HomeMy WebLinkAboutR-408505L, LGEOTECHNICAL RECOMMENDATIONS
C)
411
O
1
0
LLI
CONCLUSIONS AND RECOMMENDATIONS
Based on the results of our field exploration program, laboratory testing, and engineering analysis, we
U)
conclude that development of the proposed development can be accomplished as planned. A summary of
w
primary geotechnical considerations for the site development and design of the proposed development is
C
provided in the subsequent sections.
OSummary
z
■ The planned townhomes site is classified as Site Class C, in accordance with the 2015 International
Building Code (IBC).
Odense
■ The planned townhomes may be supported on conventional spread footings bearing on dense to very
undisturbed glacial till or on structural fill placed over these soils. Footings bearing on dense to
very dense undisturbed glacial till may be designed using an allowable soil bearing value of
6,000 pounds per square foot (psf). Footings bearing on structural fill placed over undisturbed dense
v�
to very dense glacial till may be designed using an allowable bearing value of 3,000 psf. All existing fill,
LLI
highly weathered glacial till or otherwise unsuitable soils should be removed from below foundations
priorto constructing foundations or placing structural fill. The allowable bearingvalue may be increased
U
by one-third for short duration loads such as wind or seismic events.
■ Lateral foundation loads may be resisted by resistance on the sides of the footings and by
passive
Ofriction
on the base of the footings. For footings supported and surrounded by either dense native soils
J
or compacted structural fill, a coefficient of friction of 0.35 and a passive resistance of 350 pounds per
J
cubic foot (pcf) may be used.
■ A subgrade modulus of 100 pounds per cubic inch (pci) may be used for design of the slabs -on -grade
for the townhomes. Concrete slabs -on -grade should be supported on a 4-inch-thick capillary break layer
CY)
overlain by a vapor retarder (in conditioned spaces or enclosed rooms, such as mechanical or storage
0
space).
6i
■ The pavement section extending to the west and north from the southeast corner of the project site
may be supported on existingfill soils provided thatthe upper 2 feet of the fill is placed and compacted
as structural fill. A proof roll test can also be conducted to reduce excavation costs if native soils are
encountered within the upper 2 feet and to check that the soils can perform adequately under planned
loads. If any soft spots are observed, the upper 2 feet of subgrade soils should be removed and
replaced with at least 2 feet of structural fill compacted to at least 95 percent of the maximum dry
density (MDD) per ASTM International (ASTM) D 1557. Suitable on -site soils may be used as structural
GEoENGINEERS� November 15, 2018 Page 3
File No. 23656-001-00
Prior to placing the gravel layer, the subgrade should be proofrolled as described previously in the
"Earthwork" section of this report. If necessary, the building slab subgrades should be recompacted to a
firm and unyielding condition.
We recommend that concrete slabs -on -grade be constructed on a gravel layer to provide uniform support
and drainage and to act as a capillary break. The gravel layer below slabs -on -grade should consist of at
least 4 inches of clean crushed gravel with a maximum particle size of 1 inch and negligible sand or silt in
accordance with Washington State Department of Transportation (WSDOT) Standard Specification
9-03.1(4)C American Association of State Highway and Transportation Officials (AASHTO) Grading No. 67.
If prevention of moisture migration through the slab is essential, a vapor retarder such as heavy plastic
sheeting should be installed between the slab and the gravel layer. It may also be prudent to apply a sealer
to the slab to further retard the migration of moisture through the floor. We recommend that the plastic
sheet be placed over the capillary break layer.
Pavement Recommendations
Recommendations for typical pavements (asphalt and concrete) are provided in the following sections. The
City of Renton may have standard pavement sections that could apply to the site, therefore the project civil
engineer should review the City's standards, if applicable.
Subgrade Preparation
We recommend the subgrade soils in new pavement areas be prepared and evaluated as described in the
"Earthwork" section of this report. All new pavement and hardscape areas should be supported on
subgrade soils that have been proof rolled or probed as described in the "Clearing and Site Preparation"
section of this report. If the exposed subgrade soils are loose or soft, it may be necessary to excavate
localized areas and replace them with structural fill or gravel base course. Pavement subgrade conditions
should be observed during construction and prior to placing the subbase materials in order to evaluate the
presence of zones of unsuitable subgrade soils and the need for overexcavation and replacement of these
zones.
