Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutRS_SWPPP_Sapphire_on_Talbot_200128_v4Construction Stormwater General Permit (CSWGP)
Stormwater Pollution Prevention Plan
(SWPPP)
for
Sapphire on Talbot
Prepared for:
The Washington State Department of Ecology
Northwest Regional Office
3190 160th Ave SE
Bellevue, WA 98008
SDP2017-02556
Permittee / Owner Developer Operator / Contractor
Troy Schmeil
16805 SE 43rd Court
Bellevue, WA 98006
Troy Schmeil
16805 SE 43rd Court
Bellevue, WA 98006
TBD
Certified Erosion and Sediment Control Lead (CESCL)
Name Organization Contact Phone Number
TBD TBD TBD
SWPPP Prepared By
Name Organization Contact Phone Number
Edward Mecum Encompass Engineering and
Surveying
(425) 392-0250
SWPPP Preparation Date
06/13/2019
Project Construction Dates
Activity / Phase Start Date End Date
Site Grading To Be Determined To Be Determined
DEVELOPMENT ENGINEERING
Nathan Janders 02/07/2020
Table of Contents
LIST OF ACRONYMS AND ABBREVIATIONS ........................................................................................... 3
1.0 PROJECT INFORMATION ..................................................................................................................... 4
2.0 CONSTRUCTION STORMWATER BEST MANAGEMENT PRACTICES (BMPS) .............................. 7
3.0 POLLUTION PREVENTION TEAM ........................................... ERROR! BOOKMARK NOT DEFINED.
4.0 MONITORING AND SAMPLING REQUIREMENTS ................. ERROR! BOOKMARK NOT DEFINED.
5.0 DISCHARGES TO 303(D) OR TOTAL MAXIMUM DAILY LOAD (TMDL) WATERBODIES ... ERROR!
BOOKMARK NOT DEFINED.
6.0 REPORTING AND RECORD KEEPING ................................... ERROR! BOOKMARK NOT DEFINED.
APPENDIX/GLOSSARY .................................................................. ERROR! BOOKMARK NOT DEFINED.
List of Tables
1. Summary of Site Pollutant Constituents
2. Pollutants
3. pH-Modifying Sources
4. Management
5. Team Information
6. Turbidity Sampling Method
7. pH Sampling Method
List of Appendices
A. Site Map
B. BMP Detail
C. Site Inspection Form
D. CSWGP
E. Engineering Calculations
List of Acronyms and Abbreviations
Acronym / Abbreviation Explanation
303(d) Section of the Clean Water Act pertaining to Impaired Waterbodies
BFO Bellingham Field Office of the Department of Ecology
BMP(s) Best Management Practice(s)
CESCL Certified Erosion and Sediment Control Lead
CO2 Carbon Dioxide
CRO Central Regional Office of the Department of Ecology
CSWGP Construction Stormwater General Permit
CWA Clean Water Act
DMR Discharge Monitoring Report
DO Dissolved Oxygen
Ecology Washington State Department of Ecology
EPA United States Environmental Protection Agency
ERO Eastern Regional Office of the Department of Ecology
ERTS Environmental Report Tracking System
ESC Erosion and Sediment Control
GULD General Use Level Designation
NPDES National Pollutant Discharge Elimination System
NTU Nephelometric Turbidity Units
NWRO Northwest Regional Office of the Department of Ecology
pH Power of Hydrogen
RCW Revised Code of Washington
SPCC Spill Prevention, Control, and Countermeasure
su Standard Units
SWMMEW Stormwater Management Manual for Eastern Washington
SWMMWW Stormwater Management Manual for Western Washington
SWPPP Stormwater Pollution Prevention Plan
TESC Temporary Erosion and Sediment Control
SWRO Southwest Regional Office of the Department of Ecology
TMDL Total Maximum Daily Load
VFO Vancouver Field Office of the Department of Ecology
WAC Washington Administrative Code
WSDOT Washington Department of Transportation
WWHM Western Washington Hydrology Model
Project Information (1.0)
Project/Site Name: Sapphire on Talbot
Street/Location: 4827 Talbot RD S
City: Renton State: WA Zip code: 98055
Subdivision: N/A
Receiving waterbody: Springbrook Creek
Existing Conditions (1.1)
Total acreage (including support activities such as off-site equipment staging yards, material
storage areas, borrow areas).
Total acreage: 1.79 AC
Disturbed acreage: 1.79 AC
Existing structures: 1 Single-Family residence and associated outbuildings, paved driveway.
Landscape topography: Trees, brush, grass, lawn.
Drainage patterns: Site generally sheet flows to the west at 2% to 17%.
Existing Vegetation: Trees, brush, grass, lawn.
Critical Areas: No known critical areas on or adjacent to the site.
List of known impairments for 303(d) listed or Total Maximum Daily Load (TMDL) for the
receiving waterbody: Bioassessment
Table 1 includes a list of suspected and/or known contaminants associated with the construction
activity.
Table 1 – Summary of Site Pollutant Constituents
Constituent
(Pollutant) Location Depth Concentration
Gasoline Construction Vehicles
Concrete Curb, gutter, and
sidewalk improvements
Onsite Septic Sewer Near existing house
Proposed Construction Activities (1.2)
Description of site development:
The parcel will be subdivided into 20 lots, an access road, shared driveway, and an open
space/tree retention/stormwater tract.
Description of construction activities:
The project site will be cleared and graded prior to the start of construction. The development of
the site will include site grading, demolition on all existing structures, and utilities installation.
Utilities will include stormwater, sanitary sewer, potable water, and all private utilities.
Description of site drainage including flow from and onto adjacent properties. Must be consistent
with Site Map in Appendix A:
Level 1 Downstream Analysis from the engineering Technical Information Report:
A Level 1 Downstream Drainage Analysis was performed October 12, 2018 at around 8:00 AM.
The weather was clear and roughly 60°. The site is developed with an existing single-family
residence, detached garage and paved driveway. The site is comprised of grasses, trees and
shrubs around the boundaries of the property. The eastern portion of the site slopes to the west
at 2-17%.
Task 1: The area of analysis extends downstream from the site to 1/4 mile downstream.
Task 2: Per King county resources, there have been no significant drainage complaints.
Task 3: There were no apparent downstream drainage issues.
Task 4: The site mostly sheet flows (A) west into a wooded tract, part of the adjacent Ashburn
Condominium project. There is an existing level spreader (B) of some sort constructed with the
Ashburn collecting and routing at least some of the flows into a 12” pipe system in Ashburn that
directs these flows around the detention vault constructed for the Ashburn project (E). This
bypass pipe (C) discharges into a wooded ravine (H) about 350’ downstream from the site.
Flows from the ravine cross under on the Ashburn streets through a 12” pipe (I), continuing west
through more wooded ravine (J) then into the SR-167 storm system (G), about ¼ mile
downstream from the site.
That portion of runoff from the site (A) that doesn’t drain into the bypass pipe mentioned above
drains past the existing level spreader (B) into a wooded area south of the site, then into an inlet
pipe (D), about 200’ west of the site. The flows drain though the 12” Ashburn pipe system about
¼ mile before discharging into a large underground detention vault (E). The vault discharges
into an overgrown bioswale F) draining south, then west towards the SR-167 storm system (G),
a distance of greater than ¼ mile downstream from the site.
Description of final stabilization:
Final stabilization will include revegetation and landscaping of exposed areas, and paving of
roads and sidewalks. Full description can be seen in the landscape plan in the engineering plan
sheets.
Contaminated Site Information:
Proposed activities regarding contaminated soils or groundwater:
There are no known contaminated soils on site. Any existing onsite septic sewer system will be
removed or abandoned in place as needed.
Construction Stormwater Best Management Practices (BMPs) (2.0)
The SWPPP is a living document reflecting current conditions and changes throughout the life
of the project. These changes may be informal (i.e. hand-written notes and deletions). Update
the SWPPP when the CESCL has noted a deficiency in BMPs or deviation from original design.
The 12 Elements (2.1)
Element 1: Preserve Vegetation / Mark Clearing Limits (2.1.1)
The limits of clearing and grading will be marked in several ways around the site depending on
the location. Combination high visibility orange/silt fencing will be installed along clearing limits.
Several trees are scheduled to be retained on the site. Trees that are within the clearing limits
will need to be protected with a tree protection fence.
During the clearing effort, the topsoil and duff materials should be kept in a separate stockpile
for future use to help promote grass growth during project close out.
List and describe BMPs:
BMP C101: Preserving Natural Vegetation
BMP C103: High Visibility Plastic or Metal Fence
BMP C233: Silt Fence
Installation Schedules: Marking the clearing limits is one of the first things to be accomplished
on the construction site. Prior to any site clearing or grading, areas that are to remain
undisturbed during project construction shall be delineated. Once all plat construction is
complete, leaving just the residences to be constructed, the clearing limit BMP’s may be
removed as approved by the City. Portions of fencing may remain in place if the residence
construction is scheduled to begin.
Inspection and Maintenance plan: The clearing limits should be observed on a daily basis and
thoroughly inspected weekly to ensure they are in place and functioning to protect areas that
are not being cleared. Any damaged or missing portions of the clearing limit BMP’s should be
repaired or replaced immediately.
Responsible Staff: CESCL
Element 2: Establish Construction Access (2.1.2)
A stabilized construction entrance is proposed for this site. If construction vehicles are observed
tracking soil onto the roads, a wheel wash will be installed at one construction access. A gravel
construction parking area is proposed for contractor staging.
List and describe BMPs:
BMP C105: Stabilized Construction Entrance
BMP C106: Wheel Wash (if necessary)
BMP C107: Construction Road/Parking Area Stabilization
Installation Schedules: The stabilized construction entrance should be established at the start of
construction for all active access points. The construction road/parking area stabilization should
be established after preliminary grading is completed.
Inspection and Maintenance plan: The construction entrance will be observed daily for any
deficiencies such as dirt or mud covering the rocks. Also, the public roads will be observed on a
continual basis during vehicle exiting to ensure no soil deposits are being tracked onto the
roadway. If the construction entrance proves inadequate to prevent soil from being deposited
onto the roadway, additional measures will be necessary, including street sweeping and the use
of a wheel wash for pervasive failures. Other stabilized areas will be inspected regularly,
especially after large storm events. Any damaged or missing portions of the site BMP’s should
be repaired or replaced immediately.
Responsible Staff: CESCL
Element 3: Control Flow Rates (2.1.3)
Based on the City of Renton’s flow control map, the site falls within the “Flow Control Duration
Standard” area matching Forested Site Conditions and is within the Black River Drainage Basin.
Therefore engineering must apply the Flow Control Duration Standard which matches the flow
duration of pre-developed rates forforested (historical) site conditions over the range of flows
extending from 50% of 2-year up to the full 50-year flow AND matches peaks for the 2- and 10-
year return periods.
Will you construct stormwater retention and/or detention facilities?
Yes No
A permanent stormwater detention/infiltration vault and associated infrastructure will be
constructed on site. This vault has been sized using the 2-year storm and 10-year storm
flows. A temporary sediment pond with associated infrastructure will be constructed on
site. The temporary sediment pond is sized using the 2-year storm and 10-year storm.
Will you use permanent infiltration ponds or other low impact development (example: rain
gardens, bio-retention, porous pavement) to control flow during construction?
Yes No
List and describe BMPs:
BMP C207: Check Dams
BMP C209: Outlet Protection
BMP C240: Sediment Trap
BMP C241: Temporary Sediment Pond
Installation Schedules: Construction of the BMPs and associated infrastructure is scheduled for
the beginning of the project. The measures described above are required throughout
construction.
Inspection and Maintenance plan: The BMPs should be inspected on a weekly basis to verify
that the capacity has not diminished due to sedimentation in such a way that the BMP loses
efficiency. Sediment shall be removed from the temporary sediment pond when it reaches 1-foot
in depth. Any damaged or missing portions of the site BMP’s should be repaired or replaced
immediately.
Responsible Staff: CESCL
Element 4: Install Sediment Controls (2.1.4)
Areas of disturbed soil shall be routed through a temporary sediment pond via a series of
temporary intercepter swales. This, in conjunction with the listed BMPs, shall serve to minimize
sediment discharges from the site.
List and describe BMPs:
BMP C233: Silt Fence
BMP C240: Sediment Trap
BMP C241: Temporary Sediment Pond
BMP C250: Construction Stormwater Chemical Treatment (to be implemented only with
prior written approval from Ecology)
Installation Schedules: Implimentation of silt fencing, sediment traps, temporary sediment pond,
and associated infrastructure is scheduled for the beginning of the project. These BMPs shall be
functional before other land disturbing activities take place. The measures described above are
required throughout construction.
Inspection and Maintenance plan: The sediment control facilities should be inspected on a
weekly basis to verify that the capacity has not diminished due to sedimentation in such a way
that the BMP loses efficiency. Any damaged or missing portions of the site BMPs should be
repaired or replaced immediately.
Responsible Staff: CESCL
Element 5: Stabilize Soils (2.1.5)
Soils on site will be stabilized as appropriate through a variety of methods. These BMPs will be
implemented when soil is to remain unworked or at the threat of rain throughout the project.
Stock piles will be covered with plastic sheeting unless an extended period of storage is
expected, in which case the stockpiles should be seeded and covered with mulch and an
erosion control net. Runoff from plastic sheeting will be directed into a temporary ditch and
conveyed to an appropriate outlet location.
Slopes, once in place will be covered with a combination of hydroseeding and mulch. If these
stabilizing BMPs prove ineffective, the contractor should improve the cover method with nets
and blankets.
During the hot summer months, dust control is necessary. This is accomplished by applying
water to dry soils routinely. The water should not be applied in a way that creates runoff,
however.
West of the Cascade Mountains Crest
Season Dates Number of Days Soils Can
be Left Exposed
During the Dry Season May 1 – September 30 7 days
During the Wet Season October 1 – April 30 2 days
Soils must be stabilized at the end of the shift before a holiday or weekend if needed based on
the weather forecast.
Anticipated project dates:
Start date: Summer 2019
End date: Fall 2020
Will you construct during the wet season?
Yes No
List and describe BMPs:
BMP C101: Preserving Natural Vegetation
BMP C120: Temporary and Permanent Seeding
BMP C121: Mulching
BMP C122: Nets and Blankets
BMP C123: Plastic Covering
BMP C140: Dust Control
Installation Schedules: Soil Stabilization BMPs will be applied as deemed necessary. Exposed
areas should be evaluated and covered to prevent impacts to roadways, drainage ways, or
surface waters. Seeding shall be used throughout the project on disturbed areas that have
reached final grade or that will remain unworked for more than 30 days.
Inspection and Maintenance plan: Soil Stabilization BMPs should be reviewed daily and
thoroughly inspected weekly and after each rainfall event to ensure they are functioning
appropriately. All deficiencies shall be repaired or replaced in accordance with the number of
days exposed soils may be left exposed. Any damaged or missing portions of the site BMPs
should be repaired or replaced immediately.
Responsible Staff: CESCL
Element 6: Protect Slopes (2.1.6)
The steepest slopes existing on the site are located in the southeast corner of the construction
area. All slopes created on the site will be stabilized upon completion with a combination of
hydroseed, mulch and, if necessary, erosion control netting. Hydraulic modeling using WWHM
has been attached in Appendix B. Scouring within constructed channels shall be reduced using
interceptor dikes and swales in conjunction with check dams.
Will steep slopes be present at the site during construction?
Yes No
List and describe BMPs:
BMP C120: Temporary and Permanent Seeding
BMP C121: Mulching
BMP C122: Nets and Blankets
BMP C200: Interceptor Dike and Swale
BMP C207: Check Dams
Installation Schedules: Slopes are to be protected throughout construction.
Inspection and Maintenance plan: Stabilized slopes created during construction should be
inspected on a weekly basis and after every rainfall event. Repairs to stabilization BMPs should
be made in accordance to the exposed soils schedule. Any damaged or missing portions of the
site BMPs should be repaired or replaced immediately.
Responsible Staff: CESCL
Element 7: Protect Drain Inlets (2.1.7)
Catch basin inserts will be installed on all onsite and downstream catch basins.
List and describe BMPs:
BMP C220: Storm Drain Inlet
Installation Schedules: Storm drain inlets are to be installed prior to the start of construction for
all existing inlets. Constructed onsite catch basins will be protected prior to the first gravel lift.
Inspection and Maintenance plan: All facilities should be inspected weekly and after every
rainfall event. BMPs showing 1/3 of their capacity full of sediment should have the sediment
removed or the unit replaced. Any damaged or missing portions of the site BMPs should be
repaired or replaced immediately.
Responsible Staff: CESCL
Element 8: Stabilize Channels and Outlets (2.1.8)
Channels and culverts will be constructed to divert water to the temporary sediment pond. A
permanent drainage system will be constructed to convey flows to the detention/infiltration vault.
These features are sized using the WWHM outputs attached in Appendix B.
List and describe BMPs:
BMP C202: Channel Lining (if necessary)
BMP C207: Chek Dams
BMP C209: Outlet Protection
Installation Schedules: Stabilization BMPs are to be implemented after temporary channels are
constructed. Channel lining shall be used if other measures prove insufficient for stabilization.
Inspection and Maintenance plan: BMPs shall be monitored for performance and sediment
accumulation during and after each runoff event. Sediment shall be removed from check dams
when it reaches on half the sump depth. Any damaged or missing portions of the site BMPs
should be repaired or replaced immediately.
Responsible Staff: CESCL
Element 9: Control Pollutants (2.1.9)
The following pollutants are anticipated to be present on-site:
Table 2 – Pollutants
Pollutant (and source, if applicable)
Gasoline in vehicles
Concrete poured in place
Existing onsite sanitary sewer
There are no known pollutants contained on the existing site. During construction, the contractor
will need to conduct maintenance, fueling, and repair of heavy equipment and vehicles offsite as
spills of hazardous materials could result in an environmental event.
If a wheel wash is incorporated into the protection plan, the contractor will discharge wheel
wash wastewater to a separate on-site treatment system that prevents discharge to surface
water, such as closed-loop recirculation or upland land application, or to the sanitary sewer, with
local sewer district approval.
Concrete will be handled in ways to eliminate concrete, concrete process water, and concrete
slurry from entering waters of the state.
List and describe BMPs:
BMP C151: Concrete Handling
BMP C152: Sawcutting and Surfacing Pollution Prevention
BMP C153: Material Delivery, Storage and Containment
BMP C154: Concrete Washout Area
BMP C241: Temporary Sediment Pond
BMP C251: Construction Stormwater Filtration
Installation Schedules: BMPs will be implemented at the beginning of construction and as
needed throughout the project. Concrete washout BMPs shall be in place prior to the
commencement of concrete work.
Inspection and Maintenance plan: Inspection of the concrete washout area should be done
weekly and prior to expected concrete pours. Washout facilities must be cleaned, or new
facilities must be constructed and ready for use one the washout is 75% full. Secondary
containment facilities should be inspected daily and repaired or replaced as necessary.
Contaminated surfaces shall be cleaned immediately following any discharge or spill incident.
Any damaged or missing portions of the site BMPs should be repaired or replaced immediately.
Responsible Staff: CESCL
Will maintenance, fueling, and/or repair of heavy equipment and vehicles occur on-site?
Yes No
List and describe BMPs:
BMP C153: Material Delivery, Storage and Containment
Installation Schedules: Containment of hazardous materials will be conducted throughout the
duration of construction.
Inspection and Maintenance plan: Containment facilities should be inspected daily and repaired
or replaced as necessary. Material storage areas shall be kept clean, organized and equipped
with an ample supply of appropriate spill clean-up material. Contaminated surfaces shall be
cleaned immediately following any discharge or spill incident. Any damaged or missing portions
of the site BMPs should be repaired or replaced immediately.
Responsible Staff: CESCL
Will wheel wash or tire bath system BMPs be used during construction?
Yes No
List and describe BMPs:
BMP C106: Wheel Wash
Installation Schedules: Wheel wash systems will be installed if deemed necessary by the
contractor when the stabilized construction entrance is not preventing sediment from being
tracked onto pavement.
Inspection and Maintenance plan: Wheel wash systems will be inspected weekly and repaired
as necessary. Wash water should be changed a minimum of once per day.
Responsible Staff: CESCL
Will pH-modifying sources be present on-site?
Yes No If yes, check the source(s).
Table 3 – pH-Modifying Sources
None
X Bulk cement
Cement kiln dust
Fly ash
Other cementitious materials
X New concrete washing or curing waters
X Waste streams generated from concrete grinding and sawing
Exposed aggregate processes
Dewatering concrete vaults
X Concrete pumping and mixer washout waters
Recycled concrete
Other (i.e. calcium lignosulfate) [please describe]
During this construction activity, the pH levels of stormwater runoff must be monitored. If pH
levels exceed 8.5, the level will need to be corrected. The use of CO2 per WDOE standards will
rapidly neutralize the water and make it suitable for discharge.
List and describe BMPs:
BMP C252 High pH Neutralization using CO2
Installation Schedules: pH neutralization using CO2 will be implemented as necessary to correct
pH levels in excess of 8.5.
Inspection and Maintenance plan: Operators will keep written records related to treatment as
detailed in the Stormwater Management Manual for Western Washington. A copy of this record
should be given to the client/contractor who should retain the record for three years.
Responsible Staff: CESCL
Concrete trucks must not be washed out onto the ground, or into storm drains, open ditches,
streets, or streams. Excess concrete must not be dumped on-site, except in designated
concrete washout areas with appropriate BMPs installed.
Element 10: Control Dewatering (2.1.10)
Dewatering is not proposed to occur on this site.
List and describe BMPs: N/A
Installation Schedules: N/A
Inspection and Maintenance plan: N/A
Responsible Staff: N/A
Element 11: Maintain BMPs (2.1.11)
All temporary and permanent Erosion and Sediment Control (ESC) BMPs shall be maintained
and repaired as needed to ensure continued performance of their intended function.
Maintenance and repair shall be conducted in accordance with each particular BMP
specification (see Volume II of the SWMMWW or Chapter 7 of the SWMMEW).
Visual monitoring of all BMPs installed at the site will be conducted at least once every calendar
week and within 24 hours of any stormwater or non-stormwater discharge from the site. If the
site becomes inactive and is temporarily stabilized, the inspection frequency may be reduced to
once every calendar month.
All temporary ESC BMPs shall be removed within 30 days after final site stabilization is
achieved or after the temporary BMPs are no longer needed.
Trapped sediment shall be stabilized on-site or removed. Disturbed soil resulting from removal
of either BMPs or vegetation shall be permanently stabilized.
Additionally, protection must be provided for all BMPs installed for the permanent control of
stormwater from sediment and compaction. BMPs that are to remain in place following
completion of construction shall be examined and restored to full operating condition. If
sediment enters these BMPs during construction, the sediment shall be removed and the facility
shall be returned to conditions specified in the construction documents.
