Loading...
HomeMy WebLinkAboutEnergize Eastside Phase 2 Draft EIS_Volume 2_Appendices Energize Eastside Project Phase 2 Draft Environmental Impact Statement Volume 2: Appendices May 8, 2017 Prepared for the Cities of Bellevue, Newcastle, Redmond and Renton Prepared by: ESA General Construction and Access Description A   PHASE 2 DRAFT EIS   PAGE A‐1    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  APPENDIX A. GENERAL CONSTRUCTION AND ACCESS DESCRIPTION Note: Information provided by PSE Construction of transmission lines require pre-construction field surveying, site preparation, construction (i.e., installation of new structures, removal of existing structures), demobilization, and property restoration, which are performed following a relatively standardized sequence. In general, construction activities include the installation of new structures, removal of existing structures, and property restoration. PSE aims to avoid or minimize impacts where practicable through project design considerations (e.g., pole types and access routes). Along some route segments, PSE has easement rights that outline access agreements for the purpose of maintaining PSE’s existing facilities and/or accessing PSE’s right-of-way (ROW). Depending upon the segments chosen for the preferred route option, PSE plans to exercise these rights and, if necessary, acquire additional rights for construction of the project. To the extent possible, PSE uses existing or acquires new easement rights to provide access necessary to maintain and/or construct facilities. TYPICAL CONSTRUCTION SEQUENCING Construction of a transmission line typically occurs in the following sequence: 1) Pre-construction surveying a. Conducting environmental surveys and obtaining geotechnical data by conducting soil borings b. Identifying pole locations c. Surveying, including ROW and boundary and structure locations (i.e., footings, underground utilities) 2) Site preparation a. Staking the ROW, critical areas, and pole locations b. Installing temporary erosion control measures c. If necessary, constructing access routes to the pole sites and developing installation sites d. Brushing, trimming, and clearing of vegetation in the ROW to ensure the safe operation of the line 3) Construction a. Installing pole foundations or auger holes for direct embedment b. Assembling and erecting the poles c. Stringing the conductor and wires d. Removing existing structures, if necessary   PHASE 2 DRAFT EIS   PAGE A‐2    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  4) Demobilization and clean up 5) Restoration and re-planting vegetation The general process for the various types of poles being proposed are essentially the same, except for poles with engineered foundations (e.g., drilled piers), which require additional steps. The subsequent sections describe specific construction activities in further detail. PRE-CONSTRUCTION - IDENTIFYING POLE LOCATIONS The placement, or “spotting,” of poles depends upon factors such as available ROW width, location of access routes, topography, and obstacle avoidance. In turn, the height, loading, foundation type, and overall size of each structure will be greatly affected by the location of the structures. The process for the spotting of poles is as follows:  PSE will work with individual landowners to adjust pole locations where practicable to reduce impacts for the landowners.  Proposed pole locations discussed with landowners will represent where poles are generally expected to be located, pending geographical and site-specific environmental review following city or county approval of a route. Unforeseen subsurface obstacles, such as geologic erratics, can cause a pole to be moved up or down the corridor (typically less than 20 feet). In general, PSE considers the following factors when locating poles:  Technical considerations, including electrical clearances, severe terrain accommodations, structural loading, manufacturability of structures, constructability of the line, and code requirements.  Critical Areas (e.g., wetlands and streams) so as to locate poles outside of critical areas and their buffers to the extent possible.  Electrical effects to maintain additional buffers or install mitigation measures when co- located with other facilities (e.g., pipelines).  Landowner considerations by moving poles farther away from residences and/or locating poles on property lines and edges of tree lines.  Cost to provide a cost efficient and feasible design within set parameters. To reduce the environmental impacts of pole locations, where practicable, PSE will:  Place new poles in approximately the same location of the existing poles;  Locate poles near existing accessible routes to minimize construction traffic impacts;  Avoid placing poles in areas that require significant access disturbance;  Avoid environmental features by making small adjustments in the route and through careful structure placement; and  Avoid critical areas unless another constraint forces a pole into such areas.   PHASE 2 DRAFT EIS   PAGE A‐3    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  SITE PREPARATION Vegetation Management and Maintenance Using the existing transmission line ROW is one of PSE’s preferred routing criteria, as the vegetation in such corridors is already maintained to some degree. This includes selective removal of problem trees from beneath power lines or removal of hazardous trees that may fall into the electrical system as part of regular maintenance on all power line ROW. Proper pruning and discriminating use of growth regulators and herbicides are also among the methods employed. The method selected is dependent upon factors such as location, property use, and access. Growth regulators and herbicides are not commonly used in urban environments. Emphasis is placed on removal of large, problem-tree species, especially in the case of those that have disease or insect infestation that can result in irreversible decline. Tree removal is especially important where pruning alone cannot achieve safe clearance from power lines. Trimming, natural pruning techniques, or directional trimming will be used if proper line clearances can be achieved. Directional trimming concentrates on removing limbs and branches where the tree would normally shed them and direct future growth out and away from the electrical wires. While a newly pruned tree might look different to some, natural pruning is designed to protect the health of the tree. It minimizes re-growth and reduces trimming costs. Directional trimming is the recommended method of the International Society of Arboriculture (ISA), American National Standards Institute (ANSI), and the National Arbor Day Foundation. Both tree removal and natural pruning would be performed by specially trained contract crews. Upon completing of tree work, the crews would clean up the site and any wood that is cut would be left on site in pieces of manageable size at the property owner’s request. Guidelines for 230 KV Lines Vegetation within a utility corridor that has transmission line(s) with an operational voltage of more than 200 kV must be managed in compliance with federal requirements. The fines/penalties associated with having a power outage caused by vegetation can be substantial. To ensure compliance with the North American Electric Reliability Corporation (NERC) standard, PSE allows vegetation with a mature height of no greater than 15 feet within the wire zone. For evaluation purposes, the same vegetation requirement was applied to the managed ROW zone. The area outside of the managed ROW, but still within the legal ROW, is subject to select clearing of trees that pose a risk of damaging the line. The wire zone is the area measured 10 feet away from the outermost conductor(s) in a static position, whereas the managed ROW zone is the area that extends roughly 16 feet from the outside of the transmission wires in their static position. The vegetation impact assessment used GIS analysis to evaluate the tree inventory data and the preliminary transmission line design to assess the number of trees that would likely require removal within a specific route.   PHASE 2 DRAFT EIS   PAGE A‐4    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Guidelines for 115 kV Lines Some of the alternatives for the Energize Eastside project include rebuilding or relocating 115 kV lines. NERC vegetation standards do not apply to PSE’s 115 kV transmission or distribution line rights-of- way; however, in general, PSE will remove trees that mature at a height of greater than 25 feet near 115 kV lines. It should be noted that, some trees within the corridor or along roadways with a height of greater than 25 feet, may be allowed to remain in the wire zone if they can be pruned in a manner that allows sufficient clearance from the lines. Access Use of existing access routes is preferred as that is typically the best way to minimize impacts. When a project entails replacement of an existing transmission line, such as Energize Eastside, efforts are made to identify the existing or historic access routes. During initial construction of the transmission line, access routes are established along the corridor. As an area develops and structures are built along the corridor, some of the original access points are no longer viable and new ones need to be established to replace or maintain existing transmission line equipment. Access to each structure location is identified in the field with a preference to those areas that require the least amount of improvement (e.g., use of existing roads or trails). The field identified access routes are mapped using hand held GPS units. The GPS data is imported into the surveyed route maps for reference. Each route will be assessed on site with the affected property owners to gather site specific limitations and if necessary, identify improvement and restoration details. Along the corridor, the access and pole locations are identified by the land surveyor and engineering team. As necessary, the access to each pole location is improved or created. Preliminary access routes for construction and maintenance are shown on figures at the end of this appendix, by segment. Utility Locates and Civil Work As required by state law, utility locates are performed prior to ground disturbing activities. Appropriate temporary erosion control measures may be installed prior to and during work activities. Initial vegetation management activities then commence, removing those species that are incompatible with the safe operation of the transmission line. If civil work is required to establish either a temporary or permanent construction area, that work typically takes place following vegetation removal. A work area with an approximate radius of 50 feet around the new pole location would be typical. This area would provide a safe working space for placing equipment, vehicles, and materials. CONSTRUCTION PSE will work to restore property impacted by construction to its previous or an improved state, as practical and required under applicable law. PSE will mitigate in-kind when restoration is not possible, as required by applicable law. PSE will comply with local codes related to construction noise. PSE will work with property owners to minimize impacts during construction as much as practicable.   PHASE 2 DRAFT EIS   PAGE A‐5    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Pole Installation Each steel pole will be installed either by direct embedment or placed on a drilled pier foundation. The type of foundation that will be used to support the poles will be dependent upon the structural loading, structural strength of the soil, and site accessibility. In areas near co-located underground utilities, such as the Olympic pipelines, the proposed pole location is reviewed in the field with BP, the pipeline operator. As appropriate, BP’s general construction procedures will be followed when construction activities are to take place in the area of the Olympic pipelines. The hole for the transmission pole is typically initiated using a vactor truck, which is one of the least invasive methods of excavation. If soil conditions allow, the entire hole could be excavated using a vactor truck; however, it may be necessary to use traditional auger equipment to achieve the necessary depth. Typical hole diameter is approximately 18-inches greater than the diameter of the base of the pole. Generally, the depth of the hole will be 10 percent of the pole height plus 2 feet. In areas of soft soils, a steel casing may be used during drilling to hold the excavation open, after which the steel casing would be cut below grade and backfilled upon completion. For direct embed poles, the base section of the pole is installed in the hole and the annulus filled with select backfill. When backfill must be imported, material is obtained from commercial sources. For poles that require drilled pier foundations, the hole is advanced in the same manner as that for the direct embed poles. Reinforced-steel anchor bolt cages are then installed in the excavation. These cages are inserted in the holes prior to pouring concrete and are designed to strengthen the structural integrity of the foundations and are delivered to the structure site via flatbed truck. The excavated holes containing the reinforcing anchor bolt cages would be filled with concrete and be left to cure for 28 days. To construct the actual steel structure, two methods of assembly can be used, the first of which is to assemble the poles, braces, cross arms, hardware, and insulators on the ground. A crane is then used to set the fully framed structure by placing the poles in the excavated holes or on the drilled pier foundation. Alternatively, aerial framing can be used by setting the first pole section in the ground or on the foundation, and subsequently adding the remaining sections and equipment via a crane. Stringing Installation of the conductor, shield wire, and communication fiber on the transmission line support structures is called stringing. The first step of wire stringing would be to install insulators (if not already installed on the structures during ground assembly) and stringing pulleys, which are temporarily attached to the lower portion of the insulators at each transmission line support structure to allow conductors to be pulled along the line. When an existing transmission line is being replaced, the new poles will be installed and the existing wires would be transferred to them from the existing poles that will be removed. This is done so that the existing conductor can be used to pull in the new conductor in a more efficient manner.   PHASE 2 DRAFT EIS   PAGE A‐6    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Once the existing conductors have been transferred to the stringing sheaves, they would be attached to the new conductors and used to pull them through the sheaves into their final location. Pulling the lines may be accomplished by attaching them to a specialized wire stringing vehicle. Following the initial stringing operation, pulling and sagging of the line would be required to achieve the correct tension of the transmission lines between support structures. After the new lines have been set, the existing poles are then removed. Pulling and tensioning sites are expected to be required approximately every 2 miles along the corridor. Equipment at sites required for pulling and tensioning activities would include tractors and trailers with spooled reels that hold the conductors and trucks with the tensioning equipment. To the extent practicable, pulling and tensioning sites would be located within the existing corridor. Depending on topography, minor grading may be required at some sites to create level pads for equipment. Finally, the tension and sag of conductors and wires would be fine-tuned, stringing sheaves would be removed, and the conductors would be permanently attached to the insulators at the support structures. Demobilization and Restoration Construction sites, staging areas, material storage yards, and access roads would be kept in an orderly condition throughout the construction period. Disturbed areas not required for access roads and maintenance areas around structures would be restored and revegetated, as agreed to with the property owner or land management agency.   PHASE 2 DRAFT EIS   PAGE A‐7    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Redmond Segment    PHASE 2 DRAFT EIS   PAGE A‐8    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Bellevue North Segment    PHASE 2 DRAFT EIS   PAGE A‐9    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Bellevue Central Segment    PHASE 2 DRAFT EIS   PAGE A‐10    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Bellevue South Segment    PHASE 2 DRAFT EIS   PAGE A‐11    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Newcastle Segment    PHASE 2 DRAFT EIS   PAGE A‐12    APPENDIX A CONSTRUCTION AND ACCESS  MAY 2017  Preliminary Construction Access Routes Prior to Property Owner Consultation – Renton Segment  Supplemental Information: Land Use B PHASE 2 DRAFT EIS   PAGE B‐1    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     APPENDIX B-1. METHODS FOR DETERMINING STUDY AREA The adjacent parcel study area was created for the right-of-way by selecting all parcels adjoining the right-of-way where the corridor will be running. For areas not in a current right-of-way, a qualitative approach was used. The goal was to capture all of the parcels that were next to or adjoining the PSE easement. This included both the parcel the easement runs through (easement parcel) and the adjoining parcels, within a reasonable distance. A reasonable distance methodology assumes that if the easement parcel is large, the adjoining parcels on the nearby side are brought in, while those on the far side are left out. A common example is represented in Figure B-1. Here, it is reasonable to assume that the parcels on the east are close enough to be adjacent, but the parcels on the west are not. Figure B-1. Adjacent Parcels for Study Area Example PHASE 2 DRAFT EIS   PAGE B‐2    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     APPENDIX B-2. APPLICABLE ZONING REGULATIONS BY STUDY AREA CITY The tables below list the zoning districts of parcels included in the study area, shown by segment and option. In each zoning district, an electric utility facility would either be designated as a permitted, conditional, or prohibited use. If an electrical facility is considered a conditional use, the applicable jurisdiction would require a level of review to determine whether the facility should be granted a permit. This review can either be an administrative review or one that would require a public hearing in front of the hearing examiner. Also included in the tables is each jurisdiction’s definition of an electrical utility facility or utility. Redmond Segment Electrical Utility Facility Electrical Utility Facility defined as: unstaffed facilities, except for the presence of security personnel, that are used for or in connection with or to facilitate the transmission, distribution, sale, or furnishing of electricity, including but not limited to electric power substations (RZC 21.78) Zoning Districts Permitted Conditionally Permitted Prohibited R-1 X R-4 X R-5 X R-6 X R-12 X BP X MP X Source: City of Redmond Municipal Code. Accessed August 2016. Available at: http://online.encodeplus.com/regs/redmond-wa/doc-viewer.aspx?tocid=003#secid-1067. PHASE 2 DRAFT EIS   PAGE B‐3    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     Bellevue Segments Electrical Utility Facility Electrical Utility Facility defined as: distribution substations, transmission stations, transmission switching stations, or transmission lines that are built, installed, or established. (Bellevue LUC 20.50.018 E) Zoning Districts Permitted Conditionally Permitted Prohibited R-1 X R-1.8 X R-2.5 X R-3.5 X R-4 X R-5 X R-7.5 X R-10 X R-15 X R-20 X R-30 X BR-GC X CB X F-2 X F-3 X GC X OLB X PO X BR-GC X LI X F-1 X BR-OR X BR-OR-2 X BR-RC-1 X BR-RC-2 X BR-CR X BR-ORT X Source: http://www.codepublishing.com/WA/Bellevue/LUC/BellevueLUC2020.html#20.20.255 PHASE 2 DRAFT EIS   PAGE B‐4    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     Newcastle Segment Electrical Utility Facility (Regional) Electrical Utility Facility (Regional) defined as: a facility for the distribution or transmission of services from or to an area beyond Newcastle; including but not limited to: electrical distribution substations, electrical transmission stations, electrical transmission switching stations, electrical transmission lines greater than 115 kV and maintenance and utility yards (NMC 18.96.689). Zoning Districts Permitted Conditionally Permitted Prohibited R-1 X R-4 X R-6 X R-6-P X R-18 X CB X O X LOS X Source: http://www.codepublishing.com/WA/Newcastle/#!/Newcastle18/Newcastle1808.html#18.08.060 Renton Segment Utilities Large Utilities Large defined as: Utilities Large includes large-scale facilities with either major above-ground visual impacts, or serving a regional need such as two hundred thirty (230) kV power transmission lines, natural gas transmission lines, and regional water storage tanks and reservoirs, regional water transmission lines or regional sewer collectors and interceptors. (RMC4-11- 210) Zoning Districts Permitted Conditionally Permitted Prohibited R-1 X R-4 X R-6 X R-8 X R-10 X R-14 X IL X RC X COR X CV X CA X Source: http://www.codepublishing.com/WA/Renton/#!/renton04/Renton0403/Renton0403090.html#4-3-090 PHASE 2 DRAFT EIS   PAGE B‐5    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     APPENDIX B-3. APPLICABLE POLICIES BY STUDY AREA CITY Subarea Plan Policy Renton No applicable subarea plans. Bellevue Comprehensive Plan UT-67: Encourage consolidation on existing facilities where reasonably feasible and where such consolidation leads to fewer impacts than would construction of separate facilities. Examples of facilities that could be shared are towers, electrical, telephone and light poles, antenna, substation sites, trenches, and easements. UT-98: Discourage new aerial facilities within corridors that have no existing aerial facilities. Bel-Red Corridor Plan Utility-related cabinets that occur in the right-of-way should not call attention to themselves, and therefore should not be decorated. Wilburton Grand Connection Initiative N/A Bel-Red Subarea Plan N/A Bridle Trails Subarea Plan Policy S-BT-34: Provide Bellevue-owned utility service to surrounding jurisdictions in accordance with the Annexation Element of the Comprehensive Plan. Eastgate Subarea Plan N/A Factoria Subarea Plan Policy S-FA-24: Encourage the undergrounding of utility distribution lines in areas of new development and redevelopment. Policy S-FA-35: Minimize disruptive effects of utility construction non property owners, motorists, and pedestrians. Policy S-FA-49: Incorporate infrastructure improvements and implement design guidelines that will enhance pedestrian crossings (respecting the significant traffic volumes and multiple turning movements at these intersections), improve transit amenities, and develop an active building frontage along Factoria Boulevard with direct pedestrian routes to retail storefronts from the public sidewalk and weather protection for pedestrians. Policy S-FA-52. Allow buildings to abut the Factoria Boulevard public right-of-way, so long as there is adequate space for the arterial sidewalks. Policy S-FA-51: Consider establishing a maximum building setback from the right-of-way for structures along the Factoria Boulevard commercial PHASE 2 DRAFT EIS   PAGE B‐6    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     Subarea Plan Policy corridor. Newport Hills Plan Policy S-NH-55: Encourage undergrounding of utility distribution lines on existing development where reasonably feasible. Policy S-NH-50. Include the following elements in a redeveloped commercial district: new commercial buildings at the street edge Richards Valley Plan Policy S-RV-19. Encourage the combination of utility and transportation rights-of-way in common corridors and coordinate utility construction with planned street and bike lane improvements which could result in a more efficient allocation of funds. Policy S-RV-20. Use common corridors for new utilities if needed. Discussion: If new power lines are needed in the Subarea, they should be developed in areas that already contain power lines, rather than causing visual impacts in new areas. SE Bellevue Plan N/A Wilburton/NE 8th St Plan Policy S-WI-43: Encourage the undergrounding of utility distribution lines in developed areas and require the undergrounding of utility distribution lines in new developments when practical. Policy S-WI-49. Allow flexibility for commercial buildings to be sited near frontage property lines. Newcastle Newcastle Subarea Plan Policy S-NC-44: Encourage the use of utility and railroad easements and rights-of-way for hiking, biking, and equestrian trails wherever appropriate in the Subarea. Redmond No applicable subarea plans. PHASE 2 DRAFT EIS   PAGE B‐7    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     APPENDIX B-4. APPLICABLE SHORELINE REGULATIONS City of Bellevue Part 20.25E Shoreline Overlay District 20.25E.010 Definition of district. The Shoreline Overlay District encompasses those lake waters 20 acres in size or greater and those stream waters with a mean annual water flow exceeding 20 cubic feet per second; the lands underlying them; the lands extending landward for 200 feet in all directions as measured on a horizontal plane from the ordinary high water mark; floodways and contiguous floodplain areas landward 200 feet from such floodways associated with such streams and lakes; and marshes, bogs, swamps and river deltas associated with such streams and lakes. Specifically included within the district are the following: A. Lake Washington, including Mercer Slough upstream to Interstate 405 – The lake waters, underlying lands and the area 200 feet landward of the ordinary high water mark, plus associated floodways, floodplains, marshes, bogs, swamps, and river deltas; B. Lake Sammamish – The lake waters, underlying lands and the area 200 feet landward of the ordinary high water mark, plus associated floodways, floodplains, marshes, bogs, swamps and river deltas; C. Lower Kelsey Creek – The creek waters, underlying lands, and territory between 200 feet on either side of the top of the banks, plus associated floodways, floodplains, marshes, bogs, swamps and river deltas; and D. Phantom Lake – The lake waters, underlying lands and the area 200 feet landward of the ordinary high water mark, plus associated floodways, floodplains, marshes, bogs, swamps and river deltas. Development within the Shoreline Overlay District may also be subject to the requirements of Part 20.25H LUC. In the event of a conflict between the provisions of this Part 20.25E and Part 20.25H LUC, the provisions providing the most protection to critical area functions and values shall prevail. (Ord. 5681, 6-26-06, § 1; Ord. 4055, 3914, 9-25-89, § 1) Part 20.30C Shoreline Conditional Use Permit 20.30C.155 Decision criteria. The City may approve or approve with modifications an application for a Shoreline Conditional Use Permit if: A. The proposed use will be consistent with the policies of RCW 90.58.020 and the policies of the Bellevue Shoreline Master Program; and B. The proposed use will not interfere with the normal public use of public shorelines; and PHASE 2 DRAFT EIS   PAGE B‐8    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     C. The proposed use of the site and design of the project will be compatible with other permitted uses within the area; and D. The proposed use will cause no unreasonably adverse effects to the shoreline environment designation in which it is to be located; and E. The public interest suffers no substantial detrimental effect; and F. The proposed use complies with all requirements of WAC 173-14-140; and G. The proposed use is harmonious and appropriate in design, character and appearance with the existing or intended character and quality of development in the immediate vicinity of the subject property and with the physical characteristics of the subject property; and H. The proposed use will be served by adequate public facilities including streets, fire protection, water, stormwater control and sanitary sewer; and I. The proposed use will not be materially detrimental to uses or property in the immediate vicinity of the subject property; and J. The proposed use has merit and value for the community as a whole; and K. The proposed use is in accord with the Comprehensive Plan; and L. The proposed use complies with all other applicable criteria and standards of the Bellevue City Code. City of Renton 4-3-090 Shoreline Master Program Regulations Part 4-3-090(C)(2)(c) Shoreline High Intensity Overlay District Acceptable Activities and Uses Acceptable Activities and Uses: As listed in RMC 4-3-090E Use Regulations. Part 4-3-090(C)(4)(c) Shoreline High Intensity Overlay District Acceptable Activities and Uses Subject to RMC 4-3-090E Use Regulations, which allows land uses in RMC Chapter 4-2 in this overlay district, subject to the preference for water-dependent and water-oriented uses. Uses adjacent to the water's edge and within buffer areas are reserved for water oriented development, public/community access, and/or ecological restoration. Part 4-3-090(D)(2)(a) General Development Standards, Environmental Effects, No Net Loss of Ecological Functions i. No net loss required: Shoreline use and development shall be carried out in a manner that prevents or mitigates adverse impacts to ensure no net loss of ecological functions and processes in all development and use. Permitted uses are designed and conducted to minimize, in so far as practical, any resultant damage to the ecology and environment (RCW 90.58.020). Shoreline ecological functions that shall be protected include, but are not limited to, fish and wildlife habitat, food chain PHASE 2 DRAFT EIS   PAGE B‐9    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     support, and water temperature maintenance. Shoreline processes that shall be protected include, but are not limited to, water flow; erosion and accretion; infiltration; ground water recharge and discharge; sediment delivery, transport, and storage; large woody debris recruitment; organic matter input; nutrient and pathogen removal; and stream channel formation/maintenance. ii. Impact Evaluation Required: In assessing the potential for net loss of ecological functions or processes, project-specific and cumulative impacts shall be considered and mitigated on- or off-site. iii. Evaluation of Mitigation Sequencing Required: An application for any permit or approval shall demonstrate all reasonable efforts have been taken to provide sufficient mitigation such that the activity does not result in net loss of ecological functions. Mitigation shall occur in the following prioritized order: (a) Avoiding the adverse impact altogether by not taking a certain action or parts of an action, or moving the action. (b) Minimizing adverse impacts by limiting the degree or magnitude of the action and its implementation by using appropriate technology and engineering, or by taking affirmative steps to avoid or reduce adverse impacts. (c) Rectifying the adverse impact by repairing, rehabilitating, or restoring the affected environment. (d) Reducing or eliminating the adverse impact over time by preservation and maintenance operations during the life of the action. (e) Compensating for the adverse impact by replacing, enhancing, or providing similar substitute resources or environments and monitoring the adverse impact and taking appropriate corrective measures. Part 4-3-090(D)(2)(c) General Development Standards, Environmental Effects, Critical Areas within Shoreline Jurisdiction i. Applicable Critical Area Regulations: The following critical areas shall be regulated in accordance with the provisions of RMC 4-3-050 Critical Area Regulations, adopted by reference except for the provisions excluded in subsection 2, below. Said provisions shall apply to any use, alteration, or development within shoreline jurisdiction whether or not a shoreline permit or written statement of exemption is required. Unless otherwise stated, no development shall be constructed, located, extended, modified, converted, or altered, or land divided without full compliance with the provision adopted by reference and the Shoreline Master Program. Within shoreline jurisdiction, the regulations of RMC 4-3-050 shall be liberally construed together with the Shoreline Master Program to give full effect to the objectives and purposes of the provisions of the Shoreline Master Program and the Shoreline Management Act. If there is a conflict or inconsistency between any of the adopted provisions below and the Shoreline Master Program, the most restrictive provisions shall prevail. (a) Aquifer protection areas. (b) Areas of special flood hazard. (c) Sensitive slopes, twenty-five percent (25%) to forty percent (40%), and protected slopes, forty percent (40%) or greater. (d) Landslide hazard areas. (e) High erosion hazards. (f) High seismic hazards. (g) Coal mine hazards. (h) Fish and wildlife habitat conservation areas: Critical habitats. PHASE 2 DRAFT EIS   PAGE B‐10    APPENDIX B SUPPLEMENTAL INFORMATION: LAND USE MAY 2017     (i) Fish and wildlife habitat conservation areas: Streams and Lakes: Classes 2 through 5 only. ii. Inapplicable Critical Area Regulations: The following provisions of RMC 4-3-050 Critical Area Regulations shall not apply within shoreline jurisdiction: (a) RMC 4-3-050N Alternates, Modifications and Variances, Subsections 1 and 3 Variances, and (b) RMC 4-9-250 Variances, Waivers, Modifications and Alternatives. (c) Wetlands, including shoreline associated wetlands, unless specified below. iii. Critical Area Regulations for Class 1 Fish Habitat Conservation Areas: Environments designated as Natural or Urban Conservancy shall be considered Class 1 Fish Habitat Conservation Areas. Regulations for fish habitat conservation areas Class 1 Streams and Lakes are contained within the development standards and use standards of the Shoreline Master Program, including but not limited to RMC 4-3-090F.1 Vegetation Conservation, which establishes vegetated buffers adjacent to water bodies and specific provisions for use and for shoreline modification in Subsections 4-3-090E and 4-3-090F. There shall be no modification of the required setback and buffer for non-water dependent uses in Class 1 Fish Habitat Conservation areas without an approved shoreline conditional use permit. iv. Alternate Mitigation Approaches: To provide for flexibility in the administration of the ecological protection provisions of the Shoreline Master Program, alternative mitigation approaches may be applied for as provided in RMC 4-3-050N Alternates, Modifications and Variances, subsection 2. Modifications within shoreline jurisdiction may be approved for those critical areas regulated by that section as a Shoreline Conditional Use Permit where such approaches provide increased protection of shoreline ecological functions and processes over the standard provisions of the Shoreline Master Program and are scientifically supported by specific studies performed by qualified professionals. Scenic Views and Aesthetic Environment Methodology C PHASE 2 DRAFT EIS   PAGE C‐1    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Data Used to Determine Study Area King County 2002/2003 Digital Surface Model (DSM)(King County, 2003a) PSE GIS Alignment Data (PSE, 2016a) APPENDIX C. SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY 1. INTRODUCTION This appendix describes the process for assessing impacts to scenic views and the aesthetic environment as a result of the Energize Eastside project. Scenic views are the observation of a visual resource from a particular location, with visual resources generally defined as natural and constructed features of a landscape that are viewed by the public and contribute to the overall visual quality and character of an area. Such features often include distinctive landforms, water bodies, vegetation, or components of the built environment that provide a sense of place, such as city skylines. The aesthetic environment is the portion of the environment that influences human perception of the world. It is comprised of the natural (topography, presence of trees, water bodies) and built (buildings, utility infrastructure) environments. This appendix details the process used to identify impacts to scenic views and the aesthetic environment and how significance was assigned. 2. GUIDANCE USED SEPA (WAC 197-11) requires all major actions sponsored, funded, permitted, or approved by state and/or local agencies to undergo planning to ensure that environmental considerations, such as impacts related to scenic views and the aesthetic environment, are given due weight in decision- making. Because the value of scenic views and the aesthetic environment is subjective, based on the viewer, it is difficult to quantify or estimate impacts. In particular, little guidance exists supporting a standard methodology for assessing visual impacts associated with transmission line projects. A number of methodologies were reviewed to inform the methodology used for this project. For this project, the assessment of impacts was generally based on methods described in the Federal Highway Administration (FHWA) Guidelines for Visual Impact Assessment (FHWA, 2015). FHWA guidelines do not specify thresholds for determining significant impacts, nor do state or local regulations. Therefore, significance was assigned based on criteria similar to those described in The State Clean Energy Program Guide: A Visual Impact Assessment Process for Wind Energy Projects (Vissering et al., 2011). 3. STUDY AREA The FHWA Guidance suggests identifying an Area of Visual Effect (AVE) based on the physical constraints of the environment and the physiological limits of human sight (FHWA, 2015). This concept was used for determining the study area, which takes into account where the project would be visible given the topographical and human sight constraints. Impacts to scenic views and the aesthetic environment would only occur in places where the project would be visible. To identify areas where the project would be visible, a geographic information system (GIS) analysis was conducted. PHASE 2 DRAFT EIS   PAGE C‐2    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Two sets of tools in ArcMap allow a user to run such an analysis: (1) Viewshed, and (2) Observer Points (ESRI, 2016). For this analysis, the viewshed tool was used because it allows use of lines as key visual elements. The viewshed tool creates a raster1 that records the number of times an input point or polyline feature2 can be viewed from a particular area. When polyline input is used, every node3 and vertex4 along each input line is processed as an individual observation point, so an area where multiple vertices can be viewed would have a higher raster value. For this analysis, the EIS Consultant Team used the PSE alignment data (a GIS file that shows where the project would be located) as the input polyline to determine what areas of the landscape have line of sight to the proposed transmission line.5 Applying an offset informs the viewshed model that the line being observed would be located above the ground (Figure C-1). The heights identified in Table C-1 were used to prescribe an offset height to the polyline in the viewshed analysis.6 Table C-1. PSE GIS Alignment Data - Proposed Maximum Pole Height by Segment Segment Option(s) Proposed Maximum Pole Height (feet) Redmond N/A 120’ Bellevue North N/A 100’ Bellevue Central Existing Corridor 115’ Bellevue Central Bypass 1 115’ Bellevue Central Bypass 2 115’ Bellevue South Existing Corridor 95’ Bellevue South SE Newport Way 80’ Bellevue South SE 30th St | Factoria Blvd | Coal Creek Parkway 125’ Bellevue South 124th Ave SE 80’ Newcastle N/A 100’ Renton N/A 125’ Source: PSE, 2016b. 1 A raster is a matrix of cells (or pixels) organized into a grid where each cell contains a value representing information, such as whether or not a view can be seen. 2 A polyline feature is a continuous line composed of one or more line segments. 3 A node is a point at which lines intersect or branch. 4 A vertex is an angular point of a polygon. 5 Note: line of sight does not necessarily mean the object is within the range of human sight. 6 Pole heights were assigned at the “option(s)” level, with the highest proposed pole option being used. PHASE 2 DRAFT EIS   PAGE C‐3    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Figure C-1. Factoring Line Heights (ESRI, 2016) The data used as the “ground” for this analysis were the King County Digital Surface Model (DSM). The King County DSM was used instead of bare earth data because it gives the heights of vegetation and buildings, in addition to taking into account the underlying topography. The EIS Consultant Team used DSM data because in urban environments views are often obstructed by vegetation and buildings, rather than by the topography of the landscape alone (GIS Geography, 2016). Figure C-2 shows the output from the GIS analysis described above. The GIS analysis provides a rough approximation of where the project would be visible. It includes areas where the line would be so small that it is unrealistic that it would be distinguishable on the horizon. Also, in some instances dense areas of tree stands were misinterpreted by the GIS analysis as being a rise in topography from which views could be had, skewing the results to show more areas as being potentially impacted than would actually occur. In general, the highest concentrations of areas with views of the project corridor would be within one-quarter mile of the corridor. This is consistent with what is commonly found for transportation projects (FHWA, 2015). For the purposes of this project, a study area with a one-quarter mile radius from the edge of the proposed transmission line corridor (including all segment options) was used. However, Interstate 405 (I-405) and all areas to the west of I-405 were removed because the freeway provides such a wide separation that the project is not expected to visually impact I-405 drivers or the neighborhoods west of the freeway. The study area focuses on areas where the proposed transmission line would be within the foreground view, where viewers are most likely to experience the scale of the project and observe details and materials. While the project would be visible at greater distances, significant scenic or aesthetic impacts are not probable given the project’s scale relative to its largely mixed urban context. PHASE 2 DRAFT EIS   PAGE C‐4    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Figure C-2. Study Area PHASE 2 DRAFT EIS   PAGE C‐5    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     4. CHARACTERIZING THE AESTHETIC ENVIRONMENT The existing aesthetic environment was characterized through an assessment of the visual character (what is present in the built and natural environments), the affected population (viewers), and the existing visual quality. Visual quality is based on consistency of visual character with viewer preferences. To assess the visual quality of the study area, the visual quality criteria described in the FHWA Guidance were used. These concepts were applied by the EIS Consultant Team in the manner described in the table below based on professional experience and consideration of viewer preferences stated in study area comprehensive plans and public comments received during the EIS process. Table C-2. Application of FHWA Methodology to Determine Visual Quality FHWA Visual Quality Criteria FHWA Description Application Natural Harmony What a viewer likes and dislikes about the natural environment. The viewer labels the natural environment as being either harmonious or inharmonious. Harmony is considered desirable; disharmony is undesirable. High: A natural area that is relatively undisturbed by development. Could include secluded lakes, open plains, forests, etc. Medium: An area with a small amount of development that blends with the natural environment and does not disrupt the natural harmony of the area. Low: An area with a large amount of development where the built environment takes precedence in the viewshed over the underlying natural environment. Built Order What a viewer likes and dislikes about the built environment. The viewer labels the built environment as being either orderly or disorderly. Orderly is considered desirable; disorderly is undesirable. High: A built environment with urban design that is identified in a comprehensive plan or other planning document as being aesthetically pleasing. Medium: An area with consistent building height and form. It does not overtly meet any set design standards, but also is not inconsistent with set design standards. Low: An area with inconsistent building height and form that does not meet set design standards (if they exist). Utility Coherence What the viewer likes and dislikes about the utility environment, which is comprised of the utility’s geometrics, structures, and fixtures. The viewer labels the utility environment as being either coherent or incoherent. Coherent is considered desirable; incoherent is undesirable. High: Minimal utility presence, small poles with few wires*. Configuration is consistent in height and form. Utility infrastructure blends with the rest of the aesthetic environment. Medium: Moderate utility presence. There could be larger, taller poles or more wires.* Configuration is consistent in height and form. Utility infrastructure blends with the rest of the aesthetic environment for the most part. PHASE 2 DRAFT EIS   PAGE C‐6    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     FHWA Visual Quality Criteria FHWA Description Application Low: High utility presence. There are larger, taller poles with configurations that are inconsistent in height and form. The utility infrastructure is the prominent feature in the viewshed and does not blend with the rest of the aesthetic environment. *Note: Changes in wire diameter are not expected to be perceivable and therefore are not considered as part of this analysis  (See Attachment 1).  