysis
--------------------------------------------------------
Time Series File:devl5.tsf
Project Location:Sea-Tac
Frequencies & Peaks saved to File:devl5.pks .
Analysis Tools Command
----------------------
Compute Flow DURATION and Exceedence
------------------------------------
Loading Time Series File:devl5.tsf .
Computing Interval Locations
Computing Flow Durations
Durations & Exceedence Probabi'_ities to File:devl5.dur .
Analysis Tools Command
----------------------
RETURN to Previous Menu
-----------------------
KCRTS Command
eXit KCRTS Program
----------------
Crrstelle Rrdge TIR-Septenrber 2007
Appendix B.2 KCRTS Peak Flow Rates
1-Hour Time Series
Flow Frequency Analysis
Time Series File:predev.tsf - site and short plat under forested conditions
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
0.436 2 2�09/O1 18:00 0.687 1 100.00 0.990
0.175 7 1/05/02 16:00 0.436 2 25.00 0.960
0.398 3 2/28/03 3:00 0.398 3 10.00 0.900
0.071 8 8/26/04 2:00 0.375 4 5.00 0.800
0.225 6 1/05/05 8:00 0.340 5 3.00 0.667
0.375 4 1/18/06 16:00 0.225 6 2.00 0.500
0.340 5 11/24/06 4:00 0.175 7 1.30 0.231
0.687 1 1/09/08 6:00 0.071 8 1.10 0.091
Computed Peaks 0.604 50.00 0.980
Flow Frequency Analysis
Time Series File:dev.tsf - site and short plat under proposed developed
conditions prior to detention
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
1.02 5 2/09/O1 2:00 2.11 1 100.00 0.990
0.787 8 1/05/02 16:00 1.23 2 25.00 0.960
1.23 2 2/27/03 7:00 1.16 3 10.00 0.900
0.802 7 8/26/04 2:00 1.08 9 5.00 0.800
0.978 6 10/28/04 16:00 1.02 S 3.00 0.667
1.08 4 1/18/06 16:00 0.978 6 2.00 0.500
1.16 3 10/26/06 0:00 0.802 7 1.30 0.231
2.11 1 1/09/08 6:00 0.787 8 1.10 0.091
Computed Peaks 1 .82 50.00 0.980
Flow Frequency Analysis
Time Series File:rdout.tsf - outflow from proposed pond
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) (ft) Period
0.475 2 2/09/O1 20:00 1.61 7.38 1 100.00 0.990
0.101 7 12/29/O1 10:00 0.475 7.21 2 25.00 0.960
0.288 4 3/06/03 22:00 0.341 6.47 3 10.00 0.900
0.086 8 8/26/04 7:00 0.288 6.06 9 5.00 0.800
0.144 6 1/05/05 17:00 0.266 5.96 5 3.00 0.667
0.266 5 1/18/06 23:00 0.144 4. 92 6 2.00 0.500
0.341 3 11/24/06 8:00 0.101 4.19 7 1.30 0.231
1.61 1 1/09/08 9:00 0.086 3.01 8 1.10 0.091
Computed Peaks 1.23 7.34 50.00 0.980
Crutelle Ridge TIR-September 2007 III
�
15-Minute Time Series
Flow Frequency Analysis
Time Series File:devl5.tsf - site under and short plat proposed developed
conditions prior to detention
Project Location:Sea-Tac
---Annual Peak Flow Rates--- -----Flow Frequency Analysis-------
Flow Rate Rank Time of Peak - - Peaks - - Rank Return Prob
(CFS) (CFS) Period
1.42 6 8/27/O1 18:00 5.19 1 100.00 0.990
1.09 8 1/05/02 15:00 3.41 2 25.00 0.960
3.91 2 12/08/02 17:15 2.26 3 10.00 0.900
1.14 7 8/23/04 14:30 2.03 9 5.00 0.800
2.26 3 11/17/04 5:00 1.80 5 3.00 0.667
1.80 5 10/27/05 10:45 1.42 6 2.00 0.500
2.03 4 10/25/06 22:45 1.14 7 1.30 0.231
5.19 1 1/09/08 6:30 1.09 8 1.10 0.091
Computed Peaks 4.60 50.00 0.980
Cristelle Ridge T/R—September 2007
1
Appendix C. Hydrologic Model Documentation
The following is a description of KCRTS input and output files used
in designing the R/D facilities and conducting the downstream drainage
analysis for Cristelle Ridge.