Element 12: Manage the Project (2.1.12)
The project will be managed based on the following principles:
• Projects will be phased to the maximum extent practicable and seasonal work limitations
will be taken into account.
• Inspection and monitoring:
o Inspection, maintenance and repair of all BMPs will occur as needed to ensure
performance of their intended function.
o Site inspections and monitoring will be conducted in accordance with Special
Condition S4 of the CSWGP. Sampling locations are indicated on the Site Map.
Sampling station(s) are located in accordance with applicable requirements of
the CSWGP.
• Maintain an updated SWPPP.
o The SWPPP will be updated, maintained, and implemented in accordance with
Special Conditions S3, S4, and S9 of the CSWGP.
As site work progresses the SWPPP will be modified routinely to reflect changing site
conditions. The SWPPP will be reviewed monthly to ensure the content is current.
Table 4 – Management
X Design the project to fit the existing topography, soils, and drainage patterns
X Emphasize erosion control rather than sediment control
Minimize the extent and duration of the area exposed
X Keep runoff velocities low
X Retain sediment on-site
X Thoroughly monitor site and maintain all ESC measures
Schedule major earthwork during the dry season
Other (please describe)
Element 13: Protect Low Impact Development (LID) BMPs (2.1.13)
The proposed project will not incorporate LID BMPs. No protection is required for this BMP.
Pollution Prevention Team (3.0)
Table 5 – Team Information
Title Name(s) Phone Number
Certified Erosion and
Sediment Control Lead
(CESCL)
TBD TBD
Resident Engineer Ed Mecum (425) 392-0250
Emergency Ecology
Contact
TBD TBD
Emergency Permittee/
Owner Contact
Troy Schmeil (206) 954-4945
Non-Emergency Owner
Contact
Troy Schmeil (206) 954-4945
Monitoring Personnel TBD TBD
Ecology Regional Office Northwest (425) 649-7000
Monitoring and Sampling Requirements (4.0)
Monitoring includes visual inspection, sampling for water quality parameters of concern, and
documentation of the inspection and sampling findings in a site log book. A site log book will be
maintained for all on-site construction activities and will include:
• A record of the implementation of the SWPPP and other permit requirements
• Site inspections
• Stormwater sampling data
The site log book must be maintained on-site within reasonable access to the site and be made
available upon request to Ecology or the local jurisdiction.
Numeric effluent limits may be required for certain discharges to 303(d) listed waterbodies. See
CSWGP Special Condition S8 and Section 5 of this template.
Complete the following paragraph for sites that discharge to impaired waterbodies for fine
sediment, turbidity, phosphorus, or pH:
The receiving waterbody, Springbrook Creek, is impaired for: Bioassessment. All stormwater
and dewatering discharges from the site are subject to an effluent limit of 8.5 su for pH and/or
25 NTU for turbidity.
Site Inspection (4.1)
Site inspections will be conducted at least once every calendar week and within 24 hours
following any discharge from the site. For sites that are temporarily stabilized and inactive, the
required frequency is reduced to once per calendar month.
The discharge point(s) are indicated on the Site Map (see Appendix A) and in accordance with
the applicable requirements of the CSWGP.
Stormwater Quality Sampling (4.2)
Turbidity Sampling (4.2.1)
Requirements include calibrated turbidity meter or transparency tube to sample site discharges
for compliance with the CSWGP. Sampling will be conducted at all discharge points at least
once per calendar week.
Method for sampling turbidity:
Table 6 – Turbidity Sampling Method
Turbidity Meter/Turbidimeter (required for disturbances 5 acres or greater in size)
X Transparency Tube (option for disturbances less than 1 acre and up to 5 acres in size)
The benchmark for turbidity value is 25 nephelometric turbidity units (NTU) and a transparency
less than 33 centimeters.
If the discharge’s turbidity is 26 to 249 NTU or the transparency is less than 33 cm but equal to
or greater than 6 cm, the following steps will be conducted:
1. Review the SWPPP for compliance with Special Condition S9. Make appropriate
revisions within 7 days of the date the discharge exceeded the benchmark.
2. Immediately begin the process to fully implement and maintain appropriate source
control and/or treatment BMPs as soon as possible. Address the problems within 10
days of the date the discharge exceeded the benchmark. If installation of necessary
treatment BMPs is not feasible within 10 days, Ecology may approve additional time
when the Permittee requests an extension within the initial 10-day response period.
3. Document BMP implementation and maintenance in the site log book.
If the turbidity exceeds 250 NTU or the transparency is 6 cm or less at any time, the following
steps will be conducted:
1. Telephone or submit an electronic report to the applicable Ecology Region’s
Environmental Report Tracking System (ERTS) within 24 hours.
https://www.ecology.wa.gov/About-us/Get-involved/Report-an-environmental-issue
• Northwest Region (King, Kitsap, Island, San Juan, Skagit, Snohomish,
Whatcom): (425) 649-7000
2. Immediately begin the process to fully implement and maintain appropriate source
control and/or treatment BMPs as soon as possible. Address the problems within 10
days of the date the discharge exceeded the benchmark. If installation of necessary
treatment BMPs is not feasible within 10 days, Ecology may approve additional time
when the Permittee requests an extension within the initial 10-day response period
3. Document BMP implementation and maintenance in the site log book.
4. Continue to sample discharges daily until one of the following is true:
• Turbidity is 25 NTU (or lower).
• Transparency is 33 cm (or greater).
• Compliance with the water quality limit for turbidity is achieved.
o 1 - 5 NTU over background turbidity, if background is less than 50 NTU
o 1% - 10% over background turbidity, if background is 50 NTU or greater
• The discharge stops or is eliminated.
pH Sampling (4.2.2)
pH monitoring is required for “Significant concrete work” (i.e. greater than 1000 cubic yards
poured concrete or recycled concrete over the life of the project).The use of engineered soils
(soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln
dust [CKD] or fly ash) also requires pH monitoring.
For significant concrete work, pH sampling will start the first day concrete is poured and
continue until it is cured, typically three (3) weeks after the last pour.
For engineered soils and recycled concrete, pH sampling begins when engineered soils or
recycled concrete are first exposed to precipitation and continues until the area is fully
stabilized.
If the measured pH is 8.5 or greater, the following measures will be taken:
1. Prevent high pH water from entering storm sewer systems or surface water.
2. Adjust or neutralize the high pH water to the range of 6.5 to 8.5 su using appropriate
technology such as carbon dioxide (CO2) sparging (liquid or dry ice).
3. Written approval will be obtained from Ecology prior to the use of chemical treatment
other than CO2 sparging or dry ice.
Method for sampling pH:
Table 7 – pH Sampling Method
pH meter
X pH test kit
Wide range pH indicator paper
Discharges to 303(d) or Total Maximum Daily Load (TMDL)
Waterbodies (5.0)
303(d) Listed Waterbodies (5.1)
Is the receiving water 303(d) (Category 5) listed for turbidity, fine sediment, phosphorus, or pH?
Yes No
List the impairment(s): N/A
The receiving waterbody, Springbrook Creek, is impaired for: Bioassessment. All stormwater
and dewatering discharges from the site are subject to an effluent limit of 8.5 su for pH and/or
25 NTU for turbidity.
TMDL Waterbodies (5.2)
Waste Load Allocation for CWSGP discharges:
No known waste load allocation for CWSGP discharges.
The Construction Stormwater General Permit Proposed New Discharge to an Impaired Water
Body form is included in Appendix F.
Reporting and Record Keeping (6.0)
Record Keeping (6.1)
Site Log Book (6.1.1)
A site log book will be maintained for all on-site construction activities and will include:
• A record of the implementation of the SWPPP and other permit requirements
• Site inspections
• Sample logs
Records Retention (6.1.2)
Records will be retained during the life of the project and for a minimum of three (3) years
following the termination of permit coverage in accordance with Special Condition S5.C of the
CSWGP.
Permit documentation to be retained on-site:
• CSWGP
• Permit Coverage Letter
• SWPPP
• Site Log Book
Permit documentation will be provided within 14 days of receipt of a written request from
Ecology. A copy of the SWPPP or access to the SWPPP will be provided to the public when
requested in writing in accordance with Special Condition S5.G.2.b of the CSWGP.
Updating the SWPPP (6.1.3)
The SWPPP will be modified if:
• Found ineffective in eliminating or significantly minimizing pollutants in stormwater
discharges from the site.
• There is a change in design, construction, operation, or maintenance at the construction
site that has, or could have, a significant effect on the discharge of pollutants to waters
of the State.
The SWPPP will be modified within seven (7) days if inspection(s) or investigation(s) determine
additional or modified BMPs are necessary for compliance. An updated timeline for BMP
implementation will be prepared.
Reporting (6.2)
Discharge Monitoring Reports (6.2.1)
Cumulative soil disturbance is one (1) acre or larger; therefore, Discharge Monitoring
Reports (DMRs) will be submitted to Ecology monthly. If there was no discharge during a given
monitoring period the DMR will be submitted as required, reporting “No Discharge”. The DMR
due date is fifteen (15) days following the end of each calendar month.
DMRs will be reported online through Ecology’s WQWebDMR System.
Notification of Noncompliance (6.2.2)
If any of the terms and conditions of the permit is not met, and the resulting noncompliance may
cause a threat to human health or the environment, the following actions will be taken:
1. Ecology will be notified within 24-hours of the failure to comply by calling the applicable
Regional office ERTS phone number (Regional office numbers listed below).
2. Immediate action will be taken to prevent the discharge/pollution or otherwise stop or
correct the noncompliance. If applicable, sampling and analysis of any noncompliance
will be repeated immediately and the results submitted to Ecology within five (5) days of
becoming aware of the violation.
3. A detailed written report describing the noncompliance will be submitted to Ecology
within five (5) days, unless requested earlier by Ecology.
Anytime turbidity sampling indicates turbidity is 250 NTUs or greater, or water transparency is 6
cm or less, the Ecology Regional office will be notified by phone within 24 hours of analysis as
required by Special Condition S5.A of the CSWGP.
• Northwest Region at (425) 649-7000 for Island, King, Kitsap, San Juan, Skagit,
Snohomish, or Whatcom County
Include the following information:
1. Your name and / Phone number
2. Permit number
3. City / County of project
4. Sample results
5. Date / Time of call
6. Date / Time of sample
7. Project name
In accordance with Special Condition S4.D.5.b of the CSWGP, the Ecology Regional office will
be notified if chemical treatment other than CO2 sparging is planned for adjustment of high pH
water.
Appendix/Glossary
A. Site Map
B. BMP Detail
C. Site Inspection Form
D. Construction Stormwater General Permit (CSWGP)
E. Engineering Calculations
Construction Stormwater Site Inspection Form
Page 1
Project Name Sapphire on Talbot Permit # Inspection Date Time
Name of Certified Erosion Sediment Control Lead (CESCL) or qualified inspector if less than one acre
Print Name:
Approximate rainfall amount since the last inspection (in inches):
Approximate rainfall amount in the last 24 hours (in inches):
Current Weather Clear Cloudy Mist Rain Wind Fog
A. Type of inspection: Weekly Post Storm Event Other
B. Phase of Active Construction (check all that apply):
Pre Construction/installation of erosion/sediment
controls
Clearing/Demo/Grading Infrastructure/storm/roads
Concrete pours Vertical
Construction/buildings
Utilities
Offsite improvements Site temporary stabilized Final stabilization
C. Questions:
1. Were all areas of construction and discharge points inspected? Yes No
2. Did you observe the presence of suspended sediment, turbidity, discoloration, or oil sheen Yes No
3. Was a water quality sample taken during inspection? (refer to permit conditions S4 & S5) Yes No
4. Was there a turbid discharge 250 NTU or greater, or Transparency 6 cm or less?* Yes No
5. If yes to #4 was it reported to Ecology? Yes No
6. Is pH sampling required? pH range required is 6.5 to 8.5. Yes No
If answering yes to a discharge, describe the event. Include when, where, and why it happened; what action was taken,
and when.
*If answering yes to # 4 record NTU/Transparency with continual sampling daily until turbidity is 25 NTU or less/ transparency is 33
cm or greater.
Sampling Results: Date:
Parameter Method (circle one) Result Other/Note
NTU cm pH
Turbidity tube, meter, laboratory
pH Paper, kit, meter
Construction Stormwater Site Inspection Form
Page 2
D. Check the observed status of all items. Provide “Action Required “details and dates.
Element # Inspection BMPs
Inspected
BMP needs
maintenance
BMP
failed
Action
required
(describe in
section F)
yes no n/a
1
Clearing
Limits
Before beginning land disturbing
activities are all clearing limits,
natural resource areas (streams,
wetlands, buffers, trees) protected
with barriers or similar BMPs? (high
visibility recommended)
2
Construction
Access
Construction access is stabilized
with quarry spalls or equivalent
BMP to prevent sediment from
being tracked onto roads?
Sediment tracked onto the road
way was cleaned thoroughly at the
end of the day or more frequent as
necessary.
3
Control Flow
Rates
Are flow control measures installed
to control stormwater volumes and
velocity during construction and do
they protect downstream
properties and waterways from
erosion?
If permanent infiltration ponds are
used for flow control during
construction, are they protected
from siltation?
4
Sediment
Controls
All perimeter sediment controls
(e.g. silt fence, wattles, compost
socks, berms, etc.) installed, and
maintained in accordance with the
Stormwater Pollution Prevention
Plan (SWPPP).
Sediment control BMPs (sediment
ponds, traps, filters etc.) have been
constructed and functional as the
first step of grading.
Stormwater runoff from disturbed
areas is directed to sediment
removal BMP.
5
Stabilize
Soils
Have exposed un-worked soils
been stabilized with effective BMP
to prevent erosion and sediment
deposition?
Construction Stormwater Site Inspection Form
Page 3
Element # Inspection BMPs
Inspected
BMP needs
maintenance
BMP
failed
Action
required
(describe in
section F)
yes no n/a
5
Stabilize Soils
Cont.
Are stockpiles stabilized from erosion,
protected with sediment trapping
measures and located away from drain
inlet, waterways, and drainage
channels?
Have soils been stabilized at the end of
the shift, before a holiday or weekend
if needed based on the weather
forecast?
6
Protect
Slopes
Has stormwater and ground water
been diverted away from slopes and
disturbed areas with interceptor dikes,
pipes and or swales?
Is off-site storm water managed
separately from stormwater generated
on the site?
Is excavated material placed on uphill
side of trenches consistent with safety
and space considerations?
Have check dams been placed at
regular intervals within constructed
channels that are cut down a slope?
7
Drain Inlets
Storm drain inlets made operable
during construction are protected.
Are existing storm drains within the
influence of the project protected?
8
Stabilize
Channel and
Outlets
Have all on-site conveyance channels
been designed, constructed and
stabilized to prevent erosion from
expected peak flows?
Is stabilization, including armoring
material, adequate to prevent erosion
of outlets, adjacent stream banks,
slopes and downstream conveyance
systems?
9
Control
Pollutants
Are waste materials and demolition
debris handled and disposed of to
prevent contamination of stormwater?
Has cover been provided for all
chemicals, liquid products, petroleum
products, and other material?
Has secondary containment been
provided capable of containing 110%
of the volume?
Were contaminated surfaces cleaned
immediately after a spill incident?
Were BMPs used to prevent
contamination of stormwater by a pH
modifying sources?
Construction Stormwater Site Inspection Form
Page 4
Element # Inspection BMPs
Inspected
BMP needs
maintenance
BMP
failed
Action
required
(describe in
section F)
yes no n/a
9
Cont.
Wheel wash wastewater is handled
and disposed of properly.
10
Control
Dewatering
Concrete washout in designated areas.
No washout or excess concrete on the
ground.
Dewatering has been done to an
approved source and in compliance
with the SWPPP.
Were there any clean non turbid
dewatering discharges?
11
Maintain
BMP
Are all temporary and permanent
erosion and sediment control BMPs
maintained to perform as intended?
12
Manage the
Project
Has the project been phased to the
maximum degree practicable?
Has regular inspection, monitoring and
maintenance been performed as
required by the permit?
Has the SWPPP been updated,
implemented and records maintained?
13
Protect LID
Is all Bioretention and Rain Garden
Facilities protected from
sedimentation with appropriate BMPs?
Is the Bioretention and Rain Garden
protected against over compaction of
construction equipment and foot
traffic to retain its infiltration
capabilities?
Permeable pavements are clean and
free of sediment and sediment laden-
water runoff. Muddy construction
equipment has not been on the base
material or pavement.
Have soiled permeable pavements
been cleaned of sediments and pass
infiltration test as required by
stormwater manual methodology?
Heavy equipment has been kept off
existing soils under LID facilities to
retain infiltration rate.
E. Check all areas that have been inspected.
All in place BMPs All disturbed soils All concrete wash out area All material storage areas
All discharge locations All equipment storage areas All construction entrances/exits
Construction Stormwater Site Inspection Form
Page 5
F. Elements checked “Action Required” (section D) describe corrective action to be taken. List the element number;
be specific on location and work needed. Document, initial, and date when the corrective action has been completed
and inspected.
Element
#
Description and Location Action Required Completion
Date
Initials
Attach additional page if needed
Sign the following certification:
“I certify that this report is true, accurate, and complete, to the best of my knowledge and belief”
Inspected by: (print) (Signature) Date:
Title/Qualification of Inspector:
Construction Stormwater General Permit
Page 2
TABLE OF CONTENTS
LIST OF TABLES ...........................................................................................................................3
SUMMARY OF PERMIT REPORT SUBMITTALS .....................................................................4
SPECIAL CONDITIONS ................................................................................................................5
S1.PERMIT COVERAGE ........................................................................................................5
S2. APPLICATION REQUIREMENTS ...................................................................................8
S3.COMPLIANCE WITH STANDARDS .............................................................................12
S4.MONITORING REQUIREMENTS, BENCHMARKS, AND
REPORTING TRIGGERS ................................................................................................13
S5.REPORTING AND RECORDKEEPING REQUIREMENTS .........................................20
S6.PERMIT FEES...................................................................................................................23
S7.SOLID AND LIQUID WASTE DISPOSAL ....................................................................23
S8. DISCHARGES TO 303(d) OR TMDL WATERBODIES ................................................23
S9.STORMWATER POLLUTION PREVENTION PLAN...................................................27
S10. NOTICE OF TERMINATION .........................................................................................37
GENERAL CONDITIONS ...........................................................................................................38
G1. DISCHARGE VIOLATIONS ...........................................................................................38
G2.SIGNATORY REQUIREMENTS.....................................................................................38
G3.RIGHT OF INSPECTION AND ENTRY .........................................................................39
G4. GENERAL PERMIT MODIFICATION AND REVOCATION ......................................39
G5.REVOCATION OF COVERAGE UNDER THE PERMIT .............................................39
G6.REPORTING A CAUSE FOR MODIFICATION ............................................................40
G7.COMPLIANCE WITH OTHER LAWS AND STATUTES .............................................40
G8. DUTY TO REAPPLY .......................................................................................................40
G9. TRANSFER OF GENERAL PERMIT COVERAGE .......................................................41
G10.REMOVED SUBSTANCES .............................................................................................41
G11. DUTY TO PROVIDE INFORMATION ...........................................................................41
G12. OTHER REQUIREMENTS OF 40 CFR ...........................................................................41
G13. ADDITIONAL MONITORING ........................................................................................41
G14.PENALTIES FOR VIOLATING PERMIT CONDITIONS .............................................41
G15. UPSET ...............................................................................................................................42
G16.PROPERTY RIGHTS ........................................................................................................42
Construction Stormwater General Permit
Page 3
G17. DUTY TO COMPLY ........................................................................................................42
G18. TOXIC POLLUTANTS.....................................................................................................42
G19.PENALTIES FOR TAMPERING .....................................................................................43
G20.REPORTING PLANNED CHANGES .............................................................................43
G21.REPORTING OTHER INFORMATION ..........................................................................43
G22.REPORTING ANTICIPATED NON-COMPLIANCE .....................................................43
G23.REQUESTS TO BE EXCLUDED FROM COVERAGE UNDER THE PERMIT ..........44
G24. APPEALS ..........................................................................................................................44
G25.SEVERABILITY ...............................................................................................................44
G26.BYPASS PROHIBITED ....................................................................................................44
APPENDIX A DEFINITIONS ...................................................................................................47
APPENDIX B ACRONYMS .....................................................................................................55
LIST OF TABLES
Table 1: Summary of Required Submittals ................................................................................... 4
Table 2: Summary of Required On-site Documentation............................................................... 4
Table 3: Summary of Primary Monitoring Requirements .......................................................... 15
Table 4: Monitoring and Reporting Requirements ..................................................................... 17
Table 5:Turbidity, Fine Sediment & Phosphorus Sampling and Limits for
303(d)-Listed Waters .................................................................................................... 25
Table 6:pH Sampling and Limits for 303(d)-Listed Waters ...................................................... 26
Construction Stormwater General Permit
Page 4
SUMMARY OF PERMIT REPORT SUBMITTALS
Refer to the Special and General Conditions within this permit for additional submittal
requirements. Appendix A provides a list of definitions. Appendix B provides a list of acronyms.
Table 1: Summary of Required Submittals
Permit
Section
Submittal Frequency First Submittal Date
S5.A and
S8
High Turbidity/Transparency Phone
Reporting
As Necessary Within 24 hours
S5.B Discharge Monitoring Report Monthly* Within 15 days following
the end of each month
S5.F and
S8
Noncompliance Notification
Telephone Notification
As necessary Within 24-hours
S5.F Noncompliance Notification
Written Report
As necessary Within 5 Days of non-
compliance
S9.C Request for Chemical Treatment
Form
As necessary Written approval from
Ecology is required prior to
using chemical treatment
(with the exception of dry
ice or CO2 to adjust pH)
G2 Notice of Change in Authorization As necessary
G6 Permit Application for Substantive
Changes to the Discharge
As necessary
G8 Application for Permit Renewal 1/permit cycle No later than 180 days
before expiration
G9 Notice of Permit Transfer As necessary
G20 Notice of Planned Changes As necessary
G22 Reporting Anticipated Non-
compliance
As necessary
SPECIAL NOTE: *Permittees must submit electronic Discharge Monitoring Reports (DMRs) to the Washington
State Department of Ecology monthly, regardless of site discharge, for the full duration of permit coverage. Refer to
Section S5.B of this General Permit for more specific information regarding DMRs.