5. CHARACTERIZING SCENIC VIEWS Scenic views are views of visual resources that are considered special attributes of the study area and region. Visual resources associated with the study area were identified in the Phase 1 Draft EIS based on study area plans, regulatory codes (as summarized in Section 9), and scoping comments. These are listed in Table C-3. The visual resources evaluated in the Phase 2 Draft EIS were selected because there was the potential for significant scenic view impacts under the proposed project. The EIS Consultant Team determined that some of the visual resources identified in the Phase 1 Draft EIS were no longer applicable due to distance, topographic constraints, or the presence of dense vegetation between viewers and the visual resources. Table C-3 details why scenic views of certain Phase 1 visual resources were not evaluated further in the Phase 2 EIS. Table C-3. Identification of Study Area Scenic Views Visual Resource Identified in Phase 1 Included in Phase 2 GIS Analysis? Reason Mount Rainier Yes Scenic views could be impacted by the project. Cascade Mountain Range Yes Scenic views could be impacted by the project. Issaquah Alps (Cougar Mountain, Tiger Mountain, and Squak Mountain) Yes Scenic views could be impacted by the project. Used Cougar Mountain because it is in the foreground. Lake Washington Yes Scenic views could be impacted by the project. Lake Sammamish Yes Scenic views could be impacted by the project. Seattle skyline Yes Scenic views could be impacted by the project. Bellevue skyline Yes Scenic views could be impacted by the project. Lake Sammamish Yes Scenic views could be impacted by the project. Sammamish Valley No Topography makes is unlikely that scenic views would be impacted with the powerline in the foreground and background views would not be significant because the line would be too far away from the viewer. PHASE 2 DRAFT EIS   PAGE C‐7    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Data Used To Assess Impacts to the Aesthetic Environment GIS Shapefiles: - Parks (Bellevue, 2015; Newcastle, 2015; Renton, 2015; Issaquah, 2015; Kirkland, 2015; Redmond, 2015; King County, 2015b) - Water Bodies (Ecology, 2014) - Land Use (King County, 2015a) - Land Cover (NOAA, 2011) - Topography (King County, 2003b) Public Comments Visual Resource Identified in Phase 1 Included in Phase 2 GIS Analysis? Reason Cedar River No Due to topographic constraints and the presence of dense vegetation within the Cedar River ravine, scenic views of the Cedar River are unlikely from outside of the ravine. No residential views of the river would be obstructed by the lines and, due to the topography, the line would be located high enough above the roadway that it would not impact drivers’ views of the river. Therefore, impacts to views of the Cedar River are assessed as impacts to the aesthetic environment, with the primary viewers considered being users of the Cedar River Trail or Riverview Park. Beaver Lake No Visual resource would not be visible from the Phase 2 study area. Pine Lake No Visual resource would not be visible from the Phase 2 study area. 6. IMPACTS TO THE AESTHETIC ENVIRONMENT The assessment of impacts to the aesthetic environment was based on the FHWA concepts of compatibility of impact (degree of contrast), sensitivity to the impact (viewer sensitivity), and degree of impact (whether it would result in a beneficial, neutral, or adverse impact). 6.1 Degree of Contrast To assess impacts to the aesthetic environment, visual simulations were used to determine the degree of contrast produced by the project. The degree of contrast is the extent to which a viewer can distinguish between an object and its background. It was assessed by taking into consideration the project form, materials, and visual character in comparison to existing conditions and the surrounding areas. The tool of identifying landscape units was not employed due to the length of the corridor and the diversity of the natural, cultural, and project landscapes; however, the concept of identifying unique natural, cultural, and project landscapes to select key views was used. For this assessment, the discussion was divided into the natural (topographic, land cover, water bodies) and built (building form, utility infrastructure) environments to reduce confusion associated with use of the terms “cultural” and “project” environments. To assess changes to each component of the aesthetic environment, viewpoints were selected at various locations along the transmission line corridor to show different ways the natural and built PHASE 2 DRAFT EIS   PAGE C‐8    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     environments could be impacted; for instance, areas where the project corridor would cross unique topography, water bodies, vegetation, land uses (different land uses typically have different building forms and impacted viewers), or where the existing transmission infrastructure would be changed (e.g., different pole heights or configurations). Areas identified as being sensitive during the public scoping period were also used as viewpoints (Table C-4). Visual simulations of what the project would look like at these viewpoints provide the foundation for assessing aesthetic impacts. The concept of discussing dynamic versus static viewsheds was adopted as part of the impacts analysis (view duration), but viewsheds were not identified as being dynamic or static. Table C-4. Public Comments that Requested Visual Simulations Suggested Viewpoint Location Rationale behind why it was or was not included Lower Somerset homeowners’ view of Willow 2. Included – covered via the Somerset Drive SE simulation. Factoria Boulevard and Coal Creek Pkwy. Included – covered via the 5365 Coal Creek Parkway simulation. West viewing section of Somerset in Bellevue. Included – covered via the Somerset Drive SE simulation. Newport Way SE corridor from the on the west side of the street. Included – covered via the 12919 SE Newport Way simulation. Public parks and rights-of-way. Included – covered via the Lake Boren Park simulation and 8030 128th Ave SE simulation. Because of the topography of Newcastle, vantage points should include locations on the west and east boundaries of the route. Included – 8030 128th Ave SE simulation looks to the east and Lake Boren Park simulation looks to the west. Because of the topography of Newcastle, vantage points should include vantage points to the east of Coal Creek Parkway from which the project would be visible. Not included – the transmission line would not be visible due to topography and the presence of dense vegetation. Houses that line Somerset Drive SE, all of which will have the lines parallel to the view sides of the houses. Included – covered via the Somerset Drive SE simulation. Newport Way at the driveway of Monthaven Community. Included – covered via the 13357 SE Newport Way simulation. Skyridge/College Hill and Sunset communities. Included – covered via the Skyridge Park (1990 134th Pl SE, Bellevue) simulation. Skyridge hiking trail, which starts at the end of 134th Ave SE (dead end) and ends at the Skyridge Park playground. This is a new trail and has views of Richard's Valley, especially in the winter. Included – covered via the Skyridge Park (1990 134th Pl SE, Bellevue) simulation. Sunset Park should be considered for Route 2. Not included – Sunset Park was considered, but PHASE 2 DRAFT EIS   PAGE C‐9    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Suggested Viewpoint Location Rationale behind why it was or was not included a simulation was not created. The EIS Consultant Team visited that portion of the site and determined that the presence of dense vegetation would reduce the likelihood that the project would be visible. The substation simulation provides a representative simulation. Grand Connection just east of I-405 and the viewing platform at the western edge of the Bellevue Botanical Garden are two of these -- and high tension poles are unsightly. Not included – There are no aesthetic guidelines applicable to the project that are associated with the Grand Connection. The Lake Hills Connector simulation is considered to be sufficient for representing the highest degree of adverse aesthetic impacts in this portion of the study area. The viewing platform at the western edge of the Bellevue Botanical Garden. Not included – EIS Consultant Team visited the site and confirmed that the project would not be visible due to the topography and presence of dense vegetation. Residents east of 108th Street. Not included – outside of study area. Assume commenter meant “108th Avenue.” Residents in western Wilburton. Included – covered via NE 8th Street simulation. Residents in the Spring District. Included - covered via Spring District simulation. Residents looking east from the central business district, west from Wilburton and southwest and south from the Spring District. Not included – outside of study area. Drivers on I-405. Not included – outside of study area. Table C-5 provides the list of viewpoints used in the EIS, the segment they are viewing, and the reasons supporting the selection of each viewpoint (i.e., unique natural or built environment or scoping comment). Table C-6 provides a list of viewpoints that were used to inform the analysis, but were not incorporated directly into the EIS. Figure C-3 shows all of the simulations created by Power Engineers and their locations, and the simulations area included as Attachment 2. To the extent possible, these viewpoints were selected to align with visual simulations that had already been completed for the project. The visual simulations were created by Power Engineers. Their methods for creating the visual simulations are detailed in Attachment 2. Power Engineers collected photos using a full frame Canon 5D Mark II or III professional Digital Camera. All photos were taken with a 50mm. lens. In some extreme foreground situations a 28mm. lens may be used. Power Engineers developed an existing conditions 3D Model of the study area, including terrain and structures. The photos were registered into a 3D modeling program and 3D sun and atmosphere conditions were applied based on notes taken when the photo was shot. Power Engineers then used PLS-CAD model data (3D engineering designs developed for each transmission line structure) provided by PSE to create a 3D rendering. Photoshop was used to create foreground screening PHASE 2 DRAFT EIS   PAGE C‐10    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     elements (e.g., trees, structures, etc.) (Power Engineers, 2016). All of the renderings show brown poles because Patina7 would be applied under all of the segment options. 6.2 Viewer Sensitivity The evaluation of viewer sensitivity was also based on FHWA guidance, and considered viewer exposure and viewer awareness. Exposure considers the proximity, extent, and duration of views. Awareness considers viewer attention and focus, and whether affected views are protected by policy, regulation, or custom (FHWA, 2015). All viewers within the study area were considered to be close to the project. Viewer extent is specific to each component because it depends on the number of viewers impacted. This was assessed by identifying areas with higher residential density and recreational resources that are heavily used. The viewer extent of residential viewers was determined by assigning areas of high, medium, and low population density by assessing American Community Survey 2014 Census block data on a segment-by-segment basis within the quarter-mile radius study area (U.S. Census Bureau, 2014). Figure C-4 shows areas with high, medium, and low population density. The viewer extent of recreational users was assessed by identifying those recreation areas (parks, trails, outdoor recreation facilities) that lie within the study area, and determining whether or not the view or natural setting of the recreation areas is identified as a defining feature (based on findings in the Phase 1 Draft EIS; see Table 11-1 in the Phase 1 Draft EIS, and the recreation analysis in the Phase 2 Draft EIS; see Section 3.6)8. If a recreation area that is used for its views or natural setting would be impacted, how frequently the recreation area is used was assessed. The duration of views is consistent for all components, with residential viewers experiencing the longest view duration due to their stationary nature and fixed views of the transmission line. Recreational users have a shorter view duration that is confined to the time spent at the recreational resource, with park users having longer view duration and trail users, who are more mobile, having shorter view duration. Drivers would have the shortest view duration due to the speed at which they travel. It was assumed that two groups were the most sensitive to changes in the aesthetic environment and scenic views: residents and recreational users in parks and other recreational settings. These two groups would have the greatest exposure to the project because they are often located near the project and would observe the project for longer durations (particularly residential viewers). They would also likely have the greatest awareness, given that these two types of viewers are most often protected by city policies (Section 9). 7 Patina is a film applied to the surface of metals that turns brown as oxidation occurs over long periods of time. 8 Please note: the study area for the scenic views and aesthetic environment assessment is larger than the study area used for the recreation analysis. PHASE 2 DRAFT EIS   PAGE C‐11    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Table C-5. List of Viewpoints and Rationale for Selection Key Viewpoint (KVP) Location Segment/ Option Reason for selecting viewpoint (Natural Environment or Built Environment and why) 1 SE 30th St All Segments/ Options  Shows the new substation when taking into account grading and clearing. 2 Redmond Way Redmond  Representative of the natural environment along the segment (topography and vegetation).  Representative of the built environment (shows project configuration and height for entire segment). 3 13540 NE 54th Pl Bellevue North  Representative of the natural environment along the segment (topography and vegetation).  Representative of the built environment (single-family residential development; project configuration and height for entire segment). 4 13606 Main St Bellevue Central – Existing Corridor  Shows project from rise in topography.  Is identified in the Wilburton Subarea Plan as a key view. 5 13636 Main St Bellevue Central – Existing Corridor  Shows project from rise in topography, but from a side view.  Is identified in the Wilburton Subarea Plan as a key view. 6 12828 Bel-Red Rd Bellevue Central – Bypass 1 and 2 Options  Shows project surrounded by commercial and industrial uses.  Shows project from an area slated for increased density. 7 12253 NE 8th St Bellevue Central – Bypass 1 and 2 Options  Identified in the Wilburton Subarea Plan as a key view. 8 Lake Hills Connector Bellevue Central – Bypass 1 and 2 Options  Identified in the Wilburton Subarea Plan as a key view.  Shows how project would be viewed by future users of the Eastside Rail Corridor. 9 1680 Richards Rd Bellevue Central– Bypass 2 Option  Richards Rd is identified in Richards Valley Subarea Plan as an area where the City wants to preserve the vegetated appearance.  Shows impacts to an area with wetland land cover. PHASE 2 DRAFT EIS   PAGE C‐12    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Key Viewpoint (KVP) Location Segment/ Option Reason for selecting viewpoint (Natural Environment or Built Environment and why)  Shows the project impacts near the Woodridge Trail trailhead. 10 4122 Factoria Blvd SE Bellevue South - Oak 1 and Oak 2 Options (Only used Oak 1 Option for EIS)  Visual connections along Factoria Blvd are protected in the Factoria Subarea Plan.  Oak 1 Option was used in EIS because it is a taller pole configuration with a higher likelihood of aesthetic impacts. 11 5365 Coal Creek Pkwy Bellevue South - Willow 2, Oak 1, Oak 2 Options (Only used Oak 1 Option for EIS)  Identified via a public comment.  Oak 1 Option was used in EIS because it is a taller pole configuration with a higher likelihood of aesthetic impacts. 12 12513 SE 38th St Bellevue South - Oak 2 Option  Shows construction of poles where they do not currently exist. 13 4730 134th PL SE Bellevue South Segment - All Options (Only used Willow 1 Option for EIS)  Identified via public comment.  Shows the option with the tallest poles in the Somerset neighborhood. 14 12892 SE Newport Way Bellevue South Segment - Willow 2 Option  Shows a change in built environment from a 40-foot 12.5kV line on wooden poles to 75-foot steel monopoles.  Shows removal of underbuild and reduction in clutter. 15 8446 128th Ave SE Newcastle  Representative of the built environment (single-family residential development; project configuration and height for entire segment).  Shows the project from the ridge near the corridor. 16 Lake Boren Park Newcastle  View from recreational use.  Shows the project from a lower elevation looking up at the project. 17 1026 Monroe Ave NE Renton  Shows project surrounded by institutional and single-family residences. 18 318 Glennwood Court SE Renton Segment  Shows project surrounded by single- family residential development and placed on a ridge. PHASE 2 DRAFT EIS   PAGE C‐13    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Table C-6. List of Other Simulations that Informed the Analysis Location Segment/Option 13505 NE 75th St Redmond 267 140th Ave NE Bellevue Central – Existing Corridor 106 136th Ave SE Bellevue Central – Existing Corridor 13600 SE 5th St Bellevue Central – Existing Corridor 13633 SE 5th St Bellevue Central – Existing Corridor 13810 Lake Hills Connector Bellevue Central – Existing Corridor 13711 SE 18th St Bellevue Central – Existing Corridor 1990 134th Pl SE Bellevue Central – Existing Corridor 2160 135th PL SE Bellevue Central – Existing Corridor 1227 124th Ave NE Bellevue – Bypass Options 1 and 2 11757 SE 5th St Bellevue – Bypass Options 1 and 2 SE 8th St and Lake Hills Connector Bellevue – Bypass Options 1 and 2 2070 132nd Ave SE Bellevue Central Segment – Bypass Option 2 13630 SE Allen Rd Bellevue South Segment - All Options 13744 SE Allen Rd Bellevue South Segment - All Options 4411 137th Ave SE Bellevue South Segment - All Options 4489 137th Ave SE Bellevue South Segment - All Options 4901 Coal Creek Parkway Bellevue South Segment - All Options 13300 SE 42nd PL Bellevue South Segment - Willow 2 Option 13371 SE Newport Way Bellevue South Segment - Willow 2 Option 13357 SE Newport Way Bellevue South Segment - Willow 2 Option 4256 134th Ave SE Bellevue South Segment - Willow 2 Option 12919 SE Newport Way Bellevue South Segment - Willow 2 Option 12727 SE 73rd Pl Newcastle SE 84th St Newcastle 12732 SE 80th Way Newcastle 7954 129th Pl SE Newcastle 3000 NE 4th St Renton PHASE 2 DRAFT EIS   PAGE C‐14    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Figure C-3. Viewpoint Map PHASE 2 DRAFT EIS   PAGE C‐15    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Figure C-4. Population Density Map PHASE 2 DRAFT EIS   PAGE C‐16    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     7. IMPACTS TO SCENIC VIEWS The assessment of impacts to scenic views was based the potential for view obstruction and the FHWA concept of sensitivity to the impact (viewer sensitivity). 7.1 Scenic View Obstruction A GIS analysis was conducted to identify areas from which a portion of the proposed transmission line would obstruct the view of an identified visual resource. This GIS analysis identified where visual resources can be seen based on the location and height of the visual resource and the topography of the surrounding area. This area was further refined based on a similar analysis that determined where the proposed transmission line could be seen based on the location of the segment, the proposed height of the poles, and the surrounding topography. The outputs from these two analyses were overlaid to determine where the project may impact scenic views. This is a conservative estimate that was qualitatively refined through identification of barriers to views (dense tree stands, etc.). For this analysis, the viewshed tool was also used. To determine the area where scenic views can be observed, a process similar to the one used for the aesthetic environment study area was adopted. However, for this analysis, visual resources were used as observation points and their unique offsets were applied (Table C-7). Table C-7. Visual Resources input into Viewshed Tool Visual Resource Offset Applied Mount Rainier Line of frontage at 14,411 feet (based on mountain height) Cascade Mountain Range Line of frontage at 5,000 feet (based on Typical King County DEM data height) Issaquah Alps (Cougar Mountain) Line of frontage at 1,600 feet (based on Typical King County DEM data height) Lake Washington Line along the eastern shoreline at 20 feet above sea level Lake Sammamish Line along the western shoreline at 30 feet above sea level Seattle skyline Line of downtown frontage with a height of 650 feet (slightly higher than Safeco Plaza) Bellevue skyline Line encompassing downtown Bellevue at 460 feet (slightly higher than Bellevue Towers Two) To assess the areas that would be affected under different build scenarios, the heights of the existing and proposed lines were “burned” into the DSM to identify which areas with scenic views are already impacted by views of a transmission line and which areas with scenic views are not currently impacted, but would be after construction of the project (Table C-8). The heights used for the “proposed maximum pole heights” for the GIS analysis differ slightly from the final proposed maximum heights, due in part to design changes made during the course of the EIS assessment. These design changes were considered qualitatively as part of the impacts assessment, but the EIS Consultant Team decided not to rerun the scenic view obstruction analysis because in some instances PHASE 2 DRAFT EIS   PAGE C‐17    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     a more conservative pole height was used. In the instances where a less conservative pole height was used, the difference was considered to not substantially change the results of the GIS analysis. Table C-8. Existing and Proposed Maximum Pole Height by Roadway Segment Height Used for the GIS Analysis Redmond 120' Bellevue North 100' Bellevue Central Existing 115' Bellevue Central Bypass 1 115' Bellevue Central Bypass 2 115' Bellevue South Oak 1 Corridor: 90’ SE 30th St /Factoria Blvd/Coal Creek Pkwy: 125' Bellevue South Oak 2 Corridor: 90’ SE 30th St /Factoria Blvd/Coal Creek Pkwy: 125' 124th Ave SE: 80' Bellevue South Willow 1 95' Bellevue South Willow 2 Corridor: 95' Newport Way: 80' Factoria Blvd/Coal Creek Pkwy: 90' Newcastle 100' Renton 125' Source: PSE, 2016b. To burn the lines into the DSM, a raster of the proposed alignment was created with a value of 0 assigned to everywhere except along the line, which was assigned a value equal to pole height (specified in Table C-8). Then, using a raster calculator, the line height was burned into the DSM to get a DSM+LINE (DLI) raster (Figure C-5). Figure C-5. Factoring Line Heights PHASE 2 DRAFT EIS   PAGE C‐18    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     The following DLIs were created:  One DLI as if no lines were present.  One DLI where the existing transmission heights would be burned in.  One DLI with the heights for the Redmond, North Bellevue, Newcastle, and Renton segments. These segments can be grouped into one DLI because there are no different pole height options.  Four DLIs for the Bellevue South Segment options.  Three DLIs for bypass Bellevue Central Segment options. Each of the DLIs was used as the ground raster for a viewshed analysis to identify where the scenic resources would be viewable on the landscape, creating results for each pole height scenario. To understand the areas where views would be negatively impacted by the project, areas where scenic views are already impacted by the transmission line were subtracted from the area with scenic views that would be impacted by the proposed transmission line. Figure C-6 shows the output from the GIS analysis described above. Similar to the GIS analysis conducted for the study area, some areas may have been identified as having scenic view impacts but in reality should not have been included because the line would be so small that it is unrealistic that it would be distinguishable on the horizon, or dense areas of tree stands were misinterpreted by the GIS analysis as being a rise in topography from which views could be had (rather than being considered hindrances to views). For areas where it was questionable if scenic views would actually be impacted, a field survey was conducted to verify. In general, areas where potential scenic views were identified had scenic views in the approximate vicinity; however, in some cases these views were less frequent than may have been shown by the analysis depending on the presence of dense vegetation. The only area that was completely eliminated from consideration was where scenic views were identified in the Liberty Ridge area. A field visit conducted on October 7, 2016 confirmed that scenic views from that location were not present due to the topography of the area. The EIS Consultant Team believes that the reason the GIS analysis identified this area as an area with potential scenic view impacts was because the DSM used was from 2002/2003. Since that time, significant grading has occurred to support development of the Liberty Ridge neighborhood. These changes to the topography are thought to have resulted in the loss of scenic views. In general, the highest concentrations of areas with scenic views that could be impacted by the project were within approximately 550 feet of the corridor. 7.2 Viewer Sensitivity Viewer sensitivity was evaluated as described in Section 6.2. PHASE 2 DRAFT EIS   PAGE C‐19    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Figure C-6. Potential Areas Where Scenic Views May Be Impacted PHASE 2 DRAFT EIS   PAGE C‐20    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     8. THRESHOLD OF SIGNIFICANCE The value of scenic views and the aesthetic environment is subjective, making it difficult to quantify or estimate impacts. There is no widely accepted definition of significant visual effects because the significance of an activity varies with the setting and viewer preferences. For this project, significance was determined based on criteria similar to those described in The State Clean Energy Program Guide: A Visual Impact Assessment Process for Wind Energy Projects (Vissering et al., 2011). These criteria, while not developed for transmission lines, were used for wind turbines, which can be similar in height and scale to utility poles and are widely studied for visual impacts. This guide suggests that the following criteria be considered when determining if a project would result in undue or unreasonable visual impacts: violation of aesthetic standards, dominance of the project in views from highly sensitive viewing areas, and failure to take reasonable mitigation measures (Vissering et al., 2011). A review of policies and regulations applicable to the study area revealed that the existing regulatory framework was insufficient for determining significance because no clear written standards are included for impacts to scenic views or the aesthetic environment. To develop a threshold for significance that reflects the policies of the Partner Cities, the EIS Consultant Team held a workshop in August 2016 with staff from the Partner Cities that would potentially experience scenic view or aesthetic impacts (Redmond, Bellevue, Newcastle, and Renton). The purpose of the workshop was to collaboratively define significance thresholds based on policies, past precedent, and practice within the Partner City jurisdictions. During the workshop, city staff were provided with the following:  A map showing where scenic views would be impacted along the entire corridor.  Visual simulations showing key examples of how the project could change the aesthetic environment.  A handout with each city’s applicable policies and regulations. The EIS Consultant Team walked through examples for each segment/option, and the group as a whole refined a set of significance criteria. The following significance criteria were adopted for the EIS evaluation and incorporate findings from the Partner Cities workshop: Less-than-Significant:  Aesthetic environment - The degree of contrast between the project and the existing aesthetic environment would be minimal, or viewer sensitivity is low.  Scenic views - The area with impacted scenic views would not include a substantial number of sensitive viewers, including residential viewers, viewers from parks and trails, or viewers from outdoor recreation facilities; or the degree of additional obstruction of views compared to existing conditions would be minimal. PHASE 2 DRAFT EIS   PAGE C‐21    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Significant:  Aesthetic environment - The degree of contrast between the project and the existing aesthetic environment would be substantial and viewer sensitivity is high.  Scenic views - The area with scenic views impacted includes a substantial number of sensitive viewers, including residential viewers, viewers from parks and trails, or viewers from outdoor recreation facilities; and the degree of additional obstruction of views compared to existing conditions would be substantial. It was agreed that significant impacts should be assigned on a sub-option level. PHASE 2 DRAFT EIS   PAGE C‐22   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   9. SUMMARY OF PLANNING POLICIES AND CODE REQUIREMENTS Table C-9. Planning Policies and Code Requirements Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts King County Eastside Rail Corridor Master Plan 2016 In some cases, bridges may also be locations for viewpoints. N/A Existing landscape that does not need to be removed for trail construction will be evaluated to determine if it is consistent with public use, including aesthetics and overall trail design. N/A Redmond Vision 2030 City of Redmond Comprehensive Plan Views of Mount Rainier, the Cascade Mountains, and Lake Sammamish. N/A Unique public views that provide a sense of place N/A Scenic, public view corridors toward the Cascades and the Sammamish Valley (Plan Policy NR-10). N/A Views of surrounding hillsides, mountains, and tree line N/A Tree stands and views from the valley (Plan Policy N-SV-4) N/A Woodland views from neighborhood residences N/A N/A Throughout the plan, landscaping is encouraged to provide aesthetic value, unify site design, and soften or disguise “less aesthetically pleasing features of a site” (Policy CC-23). The Plan requires “reasonable screening or PHASE 2 DRAFT EIS   PAGE C‐23   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts architecturally compatible design of above ground utilityfacilities, such as transformers and associated vaults” (Policy UT-15). It suggests promoting well-designed utility facilities through use of color, varied and interesting materials, art work, and superior landscape design. Redmond Zoning Code (RZC) Current through June 16, 2015 Appearance of Public Ways Underground electrical facilities if economically-feasible (RZC 21.17). Public view corridors and gateways should be protected (RZC 21.42) N/A Bellevue Bellevue Comprehensive Plan 2015 Urban design that exemplifies a “City in a Park” with tree-lined streets, public art, vast parks, natural areas, wooded neighborhoods, two large lakes, and mountain views. N/A Views of water, mountains, and skylines from public places (Plan Policy UD-62). Link increased intensity of development with increased view preservation (Plan Policy UD-48). N/A Implement new and expanded transmission and substation facilities in such a manner that they are compatible and consistent with the local context and the land use pattern established in the Comprehensive Plan (Plan Policy UT-95). N/A Conduct a siting analysis for new facilities and expanded facilities at sensitive sites (areas in close proximity to residentially-zoned districts) (Plan Policy UT-96). N/A States preference for use of new technology to reduce visual impacts. Green belts and open spaces per Parks and Open Space System Plan. Avoid locating overhead lines in greenbelts or open spaces (Plan Policy UT-69). Distinctive neighborhood character within Bellevue’s diverse neighborhoods (Plan Policy N-9). Design, construct, and maintain facilities to minimize their impact on surrounding neighborhoods (Plan Policy UT-8). PHASE 2 DRAFT EIS   PAGE C‐24   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts Design boulevards adjacent to parks, natural areas and open spaces to reflect scenic elements of the surrounding areas and neighborhoods. Streetscape design should promote a safe and comfortable park-like experience for all users (Plan Policy UD-70). This includes:  Bel-Red Road  Lake Hills Connector  Richards Road  Factoria Blvd SE  Coal Creek Parkway SE Newport Way N/A Bridle Trails Subarea Plan 2015 Wooded, natural, rural, and equestrian character of the Subarea (Plan Policy S-BT-3). N/A N/A Encourage retention of vegetation on the lower slopes of the bluff adjacent to SR 520 at approximately 136th Avenue NE to provide a visual separator between residential areas and the freeway (Plan Policy S-BT-42). Roadsides in Bridle Trails Subarea. Improve roadsides to create a unified visual appearance (Plan Policy S-BT-43). Bel-Red Subarea Plan 2015 Bel-Red Subarea street environment (Plan Policy S-BR-25; S-BR-39; S-BR-59). N/A Bel-Red Subarea parks and open space system (Plan Policy S-BR-35). N/A Wilburton/NE 8th St Subarea Plan 2015 N/A Utilities should be provided to serve the present and future needs of the Subarea in a way that enhances the visual quality of the community (where practical) (Plan Policy S-WI-44) Significant views from park lands (Plan Policy S-WI-11) N/A PHASE 2 DRAFT EIS   PAGE C‐25   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts Views of prominent landforms, vegetation, watersheds, drainage ways, Downtown and significant panoramas in the Subarea (Plan Policy S-WI-40). Key views include:  West from NE 8th Street and NE 5th Street on the ridge between 122nd and 123rd Avenue,  South from the Lake Hills Connector north of SE 8th Street, and  From SE 1st Street and Main Street at the power line right-of-way at 136th Avenue. N/A Southeast Bellevue Subarea Plan 2015 Existing residential character (Plan Policy S-SE-2) N/A Richards Valley Subarea Plan 2015 Views from Woodridge Hill and the wooded areas and wetlands in the valley. Retain the remaining wetlands within the 100-year floodplain along Richards Creek and Kelsey Creek for the aesthetic value and character of the community (Plan Policy S-RV-5). Develop sites in accordance with Sensitive Areas Regulations (Plan Policy S-RV-12). N/A Use common corridors for new utilities if needed (Plan Policy S-RV-20). N/A New development, should install a dense visual vegetative screen along Richards Road (Plan Policy S-RV-31). Eastgate I-90 Corridor Encourage site design that includes visibly recognizable natural features such as green walls, façade treatments, green roofs, and abundant natural landscaping (Plan Policy S-RV-24). PHASE 2 DRAFT EIS   PAGE C‐26   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts Streets and arterials Disturb as little of the natural character as possible when improving streets and arterials (Plan Policy S-RV-26). Green and wooded character of the Richards Road corridor (Plan Policy S-RV-30). N/A Eastgate Subarea Plan 2015 View amenities of adjacent single-family neighborhoods (Plan Policy S-EG-22). N/A N/A Discourage new development from blocking existing views from public spaces (Plan Policy S-EG-23). Factoria Subarea Plan 2015 Natural setting for residential areas N/A Cohesiveness and compatibility of commercial districts Manage change in the commercial district N/A Protect single family neighborhoods from encroachment by more intense uses (Plan Policy S-FA-2). Pathways and access points with views of Sunset Creek, Richards Creek, Coal Creek, (Plan Policy S-FA-18). N/A Visual connections along Factoria Boulevard(Plan Policy S-FA-32). N/A N/A Minimize disruptive effects of utility construction on property owners, motorists, and pedestrians (Plan Policy S-FA-35). Newport Hills Subarea Plan 2015 Emphasize as a distinct visual element thepreservation of existing trees on protected slopes and hilltops (Plan Policy S-NH-44). Use these trees to screen incompatible land uses. N/A Make edges between different land uses distinct without interfering with security or visual access (Plan Policy S-NH-48). Existing visual features such as trees andhilltops, views of water, and passive open N/A PHASE 2 DRAFT EIS   PAGE C‐27   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts space (Plan Policy S-NH-54).Bellevue City Code Current through August 3, 2015 N/A Electrical utility facilities shall be sight-screened through landscaping and fencing (BCC 20.20.255.F). City of Bellevue Draft SMP 2013 Shoreline New or expanded utility systems and facilities shall be designed and aligned to minimize impacts to natural systems and features and shall minimize topographic modification. New or expanded utility systems and facilities shall be co-located underground and within existing or planned improved rights-of-way, driveways, and/or utility corridors whenever possible. Where the visual quality of the shoreline or surrounding neighborhood will be negatively impacted, new or expanded utility systems and facilities shall incorporate screening and landscaping sufficient to maintain the shoreline aesthetic quality and shall provide screening of facilities from the lake and adjacent properties in a manner that is compatible with the surrounding environment. New or expanded utilities shall incorporate shoreline public access, consistent with the requirement contained in LUC 20.25E.060.I, (Public Access). When allowed, utility facilities located above ground shall be: (1) Housed in a building that incorporates design features that are compatible with the character of the surrounding neighborhood or area, unless housing the facility in a structure would fundamentally interfere with the maintenance and operation of the facility. (2) Sight-screened, if the facility does not conform with the standards in paragraph E.3.b.ix.(1) of this section, with evergreen trees, shrubs, and other native landscaping PHASE 2 DRAFT EIS   PAGE C‐28   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts materials planted in sufficient depth to form an effectivesight barrier within five (5) years. Newcastle City of Newcastle 2035 Comprehensive Plan Existing character, scale, and neighborhood quality (Plan Policy LU-G3). N/A Open space, wildlife habitats, recreational areas, trails, connection of critical areas, natural and scenic resources, as well as shoreline areas (Plan Policy LU-G6). N/A Natural features that contribute to the City’s scenic beauty (Plan Policy LU-G8). N/A N/A The City shall require that the undergrounding of new utilitydistribution lines, with the exception of high voltage electrical transmission lines (Plan Policy UT-P1). N/A The City shall require the undergrounding of existing utilitydistribution lines where physically feasible as streets are widened and/or areas are redeveloped based on coordination with local utilities (Plan Policy UT-P2). N/A The City shall promote collocation of major utilitytransmission facilities such as high voltage electrical transmission lines and water and natural gas trunk pipe lines within shared utility corridors, to minimize the amount of land allocated for this purpose and the tendency of such corridors to divide neighborhoods (Plan Policy UT-P3). N/A The City shall encourage utility providers to limitdisturbance to vegetation within major utility transmission corridors to what is necessary for the safety and maintenance of transmission facilities (Plan Policy UT-P8). N/A The City should encourage utility providers to exerciserestraint and sensitivity to neighborhood character in planting appropriate varieties and trimming tree limbs around aerial lines (Plan Policy UT-P9). PHASE 2 DRAFT EIS   PAGE C‐29   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts N/A The City should require utility providers to design andconstruct overhead transmission lines in a manner that is environmentally sensitive, safe, and aesthetically compatible with surrounding land uses (Plan Policy UT-P10). N/A The City should require utility providers to minimize visualand other impacts of transmission towers and overhead transmission lines on adjacent land uses through careful siting and design (Plan Policy UT-P14). N/A The City should require new, modified, or replacement transmission structures (such as lattice towers, monopoles, and the like) to be designed to minimize aesthetic impacts appropriate to the immediate surrounding area whenever practical (Plan Policy UT-P16). N/A The City shall, where appropriate, require reasonable landscape screening of site-specific above-ground utility facilities in order to diminish visual impacts (Plan Policy UT-P20). Renton City of Renton Comprehensive Plan (2015) High volume of trees and clear mountain views. N/A Public scenic views and public view corridors, such as “physical, visual, and perceptual linkages to Lake Washington and Cedar River” (Plan Policy L-55). N/A Natural forms, vegetation, distinctive stands of trees, natural slops, and scenic areas that “contribute to the City’s identity, preserve property values, and visually define the N/A PHASE 2 DRAFT EIS   PAGE C‐30   APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017   Plans Protected Views and Visual Resources Guidance for Reducing Visual Impacts community neighborhoods” (Plan Policy L-56).Lakes and shorelines. N/A Views of the water from public property or views enjoyed by a substantial number of residences. N/A N/A Design shoreline developments to maintain or enhance aesthetic values and scenic views (Plan Policy SH-16). N/A Make facility improvements and additions within existing corridors wherever possible (Plan Policy U-73). City of Renton Municipal Code (RMC) Current through November 16, 2015 Shoreline Design shoreline use and development to maintain shoreline scenic and aesthetic qualities derived from natural features, such as shore forms and vegetative cover (RMC 4-3-090.D.3.a). Prohibits utilities in the Shoreline Natural shoreline environment designation (RMC 4-3-090.E.1). N/A Visual prominence of structures must be minimized, including light, glare, and reflected light (RMC 4-3-090.D.3.b.vii). N/A Aboveground utilities must be screened with masonry, decorative panels, and/or evergreen trees, shrubs, and landscaping sufficient to form an effective sight barrier within a period of five (5) years (RMC 4-6-090.11.a.xvi). City of Renton SMP 2011 Scenic and aesthetic qualities derived from natural features of the shoreline, such as vegetative cover and shore forms (Ordinance No. 5633). N/A PHASE 2 DRAFT EIS   PAGE C‐31    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     10. REFERENCES City of Bellevue. 2015. Parks GIS Data City of Issaquah. 2015. Parks GIS Data. City of Kirkland. 2015. Parks GIS Data. City of Newcastle. 2015. Parks GIS Data. City of Redmond. 2015. Parks GIS Data. City of Renton. 2015. Parks GIS Data. ESRI. 2016. Using Viewshed and Observer Points for visibility analysis. http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/using-viewshed-and-observer- points-for-visibility.htm. FHWA (Federal Highway Administration). 2015. Guidelines for the Visual Impact Assessment of Highway Projects. GIS Geography. 2016. DEM, DSM, DTM Differences. http://gisgeography.com/dem-dsm-dtm- differences/. King County. 2003a. King County 2002/2003 Digital Surface Model (DSM). King County. 2003b. King County 100-foot contours. GIS Data. King County. 2015a. 2012 Assessor Real Property Data and 2015 Parcel Data, updated July 10, 2015. King County. 2015b. Parks GIS Data. NOAA (National Oceanic and Atmospheric Administration). 2011. LandCoverClip.tif. GIS Data. PSE (Puget Sound Energy). 2016a. Segment Alignment GIS Data. Provided to ESA in June 2016. PSE (Puget Sound Energy). 2016b. Segment Data Table. Provided to ESA on July 15, 2016. Power Engineers. 2016. Energize Eastside Photo Simulation Methodology. Memorandum from Jason Pfaff, Department Manager, to Puget Sound Energy. June 10, 2016. U.S. Census Bureau. 2014. Total Population, 2010–2014 American Community Survey 5-Year Estimates. Available: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid= ACS_10_5YR_B01003&prodType=table. Accessed: Aug. 16, 2016. Vissering, Jean; Mark Sinclair; and Anne Margolis. 2011. State Clean Energy Program Guide: A Visual Impact Assessment Process for Wind Energy Projects. Clean Energy States Alliance. May 2011. Ecology (Washington State Department of Ecology). 2014. Water Resources GIS Data. PHASE 2 DRAFT EIS   PAGE C‐32    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Attachment 1. Diameter of Existing Wire and Proposed Wire PHASE 2 DRAFT EIS   PAGE C‐33    APPENDIX C SCENIC VIEWS AND AESTHETIC ENVIRONMENT METHODOLOGY MAY 2017     Attachment 2. Methodology and Visual Simulations MEMORANDUM PAGE 1 OF 2 2041 SOUTH COBALT POINT WAY MERIDIAN, ID 83642 USA PHONE FAX 208-288-6100 208-288-6199 DATE: June 10, 2016 TO: Puget Sound Energy C: FROM: Jason Pfaff, Department Manager SUBJECT: Energize Eastside Photo Simulation Methodology MESSAGE POWER Engineers Used the Following Photo Simulation Approach on the Energize Eastside Transmission Line Project: 1. Key Observation Point Identification (KOPs) – POWER worked with PSE to determine KOP locations. KOPs are loaded into Google Earth, and discussed as a team to ensure all visual issues are addressed. KOP coordinates and markers were prepared for the field photo shoot. 2. Photo Collection – During the field Photo Shoot, POWER collected the following information: a. Camera – POWER uses a full frame Canon 5D Mark II or III professional Digital Camera. All photos are taken with a 50mm. lens. In some extreme foreground situations a 28mm. lens may be used. Up to 3 images were taken from a single location. b. Atmospheric Conditions – POWER documented the following information, as it has an impact of the photo simulation accuracy. i. Date, Time of Day (Hour/Minutes) – Determines color of sunlight, shadow location and irradiance levels. ii. Atmospheric conditions – Haze and light diffusion has an impact on contrast at distance iii. Lens length (50 mm is typical, in some cases 28mm) 3. Post field photo shoot – After the photography collection, representative photography from each KOP were compiled into a photo KMZ for PSE to review photography and locations. 4. 