New Hot Mix Asphalt Pavement
In light -duty pavement areas (e.g., automobile parking), we recommend a pavement section consisting of
at least a 21/2 -inch thickness of 1/2-inch hot -mix asphalt (HMA) per WSDOT Sections 5-04 and 9-03,
over a 4-inch thickness of densely compacted crushed surfacing base course (CSBC) per WSDOT Section
9-03.9(3). In heavy-duty pavement areas (such as the driveway), we recommend a pavement section
consisting of at least a 3-inch thickness of 1/2-inch HMA over a 6-inch thickness of densely compacted CSBC.
The base course should be compacted to at least 95 percent of the MDD obtained using ASTM D 1557.
We recommend that proof rolling of the subgrade and compacted base course be observed by a
representative from ourfirm priorto paving. Soft or yielding zones observed during proof rolling may require
overexcavation and replacement with compacted structural fill.
The pavement sections recommended above are based on our experience. Thicker asphalt sections may
be needed in accordance with the City of Renton or based on the actual traffic data, truck loads, and
intended use. All paved and landscaped areas should be graded so that surface drainage is directed to
appropriate catch basins.
GEOENGINEERS�
w
i
a
z
w
LL
November 15, 2018 Page 7
File No. 23656-001-00
fill under the planned road and associated hardscape provided that earthwork is accomplished during
dry weather conditions in the summer months.
Earthquake Engineering
We evaluated the site for seismic hazards including liquefaction, lateral spreading, fault rupture and
earthquake -induced landsliding. Our evaluation indicates that the site does not have liquefiable soils
present and, therefore, also has no risk of liquefaction -induced lateral spreading. In addition, the site has
a low risk of fault rupture and earthquake -induced landsliding.
2015 IBC Seismic Design Information
For the planned townhomes, we recommend the IBC 2015 parameters for average field standard
penetration resistance, site class, short period spectral response acceleration (Ss), 1-second period
spectral response acceleration (Si), and seismic coefficients FA and Fv presented in Table 1.
TABLE 1. 2015 IBC SEISMIC PARAMETERS
203.5 IBC Parameter Recommended Value
Average Field Standard Penetration Resistance >50
Site Class C
Short Period Spectral Response Acceleration, Ss (percent g) 143.2
1-Second Period Spectral Response Acceleration, Si. (percent g) 53.8
Seismic Coefficient, FA 1.000
Seismic Coefficient, Fv 1.300
Liquefaction Potential
Liquefaction is a phenomenon where soils experience a rapid loss of internal strength as a consequence
of strong ground shaking. Ground settlement, lateral spreading and/or sand boils may result from soil
liquefaction. Structures supported on liquefied soils could suffer foundation settlement or lateral
movement that could be severely damaging to the structures.
Conditions favorable to liquefaction occur in loose to medium dense, clean to moderately silty sand, which
is below the groundwater level. Based on our evaluation of the subsurface conditions observed in the
explorations, it is our opinion that potentially liquefiable soils are not present at the project site.
Ground Rupture
Ground rupture from lateral spreading is associated with liquefaction. Lateral spreading involves lateral
displacements of large volumes of liquefied soil, and can occur on near -level ground as blocks of surface
soils displace relative to adjacent blocks. In our opinion, ground rupture resulting from lateral spreading at
the site is unlikely because potentially liquefiable soils are not present at the site as discussed above.
Because of the thickness of the Quaternary sediments below the site, which are commonly more than
1,000 feet thick, the potential for surface fault rupture is considered low.
GEOENGINEERS�
November 15, 2018 Page 4
File No. 23656-001-00
Portland Cement Concrete Pavement
Portland cement concrete (PCC) sections may be considered for areas where concentrated heavy loads
may occur. We recommend that these pavements consist of at least 6 inches of PCC over 6 inches of CSBC.
A thicker concrete section may be needed based on the actual load data for use of the area. If the concrete
pavement will have doweled joints, we recommend that the concrete thickness be increased by an amount
equal to the diameter of the dowels. The base course should be compacted to at least 95 percent of the
MDD.