Table 2: Summary of Required On-site Documentation
Document Title
Permit Conditions
Permit Coverage Letter See Conditions S2, S5
Construction Stormwater General Permit See Conditions S2, S5
Site Log Book See Conditions S4, S5
Stormwater Pollution Prevention Plan (SWPPP) See Conditions S9, S5
Construction Stormwater General Permit
Page 5
SPECIAL CONDITIONS
S1. PERMIT COVERAGE
A. Permit Area
This Construction Stormwater General Permit (CSWGP) covers all areas of Washington
State, except for federal operators and Indian Country as specified in Special Condition
S1.E.3.
B. Operators Required to Seek Coverage Under this General Permit:
1. Operators of the following construction activities are required to seek coverage
under this CSWGP:
a. Clearing, grading and/or excavation that results in the disturbance of one or
more acres (including off-site disturbance acreage authorized in S1.C.2) and
discharges stormwater to surface waters of the State; and clearing, grading
and/or excavation on sites smaller than one acre that are part of a larger
common plan of development or sale, if the common plan of development or
sale will ultimately disturb one acre or more and discharge stormwater to
surface waters of the State.
i. This includes forest practices (including, but not limited to, class IV
conversions) that are part of a construction activity that will result in the
disturbance of one or more acres, and discharge to surface waters of the
State (that is, forest practices that prepare a site for construction
activities); and
b. Any size construction activity discharging stormwater to waters of the State that
the Washington State Department of Ecology (Ecology):
i. Determines to be a significant contributor of pollutants to waters of the
State of Washington.
ii. Reasonably expects to cause a violation of any water quality standard.
2. Operators of the following activities are not required to seek coverage under this
CSWGP (unless specifically required under Special Condition S1.B.1.b. above):
a. Construction activities that discharge all stormwater and non-stormwater to
ground water, sanitary sewer, or combined sewer, and have no point source
discharge to either surface water or a storm sewer system that drains to surface
waters of the State.
b. Construction activities covered under an Erosivity Waiver (Special Condition
S2.C).
c. Routine maintenance that is performed to maintain the original line and grade,
hydraulic capacity, or original purpose of a facility.
Construction Stormwater General Permit
Page 6
C. Authorized Discharges:
1. Stormwater Associated with Construction Activity. Subject to compliance with the
terms and conditions of this permit, Permittees are authorized to discharge
stormwater associated with construction activity to surface waters of the State or to
a storm sewer system that drains to surface waters of the State. (Note that
waters of the State
example, a creek running through a site.)
2. Stormwater Associated with Construction Support Activity. This permit also
authorizes stormwater discharge from support activities related to the permitted
construction site (for example, an on-site portable rock crusher, off-site equipment
staging yards, material storage areas, borrow areas, etc.) provided:
a. The support activity relates directly to the permitted construction site that is
required to have an NPDES permit; and
b. The support activity is not a commercial operation serving multiple unrelated
construction projects, and does not operate beyond the completion of the
construction activity; and
c. Appropriate controls and measures are identified in the Stormwater Pollution
Prevention Plan (SWPPP) for the discharges from the support activity areas.
3. Non-Stormwater Discharges. The categories and sources of non-stormwater
discharges identified below are authorized conditionally, provided the discharge is
consistent with the terms and conditions of this permit:
a. Discharges from fire-fighting activities.
b. Fire hydrant system flushing.
c. Potable water, including uncontaminated water line flushing.
d. Hydrostatic test water.
e. Uncontaminated air conditioning or compressor condensate.
f. Uncontaminated ground water or spring water.
g. Uncontaminated excavation dewatering water (in accordance with S9.D.10).
h. Uncontaminated discharges from foundation or footing drains.
i. Uncontaminated or potable water used to control dust. Permittees must
minimize the amount of dust control water used.
j. Routine external building wash down that does not use detergents.
k. Landscape irrigation water.
The SWPPP must adequately address all authorized non-stormwater discharges, except
for discharges from fire-fighting activities, and must comply with Special Condition S3.
Construction Stormwater General Permit
Page 7
At a minimum, discharges from potable water (including water line flushing), fire
hydrant system flushing, and pipeline hydrostatic test water must undergo the following:
dechlorination to a concentration of 0.1 parts per million (ppm) or less, and pH
adjustment to within 6.5 8.5 standard units (su), if necessary.
D. Prohibited Discharges:
The following discharges to waters of the State, including ground water, are prohibited.
1. Concrete wastewater.
2. Wastewater from washout and clean-up of stucco, paint, form release oils, curing
compounds and other construction materials.
3. Process wastewater as defined by 40 Code of Federal Regulations (CFR) 122.2
(see Appendix A of this permit).
4. Slurry materials and waste from shaft drilling, including process wastewater from
shaft drilling for construction of building, road, and bridge foundations unless
managed according to Special Condition S9.D.9.j.
5. Fuels, oils, or other pollutants used in vehicle and equipment operation and
maintenance.
6. Soaps or solvents used in vehicle and equipment washing.
7. Wheel wash wastewater, unless managed according to Special Condition S9.D.9.
8. Discharges from dewatering activities, including discharges from dewatering of
trenches and excavations, unless managed according to Special Condition S9.D.10.
E. Limits on Coverage
Ecology may require any discharger to apply for and obtain coverage under an
individual permit or another more specific general permit. Such alternative coverage will
be required when Ecology determines that this CSWGP does not provide adequate
assurance that water quality will be protected, or there is a reasonable potential for the
project to cause or contribute to a violation of water quality standards.
The following stormwater discharges are not covered by this permit:
1. Post-construction stormwater discharges that originate from the site after
completion of construction activities and the site has undergone final stabilization.
2. Non-point source silvicultural activities such as nursery operations, site
preparation, reforestation and subsequent cultural treatment, thinning, prescribed
burning, pest and fire control, harvesting operations, surface drainage, or road
construction and maintenance, from which there is natural runoff as excluded in 40
CFR Subpart 122.
3. Stormwater from any federal operator.
Construction Stormwater General Permit
Page 8
4. Stormwater from f
U.S.C.§1151, except portions of the Puyallup Reservation as noted below.
Indian Country includes:
a. All land within any Indian Reservation notwithstanding the issuance of any
patent, and, including rights-of-way running through the reservation. This
includes all federal, tribal, and Indian and non-Indian privately owned land
within the reservation.
b. All off-reservation Indian allotments, the Indian titles to which have not been
extinguished, including rights-of-way running through the same.
c. All off-reservation federal trust lands held for Native American Tribes.
Puyallup Exception: Following the Puyallup Tribes of Indians Land
Settlement Act of 1989, 25 U.S.C. §1773; the permit does apply to land within
the Puyallup Reservation except for discharges to surface water on land held
in trust by the federal government.
5. Stormwater from any site covered under an existing NPDES individual permit in
which stormwater management and/or treatment requirements are included for all
stormwater discharges associated with construction activity.
6. Stormwater from a site where an applicable Total Maximum Daily Load (TMDL)
requirement specifically precludes or prohibits discharges from construction
activity.
S2. APPLICATION REQUIREMENTS
A. Permit Application Forms
1. Notice of Intent Form/Timeline
a. Operators of new or previously unpermitted construction activities must submit
a complete and accurate permit application (Notice of Intent, or NOI) to
Ecology.
b. Operators must apply using the electronic application form (NOI) available on
http://www.ecy.wa.gov/programs/wq/stormwater/
construction/index.html. Permittees unable to submit electronically (for
example, those who do not have an internet connection) must contact Ecology
to request a waiver and obtain instructions on how to obtain a paper NOI.
Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, Washington 98504-7696
Construction Stormwater General Permit
Page 9
c. The operator must submit the NOI at least 60 days before discharging
stormwater from construction activities and must submit it on or before the date
of the first public notice (see Special Condition S2.B below for details). The 30-
day public comment period begins on the publication date of the second public
notice. Unless Ecology responds to the complete application in writing, based
on public comments, or any other relevant factors, coverage under the general
permit will automatically commence on the thirty-first day following receipt by
Ecology of a completed NOI, or the issuance date of this permit, whichever is
later; unless Ecology specifies a later date in writing as required by WAC173-
226-200(2).
d. If an applicant intends to use a Best Management Practice (BMP) selected on
the basis of Special
applicant must notify Ecology of its selection as part of the NOI. In the event
the applicant selects BMPs after submission of the NOI, it must provide notice
of the selection of an equivalent BMP to Ecology at least 60 days before
intended use of the equivalent BMP.
e. Permittees must notify Ecology regarding any changes to the information
provided on the NOI by submitting an updated NOI. Examples of such changes
include, but are not limited to:
i. Changes to the Permittee s mailing address,
ii. Changes to the on-site contact person information, and
iii. Changes to the area/acreage affected by construction activity.
f. Applicants must notify Ecology if they are aware of contaminated soils and/or
groundwater associated with the construction activity. Provide detailed
information with the NOI (as known and readily available) on the nature and
extent of the contamination (concentrations, locations, and depth), as well as
pollution prevention and/or treatment BMPs proposed to control the discharge
of soil and/or groundwater contaminants in stormwater. Examples of such detail
may include, but are not limited to:
i. List or table of all known contaminants with laboratory test results
showing concentration and depth,
ii. Map with sample locations,
iii. Temporary Erosion and Sediment Control (TESC) plans,
iv. Related portions of the Stormwater Pollution Prevention Plan (SWPPP)
that address the management of contaminated and potentially
contaminated construction stormwater and dewatering water,
v. Dewatering plan and/or dewatering contingency plan.
Construction Stormwater General Permit
Page 10
2. Transfer of Coverage Form
The Permittee can transfer current coverage under this permit to one or more new
operators, including operators of sites within a Common Plan of Development,
provided the Permittee submits a Transfer of Coverage Form in accordance with
General Condition G9. Transfers do not require public notice.
B. Public Notice
For new or previously unpermitted construction activities, the applicant must publish a
public notice at least one time each week for two consecutive weeks, at least 7 days
apart, in a newspaper with general circulation in the county where the construction is to
take place. The notice must contain:
1. he applicant is seeking coverage under the Washington State
Discharge General Permit .
2. The name, address and location of the construction site.
3. The name and address of the applicant.
4. The type of construction activity that will result in a discharge (for example,
residential construction, commercial construction, etc.), and the number of acres to
be disturbed.
5. The name of the receiving water(s) (that is, the surface water(s) to which the site
will discharge), or, if the discharge is through a storm sewer system, the name of
the operator of the system.
6. The statement: Any persons desiring to present their views to the Washington
State Department of Ecology regarding this application, or interested in Ecology
action on this application, may notify Ecology in writing no later than 30 days of
the last date of publication of this notice. Ecology reviews public comments and
considers whether discharges from this project would cause a measurable change in
receiving water quality, and, if so, whether the project is necessary and in the
overriding public interest according to Tier II antidegradation requirements under
WAC 173-201A-320. Comments can be submitted to: Department of Ecology,
PO Box 47696, Olympia, Washington 98504-7696 Attn: Water Quality Program,
Construction Stormwater.
Construction Stormwater General Permit
Page 11
C. Erosivity Waiver
Construction site operators may qualify for an erosivity waiver from the CSWGP if the
following conditions are met:
1. The site will result in the disturbance of fewer than 5 acres and the site is not a
portion of a common plan of development or sale that will disturb 5 acres or
greater.
2.
a.
period of construction activity, as calculated (see the CSWGP homepage
http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.html for a
link to the EPA s calculator
Factor in the EPA Erosivity Waiver Fact Sheet). The period of construction
activity starts when the land is first disturbed and ends with final stabilization.
In addition:
b. The entire period of construction activity must fall within the following
timeframes:
i. For sites west of the Cascades Crest: June 15 September 15.
ii. For sites east of the Cascades Crest, excluding the Central Basin:
June 15 October 15.
iii. For sites east of the Cascades Crest, within the Central Basin: no additional
timeframe restrictions apply. The Central Basin is defined as the portions
of Eastern Washington with mean annual precipitation of less than 12
inches. For a map of the Central Basin (Average Annual Precipitation
Region 2), refer to http://www.ecy.wa.gov/programs/wq/stormwater/
construction/resourcesguidance.html.
3. Construction site operators must submit a complete Erosivity Waiver certification
form at least one week before disturbing the land. Certification must include
statements that the operator will:
a. Comply with applicable local stormwater requirements; and
b. Implement appropriate erosion and sediment control BMPs to prevent violations
of water quality standards.
4. This waiver is not available for facilities declared significant contributors of
pollutants as defined in Special Condition S1.B.1.b. or for any size construction
activity that could reasonably expect to cause a violation of any water quality
standard as defined in Special Condition S1.B.1.b.ii.
5. This waiver does not apply to construction activities which include non-
stormwater discharges listed in Special Condition S1.C.3.
Construction Stormwater General Permit
Page 12
6. If construction activity extends beyond the certified waiver period for any reason,
the operator must either:
a.
and the entire
project falls within the applicable regional timeframe in Special Condition
S2.C.2.b, complete and submit an amended waiver certification form before the
original waiver expires; or
b. Submit a complete permit application to Ecology in accordance with Special
Condition S2.A and B before the end of the certified waiver period.
S3. COMPLIANCE WITH STANDARDS
A. Discharges must not cause or contribute to a violation of surface water quality standards
(Chapter 173-201A WAC), ground water quality standards (Chapter 173-200 WAC),
sediment management standards (Chapter 173-204 WAC), and human health-based
criteria in the National Toxics Rule (40 CFR Part 131.36). Discharges not in compliance
with these standards are not authorized.
B. Prior to the discharge of stormwater and non-stormwater to waters of the State, the
Permittee must apply all known, available, and reasonable methods of prevention,
control, and treatment (AKART). This includes the preparation and implementation of
an adequate SWPPP, with all appropriate BMPs installed and maintained in accordance
with the SWPPP and the terms and conditions of this permit.
C. Ecology presumes that a Permittee complies with water quality standards unless
discharge monitoring data or other site-specific information demonstrates that a
discharge causes or contributes to a violation of water quality standards, when the
Permittee complies with the following conditions. The Permittee must fully:
1. Comply with all permit conditions, including planning, sampling, monitoring,
reporting, and recordkeeping conditions.
2. Implement stormwater BMPs contained in stormwater management manuals
published or approved by Ecology, or BMPs that are demonstrably equivalent to
BMPs contained in stormwater technical manuals published or approved by
Ecology, including the proper selection, implementation, and maintenance of all
applicable and appropriate BMPs for on-site pollution control. (For purposes of
this section, the stormwater manuals listed in Appendix 10 of the Phase I
Municipal Stormwater Permit are approved by Ecology.)
D. Where construction sites also discharge to ground water, the ground water discharges
must also meet the terms and conditions of this CSWGP. Permittees who discharge to
ground water through an injection well must also comply with any applicable
requirements of the Underground Injection Control (UIC) regulations, Chapter 173-218
WAC.
Construction Stormwater General Permit
Page 13
S4. MONITORING REQUIREMENTS, BENCHMARKS AND REPORTING
TRIGGERS
A. Site Log Book
The Permittee must maintain a site log book that contains a record of the implementation
of the SWPPP and other permit requirements, including the installation and maintenance
of BMPs, site inspections, and stormwater monitoring.
B. Site Inspections
activities, all BMPs, and all stormwater discharge points under the Permittee s
operational control. (See Special Conditions S4.B.3 and B.4 below for detailed
[CESCL].)
Construction sites one acre or larger that discharge stormwater to surface waters of the
State must have site inspections conducted by a certified CESCL. Sites less than one
acre may have a person without CESCL certification conduct inspections.
1. The Permittee must examine stormwater visually for the presence of suspended
sediment, turbidity, discoloration, and oil sheen. The Permittee must evaluate the
effectiveness of BMPs and determine if it is necessary to install, maintain, or repair
BMPs to improve the quality of stormwater discharges.
Based on the results of the inspection, the Permittee must correct the problems
identified by:
a. Reviewing the SWPPP for compliance with Special Condition S9 and making
appropriate revisions within 7 days of the inspection.
b. Immediately beginning the process of fully implementing and maintaining
appropriate source control and/or treatment BMPs as soon as possible,
addressing the problems no later than within 10 days of the inspection. If
installation of necessary treatment BMPs is not feasible within 10 days, Ecology
may approve additional time when an extension is requested by a Permittee
within the initial 10-day response period.
c. Documenting BMP implementation and maintenance in the site log book.
2. The Permittee must inspect all areas disturbed by construction activities, all BMPs,
and all stormwater discharge points at least once every calendar week and within
24 hours of any discharge from the site. (For purposes of this condition, individual
discharge events that last more than one day do not require daily inspections. For
example, if a stormwater pond discharges continuously over the course of a week,
only one inspection is required that week.) The Permittee may reduce the
inspection frequency for temporarily stabilized, inactive sites to once every
calendar month.
Construction Stormwater General Permit
Page 14
3. The Permittee must have staff knowledgeable in the principles and practices of
erosion and sediment control. The CESCL (sites one acre or more) or inspector
(sites less than one acre) must have the skills to assess the:
a. Site conditions and construction activities that could impact the quality of
stormwater, and
b. Effectiveness of erosion and sediment control measures used to control the
quality of stormwater discharges.
4. The SWPPP must identify the CESCL or inspector, who must be present on site or
on-call at all times. The CESCL must obtain this certification through an approved
erosion and sediment control training program that meets the minimum training
standards established by Ecology (see BMP C160 in the manual referred to in
Special Condition S9.C.1 and 2).
5. The Permittee must summarize the results of each inspection in an inspection
report or checklist and enter the report/checklist into, or attach it to, the site log
book. At a minimum, each inspection report or checklist must include:
a. Inspection date and time.
b. Weather information, the general conditions during inspection and the
approximate amount of precipitation since the last inspection, and precipitation
within the last 24 hours.
c. A summary or list of all implemented BMPs, including observations of all
erosion/sediment control structures or practices.
d. A description of the locations:
i. Of BMPs inspected;
ii. Of BMPs that need maintenance and why;
iii. Of BMPs that failed to operate as designed or intended; and
iv. Where additional or different BMPs are needed, and why.
e. A description of stormwater discharged from the site. The Permittee must note
the presence of suspended sediment, turbidity, discoloration, and oil sheen, as
applicable.
f. Any water quality monitoring performed during inspection.
g. General comments and notes, including a brief description of any BMP repairs,
maintenance or installations made following the inspection.
h. A summary report and a schedule of implementation of the remedial actions that
the Permittee plans to take if the site inspection indicates that the site is out of
compliance. The remedial actions taken must meet the requirements of the
SWPPP and the permit.
Construction Stormwater General Permit
Page 15
i. The name, title, and signature of the person conducting the site inspection, a
phone number or other reliable method to reach this person, and the following
Table 3: Summary of Primary Monitoring Requirements
Size of Soil
Disturbance1
Weekly Site
Inspections
Weekly
Sampling w/
Turbidity
Meter
Weekly
Sampling w/
Transparency
Tube
Weekly pH
Sampling2
CESCL
Required for
Inspections?
Sites that disturb
less than 1 acre, but
are part of a larger
Common Plan of
Development
Required Not Required Not Required Not Required No
Sites that disturb 1
acre or more, but
fewer than 5 acres
Required Sampling Required
either method3
Required Yes
Sites that disturb 5
acres or more
Required Required Not Required4 Required Yes
1 Soil disturbance is calculated by adding together all areas that will be affected by construction activity.
Construction activity means clearing, grading, excavation, and any other activity that disturbs the surface of the
land, including ingress/egress from the site.
2 If construction activity results in the disturbance of 1 acre or more, and involves significant concrete work (1,000
cubic yards of poured concrete or recycled concrete over the life of a project) or the use of engineered soils (soil
amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD], or fly ash),
and stormwater from the affected area drains to surface waters of the State or to a storm sewer stormwater collection
system that drains to other surface waters of the State, the Permittee must conduct pH sampling in accordance with
Special Condition S4.D.
3 Sites with one or more acres, but fewer than 5 acres of soil disturbance, must conduct turbidity or transparency
sampling in accordance with Special Condition S4.C.
4 Sites equal to or greater than 5 acres of soil disturbance must conduct turbidity sampling using a turbidity meter in
accordance with Special Condition S4.C.
Construction Stormwater General Permit
Page 16
C. Turbidity/Transparency Sampling Requirements
1. Sampling Methods
a. If construction activity involves the disturbance of 5 acres or more, the
Permittee must conduct turbidity sampling per Special Condition S4.C.
b. If construction activity involves 1 acre or more but fewer than 5 acres of soil
disturbance, the Permittee must conduct either transparency sampling or
turbidity sampling per Special Condition S4.C.
2. Sampling Frequency
a. The Permittee must sample all discharge points at least once every calendar
week when stormwater (or authorized non-stormwater) discharges from the site
or enters any on-site surface waters of the state (for example, a creek running
through a site); sampling is not required on sites that disturb less than an acre.
b. Samples must be representative of the flow and characteristics of the discharge.
c. Sampling is not required when there is no discharge during a calendar week.
d. Sampling is not required outside of normal working hours or during unsafe
conditions.
e. If the Permittee is unable to sample during a monitoring period, the Permittee
must include a brief explanation in the monthly Discharge Monitoring Report
(DMR).
f. Sampling is not required before construction activity begins.
g. The Permittee may reduce the sampling frequency for temporarily stabilized,
inactive sites to once every calendar month.
3. Sampling Locations
a. Sampling is required at all points where stormwater associated with
construction activity (or authorized non-stormwater) is discharged off site,
including where it enters any on-site surface waters of the state (for example, a
creek running through a site).
b. The Permittee may discontinue sampling at discharge points that drain areas of
the project that are fully stabilized to prevent erosion.
c. The Permittee must identify all sampling point(s) on the SWPPP site map and
clearly mark these points in the field with a flag, tape, stake or other visible
marker.
d. Sampling is not required for discharge that is sent directly to sanitary or
combined sewer systems.
Construction Stormwater General Permit
Page 17
e. The Permittee may discontinue sampling at discharge points in areas of the
project where the Permittee no longer has operational control of the construction
activity.
4. Sampling and Analysis Methods
a. The Permittee performs turbidity analysis with a calibrated turbidity meter
(turbidimeter) either on site or at an accredited lab. The Permittee must record
the results in the site log book in nephelometric turbidity units (NTUs).
b. The Permittee performs transparency analysis on site with a 1¾-inch-diameter,
60-centimeter (cm)-long transparency tube. The Permittee will record the results
in the site log book in centimeters (cm).