3D Existing Conditions Model – POWER developed an existing conditions 3D Model of the study areas including terrain and structures. The existing conditions models were used in the 3D photo registration process. Once the 3D existing conditions model has been developed using a minimum of 30 meter contour elevation data, GPS data was be imported into the 3D model and checked for spatial accuracy. 5. 3D Photo Registration – All photos carried forward for photo simulation development were registered into a 3D modeling program. Virtual Cameras were aligned with the field camera (Canon 5D Mark II, 5D Mark III) through the use of GPS, compass heading and horizontal angle information. Accuracy was further refined by importing and aligning the existing 3D model information into the 3D Program and ensuring it aligned exactly with the photographic background. MEMORANDUM POWER ENGINEERS, INC. PAGE 2 OF 2 6. 3D Sun and Atmospheric Conditions – POWER imported all atmospheric data into the 3D Software to develop a sun and atmospheric system that matched the photography. 7. 3D Proposed Project Development – POWER developed the proposed project into a 3D Model. PSE worked with POWER to provide the PLS-CAD model data, as with any other CAD and GIS data available. PLS-CAD models are 3D engineering designs developed for each transmission line structure. All information was imported into the 3D existing conditions model and checked for accuracy. 3D materials (Corten Steel or Wood), and associated specular reflectance information were applied to the proposed 3D information. 8. 3D Rendering – After all information has been properly aligned, atmospherics checked and materials applied, POWER “rendered” the 3D information over the top of the 2D photography. The result was a new 3D image with an alpha channel allowing existing and proposed information to be separated different layers. 9. Photoshop – Photoshop was used in the last step of the process. Foreground screening elements such as trees, structures, etc are extracted and placed on separate layers. Proposed transmission line information was placed on separate layers, and background information is placed on their own layers. Separation of layers is an important step; as it allows for fine-tune adjustments to color, grain, and depth of field, atmospherics and contrast. Once all elements have been correctly adjusted and masking elements correct, all layers were merged into one single photo simulation. 10. Board Layouts – POWER created existing and proposed layouts, showing both images side by side in a PDF form. Sincerely, Jason Pfaff Director of Visualization Services TimeViewing DirectionDateAddress2:59 PMNorthwestPole Heights: Existing Conditions~50 feetPole Heights: Conceptual Project~85 feet3/8/2016Redmond Way, RedmondPhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions3/16/2016Conceptual ProjectKOPNORTH 15SEGMENT1 Existing Conditions Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 13505 NE 75th St, Redmond Date 3/8/2016 Time 2:41 PM Viewing Direction South Existing Pole Heights -75feet Proposed Pole Heights -110 feet I energ1ze EASTSIDE KOP NORTH 14 SEGMENT 1 • PUGET SOUND ENERGY 1Pole Heights: Existing Conditions ~55 feet ~90 feetPole Heights: Conceptual ProjectKOP North 3SEGMENT 1 Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 267 140th Ave NE, Bellevue Date 5/13/2016 Time 10:40AM Viewing Direction North Existing Pole Heights -60 feet Proposed Pole Heights -95feet I energ1ze EASTSIDE KOP CENTRAL 22 SEGMENT 1 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 13606 Main St, Bellevue Date 3/30/2016 Time 3:52 PM Viewing Direction North Existing Pole Heights -50 feet Proposed Pole Heights -100 feet I energ1ze EASTSIDE KOP CENTRAL 20 SEGMENT 1 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review • l?-' ' ~ "JI tl~ '· ~ • :"", ,,., <; - Address 106136th Ave SE, Bellevue Date 3/30/2016 Time 3:48 PM Viewing Direction South Existing Pole Heights -75feet Proposed Pole Heights -110 feet I energ1ze EASTSIDE KOP CENTRAL 21 SEGMENT 1 • PUGET SOUND ENERGY Address 13600 SE 5th St, BellevueDate 4/2/2014Time 2:54 PMViewing Direction NorthPole Heights: Existing Conditions ~60 feetPole Heights: Conceptual Project ~100 feet1 Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review 8/10/2016 . -_,,,,,,_-~_ Address 13810 Lake Hills Connector, Bellevue Date an /2016 Time 2:09 PM Viewing Direction West Existing Pole Heights NA Proposed Pole Heights -100feet I energ1ze EASTSIDE KOP CENTRAL 25 BYPASS • PUGET SOUND ENERGY Address 13711 SE 18th St, BellevueDate 4/2/2014Time 3:19 PMViewing Direction WestPole Heights: Existing Conditions ~55 feetPole Heights: Conceptual Project ~90 feet1 Existing Conditions Conceptual Project i-----------~~=·,==:::::::!... Photo simUlations are for discussion purposes only and may change pending public, regulatory and utility review Address 1990 134th Pl SE, Bellevue Date Time Viewing Direction Existing Pole Heights Proposed Pole Heights I energ1ze EASTSIDE 3/30/2016 3:22 PM South 55feet -95feet KOP CENTRAL 28 SEGMENT I • PUGET SOUND ENERGY Address 2160 135th Pl SE, BellevueDate 3/31/2014Time 4:00 PMViewing Direction SoutheastPole Heights: Existing Conditions ~55 feetPole Heights: Conceptual Project ~95 feet1SEGMENT Existing Conditions Photo simulations are for di scussion purposes onl y and may change pending publ ic, regulatory and utili ty re view Conceptual Project 5/5/2016 Time Viewing Direction Date Address 3:48 PM South 3/30/2016 136th Ave NE & SE 1st St E KOP SEGMENT CENTRAL 21Address SE 30th Street, Bellevue Date 7/25/2016 Viewing Direction East Pole Heights: Existing Conditions ~65-70 feet Pole Heights: Conceptual Project ~70-90 feet Richards Creek SUBSTATION Existing Conditions Conceptual Project 1/13/2017 Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 12828 Bel-Red Rd, Bellevue Date 7/15/2016 Time 11:30 AM Viewing Direction Southwest Existing Pole Heights NA Proposed Pole Heights -120feet I energ1ze EASTSIDE KOP CENTRAL 26 BYPASS • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 1227 124th Ave NE, Bellevue Date 8/24/2016 Time 5:31 PM Viewing Direction South Existing Pole Heights NA Proposed Pole Heights -90feet I energ1ze EASTSIDE KOP CENTRAL 36 BYPASS • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 12253 NE 8th St, Bellevue Date 8/24/2016 Time 5:10 PM Viewing Direction West Existing Pole Heights NA Proposed Pole Heights -100feet I energ1ze EASTSIDE KOP CENTRAL 29 BYPASS • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 11751 SE 5th Street, Bellevue Date 9/12/2016 Time 1:58 PM Viewing Direction Northwest Existing Pole Heights NA Proposed Pole Heights 100-105 feet KOP CENTRAL 33 BYPASS energize EASTSIDE .PUGET SOUND ENERGY Existing Conditions Photo simul ati ons are for discussion purpose s onl y and may change pending public, re gul atory and utility review Conceptual Project 1/25/2017 Time Viewing Direction Date Address 2:58 PM East 6/7/2016 Lake Hills Connector, Bellevue KOP CENTRAL 38 Existing Pole Heights NA Proposed Pole Heights ~100 feet BYPASS . Existing Conditions Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address SE 8th St and Lake Hills Connector, Bellevue Date 6/7 /2016 Time 2:20 PM Viewing Direction Northwest Existing Pole Heights NA Proposed Pole Heights -110 feet I energ1ze EASTSIDE KOP CENTRAL 23 BYPASS • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 1680 Richards Rd, Bellevue Date Time Viewing Direction Existing Pole Heights Proposed Pole Heights I energ1ze EASTSIDE 8/24/2016 4:09 PM Northwest NA -110 feet KOP CENTRAL 27 BYPASS • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 2070 132nd Ave SE, Bellevue Date 6fl/2016 Time 1:37 PM Viewing Direction North Existing Pole Heights NA Proposed Pole Heights -100 feet KOP CENTRAL 24 BYPASS energize EASTSIDE .PUGET SOUND ENERGY TimeViewing DirectionDateAddress1:44 PMNortheast3/30/201613630 SE Allen Rd, Bellevue Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/13/2016Conceptual ProjectKOP SOUTH 24SEGMENT2Pole Heights: Existing Conditions ~60 feetPole Heights: Conceptual Project ~95 feet TimeViewing DirectionDateAddress1:42 PMNortheastPole Heights: Existing ConditionsPole Heights: Conceptual Project ~65 feet ~95 feet3/30/201613744 SE Allen Rd, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/13/2016Conceptual ProjectKOP SOUTH 25SEGMENT2 2Pole Heights: Existing Conditions~50 - 60 feetPole Heights: Conceptual Project~65 feet, Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions J 5/09/2016 Conceptual Project Time Viewing Direction Date Address 9:32 AM North 4/10/2014 4489 137th Ave SE KOP SEGMENT CENTRAL 15 Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions J 5/09/2016 Conceptual Project Time Viewing Direction Date Address 9:32 AM North 4/10/2014 4489 137th Ave SE KOP SEGMENT CENTRAL 15Address 4489 137th Ave SE, Bellevue Date 4/10/2014 Time 9:32 AM Viewing Direction North Pole Heights: Existing Conditions ~50 - 60 feet Pole Heights: Conceptual Project ~65 feet 2 TimeViewing DirectionPole Heights: Existing ConditionsDateAddress1:00 PMNorthwestNAPole Heights: Conceptual Project 3/30/201613300 SE 42nd Place, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/19/2016Conceptual ProjectKOPSOUTH 28SEGMENT2~70 feet TimeViewing DirectionDateAddress1:30 PMNortheastPole Heights: Existing ConditionsPole Heights: Conceptual Project~40 - 50 feet~70 feet3/30/201613371 SE Newport Way, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/13/2016Conceptual ProjectKOPSOUTH 26SEGMENT2 TimeViewing DirectionDateAddress1:25 PMNorthwestPole Heights: Existing Conditions~ 40 - 50 feetPole Heights: Conceptual Project~ 70 feet3/30/201613357 SE Newport Way, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/13/2016Conceptual ProjectKOPSOUTH 27SEGMENT2Address 13357 SE Newport Way, BellevueDate 3/30/2016Time 1:25 PMViewing Direction NorthwestPole Heights: Existing Conditions ~40 - 50 feetPole Heights: Conceptual Project ~70 feet1 TimeViewing DirectionDateAddress1:04 PMNorthwestPole Heights: Existing ConditionsPole Heights: Conceptual Project~40 - 50 feet70 feet3/30/20164256 134th Ave SE, BellevueExisting Conditions4/19/2016Conceptual ProjectKOPSOUTH 29Due to existing vegetation, views of the proposed transmission line are blocked from this location.Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review.SEGMENT2 TimeViewing DirectionDateAddress2:02 PMEastPole Heights: Existing Conditions~40 feetPole Heights: Conceptual Project~70 feet3/30/201612919 SE Newport Way, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/19/2016Conceptual ProjectKOPSOUTH 31SEGMENT2 TimeViewing DirectionDateAddress2:01 PMWestPole Heights: Existing Conditions~40 feetPole Heights: Conceptual Project~75 feet3/30/2016 12892 SE Newport Way, BellevuePhoto simulations are for discussion purposes only and may change pending public, regulatory and utility review Existing Conditions4/19/2016Conceptual ProjectKOPSOUTH 30SEGMENT2 Existing Conditions Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 4122 Factoria Blvd SE, Bellevue Date sn1201s Time 12:24 PM Viewing Direction North Existing Pole Heights -SO feet Proposed Pole Heights -90feet I energ1ze EASTSIDE KOP CENTRAL 13 OAK 1 -SEGMENT 2 • PUGET SOUND ENERGY Existing Conditions Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 4122 Factoria Blvd SE, Bellevue Date sn1201s Time 12:24 PM Viewing Direction North Existing Pole Heights -SO feet Proposed Pole Heights -90feet I energ1ze EASTSIDE KOP CENTRAL 13 OAK 2 -SEGMENT 2 • PUGET SOUND ENERGY Existing Conditions Conceptual Project I I I I 1/ I I // I I Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 12513 SE 38th St, Bellevue Date 3/30/2016 Time 3:00 PM Viewing Direction Southeast Existing Pole Heights NA Proposed Pole Heights -70 feet I energ1ze EASTSIDE KOP SOUTH 34 SEGMENT 2 • PUGET SOUND ENERGY Existing Conditions Conceptual Project I I I I 1/ I I // I I Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 12513 SE 38th St, Bellevue Date 3/30/2016 Time 3:00 PM Viewing Direction Southeast Existing Pole Heights NA Proposed Pole Heights -70 feet I energ1ze EASTSIDE KOP SOUTH 34 SEGMENT 2 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 5365 Coal Creek Parkway, Bellevue Date 9/12/2016 Time 4:36 PM Viewing Direction Northwest Existing Pole Heights 65feet Proposed Pole Heights 75-80feet I energ1ze EASTSIDE KOP CENTRAL 35 OAK 1 -SEGMENT 2 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 5365 Coal Creek Parkway, Bellevue Date 9/12/2016 Time 4:36 PM Viewing Direction Northwest Existing Pole Heights 65feet Proposed Pole Heights 75-80feet I energ1ze EASTSIDE KOP CENTRAL 35 OAK 2 -SEGMENT 2 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 5365 Coal Creek Parkway, Bellevue Date 9/12/2016 Time 4:36 PM Viewing Direction Northwest Existing Pole Heights 65feet Proposed Pole Heights 75-80feet I energ1ze EASTSIDE KOP CENTRAL 35 WILLOW 1 -SEGMENT 2 • PUGET SOUND ENERGY Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 5365 Coal Creek Parkway, Bellevue Date 9/12/2016 Time 4:36 PM Viewing Direction Northwest Existing Pole Heights 65feet Proposed Pole Heights 75-80feet I energ1ze EASTSIDE KOP CENTRAL 35 WILLOW 2 -SEGMENT 2 • PUGET SOUND ENERGY 1026 Monroe Ave NE, RentonPole Heights: Conceptual Project~90 feetPole Heights: Existing Conditions~55 feet3 ! • " •• Existing Conditions Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review . -~··· .. .,-:· .,,..,._ Address 3000 NE 4th St, Renton Date 3/8/2016 Time 1:55 PM Viewing Direction North Existing Pole Heights -65feet Proposed Pole Heights -100feet I energ1ze EASTSIDE KOP SOUTH 23 SEGMENT 3 • PUGET SOUND ENERGY Existing Conditions 1 Conceptual Project Photo simulations are for discussion purposes only and may change pending public, regulatory and utility review Address 318 Glennwood Ct SE, Renton Date 8/24/2016 Time 10:20AM Viewing Direction North Existing Pole Heights -50-70feet Proposed Pole Heights -90feet I energ1ze EASTSIDE KOP SOUTH 24 - W SEGMENT 3 • PUGET SOUND ENERGY Critical Areas Regulations by City D    PHASE 2 DRAFT EIS   PAGE D‐1   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017   APPENDIX D. CRITICAL AREAS REGULATIONS BY CITY City/County Critical Area Description Mitigation City of Redmond (Redmond Zoning Code (RZC) Section 21.64.010) General (applicable to all critical areas) Utility installation, construction, and associated facilities and lines are exempt from CAO regulations if located in City road ROWs and are subject to restoration. If not exempt, then utilities project (facilities and poles) are prohibited from locating in critical areas but are allowed in critical area buffers provided mitigation standards are met. A critical areas permit is required. Mitigation is required (for all critical areas) to be provided on-site, in-kind if feasible. If not feasible, then off-site (within Redmond city limits), out-of-kind mitigation may be considered. RZC 21.64.030 Wetlands Wetlands are categorized according to Class I, II, III, and IV based on the Ecology Wetland Rating System. Buffers range from 25-300 feet. Alterations to category I wetlands are prohibited, alterations to II, III, and IV may be allowed subject to performance standards and mitigation. Wetland acreage replacement ratios are required for mitigation (in addition to general mitigation requirements) and determined according to mitigation activity (creation, reestablishment, rehabilitation, and/or enhancement) and Category. RZC 21.64.020 Streams Streams are classified according to Class I, II, III, and IV based on fish use. Buffers range from 25 to 200 feet. Utility facilities and poles may be permitted within the stream buffer if no feasible alternative location exists. Additional specific mitigation standards (outside of general requirements) apply in restoration or enhancement of stream corridors, including: using native, adaptable, and perennial plants; depth and type of substrate; planting densities; fertilizer application; pesticide use limitations, etc.    PHASE 2 DRAFT EIS   PAGE D‐2   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation RZC 21.64.020 Fish and Wildlife Habitat Conservation Areas (FWHCAs) Classification of FWHCAs determined by adopted City maps, Washington Department of Fish and Wildlife Priority Habitats and Species maps, Washington State Conservation Commission habitat-limiting factors reports, federal and state info, and technical reports. Alterations to FWHCAs may be permitted subject to mitigation. Additional mitigation measures are required during mitigation planning: a)consider habitat in site planning and design; b) locating buildings and structures that preserve and minimize adverse impacts to important habitat areas; c)integrate retained habitat into open space and landscaping consistent with RZC 21.32; d)where possible, consolidate habitat and vegetated open space in contiguous blocks; e)Locate habitat contiguous to other habitat, open space, or landscaped areas to contribute to a continuous system or corridor that provides connections to adjacent habitat areas; f) Use native species in any landscaping of disturbed or undeveloped areas and in any enhancement of habitat or buffers; g) Emphasize heterogeneity and structural diversity of vegetation in landscaping; h) Remove and/or control any noxious weeds or animals as defined by the City; and i). Preserve significant trees, preferably in groups, consistent with RZC 21.72, Tree Preservation, and with achieving the objectives of these standards. RZC 21.64.050 Critical Aquifer Recharge Areas (CARAs) CARAs are classified into Wellhead Protection Zone 1, 2, 3, and 4 based on proximity to and travel time of groundwater to City's public water source wells. Utility facilities and poles are permitted for location within these zones subject to the performance standards specific to each zone in RZC 21.64.050.D. No additional mitigation measures.    PHASE 2 DRAFT EIS   PAGE D‐3   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation City of Bellevue Land Use Code (LUC) Part 20.25H LUC 20.25H.215 (mitigation sequencing) 20.25H.220 (Mitigation and restoration plan requirements) General Critical Areas Land Use Permit is required for any utility facilities and poles located in any of the designated critical areas and/or buffers. Require mitigation or restoration plan, and mitigation sequencing LUC 20.25H.095 (designation of critical area and buffers) 20.25H.100 (performance standards) 20.025H.105 (Mitigation and monitoring - additional provisions) Wetlands Wetlands are classified according to Category I, II, III, and IV using the Ecology Wetland Rating System. Buffers range from 40 to 225 feet. Structure setbacks range from 0-20 feet. Utility facilities and poles may be allowed in a wetland and/or wetland buffer subject to performance standards (20.25H.100) and mitigation. Mitigation actions that require compensation of impacted critical area buffer are required to occur in the following order of preference and in the following locations: a. On-site, through replacement of lost critical area buffer; b. On-site, through enhancement of the functions and values of remaining critical area buffer; c. Off-site, through replacement or enhancement, in the same sub-drainage basin; d. Off-site, through replacement or enhancement, out of the sub-drainage basin but in the same drainage basin. Wetland Acreage replacement ratios apply to creation or restoration mitigation activities: Category I, 6-to-1; Category II, 3-to-1; Category III, 2-to-1; Category IV, 1.5-to-1. Enhancement of existing significantly degraded wetlands may also be allowed subject to a critical areas report.    PHASE 2 DRAFT EIS   PAGE D‐4   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation LUC 20.25H.075 (designation of critical areas and buffers) 20.25H.080 (performance standards) Streams Streams are classified according to Type S, F, N and O based on the Washington State Department of Natural Resources (WDNR) typing. Buffers range from 25-100 feet. Structure setbacks range from 0-50 feet. Stream channels can be modified for new or expanded utility facilities and poles, subject to performance standards (LUC 20.25H.080) and mitigation. A. Mitigation plans for streams and stream critical area buffers are required to provide mitigation for impacts to critical area functions and values in the following order of preference: 1. On-site, through replacement of lost critical area buffer; 2. On-site, through enhancement of the functions and values of remaining critical area buffer; 3. Off-site, through replacement or enhancement, in the same sub-drainage basin; 4. Off-site, through replacement or enhancement, out of the sub-drainage basin but in the same drainage basin. Mitigation off-site and out of the drainage basin shall be permitted only through a critical areas report. B. Buffer Mitigation Ratio. Critical area buffer disturbed or impacted under this part shall be replaced at a ratio of one-to-one. LUC 20.25H.150 (Designation of critical area) 20.25H.155 (uses in habitat for species of local importance) 20.25H.160 (performance standards) Habitat Associated with Species of Local Importance Buffers depend if they're required for known species or are 35 feet for naturally occurring ponds w/o any other CA designation. Utility facilities and poles are allowed within habitat associated with species of local importance subject to the following performance standards (LUC 20.25H.160) : If habitat associated with species of local importance will be impacted by a proposal, the proposal shall implement the wildlife management plan developed by the Department of Fish and Wildlife for such species. Where the habitat does not include any other critical area or critical area buffer, compliance with the wildlife management plan shall constitute compliance with this part. No additional mitigation measures.    PHASE 2 DRAFT EIS   PAGE D‐5   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation City of Newcastle Municipal Code (NMC), Chapter 18.24 Critical Areas NMC 18.24.130 (mitigation and monitoring) 18.24.135 (off-site mitigation) General A. If mitigation is required to compensate for adverse impacts, unless otherwise provided, an applicant shall: 1. Mitigate adverse impacts to: a. Critical areas and their buffers; and b. The development proposal as a result of the proposed alterations on or near the critical areas; and 2. Monitor the performance of any required mitigation. On-site mitigation is preferred, but off-site mitigation (in same drainage subbasin as development proposal site) can be approved if on-site isn't practical and off-site mitigation will achieve equivalent or greater hydrological, water quality and wetland or aquatic area functions.    PHASE 2 DRAFT EIS   PAGE D‐6   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation NMC 18.24.310 (categories) 18.24.315 (Buffers) 18.24.316 (development standards) 18.24.320 (permitted alterations) 18.24.325 (specific mitigation requirements) Wetlands Wetlands are classified into Category I, II, III, and IV based on the Ecology Wetland Rating System. Buffers range between 25 and 225 feet depending on Category and land use. If no practical alternative location exists utility facilities and poles can be located within wetland buffers if: 1. The utility corridor is not located in a buffer where the buffer or associated wetland is used as a fish spawning area or by species listed as endangered or threatened by the state or federal government or contains critical or outstanding actual habitat for those species or heron rookeries or raptor nesting trees; 2. The construction area and resulting utility corridor are the minimum widths practical; 3. Except as provided in subsection (G) of this section, the utility corridor is located within the outer 25 percent of the buffer or within a roadway, the improved area of an existing utility corridor or the improved area of an approved trail; 4. The wetland and its buffer are protected during utility corridor construction and maintenance; 5. The utility corridor is aligned to avoid cutting significant trees, to the maximum extent practical; 6. Vegetation removal is limited to the minimum necessary to construct the corridor; 7. Vegetation removal for the purpose of corridor maintenance is the minimum necessary to maintain the utility’s function; 8. Any corridor access for maintenance is at specific points into the buffer rather than by a parallel road, to the maximum extent practical; 9. If the department determines that a parallel maintenance road is necessary, the following conditions shall be complied with: a. The width of the roadway shall be as small as possible and not greater than 15 feet; and b. The location of the roadway shall be contiguous to the utility corridor on the side farthest from the wetland; Development subject to performance standards (18.24.316) and mitigation. In addition to general mitigation requirements, mitigation for wetland or wetland buffer impacts: A. Mitigation measures must achieve equivalent or greater wetland functions, including, but not limited to: 1. Habitat complexity, connectivity and other biological functions; and 2. Seasonal hydrological dynamics, as provided in the King County Surface Water Design Manual; B. The following ratios of area of mitigation to area of alteration apply to mitigation measures: 1. For alterations to a wetland buffer, a ratio of one to one; and 2. For alterations to a wetland, proposed mitigation shall be in compliance with the acreage replacement ratios in NMC 18.24.325. C. Credit/Debit Method. To more fully protect functions and values, and as an alternative to the mitigation ratios found in the joint guidance Wetland Mitigation in Washington State Parts I and II (Ecology Publication No. 06-06-011a-b, Olympia, WA, March 2006), the administrator may allow mitigation based on the “credit/debit” method developed by the Department of Ecology in Calculating Credits and Debits for Compensatory Mitigation in Wetlands of Western Washington: Final Report.    PHASE 2 DRAFT EIS   PAGE D‐7   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation NMC 18.24.306 (classifications) 18.24.307 (development standards) 18.24.308 (permitted alterations) 18.24.309 (specific mitigation requirements) Streams Streams are classified as Types, F, Np, and Ns based on the WDNR typing system. Buffers range between 25 and 200 feet. If no practical alternative location exists utility corridors in stream buffers are allowed if: 1. The utility corridor is not located in a buffer where the buffer or associated stream is used by species listed as endangered or threatened by the state or federal government or contains critical or outstanding actual habitat for those species or heron rookeries or raptor nesting trees: 2. The construction area and resulting utility corridor are the minimum widths practical; 3. Except as provided in subsection (E) of this section, the utility corridor is located within the outer 25 percent of the buffer or within a roadway, the improved area of an existing utility corridor or the improved area of an approved trail; 4. The stream and its buffer are protected during utility corridor construction and maintenance; 5. The utility corridor is aligned to avoid cutting significant trees, to the maximum extent practical; 6. Vegetation removal is limited to the minimum necessary to construct the corridor; 7. Vegetation removal for the purpose of corridor maintenance is the minimum necessary to maintain the utility’s function; 8. Any corridor access for maintenance is at specific points into the buffer rather than by a parallel road, to the maximum extent practical; 9. If the department determines that a parallel maintenance road is necessary, the following conditions shall be complied with: a. The width of the roadway shall be as small as possible and not greater than 15 feet; and b. The location of the roadway shall be contiguous to the utility corridor on the side farthest from the stream; and subject to mitigation In addition to general mitigation requirements, mitigation for streams or their buffers is required to include: 1. For permanent alterations, restoration or enhancement of the altered stream or buffer, as determined by the city, using the following formulae: a. For mitigation on site: i. Correcting the adverse impact to any class of stream by repairing, rehabilitating or restoring the affected stream or buffer shall be on a 1:1 areal and functional basis; ii. Enhancement or restoration which is not mitigation of an alteration associated with a Type F, Np or Ns stream shall be on a 1.5:1 area and functional basis; iii. Enhancement or restoration which is not mitigation of an alteration associated with a Type S stream shall be on a 2:1 area and functional basis; b. For mitigation off site: i. Enhancement or restoration which is not mitigation of an alteration associated with a Type F, Np or Ns stream shall be on a 2:1 area and functional basis; ii. Enhancement or restoration which is not mitigation of an alteration associated with a Type S stream shall be on a 3:1 area and functional basis; and 2. For temporary alterations, restoration of the altered stream or buffer, as determined by the city; Off-site mitigation is only approved if it isn't practical to mitigate on site and it will achieve biologic, habitat, and hydrologic functions equivalent to or better than on-site mitigation.    PHASE 2 DRAFT EIS   PAGE D‐8   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation NMC 18.24.302 Fish and Wildlife Habitat Conservation Areas Designated FWHCAs include: areas with which state or federally designated endangered, threatened, and sensitive species have a primary association; state priority habitats and areas associated with state priority species; state-designated priority habitat or critical habitat for state-designated species; habitats and species of local importance; naturally occurring ponds under 20 acres; waters of the state; lakes, ponds, streams, and rivers planted with game fish; and land useful for preserving habitat and open space connections. Buffers based on a CAR. Utility facilities and poles located in FWHCAs subject to development standards (18.24.305) and mitigation. Mitigation of alterations to habitat conservation areas shall achieve equivalent or greater biological functions. Mitigation shall address each function affected by the alteration to achieve functional equivalency or improvement on a per function basis. Mitigation shall be detailed in a fish and wildlife habitat conservation area mitigation plan, which may include the following as necessary: a. A native vegetation plan; b. Plans for retention, enhancement or restoration of specific habitat features; c. Plans for control of nonnative invasive plant or wildlife species; and d. Stipulations for use of innovative, sustainable building practices. City of Renton Municipal Code (RMC) Chapter 4-3-050 RMC 4-3-050.C.3 (exemptions - critical areas and buffers) RMC 4-3-050.G.2 (critical area buffers and structure setbacks from buffers) RMC 4-3-050.L. (mitigation maintenance and monitoring) General Utilities may be located within geologic hazard areas, habitat conservation areas, streams and lakes (Types F, Np, & Ns), and wetlands when they area within existing and improved public road rights-of-way or easements. If activities exceed the existing improved area or the public right-of-way, this exemption does not apply. Where applicable, restoration of disturbed areas would need to be conducted. Overbuilding or replacement of existing utility systems may occur in geologic hazard areas, habitat conservation areas, or wetlands if the work does not increase the footprint of the structure or line by more than 10% within the critical area and/or buffer areas, and occurs in the existing right-of-way boundary or easement boundary. Mitigation shall be provided on site, unless on-site mitigation is not scientifically feasible due to physical features of the property. The burden of proof shall be on the applicant to demonstrate that mitigation cannot be provided on site. When mitigation cannot be provided on site, mitigation shall be provided in the immediate vicinity of the permitted activity on property owned or controlled by the applicant, and identified as such through a recorded document such as an easement or covenant, provided such mitigation is beneficial to the habitat area and associated resources. In-kind mitigation shall be provided except when the applicant demonstrates and the City concurs that greater functional and habitat value can be achieved through out-of-kind mitigation.    PHASE 2 DRAFT EIS   PAGE D‐9   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation When a mitigation plan is required, the proponent shall submit a final mitigation plan for the approval of the Administrator prior to the issuance of building or construction permits for development. The proponent shall receive written approval of the mitigation plan prior to commencement of any construction activity. Where the City requires increased buffers rather than standard buffers, it shall be noted on the subdivision plan and/or site plan. RMC 4-3-050.G.2 (critical area buffers and structure setbacks from buffers) RMC 4-3-050.6 Habitat Conservation Areas Critical Habitats are habitats that have a primary association with the documented presence of non-salmonid or salmonid species (RMC 4-3-090.L1)) species proposed or listed by the Federal government or State of Washington as endangered, threatened, sensitive and/or of local importance. Buffers consist of an undisturbed area of native vegetation, or areas identified for restoration, established to protect the integrity, functions and values of the affected habitat. Critical area buffer widths are established based on: (1) the type and intensity of human activity proposed, (2) recommendations contained within a habitat assessment report, and (3) management recommendations issued by the Washington Department of Fish and Wildlife. Structure setback beyond the buffer is 15 ft. The Administrator may approve mitigation to compensate for adverse impacts of a development proposal to habitat conservation areas through use of a federally and/or state certified mitigation bank or in-lieu fee program. See RMC 4-3-050.L.    PHASE 2 DRAFT EIS   PAGE D‐10   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation RMC 4-3-050.G.2 (critical area buffers and structure setbacks from buffers) RMC 4-3-050.G.7 (streams and lakes) RMC 4-3-050.J.2 (Alterations to Critical Areas) 4-3-050.I.2 (Alterations to Critical Areas Buffers) Streams and Lakes Streams are classified as Type S, F, Np, and Ns based on the WDNR permanent water typing system (WAC 222-16-030). Buffers range between 50 and 175 feet. Structure setback beyond the buffer is 15 ft. Permit approval for projects on or near regulated Type F, Np and Ns water bodies are only granted if no net loss of regulated riparian area or shoreline ecological function in the drainage basin would occur and one of the following conditions is met: (1) project would meet the standard provisions of RMC 4-3-050.7, (2) project would meet alternative administrative standard provisions of RMC 4-3-050.7, or (3) a variance is acquired. New utility lines and facilities may be permitted to cross water bodies in accordance with an approved stream/lake study, if : fish and wildlife habitat areas are avoided to the maximum extent possible; utilities are designed to bore beneath the scour depth and hyporheic zone of the water body and channel migration zone, cross at the centerline of the stream channel at an angle greater than 60 degrees, or have crossings be contained within the footprint of an existing road or utility crossing; new utility routes avoid paralleling the stream or following a down-valley course near the channel; utility installation does not increase or decrease the natural rate of shore migration or channel migration; seasonal work windows are determined and made a condition of approval; and mitigation criteria of subsection L of RMC 4-3-050 are met.    PHASE 2 DRAFT EIS   PAGE D‐11   APPENDIX D CRITICAL AREAS REGULATIONS BY CITY MAY 2017  City/County Critical Area Description Mitigation RMC 4-3-050.G.2 (critical area buffers and structure setbacks from buffers) RMC 4-3-050.G.8 (wellhead protection areas) Wellhead Protection Areas Wellhead Protection Areas are the portion of an aquifer within the zone of capture and recharge area for a well or well field owned or operated by the City. They are delineated into zones based on the Renton Wellhead Protection Plan. These include Zone 1, Zone 1 Modified, and Zone 2. There are no critical area buffers. Construction activities within zones 1 and 2 must comply with RMC 4-3-050.G.8. RMC 4-3-050.G.2 (critical area buffers and structure setbacks from buffers) RMC 4-3-050.G.9 (wetlands) RMC 4-3.050.J.4 4-3-050.I.3 (Alterations to Critical Areas Buffers) Wetlands Wetlands are classified into Category I, II, III, and IV based on the Ecology Wetland Rating System. Buffers range between 0 and 200 feet depending on Category and land use. Structure setback beyond the buffer is 15 ft. for all uses and all wetland types. Utilities can be located within wetland buffers if they are located within an existing and improved public road rights-of-way or easements. Overbuilding or replacement of existing utility systems may occur in wetlands if the work does not increase the footprint of the structure or line by more than 10% within the critical area and/or buffer areas and occurs in the existing right-of-way or easement boundary. Development subject to performance standards (4-3-050.G) and mitigation. Compensatory mitigation for wetland alterations shall be based on the wetland category and the type of mitigation activity proposed. The replacement ratio shall be based on wetland category. The created, re-established, rehabilitated, or enhanced wetland area shall at a minimum provide a level of functions equivalent to the wetland being altered and shall be located in an appropriate landscape setting.   PSE Vegetation Management Standards E   PHASE 2 DRAFT EIS    PAGE E‐1   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017  APPENDIX E. PSE VEGETATION MANAGEMENT STANDARDS   PHASE 2 DRAFT EIS    PAGE E‐2   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017    PHASE 2 DRAFT EIS    PAGE E‐3   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017      PHASE 2 DRAFT EIS    PAGE E‐4   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017      PHASE 2 DRAFT EIS    PAGE E‐5   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017      PHASE 2 DRAFT EIS    PAGE E‐6   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017      PHASE 2 DRAFT EIS    PAGE E‐7   APPENDIX E VEGETATION MANAGEMENT STANDARDS MAY 2017     Recreation Policies F   PHASE 2 DRAFT EIS    PAGE F‐1    APPENDIX F RECREATION POLICIES MAY 2017  APPENDIX F. RECREATION RELATED STUDY AREA POLICIES BY JURISDICTION Policy Title Policy Text City of Redmond Utilities Policy: UT-9 Promote the efficiency of utility placement both in cost and timing through methods such as the following: Encourage joint use of utility corridors for utilities, recreation and appropriate non-motorized connections. City of Bellevue Parks & Open Space System Plan Goals Define and enhance neighborhood character by using open space as visual relief to separate and buffer between uses. Parks and Open Space Policy: PA-30 Protect and retain, in a natural state, significant trees and vegetation in publicly and privately-dedicated greenbelt areas. Parks and Open Space Policy: PA-37 Require a public review process for the conversion to non-recreational use of park lands and facilities. Utilities Policy: UT-68 Encourage the use of utility corridors as non-motorized trails. The city and utility company should coordinate the acquisition, use, and enhancement of utility corridors for pedestrian, bicycle and equestrian trails and for wildlife corridors and habitat. Utilities Policy: UT-69 Avoid, when reasonably possible, locating overhead lines in greenbelt and open spaces as identified in the Parks and Open Space System Plan. Richards Valley Sub Area Plan Policy: S-RV- 11 Protect and preserve publicly owned land. Discussion: This policy refers to land set aside for storm drainage and detention, the right-of-way along the Lake Hills Connector, and potential links in the trail and park system. Bridle Trails Sub Area Plan Policy: S-BT-20 Work with utility companies to gain public non-motorized trail easements along power line corridors to complete the equestrian trail facilities plan. City of Newcastle Utilities Policy: UT-P7 Where found to be safe, the City of Newcastle shall promote recreational use of utility corridors such as trails, sport courts, and similar facilities. King County Objective 3.2 Invest in planning, design, and construction of new major trail corridors, the Eastside Rail Corridor and the Lake to Sound Trail. Source: City of Bellevue, 2015; City of Newcastle, 2016a; and City of Redmond, 2015; King County, 2016 Note: City of Renton does not have relevant recreation policies. Supplemental Information: Historic Resources G   PHASE 2 DRAFT EIS   PAGE G‐1   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  APPENDIX G. SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES Table G‐1. Historic Register Resources Map # Property Name Address Year Built NRHP – Recom. Eligible NRHP – Determ. Eligible NRHP - Listed WHR - Listed WHB -Listed Desig. KC Landmark 1 Sammamish-Lakeside-Talbot Hill transmission lines #1 and #2 and the Eastside transmission corridor Redmond to Renton 1920s Yes No No No No No 2 Safeway Distribution Center Truck Repair Building 1227 124th AVE NE, Bellevue 1958 No Yes No No No No 3 Wilburton Trestle Burlington Northern Railroad spanning Mercer Slough 1904 No Yes No Yes No No 4 Twin Valley Dairy 410 130th Place SE 1933 Yes Yes No No Yes No 5 Somerset Neighborhood Bellevue 1960s Yes No No No No No 6 Newcastle Cemetery SW of 69th Way off 129th Ave SE c.1870 Yes No No Yes No Yes 7 Greenwood Memorial Park 3401 NE 4th Street, Renton c.1910 No No No No No No 8 Mt. Olivet Cemetery 100 Blaine Ave NE, Renton c.1875 Yes No No No No No KC = King County; NRHP = National Register of Historic Places; WHBR = Washington Heritage Barn Register; WHR = Washington Heritage Register.      