We recommend PCC pavements incorporate construction joints and/or crack control joints spaced at
maximum distances of 12 feet apart, center -to -center, in both the longitudinal and transverse directions.
Crack control joints may be created by placing an insert or groove into the fresh concrete surface during
finishing, or by saw cutting the concrete after it has initially set up. We recommend the depth of the crack
control joints be approximately one fourth the thickness of the concrete; or about 11/2 inches deep for the
recommended concrete thickness of 6 inches. We also recommend the crack control joints be sealed with
an appropriate sealant to help restrict water infiltration into the joints.
Asphalt -Treated Base
If pavements are constructed during the wet seasons, consideration may be given to covering the areas to
be paved with asphalt -treated base (ATB) for protection. Light -duty pavement areas should be surfaced with
3 inches of ATB, and heavy-duty pavement areas should be surfaced with 6 inches of ATB. Thicker ATB
sections may be needed based on construction equipment loads. Prior to placement of the final pavement
sections, we recommend the ATB surface be evaluated and areas of ATB pavement failure be removed and
the subgrade repaired. If ATB is used and is serviceable when final pavements are constructed, the CSBC
can be eliminated, and the design PCC or asphalt concrete pavement thickness can be placed directly over
the ATB.
Earthwork
Based on the subsurface soil conditions encountered in the explorations, we expect that the soils at the
site may be excavated using conventional heavy-duty construction equipment. Very dense glacial till was
encountered at relatively shallow depths at the planned building locations; therefore, glacial till soils within
deeper portions of excavations may require a large excavator to accomplish the excavations. Cobbles were
observed in most of the test pits and glacial till deposits in the area commonly contain boulders that may
be encountered during excavation. Accordingly, the contractor should be prepared to deal with boulders, if
encountered.
The glacial till contains sufficient fines (material passing the U.S. standard No. 200 sieve) to be highly
moisture -sensitive and susceptible to disturbance, especially when wet. Ideally, earthwork should be
undertaken during extended periods of dry weather when the surficial soils will be less susceptible to
disturbance and provide better support for construction equipment. Dry weather construction will help
reduce earthwork costs and increase the potential for using the native soils as structural fill.
Trafficability on the site is not expected to be difficult during dry weather conditions. However, the fill and
native soils will be susceptible to disturbance from construction equipment during wet weather conditions
and pumping and rutting of the exposed soils under equipment loads may occur.
GWENGINEERS�
November 15, 2018 Page 8
File No. 23656-001-00
Landslides
Because site topography is relatively flat and dense to very dense glacial till deposits occur at shallow
depths, it is our opinion that landsliding as a result of strong ground shaking is unlikely at the site.
Foundations
We recommend that the buildings be supported on shallow spread footings founded on the dense to very
dense native glacial till soil encountered in the explorations, or on properly compacted structural fill
extending down to medium dense to dense glacial till. The following recommendations for the buildings are
based on the subsurface conditions observed in the explorations and the site survey.
Foundation Design
For shallow foundation support, we recommend widths of at least 18 and 24 inches, respectively, for
continuous wall and isolated column footings supporting the proposed townhomes. The design frost depth
in the Puget Sound area is 12 inches, therefore, we recommend that the footings be founded at least
18 inches below lowest adjacent finished grade.
Unsuitable soils consisting of fill, topsoil, and/or highly weathered glacial soils will vary across the site and
must be removed from below planned footings. Based on our explorations, up to 31/2 feet of fill and/or
looser weathered native soils exist under the proposed north building unit (GEI-TP-1 and GEI-TP-2),
approximately 3 feet under the central building unit (GEI-TP-3 and GEI-TP-4) and 21/2 feet under the south
building unit (GEI-TP-5 and GEI-TP-6). Therefore, depending on the foundation locations and depths,
overexcavation under the footings may be necessary. For foundations supported on medium dense native
glacial till or structural fill extending down to medium dense to dense native glacial till, we recommend
footings be designed using a maximum allowable bearing pressure of 3,000 psf. A maximum allowable
bearing pressure of 6,000 psf may be used in design where foundations are bearing on dense to very dense
relatively unweathered glacial till or on controlled density fill (CDF) extending down to the dense to very
dense native till. All existing fill and looser native soils should be removed from below planned footings.