Table 4: Monitoring and Reporting Requirements
Parameter Unit Analytical Method Sampling
Frequency
Benchmark
Value
Phone
Reporting
Trigger Value
Turbidity NTU SM2130 Weekly, if
discharging
25 NTUs 250 NTUs
Transparency cm Manufacturer
instructions, or
Ecology guidance
Weekly, if
discharging
33 cm 6 cm
5. Turbidity/Transparency Benchmark Values and Reporting Triggers
The benchmark value for turbidity is 25 NTUs or less. The benchmark value for
transparency is 33 centimeters (cm). Note: Benchmark values do not apply to
discharges to segments of water
(Category 5) for turbidity, fine sediment, or phosphorus; these discharges are
subject to a numeric effluent limit for turbidity. Refer to Special Condition S8 for
more information.
a. Turbidity 26 249 NTUs, or Transparency 32 7 cm:
If the discharge turbidity is 26 to 249 NTUs; or if discharge transparency is
less than 33 cm, but equal to or greater than 6 cm, the Permittee must:
i. Review the SWPPP for compliance with Special Condition S9 and make
appropriate revisions within 7 days of the date the discharge exceeded the
benchmark.
ii. Immediately begin the process to fully implement and maintain
appropriate source control and/or treatment BMPs as soon as possible,
addressing the problems within 10 days of the date the discharge
exceeded the benchmark. If installation of necessary treatment BMPs is
not feasible within 10 days, Ecology may approve additional time when
the Permittee requests an extension within the initial 10-day response
period.
Construction Stormwater General Permit
Page 18
iii. Document BMP implementation and maintenance in the site log book.
b. Turbidity 250 NTUs or greater, or Transparency 6 cm or less:
NTUs or greater, or if discharge
transparency is less than or equal to 6 cm, the Permittee must complete the
reporting and adaptive management process described below.
i. Telephone or submit an electronic report to the applicable Ecology
(or
Permit Submittals when the form is available) within 24 hours, in
accordance with Special Condition S5.A.
Central Region (Okanogan, Chelan, Douglas, Kittitas, Yakima,
Klickitat, Benton): (509) 575-2490
Eastern Region (Adams, Asotin, Columbia, Ferry, Franklin,
Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla
Walla, Whitman): (509) 329-3400
Northwest Region (Kitsap, Snohomish, Island, King, San Juan,
Skagit, Whatcom): (425) 649-7000
Southwest Region (Grays Harbor, Lewis, Mason, Thurston, Pierce,
Clark, Cowlitz, Skamania, Wahkiakum, Clallam, Jefferson, Pacific):
(360) 407-6300
Links to these numbers and the ERTS reporting page are located on the
following web site:
http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.html.
ii. Review the SWPPP for compliance with Special Condition S9 and make
appropriate revisions within 7 days of the date the discharge exceeded the
benchmark.
iii. Immediately begin the process to fully implement and maintain
appropriate source control and/or treatment BMPs as soon as possible,
addressing the problems within 10 days of the date the discharge
exceeded the benchmark. If installation of necessary treatment BMPs is
not feasible within 10 days, Ecology may approve additional time when
the Permittee requests an extension within the initial 10-day response
period.
iv. Document BMP implementation and maintenance in the site log book.
v. Sample discharges daily until:
a) Turbidity is 25 NTUs (or lower); or
b) Transparency is 33 cm (or greater); or
Construction Stormwater General Permit
Page 19
c) The Permittee has demonstrated compliance with the water quality
limit for turbidity:
1) No more than 5 NTUs over background turbidity, if background
is less than 50 NTUs, or
2) No more than 10% over background turbidity, if background is
50 NTUs or greater; or
d) The discharge stops or is eliminated.
D. pH Sampling Requirements Significant Concrete Work or Engineered Soils
If construction activity results in the disturbance of 1 acre or more, and involves
significant concrete work (significant concrete work means greater than 1000 cubic
yards poured concrete or recycled concrete used over the life of a project) or the use of
engineered soils (soil amendments including but not limited to Portland cement-treated
base [CTB], cement kiln dust [CKD], or fly ash), and stormwater from the affected area
drains to surface waters of the State or to a storm sewer system that drains to surface
waters of the State, the Permittee must conduct pH sampling as set forth below. Note: In
addition, discharges to segments of water
(Category 5) for high pH are subject to a numeric effluent limit for pH; refer to Special
Condition S8.
1. For sites with significant concrete work, the Permittee must begin the pH sampling
period when the concrete is first poured and exposed to precipitation, and continue
weekly throughout and after the concrete pour and curing period, until stormwater
pH is in the range of 6.5 to 8.5 (su).
2. For sites with recycled concrete where monitoring is required, the Permittee must
begin the weekly pH sampling period when the recycled concrete is first exposed
to precipitation and must continue until the recycled concrete is fully stabilized
with the stormwater pH in the range of 6.5 to 8.5 (su).
3. For sites with engineered soils, the Permittee must begin the pH sampling period
when the soil amendments are first exposed to precipitation and must continue
until the area of engineered soils is fully stabilized.
4. During the applicable pH monitoring period defined above, the Permittee must
obtain a representative sample of stormwater and conduct pH analysis at least once
per week.
5. The Permittee must sample pH in the sediment trap/pond(s) or other locations that
receive stormwater runoff from the area of significant concrete work or engineered
soils before the stormwater discharges to surface waters.
6. The benchmark value for pH is 8.5 standard units. Anytime sampling indicates that
pH is 8.5 or greater, the Permittee must either:
Construction Stormwater General Permit
Page 20
a. Prevent the high pH water (8.5 or above) from entering storm sewer systems or
surface waters; or
b. If necessary, adjust or neutralize the high pH water until it is in the range of pH
6.5 to 8.5 (su) using an appropriate treatment BMP such as carbon dioxide
(CO2) sparging or dry ice. The Permittee must obtain written approval from
Ecology before using any form of chemical treatment other than CO2 sparging
or dry ice.
7. The Permittee must perform pH analysis on site with a calibrated pH meter, pH
test kit, or wide range pH indicator paper. The Permittee must record pH sampling
results in the site log book.
S5. REPORTING AND RECORDKEEPING REQUIREMENTS
A. High Turbidity Reporting
Anytime sampling performed in accordance with Special Condition S4.C indicates
turbidity has reached the 250 NTUs or more (or transparency less than or equal to 6 cm)
high turbidity reporting level, the Permittee must either call the applicable Ecology
Region by phone within 24
hours of analysis or submit an electronic ERTS report (or submit an electronic report
Permit Submittals
when the form is available). See the CSWGP web site for links to ERTS and the
WQWebPortal: http://www.ecy.wa.gov/programs/wq/stormwater/construction/
index.html. Also, see phone numbers in Special Condition S4.C.5.b.i.
B. Discharge Monitoring Reports (DMRs)
Permittees required to conduct water quality sampling in accordance with Special
Conditions S4.C (Turbidity/Transparency), S4.D (pH), S8 (303[d]/TMDL sampling),
and/or G13 (Additional Sampling) must submit the results to Ecology.
Permittees must submit monitoring data using Ecology's WQWebDMR web application
. To find out more
information and to sign up for WQWebDMR go to: http://www.ecy.wa.gov/programs/
wq/permits/paris/portal.html.
Permittees unable to submit electronically (for example, those who do not have an
internet connection) must contact Ecology to request a waiver and obtain instructions on
how to obtain a paper copy DMR at:
Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, Washington 98504-7696
Permittees who obtain a waiver not to use WQWebDMR must use the forms provided to
them by Ecology; submittals must be mailed to the address above. Permittees shall
Construction Stormwater General Permit
Page 21
submit DMR forms to be received by Ecology within 15 days following the end of each
month.
If there was no discharge during a given monitoring period, all Permittees must submit a
DMR . DMRs
are required for the full duration of permit coverage (from issuance date to termination).
For more information, contact Ecology staff using information provided at the following
web site: www.ecy.wa.gov/programs/wq/permits/paris/contacts.html.
C. Records Retention
The Permittee must retain records of all monitoring information (site log book, sampling
results, inspection reports/checklists, etc.), Stormwater Pollution Prevention Plan, copy
of the permit coverage letter (including Transfer of Coverage documentation), and any
other documentation of compliance with permit requirements for the entire life of the
construction project and for a minimum of three years following the termination of
permit coverage. Such information must include all calibration and maintenance records,
and records of all data used to complete the application for this permit. This period of
retention must be extended during the course of any unresolved litigation regarding the
discharge of pollutants by the Permittee or when requested by Ecology.
D. Recording Results
For each measurement or sample taken, the Permittee must record the following
information:
1. Date, place, method, and time of sampling or measurement.
2. The first and last name of the individual who performed the sampling or
measurement.
3. The date(s) the analyses were performed.
4. The first and last name of the individual who performed the analyses.
5. The analytical techniques or methods used.
6. The results of all analyses.
E. Additional Monitoring by the Permittee
If the Permittee monitors any pollutant more frequently than required by this permit
using test procedures specified by Special Condition S4 of this permit, the results of this
monitoring must be included in the calculation and reporting of the data submitted in the
.
F. Noncompliance Notification
In the event the Permittee is unable to comply with any part of the terms and conditions
of this permit, and the resulting noncompliance may cause a threat to human health or
the environment (such as but not limited to spills of fuels or other materials, catastrophic
pond or slope failure, and discharges that violate water quality standards), or exceed
Construction Stormwater General Permit
Page 22
numeric effluent limitations (see S8. Discharges to 303(d) or TMDL Waterbodies), the
Permittee must, upon becoming aware of the circumstance:
1. Notify Ecology within 24-hours of the failure to comply by calling the applicable
Regional office ERTS phone number (refer to Special Condition S4.C.5.b.i. or
www.ecy.wa.gov/programs/wq/stormwater/construction/turbidity.html
for Regional ERTS phone numbers).
2. Immediately take action to prevent the discharge/pollution, or otherwise stop or
correct the noncompliance, and, if applicable, repeat sampling and analysis of any
noncompliance immediately and submit the results to Ecology within five (5) days
of becoming aware of the violation.
3. Submit a detailed written report to Ecology within five (5) days, of the time the
Permittee becomes aware of the circumstances, unless requested earlier by
Ecology. The report must be submitted using
Portal (WQWebPortal) - Permit Submittals, unless a waiver from electronic
reporting has been granted according to S5.B. The report must contain a
description of the noncompliance, including exact dates and times, and if the
noncompliance has not been corrected, the anticipated time it is expected to
continue; and the steps taken or planned to reduce, eliminate, and prevent
reoccurrence of the noncompliance.
The Permittee must report any unanticipated bypass and/or upset that exceeds any
effluent limit in the permit in accordance with the 24-hour reporting requirement
contained in 40 C.F.R. 122.41(l)(6).
Compliance with these requirements does not relieve the Permittee from
responsibility to maintain continuous compliance with the terms and conditions of
this permit or the resulting liability for failure to comply. Upon request of the
Permittee, Ecology may waive the requirement for a written report on a case-by-
case basis, if the immediate notification is received by Ecology within 24 hours.
G. Access to Plans and Records
1. The Permittee must retain the following permit documentation (plans and records)
on site, or within reasonable access to the site, for use by the operator or for on-site
review by Ecology or the local jurisdiction:
a. General Permit
b. Permit Coverage Letter
c. Stormwater Pollution Prevention Plan (SWPPP)
d. Site Log Book
2. The Permittee must address written requests for plans and records listed above
(Special Condition S5.G.1) as follows:
Construction Stormwater General Permit
Page 23
a. The Permittee must provide a copy of plans and records to Ecology within 14
days of receipt of a written request from Ecology.
b. The Permittee must provide a copy of plans and records to the public when
requested in writing. Upon receiving a written request from the public for the
i. Provide a copy of the plans and records to the requester within 14 days of
a receipt of the written request; or
ii. Notify the requester within 10 days of receipt of the written request of the
location and times within normal business hours when the plans and
records may be viewed; and provide access to the plans and records
within 14 days of receipt of the written request; or
iii. Within 14 days of receipt of the written request, the Permittee may
submit a copy of the plans and records to Ecology for viewing and/or
copying by the requester at an Ecology office, or a mutually agreed
location. If plans and records are viewed and/or copied at a location other
than at an Ecology office, the Permittee will provide reasonable access to
copying services for which a reasonable fee may be charged. The
Permittee must notify the requester within 10 days of receipt of the
request where the plans and records may be viewed and/or copied.
S6. PERMIT FEES
The Permittee must pay permit fees assessed by Ecology. Fees for stormwater discharges
covered under this permit are established by Chapter 173-224 WAC. Ecology continues to
assess permit fees until the permit is terminated in accordance with Special Condition S10
or revoked in accordance with General Condition G5.
S7. SOLID AND LIQUID WASTE DISPOSAL
The Permittee must handle and dispose of solid and liquid wastes generated by construction
activity, such as demolition debris, construction materials, contaminated materials, and
waste materials from maintenance activities, including liquids and solids from cleaning
catch basins and other stormwater facilities, in accordance with:
A. Special Condition S3, Compliance with Standards
B. WAC 173-216-110
C. Other applicable regulations
S8. DISCHARGES TO 303(d) OR TMDL WATERBODIES
A. Sampling and Numeric Effluent Limits For Certain Discharges to 303(d)-listed
Waterbodies
Construction Stormwater General Permit
Page 24
1. Permittees who discharge to segments of waterbodies listed as impaired by the
State of Washington under Section 303(d) of the Clean Water Act for turbidity,
fine sediment, high pH, or phosphorus, must conduct water quality sampling
according to the requirements of this section, and Special Conditions S4.C.2.b-f
and S4.C.3.b-d, and must comply with the applicable numeric effluent limitations
in S8.C and S8.D.
2. All references and requirements associated with Section 303(d) of the Clean Water
Act mean the most current listing by Ecology of impaired waters (Category 5) that
exists on January 1, 2016
application is received by Ecology, whichever is later.
B. Limits on Coverage for New Discharges to TMDL or 303(d)-listed Waters
Operators of construction sites that discharge to a TMDL or 303(d)-listed waterbody are
not eligible for coverage under this permit unless the operator:
1. Prevents exposing stormwater to pollutants for which the waterbody is impaired,
and retains documentation in the SWPPP that details procedures taken to prevent
exposure on site; or
2. Documents that the pollutants for which the waterbody is impaired are not present
at the site, and retains documentation of this finding within the SWPPP; or
3. Provides Ecology with data indicating the discharge is not expected to cause or
contribute to an exceedance of a water quality standard, and retains such data on
site with the SWPPP. The operator must provide data and other technical
information to Ecology that sufficiently demonstrate:
a. For discharges to waters without an EPA-approved or -established TMDL, that
the discharge of the pollutant for which the water is impaired will meet in-
stream water quality criteria at the point of discharge to the waterbody; or
b. For discharges to waters with an EPA-approved or -established TMDL, that
there is sufficient remaining wasteload allocation in the TMDL to allow
construction stormwater discharge and that existing dischargers to the
waterbody are subject to compliance schedules designed to bring the waterbody
into attainment with water quality standards.
Operators of construction sites are eligible for coverage under this permit if
Ecology issues permit coverage based upon an affirmative determination that the
discharge will not cause or contribute to the existing impairment.
C. Sampling and Numeric Effluent Limits for Discharges to Water Bodies on the 303(d)
List for Turbidity, Fine Sediment, or Phosphorus
1. Permittees who discharge to segments of water bodies on the 303(d) list (Category
5) for turbidity, fine sediment, or phosphorus must conduct turbidity sampling in
accordance with Special Condition S4.C.2 and comply with either of the numeric
effluent limits noted in Table 5 below.
Construction Stormwater General Permit
Page 25
2. As an alternative to the 25 NTUs effluent limit noted in Table 5 below (applied at
the point where stormwater [or authorized non-stormwater] is discharged off-site),
Permittees may choose to comply with the surface water quality standard for
turbidity. The standard is: no more than 5 NTUs over background turbidity when
the background turbidity is 50 NTUs or less, or no more than a 10% increase in
turbidity when the background turbidity is more than 50 NTUs. In order to use the
water quality standard requirement, the sampling must take place at the following
locations:
a. Background turbidity in the 303(d)-listed receiving water immediately upstream
(upgradient) or outside the area of influence of the discharge.
b. Turbidity at the point of discharge into the 303(d)-listed receiving water, inside
the area of influence of the discharge.
3. Discharges that exceed the numeric effluent limit for turbidity constitute a
violation of this permit.
4. Permittees whose discharges exceed the numeric effluent limit shall sample
discharges daily until the violation is corrected and comply with the non-
compliance notification requirements in Special Condition S5.F.
Table 5: Turbidity, Fine Sediment & Phosphorus Sampling and Limits for 303(d)-Listed Waters
Parameter identified
in 303(d) listing
Parameter
Sampled
Unit Analytical
Method
Sampling
Frequency
Numeric Effluent
Limit1
Turbidity
Fine Sediment
Phosphorus
Turbidity NTU SM2130 Weekly, if
discharging
25 NTUs, at the
point where
stormwater is
discharged from the
site; OR
In compliance with
the surface water
quality standard for
turbidity (S8.C.2.a)
1Permittees subject to a numeric effluent limit for turbidity may, at their discretion, choose either numeric effluent
limitation based on site-specific considerations including, but not limited to, safety, access and convenience.
D. Discharges to Water Bodies on the 303(d) List for High pH
1. Permittees who discharge to segments of water bodies on the 303(d) list (Category
5) for high pH must conduct pH sampling in accordance with the table below, and
comply with the numeric effluent limit of pH 6.5 to 8.5 su (Table 6).
Construction Stormwater General Permit
Page 26
Table 6: pH Sampling and Limits for 303(d)-Listed Waters
Parameter identified in
303(d) listing
Parameter
Sampled/Units
Analytical
Method
Sampling
Frequency
Numeric Effluent
Limit
High pH pH /Standard
Units
pH meter Weekly, if
discharging
In the range of 6.5
8.5
2. At the Permittee s discretion, compliance with the limit shall be assessed at one of
the following locations:
a. Directly in the 303(d)-listed waterbody segment, inside the immediate area of
influence of the discharge; or
b. Alternatively, the Permittee may measure pH at the point where the discharge
leaves the construction site, rather than in the receiving water.
3. Discharges that exceed the numeric effluent limit for pH (outside the range of 6.5
8.5 su) constitute a violation of this permit.
4. Permittees whose discharges exceed the numeric effluent limit shall sample
discharges daily until the violation is corrected and comply with the non-
compliance notification requirements in Special Condition S5.F.
E. Sampling and Limits for Sites Discharging to Waters Covered by a TMDL or Another
Pollution Control Plan
1. Discharges to a waterbody that is subject to a Total Maximum Daily Load
(TMDL) for turbidity, fine sediment, high pH, or phosphorus must be consistent
with the TMDL. Refer to http://www.ecy.wa.gov/programs/wq/tmdl/
TMDLsbyWria/TMDLbyWria.html for more information on TMDLs.
a. Where an applicable TMDL sets specific waste load allocations or requirements
for discharges covered by this permit, discharges must be consistent with any
specific waste load allocations or requirements established by the applicable
TMDL.
i. The Permittee must sample discharges weekly or as otherwise specified
by the TMDL to evaluate compliance with the specific waste load
allocations or requirements.
ii. Analytical methods used to meet the monitoring requirements must
conform to the latest revision of the Guidelines Establishing Test
Procedures for the Analysis of Pollutants contained in 40 CFR Part 136.
Turbidity and pH methods need not be accredited or registered unless
conducted at a laboratory which must otherwise be accredited or
registered.
b. Where an applicable TMDL has established a general waste load allocation for
construction stormwater discharges, but has not identified specific requirements,
Construction Stormwater General Permit
Page 27
compliance with Special Conditions S4 (Monitoring) and S9 (SWPPPs) will
constitute compliance with the approved TMDL.
c. Where an applicable TMDL has not specified a waste load allocation for
construction stormwater discharges, but has not excluded these discharges,
compliance with Special Conditions S4 (Monitoring) and S9 (SWPPPs) will
constitute compliance with the approved TMDL.
d. Where an applicable TMDL specifically precludes or prohibits discharges from
construction activity, the operator is not eligible for coverage under this permit.
2. Applicable TMDL means a TMDL for turbidity, fine sediment, high pH, or
phosphorus that is completed and approved by EPA before January 1, 2016, or
permit application is received by Ecology,
whichever is later.
application is received by Ecology become applicable to the Permittee only if they
are imposed through an administrative order by Ecology, or through a modification
of permit coverage.
S9. STORMWATER POLLUTION PREVENTION PLAN
The Permittee must prepare and properly implement an adequate Stormwater Pollution
Prevention Plan (SWPPP) for construction activity in accordance with the requirements of
this permit beginning with initial soil disturbance and until final stabilization.
A.
1. To implement best management practices (BMPs) to prevent erosion and
sedimentation, and to identify, reduce, eliminate or prevent stormwater
contamination and water pollution from construction activity.
2. To prevent violations of surface water quality, ground water quality, or sediment
management standards.
3. To control peak volumetric flow rates and velocities of stormwater discharges.
B. General Requirements
1. The SWPPP must include a narrative and drawings. All BMPs must be clearly
referenced in the narrative and marked on the drawings. The SWPPP narrative
must include documentation to explain and justify the pollution prevention
decisions made for the project. Documentation must include:
a. Information about existing site conditions (topography, drainage, soils,
vegetation, etc.).
b. Potential erosion problem areas.
c. The 13 elements of a SWPPP in Special Condition S9.D.1-13, including BMPs
used to address each element.
Construction Stormwater General Permit
Page 28
d. Construction phasing/sequence and general BMP implementation schedule.
e. The actions to be taken if BMP performance goals are not achieved for
example, a contingency plan for additional treatment and/or storage of
stormwater that would violate the water quality standards if discharged.
f. Engineering calculations for ponds, treatment systems, and any other designed
structures. When a treatment system requires engineering calculations, these
calculations must be included in the SWPPP. Engineering calculations do not
need to be included in the SWPPP for treatment systems that do not require
such calculations.
2. The Permittee must modify the SWPPP if, during inspections or investigations
conducted by the owner/operator, or the applicable local or state regulatory
authority, it is determined that the SWPPP is, or would be, ineffective in
eliminating or significantly minimizing pollutants in stormwater discharges from
the site. The Permittee must then:
a. Review the SWPPP for compliance with Special Condition S9 and make
appropriate revisions within 7 days of the inspection or investigation.
b. Immediately begin the process to fully implement and maintain appropriate
source control and/or treatment BMPs as soon as possible, addressing the
problems no later than 10 days from the inspection or investigation. If
installation of necessary treatment BMPs is not feasible within 10 days, Ecology
may approve additional time when an extension is requested by a Permittee
within the initial 10-day response period.
c. Document BMP implementation and maintenance in the site log book.
The Permittee must modify the SWPPP whenever there is a change in design,
construction, operation, or maintenance at the construction site that has, or could
have, a significant effect on the discharge of pollutants to waters of the State.