PHASE 2 DRAFT EIS   PAGE G‐2   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  Table G‐2. Unevaluated Historic Resources PIN Year Built Segment Option Pole Type Applicable Register Age Threshold New Corridor 1524059032 1961 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 1951700010 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700020 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700110 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700120 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700730 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700740 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700750 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 1951700800 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 2206500015 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500020 1957 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500025 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500030 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500035 1957 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500040 1957 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500045 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500185 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500220 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐3   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 2206500225 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500230 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500235 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500240 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500245 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500250 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500255 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500260 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500265 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500280 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500285 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500375 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500380 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500385 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500390 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500395 1956 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500400 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500405 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500410 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500415 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐4   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 2206500420 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500425 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500430 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 2206500435 1955 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071800730 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6071800740 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6071900130 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900140 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900150 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900160 1963 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900170 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900180 1963 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900190 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900200 1963 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900210 1963 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6071900220 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 6072200350 1966 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6072200360 1965 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6072200410 1965 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6072200420 1965 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐5   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 6072200430 1965 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 6072200440 1965 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000010 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000020 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000230 1969 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000250 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000260 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000270 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000280 1961 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855000290 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000300 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000310 1962 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000320 1961 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000325 1961 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855000350 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855000360 1961 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855000370 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855800010 1966 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800030 1966 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855800040 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐6   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 7855800050 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800060 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800070 1966 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800080 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800090 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855800100 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855800120 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800130 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855800140 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801540 1971 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801570 1969 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855801580 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801590 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801600 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801610 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855801660 1967 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855801690 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801700 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7855801710 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855801720 1972 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐7   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 7855801730 1968 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (100) NRHP 45 (1972) 7855801770 1963 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7856410110 1970 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) 7856410120 1972 Bellevue South Willow 1 | Willow 2 | Oak 1 | Oak 2 2 Single-Circuit Monopoles NRHP 45 (1972) New Corridor 2825059066 1969 Bellevue Central Bypass 1 | Bypass 2 1 Single-Circuit Monopole (100) NRHP 45 (1972) 2825059085 1962 Bellevue Central Bypass 1 | Bypass 2 1 Single-Circuit Monopole (100) NRHP 45 (1972) 0424059039 1960 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 0424059052 1943 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 0424059067 1959 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 0424059132 1960 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 5453300031 1972 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 0672100010 1968 Bellevue Central Bypass 2 1 Single-Circuit Monopole NRHP 45 (1972) 0924059088 1963 Bellevue South Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 0924059182 1972 Bellevue South Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 0924059228 1964 Bellevue South Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 5453300166 1969 Bellevue South Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 5453300180 1970 Bellevue South Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 1524059027 1951 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 1524059112 1964 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972)   PHASE 2 DRAFT EIS   PAGE G‐8   APPENDIX G SUPPLEMENTAL INFORMATION: HISTORIC RESOURCES MAY 2017  PIN Year Built Segment Option Pole Type Applicable Register Age Threshold 1624059065 1943 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 1624059104 1959 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 1624059223 1964 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 5603500050 1963 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 5603500070 1959 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 5603500110 1960 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 5603500115 1963 Bellevue South Willow 2 1 Single-Circuit Monopole NRHP 45 (1972) 1624059079 1961 Bellevue South Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 1624059093 1949 Bellevue South Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972) 1624059168 1960 Bellevue South Willow 2 | Oak 1 | Oak 2 1 Double-Circuit Monopole (80) NRHP 45 (1972)   Supplemental Information: EMF (Unique Uses in the Study Area) H   PHASE 2 DRAFT EIS   PAGE H‐1    APPENDIX H SUPPLEMENTAL INFORMATION: EMF  MAY 2017    APPENDIX H. SUPPLEMENTAL INFORMATION: ELECTRIC AND MAGNETIC FIELDS   Figure H‐1. Unique Uses in the EMF Study Area  Supplemental Information: Pipeline Safety I   PHASE 2 DRAFT EIS    PAGE I‐1    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  APPENDIX I. SUPPLEMENTAL INFORMATION: PIPELINE SAFETY APPENDIX I-1: PIPELINE INCIDENTS The two pipeline incidents that led to the passage of the Pipeline Safety Improvement Act of 2002 and the current pipeline integrity management rules are as follows:  Bellingham, Washington, June 10, 1999. According to the National Transportation Safety Board (NTSB) accident report, “About 3:28 p.m., Pacific daylight time, on June 10, 1999, a 16-inch diameter steel pipeline owned by Olympic Pipe Line Company (Olympic) ruptured and released about 237,000 gallons of gasoline into a creek that flowed through Whatcom Falls Park in Bellingham, Washington. About one and one half hours after the rupture, the gasoline ignited and burned approximately one and one half miles along the creek. Two 10-year-old boys and an 18-year-old man died as a result of the accident. Eight additional injuries were documented. A single-family residence and the City of Bellingham’s water treatment plant were severely damaged. As of January 2002, Olympic estimated that total property damages were at least $45 million. The major safety issues identified during this investigation were excavations performed by IMCO General Construction, Inc., in the vicinity of Olympic’s pipeline during a major construction project and the adequacy of Olympic Pipe Line Company’s inspections thereof; the adequacy of Olympic Pipe Line Company’s interpretation of the results of in- line inspections of its pipeline and its evaluation of all pipeline data available to it to effectively manage system integrity; the adequacy of Olympic Pipe Line Company’s management of the construction and commissioning of the Bayview products terminal; the performance and security of Olympic Pipe Line Company’s supervisory control and data acquisition system; and the adequacy of Federal regulations regarding the testing of relief valves used in the protection of pipeline systems.” (NTSB, 2002).  Carlsbad, New Mexico, August 19, 2000. Per the National Transportation Safety Board accident report, “At 5:26 a.m., mountain daylight time, on Saturday, August 19, 2000, a 30-inch diameter natural gas transmission pipeline operated by El Paso Natural Gas Company ruptured adjacent to the Pecos River near Carlsbad, New Mexico. The released gas ignited and burned for 55 minutes. Twelve persons who were camping under a concrete-decked steel bridge that supported the pipeline across the river were killed and their three vehicles destroyed. Two nearby steel suspension bridges for gas pipelines crossing the river were extensively damaged. According to El Paso Natural Gas Company, property and other damages or losses totaled $998,296. The major safety issues identified in this investigation were the design and construction of the pipeline, the adequacy of El Paso Natural Gas Company’s internal corrosion control program, the adequacy of Federal safety regulations for natural gas pipelines, and the adequacy of Federal oversight of the pipeline operator.” (NTSB, 2003).   PHASE 2 DRAFT EIS    PAGE I‐2    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  References  NTSB (National Transportation Safety Board). 2002. Pipeline Rupture and Subsequent Fire in Bellingham, Washington, June 10, 1999. Pipeline Accident Report NTSB/PAR-02/02. Washington, D.C. NTSB (National Transportation Safety Board). 2003. Pipeline Rupture and Subsequent Fire near Carlsbad, New Mexico, August 19, 2000. Pipeline Accident Report NTSB/PAR-03/01. Washington, D.C.   PHASE 2 DRAFT EIS    PAGE I‐3    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  APPENDIX I-2: BP PIPELINES CONSTRUCTION REQUIREMENTS   PHASE 2 DRAFT EIS    PAGE I‐4    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐5    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐6    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  APPENDIX I-3: OLYMPIC DATA REQUEST AND RESPONSES (FOR ENERGIZE EASTSIDE EIS PIPELINE RISK ASSESSMENT)   PHASE 2 DRAFT EIS    PAGE I‐7    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐8    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐9    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐10    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐11    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  APPENDIX I-4: PSE ENERGIZE EASTSIDE CORRIDOR SAFETY FAQ SHEET   PHASE 2 DRAFT EIS    PAGE I‐12    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017    PHASE 2 DRAFT EIS    PAGE I‐13    APPENDIX I SUPPLEMENTAL INFORMATION: PIPELINE SAFETY MAY 2017  APPENDIX I-5: ENERGIZE EASTSIDE EIS PIPELINE SAFETY TECHNICAL REPORT (PREPARED BY EDM SERVICES) Energize Eastside EIS Pipeline Safety Technical Report Prepared for Environmental Science Associates (ESA) EDM Services, Inc. 4100 Guardian Street, Suite 250 Simi Valley, California 93063 Web Site Address: edmsvc.com Phone: (805) 527-3300 FAX: (805) 583-1607 EDM Services Job Number 16-136-1982 [r,;IEXPIRES 1 EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page ii Table of Contents  Energize Eastside EIS – Pipeline Safety and Risk of Upset ________________________________ 5  Introduction and General Approach  ______________________________________________ 5  1.0  Environmental Setting ______________________________________________________ 7  1.1  Existing Olympic Pipeline (OPL) Company Pipelines _____________________________ 7  1.1.1  16‐inch outside diameter, OPL Allen to Renton Pipeline ______________________ 7  1.1.2  20‐inch outside diameter, OPL Allen to Renton Pipeline ______________________ 8  1.1.3  OPL Leak Detection System _____________________________________________ 8  1.1.4  OPL Emergency Response ______________________________________________ 9  1.1.5  OPL Identified Hazards Presented by Proximity to Proposed Overhead High Voltage  Transmission Lines _________________________________________________________ 9  1.2  Refined Petroleum Products Pipeline Public Risks  _____________________________ 10  1.3  Refined Petroleum Products Characteristics __________________________________ 11  1.3.1  Jet Fuel ____________________________________________________________ 11  1.3.2  Diesel Fuel  _________________________________________________________ 12  1.3.3  Gasoline ___________________________________________________________ 12  1.4  Major Pipeline Incident Summaries _________________________________________ 12  1.4.1  San Bernardino, California, May 25, 1989 _________________________________ 12  1.4.2  Bellingham, Washington, June 10, 1999 __________________________________ 13  1.4.3  Carlsbad, New Mexico, August 19, 2000 __________________________________ 14  1.4.4  Walnut Creek, California, November 9, 2004 ______________________________ 14  1.4.5  San Bruno, California, September 9, 2010 _________________________________ 15  2.0  Regulatory Setting ________________________________________________________ 17  2.1  Regulatory Framework ___________________________________________________ 17  2.2  Federal Pipeline Regulations ______________________________________________ 17  2.2.1  Overview of 49 CFR Part 190 ___________________________________________ 18  2.2.2  Overview of 49 CFR Part 195 ___________________________________________ 18  2.2.3  Overview of 49 CFR Part 199, (Drug Testing, Requirements) __________________ 25  2.2.4  Overview of 40 CFR Parts 109, 110, 112‐114  ______________________________ 25  2.2.5  Oil Pollution Act of 1990 (OPA) _________________________________________ 26  2.3  State Pipeline Regulations ________________________________________________ 27  2.3.1  Revised Code of Washington (RCW) Title 81 _______________________________ 27  2.3.2  Washington Administrative Code, Title 480 (WAC‐480) ______________________ 28  2.3.3  Revised Code of Washington (RCW), Title 19 ______________________________ 28  2.3.4  Washington Administrative Code, Title 173 (WAC‐173) ______________________ 29  3.0  Significance Criteria _______________________________________________________ 30  3.1  Aggregate Risk  _________________________________________________________ 30  3.2  Individual Risk __________________________________________________________ 30  3.3  Societal Risk ___________________________________________________________ 33  4.0  Potential Hazards _________________________________________________________ 35  4.1  Fire Hazards to Humans __________________________________________________ 35  4.2  Explosion Hazards to Humans _____________________________________________ 36  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page iii 5.0  Baseline Data ____________________________________________________________ 37  5.1  U.S. Hazardous Liquid Pipeline Releases, January 2010 through December 2015 _____ 37  5.2  U.S. Refined Petroleum Product Releases, January 2010 through December 2015 ____ 39  5.2.1  Spill Size Distribution, U.S. Refined Petroleum Product Pipelines, Normalized to 18‐ inch Diameter Pipe ________________________________________________________ 42  5.2.2  Olympic Pipeline Leak History __________________________________________ 44  5.3  Population Density ______________________________________________________ 45  5.4  Potential Hazards of Collocated Overhead HVAC Lines and Hazardous Liquid Pipelines 45  5.5  Pipeline Incidents Caused By Close Proximity to Electrical Utilities ________________ 47  5.5.1  Chevron Pipe Line Company June 11, 2010 Incident  ________________________ 47  5.5.2  Oneok NGL Pipeline August 8, 2011 Incident ______________________________ 48  5.5.3  Crimson Pipeline September 8, 2013 Incident _____________________________ 49  5.5.4  Buckeye Partners LP March 14, 2014 Incident _____________________________ 49  5.5.5  Marathon Pipeline (MPL) February 17, 2015 Incident _______________________ 49  5.5.6  Kinder Morgan September 9, 2015 Incident _______________________________ 49  5.6  A.C. Interference Analysis, Proposed 115/230 kV Project (Willow 2) _______________ 49  5.6.1  Soil Resistivity _______________________________________________________ 50  5.6.2  Model and Simulation Validation  _______________________________________ 50  5.6.3  Predicted Results for Proposed 115/230 kV Project (Willow 2) ________________ 52  5.7  A.C. Interference Analysis, Existing 115 kV Corridor ____________________________ 60  5.7.1  Estimated Induced A.C. Voltage (Touch Potential) __________________________ 60  5.7.2  Estimated A.C. Current Density _________________________________________ 62  5.7.3  Estimated Coating Stress Voltage _______________________________________ 64  5.7.4  Estimated Arcing Distance _____________________________________________ 64  6.0  Qualitative Aggregate Risk Assessment _______________________________________ 65  7.0  Release Modeling Results __________________________________________________ 67  7.1  Pool Fires  _____________________________________________________________ 68  7.2  Explosions _____________________________________________________________ 71  7.3  Flash Fires _____________________________________________________________ 72  8.0  Conditional Probabilities ___________________________________________________ 74  8.1  Pipeline Contents _______________________________________________________ 74  8.2  Pipeline Operability _____________________________________________________ 74  8.3  Pool Fire Spill Volumes ___________________________________________________ 74  8.4  Fire and Explosion _______________________________________________________ 75  8.5  Likelihood of Fatal Injuries ________________________________________________ 76  8.6  Other Primary Assumptions _______________________________________________ 76  9.0  Individual Risk Assessment _________________________________________________ 78  9.1  Two OPL Pipelines Not Collocated within Overhead HVAC Corridor  _______________ 78  9.2  Two OPL pipelines Collocated with Existing 115 kV Line (No Action Alternative)  _____ 80  9.2.1  Induced A.C. Voltage _________________________________________________ 80  9.2.2  A.C. Current Density __________________________________________________ 80  9.2.3  Coating Stress Voltage Resulting from Fault _______________________________ 81  9.2.4  Arc Distance Resulting from Fault _______________________________________ 81  9.2.5  Estimated Frequency of Unintentional Releases ____________________________ 82  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page iv 9.3  Two OPL Pipelines Collocated with 115/230 kV Lines (Alternative 1) _______________ 82  9.3.1  Induced A.C. Voltage _________________________________________________ 82  9.3.2  A.C. Current Density __________________________________________________ 83  9.3.3  Coating Stress Voltage Resulting from Fault _______________________________ 84  9.3.4  Arc Distance Resulting from Fault _______________________________________ 84  9.3.5  Frequency of Unintentional Releases ____________________________________ 86  9.3.6  Operational Individual Risk ____________________________________________ 87  9.3.7  Construction Individual Risk ____________________________________________ 89  10.0  Societal Risk Assessment __________________________________________________ 92  10.1  Two OPL Pipelines Not Collocated within Overhead HVAC Corridor ______________ 92  10.1.1  Maximum Population Density _________________________________________ 92  10.1.2  Average Population Density ___________________________________________ 94  10.1.3  Minimum Population Density _________________________________________ 96  10.2  Two OPL Pipelines Collocated with 115/230 kV Lines (Alternative 1)  _____________ 96  10.2.1  Maximum Population Density _________________________________________ 96  10.2.2  Average Population Density ___________________________________________ 98  10.2.3  Minimum Population Density ________________________________________ 100  10.2.4  Construction Societal Risk ___________________________________________ 100  11.0  Risk Reduction Measures _________________________________________________ 105  11.1  Surcharge Loading ____________________________________________________ 105  11.2  Third Party Damage ___________________________________________________ 105  11.3  Electrical Interference _________________________________________________ 106  12.0  References ____________________________________________________________ 107  12.1  Acronyms ___________________________________________________________ 107  12.2  Definitions ___________________________________________________________ 108  12.3  Reference Documents _________________________________________________ 110    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 5 ENERGIZE EASTSIDE EIS – PIPELINE SAFETY AND RISK OF UPSET  Introduction and General Approach  The purpose of this report is to present the results of a risk assessment that has been performed  to estimate the risks posed to the public from the existing Olympic Pipeline Company (OPL)  pipelines.  This report also presents and estimate of the potential additional risks that could be  posed where the proposed Energize Eastside overhead high voltage alternating current (HVAC)  transmission line would be collocated with the OPL pipeline(s).  The general approach used to  conduct this risk assessment is summarized below:  1. Information was gathered regarding the existing 16‐inch and 20‐inch diameter OPL pipelines.  2. Historical unintentional release data was obtained from the United States Department of  Transportation (USDOT) for similar refined petroleum product transmission pipelines.  This  included the USDOT database of all hazardous liquid pipeline incidents that have occurred since  January 1, 2010.  These data are presented in Section 5.0, Baseline Data, of this Report.  These  data were analyzed to develop the following estimates:    Frequency of unintentional releases,    Frequency of public injuries and fatalities,    Spill size distribution,   Causes of the unintentional releases, and the    Likelihood of fires or explosions following an unintentional release.  3. Using the above historical and OPL unintentional release data, high level estimates of the  likelihood of various size releases, fires, and public fatalities resulting from unintentional releases  from OPL’s pipelines were developed.  This analysis is included in Section 6.0, Qualitative  Aggregate Risk Assessment, of this Report.  4. Using the actual pipeline operating parameters, release modeling was performed to evaluate the  range of potential impacts to the public from fires, explosions and flash fires.  The results of this  release modeling are presented in Section 7.0, Release Modeling Results, of this Report.  5. Using the above data, the conditional probabilities for each of the following items were estimated.   The development of these estimates is presented in Section 8.0, Conditional Probabilities, of this  Report.   Probability of the pipelines carrying diesel, jet fuel, or gasoline, since the potential risks to the  public differ somewhat for each;   Percentage of the time that the OPL pipeline(s) would be operational;   Probability of various size unintentional releases from the OPL pipeline(s);   Probability of fires or explosions following an unintentional release;   Probability of fatal injuries following a fire or explosion.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 6 6. The increased risks of an unintentional release from the OPL pipelines due to the proposed  Energize Eastside overhead high voltage alternative current (HVAC) transmission line were  estimated by reviewing a number of publications and reports.  7. An individual risk assessment has been conducted.  This assessment estimates the likelihood of a  public fatality to an individual exposed to the potential hazards 24 hours per day, 365 days per  year.  The results of this analysis are presented in Section 9.0, Individual Risk Assessment, of this  report.  8. A societal risk assessment has been conducted.  This assessment estimates the probability that a  specified number of people could be fatally injured following an unintentional release.  This  assessment used three different population densities in order to estimate the number of  individuals that could be fatally injured.  The results of this analysis are presented in Section 10.0,  Societal Risk Assessment, of this Report.  9. Risk reduction measures are presented in Section 11.0 of this Report.  These measures could be  employed to reduce the likelihood and severity of unintentional releases from the OPL pipelines.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 7 1.0  Environmental Setting  1.1  Existing Olympic Pipeline (OPL) Company Pipelines  Much of the HVAC electrical transmission line corridor contains either one, or two refined  petroleum product pipelines.  These pipelines transport gasoline, diesel and jet fuel1 and are  owned by OPL.  This Technical Report will present the life safety risks posed by these pipelines in  three different situations:   Where the pipeline(s) operate in a corridor without any overhead HVAC electrical  transmission line,   Where the pipeline(s) are collocated within the corridor with the existing overhead HVAC  electrical transmission line, and   Where the pipeline(s) would be collocated within the corridor with the proposed overhead  HVAC electrical transmission line.  1.1.1 16-inch outside diameter, OPL Allen to Renton Pipeline The 16‐inch outside diameter, Allen to Renton pipeline has the following parameters (Olympic  Pipeline):   This pipeline is constructed of API 5L X52 grade, 0.312‐inch wall thickness2.     The length of this line which is collocated with the overhead HVAC line is 62,906‐feet.     This pipeline was originally constructed in 1965.  After initial construction, this pipeline was  subjected to a hydrostatic test that was at least 1.25 times the maximum operating pressure.   The majority of this line is externally coated with coal tar enamel and is protected by an  impressed current cathodic protection system.     This line was most recently hydrostatically tested in 2001, to a test pressure of 1,806 psi (89%  SMYS)3.   The normal operating pressure is 500 to 800 psi within the electrical transmission corridor.   This pipeline was internally inspected using a high resolution deformation and high resolution  magnetic flux leakage tool in April 2014.  The next planned internal inspection is early 2019.   The normal flow rate is approximately 5,400 barrels per hour (228,000 gallons per hour).   This pipeline ships the following commodities: 18% Diesel, 37% Jet Fuel, and 45% Gasolines.   The typical depth of cover is three to four feet.   The pipeline does not contain any electric resistance welded pipe (ERW) within the electrical  transmission corridor under analysis.4                                                               1 In this Report, these hazardous liquids are also called refined petroleum products.  2 Since initial construction, there have been some relatively short pipe replacements (re‐routes) which may  have an increased wall thickness and/or higher grade pipe.  3 See Section 12.1 for a list of acronyms used in this Report.  4 There is significant evidence that inferior electric‐resistance welded (ERW) pipe was manufactured and  installed, especially before 1970; some of this pipe has yielded increased frequencies of pipeline incidents.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 8 1.1.2 20-inch outside diameter, OPL Allen to Renton Pipeline The 20‐inch outside diameter, Allen to Renton pipeline has the following parameters (Olympic  Pipeline):   This pipeline is constructed of API 5L X52 grade, 0.250‐inch wall thickness5.     The length of this line which is collocated with the overhead HVAC line is 68,122‐feet.     This pipeline was originally constructed in 1972 to 1974.     The majority of this line is externally coated with coal tar enamel and is protected by an  impressed current cathodic protection system.     This line was most recently hydrostatically tested in 2001, to a test pressure of 1,157 psi (89%  SMYS).   The normal operating pressure is 300 to 500 psi within the electrical transmission corridor.   This pipeline was internally inspected using a high resolution deformation and high resolution  magnetic flux leakage tool in April 2014.  The next planned internal inspection is early 2019.   The normal flow rate is approximately 7,900 barrels per hour (333,000 gallons per hour).   This pipeline ships the following commodities: 40% Diesel, 3% Jet Fuel, and 57% Gasolines.   The typical depth of cover is three to four feet.   The pipeline does not contain any electric resistance welded pipe (ERW) within the electrical  transmission corridor under analysis.  1.1.3 OPL Leak Detection System Olympic Pipe Line Company's (OPL’s) Pipeline Leak Detection System (PLDS) has been in service in  the OPL control center since the early 1990's.  PLDS is a real‐time pipeline simulation that detects  and locates leaks by comparing the volume in and the volume out, with volume adjustments  based on pressure (compression of the pipe contents) and predicted pressures within a defined  pipeline section.  When the difference exceeds a defined loss threshold, the software provides a  warning to the operator.  If the condition persists, an alarm is provided.  Alarms are  communicated through the SCADA alarm and event system.  OPL’s enterprise SCADA System  covers 60 sites over its roughly 400 miles of main and lateral pipeline segments, including the pipe  segments under consideration.  PLDS is a separate software package but is integrated with the  SCADA software.  OPL’s PLDS meets or exceeds State and Federal requirements for pipeline leak detection including  WAC 480‐75‐3006,7.                                                               5 Since initial construction, there have been some relatively short pipe replacements (re‐routes) which may  have an increased wall thickness and/or higher grade pipe.  6 Leak detection systems must be capable of detecting an eight percent (8%) of maximum flow leak within  fifteen (15) minutes or less.  7 OPL pipeline, leak detection system, and emergency response data were provided by OPL in their July 25,  2016 response to our data request.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 9 OPL did not provide specific details regarding the precise type and location of their mainline block  valves and related facilities within this segment.  OPL treats these data as confidential information  which is not available for public disclosure due to potential security risks8.    1.1.4 OPL Emergency Response OPL maintains a 24‐hour Emergency Hotline (1‐888‐271‐8880).  OPL’s current manual for  responding to emergencies is based on the Northwest Area Contingency Plan, as approved by the  Washington State Department of Ecology and the Federal Pipeline and Hazardous Materials  Safety Administration (PHMSA).  OPL considers specific details regarding OPL’s emergency  response procedures as confidential information not available for public disclosure due to  potential security risks8.    In the event of an unintentional release, response times would vary depending on the incident  location and traffic conditions, among other factors.  Access to the pipeline along the relevant  segment is relatively good, which can significantly reduce response times.  Members of OPL’s  Damage Prevention Team are located nearby at all times and are able to respond to certain types  of events quickly.  During normal working hours, OPL has qualified personnel located to the North  and South of this segment, at its facilities in Woodinville and Renton, Washington.  Outside of  normal working hours, OPL has on‐call personnel who live in close proximity to this segment.  In  addition, OPL has contracted with the National Response Corporation – Environmental Services  (NRCES) to respond anywhere along its pipeline system within two hours.  In the event of an evacuation along the pipeline right‐of‐way, local first responders and the OPL  employees would set up exclusion zones.  Door to door notifications would be made to impacted  homeowners.  Air monitoring equipment would be utilized and the conditions would be  documented throughout the incident to ensure that the exclusion zones are properly identified in  accordance with atmospheric conditions (e.g., wind speed, direction, etc.).  1.1.5 OPL Identified Hazards Presented by Proximity to Proposed Overhead High Voltage Transmission Lines This section describes the existing OPL procedures that address the OPL identified hazards posed  by the collocated overhead HVAC transmission lines.   In Section 5.4, these and other potential  hazards will be discussed further.  Excavation Activities  Any situation in which construction requires excavation in close proximity to a pipeline places the  pipeline at risk of damage by the construction equipment.  There are a number of mitigation  measures which reduce the risk of physical damage to the pipeline.  To minimize the likelihood of  a pipeline being damaged by excavation activities, the Washington State legislature enacted the                                                               8 See Northwest Gas Association v. WUTC, 141 Wn.  App. 98, 168 P.3d 443 (2007), rev. denied, 163 Wn.2d  1049 (2008).  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 10 “one‐call” locator service law9.  Under the one‐call program, anyone planning to excavate near an  underground utility is required to provide advance notice of the excavation by calling a  designated central number.  The affected utility is then notified and required to monitor the  excavation work to ensure no damage is done.    Consistent with these requirements, if a project is within 100 feet of OPL’s pipeline, the OPL  Damage Prevention Team meets with the construction team at the construction site at the start  of the project and weekly thereafter to reinforce the importance of following established safety  protocols.  The OPL Damage Prevention Team is also on‐site to monitor the excavation project  any time equipment with the ability to reach within 10‐feet of the pipeline is being used.  While  the relevant federal regulations generally require at least 12‐inches of clearance between a  pipeline and any underground structures, OPL’s practice is to double the federal standard and  ensure there is at least 24‐inches of clearance between OPL pipelines and any underground  structure.  In compliance with the federal regulations, OPL also installs and maintains right‐of‐way  signs along the corridor and conducts regular aerial and/or ground based right‐of‐way patrols.  Surcharge Loading  There is also some risk of damage to a pipeline from weight of equipment working over an  operating pipeline.  The OPL Damage Prevention Team mitigates this risk during construction by  monitoring construction activities.  In addition, OPL conducts an engineering review of any  planned equipment crossings prior to commencement of work.   Electrical Interference  Overhead HVAC lines can induce a current which can interfere with cathodic protection systems.   This can increase the frequency of external corrosion caused unintentional releases.    There are a number of proven practices and guidelines that can be employed to mitigate the  potential for alternating current (AC) interference related corrosion of the pipelines.  OPL employs  a program to actively monitor and, where necessary, mitigate the impact of AC interference.  As  part of this program, AC interference is currently monitored along this corridor.  AC grounding  systems are commonly installed in connection with power transmission towers to safely dissipate  any energy to ground.  OPL also plans to undertake an engineering analysis to assess the necessity  for installation of similar systems along the pipeline.   1.2  Refined Petroleum Products Pipeline Public Risks  Unintentional releases of refined petroleum products from the existing pipelines could pose risks  to human health and safety.  For example, refined petroleum products could be released from a  leak or rupture in one of the pipelines.  If an ignition source was present, a fire and/or explosion  could occur, resulting in possible injuries and/or deaths.                                                               9 Chapter 19.122, Revised Code of Washington (RCW) – Underground Utilities  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 11 Additionally, an unintentional release could present an environmental hazard.  For example, soil  could be impacted, waterways could be degraded, and wildlife and vegetation could be  jeopardized.  This Report presents the life safety risks posed to the public.  1.3  Refined Petroleum Products Characteristics  The OPL pipelines transport jet fuel, gasolines, and diesel, the characteristics of which are  described in the following sections.  The National Fire Protection Association (NFPA) rating sign  for each of these fuels is depicted below.  For each hazard, the severity ranges from 0 (no hazard)  to 4 (health ‐ lethal health hazard, flammability ‐ will vaporize and readily burn at normal  temperatures, and reactivity ‐ may explode at normal temperatures and pressures).  Figure 1.3-1 NFPA Rating Sign for Jet, Diesel, and Gasoline Fuels Respectively 1.3.1 Jet Fuel10 Jet Fuel (aviation turbine fuel) is comprised primarily of hydrocarbons11  (e.g., paraffins,  naphthenes, olefins, and aromatics).  It is colorless to clear light yellow and has a gasoline and/or  kerosene‐like odor.  It may cause eye and skin irritation.  Inhalation can produce headaches,  dizziness, drowsiness, and nausea, lassitude, weariness, and over excitation.  Exposure to very  high levels can result in unconsciousness and death.     Kerosene‐type jet fuel has thermal stability and a relatively high flashpoint.  The flash point12 is  approximately 100°F; the auto‐ignition temperature is between 410 ‐ 475°F, depending on fuel  type and additives13.  Its upper explosive limit is 8.0% by volume and the lower explosive limit is  0.7%14.                                                                 10 See ASTM D1655 for jet fuel specifications.  11 Organic compounds composed entirely of carbon and hydrogen atoms.  12 The flash point is the lowest temperature at which the liquid vaporizes and is therefore able to ignite.  ASTM D93 is used to determine this threshold.   13 The auto‐ignition temperature is affected by the chemical properties. ASTM E659 defines the standard  method for determining the auto‐ignition temperature.   14 Flammable liquid only burns in its gaseous state.  If the ratio of jet fuel to air is greater than about 8.0%,  the mixture is too rich to burn; if it is less than 0.7%, the mixture is to lean to burn.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 12 1.3.2 Diesel Fuel15 Diesel Fuel is similar to Jet Fuel.  It is comprised primarily of hydrocarbons.  It is colorless to brown  and has a kerosene odor.  It may cause eye and skin irritation.    Diesel Fuel has a flash point between 100 and 130°F, and an auto‐ignition temperature between  351 ‐ 624°F, depending on the type and the additives.  Its upper explosive limit is 6.5% by volume  and its lower explosive limit is 0.6%.    1.3.3 Gasoline16 Gasoline is a complex mixture of hydrocarbons.   It is colorless to light yellow and has a strong  gasoline and/or kerosene odor.  It may cause eye and skin irritation.  Inhalation of concentrations  over 50 parts per million (ppm) can produce headaches, dizziness, drowsiness, and nausea,  lassitude, weariness, over excitation.  Exposure to very high levels can result in unconsciousness  and death.    Gasoline is more volatile17 than the other fuels described above, and is described as flammable18  by the National Fire Protection Association (NFPA).   Unleaded gasoline has a relatively low flash point of ‐45°F and an auto‐ignition temperature of  approximately 480°F, depending on the percent ethanol and other additives.  The higher the  octane number the higher the auto‐ignition temperature.  Its upper explosive limit is 8.0% by  volume and its lower explosive limit is 1.0%.   1.4  Major Pipeline Incident Summaries  Although transportation of hazardous liquids and natural gas has proven to be a very safe mode  of transportation19, there have been a few significant pipeline incidents.  Five (5) of these  incidents have resulted in changes, and proposed changes, to the Federal pipeline regulations  which should further improve pipeline safety.  1.4.1 San Bernardino, California, May 25, 1989 On May 12, 1989, a Southern Pacific Transportation Company freight train derailed in San  Bernardino, California.  On May 25, 1989, 13 days later, a regulated interstate petroleum products  pipeline ruptured.  The National Transportation Safety Board summarized this incident in their                                                               15 See ASTM D975 for diesel fuel specifications.  16 See ASTM D4814 for gasoline specifications.  17 A fuel’s tendency to vaporize.  18 According to NFPA 30 a flammable liquid has a flash point lower than 100°F.  A liquid with a flashpoint  higher than 100°F is described as combustible.   19 Payne, Brian L. el al. EDM Services, Inc.  1993.  California Hazardous Liquid Pipeline Risk Assessment,  Prepared for California State Fire Marshal, March.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 13 public information report entitled, Railroad Derailment Incidents Involving Pipelines: 1981 ‐ 1990  as follows:  "A Southern Pacific westbound train lost its brakes as it headed down the Cajon grade  toward San Bernardino.  After reaching a speed of over 100 mph the train derailed at a  curve adjacent to a residential section of San Bernardino.  Derailing cars and engines left  the track and literally tumbled into several houses, killing two children and two train crew  members.  All sixty‐nine of the cars and five of the locomotive units were destroyed and  four others sustained extensive damage.  During the derailment, and later during the movement of heavy equipment to remove the  wreckage, a high‐pressured gasoline pipeline adjacent to the tracks was damaged and  weakened.  Less than two weeks after the wreck, the pipeline ruptured and spewed over  300,000 gallons of flaming gasoline into the neighborhood, resulting in two more deaths,  serious burns to three others, and the destruction of eleven more homes and 21 vehicles.   Total damage to the train and track alone was estimated to be well over nine million  dollars with an additional damage estimate to the neighborhood of over five million  dollars."  The extremity of this incident stimulated a good deal of public concern.  As a result, steps were  taken to determine that public safety was not being endangered by the proximity of pipelines to  rail lines. One of the results was the passage of California Assembly Bill 385 (Elder).  California  Senate Bill 268 (Rosenthal), which was signed by the Governor at the same time, resulted from  chronic leaks from one of the oldest crude oil pipelines in the Los Angeles area.  These bills  included requirements for the State Fire Marshal to perform certain studies which address the  risk levels associated with hazardous liquid pipelines on railroad rights‐of‐way and other factors.  Among other things, they required the State Fire Marshal to:   Study the spacing of shut‐off valves that would limit spillage into standard metropolitan  statistical areas and environmentally sensitive areas and, if existing standards were deemed  insufficient, to adopt regulations to require the addition of new valves on existing, and new or  replacement pipelines.20   1.4.2 Bellingham, Washington, June 10, 1999 According to the National Transportation Safety Board (NTSB) accident report,   “…about 3:28 p.m., Pacific daylight time, on June 10, 1999, a 16‐inch diameter steel  pipeline owned by Olympic Pipe Line Company ruptured and released about 237,000  gallons of gasoline into a creek that flowed through Whatcom Falls Park in Bellingham,  Washington.  About one and one half hours after the rupture, the gasoline ignited and  burned approximately and one half miles along the creek.  Two 10‐year‐old boys and an                                                               20 Payne, Brian L. el al. EDM Services, Inc.  1993.  California Hazardous Liquid Pipeline Risk Assessment,  Prepared for California State Fire Marshal, March.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 14 18‐year‐old young man died as a result of the accident.  Eight additional injuries were  documented.  A single‐family residence and the City of Bellingham’s water treatment  plant were severely damaged.  As of January 2002, Olympic estimated that total property  damages were at least $45 million.  The major safety issues identified during this investigation are excavations performed by  IMCO General Construction, Inc., in the vicinity of Olympic’s pipeline during a major  construction project and the adequacy of Olympic Pipe Line Company’s inspections  thereof; the adequacy of Olympic Pipe Line Company’s interpretation of the results of in‐ line inspections of its pipeline and its evaluation of all pipeline data available to it to  effectively manage system integrity; the adequacy of Olympic Pipe Line Company’s  management of the construction and commissioning of the Bayview products terminal;  the performance and security of Olympic Pipe Line Company’s supervisory control and  data acquisition system; and the adequacy of Federal regulations regarding the testing of  relief valves used in the protection of pipeline systems.21”   1.4.3 Carlsbad, New Mexico, August 19, 2000 According to the NTSB accident report,   “At 5:26 a.m., mountain daylight time, on Saturday, August 19, 2000, a 30‐inch diameter  natural gas transmission pipeline operated by El Paso Natural Gas Company ruptured  adjacent to the Pecos River near Carlsbad, New Mexico. The released gas ignited and  burned for 55 minutes. 12 persons who were camping under a concrete‐decked steel  bridge that supported the pipeline across the river were killed and their three vehicles  destroyed. Two nearby steel suspension bridges for gas pipelines crossing the river were  extensively damaged. According to El Paso Natural Gas Company, property and other  damages or losses totaled $998,296.  The major safety issues identified in this investigation are the design and construction of  the pipeline, the adequacy of El Paso Natural Gas Company’s internal corrosion control  program, the adequacy of Federal safety regulations for natural gas pipelines, and the  adequacy of Federal oversight of the pipeline operator.22”   1.4.4 Walnut Creek, California, November 9, 2004 According to the California State Fire Marshal pipeline failure investigation report:  “At 1322 hours on 9 November 2004, excavation equipment operated by Mountain  Cascade, Inc., struck Kinder Morgan’s LS‐16 pipeline, a 51.4 mile long intrastate products  pipeline that travels from Concord to San Jose.  The excavator was working on a large‐                                                              21 National Transportation Safety Board (NTSB 2002).  Pipeline Rupture and Subsequent Fire in Bellingham,  Washington, June 10, 1999.  Pipeline Accident Report NTSB/PAR‐02/02.  Washington, D.C.  22 National Transportation Safety Board (NTSB 2003).  Pipeline Rupture and Subsequent Fire near Carlsbad,  New Mexico, August 19, 2000.  Pipeline Accident Report NTSB/PAR‐03/01.  Washington, D.C.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 15 diameter water supply expansion project in Walnut Creek, CA for the East Bay Municipal  Utility District (EBMUD).     Upon puncture of the Kinder Morgan pipeline, gasoline under high pressure was  immediately released into the surrounding area.  Kinder Morgan control center operators  in Concord immediately noticed the large pressure drop and started to shut the pipeline  down.  