These allowable bearing pressures apply to the total dead and long-term live loads and may be increased
up to one-third for short-term live loads such as wind or seismic forces.
The overexcavated areas should be backfilled with: (1) CDF having a design strength of at least 200 pounds
per square inch (psi) where 6,000 psf bearing pressures are used or, (2) imported gravel borrow where
3,000 psf is used. Where structural fill is placed below footings, the fill should extend beyond the edges of
the foundations by the depth of the overexcavation, while the CDF should extend beyond the edges of the
foundations by half the depth of the excavation.
Foundation Settlement
We estimate that the post -construction settlement of footings founded on the very dense glacial till or
structural fill extending to the medium dense to very dense till, as recommended above, will be between
1/2 and 1 inch. Differential settlement between comparably loaded column footings or along a 25-foot
section of continuous wall footing should be less than 1/2 inch. We expect most of the footing settlements
will occur as loads are applied. Loose or disturbed soils not removed from footing excavations prior to
placing concrete will result in additional settlement.
GEoENGINEERS November 15, 2018 Page 5
File No. 23656-001-00
Clearing and Site Preparation
Areas to be developed or graded should be cleared of surface and subsurface deleterious matter including
any debris, shrubs, trees and associated stumps and roots. Graded areas should be stripped of organic
soils.
The organic soils can be stockpiled and used later for landscaping purposes or may be spread over
disturbed areas following completion of grading. If spread out, the organic strippings should be in a layer
less than 1-footthick, should not be placed on slopes greater than 3HAV (horizontal to vertical) and should
be track -rolled to a uniformly compacted condition. Materials that cannot be used for landscaping or
protection of disturbed areas should be removed from the project site.
Undocumented fill may be present in various areas of the site and will be required to be removed under
building foundations and within the upper two feet of pavement, hardscape and slab subgrade levels.
Where existing fill and looser native soils are removed, they may be reused and recompacted as structural
fill, if conditions allow. If medium dense to dense native soils are encountered below slab subgrade,
additional excavation is not required. If old fill is encountered below slab subgrade, the fill should be
evaluated and possibly removed up to 2 feet below slab subgrade or until medium dense to dense native
soils are encountered (less than 2 feet below slab subgrade). Excavations for slab subgrade preparation
likely do not need to extend more than 2 feet below slab subgrade. The upper two feet below pavement
subgrade should also be removed and replaced as structural fill; however, if existing fill soils are suitable
and adequately compacted based on evaluations after the pavement is removed, the contractor can
perform a proof roll on the exposed surface at or below slab subgrade level, and if approved by the
geotechnical engineer, the fill may be left in place.
Subgrade Preparation
Prior to placing new fills, pavement base course materials or gravel below on -grade floor slabs, subgrade
areas should be proof rolled to locate any soft or pumping soils. Prior to proof rolling, all unsuitable soils
should be removed from below the building footprints. Proof rolling can be completed using a piece of heavy
tire -mounted equipment such as a loaded dump truck. During wet weather, the exposed subgrade areas
should be probed to determine the extent of soft soils. If soft or pumping soils are observed, they should
be removed and replaced with compacted structural fill.
If deep pockets of soft or pumping soils are encountered outside the building areas, it may be possible to
limit the depth of overexcavation by placing a non -woven geotextile fabric such as TenCate Mirafi 50OX (or
equivalent) on the overexcavated subgrade prior to placing structural fill. The geotextile will provide
additional support by bridging over the soft material and will help reduce fines contamination into the
structural fill.
After completing the proof rolling, the subgrade areas should be recompacted to a firm and unyielding
condition, if possible. The degree of compaction that can be achieved will depend on when the construction
is performed. If the work is performed during dry weather conditions, we recommend that all subgrade
areas be recompacted to at least 95 percent of the MDD in accordance with the ASTM D 1557 test
procedure (modified Proctor). If the work is performed during wet weather conditions, it may not be possible
to recompact the subgrade to 95 percent of the MDD. In this case, we recommend that the subgrade be
compacted to the extent possible without causing undue heaving or pumping of the subgrade soils.