C. Stormwater Best Management Practices (BMPs)
BMPs must be consistent with:
1. Stormwater Management Manual for Western Washington (most current approved
edition at the time this permit was issued), for sites west of the crest of the Cascade
Mountains; or
2. Stormwater Management Manual for Eastern Washington (most current approved
edition at the time this permit was issued), for sites east of the crest of the Cascade
Mountains; or
3. Revisions to the manuals listed in Special Condition S9.C.1. & 2., or other
stormwater management guidance documents or manuals which provide an
equivalent level of pollution prevention, that are approved by Ecology and
incorporated into this permit in accordance with the permit modification
requirements of WAC 173-226-230; or
Construction Stormwater General Permit
Page 29
4. Documentation in the SWPPP that the BMPs selected provide an equivalent level
of pollution prevention, compared to the applicable Stormwater Management
Manuals, including:
a. The technical basis for the selection of all stormwater BMPs (scientific,
technical studies, and/or modeling) that support the performance claims for the
BMPs being selected.
b. An assessment of how the selected BMP will satisfy AKART requirements and
the applicable federal technology-based treatment requirements under 40 CFR
part 125.3.
D. SWPPP Narrative Contents and Requirements
The Permittee must include each of the 13 elements below in Special Condition
S9.D.1-13 in the narrative of the SWPPP and implement them unless site
conditions render the element unnecessary and the exemption from that element is
clearly justified in the SWPPP.
1. Preserve Vegetation/Mark Clearing Limits
a. Before beginning land-disturbing activities, including clearing and grading,
clearly mark all clearing limits, sensitive areas and their buffers, and trees that
are to be preserved within the construction area.
b. Retain the duff layer, native topsoil, and natural vegetation in an undisturbed
state to the maximum degree practicable.
2. Establish Construction Access
a. Limit construction vehicle access and exit to one route, if possible.
b. Stabilize access points with a pad of quarry spalls, crushed rock, or other
equivalent BMPs, to minimize tracking sediment onto roads.
c. Locate wheel wash or tire baths on site, if the stabilized construction entrance is
not effective in preventing tracking sediment onto roads.
d. If sediment is tracked off site, clean the affected roadway thoroughly at the end
of each day, or more frequently as necessary (for example, during wet weather).
Remove sediment from roads by shoveling, sweeping, or pickup and transport
of the sediment to a controlled sediment disposal area.
e. Conduct street washing only after sediment removal in accordance with Special
Condition S9.D.2.d. Control street wash wastewater by pumping back on site or
otherwise preventing it from discharging into systems tributary to waters of the
State.
3. Control Flow Rates
a. Protect properties and waterways downstream of development sites from
erosion and the associated discharge of turbid waters due to increases in the
Construction Stormwater General Permit
Page 30
velocity and peak volumetric flow rate of stormwater runoff from the project
site, as required by local plan approval authority.
b. Where necessary to comply with Special Condition S9.D.3.a, construct
stormwater retention or detention facilities as one of the first steps in grading.
Assure that detention facilities function properly before constructing site
improvements (for example, impervious surfaces).
c. If permanent infiltration ponds are used for flow control during construction,
protect these facilities from siltation during the construction phase.
4. Install Sediment Controls
The Permittee must design, install and maintain effective erosion controls and
sediment controls to minimize the discharge of pollutants. At a minimum, the
Permittee must design, install and maintain such controls to:
a. Construct sediment control BMPs (sediment ponds, traps, filters, infiltration
facilities, etc.) as one of the first steps in grading. These BMPs must be
functional before other land disturbing activities take place.
b. Minimize sediment discharges from the site. The design, installation and
maintenance of erosion and sediment controls must address factors such as the
amount, frequency, intensity and duration of precipitation, the nature of
resulting stormwater runoff, and soil characteristics, including the range of soil
particle sizes expected to be present on the site.
c. Direct stormwater runoff from disturbed areas through a sediment pond or other
appropriate sediment removal BMP, before the runoff leaves a construction site
or before discharge to an infiltration facility. Runoff from fully stabilized areas
may be discharged without a sediment removal BMP, but must meet the flow
control performance standard of Special Condition S9.D.3.a.
d. Locate BMPs intended to trap sediment on site in a manner to avoid interference
with the movement of juvenile salmonids attempting to enter off-channel areas
or drainages.
e. Provide and maintain natural buffers around surface waters, direct stormwater to
vegetated areas to increase sediment removal and maximize stormwater
infiltration, unless infeasible.
f. Where feasible, design outlet structures that withdraw impounded stormwater
from the surface to avoid discharging sediment that is still suspended lower in
the water column.
5. Stabilize Soils
a. The Permittee must stabilize exposed and unworked soils by application of
effective BMPs that prevent erosion. Applicable BMPs include, but are not
limited to: temporary and permanent seeding, sodding, mulching, plastic
covering, erosion control fabrics and matting, soil application of polyacrylamide
Construction Stormwater General Permit
Page 31
(PAM), the early application of gravel base on areas to be paved, and dust
control.
b. The Permittee must control stormwater volume and velocity within the site to
minimize soil erosion.
c. The Permittee must control stormwater discharges, including both peak flow
rates and total stormwater volume, to minimize erosion at outlets and to
minimize downstream channel and stream bank erosion.
d. Depending on the geographic location of the project, the Permittee must not
allow soils to remain exposed and unworked for more than the time periods set
forth below to prevent erosion:
*Note: The Central Basin is defined as the portions of Eastern
Washington with mean annual precipitation of less than 12 inches.
e. The Permittee must stabilize soils at the end of the shift before a holiday or
weekend if needed based on the weather forecast.
f. The Permittee must stabilize soil stockpiles from erosion, protected with
sediment trapping measures, and where possible, be located away from storm
drain inlets, waterways, and drainage channels.
g. The Permittee must minimize the amount of soil exposed during construction
activity.
h. The Permittee must minimize the disturbance of steep slopes.
i. The Permittee must minimize soil compaction and, unless infeasible, preserve
topsoil.
6. Protect Slopes
a. The Permittee must design and construct cut-and-fill slopes in a manner to
minimize erosion. Applicable practices include, but are not limited to, reducing
continuous length of slope with terracing and diversions, reducing slope
steepness, and roughening slope surfaces (for example, track walking).
Construction Stormwater General Permit
Page 32
b. The Permittee must divert off-site stormwater (run-on) or ground water away
from slopes and disturbed areas with interceptor dikes, pipes, and/or swales.
Off-site stormwater should be managed separately from stormwater generated
on the site.
c. At the top of slopes, collect drainage in pipe slope drains or protected channels
to prevent erosion.
i. West of the Cascade Mountains Crest: Temporary pipe slope drains must
handle the peak 10-minute flow rate from a Type 1A, 10-year, 24-hour
frequency storm for the developed condition. Alternatively, the 10-year,
1-hour flow rate predicted by an approved continuous runoff model,
increased by a factor of 1.6, may be used. The hydrologic analysis must
use the existing land cover condition for predicting flow rates from
tributary areas outside the project limits. For tributary areas on the project
site, the analysis must use the temporary or permanent project land cover
condition, whichever will produce the highest flow rates. If using the
Western Washington Hydrology Model (WWHM) to predict flows, bare
ii. East of the Cascade Mountains Crest: Temporary pipe slope drains must
handle the expected peak flow rate from a 6-month, 3-hour storm for the
developed condition, referred to as the short duration storm.
d. Place excavated material on the uphill side of trenches, consistent with safety
and space considerations.
e. Place check dams at regular intervals within constructed channels that are cut
down a slope.
7. Protect Drain Inlets
a. Protect all storm drain inlets made operable during construction so that
stormwater runoff does not enter the conveyance system without first being
filtered or treated to remove sediment.
b. Clean or remove and replace inlet protection devices when sediment has filled
one-third of the available storage (unless a different standard is specified by the
product manufacturer).
8. Stabilize Channels and Outlets
a. Design, construct and stabilize all on-site conveyance channels to prevent
erosion from the following expected peak flows:
i. West of the Cascade Mountains Crest: Channels must handle the peak
10-minute flow rate from a Type 1A, 10-year, 24-hour frequency storm
for the developed condition. Alternatively, the 10-year, 1-hour flow rate
indicated by an approved continuous runoff model, increased by a factor
of 1.6, may be used. The hydrologic analysis must use the existing land
Construction Stormwater General Permit
Page 33
cover condition for predicting flow rates from tributary areas outside the
project limits. For tributary areas on the project site, the analysis must use
the temporary or permanent project land cover condition, whichever will
produce the highest flow rates. If using the WWHM to predict flows, bare
ii. East of the Cascade Mountains Crest: Channels must handle the expected
peak flow rate from a 6-month, 3-hour storm for the developed condition,
referred to as the short duration storm.
b. Provide stabilization, including armoring material, adequate to prevent erosion
of outlets, adjacent stream banks, slopes, and downstream reaches at the outlets
of all conveyance systems.
9. Control Pollutants
Design, install, implement and maintain effective pollution prevention measures to
minimize the discharge of pollutants. The Permittee must:
a. Handle and dispose of all pollutants, including waste materials and demolition
debris that occur on site in a manner that does not cause contamination of
stormwater.
b. Provide cover, containment, and protection from vandalism for all chemicals,
liquid products, petroleum products, and other materials that have the potential
to pose a threat to human health or the environment. On-site fueling tanks must
include secondary containment. Secondary containment means placing tanks or
containers within an impervious structure capable of containing 110% of the
volume contained in the largest tank within the containment structure. Double-
walled tanks do not require additional secondary containment.
c. Conduct maintenance, fueling, and repair of heavy equipment and vehicles
using spill prevention and control measures. Clean contaminated surfaces
immediately following any spill incident.
d. Discharge wheel wash or tire bath wastewater to a separate on-site treatment
system that prevents discharge to surface water, such as closed-loop
recirculation or upland land application, or to the sanitary sewer with local
sewer district approval.
e. Apply fertilizers and pesticides in a manner and at application rates that will not
result in loss of chemical to stormwater runoff.
requirements for application rates and procedures.
f. Use BMPs to prevent contamination of stormwater runoff by pH-modifying
sources. The sources for this contamination include, but are not limited to: bulk
cement, cement kiln dust, fly ash, new concrete washing and curing waters,
recycled concrete stockpiles, waste streams generated from concrete grinding
and sawing, exposed aggregate processes, dewatering concrete vaults, concrete
Construction Stormwater General Permit
Page 34
pumping and mixer washout waters. (Also refer to the definition for "concrete
wastewater" in Appendix A--Definitions.)
g. Adjust the pH of stormwater or authorized non-stormwater if necessary to
prevent an exceedance of groundwater and/or surface water quality standards.
h. Assure that washout of concrete trucks is performed off-site or in designated
concrete washout areas only. Do not wash out concrete truck drums or concrete
handling equipment onto the ground, or into storm drains, open ditches, streets,
or streams. Washout of concrete handling equipment may be disposed of in a
designated concrete washout area or in a formed area awating concrete where it
will not contaminate surface or ground water. Do not dump excess concrete on
site, except in designated concrete washout areas. Concrete spillage or concrete
discharge directly to groundwater or surface waters of the State is prohibited.
Do not wash out to formed areas awaiting LID facilities.
i. Obtain written approval from Ecology before using any chemical treatment,
with the exception of CO2 or dry ice used to adjust pH.
j. Uncontaminated water from water-only based shaft drilling for construction of
building, road, and bridge foundations may be infiltrated provided the
wastewater is managed in a way that prohibits discharge to surface waters. Prior
to infiltration, water from water-only based shaft drilling that comes into contact
with curing concrete must be neutralized until pH is in the range of 6.5 to 8.5
(su).
10. Control Dewatering
a. Permittees must discharge foundation, vault, and trench dewatering water,
which have characteristics similar to stormwater runoff at the site, into a
controlled conveyance system before discharge to a sediment trap or sediment
pond.
b. Permittees may discharge clean, non-turbid dewatering water, such as well-
point ground water, to systems tributary to, or directly into surface waters of the
State, as specified in Special Condition S9.D.8, provided the dewatering flow
does not cause erosion or flooding of receiving waters. Do not route clean
dewatering water through stormwater sediment ponds.
of the S
creek running through a site.
c. Other dewatering treatment or disposal options may include:
i. Infiltration.
ii. Transport off site in a vehicle, such as a vacuum flush truck, for legal
disposal in a manner that does not pollute state waters.
Construction Stormwater General Permit
Page 35
iii. Ecology-approved on-site chemical treatment or other suitable treatment
technologies (see S9.D.9.i. regarding chemical treatment written
approval).
iv. Sanitary or combined sewer discharge with local sewer district approval,
if there is no other option.
v. Use of a sedimentation bag with discharge to a ditch or swale for small
volumes of localized dewatering.
d. Permittees must handle highly turbid or contaminated dewatering water
separately from stormwater.
11. Maintain BMPs
a. Permittees must maintain and repair all temporary and permanent erosion and
sediment control BMPs as needed to assure continued performance of their
intended function in accordance with BMP specifications.
b. Permittees must remove all temporary erosion and sediment control BMPs
within 30 days after achieving final site stabilization or after the temporary
BMPs are no longer needed.
12. Manage the Project
a. Phase development projects to the maximum degree practicable and take into
account seasonal work limitations.
b. Inspection and monitoring Inspect, maintain and repair all BMPs as needed to
assure continued performance of their intended function. Conduct site
inspections and monitoring in accordance with Special Condition S4.
c. Maintaining an updated construction SWPPP Maintain, update, and
implement the SWPPP in accordance with Special Conditions S3, S4 and S9.
13. Protect Low Impact Development (LID) BMPs
The primary purpose of LID BMPs/On-site LID Stormwater Management BMPs is
to reduce the disruption of the natural site hydrology. LID BMPs are permanent
facilities.
a. Permittees must protect all Bioretention and Rain Garden facilities from
sedimentation through installation and maintenance of erosion and sediment
control BMPs on portions of the site that drain into the Bioretention and/or Rain
Garden facilities. Restore the facilities to their fully functioning condition if
they accumulate sediment during construction. Restoring the facility must
include removal of sediment and any sediment-laden Bioretention/Rain Garden
soils, and replacing the removed soils with soils meeting the design
specification.
Construction Stormwater General Permit
Page 36
b. Permittees must maintain the infiltration capabilities of Bioretention and Rain
Garden facilities by protecting against compaction by construction equipment
and foot traffic. Protect completed lawn and landscaped areas from compaction
due to construction equipment.
c. Permittees must control erosion and avoid introducing sediment from
surrounding land uses onto permeable pavements. Do not allow muddy
construction equipment on the base material or pavement. Do not allow
sediment-laden runoff onto permeable pavements.
d. Permittees must clean permeable pavements fouled with sediments or no longer
passing an initial infiltration test using local stormwater manual methodology or
e. Permittees must keep all heavy equipment off existing soils under LID facilities
that have been excavated to final grade to retain the infiltration rate of the soils.
E. SWPPP Map Contents and Requirements
example, a USGS quadrangle map, a portion of a county or city map, or other
appropriate map) with enough detail to identify the location of the construction site and
receiving waters within one mile of the site.
The SWPPP must also include a legible site map (or maps) showing the entire
construction site. The following features must be identified, unless not applicable due to
site conditions:
1. The direction of north, property lines, and existing structures and roads.
2. Cut and fill slopes indicating the top and bottom of slope catch lines.
3. Approximate slopes, contours, and direction of stormwater flow before and after
major grading activities.
4. Areas of soil disturbance and areas that will not be disturbed.
5. Locations of structural and nonstructural controls (BMPs) identified in the
SWPPP.
6. Locations of off-site material, stockpiles, waste storage, borrow areas, and
vehicle/equipment storage areas.
7. Locations of all surface water bodies, including wetlands.
8. Locations where stormwater or non-stormwater discharges off-site and/or to a
surface waterbody, including wetlands.
9. Location of water quality sampling station(s), if sampling is required by state or
local permitting authority.
Construction Stormwater General Permit
Page 37
10. Areas where final stabilization has been accomplished and no further construction-
phase permit requirements apply.
11. Location or proposed location of LID facilities.
S10. NOTICE OF TERMINATION
A. The site is eligible for termination of coverage when it has met any of the following
conditions:
1. The site has undergone final stabilization, the Permittee has removed all temporary
BMPs (except biodegradable BMPs clearly manufactured with the intention for the
material to be left in place and not interfere with maintenance or land use), and all
stormwater discharges associated with construction activity have been eliminated;
or
2. All portions of the site that have not undergone final stabilization per Special
Condition S10.A.1 have been sold and/or transferred (per General Condition G9),
and the Permittee no longer has operational control of the construction activity; or
3. For residential construction only, the Permittee has completed temporary
stabilization and the homeowners have taken possession of the residences.
B. When the site is eligible for termination, the Permittee must submit a complete and
accurate Notice of Termination (NOT) form, signed in accordance with General
Condition G2, to:
Department of Ecology
Water Quality Program Construction Stormwater
PO Box 47696
Olympia, Washington 98504-7696
When an electronic termination form is available, the Permittee may choose to submit a
complete and accurate Notice of Termination (NOT) form through the Water Quality
Permitting Portal rather than mailing a hardcopy as noted above.
The termination is effective on the thirty-first calendar day following the date Ecology
receives a complete NOT form, unless Ecology notifies the Permittee that the
termination request is denied because the Permittee has not met the eligibility
requirements in Special Condition S10.A.
Permittees are required to comply with all conditions and effluent limitations in the
permit until the permit has been terminated.
Permittees transferring the property to a new property owner or operator/Permittee are
required to complete and submit the Notice of Transfer form to Ecology, but are not
required to submit a Notice of Termination form for this type of transaction.
Construction Stormwater General Permit
Page 38
GENERAL CONDITIONS
G1. DISCHARGE VIOLATIONS
All discharges and activities authorized by this general permit must be consistent with the
terms and conditions of this general permit. Any discharge of any pollutant more frequent
than or at a level in excess of that identified and authorized by the general permit must
constitute a violation of the terms and conditions of this permit.
G2. SIGNATORY REQUIREMENTS
A. All permit applications must bear a certification of correctness to be signed:
1. In the case of corporations, by a responsible corporate officer;
2. In the case of a partnership, by a general partner of a partnership;
3. In the case of sole proprietorship, by the proprietor; or
4. In the case of a municipal, state, or other public facility, by either a principal
executive officer or ranking elected official.
B. All reports required by this permit and other information requested by Ecology
(including NOIs, NOTs, and Transfer of Coverage forms) must be signed by a person
described above or by a duly authorized representative of that person. A person is a duly
authorized representative only if:
1. The authorization is made in writing by a person described above and submitted to
Ecology.
2. The authorization specifies either an individual or a position having responsibility
for the overall operation of the regulated facility, such as the position of plant
manager, superintendent, position of equivalent responsibility, or an individual or
position having overall responsibility for environmental matters.
C. Changes to authorization. If an authorization under paragraph G2.B.2 above is no longer
accurate because a different individual or position has responsibility for the overall
operation of the facility, a new authorization satisfying the requirements of paragraph
G2.B.2 above must be submitted to Ecology prior to or together with any reports,
information, or applications to be signed by an authorized representative.
D. Certification. Any person signing a document under this section must make the
following certification:
were prepared under my direction or supervision in accordance with a
system designed to assure that qualified personnel properly gathered and
evaluated the information submitted. Based on my inquiry of the person or
persons who manage the system, or those persons directly responsible for
gathering information, the information submitted is, to the best of my
Construction Stormwater General Permit
Page 39
knowledge and belief, true, accurate, and complete. I am aware that there
are significant penalties for submitting false information, including the
G3. RIGHT OF INSPECTION AND ENTRY
The Permittee must allow an authorized representative of Ecology, upon the presentation of
credentials and such other documents as may be required by law:
A. To enter upon the premises where a discharge is located or where any records are kept
under the terms and conditions of this permit.
B. To have access to and copy at reasonable times and at reasonable cost any records
required to be kept under the terms and conditions of this permit.
C. To inspect at reasonable times any facilities, equipment (including monitoring and
control equipment), practices, methods, or operations regulated or required under this
permit.
D. To sample or monitor at reasonable times any substances or parameters at any
location for purposes of assuring permit compliance or as otherwise authorized by the
Clean Water Act.
G4. GENERAL PERMIT MODIFICATION AND REVOCATION
This permit may be modified, revoked and reissued, or terminated in accordance with the
provisions of Chapter 173-226 WAC. Grounds for modification, revocation and reissuance,
or termination include, but are not limited to, the following:
A. When a change occurs in the technology or practices for control or abatement of
pollutants applicable to the category of dischargers covered under this permit.
B. When effluent limitation guidelines or standards are promulgated pursuant to the CWA
or Chapter 90.48 RCW, for the category of dischargers covered under this permit.
C. When a water quality management plan containing requirements applicable to the
category of dischargers covered under this permit is approved, or
D. When information is obtained that indicates cumulative effects on the environment from
dischargers covered under this permit are unacceptable.
G5. REVOCATION OF COVERAGE UNDER THE PERMIT
Pursuant to Chapter 43.21B RCW and Chapter 173-226 WAC, the Director may terminate
coverage for any discharger under this permit for cause. Cases where coverage may be
terminated include, but are not limited to, the following:
A. Violation of any term or condition of this permit.
B. Obtaining coverage under this permit by misrepresentation or failure to disclose fully all
relevant facts.
Construction Stormwater General Permit
Page 40
C. A change in any condition that requires either a temporary or permanent reduction or
elimination of the permitted discharge.
D. Failure or refusal of the Permittee to allow entry as required in RCW 90.48.090.
E. A determination that the permitted activity endangers human health or the environment,
or contributes to water quality standards violations.
F. Nonpayment of permit fees or penalties assessed pursuant to RCW 90.48.465 and
Chapter 173-224 WAC.
G. Failure of the Permittee to satisfy the public notice requirements of WAC 173-226-
130(5), when applicable.
The Director may require any discharger under this permit to apply for and obtain
coverage under an individual permit or another more specific general permit. Permittees
who have their coverage revoked for cause according to WAC 173-226-240 may request
temporary coverage under this permit during the time an individual permit is being
developed, provided the request is made within ninety (90) days from the time of
revocation and is submitted along with a complete individual permit application form.
G6. REPORTING A CAUSE FOR MODIFICATION
The Permittee must submit a new application, or a supplement to the previous application,
whenever a material change to the construction activity or in the quantity or type of
discharge is anticipated which is not specifically authorized by this permit. This application
must be submitted at least sixty (60) days prior to any proposed changes. Filing a request for
a permit modification, revocation and reissuance, or termination, or a notification of planned
changes or anticipated noncompliance does not relieve the Permittee of the duty to comply
with the existing permit until it is modified or reissued.
G7. COMPLIANCE WITH OTHER LAWS AND STATUTES
Nothing in this permit will be construed as excusing the Permittee from compliance with
any applicable federal, state, or local statutes, ordinances, or regulations.