Several seconds after the line was hit, the gasoline streaming out of the line was  ignited by welders employed by Matamoros Pipelines, Inc. who were also working on the  new water supply pipeline.  The ensuing explosion and fire resulted in the deaths of five  workers and significant injury to four others.  One nearby two‐story structure was burned  and other property was damaged.     The direct cause of the accident was the excavator’s bucket striking the pipeline and  puncturing through the wall of the pipe.  However, there were several factors that  significantly contributed to this accident.  These include inadequate line locating,  inadequate project safety oversight and communication, and failure to follow the one‐call  law.23”  This incident demonstrates that even with one‐call laws, significant incidents can and do occur  due to third party damage.  In this case, the Office of the State Fire Marshal (California) found the  following:   The pipeline operator did not properly mark the location of the pipeline in accordance with  their damage prevention program and the California Government Code.   The pipeline operator did not follow the company’s line locating procedures.   Within one minute of the incident, the operator received an alarm indicating a pressure drop  in the line.  Within four minutes, pump shut down was initiated.  Within 38 minutes, the  pipeline operator had officials at the accident site.  1.4.5 San Bruno, California, September 9, 2010 According to the NTSB accident report,   “On September 9, 2010, about 6:11 p.m. Pacific daylight time, a 30‐inch‐diameter  segment of an intrastate natural gas transmission pipeline known as Line 132, owned and  operated by the Pacific Gas and Electric Company (PG&E), ruptured in a residential area in  San Bruno, California.  The rupture occurred at mile point 39.28 of Line 132, at the  intersection of Earl Avenue and Glenview Drive.  The rupture produced a crater about 72  feet long by 26 feet wide.  The section of pipe that ruptured, which was about 28 feet long  and weighed about 3,000 pounds, was found 100 feet south of the crater.  PG&E  estimated that 47.6 million standard cubic feet of natural gas was released.  The released  natural gas ignited, resulting in a fire that destroyed 38 homes and damaged 70.  Eight  people were killed, many were injured, and many more were evacuated from the area.                                                               23 Office of the State Fire Marshal, Pipeline Failure Investigation Report, November 9, 2004.  California.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 16 Probable Cause  The National Transportation Safety Board determines that the probable cause of the  accident was the Pacific Gas and Electric Company's (PG&E) (1) inadequate quality  assurance and quality control in 1956 during its Line 132 relocation project, which allowed  the installation of a substandard and poorly welded pipe section with a visible seam weld  flaw that, over time grew to a critical size, causing the pipeline to rupture during a  pressure increase stemming from poorly planned electrical work at the Milpitas Terminal;  and (2) inadequate pipeline integrity management program, which failed to detect and  repair or remove the defective pipe section.  Contributing to the accident were the California Public Utilities Commission's (CPUC) and  the U.S. Department of Transportation's exemptions of existing pipelines from the  regulatory requirement for pressure testing, which likely would have detected the  installation defects.  Also contributing to the accident was the CPUC's failure to detect the  inadequacies of PG&E's pipeline integrity management program.  Contributing to the severity of the accident were the lack of either automatic shutoff  valves or remote control valves on the line and PG&E's flawed emergency response  procedures and delay in isolating the rupture to stop the flow of gas.24”  As a result of this incident, the NTSB made a number of recommendations that resulted in  significant new gas pipeline regulations which require improvements in gas pipeline integrity  management.                                                                24 National Transportation Safety Board (NTSB 2011).  Pacific Gas and Electric Company Natural Gas  Transmission Pipeline Rupture and Fire, San Bruno, California, September 9, 2010.  Pipeline Accident Report  NTSB/PAR‐11/01.  Washington, D.C.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 17 2.0  Regulatory Setting  2.1  Regulatory Framework  The United States Department of Transportation (DOT) provides oversight for the nation’s  hazardous liquid pipeline transportation system.  Its responsibilities are promulgated under Title  49, United States Code (USC) Chapter 601.  The Pipeline and Hazardous Materials Safety  Administration (PHMSA), Office of Pipeline Safety (OPS), administers the national regulatory  program to ensure the safe transportation of gas and other hazardous materials by pipeline.   PHMSA was originally the Research and Special Programs Administration (RSPA) within DOT.  Two statutes provide the framework for the Federal pipeline safety program.  The Natural Gas  Pipeline Safety Act of 1968 as amended (NGPSA) authorizes the DOT to regulate pipeline  transportation of natural (flammable, toxic, or corrosive) gas and other gases as well as the  transportation and storage of liquefied natural gas (LNG).  Similarly, the Hazardous Liquid Pipeline  Safety Act of 1979 as amended (HLPSA) authorizes the DOT to regulate pipeline transportation of  hazardous liquids (crude oil, petroleum products, anhydrous ammonia, and carbon dioxide).  Both  of these Acts have been re‐codified as 49 USC Chapter 601.  The Federal Pipeline Safety Act of 2002 (Public Law 107‐355 dated December 17, 2002) provided  for the sharing of the oversight of hazardous liquid pipelines with authorized State agencies.   States must demonstrate to the Secretary of the Department of Transportation that their  programs are consistent with the Federal pipeline safety regulations.  The Secretary can then  authorize that State’s hazardous liquid pipeline agency to participate in the oversight of intrastate  pipelines and some activities of interstate pipelines.   The Revised Codes of Washington (RCW) Title 81, Chapter 81.88 established the Washington State  Utilities & Transportation Commission.  As referred to in this regulation, the law’s short title is the  Washington Pipeline Safety Act of 2000.  It established a Commissioner whose duties included,  “The development and administration of a comprehensive pipeline safety program for natural gas  and hazardous liquid pipelines, and the acquisition of a Federal certification of the pipeline safety  program to act as a delegate to OPS”.  The Washington State Utilities & Transportation  Commission developed and demonstrated that the State’s pipeline programs were consistent  with the Federal program and gained authorization to share oversight of hazardous liquids  pipelines.  2.2  Federal Pipeline Regulations  Interstate and intrastate hazardous liquid transportation by pipeline and rail fall under the  jurisdiction of the U.S. Department of Transportation.  Hazardous liquid pipelines must conform  with the design, construction, testing, operation and maintenance regulations contained in Title  49 Code of Federal Regulations (CFR) Part 195, "Transportation of Hazardous Liquids by Pipeline,"  as authorized by the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA ‐ 49 USC § 2004).   However, the DOT does not issue a construction permit or conduct a plan check for all pipeline  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 18 projects.  Within this study, 49 CFR Parts 195 will be referred to as the “regulations,” or the  “pipeline regulations.”  After the HLPSA was originally written, several pipeline safety measures  have been passed by Congress to improve pipeline safety and to revise 49 CFR Part 195.  Some  portions of the laws initiated studies in specific areas that led to subsequent changes in the  Regulations.  49 CFR Part 194 prescribes the federal requirements for response plans for onshore oil pipelines.   Other relevant federal requirements applicable to the transportation of hazardous liquids by  pipeline are contained in 40 CFR Parts 109, 110, 112, 113, and 114, which pertain to the need for  "Oil Spill Prevention Control & Countermeasures (SPCC) Plans" and Public Law 101‐380 (H.R.),  promulgated in response to the Oil Pollution Act (OPA) of 1990.  2.2.1 Overview of 49 CFR Part 190 This part prescribes procedures that are used by the DOT relative to DOT’s duties regarding  natural gas and hazardous liquid pipeline safety.  2.2.2 Overview of 49 CFR Part 195 2015 PHMSA Notice of Proposed Rulemaking  A number of Congressional Acts have been passed since the initial Pipeline Safety Act of 1979 with  the intent of improving hazardous liquid pipeline safety.  Recently, The Pipeline Safety, Regulatory  Certainty, and Jobs Creation Act of 2011 gave direction to PHMSA to perform a number of studies  relating to hazardous liquid pipeline safety and to develop regulations to address the findings of  those studies.  In October 2015, PHMSA drafted a document outlining proposed rulemaking as a  result of the safety studies initiated by the Congressional Act of 2011.  The proposed rulemaking  includes the following proposed changes to 49 CFR Part 195:   195.1 ‐ The regulation will now consider certain gathering lines to be considered jurisdictional  to the regulations, specifically those that cross navigable waterways.   195.2 ‐ The regulations will now include ethanol, ethanol blends, and other biofuels in the  definition of hazardous liquids.  This section will also add the definition ``Significant Stress  Corrosion Cracking'' and require such damage to be excavated and repaired.   195.11 ‐ The regulation will now require certain gathering pipelines to be subject to the  pipeline integrity assessment and leak detection requirements of the regulations.   195.13 ‐ The regulations will now require hazardous liquid gravity lines to be included in the  annual, safety related, and incident reporting requirement of the regulations.   195.120 ‐ The regulations will no longer allow operators to petition to not make changes to  their systems that would accommodate internal instrumentation tools.   195.134 ‐ The regulation will now require all new pipeline designs to include computational  pipeline modeling (CPM) leak detection based on API 1130 or other applicable standard(s).   195.401 ‐ The regulation will now define the timeframe for all non‐integrity management  repairs.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 19  195.414 ‐ The regulation will now require operators to inspect their pipelines after the  cessation of any of the listed events to insure the safe operation of their pipelines.   195.416 ‐ The regulations will now include this new section that requires the integrity  assessment of current non‐integrity management pipelines every 10 years.   195.422 ‐ The regulations will now include requirements for the repairs of pipelines outside of  HCA’s (non‐integrity management jurisdictional pipeline segments) analogous to the repair  requirements within HCA’s to insure the safe operation of the pipelines.   195.444 ‐ The regulations will now include requirements that all pipelines have CPM leak  detection.   195.452 ‐ The regulations will now eliminate obsolete deadlines currently stated within this  part.  The regulation will now include clarifications on the requirements of newly identified  HCA’s.  The regulations will include the consideration of local environmental factors (including  seismicity) that have an effect on pipeline integrity.  The regulation will expand the criteria  required for integrity analysis.  The regulation will include new timeframes for repairs  including revised language pertinent to the discovery of a condition and the reporting of that  condition to PHMSA.  The regulations will also require all pipelines to be able to accommodate  an internal inspection tool within 20 years that cross existing HCA’s and within 5 years of  newly identified HCA’s.    If enacted as published, the existing OPL pipelines would be subject to these new requirements, as  applicable.  Subpart A – General (Sections 195.0 – 195.12)  This part provides the definition of a jurisdictional hazardous liquid pipeline and the general  responsibilities of a hazardous liquid pipeline operator.  Section 195.3 of the regulation  incorporates, by reference, the applicable national safety standards of the following  organizations:   American Petroleum Institute (API)   American Society of Mechanical Engineers (ASME)   American National Standards Institute (ANSI)   American Society for Testing and Materials (ASTM)   Manufacturers Standardization Society of the Valve and Fittings Industry (MSS)  Section 195.6 was added to the regulations on December 21, 2000, which defines Unusually  Sensitive Areas (USAs).  USAs are drinking water or ecological resource areas that are unusually  sensitive to environmental damage from a hazardous liquid pipeline release, including the  following resources:   Certain drinking water resources (e.g., community water systems, certain aquifers, sole source  aquifers, etc.),   Certain ecological resources (e.g., critically imperiled species, multi‐species assemblage area,  threatened or endangered species, etc.), and   Alternative drinking water sources.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 20 It should be noted that all USAs are High Consequence Areas (HCAs), as discussed later in this  report (49 CFR 195, Subpart F).  Unfortunately, the USDOT does not publish maps of USAs due to  security concerns.    Subpart B – Annual, Accident, and Safety‐Related Condition Reporting (Sections 195.48 –  195.64)  This part outlines the various reporting requirements of a hazardous liquid pipeline operator as  well as the timing of submission of various incident, accident and safety related conditions  discovered by the operator.  Sections 195.50 to 195.54 require reporting of the following  scenarios caused by unintentional releases:   An incident which resulted in an explosion or fire not intentionally set by the operator.   Effective January 1, 2002, the reportable spill volume was reduced to any release of 5 gallons  or more of hazardous liquid or carbon dioxide, unless the spill resulted from maintenance  activity, in which case the reportable spill volume is 5 barrels (210 gallons) or more.  (Prior to  January 1, 2002, the reportable spill volume was 2,100 gallons or more of liquid for any  unintentional release.)   Death of a person.   Effective January 1, 2002, an accident resulting in an injury necessitating hospitalization must  be reported.  (Prior to January 1, 2002, an accident resulting in serious injury to any person  resulting in loss of consciousness, necessity to carry the individual from the scene, medical  treatment, or disability which prevents the discharge of normal duties or the pursuit of  normal activities beyond the day of the incident was required to be reported.)   Damage to property of operator, or others, or both, greater than $50,000 (including the cost  of clean‐up and recovery, property damage, and lost product).  Sections 195.55 and 195.56 require reporting of the following safety related conditions.  The  pipeline operator is required to file a written report with the DOT within five working days of the  time in which the operator first determined that the condition exists.   General corrosion which has reduced the wall thickness to less than that required for the  maximum operating pressure or localized corrosion which could result in a leak;   Unintended movement or abnormal loading of a pipeline by environmental causes (e.g.,  earthquake, landslide, flood) that impairs its serviceability;   Any material defect or physical damage that impairs the serviceability of a pipeline;   Any malfunction or operating error that causes the pressure of a pipeline to rise above 110  percent of the maximum operating pressure;   A leak in a pipeline that constitutes an emergency; and   Any safety related condition that could lead to an imminent hazard and causes (either directly  or indirectly by remedial action of the operator) a 20 percent or more reduction in operating  pressure or shutdown of pipeline operation.  The following safety related conditions are excluded from the above reporting requirements:  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 21  A safety related condition that is more than 220 yards from a human occupancy or outdoor  assembly place.  (Please note that reports are required for safety related conditions within  railroad rights‐of‐way, paved roadways, or where an incident could reasonably be expected to  pollute any stream, river, lake, reservoir, or other body of water.);   Is an accident that is required to be reported under 195.50 or results in such an accident  before the deadline for filing the safety‐related condition report; or   Any safety related condition that is corrected by repair or replacement in accordance with  applicable safety standards before the report deadline.  (Please note that reports are required  for general corrosion on all lines and localized corrosion on unprotected lines.)  Subpart C – Design Requirements (Sections 195.100 – 195.134)  This part includes the design requirements for new pipelines, relocated pipeline segments, pipe  replacements, and other changes to existing systems that use steel pipe.  These requirements  include:   Qualification of metallic components other than pipe,   Design temperature,    Variations in pressure,   Internal design pressure,   External pressure,   External loads,   Fracture propagation,   New pipe,   Used pipe,   Valves,   Fittings,   Passage of internal inspection devices,   Fabricated branch connections,   Closures,   Flange connections,   Station piping,   Fabricated assemblies,   Design and construction of breakout tanks, and   Computational pipeline monitoring (CPM) leak detection.  Subpart D – Construction (Sections 195.200 – 195.266)  This part provides the minimum requirements for constructing new pipelines, relocating existing  pipelines, replacing pipe segments, or otherwise changing existing pipeline systems that use steel  pipe.  These requirements include:   Compliance with written standards and specifications,   Construction inspection,   EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 22  Repair, alteration, and reconstruction of aboveground breakout tanks that have been in  service,   Welding,    Pipeline location,    Pipe bending,    Welding procedure qualification,    Welder qualification,    Production welding,    Welding inspection and nondestructive testing of welds,    Defective weld repair and removal,    External corrosion protection and cathodic protection,    External pipe coating,    Installing pipe in the ditch,    Pipe burial depth (cover),    Clearances between the pipeline and other substructures (49 CFR Part 195.250 requires 12  inches of clearance between a buried pipeline and any other buried structure, with few  exceptions)25,    Clearances between the pipeline and other substructures,    Backfilling,    Rail and highway crossings,    Valves,    Valve locations,    Pumping equipment,    Breakout tanks, and    Construction records.  Subpart E – Pressure Testing (Sections 195.300 – 195.310)  This part prescribes the minimum requirements for hydrostatic testing, compliance dates, test  pressures and duration, test medium, and records.  Basically, this section requires new pipeline  segments to be tested at 125% of the maximum allowable operating pressure (MAOP) for a  period of four hours and an additional four hours at 110% of the MAOP (if buried) prior to  operation.  The regulations do not require the periodic re‐testing of pipelines after the initial  construction test.  The regulations do require that any new pipe, installed within an existing  pipeline, be pre‐tested prior to installation into the pipeline system, or the existing pipeline  segment be re‐tested after the new pipe is installed.  Also, operators do have the option of using  hydrostatic pressure testing as a means to establish their baseline integrity assessment as part of  their integrity management plans in lieu of using internal electronic inspection tools.  Subpart F – Operation and Maintenance (Sections 195.400 – 195.452)                                                               25 49 CFR 195 does not currently contain any specific requirements for pipeline separation from buildings or  other structures.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 23 This part specifies the following minimum requirements for operating and maintaining steel  pipeline systems.  Of special interest to this study is Section 195.402 (c) (10) that requires the  development of a written plan for the abandonment of pipelines (permanently removed from  service per 195.2 Definitions) and what activities must be performed to properly abandon a  pipeline.  Other requirements of this part include:   Correction of unsafe conditions within a reasonable time,   Procedural manual for operations, maintenance, and emergencies (including abandonment of  pipelines),   Training,   Maps and record maintenance,   Maximum operating pressure,   Communication system,   Line markers,   Inspection of right‐of‐way and navigable water crossings,   Cathodic protection systems,   External and internal corrosion control,   Valve maintenance,   Pipeline repairs,   Pipeline movement,   Scraper and sphere facilities,   Over pressure safety devices,   Firefighting equipment,   Breakout tank inspections,   Signs around pump stations and breakout tanks,   Security of facilities,   Smoking or open flames in pump station and breakout tank areas,   Public awareness and education program for hazardous liquid pipeline emergencies and  reporting,   Pipeline integrity management in high consequence areas,   Damage prevention programs,   Computerized leak detection monitoring, and   Control room management.  On December 1, 2000, significant operation and maintenance requirements (49 CFR 195.452)  were added to this subpart.  These are the pipeline integrity management program requirements.   These requirements apply to hazardous liquid pipelines that may affect high consequence areas  (HCAs).  Operators of these pipelines must conduct a baseline assessment within prescribed  deadlines.  These assessments may include the following tests: internal inspection tools (smart  pigs), pressure testing, and other equivalent technologies.  For operators of more than 500 miles  of pipeline that is subject to 49 CFR Part 195, at least 50% of the pipeline mileage, beginning with  the highest risk segment of pipeline, must have been assessed by September 30, 2004; the  remaining mileage must be assessed by March 31, 2008.  For operators of less than 500 miles of  pipe subject to this regulation, the deadlines are August 16, 2005 and February 17, 2009,  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 24 respectively.  The new regulation also requires that certain defects be repaired within prescribed  timeframes, depending on their severity.  HCA’s are defines as follows (49 CFR 195.450):   (1) A commercially navigable waterway, which means a waterway where a substantial  likelihood of commercial navigation exists;    (2) A high population area, which means an urbanized area, as defined and delineated by the  Census Bureau, that contains 50,000 or more people and has a population density of at least  1,000 people per square mile;    (3) An other populated area, which means a place, as defined and delineated by the Census  Bureau, that contains a concentrated population, such as an incorporated or unincorporated  city, town, village, or other designated residential or commercial area;    (4) An unusually sensitive area, as defined in §195.6.  (See also Subpart A discussion above.)    The OPL pipelines corridor are within a highly populated area.  As a result, they are subject to these  pipeline integrity management program requirements.  Subpart G – Qualification of Pipeline Personnel (Sections 195.500 – 195.509)  This part of the regulations (effective August 29, 1999) prescribes the minimum qualification  requirements for hazardous liquid pipeline operations and maintenance personnel.  This involves  the development of an operator qualification program and documentation that employees have  been qualified to perform their daily tasks.  Subpart H – Corrosion Control (Sections 195.551 – 195.589)  This part prescribes the minimum corrosion control requirements for hazardous liquid pipeline  systems.  These requirements include:   Qualification of corrosion control program supervisors,   Requirements for external corrosion control,   Inspection of external coatings,   What pipelines must have cathodic protection in place,   Installation of cathodic protection on breakout tanks,   Cathodic protection test leads,   Examination of exposed portions of buried pipelines,   Criteria for the evaluation of adequate cathodic protection,   Monitoring of external corrosion,   Pipeline electrical isolation, inspection, testing, safeguards, and repairs,   Alleviation of stray electrical currents on pipelines,   Atmospheric corrosion protection, control and acceptable coating materials,   Monitoring of atmospheric corrosion,   Corrective measures for corroded pipes,   Methods available to determine the strength of corroded pipes,   Standards for direct assessment of corrosion, and   Maintenance and retention of corrosion control maps and records.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 25 Appendix A to Part 195 ‐ Delineation between Federal and State Jurisdiction ‐ Statement  of Agency Policy and Interpretation  This appendix describes the jurisdictional relationship between intrastate and interstate pipelines  and how the regulations are enforced by DOT and the state agencies.  Appendix B to Part 195—Risk‐Based Alternative to Pressure Testing Older Hazardous  Liquid and Carbon Dioxide Pipelines  As stated in the appendix, “This Appendix provides guidance on how a risk‐based alternative to  pressure testing older hazardous liquid and carbon dioxide pipelines rule allowed by 195.303 will  work.  This risk‐based alternative establishes test priorities for older pipelines, not previously  pressure tested, based on the inherent risk of a given pipeline segment.  The first step is to  determine the classification based on the type of pipe or on the pipeline segment's proximity to  populated or environmentally sensitive area.  Secondly, the classifications must be adjusted based  on the pipeline failure history, product transported, and the release volume potential.”  Appendix C to Part 195—Guidance for Implementation of an Integrity Management  Program  As stated in the appendix, “This Appendix gives guidance to help an operator implement the  requirements of the integrity management program rule in 195.450 and 195.452.”  2.2.3 Overview of 49 CFR Part 199, (Drug Testing, Requirements) Operators of interstate hazardous liquid pipeline systems are required to comply with the drug  testing requirements of this regulation.  The regulation requires operators to maintain an anti‐ drug plan, provide pre‐employment employee testing, conduct post‐accident drug testing, and  perform random testing such that half of the employee pool is tested each twelve‐month period.   All employees that perform operating, maintenance, or emergency response functions are subject  to these requirements.  Employees who fail or refuse a drug test may not be used in these  functions unless they completed a rehabilitation program and have met other requirements.  2.2.4 Overview of 40 CFR Parts 109, 110, 112-114 The Federal Environmental Protection Agency (EPA), as authorized by 40 CFR, to develop  regulations to prevent and respond to oil spills onto navigable waters of the United States.  The  Oil Spill Prevention Control & Countermeasures (SPCC) covered in these regulations apply to oil  storage and transportation facilities and terminals, tank farms, bulk plants, oil refineries, and  production facilities, as well bulk oil consumers such as apartment houses, office buildings,  schools, hospitals, farms, and state and federal facilities.  Part 109 establishes the minimum criteria for developing oil removal contingency plans for certain  inland navigable water by state, local, and regional agencies in consultation with the regulated  community (e.g., oil facilities).  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 26 Part 110 prohibits discharge of oil in such a manner that applicable water quality standards would  be violated, or in such a manner that would cause a film or sheen upon or in the water.  These  regulations were updated in 1987 to adequately reflect the intent of Congress in Section 311(b)  (3) and (4) of the Clean Water Act.  Part 112 deals with oil spill prevention and preparation of SPCC Plans.  These regulations establish  procedures, methods, and equipment requirements to prevent the discharge of oil from onshore  and offshore facilities into or upon the navigable waters of the United States.  Current wording  applies these regulations to facilities that are non‐transportation related.  However, proposed  rules would make the spill emergency planning in these rules applicable to all oil facilities.  Part  112 should be used by pipeline operators as additional guidelines for the development of oil spill  prevention, control, and emergency response plans.  Part 113 establishes financial liability limits; however, these limits have now been preempted by  the Oil Pollution Act of 1990.  Part 114 provides civil penalties for violations of the oil spill regulations.  The amount of the  penalty is determined considering the gravity of the violation and demonstrated good faith efforts  to achieve rapid compliance after notification of a violation.  The amount is assessed during the  hearing process, or may be assessed by the Regional Administrator if a hearing is not requested.  2.2.5 Oil Pollution Act of 1990 (OPA) The Oil Pollution Act of 1990 (OPA), together with the Oil Pollution Liability and Compensation Act  of 1989, builds upon Section 311 of the Clean Water Act (CWA) to create a single federal law  providing cleanup authority, penalties, and liability for oil pollution.  The bill creates a single fund  to pay for removal of and damages from oil pollution.  This new fund replaces those created  under the Trans‐Alaska Pipeline Act, Deep Water Port Act of 1974, and Outer Continental Shelf  Lands Act, and supersedes the contingency fund established under Section 311 of CWA.  OPA‐90  also authorized the Oil Spill Liability Trust Fund (OSLTF) up to $1 billion to pay for expeditious oil  removal and uncompensated damages up to $1 billion per incident.  The administration of OSLTF  was delegated to the United States Coast Guard by executive order.    The Oil Spill Compensation Fund will be available for all removal costs and compensatory  damages (limited to $1 billion per incident).  The OPA provides for liability and availability of funds  to pay removal costs and compensation in case of discharges of oil.  It adopts the standard of  liability of dischargers for cleanup costs‐strict, several, and joint liability, under Section 311.  The  OPA establishes financial liability of all oil facility operators, including pipeline operators.  The OPA  provides for financial liability related to land‐based pipelines, but only as they relate to  "discharges of oil, unto or upon the navigable waters or adjoining shorelines...”  The OPA affirms the rights of states to protect their own air, water, and land resources by  permitting them to establish state standards which are more restrictive than federal standards.   More stringent state laws are specifically preserved.  Section 106 of the OPA explicitly preserves  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 27 authority of any state to impose its own requirements or standards with respect to discharges of  oil within each state.  As a result of this legislation, 49 CFR Part 194 was codified to require operators to prepare oil spill  response plans for onshore oil pipelines (including pipelines transporting petroleum, fuel oil, etc.).   The intent of these regulations is to reduce the environmental impact of oil discharged from  onshore pipelines.  The operator is required to determine the worst case discharge in each  response zone and meet specified criteria.  The completed plan must be submitted to the DOT  Pipeline Response Plans Officer for review and approval.  These spill response plans must be  consistent with the National and Area Contingency Plans for oil spill response (see state  regulations below establishing the Northwest Area Contingency Plan ‐ NWACP).  2.3  State Pipeline Regulations  The State of Washington’s Utilities and Transportation Commission is responsible for the  administration and oversight of hazardous liquid pipeline operations in the State as authorized by  the USDOT.  The State has adopted the Federal hazardous liquids pipeline regulations as a part of  their own enhanced regulations.  The following section outlines the regulatory framework within  the State of Washington that constitutes the State’s hazardous liquid pipeline regulations.  2.3.1 Revised Code of Washington (RCW) Title 81 The RCW Title 81, Chapter 81.88 establishes the Washington State Utilities & Transportation  Commission.  As referred to in this regulation, the law’s short title is the Washington Pipeline  Safety Act of 2000.  It establishes a Commissioner whose duties include:   The development and administration of a comprehensive pipeline safety program for natural  gas and hazardous liquids pipelines,   The creation of a State 3rd Party Damage Prevention Program,   The development of a State pipeline mapping program,   The acquisition of a Federal certification of the pipeline safety program to act as a delegate to  OPS,   The inspections of maps, records, and procedures of hazardous liquid pipeline operators, and   The establishment of a citizen’s committee on pipeline safety.  The RCW Title 81, Chapter 81.88.144 establishes the above‐mentioned Citizens Committee on  Pipeline Safety.  This is a 13‐member group, appointed by the Governor, to serve 3 year staggered  terms.  The members will include 9 voting members that are elected officials, and representatives  of the public, and 4 non‐voting members that represent owners and operators of hazardous  liquids and gas pipelines.  As stated in the regulation, “The citizens committee on pipeline safety is  established to advise the state agencies and other appropriate federal and local government  agencies and officials on matters relating to hazardous liquid and gas pipeline safety, routing,  construction, operation, and maintenance.”  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 28 2.3.2 Washington Administrative Code, Title 480 (WAC-480) As developed and administered by the Washington Utilities  and Transportation Commission,  WAC‐480 contains two chapters relating to hazardous liquid pipelines within the State that fulfill a  portion of the Utilities & Transportation Commissioner’s charge.   Chapter 480‐73: Hazardous Liquid Pipeline Companies: This State regulation defines the  applicability of the regulations and the administrative guidelines and rules hazardous liquid  pipeline companies must follow.   Chapter 480‐75: Hazardous Liquid Pipelines, Safety – This State regulation provides  Washington State specific pipeline safety rules.  This regulation contains requirements similar  to 49 CFR Part 195 for the design, construction, operation and maintenance, and reporting for  hazardous liquid pipelines.  The Chapter require compliance, by reference, with 49 CFR Part  195.  Of particular interest is this State’s adoption of the natural gas class location definitions published  in 49 CFR Part 192, Chapter 480‐75.  The Washington State regulation governing hazardous liquid  pipelines adopts design factors, based on population density (area class), that limit the operating  pressure in more densely populated areas.  It also requires that for station piping, the design  factor be 0.50.  These requirements are the same as the Federal requirements for gas pipelines;  they are more conservative than the Federal requirements for hazardous liquid pipelines.   Unlike the Federal hazardous liquid regulations, WAC 480‐75‐300, Leak Detection, specifically  defines the performance measures of a computerized leak detection system where the 49 CFR  Part 195.134 Computational Pipeline Monitoring (CPM) Leak Detection refers compliance to API  RP 1130.  The State requires a CPM leak detection system to be able to detect a leak equivalent to  8% of maximum flow within 15 minutes.  These exact limits are not defined by the API RP because  of such variability in pipeline CPM methods, pipeline configurations, pipeline contents, etc.  WAC 480‐75‐640, Depth‐of‐Cover Survey also requires an operator to perform a survey of the  depth of cover every 5 years.  Areas found to have less than the originally required depth of  cover, must be lowered back to the regulatory required depth of cover.  This requirement is also  more conservative than the Federal hazardous liquid pipeline regulation, which only requires the  specified depth of cover at the time of construction, although the pipeline must be maintained in  a safe manner.  2.3.3 Revised Code of Washington (RCW), Title 19 RCW‐19 contains a number of various titles for business operations within the State.  Within this  Title, Chapter 122 (RCW‐19.122) was developed specific to underground utilities.  RCW‐19.122 addresses one of the assigned responsibilities of the Utilities and Transportation  Commission for administering hazardous liquids pipelines.  It establishes a comprehensive one‐ call excavation damage prevention program for the state.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 29 Underground Utilities, Damage Prevention Law RCW 19.122 addresses public health and safety  and prevention of disruption of vital utility services through a comprehensive damage prevention  program.  2.3.4 Washington Administrative Code, Title 173 (WAC-173) WAC‐173 empowers the State of Washington Department of Ecology with the protection of the  ecological resources of the state.  This includes water, air and shoreline protection from pollution.   Specific to pipelines are the requirements in Chapter 182 Oil Spill Contingency Plan requirements  for the State.    WAC‐173‐182 empowers the State of Washington Department of Ecology to require pipeline  operators, and others (vessel operators), to develop and submit for approval, Oil Spill Contingency  Plans to the State.  Generally, these are the same plans developed for Federal plan compliance  with minor adjustments for State specific requirements.  This is the OPA‐90 required Oil Spill  Contingency Plan.  The plan developed by pipeline operators must be consistent with the national  and area oil spill contingency plans as required by OPA‐90.  The area contingency plan is titled the  Northwest Area Contingency Plan (NWACP).  The United States Coast Guard, 13th District, along  with the support of numerous multi‐state organizations, develops and administers the NWACP.   These organizations assist with developmental input to the plan, assistance with emergency spill  response, and incident reporting.  The States of Washington, Oregon, and Idaho participate in the  NWACP as well as Native American Communities.  All spill emergency response activities are  initiated by calling the National Response Center (NRC) in Washington, D.C., who in turn, notifies  the trustees of the NWACP.  WAC‐173‐182 has not been revised since 2006.  There is a proposed rulemaking by the  Washington State Department of Ecology that would involve changes to the regulations that  govern hazardous liquids pipelines with the State.  Per the Department of Ecology website, the  proposed rulemaking would, if enacted as published:   Update definitions to ensure clarity and consistency with existing federal regulations,   Clarify the Worst Case Discharge calculation for pipelines,   Create a new pipeline geographic information planning standard which will use available geo‐ referenced data to support preparedness planning and initial decision making during pipeline  oil spills,   Enhance the existing air monitoring requirements for pipelines to ensure safety of oil spill  responders and the general public,   Enhance the spills to ground requirements to ensure rapid, aggressive and well‐coordinated  responses to spills to ground which could impact ground water,   Update the pipeline planning standard storage requirements to ensure the equipment  required is appropriate for the environments pipelines may impact,   Expand the Best Achievable Protection (BAP) Review Cycle to facilities and pipelines, and   Other changes to clarify language and make any corrections needed.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 30 3.0  Significance Criteria  3.1  Aggregate Risk  Aggregate risk, or probable loss of life (PLL), is one risk measure used to evaluate projects.   Aggregate risk is the total anticipated frequency of a particular consequence, normally fatalities,  that could be anticipated over a given time period, for all project components being analyzed.   Aggregate risk is a type of risk integral; it is the summation of risk, as expressed by the product of  the anticipated consequences and their respective likelihood.  The integral is summed over all of  the potential events that might occur for all of the project components, over the entire project  length.  For example, if one were evaluating a ten mile pipeline system, which included a storage  tank and pump station, the aggregate risk would be the risk posed by all components – ten miles  of pipeline, pumps, station piping, storage tank, etc.  There are no known codified bright line  thresholds26 for acceptable levels of PLL or aggregate risk.  (This risk is presented in Section 6.0,  Qualitative Aggregate Risk Assessment of this Report.)  3.2  Individual Risk  Individual risk (IR) is most commonly defined as the frequency that an individual may be expected  to sustain a given level of harm from the realization of specific hazards, at a specific location,  within a specified time interval.  Individual risk is typically measured as the probability of a fatality  per year.  The risk level is typically determined for the maximally exposed individual; in other  words, it assumes that a person is present continuously – 24 hours per day, 365 days per year.   To our knowledge, the United States federal and Washington state governments have not  adopted individual risk thresholds; the acceptable level of risk is left to local decision makers and  project proponents.  Figure 3.2‐1 presents the individual risk thresholds for a number of  jurisdictions, where such thresholds have been adopted.                                                                   26 A bright‐line rule (or bright‐line test) is a clearly defined rule or standard, composed of objective factors,  which leaves little or no room for varying interpretation.  The purpose of a bright‐line rule is to produce  predictable and consistent results in its application.  The term "bright‐line" in this sense generally occurs in  a legal context.  Bright‐line rules are usually standards established by courts in legal precedent or by  legislatures in statutory provisions.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 31   Figure – 3.2-1 Individual Risk Criteria by Jurisdiction27 The upper end of the green areas represent the de minimus28 risk values for each jurisdiction; IR  risk levels within the green range are considered broadly acceptable.  Risks within this green  region are considered so low that no further consideration is warranted.  In addition, risks within  the green band are generally considered so low that it is unlikely that any risk reduction would be  cost effective, since extraordinary measures would normally be required to further reduce the  risk.  As a result, a benefit – cost analysis of risk reduction is typically not undertaken.                                                               27 Sources: (CDE 2007, SBCO 2008, API 752, Marszal 2001, Hong Kong  28 Latin term for "of minimum importance" or "trifling."  Essentially it refers to something or a difference  that is so little, small, minuscule, or tiny that the law does not refer to it and will not consider it.  In a million  dollar deal, a $10 mistake is de minimus.  Individual Risk Criteria by Jurisdiction 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 Calif Dept ofEducationSanta BarbaraCountyAPI 752WesternAustraliaHong KongUnited KingdomTheNetherlands(2010 Pending)Czech RepublicIR of Annual Fatality EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 32 The lower end of the red areas represent the de manifestus29 risk values; IR risk levels within the  red range are considered unacceptable and the risks are not normally justified on any grounds.  For example, the California Department of Education and Santa Barbara County use 1.0 x 10‐6 as  their bright line threshold; this is equivalent to a one in one million (1 : 1,000,000) likelihood that  an individual at a specific location, would be fatally injured over a one year period30.  Some jurisdictions have adopted a “grey area”, where the risk levels may be negotiated or  otherwise considered.  The United Kingdom developed the ALARP (as low as reasonably  practicable) approach.  This approach is depicted by the yellow areas in Figure 3.2‐1.  Generally,  risks within the yellow area may be tolerable only if risk reduction is impractical or if its cost is  grossly disproportionate to the risk improvement gained.  The underlying concept is to maximize  the expected utility of an investment, but not expose anyone to an excessive increase in risk.  The United States government has opposed setting tolerable risk guidelines. The 1997 final report  of the Presidential/Congressional Commission on Risk Assessment and Risk Management  (Commission), entitled Framework for Environmental Health Risk Management, included the  following finding, “There is much controversy about bright lines, “cut points,” or decision criteria  used in setting and evaluating compliance with standards, tolerances, cleanup levels, or other  regulatory actions.  Risk managers sometimes rely on clearly demarcated bright lines, defining  boundaries between unacceptable and negligible upper limits on cancer risk, to guide their  decisions.  