GEOENGINEERS� November 15, 2018 Page 9
File No. 23656-001-00
Lateral Resistance
Lateral loads can be resisted by passive resistance on the sides of the footings and by friction on the base
of the footings. Passive resistance should be evaluated using an equivalent fluid density of 350 pcf where
footings are poured neat against native soil or are surrounded by structural fill compacted to at least
95 percent of MDD, as recommended. Resistance to passive pressure should be calculated from the
bottom of adjacent floor slabs and paving or below a depth of 1 foot where the adjacent area is unpaved,
as appropriate. Frictional resistance can be evaluated using 0.35 for the coefficient of base friction against
footings. The above values incorporate a factor of safety of about 1.5.
If soils adjacent to footings are disturbed during construction, the disturbed soils must be recompacted,
otherwise the lateral passive resistance value must be reduced.
Construction Considerations
Immediately prior to placing concrete, all debris and loose soils that accumulated in the footing excavations
during forming and steel placement must be removed. Debris or loose soils not removed from the footing
excavations will result in increased settlement.
If wet weather construction is planned, we recommend that all footing subgrades be protected using a lean
concrete mud mat or 3 inches of compacted crushed base course. The mud mat or base course should be
placed the same day that the footing subgrade is excavated and approved for foundation support.
We recommend that all completed footing excavations be observed by a representative of our firm prior to
placing mud mat, reinforcing steel, and structural concrete. Our representative will confirm that the bearing
surface has been prepared in a manner consistent with our recommendations and that the subsurface
conditions are as expected.
Footing Drains
We recommend that perimeter footing drains be installed around each building. The perimeter drains
should be installed at the base of the exterior footings. The perimeter drains should be provided with
cleanouts and should consist of at least 4-inch-diameter perforated pipe placed on a 3-inch bed of drainage
material, and surrounded by 6 inches of drainage material enclosed in a non -woven geotextile fabric such
as TenCate Mirafi 140N (or approved equivalent) to prevent fine soil from migrating into the drain material.
We recommend against using flexible tubing for footing drainpipes. The perimeter drains should be sloped
to drain by gravity, if practicable, to a suitable discharge point, preferably a storm drain. We recommend
that the cleanouts be covered, and be placed in flush -mounted utility boxes. Water collected in roof
downspout lines must not be routed to the footing drain lines.
Slab -on -Grade Floors
We expect that the lower level concrete slab -on -grade can be supported on the medium dense to very dense
native soil encountered in our explorations or on properly compacted structural fill. A subgrade modulus of
100 pci may be used for design of the slabs -on -grade at the site. We recommend that an appropriate
capillary break and vapor retarder be installed below concrete slabs to reduce the risk of moisture migration
through the floor slab. This is especially important since zones of groundwater seepage may be present at
the planned floor slab level in more permeable layers above the dense native glacial till or in looser soils
on top of the dense glacial till.
GEOENGINEERS�
November 15, 2018 Page 6
File No. 23656-001-00
R-408505
IN COMPLIANCE WITH CITY OF RENTON STANDARDS
DEVELOPMENT ENGINEERING
Nathan Janders 01 /03/2020
thirdplace design
•
co-operative
where architecture meets community
J\
CITY CORRECTIONS
KC
11.08.19
SURVEYED:
SCALE:
N.T.S.N,T,S,
ONTAL:NAVD1968
HORIZONTAL:
DATUM
CITY OF
RENTON
Planning/Building/Public Works Dept.
DMOND CREST E R NHON
EDMONDS AVE NE, RENTON WA
COVER SHEET: GEOTECHNICAL RECOMMENDATIONS
7.29.19
DESIGNED:
PAGE:BOOK:
°��"
KC
ONE INCH
DRAWING N0:
T—O'O�
CHECKED:
ATFULLSCALE
IF NOTONE INCH
SCALE ACCORDINGLY
NO.
REVISION
BY
DATE
APPR
APPROVED:
SHEET OF:
co
co
T
411
O
T
U
T
C)
O
0
6
T
Q
J
co
T
0
O
O
1
0)
T
i