G8. DUTY TO REAPPLY
The Permittee must apply for permit renewal at least 180 days prior to the specified
expiration date of this permit. The Permittee must reapply using the electronic application
. Permittees unable to submit electronically (for
example, those who do not have an internet connection) must contact Ecology to request a
waiver and obtain instructions on how to obtain a paper NOI.
Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, Washington 98504-7696
Construction Stormwater General Permit
Page 41
G9. TRANSFER OF GENERAL PERMIT COVERAGE
Coverage under this general permit is automatically transferred to a new discharger,
including operators of lots/parcels within a common plan of development or sale, if:
A. A written agreement (Transfer of Coverage Form) between the current discharger
(Permittee) and new discharger, signed by both parties and containing a specific date for
transfer of permit responsibility, coverage, and liability (including any Administrative
Orders associated with the Permit) is submitted to the Director; and
B.
intent to revoke coverage under the general permit. If this notice is not given, the transfer
is effective on the date specified in the written agreement.
When a current discharger (Permittee) transfers a portion of a permitted site, the current
discharger must also submit an updated application form (NOI) to the Director
indicating the remaining permitted acreage after the transfer.
G10. REMOVED SUBSTANCES
The Permittee must not re-suspend or reintroduce collected screenings, grit, solids, sludges,
filter backwash, or other pollutants removed in the course of treatment or control of
stormwater to the final effluent stream for discharge to state waters.
G11. DUTY TO PROVIDE INFORMATION
The Permittee must submit to Ecology, within a reasonable time, all information that
Ecology may request to determine whether cause exists for modifying, revoking and
reissuing, or terminating this permit or to determine compliance with this permit. The
Permittee must also submit to Ecology, upon request, copies of records required to be kept
by this permit [40 CFR 122.41(h)].
G12. OTHER REQUIREMENTS OF 40 CFR
All other requirements of 40 CFR 122.41 and 122.42 are incorporated in this permit by
reference.
G13. ADDITIONAL MONITORING
Ecology may establish specific monitoring requirements in addition to those contained in
this permit by administrative order or permit modification.
G14. PENALTIES FOR VIOLATING PERMIT CONDITIONS
Any person who is found guilty of willfully violating the terms and conditions of this permit
shall be deemed guilty of a crime, and upon conviction thereof shall be punished by a fine of
up to ten thousand dollars ($10,000) and costs of prosecution, or by imprisonment at the
discretion of the court. Each day upon which a willful violation occurs may be deemed a
separate and additional violation.
Construction Stormwater General Permit
Page 42
Any person who violates the terms and conditions of a waste discharge permit shall incur, in
addition to any other penalty as provided by law, a civil penalty in the amount of up to ten
thousand dollars ($10,000) for every such violation. Each and every such violation shall be a
separate
shall be deemed to be a separate and distinct violation.
G15. UPSET
Definition
temporary noncompliance with technology-based permit effluent limitations because of
factors beyond the reasonable control of the Permittee. An upset does not include
noncompliance to the extent caused by operational error, improperly designed treatment
facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or
improper operation.
An upset constitutes an affirmative defense to an action brought for noncompliance with
such technology-based permit effluent limitations if the requirements of the following
paragraph are met.
A Permittee who wishes to establish the affirmative defense of upset must demonstrate,
through properly signed, contemporaneous operating logs or other relevant evidence that: 1)
an upset occurred and that the Permittee can identify the cause(s) of the upset; 2) the
permitted facility was being properly operated at the time of the upset; 3) the Permittee
submitted notice of the upset as required in Special Condition S5.F, and; 4) the Permittee
complied with any remedial measures required under this permit.
In any enforcement proceeding, the Permittee seeking to establish the occurrence of an upset
has the burden of proof.
G16. PROPERTY RIGHTS
This permit does not convey any property rights of any sort, or any exclusive privilege.
G17. DUTY TO COMPLY
The Permittee must comply with all conditions of this permit. Any permit noncompliance
constitutes a violation of the Clean Water Act and is grounds for enforcement action; for
permit termination, revocation and reissuance, or modification; or denial of a permit renewal
application.
G18. TOXIC POLLUTANTS
The Permittee must comply with effluent standards or prohibitions established under Section
307(a) of the Clean Water Act for toxic pollutants within the time provided in the
regulations that establish those standards or prohibitions, even if this permit has not yet been
modified to incorporate the requirement.
Construction Stormwater General Permit
Page 43
G19. PENALTIES FOR TAMPERING
The Clean Water Act provides that any person who falsifies, tampers with, or knowingly
renders inaccurate any monitoring device or method required to be maintained under this
permit shall, upon conviction, be punished by a fine of not more than $10,000 per violation,
or by imprisonment for not more than two years per violation, or by both. If a conviction of
a person is for a violation committed after a first conviction of such person under this
condition, punishment shall be a fine of not more than $20,000 per day of violation, or
imprisonment of not more than four (4) years, or both.
G20. REPORTING PLANNED CHANGES
The Permittee must, as soon as possible, give notice to Ecology of planned physical
alterations, modifications or additions to the permitted construction activity. The Permittee
should be aware that, depending on the nature and size of the changes to the original permit,
a new public notice and other permit process requirements may be required. Changes in
activities that require reporting to Ecology include those that will result in:
A. The permitted facility being determined to be a new source pursuant to 40 CFR
122.29(b).
B. A significant change in the nature or an increase in quantity of pollutants discharged,
including but not limited to: for sites 5 acres or larger, a 20% or greater increase in
acreage disturbed by construction activity.
C. A change in or addition of surface water(s) receiving stormwater or non-stormwater
from the construction activity.
D.
requirements in Special Condition S4.
Following such notice, permit coverage may be modified, or revoked and reissued pursuant
to 40 CFR 122.62(a) to specify and limit any pollutants not previously limited. Until such
modification is effective, any new or increased discharge in excess of permit limits or not
specifically authorized by this permit constitutes a violation.
G21. REPORTING OTHER INFORMATION
Where the Permittee becomes aware that it failed to submit any relevant facts in a permit
application, or submitted incorrect information in a permit application or in any report to
Ecology, it must promptly submit such facts or information.
G22. REPORTING ANTICIPATED NON-COMPLIANCE
The Permittee must give advance notice to Ecology by submission of a new application or
supplement thereto at least forty-five (45) days prior to commencement of such discharges,
of any facility expansions, production increases, or other planned changes, such as process
modifications, in the permitted facility or activity which may result in noncompliance with
permit limits or conditions. Any maintenance of facilities, which might necessitate
Construction Stormwater General Permit
Page 44
unavoidable interruption of operation and degradation of effluent quality, must be scheduled
during non-critical water quality periods and carried out in a manner approved by Ecology.
G23. REQUESTS TO BE EXCLUDED FROM COVERAGE UNDER THE PERMIT
Any discharger authorized by this permit may request to be excluded from coverage under
the general permit by applying for an individual permit. The discharger must submit to the
Director an application as described in WAC 173-220-040 or WAC 173-216-070,
whichever is applicable, with reasons supporting the request. These reasons will fully
document how an individual permit will apply to the applicant in a way that the general
permit cannot. Ecology may make specific requests for information to support the request.
The Director will either issue an individual permit or deny the request with a statement
explaining the reason for the denial. When an individual permit is issued to a discharger
otherwise subject to the construction stormwater general permit, the applicability of the
construction stormwater general permit to that Permittee is automatically terminated on the
effective date of the individual permit.
G24. APPEALS
A. The terms and conditions of this general permit, as they apply to the appropriate class of
dischargers, are subject to appeal by any person within 30 days of issuance of this
general permit, in accordance with Chapter 43.21B RCW, and Chapter 173-226 WAC.
B. The terms and conditions of this general permit, as they apply to an individual
discharger, are appealable in accordance with Chapter 43.21B RCW within 30 days of
the effective date of coverage of that discharger. Consideration of an appeal of general
permit coverage of an individ
applicability or nonapplicability to that individual discharger.
C. The appeal of general permit coverage of an individual discharger does not affect any
other dischargers covered under this general permit. If the terms and conditions of this
general permit are found to be inapplicable to any individual discharger(s), the matter
shall be remanded to Ecology for consideration of issuance of an individual permit or
permits.
G25. SEVERABILITY
The provisions of this permit are severable, and if any provision of this permit, or
application of any provision of this permit to any circumstance, is held invalid, the
application of such provision to other circumstances, and the remainder of this permit shall
not be affected thereby.
G26. BYPASS PROHIBITED
A. Bypass Procedures
Bypass, which is the intentional diversion of waste streams from any portion of a
treatment facility, is prohibited for stormwater events below the design criteria for
Construction Stormwater General Permit
Page 45
stormwater management. Ecology may take enforcement action against a Permittee for
bypass unless one of the following circumstances (1, 2, 3 or 4) is applicable.
1. Bypass of stormwater is consistent with the design criteria and part of an approved
management practice in the applicable stormwater management manual.
2. Bypass for essential maintenance without the potential to cause violation of permit
limits or conditions.
Bypass is authorized if it is for essential maintenance and does not have the
potential to cause violations of limitations or other conditions of this permit, or
adversely impact public health.
3. Bypass of stormwater is unavoidable, unanticipated, and results in noncompliance
of this permit.
This bypass is permitted only if:
a. Bypass is unavoidable to prevent loss of life, personal injury, or severe property
damage.
property, damage to the treatment facilities which would cause them to become
inoperable, or substantial and permanent loss of natural resources which can
reasonably be expected to occur in the absence of a bypass.
b. There are no feasible alternatives to the bypass, such as the use of auxiliary
treatment facilities, retention of untreated wastes, maintenance during normal
periods of equipment downtime (but not if adequate backup equipment should
have been installed in the exercise of reasonable engineering judgment to
prevent a bypass which occurred during normal periods of equipment downtime
or preventative maintenance), or transport of untreated wastes to another
treatment facility.
c. Ecology is properly notified of the bypass as required in Special Condition S5.F
of this permit.
4. A planned action that would cause bypass of stormwater and has the potential to
result in noncompliance of this permit during a storm event.
The Permittee must notify Ecology at least thirty (30) days before the planned date
of bypass. The notice must contain:
a. A description of the bypass and its cause.
b. An analysis of all known alternatives which would eliminate, reduce, or
mitigate the need for bypassing.
c. A cost-effectiveness analysis of alternatives including comparative resource
damage assessment.
d. The minimum and maximum duration of bypass under each alternative.
e. A recommendation as to the preferred alternative for conducting the bypass.
Construction Stormwater General Permit
Page 46
f. The projected date of bypass initiation.
g. A statement of compliance with SEPA.
h. A request for modification of water quality standards as provided for in WAC
173-201A-110, if an exceedance of any water quality standard is anticipated.
i. Steps taken or planned to reduce, eliminate, and prevent reoccurrence of the
bypass.
5. For probable construction bypasses, the need to bypass is to be identified as early
in the planning process as possible. The analysis required above must be
considered during preparation of the Stormwater Pollution Prevention Plan
(SWPPP) and must be included to the extent practical. In cases where the probable
need to bypass is determined early, continued analysis is necessary up to and
including the construction period in an effort to minimize or eliminate the bypass.
Ecology will consider the following before issuing an administrative order for this
type bypass:
a. If the bypass is necessary to perform construction or maintenance-related
activities essential to meet the requirements of this permit.
b. If there are feasible alternatives to bypass, such as the use of auxiliary treatment
facilities, retention of untreated wastes, stopping production, maintenance
during normal periods of equipment down time, or transport of untreated wastes
to another treatment facility.
c. If the bypass is planned and scheduled to minimize adverse effects on the public
and the environment.
After consideration of the above and the adverse effects of the proposed bypass
and any other relevant factors, Ecology will approve, conditionally approve, or
deny the request. The public must be notified and given an opportunity to
comment on bypass incidents of significant duration, to the extent feasible.
Approval of a request to bypass will be by administrative order issued by Ecology
under RCW 90.48.120.
B. Duty to Mitigate
The Permittee is required to take all reasonable steps to minimize or prevent any
discharge or sludge use or disposal in violation of this permit that has a reasonable
likelihood of adversely affecting human health or the environment.
Construction Stormwater General Permit
Page 47
APPENDIX A DEFINITIONS
AKART is an acronym for all known, available, and reasonable methods of prevention, control,
and treatment. AKART represents the most current methodology that can be reasonably
required for preventing, controlling, or abating the pollutants and controlling pollution associated
with a discharge.
Applicable TMDL means a TMDL for turbidity, fine sediment, high pH, or phosphorus, which
was completed and approved by EPA before January 1, 2016, or before the date the operator s
complete permit application is received by Ecology, whichever is later.
Applicant means an operator seeking coverage under this permit.
Benchmark means a pollutant concentration used as a permit threshold, below which a pollutant
is considered unlikely to cause a water quality violation, and above which it may. When
pollutant concentrations exceed benchmarks, corrective action requirements take effect.
Benchmark values are not water quality standards and are not numeric effluent limitations; they
are indicator values.
Best Management Practices (BMPs) means schedules of activities, prohibitions of practices,
maintenance procedures, and other physical, structural and/or managerial practices to prevent or
reduce the pollution of waters of the State. BMPs include treatment systems, operating
procedures, and practices to control: stormwater associated with construction activity, spillage or
leaks, sludge or waste disposal, or drainage from raw material storage.
Buffer means an area designated by a local jurisdiction that is contiguous to and intended to
protect a sensitive area.
Bypass means the intentional diversion of waste streams from any portion of a treatment facility.
Calendar Day A period of 24 consecutive hours starting at 12:00 midnight and ending the
following 12:00 midnight.
Calendar Week (same as Week) means a period of seven consecutive days starting at 12:01
a.m. (0:01 hours) on Sunday.
Certified Erosion and Sediment Control Lead (CESCL) means a person who has current
certification through an approved erosion and sediment control training program that meets the
minimum training standards established by Ecology (see BMP C160 in the SWMM).
Chemical Treatment means the addition of chemicals to stormwater and/or authorized non-
stormwater prior to filtration and discharge to surface waters.
Clean Water Act (CWA) means the Federal Water Pollution Control Act enacted by Public
Law 92-500, as amended by Public Laws 95-217, 95-576, 96-483, and 97-117; USC 1251 et seq.
Combined Sewer means a sewer which has been designed to serve as a sanitary sewer and a
storm sewer, and into which inflow is allowed by local ordinance.
Construction Stormwater General Permit
Page 48
Common Plan of Development or Sale means a site where multiple separate and distinct
construction activities may be taking place at different times on different schedules and/or by
different contractors, but still under a single plan. Examples include: 1) phased projects and
projects with multiple filings or lots, even if the separate phases or filings/lots will be constructed
under separate contract or by separate owners (e.g., a development where lots are sold to separate
builders); 2) a development plan that may be phased over multiple years, but is still under a
consistent plan for long-term development; 3) projects in a contiguous area that may be unrelated
but still under the same contract, such as construction of a building extension and a new parking
lot at the same facility; and 4) linear projects such as roads, pipelines, or utilities. If the project is
part of a common plan of development or sale, the disturbed area of the entire plan must be used
in determining permit requirements.
Composite Sample means a mixture of grab samples collected at the same sampling point at
different times, formed either by continuous sampling or by mixing discrete samples. May be
"time-composite" (collected at constant time intervals) or "flow-proportional" (collected either as
a constant sample volume at time intervals proportional to stream flow, or collected by
increasing the volume of each aliquot as the flow increases while maintaining a constant time
interval between the aliquots.
Concrete Wastewater means any water used in the production, pouring and/or clean-up of
concrete or concrete products, and any water used to cut, grind, wash, or otherwise modify
concrete or concrete products. Examples include water used for or resulting from concrete
truck/mixer/pumper/tool/chute rinsing or washing, concrete saw cutting and surfacing (sawing,
coring, grinding, roughening, hydro-demolition, bridge and road surfacing). When stormwater
comingles with concrete wastewater, the resulting water is considered concrete wastewater and
must be managed to prevent discharge to waters of the State, including ground water.
Construction Activity means land disturbing operations including clearing, grading or
excavation which disturbs the surface of the land. Such activities may include road construction,
construction of residential houses, office buildings, or industrial buildings, site preparation, soil
compaction, movement and stockpiling of topsoils, and demolition activity.
Contaminant means any hazardous substance that does not occur naturally or occurs at greater
than natural background levels. See definition of hazardous substance and WAC 173-340-200.
Contaminated Groundwater means groundwater which contains contaminants, pollutants, or
hazardous substances that do not occur naturally or occur at levels greater than natural
background.
Contaminated Soil means soil which contains contaminants, pollutants, or hazardous
substances that do not occur naturally or occur at levels greater than natural background.
Demonstrably Equivalent means that the technical basis for the selection of all stormwater
BMPs is documented within a SWPPP, including:
1. The method and reasons for choosing the stormwater BMPs selected.
Construction Stormwater General Permit
Page 49
2. The pollutant removal performance expected from the BMPs selected.
3. The technical basis supporting the performance claims for the BMPs selected, including
any available data concerning field performance of the BMPs selected.
4. An assessment of how the selected BMPs will comply with state water quality standards.
5. An assessment of how the selected BMPs will satisfy both applicable federal technology-
based treatment requirements and state requirements to use all known, available, and
reasonable methods of prevention, control, and treatment (AKART).
Department means the Washington State Department of Ecology.
Detention means the temporary storage of stormwater to improve quality and/or to reduce the
mass flow rate of discharge.
Dewatering means the act of pumping ground water or stormwater away from an active
construction site.
Director means the Director of the Washington State Department of Ecology or his/her
authorized representative.
Discharger means an owner or operator of any facility or activity subject to regulation under
Chapter 90.48 RCW or the Federal Clean Water Act.
Domestic Wastewater means water carrying human wastes, including kitchen, bath, and laundry
wastes from residences, buildings, industrial establishments, or other places, together with such
ground water infiltration or surface waters as may be present.
Ecology means the Washington State Department of Ecology.
Engineered Soils means the use of soil amendments including, but not limited, to Portland
cement treated base (CTB), cement kiln dust (CKD), or fly ash to achieve certain desirable soil
characteristics.
Equivalent BMPs means operational, source control, treatment, or innovative BMPs which
result in equal or better quality of stormwater discharge to surface water or to ground water than
BMPs selected from the SWMM.
Erosion means the wearing away of the land surface by running water, wind, ice, or other
geological agents, including such processes as gravitational creep.
Erosion and Sediment Control BMPs means BMPs intended to prevent erosion and
sedimentation, such as preserving natural vegetation, seeding, mulching and matting, plastic
covering, filter fences, sediment traps, and ponds. Erosion and sediment control BMPs are
synonymous with stabilization and structural BMPs.
Federal Operator Operator
any department, agency or instrumentality of the executive, legislative, and judicial branches of
Construction Stormwater General Permit
Page 50
the Federal government of the United States, or another entity, such as a private contractor,
performing construction activity for any such department, agency, or instrumentality.
Final Stabilization (same as fully stabilized or full stabilization) means the establishment of a
permanent vegetative cover, or equivalent permanent stabilization measures (examples of
permanent non-vegetative stabilization methods include, but are not limited to riprap, gabions or
geotextiles) which prevents erosion.
Ground Water means water in a saturated zone or stratum beneath the land surface or a surface
waterbody.
Hazardous Substance means any dangerous or extremely hazardous waste as defined in RCW
70.105.010 (5) and (6), or any dangerous or extremely dangerous waste as designated by rule under
chapter 70.105 RCW; any hazardous substance as defined in RCW 70.105.010(10) or any
hazardous substance as defined by rule under chapter 70.105 RCW; any substance that, on the
effective date of this section, is a hazardous substance under section 101(14) of the federal cleanup
law, 42 U.S.C., Sec. 9601(14); petroleum or petroleum products; and any substance or category of
substances, including solid waste decomposition products, determined by the director by rule to
present a threat to human health or the environment if released into the environment. The term
hazardous substance does not include any of the following when contained in an underground
storage tank from which there is not a release: crude oil or any fraction thereof or petroleum, if the
tank is in compliance with all applicable federal, state, and local law.
Injection Well means a well that is used for the subsurface emplacement of fluids. (See Well.)
Jurisdiction means a political unit such as a city, town or county; incorporated for local self-
government.
National Pollutant Discharge Elimination System (NPDES) means the national program for
issuing, modifying, revoking and reissuing, terminating, monitoring, and enforcing permits, and
imposing and enforcing pretreatment requirements, under sections 307, 402, 318, and 405 of the
Federal Clean Water Act, for the discharge of pollutants to surface waters of the State from point
sources. These permits are referred to as NPDES permits and, in Washington State, are
administered by the Washington State Department of Ecology.
Notice of Intent (NOI) means the application for, or a request for coverage under this general
permit pursuant to WAC 173-226-200.
Notice of Termination (NOT) means a request for termination of coverage under this general
permit as specified by Special Condition S10 of this permit.
Operator means any party associated with a construction project that meets either of the
following two criteria:
The party has operational control over construction plans and specifications, including
the ability to make modifications to those plans and specifications; or
Construction Stormwater General Permit
Page 51
The party has day-to-day operational control of those activities at a project that are
necessary to ensure compliance with a SWPPP for the site or other permit conditions
(e.g., they are authorized to direct workers at a site to carry out activities required by the
SWPPP or comply with other permit conditions).
Permittee means individual or entity that receives notice of coverage under this general permit.
pH . A pH of 7 is defined as neutral. Large
variations above or below this value are considered harmful to most aquatic life.
pH Monitoring Period means the time period in which the pH of stormwater runoff from a site
must be tested a minimum of once every seven days to determine if stormwater pH is between
6.5 and 8.5.
Point Source means any discernible, confined, and discrete conveyance, including but not
limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, and container from
which pollutants are or may be discharged to surface waters of the State. This term does not
include return flows from irrigated agriculture. (See Fact Sheet for further explanation.)
Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage,
garbage, domestic sewage sludge (biosolids), munitions, chemical wastes, biological materials,
radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and
industrial, municipal, and agricultural waste. This term does not include sewage from vessels
within the meaning of section 312 of the CWA, nor does it include dredged or fill material
discharged in accordance with a permit issued under section 404 of the CWA.
Pollution means contamination or other alteration of the physical, chemical, or biological
properties of waters of the State; including change in temperature, taste, color, turbidity, or odor
of the waters; or such discharge of any liquid, gaseous, solid, radioactive or other substance into
any waters of the State as will or is likely to create a nuisance or render such waters harmful,
detrimental or injurious to the public health, safety or welfare; or to domestic, commercial,
industrial, agricultural, recreational, or other legitimate beneficial uses; or to livestock, wild
animals, birds, fish or other aquatic life.
Process Wastewater means any water which, during manufacturing or processing, comes into
direct contact with or results from the production or use of any raw material, intermediate
product, finished product, byproduct, or waste product. If stormwater commingles with process
wastewater, the commingled water is considered process wastewater.