Congress has occasionally sought to include specified bright lines in legislation.  A strict  “bright line” approach to decision making is vulnerable to misapplications since it cannot explicitly  reflect uncertainty about risks, population within, variation in susceptibility, community  preferences and values, or economic considerations – all of which are legitimate components of  any credible risk management process.”  The report states further, “Furthermore, use of risk  estimates with bright lines, such as one‐in‐a‐million, and single point estimates in general, provide  a misleading implication of knowledge and certainty.  As a result, reliance on command‐and‐ control regulatory programs and use of strict bright lines in risk estimates to distinguish between  safe and unsafe are inconsistent with the Commission’s Risk Management Framework and with  the inclusion of cost, stakeholder values, and other considerations in decision‐making.”   (Commission 1997)  The United States is not alone in its opposition to establishing fixed risk thresholds.  The vast  majority of nations do not have government established risk tolerance criteria.  In these cases,  risk tolerance is left to individual owners and other decision makers.  Despite the fact that the United States does not have a bright line individual risk threshold, the  country has an exemplary safety record.  Many believe that this is due to two factors.  First, the  free market allows the application of capital where it will produce the most risk reduction                                                               29 ALARP (as low as reasonably practical) principle states that there is a level of risk that is intolerable,  sometimes called the de manifestus risk level.  Above this level risks cannot be justified.  30 For reference, National Geographic Magazine estimates that the odds of becoming a victim of a lightning  strike in the United States is 1 in 700,000 (1 :700,000).  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 33 benefits.  And secondly, the tort system provides a mechanism to determine third party liability  costs in the event of an injury or fatality.  These factors generally result in sound risk reduction  decisions which are normally based on a cost‐benefit analysis. (Marszal 2001)  3.3  Societal Risk  Societal risk is the probability that a specified number of people will be affected by a given event.   The accepted number of casualties is relatively high for lower probability events and much lower  for more probable events.  As shown in Figure 3.3‐1, the acceptable values for societal risk vary  greatly by different agencies and jurisdictions.  We are not aware of any prescribed societal risk  guidelines for the United States, nor the State of Washington.  (See also Section 3.2.)  The California Department of Education and The County of Santa Barbara, California have upper  and lower bounds for unacceptable and acceptable societal risk levels respectively.  The upper  bound is represented by the red line in the following figure; risks above this line are deemed  intolerable.  The lower bound is represented by the green line in the following figure; risks below  this line are deemed acceptable.  Between these two bounds is a “gray area” similar to that  discussed above for individual risks.   Using the Netherlands, as one possible criteria, for a given number of fatalities, if the likelihood is  greater than the value represented by the blue line (e.g., above the line), then the societal risk is  deemed unacceptable; if the likelihood is less than the value represented by the line (e.g., below  the line) then the societal risk that falls below the line is acceptable.  For example, for one  hundred (100) fatalities, as shown on the “x” axis, the bright line threshold for the Netherlands  (blue line) is 1.00E‐07 (or 1.0 x 10‐7, or 1 : 10,000,000), as shown on the “y” axis.  In other words, if  the likelihood of one hundred (100) fatalities is less than one in ten million (1 : 10,000,000), the  risk is deemed acceptable; if not, it is unacceptable.  It should be noted that societal risk does not assume that individuals would be exposed one  hundred percent (100%) of the time, as with individual risk.  For societal risk, the time that  individuals would be exposed to the potential risk is considered in the analysis.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 34 Figure 3.3-1 – Various Societal Risk Criteria31                                                                31 Sources – CDE 2005 and 2007, API 752, SBCO 2008, Marzal 2001, Hong Kong  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 35 4.0  Potential Hazards  The proposed project could pose additional risks to the public.  For example, if the proposed  project were to impact either, or both, of the OPL pipelines, refined petroleum product could be  released from a leak or rupture.  If the fluid reached a combustible mixture and an ignition source  were present, a fire and/or explosion could occur, resulting in possible injuries and/or deaths.    An unintentional release could also present an environmental hazard.  As noted earlier, soil could  be impacted, waterways could be degraded, and wildlife and vegetation could be jeopardized.   This Report presents the life safety risks posed to the public; an analysis of potential  environmental impacts is beyond the scope of this Report.  As will be presented later in this Report, only a small percentage of refined petroleum product  releases are ignited, resulting in fire and/or explosion.  4.1  Fire Hazards to Humans  The physiological effect of fire to humans depends on the rate at which heat is transferred from  the fire to the person, and the amount of time the person is exposed to the fire.  Skin that is in  contact with flames can be seriously injured, even if the duration of the exposure is just a few  seconds.  Thus, a person wearing normal clothing is likely to receive serious burns to unprotected  areas of the skin when directly exposed to the flames from a flash fire (vapor cloud fire).  Humans in the vicinity of a fire, but not in contact with the flames, would receive heat from the  fire in the form of thermal radiation.  Radiant heat flux decreases with increasing distance from a  fire.  Therefore, those close to the fire would receive thermal radiation at a higher rate than those  farther away.  The ability of a fire to cause skin burns due to radiant heating depends on the  radiant heat flux to which the skin is exposed and the duration of the exposure.  As a result, short‐ term exposure to high radiant heat flux levels can be injurious.  However, if an individual is far  enough from the fire, the radiant heat flux would be lower, likely incapable of causing injury,  regardless of the duration of the exposure.  An incident heat flux level of 1,600 Btu/ft2‐hr is generally considered hazardous for people located  outdoors and unprotected.  Generally, humans located beyond this heat flux level would not be at  risk to injury from thermal radiation resulting from a fire. The radiant heat flux effects to humans  are summarized below. The first three endpoints have been used to evaluate the risk of public  fatalities.   12,000 Btu/ft2‐hr (37.7 kW/m2) – 100% mortality after 30 second exposure (CDE 2007).   8,000 Btu/ft2–hr (25.1 kW/m2) – 50% mortality after 30 second exposure (CDE 2007).   5,000 Btu/ft2‐hr (15.7 kW/m2) – 1% mortality after 30 second exposure (CDE 2007). In many  instances, an able bodied person would increase the separation distance or seek cover during  this 30 second period.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 36  3,500 Btu/ft2‐hr (11.0 kW/m2) ‐ Second degree skin burns after ten seconds of exposure, 15%  probability of fatality (Quest 2003). This assumes that an individual is unprotected or unable  to find shelter soon enough to avoid excessive exposure (Quest 2003). Other data sources  provide a 10% mortality at 5,500 Btu/hour‐square foot and 15% mortality at 5,800 Btu/hour‐ square foot (CDE 2007).   1,600 Btu/ft2‐hr (5.0 kW/m2) ‐ Second degree skin burns after thirty seconds of exposure.   440 Btu/ft2‐hr (1.4 kW/m2) ‐ Prolonged skin exposure causes no detrimental effect (CDE 2007,  Quest 2003).  4.2  Explosion Hazards to Humans  Refined petroleum product vapors do not explode unless they are in a confined space within a  specific range of mixtures with air and are ignited.  However, if an explosion does occur, the  physiological effects of overpressures depend on the peak overpressure that reaches a person.   Exposure to overpressure levels can be fatal.  People located outside the flammable cloud when a  combustible mixture ignites would be exposed to lower overpressure levels than those inside the  flammable cloud.  If a person were far enough from the source of overpressure, the explosion  overpressure level would be incapable of causing injuries.  The generally accepted hazard level for  those inside buildings is an explosion overpressure is 1.0 psig.  This level of overpressure can  result in injuries to humans inside buildings, primarily from flying debris.  The consequences of  various levels of overpressure are outlined in the table below.  Table 4.2-1 Explosion Over-Pressure Damage Thresholds32 Side-On Over-Pressure Damage Description 0.02 psig Annoying Noise 0.03 psig Occasional Breaking of Large Window Panes Under Strain 0.04 psig Loud Noise; Sonic Boom Glass Failure 0.10 psig Breakage of Small Windows Under Strain 0.20 psig Glass Breakage - No Injury to Building Occupants 0.30 psig Some Damage to House Ceilings, 10% Window Glass Broken 0.50 to 1.00 psig Large and Small Windows Usually Shattered, Occasional Damage to Window Frames 0.70 psig Minor Damage to House Structures, Injury, but Very Unlikely to Be Serious 1.00 psig 1% Probability of a Serious Injury or Fatality for Occupants in a Reinforced Concrete or Reinforced Masonry Building from Flying Glass and Debris 10% Probability of a Serious Injury or Fatality for Occupants in a Simple Frame, Unreinforced Building 2.30 psig 0% Mortality to Persons Inside Buildings or Persons Outdoors (CDE 2007) 3.10 psig 10% Mortality to Persons Inside Buildings (CDE 2007) 3.20 psig <10% Mortality to Persons Outdoors (CDE 2007) 14.5 psig 1% Mortality to Those Persons Outdoors (LEES)                                                                32 Sources: LEES, CDE 2007, Quest 2003  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 37 5.0  Baseline Data  In the following paragraphs, the anticipated frequency of unintentional releases and impacts to  humans will be estimated using data from the following sources:   United States Hazardous Liquid Pipelines (USDOT)   United States Refined Petroleum Project Pipelines (USDOT)  5.1  U.S. Hazardous Liquid Pipeline Releases, January 2010 through December  2015  49 CFR 195.50 requires that the following incidents be reported:  “An accident report is required for each failure in a pipeline system subject to this part in  which there is a release of the hazardous liquid or carbon dioxide transported resulting in  any of the following:   (a) Explosion or fire not intentionally set by the operator.   (b) Release of 5 gallons (19 liters) or more of hazardous liquid or carbon dioxide, except  that no report is required for a release of less than 5 barrels (0.8 cubic meters) resulting  from a pipeline maintenance activity if the release is:   (1) Not otherwise reportable under this section;   (2) Not one described in § 195.52(a)(4);   (3) Confined to company property or pipeline right‐of‐way; and   (4) Cleaned up promptly;   (c) Death of any person;   (d) Personal injury necessitating hospitalization;   (e) Estimated property damage, including cost of clean‐up and recovery, value of lost  product, and damage to the property of the operator or others, or both, exceeding  $50,000.”  In August 2016, the raw incident data file for hazardous liquid pipeline releases occurring since  January 1, 2010 was downloaded.  Releases33 which have occurred since December 31, 2015 were  then deleted, since the data set is incomplete for the 2016 calendar year.  This left 2,362 reported                                                               33 As used herein, the terms release, spill, or leak are used interchangeably.  They all refer to unintentional  releases from the pipeline.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 38 releases which occurred during the six year period between January 1, 2010 and December 31,  201534.  These incidents are summarized in the following table.  Table 5.1-1 – Reported U.S. Hazardous Liquid Pipeline Releases and Fatalities, January 2010 through December 2015 Calendar  Year  Total Hazardous  Liquid Pipeline  Mileage  Number of Reported  Incidents Total Fatalities35 General Public  Fatalities  2015 200,00036 454 1 1  2014 199,627 445 0 0  2013 192,417 401 1 0  2012 186,211 366 3 2  2011 183,580 346 1 0  2010 181,986 350 1 1  Totals 1,143,831 2,362 7 4  Using the above data, the following incident rates have been developed:   Frequency of Reported Incidents – 2.0650 incidents per 1,000 mile years37   Frequency of Fatalities38 – 0.0061 fatalities per 1,000 mile years   Frequency of General Public Fatalities – 0.0035 fatalities per 1,000 mile years   Frequency of General Public Injuries – 0.0035 injuries per 1,000 mile years  It should be noted that during this reporting period, although there were seven (7) fatalities, only  four (4) were members of the general public.  There were a total of four reported (4) general  public injuries.                                                               34 When there is a new change in operator incident reporting requirements, the USDOT often begins a new  database to ensure that all data contained within a given database is consistent.  The most recent database  began in January 2010.  Since 2016 data is incomplete, incidents occurring in 2016 were deleted from the  analysis.  The resulting data includes a complete six year history of over one million mile‐years of pipeline  operation.  35 The total number of fatalities includes fatalities of the pipeline operator’s personnel, the pipeline  operator’s contractor’s personnel, and the general public.  36 The total hazardous liquid pipeline mileage for 2015 is not yet available.  This value has been assumed.  37 This unit provides a means of predicting the number of incidents for a given length of line, over a given  period of time.  For example, if one considered an incident rate of 1.0 incidents per 1,000 miles years, one  would expect one incident per year on a 1,000 mile pipeline.  Using this unit, frequencies of occurrence can  be calculated for any combination of pipeline length and time interval.  38 The total number of fatalities includes fatalities of the pipeline operator’s personnel, the pipeline  operator’s contractor’s personnel, and the general public.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 39 5.2  U.S. Refined Petroleum Product Releases, January 2010 through December  2015  Since the OPL pipelines only transport refined petroleum products, the U.S. Hazardous Liquid  Pipeline release data summarized above was filtered to include only refined petroleum product  pipelines releases.  Releases from hazardous liquid pipelines which transport other commodities  (e.g., crude oil, highly volatile liquid, carbon dioxide, biofuel, etc.) were excluded.  The results for  this data subset are summarized below:  Table 5.2-1 – Reported U.S. Refined Petroleum Product Releases and Fatalities, January 2010 through December 2015 Calendar  Year  Total Refined  Petroleum Product  Pipeline Mileage  Number of Reported  Incidents Total Fatalities39 General Public  Fatalities  2015 61,00040 133 0 0  2014 61,763 157 0 0  2013 63,351 134 0 0  2012 64,042 133 0 0  2011 64,130 123 0 0  2010 64,800 125 0 0  Totals 379,086 805 0 0  Using the above data, the following incident rates have been developed:   Frequency of Reported Incidents – 2.1235 incidents per 1,000 mile years41   Frequency of Fatalities42 – 0.0000 fatalities per 1,000 mile years   Frequency of General Public Fatalities – 0.0000 fatalities per 1,000 mile years   Frequency of General Public Injuries – 0.0000 injuries per 1,000 mile years  It should be noted that during this reporting period, there were zero (0) fatalities.  There were a  total of two (2) reported injuries, but neither of these were members of the general public; one  (1) was the pipeline operator’s employee and one (1) was the pipeline operator’s contractor’s  employee.                                                               39 The total number of fatalities includes fatalities of the pipeline operator’s personnel, the pipeline  operator’s contractor’s personnel, and the general public.  40 The total hazardous liquid pipeline mileage for 2015 is not yet available.  This value has been assumed.  41 This unit provides a means of predicting the number of incidents for a given length of line, over a given  period of time.  For example, if one considered an incident rate of 1.0 incidents per 1,000 miles years, one  would expect one incident per year on a 1,000 mile pipeline.  Using this unit, frequencies of occurrence can  be calculated for any combination of pipeline length and time interval.  42 The total number of fatalities includes fatalities of the pipeline operator’s personnel, the pipeline  operator’s contractor’s personnel, and the general public.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 40 The releases presented in Table 5.2‐1 fall into three categories, as identified on PHMSA Form F  7000‐1, Accident Report – Hazardous Liquid Pipeline Systems.   Contained on Pipeline Operator Property – 610 of the 805 (76%) releases occurred on pipeline  operator controlled property and were entirely contained within the property boundary.   These releases were identified as occurring at the following types of facilities: valve stations,  terminals, tank farms, junctions, pump stations, meter stations, etc.  The “system part”  identified on the accident reports included: onshore pipeline, including valve sites (41  releases, 6%); onshore terminal or tank farm equipment and piping (242 releases, 40%);  onshore pump or meter station equipment and piping (237 releases, 39%); and onshore  breakout tank or storage vessel, including attached appurtenances (90 releases, 15%).   Extended Beyond Operator Property ‐ 38 of the 805 (5%) releases occurred on pipeline  operator controlled property, but the release migrated beyond the parcel boundary.   Pipeline Right‐of‐Way ‐ 157 of the 805 (19%) releases were identified as occurring along the  pipeline right‐of‐way.  These included releases which occurred at valve sites.  The proposed collocated OPL pipeline and overhead HVAC line corridor does not include any of  the types of facilities identified on the accident reports as “pipeline operator controlled property”  (e.g., valve stations, terminals, tank farms, junctions, pump stations, meter stations, etc.).   Further, the releases that occurred on the pipeline operator’s controlled property which did not  extend beyond the operator controlled property boundary would not normally affect the public.   As a result, these 610 releases (first bullet above) were not included in the data set used to  evaluate the risks posed to the public from the OPL pipeline(s).  The average spill size from the remaining 195 releases (157 releases which occurred along the  pipeline right of way plus 38 releases which occurred on the pipeline operator controlled  property, but the release migrated beyond the parcel boundary) was 306 barrels (12,900 gallons).   The largest reported unintentional release was 9,000 barrels (378,000 gallons).  These data are  presented in the Figure 5.2‐1.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 41 Figure 5.2-1 – Spill Size Distribution, 2010 thru 2015 U.S. Refined Petroleum Product Pipeline Releases43 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191Spill Size, barrelsNumber of Releases 2010 thru 2015 U.S. Refined Petroleum Pipeline  Spill Size Distribution   The resulting frequency of unintentional releases which affect property beyond that of the  pipeline operator was 0.5144 incidents per 1,000 mile years.  The distribution of these incidents  by cause is shown in Table 5.2‐2 below.                                                               43 This includes all releases which occurred along the pipeline right‐of way and all releases which occurred  on the pipeline operator controlled property, which migrated beyond the property boundary.  Releases  which occurred on the pipeline operator controlled property and totally contained on the operator’s  property, have not been included.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 42 Table 5.2-2 – Reported U.S. Refined Petroleum Product Pipeline Releases by Cause, January 2010 through December 2015 Cause  Number of  Reported  Incidents  Percentage  Frequency  (incidents per  1,000 mile years)  Average Spill Size  (Barrels44)  Equipment Failure45 48 24.6% 0.1266 246  Incorrect Operation46 15 7.7% 0.0396 704  External Corrosion 43 22.1% 0.1134 269  Outside Force/Excavation  38 19.5% 0.1002 473  Material Failure 33 16.9% 0.0871 194  Internal Corrosion 4 2.0% 0.0106 21  Natural Force47 8 4.1% 0.0211 154  Other 6 3.1% 0.0158 18  5.2.1 Spill Size Distribution, U.S. Refined Petroleum Product Pipelines, Normalized to 18- inch Diameter Pipe For large releases (e.g., pipe rupture), pipe diameter can have a direct impact on the volume that  may be released during a major incident.  As a result, for larger releases (e.g., full bore ruptures),  using the spill size distribution presented in Figure 5.2‐1 above, for the relatively large diameter  OPL pipelines, would not be appropriate.  For large releases, the volume and flow rate are  generally proportional to the pipe diameter squared.  For example, the pipe volume and flow rate  for a 16‐inch diameter pipe is generally four times greater than for an 8‐inch diameter pipe [e.g.,  (16 / 8)2 = 4].  On the other hand, for a relatively slow corrosion caused release, one would expect a similar spill  volume regardless of pipe diameter, since the release volume would generally depend on the size  of the pipe defect, not the pipe diameter.  For example, for a ¼‐inch diameter hole in the pipe  wall, the release volume from a 6‐inch diameter pipe would be similar to that from a 20‐inch  diameter line, assuming similar operating pressures.  Figure 5.2.1‐1 and Table 5.2.1‐1 present a “normalized” spill size distribution; for releases that  were identified on the incident report as “ruptures” (12 incidents), the unintentional release                                                               44 Barrels is a measure of volume equal to 42 U.S. gallons.  45 Includes items such as: defective or loose tubing, malfunction of control or relief equipment, non‐ threaded equipment failure, pump, threaded connection, or coupling failure.  46 Includes items such as: incorrectly installed equipment, over‐pressure, overfill tank or vessel, valve left in  wrong position, wrong equipment installed, etc.  47 Includes items such as: earth movement, floods, lightning, temperature, etc.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 43 volumes presented in Figure 5.2‐1 have been multiplied by (18.048 / Pipe Diameter)2.  For ruptures  of pipes larger than 18‐inches in diameter, the spill volume was reduced.  For releases from lines  smaller than 18‐inches, the spill volume was increased.  For all other releases (e.g., mechanical  puncture, leak, or other), no changes to the reported spill volume have been made.      Figure 5.2.1-1 – Spill Size Distribution, U.S. Refined Petroleum Product Pipeline Releases, Normalized to 18-inch Diameter Pipe, January 2010 through December 201549 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191Spill Size, barrelsNumber of Releases 2010 thru 2015 U.S. Refined Petroleum Pipeline  Spill Size Distribution  Normalized to 18‐inch Pipe   The normalized average spill size from these releases was 484 barrels (20,300 gallons).  The  largest normalized reported unintentional release was 12,000 barrels (504,000 gallons).  As noted,                                                               48 One of the OPL pipelines under study is 16‐inches in outside diameter, the other is 20‐inches in outside  diameter.  An average 18‐inch diameter has been used for both lines in this study.  49 For this Report, we have used an average pipe diameter of 18‐inches for both the OPL 16‐inch and 20‐ inch diameter pipelines.  This includes all releases which occurred along the pipeline right‐of way and all  releases which occurred on the pipeline operator controlled property, which migrated beyond the property  boundary.  Releases which occurred on the pipeline operator controlled property and totally contained on  the operator’s property, have not been included.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 44 the majority of these releases were relatively small, with a small portion having rather significant  spill volumes.  These data are also summarized in tabular form in Table 5.2.1‐1.  These data will be used later in  the individual and societal risk assessments.  Table 5.2.1-1– Spill Size Distribution, U.S. Refined Petroleum Product Pipeline Releases, Normalized to 18-inch Diameter Pipe, January 2010 through December 201550 Spill Size Range  Barrels  Average Spill Size Distribution  1 Barrel or Less 0.5 Barrels 27 Percent  2 to 9 Barrels 4.3 Barrels 21 Percent  10 to 99 Barrels 36 Barrels 22 Percent  100 to 999 Barrels 416 Barrels 21 Percent  1,000 to 5,000 Barrels 2,603 Barrels 6 Percent  6,000 to 12,000 Barrels 8,861 Barrels 3 Percent  5.2.2 Olympic Pipeline Leak History The PHMSA incident data file for hazardous liquid pipeline releases was reviewed to identify the  frequency of releases from OPL’s two pipelines that share the HVAC overhead power line  corridor.  Between January 1, 2010 and December 31, 2015, there were five (5) reported releases  on the OPL system.  These releases varied in size from 0.2 to 7.5 barrels.  All of the releases  occurred at valve stations and the releases were entirely contained within OPL property; there  were no reported releases along the pipeline right‐of‐way.    Three (3) of the releases occurred on the 20‐inch diameter Allen to Renton pipe segment, at Allen  Station, near Mount Vernon.  One (1) release occurred at Renton Station on the Renton to Seattle  pipe segment.  One (1) release occurred at Ferndale on the Ferndale to Allen segment.  There  were no reported injuries, fires, or explosions.  These releases are summarized in the table below.                                                               50 This includes all releases which occurred along the pipeline right‐of way and all releases which occurred  on the pipeline operator controlled property, which migrated beyond the property boundary.  Releases  which occurred on the pipeline operator controlled property and totally contained on the operator’s  property, have not been included.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 45 Table 5.2.2-1– OPL Reported Releases, January 1010 through December 2015 Date  Release  Volume  (barrels)  Location Item Involved  9/19/2011  0.29  MP 7 Block Valve Instrumentation Connection Failure  3/31/2012  1.96 Allen Station Threaded Connection/Coupling Failure  4/1/2012  0.97 Allen Station  Instrumentation (Pressure Gauge) on Pig Launcher  7/20/2014  0.19  Renton Station  Scraper Trap O‐Ring Connection Failure on Pig Trap  Door  11/10/2014  7.49 Allen Station Threaded Connection Failure  Assuming a four hundred (400) mile OPL pipeline system, the resulting frequency of unintentional  release was 2.0833 incidents per 1,000 mile years over this six (6) year period; this is essentially  the same frequency of unintentional release (2.1235 incidents per 1,000 miles years) for the  roughly 60,000 miles of U.S. refined petroleum product pipelines over this same period.  The  average spill size was 2.2 barrels, significantly less than the national overage of 94.5 barrels.  It  should also be noted that all of the released refined petroleum product was entirely contained on  OPL controlled property; there were no reported releases during this period that occurred along  the pipeline right‐of‐way or were not entirely contained on OPL controlled property.  5.3  Population Density  Societal risk is dependent on the number of exposed individuals.  In the societal risk analysis  presented later in this Report, population densities were used to determine the number of  exposed individuals.  These data were obtained by analyzing census data; the following data were  provided by Environmental Science Associates for the HVAC overhead power line corridor which  would be shared with the OPL pipeline(s).   Minimum Population Density – 568 persons per square mile   Average Population Density ‐ 3,228 persons per square mile   Maximum Population Density ‐ 23,169 persons per square mile    The societal risk analysis will present the likelihood of various release scenarios for each of these  population densities.  5.4  Potential Hazards of Collocated Overhead HVAC Lines and Hazardous Liquid  Pipelines  Previously, in Section 1.1.5, the existing OPL procedures that address the OPL identified hazards  posed by the collocation of overhead HVAC transmission lines and hazardous liquid pipelines,  were presented.  In this section, these, and other risks which will be used in the analysis will be  discussed.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 46 When overhead HVAC lines are collocated with a hazardous liquid pipeline(s), the following  potential hazards can be presented.   Fault Conditions – When a ground fault occurs on a HVAC transmission line, it can cause high  electrical current to travel through the soil and onto a pipeline.  Under fault conditions,  elevated potentials can lead to coating damage or direct arcing to the pipeline.51  These  situations can cause pipe external corrosion coating damage, damage to the pipe wall, and  through wall pipe failures.     Touch and Step Potential – Touch potential is the voltage a person may be exposed to when  contacting a pipe or electrically continuous appurtenance (e.g., cathodic protection test  station, access stile, valve, etc.); this can be a concern during both normal steady state  inductive and fault conductive/inductive conditions.  High touch or step potentials can pose a  safety hazard to a person in contact with the pipeline, or pipeline appurtenance.  The current  industry threshold is 15 volts.  At touch potentials greater than this value, personnel may be  subject to safety risks posed by electrical shock.     Pipeline Integrity – During steady state operation, an overhead HVAC line can induce  interference that can contribute to accelerated external corrosion damage to a pipeline.   According to the A.C. Corrosion State of the Art: Corrosion Rate, Mechanism, and Mitigation  Requirements, published by the National Association of Corrosion Engineers (NACE),     “In 1986, a corrosion failure on a high‐pressure gas pipeline in Germany was attributed to AC  corrosion.  This failure initiated field and laboratory investigations that indicated induced AC‐ enhanced corrosion can occur on coated steel pipelines, even when protection criteria are  met.  In addition, the investigations ascertained that above a minimum AC density, typically  accepted levels of cathodic protection would not control AC‐enhanced corrosion.  The  German AC corrosion investigators’ conclusions can be summarized as follows:  a. AC‐induced corrosion does not occur at AC densities less than 20 amp/meter2 (1.9  amps/foot2).  b. AC corrosion may or may not occur (is unpredictable) for AC densities between 20 to  100 amp/meter2 (1.9 to 9.3 amps/foot2).  c. AC corrosion occurs at current densities greater than 100 amp/meter2 (9.3  amps/foot2).”   Encroachment and Construction Hazards – The construction of facilities near an active  hazardous liquid pipeline can increase the risk that the line will be hit or damaged by the  construction activity.  Increased pipe stresses due to surcharge loading can also be imposed by  equipment operating over, or near, the pipeline.                                                               51 Det Norske Veritas, Criteria for Pipelines Co‐Existing with Electric Power Lines, October 2015.  Prepared  for INGAA Foundation, Inc.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 47 5.5  Pipeline Incidents Caused By Close Proximity to Electrical Utilities  Unfortunately, national data, similar to that presented earlier from the PHMSA database is not  available to directly quantify the increased risk of unintentional release that may be posed by the  collocation of overhead HVAC lines and hazardous liquid pipeline(s).  In order to estimate the  increased risk, the following data would be required:   Total length of collocated hazardous liquid pipelines and overhead HVAC lines.   Total number of unintentional releases, injuries, and fatalities, by cause, for all such collocated  facilities.    These data, combined with that presented in Section 5.2, would enable a comparison of pipelines  which are collocated with overhead HVAC lines and those which were not collocated.      In the absence of any such data, the PHMSA incident report database for the period from January  2010 through December 2015 has been reviewed.  We attempted to identify all releases that may  have been caused by a pipeline’s close proximity to electrical utility facilities.  Unfortunately, the  external corrosion caused releases do not include data to identify releases caused by A.C. interference  with cathodic protection systems; nor do the excavation damage caused releases identify construction  related specifically to overhead power line or other electrical utility construction.   However, the  following observations are noteworthy; they help put the additional pipeline risk posed by ground  faults due to the collocation of overhead HVAC lines and hazardous liquid pipelines into perspective.     Of the 2,362 reported hazardous liquid pipeline incidents from January 2010 through  December 2015.  Fifteen (15, or 0.6 percent) were reported as being caused by an indication  of “stray current” on the incident report.   Based on the incident reports, it does not appear that any of the seven (7) fatalities were a  result of collocated pipelines and overhead HVAC lines.   Based on a review of the OPL incident reports, there do not appear to be any OPL releases  that were caused by the pipelines being collocated with the existing overhead HVAC lines.   There were six (6), or 0.25 percent of the 2,363 hazardous liquid pipeline incidents from  January 2010 through December 2015 that may have been caused due to their close proximity  to electrical utilities.  These incidents were identified by reviewing all incidents caused by  “other outside force damage”, where “electrical arcing from other equipment or facility” was  marked on the PHMSA Form F 7000 Accident Report.  (These six incidents are summarized in  the following subsections of this Report.)  5.5.1 Chevron Pipe Line Company June 11, 2010 Incident According to the PHMSA Failure Investigation Report, “A large electrical charge was introduced to  a fence directly over Chevron’s pipeline.  The charge jumped from a metal fence post to Chevron’s  pipeline causing an ~ 1” hole in the fence post and an ~1/2” hole near the 12:00 position on the  pipe.  The leak occurred near a small creek that runs through a high density populated area.  The  crude followed the creek to a pond where most of it was captured.”    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 48 This event caused a reported 800 barrel (33,600 gallon) crude oil spill (778 barrels, or 32,700  gallons, were reported as recovered) and $32 million in clean‐up costs, repairs, remediation, lost  product, private property damage, emergency response, and settlements.  The site was located  adjacent to a Rocky Mountain Power Electrical Transition Station (ETS), near Red Butte Creek,  near Salt Lake City, Utah.  An ETS is where a high voltage above grade transmission line transitions  to below grade buried cable.  According to the PHMSA report, the bottom of the fence post was within three (3) inches of the  top of the pipeline.  (There were no one‐call laws in place at the time of fence construction,  around 1980.)  The cause of the “large electrical charge” was determined to be a ground fault that  sent a very large surge of electricity through the fence.  (It was later discovered that the fence was  connected to the ETS station grounding grid.)    Figure 5.5.1-1 Photograph from PHMSA report showing hole in pipe wall caused by electrical fault. 5.5.2 Oneok NGL Pipeline August 8, 2011 Incident The accident report filed by the pipeline operator reported the incident cause as, “A 34 kV  electrical wire came down off the utility pole struck the ground and the 106E pipeline cased  crossing vent pipe initiating a small grass fire.  The downed powerline arced a hole in the 106E  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 49 pipeline, casing for road crossing and vent stack on casing.  The 14# natural gasoline product  releasing from the pipeline made its way to the surface and became ignited by the grass fire.”   Electrical arcing was noted on the incident report.  This incident resulted in a 3.26 barrel (137  gallon) natural gas liquid spill.  The total estimated damage from this incident was $411,000.  5.5.3 Crimson Pipeline September 8, 2013 Incident The accident report filed by the pipeline operator reported the incident cause as, “the cause  appears to be third party damage related to a nearby power pole grounding rod.”  Electrical  arcing was noted on the incident report.  This incident resulted in a 100 barrel (420 gallon) crude  oil spill.  The total estimated damage from this incident was $3.1 million.  5.5.4 Buckeye Partners LP March 14, 2014 Incident The accident report filed by the pipeline operator reported the incident cause as, “A power line  was reported down to the Kankakee, Illinois fire department by a passing motorist on Route 113  in Kankakee, Illinois.  The power line fell directly on top of where the Buckeye 162 pipeline crosses  Route 113…   draft report of metallurgical analysis by same third party has stated the cause to be  local melting of the pipe walls.  The energy source for the melting was a high current arc that  originated from a downed electrical power distribution line...” This incident resulted in a 25 barrel  (1,020 gallon) refined petroleum product (transmix) spill.  16.6 barrels (697 gallons) were  recovered.  The total estimated damage from this incident was $2.0 million.  5.5.5 Marathon Pipeline (MPL) February 17, 2015 Incident The accident report filed by the pipeline operator reported the incident cause as, “The leak was  caused by an electrical arc from a grounding rod in the electric company's grounding system to  MPL's jet fuel pipeline, resulting in an electrical arc burn breach to the pipe and release of jet  fuel.”  This incident resulted in a 160 barrel (6,720 gallon) refined petroleum product spill.  112  barrels (4,700 gallons) were recovered.  The total estimated damage from this incident was $2.5  million.  5.5.6 Kinder Morgan September 9, 2015 Incident The accident report filed by the pipeline operator reported the incident cause as, “severe weather  caused a center point high voltage line cross member to fall, draping lines over a high voltage  12.47 kV three phase distribution line.  The electrical energy from the lightning was transferred  through the poles steel guide wire and into the ground where it arced to the LCRC 12" pipeline.   This arc caused a small hole in the pipe that caused the leak.”  180 barrels (7,560 gallons) was  recovered.  The total estimated damage from this incident was $80,000.  5.6  A.C. Interference Analysis, Proposed 115/230 kV Project (Willow 2)  Puget Sound Energy, the project proponent, retained Det Norske Veritas to perform an analysis of  potential A.C. interference with the existing OPL 16‐inch and 20‐inch pipelines.  Their findings are  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 50 presented in the final report, entitled, A.C. Interference Analysis – 230 kV Transmission Line  Collocated with Olympic Pipelines OPL16 and OPL 20, (A.C. Interference Study) dated December  13, 2016.  The A.C. Interference Study utilized the Elsyca Inductive and Resistive Interference  Simulator (IRIS) software to predict the steady state electrical interference and resistive fault  effects of the proposed overhead HVAC transmission lines on the existing 16‐inch and 20‐inch  diameter OPL refined petroleum product pipelines.  In the evaluation of the proposed project and project alternatives, the study conservatively used  the winter peak electrical loads.  The study evaluated both the proposed 115/230 kV circuit  voltage and the future 230/230kV circuit voltage.  5.6.1 Soil Resistivity Det Norske Veritas collected soil resistivity measurements at 32 locations along the right‐of‐way.   The results are summarized below at a depth of 5‐feet.   Minimum Resistivity – 66 ohm‐meters   Average Resistivity – 1,005 (OPL 20‐inch) and 1,013 (OPL 16‐inch) ohm‐meters   Maximum Resistivity – 4,021 ohm‐meters    5.6.2 Model and Simulation Validation The A.C. Interference Study included a comparison of modeled to actual A.C. interference for the  existing 115 kV transmission line (Willow 1).  In general, the measured A.C. potentials were fairly  low – a maximum of 4.08 volts for the 16‐inch line and 5.63 volts for the 20‐inch line.  (The  common industry threshold is 15 volts, which can pose a safety threat to personnel.)    It should be noted that these measurements were not taken at the winter peak electrical loads;  the operating parameters of the transmission line (e.g., phase conductor load and phase balance)  have a significant impact on the induced A.C. potentials.  Other factors that affect the measured  values include: geometry of transmission lines, pipeline proximity, soil resistivity, external pipe  corrosion coating type and condition, depth of cover, pipe diameter, angle between the pipeline  and overhead HVAC transmission line, phase conductor spacing and distance above the ground,  etc.  These field measurements were compared to modeled results to validate the model.  The  modeled results were in general conformance with the actual measured results, considering the  range in values for the various factors noted above.  The actual field measurements and the  simulated results are presented graphically on the following figures for the 16‐inch and 20‐inch  OPL pipelines.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 51   Figure 5.6.2-1 OPL 16-inch Modeled versus Actual A.C. Potentials Figure 5.6.2-2 OPL 20-inch Modeled versus Actual A.C. Potentials EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 52 5.6.3 Predicted Results for Proposed 115/230 kV Project (Willow 2) Structure (Pole) Type Sensitivity Study  A sensitivity study was performed to analyze various pole configurations.  For the Willow 2 route,  the C2 structure was modeled along the corridor, except for a short segment, where low profile  structures are proposed.  The location of where the low profile poles were analyzed is depicted in  Figure 5.6.3‐1.  (It should be noted that the low profile poles would normally result in higher  levels of A.C. interference on the pipelines due to the low pole configuration; as a result, their  proposed use was limited.)  The sensitivity study results are presented in Table 5.6.3‐1 below for  winter peak loading.  Table 5.6.3-1 Willow 2 Sensitivity Study Results, Winter Peak Loading Structure Type Load Scenario  Maximum Induced A.C.  Potential52  (volts)  Maximum Theoretical A.C. Current  Density53   (amps per square meter)  OPL 16‐inch OPL 20‐inch54 OPL 16‐inch OPL 20‐inch  Low Profile  115/230 kV  10 ‐ 47 ‐  Low Profile  230/230 kV  11 ‐ 52 ‐  C2  115/230 kV  22 24 74 47  C2  230/230 kV  18 18 83 71  Optimized Structure (Pole) Configuration  Due to the complexities along the right‐of‐way, the same pole configuration cannot be used along  the entire corridor.  The A.C. Interference Study analyzed an optimized configuration of  transmission structures along the corridor.  This configuration is presented in Figure 5.6.3‐1.                                                               52 The common industry threshold is 15 volts, which can pose a safety threat to personnel.    53 As noted previously, A.C. induced corrosion does not occur at AC densities less than 20 amp/meter2.  A.C.  corrosion may or may not occur (is unpredictable) for AC densities between 20 to 100 amp/meter2.  AC  corrosion occurs at current densities greater than 100 amp/meter2.    54 The OPL 20‐inch line is not located within the corridor where the low profile structures are proposed.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 53     Figure 5.6.3-1 Willow 2 Transmission Line Route Depicting Modeled Structures (C1, C2, Low Profile, and C16)55                                                                55 This Figure has been taken from A.C. Interference Analysis – 230 kV Transmission line Collocated with  Olympic Pipelines OLP16 and OPL20, dated December 13, 2016, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 54 Estimated Induced A.C. Voltage (Touch Potential)  The simulated induced A.C. voltage results for the OPL 16‐inch line are presented in the figure  which follows for the proposed 115/230 kV and potential future 230/230 kV installations.  This  figure depicts the results for the optimized pole structure configurations, presented above.  As  noted, at peak winter loads, the predicted induced A.C. voltage would slightly exceed the 15 volt  threshold for potential personal injury near the substation (node 100 to 110) for the proposed  115/230 kV installation.    Figure 5.6.3-2 Induced A.C. Voltage, OPL 16-inch, Willow 2 Transmission Line Route56                                                              56 This Figure has been taken from A.C. Interference Analysis – 230 kV Transmission line Collocated with  Olympic Pipelines OLP16 and OPL20, dated December 13, 2016, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 55 The simulated induced A.C. voltage results for the OPL 20‐inch line are presented in the figure  which follows for the proposed 115/230 kV and potential future 230/230 kV installations.  This  figure depicts the results for the optimized pole structure configurations.  