EXECUTABLE FILES
basins.exc:
This executable file creates 1-hour time series for all contributing areas to �
the downstream system.
basinsl5.exc:
This executable file creates 15-minute time series for all contributing areas
to the downstream system.
TIME SERIES FILES
R/D Desiqn
predev.tsf:
Site and short plat under existing conditions.
dev.tsf: �
Site and short plat under proposed developed conditions.
rdout.tsf:
^ime series out of proposed R/D system for site.
RESERVOIRS
Pond65.rdf:
Plat R/D facility managing stormwater from the development.
GENERAL NOTES
1. Seatac regional rainfall runoff files with a scale factor of 1.0 were
used in the hydrologic simulations.
2. R/D facilities were designed with the 8-year time series data set. 1-
hour peak flow rates were used for detention calculations.
3. 15-minute peak flow rates were used for conveyance calculations.
4. Gravel areas were modeled in KCRTS by assuming that 50 percent of the
area is impervious and the remaining 50 percent are the same cover type
as that surrounding the gravel area.
Cristel(e Ridge TIR—Seprember 1007
Appendix D. Schematic Drawings of Pond Design
Crisrelle Rrdge TIR--Sep�ember 2007
� _,
y I
� � �
x
STORMWATER QUANTITIES �
�
WETPOND �x �
DEAD STORAGE EL. 342.4-346.4 y�� \ \�
DEAD VOLUME REQUIRED=17,955 CF �B �i
DEAD VOLUME PROVIOED=18,100 CF ` \ �\;�%y \
1��= 30� DETENTION � \ � '!'' \
�
'a � �
LIVE STORAGE EL 346.4-352.5 �\ �
LNE VOLUME REQUIRED=49,737 CF
0 15 30 60 LIVE VOLUME PROVIOED=53,000 CF �` \ �
� \ \ y
� � \ � � �
TW=364 TW=360 TW=355.5 �5 �
BW=360 BW=345 � � w BW=346.4 8 -3 � � \ � W fi Z
,� __ _ _ � .�, � 130.96 S8879 35 E � 06 � \ a "
� � _ O ry �
��J'I l l '_ t_Q -_ _i \ \ \� N P '
1 345.0 ' '� y
3:1 3:1 3:1 2:1 � n \ \ t � � �
� � � _ 342.4 � I � \ 1�'� r __ �h �
W 342 4 �2 �r +r s� ��'CONTROL STRUC \ � � � 3 � _
I I I WEf POOL DIVIDING WALL �E �u. TYPE 2-54" � U P �ry .
t � � 3:1 � — — — — — IM=352.9 � . T
' \ �
I � � BOT. SED=341.4 1 � �
I � � � �,�. � `ls6 t�.', '�' \ D =
I IE=344.4 ,/ rp`1��Aq� � W
� I 2;� �` 2�1 �� _ _ _ _3_� _ _ _ F'ERMANENT POOL WSE-346_4_ � 8g �F �rj D A 7.56 ��� \ �
� , / X y
I, � � � z:, � .
2:, \ � � �^� � ,;:, s �c -
I , \ � - - - - - - - - - - - - - -1Q-0-YR WSE=352.9 - - - � /
2:, � ,� ---�.
� -' •
� \ � �--------------------------�
� � - - - - aso - - - - �/ \ �
I \� I� � ; s .. � �
\\ \ I i ' ,y� //� `` � �
I`-�
\ \�� I ' �� a� ,`� � IL
� 370 i � / � �. �
, � _ _ _ _ _ _ _ _ _ _ _ _ _,� , , 1ti� , ., �, �,
�\ i � � g �/ �� 3 �
\ �-----------------------J � l � / � �
� � �` � / L. �L
\ � - - - - 380 - - - - -I / � � V
_�--•------- � ' r ++
� r_:- -: �" � � �
� � �-�------ � �
� � + � i '
� I ,,_ i
�� �� � iT'�?+4 390 � I 1+OL} I ,. QP + � � �.
\ � ' — — — — —~ — r — ��------- i �— �— — J � � 1 � �.
— — — � � • 1 � .
� � "' 380 V v � � �
�srav iuvo u�s�AL_ WALL a I �9� 386 372 � � � � ' ' '
o^ii.St i(1 SUPFpi'.' iMAll NNEN � � �
THF�in�x ACCESS l�/�?ADED � �3�8 �7n �Q� �\2�41.86 NfN1A/AN ��
o �----�-- �^ —
FAR IHE IVt��I��OA01{'AY Ptn _�._ � —� � � �XJ IRACJ�B �
;Mt �or�v,a;xws. �- - �
` � , .