Receiving Water means the waterbody at the point of discharge. If the discharge is to a storm
sewer system, either surface or subsurface, the receiving water is the waterbody to which the
storm system discharges. Systems designed primarily for other purposes such as for ground
water drainage, redirecting stream natural flows, or for conveyance of irrigation water/return
flows that coincidentally convey stormwater are considered the receiving water.
Construction Stormwater General Permit
Page 52
Representative means a stormwater or wastewater sample which represents the flow and
characteristics of the discharge. Representative samples may be a grab sample, a time-
proportionate composite sample, or a flow proportionate sample.
Stormwater Monitoring Manual provides guidance on representative sampling.
Responsible Corporate Officer for the purpose of signatory authority means: (i) a president,
secretary, treasurer, or vice-president of the corporation in charge of a principal business
function, or any other person who performs similar policy- or decision-making functions for the
corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities,
provided, the manager is authorized to make management decisions which govern the operation
of the regulated facility including having the explicit or implicit duty of making major capital
investment recommendations, and initiating and directing other comprehensive measures to
assure long term environmental compliance with environmental laws and regulations; the
manager can ensure that the necessary systems are established or actions taken to gather
complete and accurate information for permit application requirements; and where authority to
sign documents has been assigned or delegated to the manager in accordance with corporate
procedures (40 CFR 122.22).
Sanitary Sewer means a sewer which is designed to convey domestic wastewater.
Sediment means the fragmented material that originates from the weathering and erosion of
rocks or unconsolidated deposits, and is transported by, suspended in, or deposited by water.
Sedimentation means the depositing or formation of sediment.
Sensitive Area means a waterbody, wetland, stream, aquifer recharge area, or channel migration
zone.
SEPA (State Environmental Policy Act) means the Washington State Law, RCW 43.21C.020,
intended to prevent or eliminate damage to the environment.
Significant Amount means an amount of a pollutant in a discharge that is amenable to available
and reasonable methods of prevention or treatment; or an amount of a pollutant that has a
reasonable potential to cause a violation of surface or ground water quality or sediment
management standards.
Significant Concrete Work means greater than 1000 cubic yards poured concrete or recycled
concrete used over the life of a project.
Significant Contributor of Pollutants means a facility determined by Ecology to be a
contributor of a significant amount(s) of a pollutant(s) to waters of the State of Washington.
Site means the land or water area where any "facility or activity" is physically located or
conducted.
Source Control BMPs means physical, structural or mechanical devices or facilities that are
intended to prevent pollutants from entering stormwater. A few examples of source control
Construction Stormwater General Permit
Page 53
BMPs are erosion control practices, maintenance of stormwater facilities, constructing roofs over
storage and working areas, and directing wash water and similar discharges to the sanitary sewer
or a dead end sump.
Stabilization means the application of appropriate BMPs to prevent the erosion of soils, such as,
temporary and permanent seeding, vegetative covers, mulching and matting, plastic covering and
sodding. See also the definition of Erosion and Sediment Control BMPs.
Storm Drain means any drain which drains directly into a storm sewer system, usually found
along roadways or in parking lots.
Storm Sewer System means a means a conveyance, or system of conveyances (including roads
with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade
channels, or storm drains designed or used for collecting or conveying stormwater. This does not
include systems which are part of a combined sewer or Publicly Owned Treatment Works
(POTW) as defined at 40 CFR 122.2.
Stormwater means that portion of precipitation that does not naturally percolate into the ground
or evaporate, but flows via overland flow, interflow, pipes, and other features of a stormwater
drainage system into a defined surface waterbody, or a constructed infiltration facility.
Stormwater Management Manual (SWMM) or Manual means the technical Manual
published by Ecology for use by local governments that contain descriptions of and design
criteria for BMPs to prevent, control, or treat pollutants in stormwater.
Stormwater Pollution Prevention Plan (SWPPP) means a documented plan to implement
measures to identify, prevent, and control the contamination of point source discharges of
stormwater.
Surface Waters of the State includes lakes, rivers, ponds, streams, inland waters, salt waters,
and all other surface waters and water courses within the jurisdiction of the State of Washington.
Temporary Stabilization means the exposed ground surface has been covered with appropriate
materials to provide temporary stabilization of the surface from water or wind erosion. Materials
include, but are not limited to, mulch, riprap, erosion control mats or blankets and temporary
cover crops. Seeding alone is not considered stabilization. Temporary stabilization is not a
final stabilization
Total Maximum Daily Load (TMDL) means a calculation of the maximum amount of a
pollutant that a waterbody can receive and still meet state water quality standards. Percentages
of the total maximum daily load are allocated to the various pollutant sources. A TMDL is the
sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources.
The TMDL calculations must include a "margin of safety" to ensure that the waterbody can be
protected in case there are unforeseen events or unknown sources of the pollutant. The
calculation must also account for seasonable variation in water quality.
Construction Stormwater General Permit
Page 54
Transfer of Coverage (TOC) means a request for transfer of coverage under this general permit
as specified by General Condition G9 of this permit.
Treatment BMPs means BMPs that are intended to remove pollutants from stormwater. A few
examples of treatment BMPs are detention ponds, oil/water separators, biofiltration, and
constructed wetlands.
Transparency means a measurement of water clarity in centimeters (cm), using a 60 cm
transparency tube. The transparency tube is used to estimate the relative clarity or transparency
of water by noting the depth at which a black and white Secchi disc becomes visible when water
is released from a value in the bottom of the tube. A transparency tube is sometimes referred to
turbidity t
Turbidity means the clarity of water expressed as nephelometric turbidity units (NTUs) and
measured with a calibrated turbidimeter.
Uncontaminated means free from any contaminant. contaminant WAC
173-340-200.
Waste Load Allocation (WLA)
is allocated to one of its existing or future point sources of pollution. WLAs constitute a type of
water quality based effluent limitation (40 CFR 130.2[h]).
Water-only Based Shaft Drilling is a shaft drilling process that uses water only and no
additives are involved in the drilling of shafts for construction of building, road, or bridge
foundations.
Water quality means the chemical, physical, and biological characteristics of water, usually
with respect to its suitability for a particular purpose.
Waters of the State includes those waters as defined as "waters of the United States" in 40 CFR
Subpart 122.2 within the geographic boundaries of Washington State and "waters of the State" as
defined in Chapter 90.48 RCW, which include lakes, rivers, ponds, streams, inland waters,
underground waters, salt waters, and all other surface waters and water courses within the
jurisdiction of the state of Washington.
Well means a bored, drilled or driven shaft, or dug hole whose depth is greater than the largest
surface dimension. (See Injection well.)
Wheel Wash Wastewater means any water used in, or resulting from the operation of, a tire
bath or wheel wash (BMP C106: Wheel Wash), or other structure or practice that uses water to
physically remove mud and debris from vehicles leaving a construction site and prevent track-
out onto roads. When stormwater comingles with wheel wash wastewater, the resulting water is
considered wheel wash wastewater and must be managed according to Special Condition S9.D.9.
Construction Stormwater General Permit
Page 55
APPENDIX B ACRONYMS
AKART All Known, Available, and Reasonable Methods of Prevention, Control,
and Treatment
BMP Best Management Practice
CESCL Certified Erosion and Sediment Control Lead
CFR Code of Federal Regulations
CKD Cement Kiln Dust
cm Centimeters
CTB Cement-Treated Base
CWA Clean Water Act
DMR Discharge Monitoring Report
EPA Environmental Protection Agency
ERTS Environmental Report Tracking System
ESC Erosion and Sediment Control
FR Federal Register
LID Low Impact Development
NOI Notice of Intent
NOT Notice of Termination
NPDES National Pollutant Discharge Elimination System
NTU Nephelometric Turbidity Unit
RCW Revised Code of Washington
SEPA State Environmental Policy Act
SWMM Stormwater Management Manual
SWPPP Stormwater Pollution Prevention Plan
TMDL Total Maximum Daily Load
UIC Underground Injection Control
USC United States Code
USEPA United States Environmental Protection Agency
WAC Washington Administrative Code
WQ Water Quality
WWHM Western Washington Hydrology Model
WWHM2012
PROJECT REPORT
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 2
General Model Information
Project Name:18615 - .5 infiltration
Site Name:
Site Address:
City:
Report Date:6/13/2019
Gage:Seatac
Data Start:1948/10/01
Data End:2009/09/30
Timestep:15 Minute
Precip Scale:0.000 (adjusted)
Version Date:2018/10/10
Version:4.2.16
POC Thresholds
Low Flow Threshold for POC1:50 Percent of the 2 Year
High Flow Threshold for POC1:50 Year
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 3
Landuse Basin Data
Predeveloped Land Use
Basin 1
Bypass:No
GroundWater:No
Pervious Land Use acre
C, Forest, Mod 1.7882
Pervious Total 1.7882
Impervious Land Use acre
Impervious Total 0
Basin Total 1.7882
Element Flows To:
Surface Interflow Groundwater
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 4
Mitigated Land Use
Basin 1 (Building)
Bypass:No
GroundWater:No
Pervious Land Use acre
Pervious Total 0
Impervious Land Use acre
ROOF TOPS FLAT 0.2428
Impervious Total 0.2428
Basin Total 0.2428
Element Flows To:
Surface Interflow Groundwater
DETENTION/INFILTRATION VAULTDETENTION/INFILTRATION VAULT
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 5
Basin 3: Building & Site
Bypass:No
GroundWater:No
Pervious Land Use acre
C, Pasture, Mod 0.7605
Pervious Total 0.7605
Impervious Land Use acre
ROADS MOD 0.3538
ROOF TOPS FLAT 0.1653
SIDEWALKS MOD 0.2026
Impervious Total 0.7217
Basin Total 1.4822
Element Flows To:
Surface Interflow Groundwater
DETENTION/INFILTRATION VAULTDETENTION/INFILTRATION VAULT
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 6
Basin 2: Building 2
Bypass:No
GroundWater:No
Pervious Land Use acre
Pervious Total 0
Impervious Land Use acre
ROOF TOPS FLAT 0.0633
Impervious Total 0.0633
Basin Total 0.0633
Element Flows To:
Surface Interflow Groundwater
DETENTION/INFILTRATION VAULTDETENTION/INFILTRATION VAULT
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 7
Routing Elements
Predeveloped Routing
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 8
Mitigated Routing
DETENTION/INFILTRATION VAULT
Width:36 ft.
Length:72 ft.
Depth:5.9 ft.
Infiltration On
Infiltration rate:0.5
Infiltration safety factor:1
Total Volume Infiltrated (ac-ft.):140.39
Total Volume Through Riser (ac-ft.):62.181
Total Volume Through Facility (ac-ft.):202.571
Percent Infiltrated:69.3
Total Precip Applied to Facility:0
Total Evap From Facility:0
Discharge Structure
Riser Height:4.9 ft.
Riser Diameter:12 in.
Notch Type:Rectangular
Notch Width:0.012 ft.
Notch Height:0.250 ft.
Orifice 1 Diameter:1.0625 in.Elevation:0 ft.
Orifice 2 Diameter:1.125 in.Elevation:2.9 ft.
Element Flows To:
Outlet 1 Outlet 2
Vault Hydraulic Table
Stage(feet)Area(ac.)Volume(ac-ft.)Discharge(cfs)Infilt(cfs)
0.0000 0.059 0.000 0.000 0.000
0.0656 0.059 0.003 0.007 0.030
0.1311 0.059 0.007 0.011 0.030
0.1967 0.059 0.011 0.013 0.030
0.2622 0.059 0.015 0.015 0.030
0.3278 0.059 0.019 0.017 0.030
0.3933 0.059 0.023 0.019 0.030
0.4589 0.059 0.027 0.020 0.030
0.5244 0.059 0.031 0.022 0.030
0.5900 0.059 0.035 0.023 0.030
0.6556 0.059 0.039 0.024 0.030
0.7211 0.059 0.042 0.026 0.030
0.7867 0.059 0.046 0.027 0.030
0.8522 0.059 0.050 0.028 0.030
0.9178 0.059 0.054 0.029 0.030
0.9833 0.059 0.058 0.030 0.030
1.0489 0.059 0.062 0.031 0.030
1.1144 0.059 0.066 0.032 0.030
1.1800 0.059 0.070 0.033 0.030
1.2456 0.059 0.074 0.034 0.030
1.3111 0.059 0.078 0.035 0.030
1.3767 0.059 0.081 0.035 0.030
1.4422 0.059 0.085 0.036 0.030
1.5078 0.059 0.089 0.037 0.030
1.5733 0.059 0.093 0.038 0.030
1.6389 0.059 0.097 0.039 0.030
1.7044 0.059 0.101 0.040 0.030
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 9
1.7700 0.059 0.105 0.040 0.030
1.8356 0.059 0.109 0.041 0.030
1.9011 0.059 0.113 0.042 0.030
1.9667 0.059 0.117 0.043 0.030
2.0322 0.059 0.120 0.043 0.030
2.0978 0.059 0.124 0.044 0.030
2.1633 0.059 0.128 0.045 0.030
2.2289 0.059 0.132 0.045 0.030
2.2944 0.059 0.136 0.046 0.030
2.3600 0.059 0.140 0.047 0.030
2.4256 0.059 0.144 0.047 0.030
2.4911 0.059 0.148 0.048 0.030
2.5567 0.059 0.152 0.049 0.030
2.6222 0.059 0.156 0.049 0.030
2.6878 0.059 0.159 0.050 0.030
2.7533 0.059 0.163 0.050 0.030
2.8189 0.059 0.167 0.051 0.030
2.8844 0.059 0.171 0.052 0.030
2.9500 0.059 0.175 0.060 0.030
3.0156 0.059 0.179 0.064 0.030
3.0811 0.059 0.183 0.068 0.030
3.1467 0.059 0.187 0.071 0.030
3.2122 0.059 0.191 0.074 0.030
3.2778 0.059 0.195 0.076 0.030
3.3433 0.059 0.198 0.078 0.030
3.4089 0.059 0.202 0.081 0.030
3.4744 0.059 0.206 0.083 0.030
3.5400 0.059 0.210 0.085 0.030
3.6056 0.059 0.214 0.087 0.030
3.6711 0.059 0.218 0.088 0.030
3.7367 0.059 0.222 0.090 0.030
3.8022 0.059 0.226 0.092 0.030
3.8678 0.059 0.230 0.094 0.030
3.9333 0.059 0.234 0.095 0.030
3.9989 0.059 0.238 0.097 0.030
4.0644 0.059 0.241 0.098 0.030
4.1300 0.059 0.245 0.100 0.030
4.1956 0.059 0.249 0.101 0.030
4.2611 0.059 0.253 0.103 0.030
4.3267 0.059 0.257 0.104 0.030
4.3922 0.059 0.261 0.106 0.030
4.4578 0.059 0.265 0.107 0.030
4.5233 0.059 0.269 0.108 0.030
4.5889 0.059 0.273 0.110 0.030
4.6544 0.059 0.277 0.111 0.030
4.7200 0.059 0.280 0.113 0.030
4.7856 0.059 0.284 0.116 0.030
4.8511 0.059 0.288 0.118 0.030
4.9167 0.059 0.292 0.144 0.030
4.9822 0.059 0.296 0.371 0.030
5.0478 0.059 0.300 0.715 0.030
5.1133 0.059 0.304 1.115 0.030
5.1789 0.059 0.308 1.516 0.030
5.2444 0.059 0.312 1.864 0.030
5.3100 0.059 0.316 2.121 0.030
5.3756 0.059 0.319 2.286 0.030
5.4411 0.059 0.323 2.447 0.030
5.5067 0.059 0.327 2.585 0.030
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 10
5.5722 0.059 0.331 2.715 0.030
5.6378 0.059 0.335 2.839 0.030
5.7033 0.059 0.339 2.958 0.030
5.7689 0.059 0.343 3.072 0.030
5.8344 0.059 0.347 3.182 0.030
5.9000 0.059 0.351 3.288 0.030
5.9656 0.059 0.355 3.390 0.030
6.0311 0.000 0.000 3.490 0.000
18615 - .5 infiltration 6/13/2019 6:50:09 AM Page 11
Analysis Results
POC 1
+ Predeveloped x Mitigated
Predeveloped Landuse Totals for POC #1
Total Pervious Area:1.7882
Total Impervious Area:0
Mitigated Landuse Totals for POC #1
Total Pervious Area:0.7605
Total Impervious Area:1.0278
Flow Frequency Method:Log Pearson Type III 17B
Flow Frequency Return Periods for Predeveloped. POC #1
Return Period Flow(cfs)
2 year 0.053244
5 year 0.087245
10 year 0.109107
25 year 0.135113
50 year 0.153126
100 year 0.169951
Flow Frequency Return Periods for Mitigated. POC #1
Return Period Flow(cfs)
2 year 0.042264
5 year 0.062389
10 year 0.078793
25 year 0.103469
50 year 0.125023
100 year 0.149566
Annual Peaks
Annual Peaks for Predeveloped and Mitigated. POC #1
Year Predeveloped Mitigated
1949 0.061 0.037
1950 0.073 0.042
1951 0.116 0.093
1952 0.036 0.033
1953 0.029 0.033
1954 0.045 0.035
1955 0.072 0.048
1956 0.058 0.042
1957 0.047 0.040
1958 0.052 0.040
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 12
1959 0.045 0.035
1960 0.080 0.085
1961 0.044 0.038
1962 0.027 0.029
1963 0.038 0.037
1964 0.053 0.037
1965 0.036 0.040
1966 0.034 0.030
1967 0.082 0.045
1968 0.046 0.032
1969 0.045 0.039
1970 0.036 0.035
1971 0.041 0.038
1972 0.088 0.052
1973 0.039 0.034
1974 0.043 0.030
1975 0.060 0.046
1976 0.043 0.035
1977 0.006 0.030
1978 0.037 0.039
1979 0.022 0.029
1980 0.104 0.049
1981 0.033 0.033
1982 0.067 0.085
1983 0.058 0.042
1984 0.035 0.033
1985 0.021 0.037
1986 0.091 0.074
1987 0.081 0.082
1988 0.032 0.033
1989 0.021 0.023
1990 0.193 0.076
1991 0.102 0.091
1992 0.042 0.034
1993 0.041 0.037
1994 0.014 0.022
1995 0.058 0.042
1996 0.135 0.091
1997 0.104 0.098
1998 0.026 0.032
1999 0.114 0.059
2000 0.041 0.036
2001 0.007 0.027
2002 0.047 0.072
2003 0.070 0.029
2004 0.075 0.162
2005 0.056 0.045
2006 0.063 0.041
2007 0.146 0.097
2008 0.178 0.116
2009 0.083 0.051
Ranked Annual Peaks
Ranked Annual Peaks for Predeveloped and Mitigated. POC #1
Rank Predeveloped Mitigated
1 0.1928 0.1617
2 0.1776 0.1156
3 0.1457 0.0984
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 13
4 0.1350 0.0973
5 0.1163 0.0931
6 0.1143 0.0912
7 0.1042 0.0910
8 0.1040 0.0855
9 0.1023 0.0846
10 0.0912 0.0822
11 0.0883 0.0761
12 0.0828 0.0739
13 0.0818 0.0721
14 0.0805 0.0587
15 0.0803 0.0516
16 0.0751 0.0510
17 0.0727 0.0493
18 0.0724 0.0478
19 0.0703 0.0464
20 0.0674 0.0450
21 0.0627 0.0447
22 0.0613 0.0423
23 0.0604 0.0418
24 0.0584 0.0417
25 0.0583 0.0416
26 0.0577 0.0414
27 0.0557 0.0404
28 0.0535 0.0402
29 0.0522 0.0396
30 0.0471 0.0387
31 0.0470 0.0385
32 0.0460 0.0384
33 0.0453 0.0378
34 0.0448 0.0372
35 0.0448 0.0371
36 0.0441 0.0370
37 0.0434 0.0368
38 0.0432 0.0366
39 0.0418 0.0355
40 0.0408 0.0354
41 0.0406 0.0353
42 0.0406 0.0352
43 0.0391 0.0347
44 0.0377 0.0340
45 0.0365 0.0335
46 0.0365 0.0335
47 0.0360 0.0333
48 0.0355 0.0333
49 0.0347 0.0332
50 0.0342 0.0327
51 0.0326 0.0324
52 0.0318 0.0321
53 0.0295 0.0301
54 0.0275 0.0300
55 0.0255 0.0297
56 0.0221 0.0291
57 0.0210 0.0289
58 0.0206 0.0285
59 0.0137 0.0271
60 0.0073 0.0230
61 0.0063 0.0223
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 14
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 15
Duration Flows
The Facility PASSED
Flow(cfs)Predev Mit Percentage Pass/Fail
0.0266 17077 17128 100 Pass
0.0279 15494 15180 97 Pass
0.0292 14072 13533 96 Pass
0.0305 12799 11965 93 Pass
0.0317 11567 10525 90 Pass
0.0330 10515 9240 87 Pass
0.0343 9567 8104 84 Pass
0.0356 8752 7099 81 Pass
0.0368 8031 6252 77 Pass
0.0381 7347 5414 73 Pass
0.0394 6731 4765 70 Pass
0.0407 6192 4282 69 Pass
0.0420 5730 3814 66 Pass
0.0432 5309 3392 63 Pass
0.0445 4924 2939 59 Pass
0.0458 4569 2603 56 Pass
0.0471 4235 2257 53 Pass
0.0483 3951 1943 49 Pass
0.0496 3643 1602 43 Pass
0.0509 3388 1329 39 Pass
0.0522 3133 1111 35 Pass
0.0535 2915 1078 36 Pass
0.0547 2706 1057 39 Pass
0.0560 2488 1037 41 Pass
0.0573 2314 1018 43 Pass
0.0586 2136 998 46 Pass
0.0598 1972 982 49 Pass
0.0611 1822 963 52 Pass
0.0624 1702 943 55 Pass
0.0637 1577 924 58 Pass
0.0650 1442 900 62 Pass
0.0662 1325 878 66 Pass
0.0675 1232 847 68 Pass
0.0688 1147 818 71 Pass
0.0701 1085 787 72 Pass
0.0713 1020 753 73 Pass
0.0726 947 712 75 Pass
0.0739 885 677 76 Pass
0.0752 824 637 77 Pass
0.0765 760 595 78 Pass
0.0777 725 562 77 Pass
0.0790 674 524 77 Pass
0.0803 623 488 78 Pass
0.0816 589 440 74 Pass
0.0828 549 397 72 Pass
0.0841 506 367 72 Pass
0.0854 469 331 70 Pass
0.0867 427 307 71 Pass
0.0880 388 285 73 Pass
0.0892 356 255 71 Pass
0.0905 328 229 69 Pass
0.0918 297 197 66 Pass
0.0931 270 178 65 Pass
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 16
0.0943 241 166 68 Pass
0.0956 218 146 66 Pass
0.0969 197 126 63 Pass
0.0982 173 108 62 Pass
0.0995 152 97 63 Pass
0.1007 130 91 70 Pass
0.1020 119 84 70 Pass
0.1033 106 78 73 Pass
0.1046 95 72 75 Pass
0.1058 84 65 77 Pass
0.1071 74 61 82 Pass
0.1084 69 55 79 Pass
0.1097 61 49 80 Pass
0.1110 54 43 79 Pass
0.1122 46 38 82 Pass
0.1135 39 32 82 Pass
0.1148 31 28 90 Pass
0.1161 25 16 64 Pass
0.1173 22 12 54 Pass
0.1186 20 9 45 Pass
0.1199 17 9 52 Pass
0.1212 14 8 57 Pass
0.1225 12 8 66 Pass
0.1237 8 8 100 Pass
0.1250 7 7 100 Pass
0.1263 7 7 100 Pass
0.1276 7 6 85 Pass
0.1288 6 6 100 Pass
0.1301 6 5 83 Pass
0.1314 6 5 83 Pass
0.1327 6 5 83 Pass
0.1340 6 5 83 Pass
0.1352 5 4 80 Pass
0.1365 5 4 80 Pass
0.1378 5 4 80 Pass
0.1391 5 4 80 Pass
0.1403 5 4 80 Pass
0.1416 5 4 80 Pass
0.1429 5 4 80 Pass
0.1442 4 3 75 Pass
0.1455 4 2 50 Pass
0.1467 3 2 66 Pass
0.1480 3 2 66 Pass
0.1493 3 2 66 Pass
0.1506 3 2 66 Pass
0.1518 3 2 66 Pass
0.1531 3 2 66 Pass
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 17
Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume:0.1417 acre-feet
On-line facility target flow:0.1725 cfs.