As noted, at peak  winter loads, the predicted induced A.C. voltage would slightly exceed the 15 volt threshold for  personal injury near the node 150; the touch voltage threshold would be exceeded for both the  proposed 115/230 kV and future 230/230 kV installations.    Figure 5.6.3-3 Induced A.C. Voltage, OPL 20-inch, Willow 2 Transmission Line Route57                                                              57 This Figure has been taken from A.C. Interference Analysis – 230 kV Transmission line Collocated with  Olympic Pipelines OLP16 and OPL20, dated December 13, 2016, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 56 Estimated A.C. Current Density  The simulated A.C. current densities for the OPL 16‐inch line are presented in the figure which  follows for the proposed 115/230 kV and future 230/230 kV installations.  This figure depicts the  results for the optimized pole structure configurations.  As noted, at peak winter loads, the  predicted A.C. current for the proposed 115/230 kV installation exceeds the 20 amps per square  meter threshold near node 90.  Both the proposed 115/230 kV and future 230/230 kV  installations exceed this threshold from about not 130 to node 140.  (Between A.C. current  densities of 20 and 100 amps per square meter, A.C. corrosion may or may not occur; A.C.  corrosion does occur above 100 amps per square meter.)    Figure 5.6.3-4 Induced A.C. Voltage, OPL 16-inch, Willow 2 Transmission Line Route58                                                              58 This Figure has been taken from A.C. Interference Analysis – 230 kV Transmission line Collocated with  Olympic Pipelines OLP16 and OPL20, dated December 13, 2016, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 57 The simulated A.C. current densities for the OPL 20‐inch line are presented in the figure which  follows for the proposed 115/230 kV and future 230/230 kV installations.  This figure depicts the  results for the optimized pole structure configurations.  As noted, at peak winter loads, the  predicted A.C. current density for the proposed 115/230 kV installation and the future 230/230 kV  installation exceed the 10 amps per square meter threshold near node 140.  (Between A.C.  current densities of 20 and 100 amps per square meter, A.C. corrosion may or may not occur; A.C.  corrosion does occur above 100 amps per square meter.)    Figure 5.6.3-5 Induced A.C. Voltage, OPL 20-inch, Willow 2 Transmission Line Route59 Estimated Coating Stress Voltage – Structure (Pole) and Shield Wire Sensitivity  The A.C. Interference Analysis report noted that, “several sensitivity studies were performed with  regards to the fault analysis whereby the effects of fault currents, shield wire configurations, and  pole configurations were evaluated to determine the pipelines’ susceptibility to damage, resulting  from a fault incident.  For each fault sensitivity study, a single line‐to‐ground fault was considered  at multiple locations south along the collocation.  The resulting coating stress voltage (voltage  across the coating) on the pipeline was compared for the C1, C2, C3, and Low Profile pole  configurations, which showed for the same magnitude of fault current, the C2 and C3 pole  configurations resulted in the same coating stress voltages.  Thus for the resistive fault simulation,  as the C2 and C3 poles were both single pole configurations, the coating stress voltage was the                                                               59 This Figure has been taken from A.C. Interference Analysis – 230 kV Transmission line Collocated with  Olympic Pipelines OLP16 and OPL20, dated December 13, 2016, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 58 same in each case.  Based upon these results, a separate fault sensitivity study was not performed  for the C16 structures, as the coating stress voltages were expected to be similar to the C2 and C3  structures.  For the Low profile structures, as they are comprised of two poles, the resulting  coating stress voltage is different, considering the same fault current.  A fault current value of 25 kA was used in this study, which is based on the maximum transmission  system fault current that could be experienced in the portions of the corridor where the pipelines  are collocated.  The scenarios that were analyzed to arrive at 25 kA include a bus fault at the  Sammamish, the proposed Richards Creek, and Talbot Hill substations.  The Olympic Pipelines first  enter the PSE transmission corridor approximately 3 miles north of the Talbot Hill substation,  which was accounted for in the calculation of fault current present at that location. Using a fault  current of 25 kA the sensitivity studies were analyzed with no shield wire, an Alumoweld shield  wire, and an Optical Ground Wire (OPGW).  The same four poles were considered for the C1, C2,  and C3 studies where the two closest poles north and south of the substation were faulted in the  analysis.  For each case, the maximum coating stress voltage and maximum arcing distance were  calculated…”  As noted in the following table, when a shield wire is used, the coating stress voltages decrease  dramatically, as the primary function of the shield wire is to provide a low resistance path to carry  the majority of the fault current to ground.  In the absence of a shield wire, the total fault current  returns to ground at a single location, possibly at one of the OPL pipelines.  Table 5.6.3-2 Coating Stress Voltages Resulting from 25 kA Fault Current Fault  Scenario  Pole  Number  Structure (Pole)  Type  Coating Stress Voltage (volts)  No Shield Wire Alumoweld OPGW  FC1 16 C1 18,840 3,219  2,833  FC2 48 C1 55,170 7,902  5,970  FC3 179 C2/C3 44,850 6,297  3,447  FC4 46 C2/C3 20,010 2,826  1,517  FC5 100 Low Profile ‐ 2,595  1,637  FC6 106 Low Profile ‐ 1,931  2,097  FC7 108 Low Profile ‐ 2,560  2,428  Based on the type and thickness of the exterior corrosion coating on the OPL pipelines, the Report  estimated the coating breakdown voltage at 10,825 volts.  As noted above, provided a shield wire  is used, the predicted coating stress voltage is less than the coating breakdown voltage.  The  applicant has committed to using an OPGW shield wire.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 59 Estimated Arcing Distance – Structure (Pole) Type and Shield Wire Sensitivity  As noted previously, a phase to ground fault on a HVAC transmission line can result in large  currents in the soil.  These faults are typically caused by lightning, phase insulator failure,  conductor failure, other failure which allows the conductor to touch the ground, or transformer  failure.  These high currents can cause arc damage to the pipe, resulting in pipe wall damage or  through wall pipe containment failures.    The A.C. Interference Study analyzed potential faults and developed predicted maximum return  to ground currents and resulting arcing distances for a variety of pole configurations and shield  wires.  The maximum soil resistivity values were used in the analysis, as they result in the  maximum arcing distance (worst case).  As noted previously, the actual soil resistivity along the  corridor ranged from 66 to 4,021 ohm‐meters, with an average of 1,012 meters; a soil resistivity  of 4,021 ohm‐meters was used in the analysis with a fault current of 25 kV.  Table 5.6.3-3 Arc Distances Structure (Pole) Type Shield Wire  Maximum Return  Current to Ground  (amps)  Maximum Arcing  Distance (feet)  C1 and C2/C3 None 25,000 42  C1 and C2/C3 Alumoweld 3,805 17  C1 and C2/C3 OPGW 2,207 13  Low Profile Alumoweld 1,109 10  Low Profile OPGW 602 7  As noted in the above table, the OPGW shield wire provides the lowest return current to ground  values and shortest arcing distances.  The applicant has committed to the installation of an OPGW  shield wire.  The A.C. Interference Study also analyzed the arc distances using the actual range of soil  resistivity.  Assuming a fault current of 25 kV and an OPGW shield wire, the resulting arc distances  ranged from 4 to 13‐feet.  Due to the variation is soil resistivity and imprecision in pipe location,  the A.C. Interference Study recommended the following:   Distances between the pipeline and transmission line pole grounds should be field verified by  the transmission line and pipeline operators.     If the transmission line pole grounds are found to be within 13 feet of the pipeline, arc  shielding protection should be installed, consisting of a single zinc ribbon extending a  minimum of 25 feet past the transmission line pole grounds in both directions.  The zinc  ribbon should be connected to the pipeline through a single direct‐current decoupler (DCD).    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 60 5.7  A.C. Interference Analysis, Existing 115 kV Corridor  Puget Sound Energy retained Det Norske Veritas (U.S.A.), Inc. to perform an analysis of potential  A.C. Interference for the existing 115 kV corridor.  The results of this analysis are presented in a  MS PowerPoint Slide Deck entitled, Puget Sound Energy A.C. Interference Analysis Existing  Corridor.  (The soil resistivity data and model validation were presented earlier, in Sections 5.6.1  and 5.6.2 of this report.)  In the evaluation of the existing corridor, the study conservatively used the peak winter electrical  loads presented below.  Table 5.7-1 Loading Scenarios (Peak Winter Loads) Loading Scenario  South North  Talbot Hill –  Lakeside #2  Talbot Hill –  Lakeside #1  Sammamish‐ Lakeside Creek #2  Sammamish –  Lakeside #1  115 kV  Actual   Winter 2013‐14  618 618 402 161  115 kV  Predicted  Winter 2027‐28  884 889 136 110  5.7.1 Estimated Induced A.C. Voltage (Touch Potential) The simulated induced A.C. voltage results for the OPL 16‐inch and 20‐inch lines are presented in  the figures which follow for the existing corridor.  As noted, at peak winter loads, the predicted  induced A.C. voltage would be less than the 15 volt threshold.  As a result, a touch potential  hazard will not be posed to personnel.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 61   Figure 5.7.1-1 Induced A.C. Voltage, OPL 16-inch, Existing Corridor60                                                              60 This Figure has been taken from Puget Sound Energy, A.C. Interference Analysis, Existing Corridor, dated  February 2, 2017, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 62   Figure 5.7.1-2 Induced A.C. Voltage, OPL 20-inch, Existing Corridor61 5.7.2 Estimated A.C. Current Density The simulated A.C. current densities for the OPL 16‐inch line are presented in the figure which  follows for the existing 115 kV installation.  As noted, at peak winter loads, the predicted A.C.  current density would exceed the 20 amps per square meter threshold near nodes 75 and 135.   The highest anticipated current density would be 35 amps per square meter.  (Between A.C.  current densities of 20 and 100 amps per square meter, A.C. corrosion may or may not occur.   A.C. corrosion does occur above 100 amps per square meter; it does not occur below 20 amps per  square meter.)                                                               61 This Figure has been taken from Puget Sound Energy, A.C. Interference Analysis, Existing Corridor, dated  February 2, 2017, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 63   Figure 5.7.2-1 Induced A.C. Voltage, OPL 16-inch, Existing Corridor62 The simulated A.C. current densities for the OPL 20‐inch line are presented in the figure which  follows for the existing 115 kV installation.  As noted, at peak winter loads, the predicted A.C.  current density would slightly exceed the 20 amps per square meter threshold near nodes 100  and 145.  The highest anticipated current density would be 25 amps per square meter.  (Between  A.C. current densities of 20 and 100 amps per square meter, A.C. corrosion may or may not occur.   A.C. corrosion does occur above 100 amps per square meter; it does not occur below 20 amps per  square meter.)                                                                 62 This Figure has been taken from Puget Sound Energy, A.C. Interference Analysis, Existing Corridor, dated  February 2, 2017, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 64   Figure 5.7.2-2 Induced A.C. Voltage, OPL 20-inch, Existing Corridor63 5.7.3 Estimated Coating Stress Voltage OPL did not provided data to the applicant regarding the estimated coating stress voltage for the  existing 115 kV corridor.  5.7.4 Estimated Arcing Distance OPL did not provided data to the applicant regarding the estimated arcing distances the existing  115 kV corridor.                                                                   63 This Figure has been taken from Puget Sound Energy, A.C. Interference Analysis, Existing Corridor, dated  February 2, 2017, prepared by Det Norske Veritas, Inc.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 65 6.0  Qualitative Aggregate Risk Assessment  Unfortunately, the baseline data presented in the prior section does not include an inventory of  pipelines that are collocated with overhead HVAC line(s), nor do the incident data reports identify  incidents which occurred where the pipeline was collocated with overhead HVAC line(s).  As a  result, using these baseline data, it is impossible to directly develop and quantify the difference in  risk which may exist between the subject collocated OPL pipeline segments and those that are not  collocated with HVAC overhead transmission line(s).   It is difficult to estimate the potential extent of human injury because there are so many variables  affecting the size of a fire or explosion that could result from an unintentional release of refined  petroleum product: rate of infiltration into the soil, rate of vapor cloud formation, size of the  vapor cloud within the combustible range (controlled by weather, including wind and  temperature, release rate, product spilled, etc.), concentration of vapors (varying with wind and  topographic conditions), degree of vapor cloud confinement, etc.  (These conditions will be  evaluated later in the Report, when Individual and Societal Risks are presented.)  As noted in the Baseline Data presented previously, refined petroleum product pipeline releases  seldom cause personal injuries or death.  In fact, there were no fatalities on the U.S. regulated  refined petroleum product pipeline systems from 2010 through 2015.  However, such incidents  can and do occur (e.g., Bellingham, Washington incident of June 10, 1999 and San Bernardino  incident of May 25, 1989).  In this section, the likelihood of fatalities will be estimated using these  historical baseline data presented in the preceding section.  The results provide a means of  framing the risk posed by the OPL pipelines.    Using the U.S. hazardous liquid and refined petroleum product pipeline baseline data compiled in  the previous section, the anticipated frequencies of unintentional releases, fires and fatalities  from the existing OPL 16‐inch and 20‐inch diameter pipelines have been estimated.  The  qualitative aggregate risk estimates are based on the following criteria:   24.8 total miles of 16‐inch and 20‐inch OPL Pipeline64   Baseline Incident Rate for Releases from Refined Petroleum Product Pipeline Systems –  0.5144 incidents per 1,000 mile years   Conditional Probability of Ignition – 2.5 percent                                                               64 The length of pipeline that is collocated with the transmission line between Sammamish Substation and  Talbot Hill Substation is 68,122 linear feet for one pipeline (20‐inch diameter pipeline) and 62,906 linear  feet (16‐inch diameter pipeline).    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 66 Table 6.0-1 Qualitative Aggregate Risk Assessment Results – 24.8 Miles of OPL Pipelines Unintentional Release Resulting In  Anticipated  Frequency  Incidents per  1,000 mile  years  Anticipated Number  of Incidents per  Year65  Likelihood of Annual  Occurrence  Spill Volume Distribution, Normalized to 18‐inch Diameter  Reportable Release of Any Volume 0.5144 0.0128 1 in 78  Pipeline Release of 1 Barrel or Less  0.1389  0.0034  1 in 290  Pipeline Release of 2 to 9 Barrels 0.1080 0.0027 1 in 373  Pipeline Release of 10 to 99 Barrels  0.1132 0.0028 1 in 356  Pipeline Release of 100 to 999 Barrels  0.1080  0.0027  1 in 373  Pipeline Release of 1,000 to 5,000 Barrels  0.0309 0.0008 1 in 1,300  Pipeline Release of 6,000 to 12,000 Barrels  0.0154 0.0004 1 in 2,620  Fire and Fatality  Fire 0.0129 0.0003 1 in 3,135  General Public Fatality66 0.0035 0.0001 1 in 11,520  It should be noted that these historical data do not differentiate between various population  densities.  For example, a release in an urban area is likely to cause more significant impacts to  humans than a release in a rural, undeveloped area.  For the more sparsely populated areas of the  OPL pipeline, the fatality figures shown above likely overstate the risk to the public; while in the  more densely populated areas, they likely understate the risk, due to the more likely public  exposure resulting from the greater population density.  In Sections 9.0 (Individual Risk  Assessment) and 10.0 (Societal Risk Assessment) of this Report, the actual environment will be  considered; these analyses will consider population density, pipe contents, pipe diameter, actual  operating conditions and the proximity to the public67.                                                               65 Assumes 28.4 miles of collocated pipelines with the overhead high voltage alternating current (HVAC)  electrical transmission line between Sammamish Substation and Talbot Hill.    66 This value is based on the total number of fatalities that occurred on U.S. Regulated Hazardous Liquid  Pipelines from January 2010 through December 2015.  67 It should be noted that the Individual Risk assessment will not consider population density due to the  definition of Individual Risk.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 67 7.0  Release Modeling Results  In this section, various pipeline release scenarios are presented.  The releases were modeled  using CANARY, by Quest, version 4.4 software.  For vapor cloud explosion modeling, this software  uses the Baker‐Strehlow model to determine peak side‐on over‐pressures as a function of  distance from a release.  The CANARY software also provides a means for evaluating pool fires.  Thousands of possible data combinations could be used to evaluate individual releases.  However,  in order to make a reasonable determination of likely releases, the following assumptions and  data inputs were used.  Table 7.0-1 Release Modeling Input Parameter Model Input  Pipe Diameter 18‐inches68  Normal Operating Pressure 650 psig69  Average Flow Rate 6,650 Barrels per Hour70 (BPH)  Pipe Contents Temperature 70 degrees F  Wind Speed 2 meters per second (4.5 miles per hour)  Stability Class  D ‐ Pasquill‐Gifford atmospheric stability is classified by the letters A through F.  Stability can be determined by three main factors: wind speed, solar insulation,  and general cloudiness. In general, the most unstable (turbulent) atmosphere is  characterized by stability class A. Stability A occurs during strong solar radiation  and moderate winds. This combination allows for rapid fluctuations in the air and  thus greater mixing of the released gas with time. Stability D is characterized by  fully overcast or partial cloud cover during daytime or nighttime, and covers all  wind speeds. The atmospheric turbulence is not as great during D conditions, so  the gas will not mix as quickly with the surrounding atmosphere. Stability F  generally occurs during the early morning hours before sunrise (no solar  radiation) and under low winds. This combination allows for an atmosphere  which appears calm or still and thus restricts the ability to actively mix with the  released gas. A stability classification of “D” is generally considered to represent  average conditions.  Relative Humidity 70%  Air and Surface Temperature 70 degrees F  Spill Surface Soil                                                               68 One of the OPL pipelines is 16‐inches in diameter; the other is 20‐inches in diameter.  An average 18‐inch  pipe diameter has been used to model both of these lines.  69 As presented in Section 1.1, the normal operating pressure of the 16‐inch OPL line is 500 to 800 psig; the  normal operating pressure of the 20‐inch OPL line is 300 to 500 psig.  70 As presented in Section 1.1, the normal flow rate of the 16‐inch OPL line is 5,400 BPH; the normal flow  rate of the 20‐inch OPS line is 7,900 BPH.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 68 Parameter Model Input  Fuel Reactivity  Medium ‐ Most hydrocarbons have medium reactivity, as defined by the Baker‐ Strehlow method. Low reactivity fluids include methane, natural gas (98+%  methane), and carbon monoxide. High reactivity fluids include hydrogen,  acetylene, ethylene oxide, and propylene oxide.  Obstacle Density  Low   This parameter describes the general level of obstruction in the area including  and surrounding the confined (or semi‐confined) volume.  Low density occurs in  open areas or in areas containing widely spaced obstacles.  High density occurs in  areas of many obstacles, such as tightly‐packed process areas or multi‐layered  pipe racks.  Low obstacle density is appropriate due to the low building density and open  space within the pipeline corridor.  Normally, the vapor cloud would be located  at ground level, near the release; these surroundings are relatively open along  the entire pipeline alignment (low obstacle density).  Flame Expansion  3 D ‐ This parameter defines the number of dimensions available for flame  expansion.  Open areas are 3‐D, and produce the smallest levels of overpressure.  2.5‐D expansions are used to describe areas that quickly transition from 2‐D to 3‐ D. Examples include compressor sheds and the volume under elevated fan‐type  heat exchangers. 2‐D expansions occur within areas bounded on top and bottom,  such as pipe racks, offshore platforms, and some process units.  1‐D expansion  may occur within long confined volumes such as hallways or drainage pipes, and  produce the highest overpressures.  Reflection Factor  2 ‐ This factor is used to include the effects of ground reflection when an  explosion is located near grade.  A value of 2 is recommended for ground level  explosions.  7.1  Pool Fires  For a buried refined petroleum product pipeline, the greatest risk to the public is posed by pool  fires.  When a release occurs, the pipe contents are released into the soil.  Depending on the  release rate, soil conditions, ground water level, and other factors, the released material may  come to the surface.  Depending on local terrain, it may flow for some distance away from the  location of the release.  If an ignition source is present, the accumulated pool could catch fire,  creating a public safety risk.  For this corridor, the majority of the alignment is within relatively open area, with a soil surface.   The CANARY software contains an algorithm that predicts the size of the pool for a given spill  volume.  This model is a shallow inverted cone.  The cone is filled as the fluid flows into the pool,  and mass is lost as it evaporates, seeps into the soil, etc.  The pool fire model assumes that the  depth of fluid is sufficient to sustain burning long enough to establish a flame and result in the  impacts being modeled.  Naturally, there are literally thousands of possible scenarios based on  the actual local site conditions.  In this study, we have used the CANARY software algorithm to  predict the pool size.  The resulting pool fire impacts are presented in Tables 7.1‐1, 7.1‐2 and 7.1‐ 3 below.  These data are presented separately for gasoline, jet fuel and diesel fuel.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 69 The following radiant heat flux mortality endpoints were used in the individual and societal risk  analyses:   12,000 Btu/ft2‐hr (37.7 kW/m2) – 100% mortality after 30 second exposure.   8,000 Btu/ft2‐hr (25.1 kW/m2) – 50% mortality after 30 second exposure.   5,000 Btu/ft2‐hr (15.7 kW/m2) – 1% mortality after 30 second exposure.  Table 7.1-1 Pool Fire Impacts - Gasoline Release  Volume  (barrels)  Distance from Center of Pool Fire (feet)  Pool  Diameter  (feet)  12,000 Btu/ ft2‐hr 8,000 Btu/ ft2‐hr 5,000 Btu/ ft2‐hr  Downwind  Crosswind  Downwind  Crosswind  Downwind  Crosswind   0.5  4.4  1.4  6.2  2.0  8.5  3.0 2  4.3  12.2  5.6  16.4  8.2  21.6  12.2  6  36  24.3  15.1  31.1  21.0  40.2  29.4  16  416  38.5  29.2  45.8  36.3  58.0  48.0  37  2,603  61.9  50.0  69.9  57.7  86.2  73.3  81  8,861  83.4  70.4  91.5  77.7  112.7  98.0  124  Table 7.1-2 Pool Fire Impacts – Jet Fuel Release  Volume  (barrels)  Distance from Center of Pool Fire (feet)  Pool  Diameter  (feet)  12,000 Btu/ ft2‐hr 8,000 Btu/ ft2‐hr 5,000 Btu/ ft2‐hr  Downwind  Crosswind  Downwind  Crosswind  Downwind  Crosswind   0.5  4.0  1.4  5.5  1.9  7.5  2.9 2  4.3  9.9  4.8  13.3  6.9  17.8  10.4  6  36  20.0  12.6  25.8  17.6  33.2  24.6  16  416  34.5  25.1  40.1  31.0  48.0  39.4  37  2,603  57.2  45.4  61.4  49.6  69.8  58.1  81  8,861  79.0  72.0  82.9  70.0  91.5  78.2  124  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 70 Table 7.1-3 Pool Fire Impacts – Diesel Fuel Release  Volume  (barrels)  Distance from Center of Pool Fire (feet)  Pool  Diameter  (feet)  12,000 Btu/ ft2‐hr 8,000 Btu/ ft2‐hr 5,000 Btu/ ft2‐hr  Downwind  Crosswind  Downwind  Crosswind  Downwind  Crosswind   0.5  3.4  1.2  4.7  1.8  6.4  2.7 2  4.3  8.1  4.0  10.8  5.8  14.6  8.8 6  36  16.6  10.4  20.3  14.0  25.2  18.9  16  416  29.9  21.4  33.4  25.0  38.6  30.4  37  2,603  53.0  45.0  55.3  29.2  60.0  47.9  81  8,861  N/A 71  N/A  80  73  86.0  73.5  124  Figure 7.1‐1 presents an aerial depiction of a typical pool fire and the resulting isopleths.  The  inner, yellow circle is the pool of fluid.  The orange oval outer perimeter represents the outer  boundary of the 12,000 Btu/ ft2‐hr isopleth.  The blue oval outer perimeter represents the outer  boundary of the 8,000 Btu/ ft2‐hr isopleth.  And the green oval outer perimeter represents the  boundary of the 5,000 Btu/ ft2‐hr.  For the societal risk analysis (Section 10.0), the combined yellow and orange shaded areas  represent the area subjected to the 12,000 Btu/ ft2‐hr heat flux.  The blue shaded area depicts the  area subjected to the 8,000 Btu/ ft2‐hr heat flux.  And the green shaded area comprises the area  subjected to the 5,000 Btu/ ft2‐hr heat flux.                                                               71 This diesel fuel pool fire does not produce a 12,000 Btu/ ft2‐hr isopleth.  The flame drag allows it to  radiate downward in the area just downwind of the pool.  The smoke from a diesel fire is also heavier, and  the fire is very smoky; as a result, the average surface heat flux is smaller, resulting in a “cooler” fire and  this heat flux level is not reached.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 71 Figure 7.1-1 Typical Pool Fire Radiant Heat Flux     7.2  Explosions  The potential impacts to humans as a result of explosions was presented earlier in Section 4.2 of  this Report.  Gasoline, jet fuel, and diesel fuel generally do not explode, unless the vapor cloud is  confined in some manner.  In this case, the pipeline is located in relatively open areas.    The potential releases from each of the refined petroleum products was modeled using CANARY  software.  The resulting peak overpressure level was 0.38 psi, due to the relatively open  environment (medium fuel reactivity and low obstacle density).  This overpressure level is not  high enough to pose potentially fatal risks to the public.  However, it could cause glass breakage.   For reference, the explosion modeling endpoints often used are presented in the following table.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 72 Table 7.2-1– Explosion Modeling Endpoints (CDE 2007) Mortality Rate Outdoor Exposure (psi) Indoor Exposure72 (psi)  99% Mortality 72 13  50% Mortality 13 5.7  1% Mortality 2.4 2.4  As noted in the California Department of Education, Guidance Protocol for School Site Pipeline  Risk Assessment, “Under uncommon circumstances a vapor cloud explosion (VCE) could occur  when a flammable vapor cloud ignites.  These events are unlikely, based on historical experience,  with the petroleum liquids covered here (LEES 1996).  Impacts for VCEs are expressed in terms of  a shock wave, overpressure (pounds per square inch or psi) above atmospheric pressure.  Because  the density of crude oil and petroleum product vapors is greater than air, the ALOHA VCE module  for evaporating pools (puddles) was used to examine various pool sizes of the gasoline surrogate,  n‐hexane, for VCE explosion impacts.  For an uncongested setting, an overpressure of 1.45 psi (1%  mortality) was not encountered for pool sizes between 0 and 600 feet for the conditions  modeled.”  (CDE 2007)  It should also be noted that between January 2010 and December 2015 there were no reported  explosions in the PHMSA incident database for refined petroleum product pipelines.  7.3  Flash Fires  Flash fires can occur when a vapor cloud is formed, with some portion of the vapor cloud within  the combustible range, and the ignition is delayed.  In a flash fire, the portion of the vapor cloud  within the combustible range burns very quickly, reducing the potential impact to humans.  For  gasoline, diesel fuel, and jet fuel, the potential for extensive vapor migration is limited somewhat  by the relatively low evaporation rates from the liquid pools.   The California Department of Education, Guidance Protocol for School Site Pipeline Risk  Assessment, includes an analysis of various size circular hexane pools.  In all cases, the diameter  of the vapor cloud within the combustible range is smaller than the diameter of the pool.  (The  diameter of the vapor cloud within the combustible range varies from 60 to 80% of the pool  diameter.)73  Since the duration of a refined petroleum flash fire is relatively short and the size of the fire is  smaller than the pool diameter, we have assumed that one hundred percent (100%) of the fires                                                               72 An indoor exposure would be applicable to those individuals located indoors (e.g., inside their home,  business, school, etc.).  An outdoor exposure applies to those located outdoors.  73 Since the 100% mortality impacts are larger than the pool size for pool fires, while the portion of the  vapor cloud within the combustible range is smaller than the pool size, it is conservative to assume that one  hundred percent (100%) of the fires are pool fires.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 73 are pool fires.  This is conservative since in all pool fire cases, the 12,000 Btu/ ft2‐hr isopleth  extends beyond the pool boundary, whereas the flash fire boundary is smaller than the pool.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 74 8.0  Conditional Probabilities  8.1  Pipeline Contents  We have averaged the OPL reported shipment percentages of the various commodities for each  pipeline presented in Section 1.1.  The resulting conditional probabilities of pipe contents at the  time of an unintentional release have been used in the individual and societal risk assessments.   Diesel – 29 percent   Jet Fuel – 20 percent   Gasoline – 51 percent  8.2  Pipeline Operability  We have conservatively assumed that the pipelines would be operational one‐hundred percent  (100%) of the time.  8.3  Pool Fire Spill Volumes  In order to create a hydraulic model and analyze the potential release volumes from the two  existing OPL pipelines, the following minimum data would be required:   Pipeline profile,   Location and means of actuation of block valves,    Pipeline supervisory control and data acquisition system performance parameters,    Leak detection system performance parameters, etc.    OPL did not provide these data for security reasons.  As a result, for pool fire consequence analysis,  the actual reported refined petroleum product pipeline unintentional release volumes which occurred  from January 2010 through 2015 have been used.  These data were then normalized to an 18‐inch  diameter pipeline, as discussed in Section 5.2.1.  The resulting conditional probabilities for various spill  sizes resulting from an unintentional release have been used in the individual and societal risk  assessments.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 75 Figure 8.3-1 Pool Fire Conditional Spill Volumes74 Spill Size Conditional Probability  0.5 Barrels 27 Percent  4.3 Barrels 21 Percent  36 Barrels 22 Percent  416 Barrels 21 Percent  2,603 Barrels 6 Percent  8,861 Barrels 3 Percent  8.4  Fire and Explosion  The 2010 through 2015 U.S. Hazardous Liquid Pipeline release data have been analyzed to  develop the following data points.     Of the 2,362 releases from the U.S. Hazardous Liquid Pipeline database are considered, from  all components (e.g., crude oil, highly volatile liquid, refined petroleum products, etc.),  including those which occurred within, and were entirely contained on, the pipeline  operator’s controller property, and those which occurred along the right‐of‐way, from January  2010 through December 2015, 79 (3.3 percent, 3.3%) ignited after release.   Of the 805 refined petroleum product pipeline releases, 20 (2.5 percent, 2.5%) ignited after  release.   Of the 195 refined petroleum product pipeline system releases which occurred along the  pipeline right‐of‐way, or occurred on pipeline operator controlled property and extended  beyond the property boundary, 4 (2.1 percent, 2.1%) ignited after release.   Of all 195 refined petroleum product pipeline releases which occurred along the pipeline  right‐of‐way, or occurred on pipeline operator controlled property and extended beyond the  property boundary, none resulted in an explosion.  Based on the data outlined above, the following conditional probabilities have been used in the  individual and societal risk assessments:   Percentage of OPL pipeline releases which would be ignited – 2.5 percent (2.5 %)   Percentage of OPL pipeline ignited releases that would result in a fire – 100 percent (100%)   Percentage of OPL pipeline ignited releases that would result in an explosion – 0.0 percent  (0.0 %)  Since the duration of a refined petroleum flash fire is relatively short and the size of the fire is  smaller than the pool diameter (CDE 2007), we have assumed that one hundred percent (100%)  of the fires are pool fires.                                                                 74 These data were presented previously, in Section 5.2.1 of this Report.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 76 8.5  Likelihood of Fatal Injuries  The following radiant heat flux exposure mortality end points have been used in the individual  and societal risk assessments:   12,000 Btu/f2t‐hr (37.7 kW/m2) – 100% mortality   8,000 Btu/ft2‐hr (25.1 kW/m2) – 50% mortality   5,000 Btu/ft2‐hr (15.7 kW/m2) – 1% mortality  8.6  Other Primary Assumptions  The following primary assumptions have been made in performing the analyses.    Assumptions Common to Individual and Societal Risk Analyses   The pool fire modeling assumed that the depth of fluid is sufficient to sustain burning long  enough to establish a flame and result in fatalities.   Pool fires were assumed to be created after every release, one hundred percent (100%) of the  time.   The pool was assumed to form directly over the release, including one hundred percent  (100%) of the unintentional release spill volumes.  This results in the largest volume of fluid  within the pool.  (Refined petroleum product would normally evaporate, be diluted, infiltrate  into the ground, cling to vegetation, etc. as it flows away from the release site, reducing the  pool volume.)  Individual Risk Analysis Assumptions   The risk level has been determined for the maximally exposed individual; in other words, it  assumes that a person is present continuously – 24 hours per day, 365 days per year.   The risk analysis assumed that the wind direction was perpendicular to the pipeline, resulting  in the greatest downwind distance to potentially harmful impacts.  Societal Risk Analysis Assumptions   The risk level has been determined for a maximally exposed population, exposed 100% of the  time.  If the exposure was less, the likelihood of each scenario would be reduced  proportionately.  For example, in residential areas, the population density is normally reduced  during work hours; in commercial areas, the population density is reduced during the night.   Individuals are also protected from radiant heat flux when inside structures, unless the  structures themselves should catch fire; but in these situations, there is often time for  individuals to seek safety.  For reference, the California Department of Education uses 0.16  (16%) as the conditional probability of occupancy and 0.25 (25% for outdoor exposures) for  public school site citing.   EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 77  Population density was used to determine the number of individuals exposed to each release.   The individuals were assumed to be spread uniformly throughout the area.  (See Section 5.3  of this Report.)    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 78 9.0  Individual Risk Assessment  As discussed previously, individual risk (IR) is most commonly defined as the frequency that an  individual may be expected to sustain a given level of harm from the realization of specific  hazards, at a specific location, within a specified time interval.  Individual risk is typically  measured as the probability of a fatality per year.  The risk level is typically determined for the  maximally exposed individual; in other words, it assumes that a person is present continuously –  24 hours per day, 365 days per year.  The likelihood is most often expressed numerically, using  one of the values shown in Table 9.0‐1 below.  The values shown on each row may be used  interchangeably.  Table 9.0-1 Individual Risk Numerical Values Annual Likelihood of  Fatality Numerical Equivalent Scientific Notation Shorthand  1 in 100 1.0 x 10‐2 1.0 E‐2  10‐2  1 in 1,000 1.0 x 10‐3 1.0 E‐3  10‐3  1 in 10,000 1.0 x 10‐4 1.0 E‐4  10‐4  1 in 100,000 1.0 x 10‐5 1.0 E‐5  10‐5  1 in 1,000,000 1.0 x 10‐6 1.0 E‐6  10‐6  1 in 10,000,000 1.0 x 10‐7 1.0 E‐7  10‐7  In the following subsections, the individual risk will be presented for the two (2) OPL pipelines:   Where they are not collocated with an overhead HVAC line,    Where they are collocated within the existing overhead HVAC corridor (No Action  Alternative), and   Where they would be collocated within the proposed overhead HVAC corridor (Alternative 1).  Where only one pipeline is present, the likelihood of a release would be one‐half the stated  values.  The individual risks are presented graphically.  These figures present risk transects, which show  the annual risk of fatality resulting from a pipeline release as a function of the distance from the  center of the pool which could form after an unintentional release; the location of this pool would  depend on local terrain and other factors.  It should also be noted that the highest risks are posed  directly over the center of the pool fire.    9.1  Two OPL Pipelines Not Collocated within Overhead HVAC Corridor  In this section, the individual risk posed along the pipeline corridor will be presented.  These  results are useful for evaluating the risk to the public only; this excludes the risks posed to OPL  personnel and OPL’s contractors.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 79 The baseline incident rate of 0.5144 incidents per 1,000 mile years was developed in Section 5.2  of this report.  As discussed previously, the PHMSA pipeline incident database includes releases  from all hazardous liquid pipelines; it does not distinguish between pipelines collocated or not  collocated with overhead HVAC transmission line facilities.  As a result, it was not possible to  determine separate incident rates for collocated and non‐collocated facilities from these data.  For the two pipelines, the resulting baseline incident rate is 1.0288 incidents per 1,000 mile years  (2 pipelines x 0.5144 incidents per 1,000 mile years = 1.0288 incidents per 1,000 mile years).  The individual risk maximum annual probability of fatality from two (2) OPL pipelines is 1.77 x 10‐7  (1 in 5.7 million).  The estimated maximum downwind distance to potentially fatal impacts,  measured from the center of the pool fire is 113 feet.  The maximum individual risk is presented  in the figure below, as a function of the distance from the middle of the pool fire.  Where only one  line is present, the individual risk would be one‐half (1/2) these values.  Figure 9.2-1 Individual Risk Transect, Two OPL Pipelines Not Collocated within Overhead HVAC Corridor EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 80 It should be noted that the individual risk results are below the threshold of 1.0 x 10‐6 (1 in 1.0  million.)75  9.2  Two OPL pipelines Collocated with Existing 115 kV Line (No Action  Alternative)  Puget Sound Energy retained Det Norske Veritas (U.S.A.), Inc. to perform an analysis of potential  A.C. Interference for the existing 115 kV corridor.  The results of this analysis are presented in a  MS PowerPoint Slide Deck entitled, Puget Sound Energy A.C. Interference Analysis Existing  Corridor.  The baseline data used in this analysis were presented previously, in Section 5.7 of this  Report.  In this section, the individual risk posed by the two (2) pipelines where they are  collocated within the existing 115 kV corridor will be presented.  9.2.1 Induced A.C. Voltage There are no segments of the existing corridor which are anticipated to yield induced A.C.  voltages that exceed the 15 volt threshold.  As a result, there is not a touch potential (electrical  shock) posed to personnel that may touch the pipeline or pipeline appurtenances (e.g., cathodic  protection test leads, etc.)  This would not result in an increased frequency of unintentional  pipeline releases.  (See Figures 5.7.1‐1 and 5.7.1‐2, presented earlier.)  9.2.2 A.C. Current Density There are two (2) short segments where the estimated A.C. current density would exceed the 20  amps per square meter de minimus value.  (A.C. current densities below 20 amps per square  meter do not cause A.C. corrosion.)  The estimated current densities for the OPL 16‐inch pipeline,  during peak winter voltages are expected to be 34 amps per square meter for the actual 2013‐14  peak winter load and 35 amps per square meter at the anticipated 2027‐28 peak winter load.  For  the OPL 20‐inch pipeline, the estimated current densities are expected to be 25 amps per square  meter for the actual 2013‐14 peak winter load and 22 amps per square meter for the anticipated  2027‐28 peak winter load.  (When A.C. current densities are between 20 and 100 amps per square  meter, A.C. corrosion may or may not occur.)  For this analysis, we have made the following assumptions:   The likelihood of an external corrosion caused leak would increase fifty percent (50%) for the  anticipated A.C. current densities of 22 to 35 amps per square meter.     Based on the data presented in Figures 5.7.2‐1 and 5.7.2‐2, we have conservatively estimated  that the A.C. current density may exceed 20 amps per square meter for ten percent (10%) of  the length of the OPL 16‐inch line and five percent (5%) of the OPL 20‐inch line; we have used  an average 7.5% of the length for the societal risk analysis.  For the individual risk analysis, we  have assumed that the individual was located at the maximally exposed location (e.g., highest  A.C. current density).                                                                   75 See Section 3.2 of this Report for a discussion of individual risk criteria.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 81  We have conservatively assumed that the system would operate at peak winter voltages one  hundred percent (100%) of the time.    Using these assumptions for the maximum exposed individual (individual risk), the predicted  frequency of external corrosion caused releases for the No Action Alternative would be 0.1701  incidents per 1,000 mile years for each pipeline, compared to the baseline of 0.1134 incidents per  1,000 mile years, as calculated below.  0.1134 + [0.1134 x 0.5 x 1.00 (100% at peak winter)] = 0.1701  Using these assumptions for societal risk, based on the average over a given area, the predicted  frequency of external corrosion caused releases for the No Action Alternative would be 0.1177  incidents per 1,000 mile years for each pipeline, compared to the baseline of 0.1134 incidents per  1,000 mile years to, as calculated below.  0.1134 + [0.1134 x 0.5 x 0.075 (percentage of length) x 1.00 (100% at peak winter)] = 0.1177  It should be noted that 49 CFR 195.577 (a) requires, “For pipelines exposed to stray currents, you  must have a program to identify, test for, and minimize the detrimental effects of such currents.”   This is a Federal regulatory requirement imposed on OPL.  9.2.3 Coating Stress Voltage Resulting from Fault We do not have data available for the estimated coating stress voltages for the OPL pipelines  within the existing 115 kV corridor.  The Applicant has stated that the coating stress voltages for  the proposed 115/230 kV corridor will be less than or equal to the existing 115 kV corridor coating  stress voltages.    In order to estimate the most conservative incremental risk from the proposed 115/230 kV  project, we have assumed that the coating stress voltages and resulting coating stress voltage  caused pipeline releases for the existing 115 kV corridor are the same as those for the proposed  115/230 kV project.  However, the proposed project may actually reduce the likelihood of  unintentional pipeline releases caused by coating stress voltage due to the proposed installation  of a shield wire.  9.2.4 Arc Distance Resulting from Fault We do not have data available for the estimated arc distances for the OPL pipelines within the  existing 115 kV corridor.  The Applicant has stated that the arc distances for the proposed  115/230 kV corridor will be less than or equal to the existing 115 kV corridor arc distances.    In order to estimate the most conservative incremental risk from the proposed 115/230 kV  project, we have assumed that the ground fault arc distances and ground fault arc caused  frequency of unintentional releases for the existing 115 kV corridor are the same those for the  proposed 115/230 kV project.  