Z }' \ � '
,' ,
,�;�J'y L_i�'� \ v �
.3,92 � `'`I --------------------- ----� � � t�
� � i � � ` / �
� � ` � � �
�J � I i � � • �
� , ' ` � � �
e� I , � • .
� i I� � '` � �;� �.` � �
) � . �. � `� .. �b `�, �/ '•� s+�r oF
.waso.M�
. �
y
� �
STORMWATER QUANTITIES � A�6
\
WEfPOND �x �
DEAD STORAGE EL. 342.4-346.4 ��� \ \�
DEAO VOLUME REQUIRED=17,955 CF �8 �i
DEAO VOLUME PROVIDED= CF ` \ �\?ijL \
1��= 30� DETENTION ,` \ � 'j` \
� \
� � �
LNE STORAGE EL. 346.4-352.9 \ �
LIVE VOLUME REQUIRED=49,737 CF
0 15 3� 6Q LNE VOLUME PROVIDED=52,000 CF �' \ \ � y
�. � � \ 4 �
TW=3� TW=360 TW=355.5 �5 � � , &
BW=360 BW=345 , , M BW=346.4 B 3 � W � �
� -- — — � .�b � 130.96 58879 35 E � eM � � � \ a ^ �
� � � h
'1 - �O -_ � \ \ � � a ' .
� � � 3:1 342.4 3:1 // 2� � � n � \ �x � � � �� �
\ O � ; F o
I I I � � � � �`�CONTROL STRUC � \ � (C h �ry =
/ TYPE 2-54' � � a h .
t � � 3.1 � _ — _ � IM=352.9 � ' °� � ,
. �
� � � BOT. SED=341.4 � � � o
I � � � ,, - � `�Ss _h,�F' � o
\ x
� I I ( � OOIE=344.4 I �/ 6`1.��9 \ W
� / k�, \
� 2'� 3:1 PERMANENT POOL WSE-346_4_ �� � �
� ` 1 2:1 � �,�
1 � � �' � -
� }� - - - - - - - z., -
I 2:, � � zos LF ,r so � '� / ,�, �c —
- - - - - - -1Q0-YR WSE=3�.� - - _ � ' . C
2:1 \ \ �
Z � � . / � �� � � ai
I � \ � � sso ( r--------------------------� , �
� - - - - - - - - - - - -u � �
� i � s � L N
\ �\ I i � t'°x! �� �` � �
\ � I � r / � � `� � �
� � o� .
�
� � a�o I � ' ,' .
� � - - - - - - - - - - � � � '�� ' � �. L �
\� � �� $ r� / /�/ r�^ +�-�
\ I ���---------------------'� � � / v, �
� � � / � �L
\ � -- - - - - 38� - - - - -I'�-'---' — / / , > �
-- J � �../
� � ��'�'���� � � ' � �
� � ; I \ � , L
�` � � � ' ' �
'i � \ � � �_ � �� —ITYa�.u_ 3so `� I �+a� � �P � � i �� Q
� r— � — � ----- � �— J o `" ' �
. ___ ''� 3 j - - - - - - - - - � I - - '
�-- � ��� 1 I /
� � � • D£5l'QN AND lNSUL! wnu a `f' ?9' 386 380 372 ' ��� '' ,, �,
i � on�c /V 5l1PFQR' iYALL WNEN I r " �` i� i�
. . , ; ; 1HF�inipc ACCESS �S /�tAVEo � .3I8 .�.. �7n ��Q� `�� ��.86 ►N��7A�itN �
�—_-�—� -�[�— _ � �.
= �� � j FOR TFIE IVt:�KOADI{AY Ptn Q 1 � --� -.� 4 `� _ /JO IRACJ�B
� rrrt a-�or EctyAr,cws. ' '
l �,y Z�_ ` � � _ �`v� '�.
; �`�, �� is•� � ` .
� - ��
I � — - `_. --�-� .� \
� , � � -,.� .3,92 , � � �-------------------- ----,� _ ` �`
'� ` -_ '�.� '_�_,. /' ��_, � i ` ` ' � � � �
.. �._ - `-- ___ - - 1 � �� ( i � .
s ,�..` Y._ ` �.�' __ \1 `� ,` � I � � \ � '�, ,` �t,1 �
� ' ` ._ ... ..�---_.. .%i. . . .. �_�, \ . . .. � I � . � ♦ O � � �
. __ .__. . . . N \ �. � ..: ``B .� �
!!£T OF
� � �� � . `. � �► r � ��. � '�.
��