Adjusted for 15 min:0.1725 cfs.
Off-line facility target flow:0.0963 cfs.
Adjusted for 15 min:0.0963 cfs.
18615 - .5 infiltration 6/13/2019 6:50:53 AM Page 18
LID Report
18615 - .5 infiltration 6/13/2019 6:51:16 AM Page 19
Model Default Modifications
Total of 0 changes have been made.
PERLND Changes
No PERLND changes have been made.
IMPLND Changes
No IMPLND changes have been made.
18615 - .5 infiltration 6/13/2019 6:51:16 AM Page 20
Appendix
Predeveloped Schematic
18615 - .5 infiltration 6/13/2019 6:51:17 AM Page 21
Mitigated Schematic
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 22
Predeveloped UCI File
RUN
GLOBAL
WWHM4 model simulation
START 1948 10 01 END 2009 09 30
RUN INTERP OUTPUT LEVEL 3 0
RESUME 0 RUN 1 UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <-----------File Name------------------------------>***
<-ID-> ***
WDM 26 18615 - .5 infiltration.wdm
MESSU 25 Pre18615 - .5 infiltration.MES
27 Pre18615 - .5 infiltration.L61
28 Pre18615 - .5 infiltration.L62
30 POC18615 - .5 infiltration1.dat
END FILES
OPN SEQUENCE
INGRP INDELT 00:15
PERLND 11
COPY 501
DISPLY 1
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
# - #<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Basin 1 MAX 1 2 30 9
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES
# - # NPT NMN ***
1 1 1
501 1 1
END TIMESERIES
END COPY
GENER
OPCODE
# # OPCD ***
END OPCODE
PARM
# # K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer ***
# - # User t-series Engl Metr ***
in out ***
11 C, Forest, Mod 1 1 1 1 27 0
END GEN-INFO
*** Section PWATER***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
11 0 0 1 0 0 0 0 0 0 0 0 0
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ***************************** PIVL PYR
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
11 0 0 4 0 0 0 0 0 0 0 0 0 1 9
END PRINT-INFO
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 23
PWAT-PARM1
<PLS > PWATER variable monthly parameter value flags ***
# - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
11 0 0 0 0 0 0 0 0 0 0 0
END PWAT-PARM1
PWAT-PARM2
<PLS > PWATER input info: Part 2 ***
# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
11 0 4.5 0.08 400 0.1 0.5 0.996
END PWAT-PARM2
PWAT-PARM3
<PLS > PWATER input info: Part 3 ***
# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP
11 0 0 2 2 0 0 0
END PWAT-PARM3
PWAT-PARM4
<PLS > PWATER input info: Part 4 ***
# - # CEPSC UZSN NSUR INTFW IRC LZETP ***
11 0.2 0.5 0.35 6 0.5 0.7
END PWAT-PARM4
PWAT-STATE1
<PLS > *** Initial conditions at start of simulation
ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
# - # *** CEPS SURS UZS IFWS LZS AGWS GWVS
11 0 0 0 0 2.5 1 0
END PWAT-STATE1
END PERLND
IMPLND
GEN-INFO
<PLS ><-------Name-------> Unit-systems Printer ***
# - # User t-series Engl Metr ***
in out ***
END GEN-INFO
*** Section IWATER***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # ATMP SNOW IWAT SLD IWG IQAL ***
END ACTIVITY
PRINT-INFO
<ILS > ******** Print-flags ******** PIVL PYR
# - # ATMP SNOW IWAT SLD IWG IQAL *********
END PRINT-INFO
IWAT-PARM1
<PLS > IWATER variable monthly parameter value flags ***
# - # CSNO RTOP VRS VNN RTLI ***
END IWAT-PARM1
IWAT-PARM2
<PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
END IWAT-PARM2
IWAT-PARM3
<PLS > IWATER input info: Part 3 ***
# - # ***PETMAX PETMIN
END IWAT-PARM3
IWAT-STATE1
<PLS > *** Initial conditions at start of simulation
# - # *** RETS SURS
END IWAT-STATE1
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 24
END IMPLND
SCHEMATIC
<-Source-> <--Area--> <-Target-> MBLK ***
<Name> # <-factor-> <Name> # Tbl# ***
Basin 1***
PERLND 11 1.7882 COPY 501 12
PERLND 11 1.7882 COPY 501 13
******Routing******
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
END NETWORK
RCHRES
GEN-INFO
RCHRES Name Nexits Unit Systems Printer ***
# - #<------------------><---> User T-series Engl Metr LKFG ***
in out ***
END GEN-INFO
*** Section RCHRES***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ******************* PIVL PYR
# - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *********
END PRINT-INFO
HYDR-PARM1
RCHRES Flags for each HYDR Section ***
# - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
FG FG FG FG possible exit *** possible exit possible exit
* * * * * * * * * * * * * * ***
END HYDR-PARM1
HYDR-PARM2
# - # FTABNO LEN DELTH STCOR KS DB50 ***
<------><--------><--------><--------><--------><--------><--------> ***
END HYDR-PARM2
HYDR-INIT
RCHRES Initial conditions for each HYDR section ***
# - # *** VOL Initial value of COLIND Initial value of OUTDGT
*** ac-ft for each possible exit for each possible exit
<------><--------> <---><---><---><---><---> *** <---><---><---><---><--->
END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # ***
WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC
WDM 2 PREC ENGL 1 IMPLND 1 999 EXTNL PREC
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 25
WDM 1 EVAP ENGL 0.76 PERLND 1 999 EXTNL PETINP
WDM 1 EVAP ENGL 0.76 IMPLND 1 999 EXTNL PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL
END EXT TARGETS
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->***
<Name> <Name> # #<-factor-> <Name> <Name> # #***
MASS-LINK 12
PERLND PWATER SURO 0.083333 COPY INPUT MEAN
END MASS-LINK 12
MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY INPUT MEAN
END MASS-LINK 13
END MASS-LINK
END RUN
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 26
Mitigated UCI File
RUN
GLOBAL
WWHM4 model simulation
START 1948 10 01 END 2009 09 30
RUN INTERP OUTPUT LEVEL 3 0
RESUME 0 RUN 1 UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#> <-----------File Name------------------------------>***
<-ID-> ***
WDM 26 18615 - .5 infiltration.wdm
MESSU 25 Mit18615 - .5 infiltration.MES
27 Mit18615 - .5 infiltration.L61
28 Mit18615 - .5 infiltration.L62
30 POC18615 - .5 infiltration1.dat
END FILES
OPN SEQUENCE
INGRP INDELT 00:15
IMPLND 4
PERLND 14
IMPLND 2
IMPLND 9
RCHRES 1
COPY 1
COPY 501
DISPLY 1
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
# - #<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 DETENTION/INFILTRATION VA MAX 1 2 30 9
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES
# - # NPT NMN ***
1 1 1
501 1 1
END TIMESERIES
END COPY
GENER
OPCODE
# # OPCD ***
END OPCODE
PARM
# # K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer ***
# - # User t-series Engl Metr ***
in out ***
14 C, Pasture, Mod 1 1 1 1 27 0
END GEN-INFO
*** Section PWATER***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
14 0 0 1 0 0 0 0 0 0 0 0 0
END ACTIVITY
PRINT-INFO
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 27
<PLS > ***************** Print-flags ***************************** PIVL PYR
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
14 0 0 4 0 0 0 0 0 0 0 0 0 1 9
END PRINT-INFO
PWAT-PARM1
<PLS > PWATER variable monthly parameter value flags ***
# - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
14 0 0 0 0 0 0 0 0 0 0 0
END PWAT-PARM1
PWAT-PARM2
<PLS > PWATER input info: Part 2 ***
# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
14 0 4.5 0.06 400 0.1 0.5 0.996
END PWAT-PARM2
PWAT-PARM3
<PLS > PWATER input info: Part 3 ***
# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP
14 0 0 2 2 0 0 0
END PWAT-PARM3
PWAT-PARM4
<PLS > PWATER input info: Part 4 ***
# - # CEPSC UZSN NSUR INTFW IRC LZETP ***
14 0.15 0.4 0.3 6 0.5 0.4
END PWAT-PARM4
PWAT-STATE1
<PLS > *** Initial conditions at start of simulation
ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
# - # *** CEPS SURS UZS IFWS LZS AGWS GWVS
14 0 0 0 0 2.5 1 0
END PWAT-STATE1
END PERLND
IMPLND
GEN-INFO
<PLS ><-------Name-------> Unit-systems Printer ***
# - # User t-series Engl Metr ***
in out ***
4 ROOF TOPS/FLAT 1 1 1 27 0
2 ROADS/MOD 1 1 1 27 0
9 SIDEWALKS/MOD 1 1 1 27 0
END GEN-INFO
*** Section IWATER***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # ATMP SNOW IWAT SLD IWG IQAL ***
4 0 0 1 0 0 0
2 0 0 1 0 0 0
9 0 0 1 0 0 0
END ACTIVITY
PRINT-INFO
<ILS > ******** Print-flags ******** PIVL PYR
# - # ATMP SNOW IWAT SLD IWG IQAL *********
4 0 0 4 0 0 0 1 9
2 0 0 4 0 0 0 1 9
9 0 0 4 0 0 0 1 9
END PRINT-INFO
IWAT-PARM1
<PLS > IWATER variable monthly parameter value flags ***
# - # CSNO RTOP VRS VNN RTLI ***
4 0 0 0 0 0
2 0 0 0 0 0
9 0 0 0 0 0
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 28
END IWAT-PARM1
IWAT-PARM2
<PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
4 400 0.01 0.1 0.1
2 400 0.05 0.1 0.08
9 400 0.05 0.1 0.08
END IWAT-PARM2
IWAT-PARM3
<PLS > IWATER input info: Part 3 ***
# - # ***PETMAX PETMIN
4 0 0
2 0 0
9 0 0
END IWAT-PARM3
IWAT-STATE1
<PLS > *** Initial conditions at start of simulation
# - # *** RETS SURS
4 0 0
2 0 0
9 0 0
END IWAT-STATE1
END IMPLND
SCHEMATIC
<-Source-> <--Area--> <-Target-> MBLK ***
<Name> # <-factor-> <Name> # Tbl# ***
Basin 1 (Building)***
IMPLND 4 0.2428 RCHRES 1 5
Basin 3: Building & Site***
PERLND 14 0.7605 RCHRES 1 2
PERLND 14 0.7605 RCHRES 1 3
IMPLND 2 0.3538 RCHRES 1 5
IMPLND 4 0.1653 RCHRES 1 5
IMPLND 9 0.2026 RCHRES 1 5
Basin 2: Building 2***
IMPLND 4 0.0633 RCHRES 1 5
******Routing******
IMPLND 4 0.2428 COPY 1 15
PERLND 14 0.7605 COPY 1 12
IMPLND 2 0.3538 COPY 1 15
IMPLND 4 0.1653 COPY 1 15
IMPLND 9 0.2026 COPY 1 15
PERLND 14 0.7605 COPY 1 13
IMPLND 4 0.0633 COPY 1 15
RCHRES 1 1 COPY 501 17
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
END NETWORK
RCHRES
GEN-INFO
RCHRES Name Nexits Unit Systems Printer ***
# - #<------------------><---> User T-series Engl Metr LKFG ***
in out ***
1 DETENTION/INFILT-011 2 1 1 1 28 0 1
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 29
END GEN-INFO
*** Section RCHRES***
ACTIVITY
<PLS > ************* Active Sections *****************************
# - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
1 1 0 0 0 0 0 0 0 0 0
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ******************* PIVL PYR
# - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *********
1 4 0 0 0 0 0 0 0 0 0 1 9
END PRINT-INFO
HYDR-PARM1
RCHRES Flags for each HYDR Section ***
# - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
FG FG FG FG possible exit *** possible exit possible exit
* * * * * * * * * * * * * * ***
1 0 1 0 0 4 5 0 0 0 0 0 0 0 0 2 2 2 2 2
END HYDR-PARM1
HYDR-PARM2
# - # FTABNO LEN DELTH STCOR KS DB50 ***
<------><--------><--------><--------><--------><--------><--------> ***
1 1 0.01 0.0 0.0 0.5 0.0
END HYDR-PARM2
HYDR-INIT
RCHRES Initial conditions for each HYDR section ***
# - # *** VOL Initial value of COLIND Initial value of OUTDGT
*** ac-ft for each possible exit for each possible exit
<------><--------> <---><---><---><---><---> *** <---><---><---><---><--->
1 0 4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
FTABLE 1
92 5
Depth Area Volume Outflow1 Outflow2 Velocity Travel Time***
(ft) (acres) (acre-ft) (cfs) (cfs) (ft/sec) (Minutes)***
0.000000 0.059504 0.000000 0.000000 0.000000
0.065556 0.059504 0.003901 0.007844 0.030000
0.131111 0.059504 0.007802 0.011093 0.030000
0.196667 0.059504 0.011702 0.013586 0.030000
0.262222 0.059504 0.015603 0.015687 0.030000
0.327778 0.059504 0.019504 0.017539 0.030000
0.393333 0.059504 0.023405 0.019213 0.030000
0.458889 0.059504 0.027306 0.020752 0.030000
0.524444 0.059504 0.031207 0.022185 0.030000
0.590000 0.059504 0.035107 0.023531 0.030000
0.655556 0.059504 0.039008 0.024804 0.030000
0.721111 0.059504 0.042909 0.026015 0.030000
0.786667 0.059504 0.046810 0.027171 0.030000
0.852222 0.059504 0.050711 0.028281 0.030000
0.917778 0.059504 0.054612 0.029348 0.030000
0.983333 0.059504 0.058512 0.030379 0.030000
1.048889 0.059504 0.062413 0.031375 0.030000
1.114444 0.059504 0.066314 0.032340 0.030000
1.180000 0.059504 0.070215 0.033278 0.030000
1.245556 0.059504 0.074116 0.034190 0.030000
1.311111 0.059504 0.078017 0.035078 0.030000
1.376667 0.059504 0.081917 0.035944 0.030000
1.442222 0.059504 0.085818 0.036790 0.030000
1.507778 0.059504 0.089719 0.037617 0.030000
1.573333 0.059504 0.093620 0.038426 0.030000
1.638889 0.059504 0.097521 0.039219 0.030000
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 30
1.704444 0.059504 0.101421 0.039995 0.030000
1.770000 0.059504 0.105322 0.040757 0.030000
1.835556 0.059504 0.109223 0.041505 0.030000
1.901111 0.059504 0.113124 0.042240 0.030000
1.966667 0.059504 0.117025 0.042962 0.030000
2.032222 0.059504 0.120926 0.043672 0.030000
2.097778 0.059504 0.124826 0.044371 0.030000
2.163333 0.059504 0.128727 0.045059 0.030000
2.228889 0.059504 0.132628 0.045736 0.030000
2.294444 0.059504 0.136529 0.046404 0.030000
2.360000 0.059504 0.140430 0.047062 0.030000
2.425556 0.059504 0.144331 0.047711 0.030000
2.491111 0.059504 0.148231 0.048352 0.030000
2.556667 0.059504 0.152132 0.048984 0.030000
2.622222 0.059504 0.156033 0.049608 0.030000
2.687778 0.059504 0.159934 0.050224 0.030000
2.753333 0.059504 0.163835 0.050833 0.030000
2.818889 0.059504 0.167736 0.051435 0.030000
2.884444 0.059504 0.171636 0.052029 0.030000
2.950000 0.059504 0.175537 0.060297 0.030000
3.015556 0.059504 0.179438 0.064874 0.030000
3.081111 0.059504 0.183339 0.068390 0.030000
3.146667 0.059504 0.187240 0.071400 0.030000
3.212222 0.059504 0.191140 0.074097 0.030000
3.277778 0.059504 0.195041 0.076573 0.030000
3.343333 0.059504 0.198942 0.078883 0.030000
3.408889 0.059504 0.202843 0.081062 0.030000
3.474444 0.059504 0.206744 0.083134 0.030000
3.540000 0.059504 0.210645 0.085115 0.030000
3.605556 0.059504 0.214545 0.087019 0.030000
3.671111 0.059504 0.218446 0.088856 0.030000
3.736667 0.059504 0.222347 0.090634 0.030000
3.802222 0.059504 0.226248 0.092359 0.030000
3.867778 0.059504 0.230149 0.094036 0.030000
3.933333 0.059504 0.234050 0.095670 0.030000
3.998889 0.059504 0.237950 0.097264 0.030000
4.064444 0.059504 0.241851 0.098823 0.030000
4.130000 0.059504 0.245752 0.100348 0.030000
4.195556 0.059504 0.249653 0.101842 0.030000
4.261111 0.059504 0.253554 0.103307 0.030000
4.326667 0.059504 0.257455 0.104745 0.030000
4.392222 0.059504 0.261355 0.106158 0.030000
4.457778 0.059504 0.265256 0.107547 0.030000
4.523333 0.059504 0.269157 0.108914 0.030000
4.588889 0.059504 0.273058 0.110259 0.030000
4.654444 0.059504 0.276959 0.111596 0.030000
4.720000 0.059504 0.280860 0.113620 0.030000
4.785556 0.059504 0.284760 0.116118 0.030000
4.851111 0.059504 0.288661 0.118907 0.030000
4.916667 0.059504 0.292562 0.144281 0.030000
4.982222 0.059504 0.296463 0.371938 0.030000
5.047778 0.059504 0.300364 0.715787 0.030000
5.113333 0.059504 0.304264 1.115779 0.030000
5.178889 0.059504 0.308165 1.516327 0.030000
5.244444 0.059504 0.312066 1.864028 0.030000
5.310000 0.059504 0.315967 2.121277 0.030000
5.375556 0.059504 0.319868 2.286300 0.030000
5.441111 0.059504 0.323769 2.447830 0.030000
5.506667 0.059504 0.327669 2.585294 0.030000
5.572222 0.059504 0.331570 2.715559 0.030000
5.637778 0.059504 0.335471 2.839656 0.030000
5.703333 0.059504 0.339372 2.958389 0.030000
5.768889 0.059504 0.343273 3.072401 0.030000
5.834444 0.059504 0.347174 3.182219 0.030000
5.900000 0.059504 0.351074 3.288275 0.030000
5.965556 0.059504 0.354975 3.390932 0.030000
END FTABLE 1
END FTABLES
EXT SOURCES
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 31
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # ***
WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC
WDM 2 PREC ENGL 1 IMPLND 1 999 EXTNL PREC
WDM 1 EVAP ENGL 0.76 PERLND 1 999 EXTNL PETINP
WDM 1 EVAP ENGL 0.76 IMPLND 1 999 EXTNL PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
RCHRES 1 HYDR RO 1 1 1 WDM 1004 FLOW ENGL REPL
RCHRES 1 HYDR O 1 1 1 WDM 1005 FLOW ENGL REPL
RCHRES 1 HYDR O 2 1 1 WDM 1006 FLOW ENGL REPL
RCHRES 1 HYDR STAGE 1 1 1 WDM 1007 STAG ENGL REPL
COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL
END EXT TARGETS
MASS-LINK
<Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->***
<Name> <Name> # #<-factor-> <Name> <Name> # #***
MASS-LINK 2
PERLND PWATER SURO 0.083333 RCHRES INFLOW IVOL
END MASS-LINK 2
MASS-LINK 3
PERLND PWATER IFWO 0.083333 RCHRES INFLOW IVOL
END MASS-LINK 3
MASS-LINK 5
IMPLND IWATER SURO 0.083333 RCHRES INFLOW IVOL
END MASS-LINK 5
MASS-LINK 12
PERLND PWATER SURO 0.083333 COPY INPUT MEAN
END MASS-LINK 12
MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY INPUT MEAN
END MASS-LINK 13
MASS-LINK 15
IMPLND IWATER SURO 0.083333 COPY INPUT MEAN
END MASS-LINK 15
MASS-LINK 17
RCHRES OFLOW OVOL 1 COPY INPUT MEAN
END MASS-LINK 17
END MASS-LINK
END RUN
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 32
Predeveloped HSPF Message File
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 33
Mitigated HSPF Message File
18615 - .5 infiltration 6/13/2019 6:51:19 AM Page 34
Disclaimer
Legal Notice
This program and accompanying documentation are provided 'as-is' without warranty of any kind. The
entire risk regarding the performance and results of this program is assumed by End User. Clear
Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either
expressed or implied, including but not limited to implied warranties of program and accompanying
documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever
(including without limitation to damages for loss of business profits, loss of business information,
business interruption, and the like) arising out of the use of, or inability to use this program even
if Clear Creek Solutions Inc. or their authorized representatives have been advised of the
possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2019; All
Rights Reserved.
Clear Creek Solutions, Inc.
6200 Capitol Blvd. Ste F
Olympia, WA. 98501
Toll Free 1(866)943-0304
Local (360)943-0304
www.clearcreeksolutions.com