However, the proposed project may actually reduce the likelihood  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 82 of unintentional pipeline releases due to electrical arcs; any risk reduction has not been included  in our findings.  9.2.5 Estimated Frequency of Unintentional Releases Using the data summarized above, the estimated frequency of unintentional releases from the  OPL pipelines where they are collocated with the existing 115 kV line are as follows:   Individual Risk Maximum Exposure ‐ is 0.5869 incidents per 1,000 mile years per pipeline, or  1.1738 incidents per 1,000 mile years for the two OPL pipelines.   Societal Risk Average Exposure ‐ is 0.5193 incidents per 1,000 mile years per pipeline, or  1.0386 incidents per 1,000 mile years for the two OPL pipelines.    Figure 9.2.5-1 Frequency of Unintentional Releases Existing 115 KV Corridor Cause  Individual Risk Frequency  (incidents per 1,000 mile years)  Societal Risk Frequency  (incidents per 1,000 mile years)  Equipment Failure 0.1266 0.1266  Incorrect Operation 0.0396 0.0396  External Corrosion 0.1701 0.1177  Outside Force/Excavation 0.1002 0.1002  Material Failure 0.0871 0.0871  Internal Corrosion 0.0106 0.0106  Natural Force 0.0211 0.0211  Other 0.0316 0.0164  Total 0.5869 0.5193    9.3  Two OPL Pipelines Collocated with 115/230 kV Lines (Alternative 1)  The results of the A.C. Interference Analysis – 230 kV Transmission Line Collocated with Olympic  Pipelines OPL 16 and OPL 20 are summarized in Section 5.6 of this Report.  In this section, the  individual risk posed by the 2 pipelines where they would be collocated within the 115/230 kV  corridor will be presented.  9.3.1 Induced A.C. Voltage There are short segments of the corridor which could yield induced A.C. voltages that exceed the  15 volt threshold; these areas would result in potential safety (electrical shock) hazards to  personnel that may touch the pipeline or pipeline appurtenances (e.g., cathodic protection test  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 83 leads, etc.).  They would not result in an increased frequency of unintentional pipeline releases.   (See Figures 5.6.3‐2 and 5.6.3‐3, presented earlier.)  9.3.2 A.C. Current Density There are two areas where the estimated A.C. current density would exceed the 20 amps per  square meter de minimus value.  (A.C. current densities below 20 amps per square meter do not  cause A.C. corrosion.)  The estimated A.C. current densities at these locations range from 25 to 70  amps per square meter.  When A.C. current densities are between 20 and 100 amps per square  meter, A.C. corrosion may or may not occur.   For this analysis, we have made the following assumptions:   The likelihood of an external corrosion caused leak would increase one hundred percent  (100%) when A.C. current densities are between 25 and 70 amps per square meter.  (This  current density is higher than that presented in Section 9.2.2 for the existing 115 kV corridor.)   Based on the data presented in Figures 5.6.3‐4 and 5.6.3‐5, we have conservatively estimated  that the A.C. current density may exceed 20 amps per square meter for ten percent (10%) of  the length of the OPL 16‐inch line and five percent (5%) of the OPL 20‐inch line; we have used  an average 7.5% of the length for the societal risk analysis76.  For the individual risk analysis,  we have assumed that the individual was located at the maximally exposed location (e.g.,  highest A.C. current density).     We have conservatively assumed that the system would operate at peak winter voltages one  hundred percent (100%) of the time.    Using these assumptions for the maximum exposed individual, for individual risk, the predicted  frequency of external corrosion caused releases for Alternative 1 would be 0.2268 incidents per  1,000 mile years for each pipeline, compared to the baseline of 0.1134 incidents per 1,000 mile  years, as calculated below.  0.1134 + [0.1134 x 1.00 (100% at peak winter)] = 0.2268  Using these assumptions for societal risk, the predicted frequency of external corrosion caused  releases for Alternative 1 would be 0.1219 incidents per 1,000 mile years for each pipeline,  compared to the baseline of 0.1134 incidents per 1,000 mile years, as calculated below.  0.1134 + [0.1134 x 0.075 (percentage of length) x 1.00 (100% at peak winter)] = 0.1219  It should be noted that 49 CFR 195.577 (a) requires, “For pipelines exposed to stray currents, you  must have a program to identify, test for, and minimize the detrimental effects of such currents.”   This is a Federal regulatory requirement imposed on OPL.                                                               76 Societal risk is based on the area exposed to the potential risk and the number of exposed individuals.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 84 9.3.3 Coating Stress Voltage Resulting from Fault The applicant has committed to the use of an OPGW shield wire.  Using this shield wire, at the  maximum 25 kA fault current, the estimated coating stress voltage would range from 1,517 to  5,970 volts.  The estimated coating breakdown voltage of the pipeline external coating is 10,825  volts.  As a result, coating degradation is not anticipated along the corridor provided an OPGW  shield wire is used.  9.3.4 Arc Distance Resulting from Fault77 The applicant has committed to the use of an OPGW shield wire.  Using this shield wire, at the  maximum 25 kA fault current, the estimated arc distance ranges from 4 to 13‐feet.  This would  pose a potential pipeline risk at transmission structure ground locations, where the electrical  ground might be located less than 13‐feet from the pipeline.  It should be noted that this risk is  not posed along the entire length of the corridor.  In other words, the only affected segments of  the pipeline would be that portion within the arc distance of the grounding rod (4 to 13‐feet).    The existing 115 kV line structures (poles) are spaced at 450 to 725‐foot intervals.  In general, the  proposed 230 kV structures (poles) would be spaced at generally the same spacing as the existing  structures, except in some cases where the spacing will be slightly greater.  If one conservatively  assumes that the OPL 16‐inch line is 5‐feet from all of the grounding rods and that the OPL 20‐ inch line is 5‐feet from the 16‐inch line, then at each grounding rod there would be 24‐feet of the  16‐inch and 17‐ feet of the 20‐inch pipeline within 13‐feet of the grounding rod.  This condition is  depicted in Figure 9.3.4‐1 below.                                                               77 49 CFR 195.401 (b) (1) requires, “Non Integrity Management Repairs, Whenever an operator discovers  any condition that could adversely affect the safe operation of its pipeline system, it must correct the  condition within a reasonable time.  However, if the condition is of such a nature that it presents an  immediate hazard to persons or property, the operator may not operate the affected part of the system  until it has corrected the unsafe condition.”    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 85   Figure 9.3.4-1 Assumed Pipe Configuration at All Grounding Rods   Assuming an average 500 foot pole spacing, 4.1 percent (4.1 %) of the pipelines would be located  within 13‐feet of a grounding rod.  ( 24 ‐ feet + 17 ‐ feet ) ÷ ( 2 × 500 ‐ feet ) = 0.041 x 100 = 4.1 percent  Of the 2,362 hazardous liquid pipeline incidents between January 2010 and December 2015, there  were 129 (5.5%) that were noted as being caused by “other”.  Of these 129 incidents, there were  only 6 (4.7%) that may have been caused by arcing relating to high voltage electrical facilities.  For the purposes of this analysis, we have conservatively assumed that the frequency of “other”  caused releases would increase one hundred percent (100%) for the portion of the pipeline within  the worst case arc distance to a grounding rod.  Using these assumptions for the maximum individual risk exposure, the predicted frequency of  “other” caused releases for Alternative 1 would be 0.0316 incidents per 1,000 mile years for each  pipeline, compared to the baseline of 0.0158 incidents per 1,000 mile years, as calculated below.  0.0158 + [0.0158 x 1.00 (100% at peak winter)] = 0.0316  Using these data and assumptions for societal risk, the predicted frequency of “other” caused  releases for Alternative 1 would be 0.0164 incidents per 1,000 mile years for each pipeline,  compared to the baseline of 0.0158 incidents per 1,000 mile years, as calculated below:  0.0158 + [0.0158 x 0.041 (percentage of length) x 1.00 (100% at peak winter)] = 0.0164  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 86 We believe that this result is conservative, for the following reasons:   The assumed pipeline distances from the grounding rods is likely conservative.   The assumed one hundred percent (100%) increase of “other” caused incidents is likely  conservative.   The worst case arc distance of 13‐feet has been conservatively used.   The results for the worst case peak winter loading have been used, for 100% of the time.   A ground fault condition only occurs when there is a fault on the electrical transmission  system; it is a very infrequent hazard.   As noted previously, there were only six (6) hazardous liquid pipeline incidents between  January 2010 and December 2015 that may have been caused by electrical arcing.  These  incidents represent only 0.25 percent (0.25%) of the total 2,363 hazardous liquid pipeline  releases during this time period.     These results do not reflect the implementation of measures to mitigate potential arc damage  to the pipeline.  The A.C. Interference Study recommended mitigation to address potential  ground fault issues where the pipeline(s) is within the arc distance to a pole structure  grounding rod.  OPL has verbally committed to mitigating any potential impacts.  However,  they have not committed to implementing the specific measures included in the A.C.  Interference Study; OPL committed to implementing mitigation on a case by case basis in  order to maximize the effectiveness of the mitigation.   There is a Federal regulation requiring OPL to address any known potential unsafe condition  (49 CFR 195.401).  9.3.5 Frequency of Unintentional Releases Using the data summarized above, the resulting estimated frequency of unintentional releases  are as follows:   Individual Risk Maximum Exposure ‐ is 0.6436 incidents per 1,000 mile years per pipeline, or  1.2872 incidents per 1,000 mile years for the two OPL pipelines.   Societal Risk Average Exposure ‐ is 0.5235 incidents per 1,000 mile years per pipeline, or  1.0470 incidents per 1,000 mile years for the two OPL pipelines.  The frequency of unintentional releases by cause are presented below for a single pipeline where  it would be collocated with the proposed 115/230 kV lines.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 87 Figure 9.3.5-1 Frequency of Unintentional Releases Proposed 115/230 kV Corridor Cause  Individual Risk Frequency  (incidents per 1,000 mile years)  Societal Risk Frequency  (incidents per 1,000 mile years)  Equipment Failure 0.1266 0.1266  Incorrect Operation 0.0396 0.0396  External Corrosion 0.2268 0.1219  Outside Force/Excavation 0.1002 0.1002  Material Failure 0.0871 0.0871  Internal Corrosion 0.0106 0.0106  Natural Force 0.0211 0.0211  Other 0.0316 0.0164  Total 0.6436 0.5235    9.3.6 Operational Individual Risk The individual risk maximum annual probability of fatality from two (2) OPL pipelines is 2.21 x 10‐7  (1 in 4.5 million).  The estimated maximum downwind distance to potentially fatal impacts,  measured from the center of the pool fire is 113 feet.  The maximum individual risk is presented  in the figure below, as a function of the distance from the middle of the pool fire.  Where only one  line is present, the individual risk would be one‐half (1/2) these values.  These results are useful  for evaluating the risk to the public only; this excludes the risks posed to OPL personnel and OPL’s  contractors.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 88 Figure 9.3.6-1 Individual Risk Transect, Maximum Exposure, Two OPL Pipelines Collocated within Proposed 115/230 kV Overhead HVAC Corridor The increased individual risk for the proposed 115/230 kV project over that posed by the existing  115 kV system is presented by the orange line in the figure above.  The maximum additional  individual risk annual probability of fatality from two (2) OPL pipelines is 1.95 x 10‐8 (1 in 51  million).    It is important to note that we did not have coating stress voltage and ground fault arc data  available for the OPL pipelines where they are collocated with the existing 115 kV lines.  In order  to estimate the most conservative incremental risk from the proposed 115/230 kV project, we  have assumed that the likelihood or coating stress voltage and ground fault arc caused  unintentional releases for the existing 115 kV corridor are the same those for the proposed  115/230 kV project.  However, the proposed project may actually reduce the risk of these  unintentional pipeline releases.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 89 9.3.7 Construction Individual Risk As discussed previously, during construction of the proposed facilities, the existing OPL 16‐inch  and 20‐inch pipelines will be exposed to an increased risk of being damaged by construction  activities (e.g., excavation) and/or overstressed by surcharge loading from construction  equipment.  The existing OPL procedures to prevent third party damage have been presented in  Section 1.1.5 of this Report.  Risk mitigation measures have been presented in Section 11.0.  As presented in Table 5.2‐2, outside force/excavation caused 20% of the refined petroleum  product releases from January 2010 through December 2015.  With the current OPL procedures  and the proposed spacing of the structures (poles), the increased risk posed to the pipeline during  construction is relatively low.  For the purposes of this Study, we have made the following  assumptions:   Average structure (pole) spacing of 500‐feet,   Potential impact radius of 25‐feet for each structure (5% of corridor), and   Fifty percent (50%) increase in outside force/excavation risk during construction of the 230 kV  facilities.    Using these assumptions for the maximum individual risk exposure, the predicted frequency of  “outside force/excavation” caused releases during construction of Alternative 1 would be 0.1503  incidents per 1,000 mile years for each pipeline, compared to the baseline of 0.1002 incidents per  1,000 mile years, as calculated below.  0.1002 + [0.1002 x 0.50 (50% risk increase)] = 0.1503  Using these data and assumptions for societal risk, the predicted frequency of “outside  force/excavation” caused releases during construction of Alternative 1 would be 0.1027 incidents  per 1,000 mile years for each pipeline, compared to the baseline of 0.1002 incidents per 1,000  mile years, as calculated below:  0.1002 + [0.1002 x 0.05 (percentage of length) x 0.50 (50% risk increase)] = 0.1027  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 90 Figure 9.3.7-1 Frequency of Unintentional Releases Existing 115 KV Corridor during Construction of Proposed 115/230 kV Project Cause  Individual Risk Frequency  (incidents per 1,000 mile years)  Societal Risk Frequency  (incidents per 1,000 mile years)  Equipment Failure 0.1266 0.1266  Incorrect Operation 0.0396 0.0396  External Corrosion 0.1701 0.1177  Outside Force/Excavation 0.1503 0.1027  Material Failure 0.0871 0.0871  Internal Corrosion 0.0106 0.0106  Natural Force 0.0211 0.0211  Other78 0.0316 0.0164  Total 0.6370 0.5218  Using the data summarized above, the resulting estimated frequency of unintentional releases  from the OPL pipelines where they are collocated with the existing 115 kV line are as follows:   Individual Risk Maximum Exposure ‐ 0.6370 incidents per 1,000 mile years per pipeline, or  1.2740 incidents per 1,000 mile years for the two OPL pipelines.   Societal Risk Average Exposure ‐ 0.5218 incidents per 1,000 mile years per pipeline, or 1.0436  incidents per 1,000 mile years for the two OPL pipelines.  During construction of the proposed project, the individual risk maximum annual probability of  fatality from two (2) OPL pipelines is 2.19 x 10‐7 (1 in 4.6 million).  The estimated maximum  downwind distance to potentially fatal impacts, measured from the center of the pool fire is 113  feet.  The maximum individual risk is presented in the figure below, as a function of the distance  from the middle of the pool fire.  Where only one line is present, the individual risk would be one‐ half (1/2) these values.                                                                78 Coating stress voltage and arc distance data is not available for the existing 115 kV corridor.  The “other”  incident cause data depicted has been taken from the 115/230 kV proposed project.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 91 Figure 9.3.7-1 Individual Risk Transect, Maximum Exposure, Two OPL Pipelines Collocated within Proposed 115 kV Overhead HVAC Corridor during Construction of Proposed 115/230 kV Project   The maximum increased individual risk during the construction of the proposed 115/230 kV  project over that posed by the existing 115 kV system is presented by the orange line in the figure  above.  The maximum additional individual risk annual probability of fatality from two (2) OPL  pipelines is 1.72 x 10‐8 (1 in 58 million).      EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 92 10.0  Societal Risk Assessment  As noted previously, societal risk is the probability that a specified number of people would be  affected by a given event. The generally accepted number of casualties is higher for lower  probability events and much lower for more probable events, as discussed previously in Section  3.3 of this document.  In order to determine the number of persons exposed to the potential hazard, population density  has been used.  The individuals were assumed to be spread uniformly throughout the area.  The  analysis also conservatively assumed that the population would be exposed one hundred percent  (100%) of the time.  If one assumed that the population were exposed fifty percent (50%) of the  time, then the likelihood would be one‐half (1/2) the values presented for each scenario.  All of the societal results presented herein are based on one (1) mile of the two (2) OPL pipelines  (two miles total pipeline length).  If the length were increased, the change in probability for each  scenario would be proportional.  In other words, if one were considering a two (2) mile length of  the two (2) pipelines (four miles total pipeline length), then the likelihood of each scenario would  be two (2) times as likely.  On the other hand, if one were considering a one (1) mile length of only  one (1) pipeline (one mile total pipeline length), then the likelihood of each scenario would be  one‐half (1/2) as likely.  It is important to note that we did not have coating stress voltage and ground fault arc data  available for the OPL pipelines where they are collocated with the existing 115 kV lines.  In order  to estimate the most conservative incremental risk from the proposed 115/230 kV project, we  have assumed that the likelihood of coating stress voltage and ground fault arc caused  unintentional releases for the existing 115 kV corridor are the same as those for the proposed  115/230 kV project.  However, the proposed project may actually reduce the risk of these  unintentional pipeline releases.  10.1  Two OPL Pipelines Not Collocated within Overhead HVAC Corridor  10.1.1 Maximum Population Density The societal risk results are presented in Figure 10.1.1‐1 for the maximum population density of  23,169 persons per square mile, for a one (1) mile length of the two (2) OPL pipelines (two miles  total pipeline length), over a one (1) year time period.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 93 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1 10 100 1000Annual Likelihood of IncidentNumber of Fatalities Societal Risk Results, Two OPL Lines Not Collocated with Overhead HVAC One Mile, Two OPL Pipelines UK R2P2, 2001 Netherlands CDE and SBCO Intolerable CDE and SBCO Negligible Figure 10.1.1-1 – Societal Risk Results, One Mile of Two OPL Lines Not Collocated with Overhead HVAC, Maximum Population Density As depicted in Figure 10.1.1‐1, there are scenarios that could result in multiple fatalities.  The  annual probability of these incidents are presented in the following table.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 94 Table 10.1.1-2 Societal Risk Results, One Mile of Two OPL Lines Not Collocates with Overhead HVAC, Maximum Population Density Number of Fatalities Probability Annual Likelihood  17 3.94 x 10‐7 1 in 2.54 million  15 5.48 x 10‐7 1 in 1.83 million  9 1.33 x 10‐6 1 in 749,000  8 1.56 x 10‐6 1 in 642,000  7 1.87 x 10‐6 1 in 536,000  5 2.31 x 10‐6 1 in 432,000  4 5.07 x 10‐6 1 in 197,000  3 6.15 x 10‐6 1 in 163,000  2 7.72 x 10‐6 1 in 130,000  1 1.34 x 10‐5 1 in 74,800  These results are above the thresholds for negligible impacts which are used by Santa Barbara  County and the California Department of Education for public school siting.  But they are  approximately one order of magnitude below (roughly one tenth of) these entities’ intolerable  level.  It should be noted however, that there are no known societal risk criteria for the proposed  project.  (See also Sections 3.2 and 3.3 of this Report.)  10.1.2 Average Population Density The societal risk results are presented in Figure 10.1.2‐1 for the average population density of  3,228 persons per square mile, for a one (1) mile length of the two (2) OPL pipelines (two miles  total pipeline length), over a one (1) year time period.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 95 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1 10 100 1000Annual Likelihood of IncidentNumber of Fatalities Societal Risk Results, Two OPL Lines Not Collocated with Overhead HVAC One Mile, Two OPL Pipelines UK R2P2, 2001 Netherlands CDE and SBCO Intolerable CDE and SBCO Negligible Figure 10.1.2-1 – Societal Risk Results, One Mile of Two OPL Lines Not Collocated with Overhead HVAC, Average Population Density As depicted in Figure 10.1.2‐1, there were incidents where either one (1) or two (2) individuals  could be fatally injured.  The probability is as follows:   Two (2) fatalities ‐ The societal risk annual probability is 5.48 x 10‐7 (1 in 1.83 million).   One (1) or more fatalities79 ‐ The societal risk annual probability is 4.52 x 10‐6 (1 in 221,000).  These results are below the thresholds for negligible impacts which are used by Santa Barbara  County and the California Department of Education for public school siting; they are more than  two orders of magnitude below (less than one‐one‐hundredth of) these entities’ intolerable level.                                                                79 The predicted maximum is two (2) fatalities for this scenario.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 96 However, there are no known societal risk criteria for the proposed project.  (See also Sections 3.2  and 3.3 of this Report.)  10.1.3 Minimum Population Density When the minimum population density of 568 persons per square mile was considered, the  number of persons exposed to each incident was below that which resulted in a single fatality.   The highest mortality for any of the releases scenarios was 0.4; there were two scenarios which  resulted in 0.4 fatalities:    8,863 barrel jet fuel pool fire, annual probability of 1.54 x 10‐7 (1 in 6.5 million)   8,863 barrel gasoline pool fire, annual probability of 3.94 x 10‐7 (1 in 2.5 million)    10.2  Two OPL Pipelines Collocated with 115/230 kV Lines (Alternative 1)  10.2.1 Maximum Population Density The societal risk results are presented in Figure 10.2.1‐1 for the maximum population density of  23,169 persons per square mile, for a one (1) mile length of the two (2) OPL pipelines (two miles  total pipeline length), over a one (1) year time period for the proposed 115/230 kV project.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 97   Figure 10.2.1-1 – Societal Risk Results, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Maximum Population Density As depicted in Figure 10.2.1‐1, there are scenarios that could result in multiple fatalities.  The  annual probability of these incidents are presented in the following table.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 98 Table 10.2.1-1 Societal Risk Results, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Maximum Population Density Number of Fatalities  Two OPL Lines Collocated with  Proposed 115/230 kV Overhead  HVAC  Annual Likelihood  Additional Risk of Proposed  Project versus No Action  Alternative  Annual Likelihood  17 4.92 x 10‐7  1 in 2.03 million  3.95 x 10‐9  1 in 253 million  15 6.85 x 10‐7  1 in 1.46 million  5.50 x 10‐9  1 in 182 million  9 1.67 x 10‐6  1 in 599,000  1.34 x 10‐8  1 in 74.6 million  8 1.95 x 10‐6  1 in 513,000  1.56 x 10‐8  1 in 63.9 million  7 2.34 x 10‐6  1 in 428,000  1.87 x 10‐8  1 in 53.4 million  5 2.90 x 10‐6  1 in 345,000  2.32 x 10‐8  1 in 43.0 million  4 6.34 x 10‐6  1 in 158,000  5.09 x 10‐8  1 in 19.7 million  3 7.69 x 10‐6  1 in 130,000  6.17 x 10‐8  1 in 16.2 million  2 9.65 x 10‐6  1 in 104,000  7.75 x 10‐8  1 in 12.9 million  1 1.67 x 10‐5  1 in 60,000  1.34 x 10‐7  1 in 7.45 million  These additional risk posed by the proposed 115/230 kV project are less than the thresholds for  negligible impacts which are used by Santa Barbara County and the California Department of  Education for public school siting.  It should be noted however, that there are no known societal  risk criteria for the proposed project.  (See also Sections 3.2 and 3.3 of this Report.)  10.2.2 Average Population Density The societal risk results for the proposed 115/230 kV project are presented in Figure 10.2.2‐1 for  the average population density of 3,228 persons per square mile, for a one (1) mile length of the  two (2) OPL pipelines (two miles total pipeline length), over a one (1) year time period.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 99 Figure 10.2.2-1 – Societal Risk Results, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Average Population Density As depicted in Figure 10.2.2‐1, there were incidents where either one (1) or two (2) individuals  could be fatally injured.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 100 Table 10.2.2-1 Societal Risk Results, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Average Population Density Number of Fatalities  Two OPL Lines Collocated with  Proposed 115/230 kV Overhead  HVAC  Annual Likelihood  Additional Risk of Proposed  Project versus No Action  Alternative  Annual Likelihood  2 6.85 x 10‐7  1 in 1.46 million  5.50 x 10‐9  1 in 182 million  1 5.66 x 10‐6  1 in 177,000  4.54 x 10‐8  1 in 22.0 million  These results are below the thresholds for negligible impacts which are used by Santa Barbara  County and the California Department of Education for public school siting; they are more than  two orders of magnitude below (less than one‐one‐hundredth of) these entities’ intolerable level.   However, there are no known societal risk criteria for the proposed project.  (See also Sections 3.2  and 3.3 of this Report.)  10.2.3 Minimum Population Density When the minimum population density of 568 persons per square mile was considered, the  number of persons exposed to each incident was below that which resulted in a single fatality.   The highest mortality for any of the releases scenarios was 0.4; there were two scenarios which  resulted in 0.4 fatalities:    8,863 barrel jet fuel pool fire, annual probability of 1.93 x 10‐7 (1 in 5.18 million)   8,863 barrel gasoline pool fire, annual probability of 4.92 x 10‐7 (1 in 2.03 million  10.2.4 Construction Societal Risk Maximum Population Density  The societal risk results during construction of the proposed 115/230 kV project are presented in  Figure 10.3.1‐1 for the maximum population density of 23,169 persons per square mile, for a one  (1) mile length of the two (2) OPL pipelines (two miles total pipeline length), over a one (1) year  time period80.                                                               80 Coating stress voltage and arc distance data is not available for the existing 115 kV corridor.  The “other”  incident cause data has been taken from the 115/230 kV proposed project.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 101    Figure 10.3.1-1 – Societal Risk Results during Construction of Proposed 115/230 kV Project, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Maximum Population Density As depicted in Figure 10.3.1‐1, there are scenarios that could result in multiple fatalities.  The  annual probability of these incidents are presented in the following table:  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 102 Table 10.3.1-1 Societal Risk Results During Construction of Proposed 115/230 kV Project, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Maximum Population Density Number of Fatalities  Two OPL Lines In Existing 115 kV  Overhead HVAC During  Construction of Proposed  115/230 kV Project  Annual Likelihood  Additional Risk During  Construction versus No Action  Alternative  Annual Likelihood  17 4.87 x 10‐7  1 in 2.05 million  2.33 x 10‐9  1 in 428 million  15 6.78 x 10‐7  1 in 1.47 million  3.25 x 10‐9  1 in 308 million  9 1.65 x 10‐6  1 in 605,000  7.92 x 10‐9  1 in 126 million  8 1.93 x 10‐6  1 in 518,000  9.25 x 10‐9  1 in 108 million  7 2.31 x 10‐6  1 in 432,000  1.11 x 10‐8  1 in 90.3 million  5 2.87 x 10‐6  1 in 349,000  1.37 x 10‐8  1 in 72.8 million  4 6.28 x 10‐6  1 in 159,000  3.01 x 10‐8  1 in 33.2 million  3 7.62 x 10‐6  1 in 131,000  3.65 x 10‐8  1 in 27.4 million  2 9.56 x 10‐6  1 in 105,000  4.58 x 10‐8  1 in 21.8 million  1 1.66 x 10‐5  1 in 60,000  7.94 x 10‐8  1 in 12.6 million  These additional risk posed during construction of the proposed 115/230 kV project are less than  the thresholds for negligible impacts which are used by Santa Barbara County and the California  Department of Education for public school siting.  It should be noted however, that there are no  known societal risk criteria for the proposed project.  (See also Sections 3.2 and 3.3 of this  Report.)  Average Population Density  The societal risks during construction of the proposed 115/230 kV project are presented in Figure  10.3.2‐1 for the average population density of 3,228 persons per square mile, for a one (1) mile  length of the two (2) OPL pipelines (two miles total pipeline length), over a one (1) year time  period.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 103 Figure 10.3.2-1 – Societal Risk Results during Construction of Proposed 115/230 kV Project, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Average Population Density As depicted in Figure 10.3.2‐1, there were incidents where either one (1) or two (2) individuals  could be fatally injured.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 104 Table 10.3.2-1 Societal Risk Results, One Mile of Two OPL Lines Collocated with 115/230 kV Overhead HVAC, Average Population Density Number of Fatalities  Two OPL Lines Collocated with  Proposed 115/230 kV Overhead  HVAC  Annual Likelihood  Additional Risk of Proposed  Project versus No Action  Alternative  Annual Likelihood    2 6.78 x 10‐7  1 in 1.47 million  3.25 x 10‐9  1 in 308 million  1 5.60 x 10‐6  1 in 179,000  2.68 x 10‐8  1 in 37.3 million  These results are below the thresholds for negligible impacts which are used by Santa Barbara  County and the California Department of Education for public school siting; they are more than  two orders of magnitude below (less than one‐one‐hundredth of) these entities’ intolerable level.   However, there are no known societal risk criteria for the proposed project.  (See also Sections 3.2  and 3.3 of this Report.)  Minimum Population Density  When the minimum population density of 568 persons per square mile was considered, the  number of persons exposed to each incident was below that which resulted in a single fatality.   The highest mortality for any of the releases scenarios was 0.4; there were two scenarios which  resulted in 0.4 fatalities.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 105 11.0  Risk Reduction Measures  The proposed project could increase the likelihood and possibly the severity of unintentional  releases from the OPL pipelines.  In this section, several measures are presented which could be  implemented to reduce this increased risk.  11.1  Surcharge Loading  The application of loads to the soil surface (surcharge loads) can induce stresses on the underlying  substructures, including pipelines.  These stresses can over‐stress the pipe, causing ovality,  through wall bending, pipe wall buckling, side wall crushing, fatigue, etc. which can result in an  unintentional release.  During the construction of the proposed project, surcharge loads will be imposed on the existing  OPL pipelines.  In order to reduce the increased risk of unintentional release, the following  measure could be imposed on the applicant.  Surcharge Loading Risk Reduction Measure – The Applicant shall analyze, or cause to be  analyzed, all surcharge loads which will be imposed on the existing OPL pipeline(s) from heavy  equipment, crane matts, etc. in accordance with the following:   49 CFR 195, Transportation of Hazardous Liquid by Pipeline,   American Petroleum Institute Recommended Practice 1102, Steel Pipelines Crossing Railroads  and Highways, and   American Lifelines Alliance, Guidelines for the Design of Buried Steel Pipe.  11.2  Third Party Damage  During construction of the proposed project, excavations and soil disturbance will be required  around and near the existing OPL pipeline(s).  During these activities, the OPL pipeline(s) could be  damaged.  This damage could result in an immediate, or subsequent release, similar to those  which occurred in Bellingham, Washington, Walnut Creek, California, and San Bernardino,  California.  (See Section 1.4 of this Report for a summary of these incidents.)  In order to reduce  the increased risk of unintentional release, the following measure could be imposed on the  applicant.  Third Party Damage Risk Reduction Measure – The Applicant shall implement the following  measures during construction of the proposed project.  These measures are in addition to those  required by State and Federal regulations and those included in OPL’s operations and  maintenance procedures.   The Applicant shall insure that OPL line marking personnel mark the entire length of any  pipeline that is within 50‐feet of any excavation or ground disturbance below original grade.   It is not acceptable to mark only the location of angle points (points of intersection).  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 106  The Applicant shall excavate, expose, and positively identify the existing OPL pipeline(s) using  soft dig methods (e.g., hand excavation, vacuum excavation, etc.) whenever the pipeline(s)  are within 25‐feet of any proposed excavation or ground disturbance below original grade.     An OPL employee, trained in the observation of excavations and pipeline locating, shall be on‐ site at all times an excavation being made, or the ground is being disturbed below the original  grade.  11.3  Electrical Interference  The A.C. Interference Study presented an analysis of the potential hazards which could impact the  existing OPL pipeline(s).  Based on the results of this study, we recommend the following risk  reduction measures.  Induced A.C. Voltage Risk Reduction Measure – After the proposed 230 kV system has been  commissioned, touch voltage testing should be conducted to insure that touch voltage potentials  at all above grade facilities are less than 15 volts.  The tests should be conducted during periods  when the electrical system is operating at, or near, winter peak loading.  Mitigation should be  implemented should touch voltages exceed 15 volts.  This will help insure that pipeline operators  are not injured.  A.C. Current Density Risk Reduction Measure – In areas where the predicted A.C. current density  will exceed 20 amps per square meter, testing should be conducted to insure that A.C. current  densities do not exceed 20 amps per square meter.  The tests should be conducted during periods  when the electrical system is operating at, or near, winter peak loading.  Where A.C. current  densities exceed the 20 amps per square meter threshold, mitigation measures should be  implemented to insure that A.C. corrosion does not occur.  Fault Arcing Risk Reduction Measure – In areas where the pipeline is within 13‐feet of a  grounding rod, mitigation measures should be implemented to prevent ground fault arcing to the  pipeline.    EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 107 12.0  References  12.1  Acronyms  AC – Alternating Current  ALARP ‐ As Low as Reasonably Practicable   ANSI ‐ American National Standards Institute  API ‐ American Petroleum Institute  API 5L X52 – Pipe manufactured in accordance with API Standard 5L, Specification for Line Pipe,  with a specified minimum yield strength of 52,000 psi  ASME ‐ American Society of Mechanical Engineers   ASTM ‐ American Society for Testing and Materials  BPH – Barrels per Hour  CFR ‐ Code of Federal Regulations  CWA ‐ Clean Water Act   EIS – Environmental Empact Statement  ERW – Electric Resistance Welded  HLPSA ‐ Hazardous Liquid Pipeline Safety Act  HVAC – High Voltage Alternative Current  IR – Individual Risk  MSS ‐ Manufacturers Standardization Society of the Valve and Fittings Industry  NFPA – National Fire Protection Association  NTSB – National Transportation Safety Board  OPL – Olympic Pipeline Company  OPS – Office of Pipeline Safety  PHMSA ‐ The Pipeline and Hazardous Materials Safety Administration  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 108 PLDS ‐ Pipeline Leak Detection System  PLL ‐ Probable Loss of Life  PPM – Parts per Million  PSI – Pounds per Square Inch  RCW – Revised Code of Washington  RSPA ‐ Research and Special Programs Administration  SMYS – Specified Minimum Yield Strength  SPCC ‐ Oil Spill Prevention Control & Countermeasures   USA ‐ Unusually Sensitive Areas    USC – United States Code  USDOT ‐ United States Department of Transportation  WAC – Washington Administrative Code  12.2  Definitions  Aggregate Risk ‐ Aggregate risk, or probable loss of life (PLL), is one risk measure used to evaluate  projects.  Aggregate risk is the total anticipated frequency of a particular consequence,  normally fatalities, that could be anticipated over a given time period, for all project  components being analyzed.  Aggregate risk is a type of risk integral; it is the summation  of risk, as expressed by the product of the anticipated consequences and their respective  likelihood.  The integral is summed over all of the potential events that might occur for all  of the project components, over the entire project length.    ALARP approach.  Generally, risks within a band of risk levels are considered tolerable only if risk  reduction is impractical or if its cost is grossly disproportionate to the risk improvement  gained.  The underlying concept is to maximize the expected utility of an investment, but  not expose anyone to an excessive increase in risk.  Barrels – A measure of volume equal to 42 U.S. gallons.  Bright Line Threshold ‐ A bright‐line rule (or bright‐line test) is a clearly defined rule or standard,  composed of objective factors, which leaves little or no room for varying interpretation.   The purpose of a bright‐line rule is to produce predictable and consistent results in its  application.  The term "bright‐line" in this sense generally occurs in a legal context.   EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 109 Bright‐line rules are usually standards established by courts in legal precedent or by  legislatures in statutory provisions.  De Manifestus ‐ ALARP (as low as reasonably practical) principle states that there is a level of risk  that is intolerable, sometimes called the de manifestus risk level.  Above this level risks  cannot be justified.  De Minimus ‐ Latin term for "of minimum importance" or "trifling."  Essentially it refers to  something or a difference that is so little, small, minuscule, or tiny that the law does not  refer to it and will not consider it.  In a million dollar deal, a $10 mistake is de minimus.  Flammability Limit ‐ Flammable liquid only burns in its gaseous state.  If the ratio of fuel to air is  greater than the upper flammability limit, the mixture is too rich to burn; if it is less than  the lower flammability limit, the mixture is to lean to burn.  (The mixture will only burn in  gaseous state, between the upper and lower flammability limit.)  Flash Fire – A flash fire is a rapidly burning gas or vapor cloud of short duration.  The duration lasts  until all vapor and oxygen in the cloud is consumed.  The duration of the flash fire at any  point in the space depends on the concentration of the flammable vapor in air and the  specific vapor substance involved.   (CDE 2005)  Incidents per 1,000 mile years ‐ This unit provides a means of predicting the number of incidents  for a given length of line, over a given period of time.  For example, if one considered an  incident rate of 1.0 incidents per 1,000 miles years, one would expect one incident per  year on a 1,000 mile pipeline.  Using this unit, frequencies of occurrence can be calculated  for any combination of pipeline length and time interval.  Individual Risk ‐ Individual risk (IR) is most commonly defined as the frequency that an individual  may be expected to sustain a given level of harm from the realization of specific hazards,  at a specific location, within a specified time interval.  Individual risk is typically measured  as the probability of a fatality per year.  The risk level is typically determined for the  maximally exposed individual; in other words, it assumes that a person is present  continuously – 24 hours per day, 365 days per year.  Isopleth – A line connecting points at which a given variable has a specified value.  In this context,  the line connections points of a specified heat flux value.  Pasquill‐Gifford Atmospheric Stability – This is classified by the letters A through F.  Stability can  be determined by three main factors: wind speed, solar insulation, and general  cloudiness.  In general, the most unstable (turbulent) atmosphere is characterized by  stability class A.  Stability A occurs during strong solar radiation and moderate winds. This  combination allows for rapid fluctuations in the air and thus greater mixing of the  released gas with time.  Stability D is characterized by fully overcast or partial cloud cover  during daytime or nighttime, and covers all wind speeds.  The atmospheric turbulence is  not as great during D conditions, so the gas will not mix as quickly with the surrounding  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 110 atmosphere.  Stability F generally occurs during the early morning hours before sunrise  (no solar radiation) and under low winds.  This combination allows for an atmosphere  which appears calm or still and thus restricts the ability to actively mix with the released  gas.  A stability classification of “D” is generally considered to represent average  conditions.  Pool Fire – A pool fire would typically follow a vapor flash fire for a liquid product release.  If  ignition occurs early, the main impact if from the pool fire.  The fire burns the evaporated  vapor from the pool surface.  The fire would continue until all the liquid in the pool was  consumed or the fire was extinguished.  (CDE 2005)  Refined Petroleum Products – For the purposes of this Report, these products include: gasolines,  diesel, and jet fuel.  Societal Risk ‐ Societal risk is the probability that a specified number of people will be affected by  a given event.  The accepted number of casualties is relatively high for lower probability  events and much lower for more probable events.    12.3  Reference Documents  American Petroleum Institute (API 752).  Management of Hazards Associated with Location of  Process Plant Buildings.  California Department of Education (CDE 2007 and CDE 2005). February 2007. Guidance Protocol  for School Site Pipeline Risk Analysis.  Det Norske Veritas (Veritas 2017).  Puget Sound Energy A.C. Interference Analysis, Existing  Corridor.  Det Norske Veritas (Veritas 2016).  A.C. Interference Analysis – 230 kV Transmission line  Collocated with Olympic Pipelines OLP16 and OPL20.  Health and Safety Executive (HSE 2000). Report on a Study of International Pipeline Accidents,  Contract Research Report 294/2000. United Kingdom.  Mannan, Dr. Sam. (LEES). Lee’s Loss Prevention in the Process Industries. Third Edition.  Marszal, Edward M. (Marszal 2001). 2001. Tolerable Risk Guidelines.  National Transportation Safety Board (NTSB 2002).  Pipeline Rupture and Subsequent Fire in  Bellingham, Washington, June 10, 1999.  Pipeline Accident Report NTSB/PAR‐02/02.   Washington, D.C.  National Transportation Safety Board (NTSB 2003).  Pipeline Rupture and Subsequent Fire near  Carlsbad, New Mexico, August 19, 2000.  Pipeline Accident Report NTSB/PAR‐03/01.   Washington, D.C.  EDM Services, Inc. April 27, 2017 Technical Report, Pipeline Safety and Risk of Upset       Page 111 National Transportation Safety Board (NTSB 2011).  Pacific Gas and Electric Company Natural Gas  Transmission Pipeline Rupture and Fire, San Bruno, California, September 9, 2010.   Pipeline Accident Report NTSB/PAR‐11/01.  Washington, D.C.  Northwest Gas Association v. WUTC, 141 Wn.  App. 98, 168 P.3d 443, 2007. Rev. denied, 163  Wn.2d 1049, 2008.  Office of the State Fire Marshal, Pipeline Failure Investigation Report, November 9, 2004.   California.  Payne, Brian L. el al. EDM Services, Inc.  1993.  California Hazardous Liquid Pipeline Risk  Assessment, Prepared for California State Fire Marshal, March.  Presidential/Congressional Commission on Risk Assessment and Risk Management (Commission  1997). 1997. Framework for Environmental Health Risk Management.  Quest Consultants, CANARY. (QUEST 2003) CANARY by Quest User’s Manual. 2003.  Santa Barbara County Planning and Development (SBCO 2008). October 2008. Environmental  Thresholds and Guidelines Manual.  United States Department of Transportation (USDOT), Bureau of Transportation Statistics.   Various Years. National Transportation Statistics.  West, Kim. 2016. Personal communication. Email from Kim West, Project Engineer (Olympic  Pipeline) to Karmen Martin (ESA). August 5, 2016 at 4:32 PM with attachment.